ACS Chemical Neuroscience

Article

Functionalization and characterization of magnetic nanoparticles for the detection of ferritin accumulation in Alzheimer's disease

Tamara Fernández, Alberto Martínez-Serrano, Lorena Cussó, Manuel Desco, and Milagros Ramos-Gómez ACS Chem. Neurosci., Just Accepted Manuscript • DOI: 10.1021/acschemneuro.7b00260 • Publication Date (Web): 03 Jan 2018 Downloaded from http://pubs.acs.org on January 17, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

ACS Chemical Neuroscience is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

2		
3	1	Functionalization and characterization of magnetic nanoparticles for
4		
5	2	the detection of ferritin accumulation in Alzheimer's disease
6	2	the detection of ferrinin accumulation in Alzhenner 5 disease
7		
8		
9	3	
10		
11		1 2 245
12	4	Tamara Fernández ¹ , Alberto Martínez-Serrano ² , Lorena Cussó ^{3,4,5} , Manuel
13		
14	5	Desco ^{3,4,5} and Milagros Ramos-Gómez ^{1,6,*}
15		8
16		
17	6	1 Centre for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Spain
18		
19		
20	7	2 Department of Molecular Biology and Centre for Molecular Biology "Severo Ochoa"
20		
22	8	(CBMSO), Universidad Autónoma de Madrid and Consejo Superior de Investigaciones
23		
23	9	Científicas, Madrid, Spain.
25		
26		
27	10	3 Departamento de Ingeniería Biomédica e Ingeniería Aeroespacial, Universidad Carlos
28		
29	11	III de Madrid, 28911 Leganés, Spain.
30		
31		
32	12	4 Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain.
33		
34		$5 \circ (1 + 1 + 1)$ $(1 + 1)$ $(1 + 1)$ $(1 + 1)$ $(1 + 1)$ $(1 + 1)$ $(1 + 1)$
35	13	5 Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029
36		
37	14	Madrid, Spain
38		
39	4 5	6 CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid,
40	15	o CIDER de Dioingeniena, Dioinalenaies y Manoineurcina (CIDER-DDN), Mauriu,
41		
42	16	Spain.
43		
44	17	*Corresponding author
45	17	Conceponding aution
46		
47	18	
48		
49		
50	19	
51		
52	20	
53	20	
54		
55	21	
56	4 1	
57		
58		1
59		
60		ACS Paragon Plus Environment

1 Abstract

Early diagnosis in Alzheimer's disease (AD), prior to the appearance of marked clinical
symptoms, is critical to prevent irreversible neuronal damage and neural malfunction that leads
to dementia and death. Therefore, there is an urgent need to generate new contrast agents which
reveal by a non-invasive method the presence of some of the pathological signs of AD.

6 In the present study we demonstrate for the first time a new nanoconjugate composed of 7 magnetic nanoparticles bound to an anti-ferritin antibody, which has been developed based on 8 the existence of iron deposits and high levels of the ferritin protein present in areas with a high 9 accumulation of amyloid plaques (particularly the subiculum in the hippocampal area) in the 10 brain of a transgenic mouse model with five familial AD mutations.

Both in vitro and after intravenous injection, functionalized magnetic nanoparticles were able to
 recognize and bind specifically to the ferritin protein accumulated in the subiculum area of the
 AD transgenic mice.

14 Keywords

15 Iron oxide nanoparticles, nanoconjugates, ferritin, iron deposits, microglia, Alzheimer's disease.

16 Introduction

17 Alzheimer's disease (AD) is a progressive neurodegenerative disorder, with no known

18 prevention or cure, which affects approximately 47 million patients worldwide¹. At present, a

19 definitive diagnosis of AD is only possible after the patient's death, when the presence of

- 20 amyloid plaques and tangles in the brain parenchyma can be revealed by histological
- 21 examination². Current diagnostic practices, including assessments of clinical history to detect
- 22 changes in behavior, physical examination, neuropsychiatric testing (Mini-Mental State
- 23 Examination, MMSE), diagnostic laboratory tests and neuroimaging, can only make a
- 24 "probable" diagnosis of AD^3 .

ACS Chemical Neuroscience

2	
3	
4	
5 6	
0 7	
8	
9	
10	
11 12	
12	
14	
15	
16	
17 18	
19	
20	
21	
22 23	
23 24	
25	
26	
27	
28 29	
30	
31	
32	
33 34	
35	
36	
37	
38 39	
40	
41	
42	
43 44	
45	
46	
47	
48 49	
49 50	
51	
52	
53 54	
54 55	
56	
57	
58	
59 60	
00	

1	To date, the best-established biomarkers for the detection and monitoring of AD include
2	measures of ß amyloid peptide and tau in cerebrospinal fluid, hippocampal atrophy as assessed
3	by magnetic resonance imaging (MRI), reduction in the rate of glucose metabolism in the brain,
4	assessed by positron emission tomography (PET) with fluorodeoxyglucose, and brain
5	accumulation of ß amyloid peptide visualized by PET using Pittsburgh Compound B ³ , ⁴ . None of
6	these methods, alone or in combination, provide high accuracy in the early diagnosis of
7	pathology. Therefore, great emphasis has been placed on the search for biomarkers indicative of
8	AD, but most attempts to date have had limited success ⁵ .
9	With the improvements in imaging technologies in recent years, there has been a growing
10	interest in developing methods to visualize amyloid plaques in AD, especially in transgenic
11	mice, using methods that could eventually be applied to humans ⁶ , 7 . The therapeutic approaches
12	currently developed show that the available therapies are more effective when applied at very
13	early stages, when a low burden of amyloid plaques can be detected ⁸ , ⁹ . Therefore, early
14	diagnosis of the disease is a critical issue.
15	MRI has a higher spatial resolution than PET in the study of whole brain. MRI is a widely
15	available technique that can produce images in both experimental animals and in patients
10	without the need for a radiotracer ¹⁰ . Several groups have been able to visualize amyloid plaques
18	in vivo utilizing both the endogenous contrast induced by the plaques attributed to their iron
19	content and by selectively enhancing the signal from amyloid plaques using molecular-targeting
20	vectors labeled with MRI contrast agents ¹¹ , ¹² . These data were corroborated using both
20	postmortem brain tissue from AD patients ¹³ , and brain tissue from transgenic AD mice ¹⁴ , 15 , 16 .
21	postitiorem oran ussue nom rib parents, and oran ussue nom dansgeme rib nice, , .
22	Histological findings associated with AD show the presence of iron deposits in the vicinity of
23	plaques in the brains of patients with the disease ¹⁷ , ¹⁸ . The intrinsic MRI contrast arising from the
24	iron associated with plaques creates an unexpected opportunity for the noninvasive investigation
25	of the temporal course of development of the plaques in the animal brain, thus reducing
26	intersubject variability ¹⁶ . However, the limiting factor of this methodological approach, in
27	which no contrast agent is used, is that only amyloid plaques with a diameter of more than 50

µm can be detected, using acquisition times that generally exceed 2h. These very long times
 complicate the acquisition of in vivo images, not only in research animals, but also in the
 clinical setting.

In order to detect amyloid plaques at early stages of the disease, and to diminish the acquisition
times of in vivo imaging, several studies have proposed the use of magnetic iron oxide
nanoparticles as specific contrast agents for MRI^{19,20}. The hypointense effect exhibited by these
particles in T2 and T2* image sequences provides greater contrast in MR images. Therefore, the
use of magnetic iron oxide nanoparticles (MNPs) may be a good method for the early diagnosis
of AD.

Different types of functionalized MNPs have been evaluated in AD models including those coupled to amyloid B peptide $1-40^{21}$, amyloid B peptide $1-30^{22}$, amyloid B peptide $1-42^{11}$ and to peptides highly specific for A β amyloid fibrils²³,²⁴; also by coupling the MNPs to antibodies which specifically recognize amyloid B peptide 1-42 as a component of amyloid plaques²⁵, 26 , 27 , 19 . MNPs functionalized with different markers of amyloid plaques, such as Thioflavin S²⁸, Congo Red²⁹, 1,1-dicyano-2-[6-(dimethylamino)naphthalene-2-yl] propene (DDNP)³⁰ and curcumin³¹, have also been used to target and detect amyloid plagues in AD transgenic mice using ex vivo MRI with long acquisition times.

The localized iron accumulation and formation of iron deposits in the brain, together with changes in the regulation of iron–storage and the association of iron with several proteins is evident in several neurodegenerative diseases, including AD³²,³³. Proteomic analysis has also shown higher levels of ferritin, the main protein that stores and transports iron in vertebrates, in the hippocampal region of AD patients compared to healthy individuals³⁴. Moreover, iron and ferritin are deposited in close proximity to amyloid plaques in the cerebral cortex of AD patients, as determined in post-mortem specimens³⁵,³⁶.

The present manuscript presents a novel nanoconjugate based on MNPs bound to an anti-ferritin antibody, which could be a useful tool to detect increases in the expression of ferritin in the

ACS Chemical Neuroscience

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1 brain parenchyma of transgenic mice with five familial Alzheimer's disease mutations (5XFAD) by MRI³⁷. This nanoconjugate showed a high specific binding to the ferritin protein 2 3 present in the subiculum of 5XFAD mice after being injected intravenously, while non-4 functionalized MNPs could not be detected in the same brain region after injection. The results 5 demonstrated that the functionalization of MNPs with the anti-ferritin antibody generated a 6 specific contrast agent useful for detecting the presence of ferritin in the brain parenchyma of 7 the 5XFAD mice, and consequently the presence of iron deposits in the vicinity of amyloid 8 plaques, one of the hallmarks of AD.

9 Results and Discussion

We report here a novel method for the selective marking of the protein ferritin, present in areas
with a high accumulation of amyloid plaques, with functionalized magnetic nanoparticles. This
novel nanoconjugate, which selectively marked ferritin, might be used in the near future as a
contrast agent for MRI enabling the noninvasive early detection of AD.

The development of biofunctionalized devices could become a useful tool in diagnosis and
therapy of several neuropathologies and become a strategy to deepen knowledge in cell biology
and histopathology in neuroscience.

17 Iron and ferritin accumulation in 5XFAD mice

There is some evidence for altered iron metabolism in AD, including alterations in iron 18 accumulation and changes in transferrin and ferritin levels¹⁷. Striking iron accumulation has 19 been closely associated with amyloid plaques, neurofibrillary tangles, and neuropil threads in 20 clinical cases of AD³⁸. Increased levels of ferritin have also been observed by proteomic 21 analysis within the hippocampal region in AD patients compared to healthy individuals³⁴. To 22 23 determine whether these highly relevant histological findings were also present in 5XFAD mice, 24 the presence of iron was evaluated in 9-month-old 5XFAD transgenic and nontransgenic mice 25 by Prussian blue staining. Brain sections from nontransgenic mice showed no obvious Prussian 26 blue staining, indicating a lack of iron accumulation in the brain (Figure 1A). However, iron

1	burden was obvious in the subiculum of 5XFAD mice (Figure 1B), an area usually containing a
2	high number of amyloid plaques ³⁷ . In fact, when brain sections were stained with Thioflavin S,
3	a marker of amyloid plaques, a strong signal could be detected in the subiculum area only in the
4	5XFAD mice (Figure 1D), indicating a high density of amyloid plaques coinciding with the
5	strong accumulation of iron in this hippocampal region. As expected, amyloid protein was not
6	detected in nontransgenic mice (Figure 1C).
7	Since high iron content was observed in 5XFAD mice in the hippocampal area, we stained
8	similar brain sections with an anti-ferritin antibody to determine the levels of this iron-binding
9	protein in this region. While the presence of this protein in control mice was almost negligible
	(Figure 1E), in 5XFAD brain sections, strong labeling for ferritin protein was evident in the
10	
11	subiculum (Figure 1F).
12	This high expression of ferritin in the subiculum of the 5XFAD transgenic mice coincided
13	perfectly with the presence of a high number of amyloid plaques in the same area (arrows in
14	Figure 1D and 1F).
15	The regional accumulation of iron deposits in the brain, together with changes in the regulation
16	of iron storing proteins and the association of iron with neuropathology is evident in several
17	neurodegenerative diseases, including AD, Parkinson's disease, multiple sclerosis and
18	Huntington's disease, where the accumulation of iron in the brain corresponds to the regions of
19	greatest neuronal degeneration ³⁹⁻⁴⁴ . Iron accumulation in these neurodegenerative diseases
20	occurs in different brain regions. In AD, iron accumulation occurs in the hippocampus ⁴⁰ . In
21	Huntington's disease, an increased iron burden in the cortex and striatum has been shown in
22	both patients and transgenic mouse models for the disease ⁴¹ . In patients with Parkinson's
23	disease, accumulation of iron occurs in the substantia nigra ⁴² . In the case of multiple sclerosis,
24	an increase in iron in the spinal cord white matter has also been described ⁴³ . Therefore, a
25	specific contrast agent able to detect iron deposits by MRI could be useful for the diagnosis of
26	several neurodegenerative diseases. Furthermore, each neurodegenerative disorder could then be
27	distinguished by determining the brain area(s) where such iron accumulations occur. In this

Page 7 of 42

ACS Chemical Neuroscience

_	way, the developed nanoconjugate would be a useful tool to detect AD, depending on the
2	location of the iron accumulations in the brain.

Iron deposits and a strong immunoreactivity for ferritin have been observed near the amyloid plaques in the cortex and in the hippocampus of AD patients³⁵,³⁶. Ferritin accumulation was almost exclusively associated with reactive microglial cells, which appeared to have greatly proliferated³⁶. To determine if iron and ferritin accumulations in 5XFAD mice were deposited close to the amyloid plaques, a double staining was performed using an antibody specific for the ferritin protein and a specific marker for amyloid plaques (Thioflavin S). Cells labeled with the anti-ferritin antibody were found near the amyloid plaques, with their processes in close contact with and surrounding the plaques in 5XFAD brains (Figure 2). In brain slices obtained from AD patients, astrocytes and microglia have been shown to be associated with the amyloid plaques, where they show an activated, amoeboid state surrounding the plaques with their processes^{44,45}. In the case of 5XFAD mice, staining with the astrocytic marker for glial fibrillary acidic protein (GFAP) showed a high number of GFAP-positive cells throughout the subiculum with no colocalization with ferritin positive cells (Figure 3C). However, the selective labeling of microglial cells using tomato lectin, a protein with specific affinity for poly-N-acetyl lactosamine sugar residues that are found on the plasma membrane and in the cytoplasm of microglia, established a high colocalization of this marker with ferritin (Figure 3D). These results indicate that microglial cells colocalized with ferritin and were abundant in areas showing a high density of ferritin and amyloid plaques (Figures 3A and 3B, respectively). Previous studies suggested that in the brain of patients with AD, the enhanced ferritin expression indicated microglia degeneration instead of reflecting an activated state^{45,46}. The enhanced expression of ferritin protein has been described to increase the susceptibility of microglia to degeneration, particularly in the aging brain⁴⁵. Senescent microglia may be less efficient in maintaining iron homeostasis, and free iron could promote oxidative damage in neurodegenerative diseases. Therefore, in brains affected by AD, increased expression of ferritin could constitute a marker of microglial degeneration.

These results indicate that the increased presence of ferritin in AD brains could serve as an
 interesting biomarker to reveal the presence and localization of amyloid plaques. Therefore,
 conjugation of an anti-ferritin antibody with magnetic nanoparticles could produce a specific
 contrast agent useful for noninvasively detecting the presence of amyloid plaques in the brain
 using MRI.

6 Coupling of the anti-ferritin antibody to MNPs

An anti-ferritin polyclonal antibody was immobilized onto 50nm dextran-coated MNPs as described in the methods section. A polyclonal antibody that recognizes multiple epitopes on the same antigen was chosen due to its high affinity and tolerance to possible changes in the antigen⁴⁷. The preparation of the nanoconjugates was based on the carbodiimide method⁴⁸, leading to the formation of a very stable complex. The efficiency of the antibody binding to the MNPs was determined by a dot-blot assay (Figure 4). Dot-blot analysis confirmed a high level of anti-ferritin antibody binding to MNPs, since only small traces of free anti-ferritin antibody were detected in the unbound fraction (Figure 4C); a high amount of anti-ferritin antibody present at the beginning of the coupling reaction (Figure 4A) could be detected conjugated to the MNPs in the MNPs-anti-ferritin fraction (Figure 4B) after the coupling reaction. Therefore, the binding of the anti-ferritin antibody to the MNPs to form the MNP-anti-ferritin conjugate was highly effective.

These previous results were also confirmed by protein quantification using an improved
Bradford protein assay permitting quantification of low protein concentrations⁴⁹. The binding
efficiency was estimated to be about 30 ± 14 molecules of anti-ferritin bound per nanoparticle.
Binding of the antibody to the MNPs may increase the final hydrodynamic diameter of the
MNPs as previously described for similar MNPs⁵⁰ in which the antibody bound to the MNPs
increased twofold their final hydrodynamic diameter.

25 Cell viability after incubation with MNPs

ACS Chemical Neuroscience

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
~ ~
20
21 22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
42
44
45
46
47
48
49
50
51
52
53
54
55
55 56
57
58
59
60

1	To discard a potential neurotoxicity of the MNPs, we determined that the incubation of human
2	neuroblastoma SH-SY5Y cells with MNPs and MNPs-anti-ferritin was feasible and did not
3	impair cell viability in vitro. SH-SY5Y cells were incubated with both types of MNPs and
4	tested for viability using doses up to 200 μ g/mL and incubation times of 72 hours, which did not
5	significantly affect neuroblastoma cells survival, as evaluated by the lactate dehydrogenase
6	(LDH) activity assay (Figure 5A). Once determined that MNPs did not induce a loss of cell
7	viability on SHSY5Y cell line, we analyzed the effect of MNP and MNPs-anti-ferritin on
8	primary cell cultures obtained from mouse brains, in order to discard an effect of the MNPs on
9	some specific type of brain cells (i.e., neurons, astrocytes, or microglial cells). The results
10	showed that cell viability rates were similar in control and MNPs-treated cell cultures (Figure
11	5B) and that the number of neurons and astrocytes did not decrease in the presence of MNPs or
12	MNPs-anti-ferritin with respect to untreated control cells (Figure 5C). The number of microglia
13	cells stained with the anti-Iba1 antibody were higher in MNPs-treated cells compared to
14	untreated control cells (in which no microglial cells were detected), indicating that MNPs were
15	preferentially taken up by the microglial cells (Figure 5D), although the viability of the cells
16	during the periods of time analyzed was not affected.
17	These results suggested that although iron oxide nanoparticles could induce oxidative stress ⁵¹ ,
18	the levels of intracellular iron accumulation resulting from the incubation with MNPs and the

the levels of intracellular iron accumulation resulting from the incubation with MNPs and the presence of the antibody in the case of the nanoconjugate MNP-anti-ferritin, did not induce acute cell toxicity at the times and concentrations analyzed. In addition, Mahmoudi and coworkers⁵² have shown that the interaction of nanoparticles with serum proteins forming the nanomaterial's protein corona inhibits the formation of A β fibril upon their entrance to the biological medium.

24 In vitro specificity of the MNP-anti-ferritin conjugate

To verify the in vitro specificity of the MNP-anti-ferritin conjugate, fixed brain sections from 9month-old 5XFAD and nontransgenic mice, with a high (Figure 6A) and low (Figure 6E)
expression of ferritin, respectively, were incubated with the MNP-anti-ferritin conjugate. The

ACS Chemical Neuroscience

1
2 3
5 4
5
6
7
8
9
10
11
12
13
14
15
16 17
17
10
20
21
22
23
24
25
26
27
28
29
30
31
32 33
33 34
35
36
37
38
39
40
41
42
43
44
45
46
47
48 49
49 50
50 51
52
53
54
55
56
57
58
59
60

1

1	presence of the MNP-anti-ferritin conjugate bound to the subiculum in brain slices was detected
2	using an anti-rabbit-Cy3 antibody which recognized only the polyclonal ferritin antibody bound
3	to the MNPs. The results indicated a strong binding in the case of 5XFAD mice (Figure 6B and
4	6C) and a nearly absent, undistinguishable from background, binding in nontransgenic mice
5	(Figure 6F and 6G). The accumulation of MNPs in the slices could even be observed by
6	transmission light microscopy as highly localized and crowded black dots in 5XFAD (Figure
7	6D). This type of signal was undetectable in nontransgenic mice (Figure 6H).
8	As evidenced in Figure 6, the accumulation of the MNP-anti-ferritin conjugate in the subiculum
9	is higher in 5XFAD than in nontransgenic brain sections (compare Figure 6 B–D with panels F–
10	H). The binding of MNP-anti-ferritin conjugate colocalized with cells showing clear-cut, high
11	expression of ferritin in 5XFAD (Figure 6A) in comparison with nontransgenic (Figure 6E)
12	mice.
13	Also, the accumulation of bound MNP-anti-ferritin conjugate in the subiculum of 5XFAD mice
14	regionally correlates with the presence of amyloid plaques and ferritin in the subiculum,
15	previously shown in Figure 1D and 1F, respectively. As expected, in brain sections from
16	nontransgenic mice (Figure 6F-H), very few MNP-anti-ferritin nanoconjugate could be detected
17	(Figure 6G), and the black stain observed by transmission light microscopy was absent (Figure
18	6H), consistent with the very weak expression of ferritin in the subiculum of nontransgenic mice
19	(Figure 6E).
20	Consequently, these results indicated that the MNP-anti-ferritin conjugate specifically binds and
21	detects the enhanced expression of the ferritin protein that occurs in the subiculum of 9-month-
22	old 5XFAD mice in vitro.
23	In vivo specificity of the MNP-anti-ferritin conjugate
24	Once the in vitro specificity of the MNP-anti-ferritin nanoconjugate was confirmed in fixed
25	5XFAD brain sections, its efficiency was tested in vivo after intravenous injection in 5XFAD

26 mice. Since the previous in vitro results indicated the absence of detectable signal in control

Page 11 of 42

ACS Chemical Neuroscience

1 2 3	
4 5 6 7	
8 9 10 11	
12 13 14 15	
16 17 18 19	
20 21 22	
23 24 25 26	
27 28 29 30	
31 32 33	
34 35 36 37	
38 39 40 41	
42 43 44 45	
46 47 48	
49 50 51 52	
53 54 55 56	
57 58 59 60	

1	animals, wild type mice were not used in these experiments to reduce the number of animals
2	used in adherence to the 3Rs principles. Plain non-functionalized MNPs and MNP-anti-ferritin
3	conjugates were intravenously injected into the retro-orbital sinus of 5XFAD mice. Six hours
4	after intravenous administration of the MNPs, 5XFAD brains were fixed and subsequently
5	analyzed by histological analyses to localize the final distribution of the MNPs. The
6	accumulation of ferritin protein and amyloid plaques in the subiculum of transgenic mice was
7	again confirmed using an anti-ferritin antibody and Thioflavin-S staining, respectively (Figure
8	7A). Serial sections were stained with the secondary polyclonal Cy3-antibody alone to detect
9	the presence of the MNP-anti-ferritin conjugates in the subiculum of 5XFAD mice previously
10	injected with the nanoconjugate (Figure 7B). Moreover, the MNPs were fluorescently labeled
11	using an antibody against their coating (antidextran-FITC; Figure 7D and 7G). The results
12	shown in Figure 7 demonstrate that the MNP-antiferritin nanoconjugates injected intravenously
13	accumulate in the subiculum area of the transgenic 5XFAD brains, where a high number of
14	amyloid plaques and an enhanced expression of ferritin exist (Figure 7A-E). In contrast, when
15	non-functionalized MNPs were injected intravenously in 5XFAD mice, only very few,
16	occasional, MNPs could be detected in the subiculum area (Figure 7 F-H), demonstrating a high
17	specificity of the MNP-anti-ferritin conjugates to reveal the accumulation of ferritin in the brain
18	of living 5XFAD mice. These results also indicated that non-functionalized MNPs did not bind
19	to 5XFAD brain parenchyma in a non-specific manner after intravenous injection,
20	demonstrating a lack of nonspecific binding of the non-functionalized MNPs to the iron deposits
21	found in the subiculum of 5XFAD mice. Moreover, the robust colocalization (Figure 7E) of the
22	ferritin antibody signal (Figure 7C) and the MNPs (Figure 7D) indicated that the MNP-anti-
23	ferritin nanoconjugate was highly stable under physiological in vivo conditions, avoiding
24	potential opsonization when circulating through the bloodstream and eluding clearance by the
25	reticuloendothelial system before reaching its target.
26	The ferritin protein also circulates in the plasma, where it transports iron. Ferritin in plasma has
27	been shown to enter the brain parenchyma through the blood brain barrier (BBB) using the

1	ferritin H receptor present on the plasma membrane of endothelial cells that form the BBB ^{53,54} .
2	Therefore, a theoretical drawback of the present method would be that it might be possible that
3	plasmatic ferritin could saturate all the antibody recognition sites available on the MNPs, thus
4	preventing the binding of the nanoconjugate to the ferritin present in the brain parenchyma. This
5	would seriously limit the efficacy of the iron-ferritin detection method, and its potential use as a
6	diagnostic tool. Although we cannot exclude some binding to plasma ferritin, our results
7	indicate that the MNP-anti ferritin conjugate has enough free binding sites to recognize the
8	ferritin accumulated in the subiculum of 5XFAD mice.
9	Based on our results, we propose that the MNPs conjugated to anti-ferritin antibody could be a
10	useful tool for the imaging and detection of iron accumulations in the brain parenchyma of AD
11	patients. Future work will be needed to increase the binding capacity and affinity of the
12	nanoconjugate. A limitation of our method is the need to open the BBB with the use of
13	mannitol.
14	Although intravenous mannitol injection has been used safely in patients under a variety of
	clinical settings ⁵⁵ , a potential future clinical use of this contrast agent would require further
15	
16	modifications including the coupling of MNPs with specific proteins actively transported into the brain ²² or their PEGylation ¹¹ in order to increase the ability of the MNPs to cross the BBB
17	
18	and avoid the use of mannitol.
19	Ex vivo brain MRI
20	After confirming that MNP-anti-ferritin nanoconjugate injected intravenously specifically
21	bound to the subiculum region in transgenic 5XFAD brains, MR images from the same area
22	were acquired from a different set of experimental animals after the injection of non-
23	functionalized and functionalized MNPs as a preliminary study. Nontransgenic mice injected
24	with MNP-anti-ferritin and 5XFAD mice without MNPs did not show any non-specific marks in
25	MR images (data not shown). Although there were no evident marks on MR images of the
26	injected MNPs (Figure 8 A and 8B), a significant decrease in T2* value in both the right and
	12
	ACS Paragon Plus Environment

ACS Chemical Neuroscience

1	left hippocampus was found in 5XFAD animals injected with functionalized MNPs as
2	compared to 5XFAD mice injected with non-functionalized MNPs (Figure 8 C). Therefore,
3	changes in T2* value in MNP-anti-ferritin injected 5XFAD mice could be attributed to ferritin
4	accumulation and consequently to amyloid plaque deposition in the transgenic mice, as
5	previously demonstrated by histological analysis (Figure 7). Therefore, our results are consistent
6	with the literature. Yang et al ⁵⁶ also reported a decrease of T2* value in the hippocampus after
7	nanoparticle administration in both in vivo and ex vivo MRI studies.
8	In order to increase the binding of the nanoconjugate MNPs-anti-ferritin to the transgenic mouse
9	brains, higher amounts of anti-ferritin antibody could be used for the coupling reaction.
10	Moreover, the dosage we used of MNP-anti-ferritin at 20 $\mu mol \ Fe_3O_4/kg$ body weight is far
11	from the range of preclinical MRI applications for which contrast agents are typically injected
12	intravenously by femoral or tail vein, at 200 μ mol Fe ₃ O ₄ /kg body weight for diagnostic
13	purposes ^{11,29} and similar to the doses of commercial MNPs (i.e., Endorem [®] , Resovist [®] , or
14	Feridex [®]) used in clinical trials (15µmol Fe ₃ O ₄ /kg body weight). Therefore, since no
15	cytotoxicity of the MNPs used to synthesize the nanoconjugate was observed even at the highest
16	concentration used (Figure 5), a higher dose of MNPs could be injected in vivo to induce
17	qualitative changes on brain MRI allowing visual ferritin accumulation in the future.
18	The specificity of this nanoconjugate is important because, to date, the detection of iron deposits
19	associated with AD by MRI is only possible when a high concentration of iron is deposited
20	around the amyloid plaques ¹² , preventing early diagnosis of the disease. The use of contrast
21	agents like the one described here, based on MNPs functionalized with antibodies directed
22	against the protein that stores iron, would allow an earlier detection of the accumulation of
23	ferritin and, hence, of iron, as we have shown in the present work. This would allow an early
24	diagnosis of the disease, since the presence of iron deposits in the brains of patients with AD is
25	one of the most common histopathological features associated with the disease ¹⁷ . Iron is known
26	to promote aggregation of β -amyloid peptide and therefore a large number of therapeutic trials
27	are currently aimed at reducing elevated levels of iron in the brains of AD patients ⁵⁷ . Thus, an

1 effective method for early and sensitive detection of iron levels in the brains of AD patients is

2 necessary.

These preliminary results of detecting ferritin accumulation in 5XFAD mice show a potential
future high-specificity tool for diagnosis of Alzheimer's disease.

Methods

6 Animals

7 Hemizygous 5xFAD mice obtained from the Jackson Laboratory were used as a model of

8 Alzheimer's disease³⁷. These 5xFAD mice carry five mutations associated with familial AD

9 (Swedish (K670N, M671L), Florida (I716V) and London (V717I) mutations in amyloid

10 precursor protein (APP) and M146L and L286V mutations in presenilin 1 (PS1)) and develop

11 several features of AD described in humans, such as the presence of amyloid plaques, which

12 appear as early as 2 months of age in these mice³⁷. N=3 Nine month old male 5XFAD

13 transgenic mice and n= 3 their wild-type (nontransgenic) littermates were used for all

14 experiments as proof of concept to determine the specificity of the nanoconjugate. All

15 procedures involving the use of animals were reviewed and approved by the local Animal Care

16 Committee (Universidad Politécnica de Madrid) according to the guidelines of the European

17 Community (ECC/566/2015).

18 Histological analysis

19 5XFAD and nontransgenic mice (9-month old) were anesthetized with an overdose of chloral

20 hydrate and intracardially perfused with freshly prepared 4% paraformaldehyde (in 0.1 M

21 phosphate buffer, pH 7.4). Brains were removed, postfixed for 12 h in the same fixative at 4 °C,

22 and dehydrated in 30% sucrose solution at 4 °C until sunk. Thirty-µm thick coronal sections

23 were collected using a freezing microtome (Leica SM 2400).

24 Prussian blue iron staining was used to visualize the iron deposits in the brain sections of

25 5XFAD and nontransgenic mice⁵⁸. A previous inactivation of endogenous peroxidase activity in

ACS Chemical Neuroscience

2	
3	
4	
5	
6	
7	
8	
8 9	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
25	
35	
36 37	
57	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
47 48	
48 49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

1	the tissue was performed by incubating the sections in 3% H_2 O_2 and 10% methanol in
2	phosphate buffered saline (PBS); samples were maintained at room temperature in the dark with
3	shaking for 30 minutes. After rinsing with PBS, sections were incubated in the Prussian blue
4	solution (2% potassium ferrocyanide trihydrate (Sigma # P-3289), 2% HCl, 1% Triton X-100 in
5	distilled H_2O) for 30 minutes. Samples were then washed twice in distilled H_2O and treated with
6	a solution of Ni-DAB (5mg of 3, 3'-diaminobenzidine (Sigma), 35 μL of 8% NiCl_2 and 4 μL of
7	30% H ₂ O ₂ in 10 mL of PBS) for 15 minutes. Sections were rinsed in PBS and mounted onto
8	gelatinized glass slides (Menzel-Glaser). The slides were dried overnight, successively
9	dehydrated with ethanol, delipidated with xylene and coverslipped with DPX mounting
10	medium.
11	Thioflavin S was used for the specific staining of amyloid plaques in brain sections from
12	5XFAD mice ^{49,59} . Brain sections from 5XFAD and nontransgenic mice were mounted onto

13 polylysine- treated slides (Thermo Scientific) and allowed to dry for 48h. Sections were then

14 incubated in 0.05% Thioflavin-S (Sigma) diluted in 50% ethanol for 30 minutes, protected from

15 light. After the incubation, sections were rinsed twice in 50% ethanol and once in distilled H₂O.

16 The slides were dried overnight and coverslipped with Mowiol mounting medium.

17 Immunohistochemistry

18 Thirty-µm serial sections obtained from 5XFAD and nontransgenic mice were also assessed by 19 immunohistochemistry using a polyclonal antibody against ferritin (1:1000; Sigma) and a 20 monoclonal antibody against GFAP (1:1000; Sternberger). Briefly, free-floating sections were 21 incubated overnight at 4 °C with the primary antibodies diluted in PBS with 2% nonspecific 22 serum. Sections were rinsed four times in PBS for a total time of 1 h and then incubated for 2 h 23 with the secondary antibodies diluted in PBS (anti-mouse or anti-rabbit Cy3- conjugated 24 antibodies, 1:200, all from Jackson Immunoresearch). Streptavidin-FITC (1:300; Vector Labs) 25 was used to detect biotinylated Lectin (1:500; Sigma) for microglial cell staining. Brain sections 26 were mounted onto gelatinized glass slides (Menzel-Glaser). The slides were dried overnight 27 and coverslipped with Mowiol.

1 Preparation of MNP-anti-ferritin nanoconjugate

2	MNP-anti-ferritin conjugates were prepared according to the carbodiimide method ⁴⁸ . Briefly, 1
3	mg of 50nm in diameter $\mathrm{Fe_3O_4}\text{-}\mathrm{dextran}$ coated MNPs with a magnetite content of 35% (w/w)
4	and functionalized with -COOH groups (Kisker # PMC-50) were washed with 0.1 M 2-(N-
5	morpholino)ethanesulfonic acid (MES) buffer at pH 5.5 and diluted to a final volume of 500 μL
6	in MES buffer containing 20 mg of freshly prepared 1-ethyl-3-(3-dimethylaminopropyl)
7	carbodiimide (EDC) and 40 mg of sulfo-N-hydroxysuccinimide (NHS). The particles were
8	mixed on a shaker for 2 h at room temperature. After incubation, the particles were washed
9	twice with 1 mL MES buffer at pH 5.5 and the activated particles were resuspended in 0.5 mL
10	MES buffer at pH 5.5. Amine group-containing ligands (150 μ g of a polyclonal anti-ferritin
11	human antibody. Sigma-Aldrich Cat. No. F5012) were added to the activated particles and the
12	suspension was mixed on a shaker overnight at room temperature. The conjugate was washed
13	three times with 1 mL PBS, centrifuged each time at 5000 rpm for 5 minutes, resuspended in
14	0.5 mL of PBS, and kept at 4 °C until use.

Dot-blot assay

To test the efficiency of the coupling reaction of the anti-ferritin antibody to the MNPs, 1 µL drops of each solution used in the preparation of the MNP-anti-ferritin conjugate (anti-ferritin antibody, MNPs alone, medium containing unbound anti-ferritin antibody, and MNP-anti-ferritin conjugate) were deposited onto a nitrocellulose membrane strip (Bio-Rad). After drying at room temperature, dot-blots were blocked for 1 hour at room temperature with 5% skim milk in Tris-buffered saline (500 mM NaCl in 20 mM Tris, pH 7.4) containing 0.05% Tween 20 (TTBS) and then incubated with a goat anti-rabbit peroxidase-conjugated antibody (1:5000; Life Technologies) for 1hour at room temperature. Immunoreactivity was detected using the ECL Western blotting detection system (Amersham Biosciences). In addition, protein concentrations in the coupling reaction (total and unbound antibody) were determined by an improved Bradford protein assay permitting quantification of low protein concentrations⁶⁰, in order to confirm dot-blot results. The number of anti-ferritin molecules was calculated as previously

ACS Chemical Neuroscience

described⁶¹. In both assays, a control was performed to discard the precipitation of the antibody
 during the coupling reaction.

Cell viability assays

Human neuroblastoma cells (SH-SY5Y; ECACC No. 94030304) were maintained in DMEM medium supplemented with 10% heat-inactivated fetal bovine serum, 2mM L-glutamine, 0.1mM nonessential amino acids, 100U/mL penicillin and 100 mg/mL streptomycin (Life Technologies). The cell line was maintained at 37°C in a humidified incubator of 5% CO₂: 95% air and passaged twice per week. For the cell viability assay, cells were plated on 96 well plates $(15 \times 10^3 \text{ cells/well, in triplicate for each condition})$. Twenty four hours after plating, the cells underwent treatment with MNPs and MNPs-anti-ferritin. Cell viability was evaluated 72 hours after the incubation with the MNPs by the LDH assay, using the Cytotoxicity Detection kit (Roche) and following the manufacturer's instructions. Briefly, after the incubation time with the MNPs, cells were rinsed in PBS and lysed with 1% Triton X-100. Lysate was then collected after centrifugation at 1500 rpm for 5 minutes to remove cell debris. Cell-free supernatants were incubated with the kit's substrate mixture. LDH activity was determined in a coupled enzymatic reaction; during this reaction, the tetrazolium salt is reduced to formazan. The formazan dye was quantified spectrophotometrically at 490 nm. LDH activity present in the medium was expressed as a percentage of the maximum activity, considering 100% of LDH activity released to the medium as the absorbance obtained when control cells (cells without MNPs) were lysed with 1% Triton X-100.

Cortical mixed neuronal and glial cell cultures were prepared from 18-day-old BCL56 embryos
as previously described⁶². Cerebral cortices were enzymatically dissociated in PBS containing
1% bovine serum albumin, 0.4 mg/ml papain, and 6 mM glucose. Dissociated cells were
collected by centrifugation (800 x g, 5 minutes) and resuspended in medium supplemented with
20% horse serum. Culture medium consisted of Neurobasal with 1% glutamax-I and B27
supplements (all from Gibco). The cells were then plated at 1x10⁵ cells/cm² on plastic plates
pretreated for 1 day with 10 mM poly-L-lysine and for 2 hours with laminin (1 mg/ml). The

ACS Chemical Neuroscience

1	medium was replaced after 1 day by Neurobasal with 1% glutamax-I and B27 supplements.
2	Two-thirds of the medium were replaced every second day. Cell cultures were maintained for 7
3	days and then MNPs and MNPs-anti-ferritin were added at $200\mu g/mL$ for 3 days. To visualize
4	the final location of MNPs in cortical cell cultures, red fluorescent MNPs (Chemicell nano-
5	screenMAG/R) were used (Figure 5D). Cells were then fixed in 4% paraformaldehyde and
6	immunofluorescence was performed using the following primary antibodies: anti- β -III-tubulin
7	(Sigma) to stain neurons, anti-GFAP (Sigma) to stain astrocytes, and anti-Iba-1 (Sigma) to label
8	microglial cells. Cell nuclei were counterstained with Hoechst 33258 (Molecular Probes). For
9	the cell viability assay, cells were plated on 96-well plates (15 x 10^3 cells/well, in triplicate for
10	each condition). Twenty-four hours after plating, the cells underwent treatment with MNPs and
11	MNPs-anti-ferritin. Cell viability was evaluated 72 hours after the incubation with the MNPs by
12	using the Cell Proliferation Assay kit (AppliChem) following manufacturer instructions. This
13	employs 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt (XTT).
14	In living cells, mitochondria have the capability to reduce XTT to form an orange-colored,
15	water-soluble dye ⁶³ . Therefore, the concentration of this dye is proportional to the number of
16	metabolically active cells. The absorbance of each well was measured spectrophotometrically at
17	450 nm by using an ELX808 microplate reader (BioTeK).

18 In vitro specificity of the MNP-anti-ferritin conjugate

To test the specificity of MNP-anti-ferritin conjugates, 5XFAD and nontransgenic brain sections were incubated with the MNP-anti-ferritin nanoconjugate (2 mg/mL). Sections were then washed three times in PBS and incubated for 1hour at room temperature with a goat anti rabbit Cy3 antibody (1:200; Jackson Immunoresearch). Sections were then washed in PBS and distilled water and mounted onto polylysine coated slides (Menzel-Glaser). The slides were dried overnight and coverslipped with Mowiol.

25 In vivo specificity of the MNP-anti-ferritin conjugate

ACS Chemical Neuroscience

1 2 3	
4 5 6 7	
, 8 9 10	
11 12 13 14	
15 16 17 18	
19 20 21	
22 23 24 25	
26 27 28 29	
30 31 32	
33 34 35 36	
37 38 39 40	
41 42 43	
44 45 46 47	
48 49 50 51	
52 53 54	
55 56 57 58	
59 60	

1	Mice were anesthetized with a mixture of isoflurane and oxygen (1.5% isoflurane per 1 L $$
2	oxygen) and homeothermy was maintained through a heated water blanket (TP 500 model,
3	Gaymar Industries, Inc, NY, USA) set at 37 °C. To facilitate the penetration of the MNPs
4	through the BBB, 100 μL of a solution of mannitol (15% in PBS; Sigma) was injected into the
5	retro-orbital sinus. Then, 15 minutes later, 150 μ L (2 mg/mL) of plain MNPs or MNP anti-
6	ferritin conjugate were intravenously injected (approximately 200µg MNPs/mL blood) in the
7	same location ⁶⁴ . Six hours after injection of the MNPs, mice were intracardially perfused and
8	the brains were fixed as described in the histological analysis section. To identify the presence
9	of the MNP-anti-ferritin nanoconjugate, brain sections were incubated with a secondary anti-
10	rabbit Cy3 antibody (1:200; Jackson Immunoresearch). A monoclonal anti-dextran antibody
11	(1:500; Stem Cell Technologies) and a secondary anti-mouse FITC antibody (1:200; Jackson
12	Immunoresearch) were used to identify the magnetic nanoparticles.

13 Ex vivo brain MRI

14	Transgenic 5XFAD mice were injected with MNPs and MNP-anti-ferritin as described in the
15	previous section. Six hours after the injection, mice were transcardially perfused with PBS
16	followed by 4% PFA. After this process, brains were extracted and immersed in Fomblin
17	(Solvay Solexis Inc., Thorofare, NJ) in order to provide a completely dark background around
18	the brains being imaged. A Bruker 7T scanner Biospec 70/20 was used to perform
19	Multiplegradient echo 3D images with the following parameters: 98µm isotropic spatial
20	resolution, TR = 200 ms, matrix = $128 \times 128 \times 128$, 10 echoes times (TE), first = 2.7 ms with
21	echo spacing (ES) = 3.57 ms, FA = 15° , imaging time = 5 hours and 7 minutes.
22	The apparent transverse relaxation time T2* was measured using the ten-echo train image sets
23	described above in several brain regions defined by region of interest (ROI). Right and left
24	dorsal hippocampus were manually drawn and T2* values were obtained using the
25	quantification tool of ParaVision 5.0 (Bruker, Germany).

26 **Optical microscopy**

Analyses and photography of Prussian blue or fluorescence stained samples were carried out

2 3	1
4 5	2
2 3 4 5 6 7 8	3
8 9	4
10 11	5
12 13	6
14 15	
16 17	7
18 19	8
20 21	9
22 23	10
24 25	11
26 27 28	12
29 30 31	13
32 33	14
34 35 36	15
37 38 39	16
40 41	17
42 43 44	18
45 46 47	19
48 49	20
50 51 52	21
53 54	22
55 56 57	23
58 59 60	

1	using an inverted Leica DMIRB microscope equipped with a digital camera (Leica DC100,
	Nussloch, Germany). The confocal microscopy analysis was performed using a LSM 510
	META confocal microscope coupled to an inverted microscope Axiovert200 (Zeiss) with image
	capture software Zeiss ZEN 2008 sp2.
	Statistical analysis
	Results are presented as mean \pm S.E.M. of at least 3 independent experiments. The data were
;	analyzed by single factor analysis of variance followed by the post hoc Tukey's honestly
1	significant difference test. A significance level of $p < 0.05$ was chosen. STATISTICA software
	(StatSoft, Tulsa, OK) was utilized for all statistical tests.
J	Safety
	Not applicable
	Abbreviations
	AD: Alzheimer's disease
	PET: positron emission tomography
	MNPs: magnetic iron oxide nanoparticles
	MRI: magnetic resonance imaging
	5XFAD: transgenic mice model with five familial Alzheimer's disease mutations
	PBS: phosphate buffered saline
	GFAP: glial fibrillary acidic protein
	LDH: lactate dehydrogenase
	MES: 2-(N-morpholino) ethanesulfonic acid

BBB: blood brain barrier

1		
2		
3	1	DDNP: 1,1-dicyano-2-[6-(dimethylamino)naphthalene-2-yl] propene
4		
5		
6	2	Author Information
7		
8	3	*Corresponding autor
9		
10		
11	4	Milagros Ramos-Gómez*
12		
13		
14	5	Centre for Biomedical Technology (CTB), Universidad Politécnica de Madrid. Campus de
15		
16	6	Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
17		
18	_	
19	7	*E-mail: <u>milagros.ramos@ctb.upm.es</u>
20	8	Author Contributions
21	0	Author Contributions
22		
23	9	MRG and AMS conceived the study, participated in its design and coordination and drafted the
24	5	fintes and fintes concerted the study, participated in its design and coordination and drafted the
25	10	manuscript. TFC, LC and MD carried out all experimental studies and helped to draft the
26	10	manuscript. TFC, LC and WD carried out an experimental studies and helped to draft the
27	11	
28	11	manuscript.
29		
30	12	Funding Sources
31	12	r undnig Sources
32		
33	13	This work was supported by Reina Sofia Foundation (to MRG). This study was also funded by
34	14	the Comunidad de Madrid (Neurotec-S2010/BMD-2460). Work at AMS laboratory was funded
35		
36	15	by MINECO (SAF2010-17167 and SAF2014-56101-R), Comunidad de Madrid (Neurostem-
37	15	by minuleo (SM 2010 17107 and SM 2014 50101 K), comunidad de maand (redrosteni
38	16	CM S2010-BMD-2336) and Instituto de Salud Carlos III (RETIC TerCel, RD12/0019/0013).
39	10	CW S2010-DWID-2550) and instituto de Salud Carlos III (RETIC TelCel, RD12/0015/0015).
40	47	Westert MD leterstere set and die EEDED "User weren de been Erman" aud de
41	17	Work at MD laboratory was cofunded by FEDER "Una manera de hacer Europa" and the
42		
43	18	Comunidad de Madrid (BRADE S2013/ICE-2958).
44		
45	10	Conflict of Interest
46	19	Conflict of Interest
47		
	20	The authors declare that they have no competing interests.
48	-0	The walless would that they have no composing interests.
49		
50	21	Acknowledgment
51	.=	0 · · · ·
52		
53		
54		

1	We would like to thank Beatriz Moreno and Soledad Martinez for the excellent technical		
2	assistance. We thank Dr. R. Martínez (Cajal Institute, Madrid, Spain) for providing the Iba1		
3	antibody.		
4	References		
5	(1) (2016) World Alzheimer Report 2016 Improving healthcare for people living with dementia		
6	coverage, Quality and costs now and in the future.		
7	(2) Apostolova, L. G., Hwang, K. S., Andrawis, J. P., Green, A. E., Babakchanian, S., Morra, J.		
8	H., Cummings, J. L., Toga, A. W., Trojanowski, J. Q., Shaw, L. M., Jack, C. R., Petersen, R. C.,		
9	Aisen, P. S., Jagust, W. J., Koeppe, R. A., Mathis, C. A., Weiner, M. W., and Thompson, P. M.		
10	(2010) 3D PIB and CSF biomarker associations with hippocampal atrophy in ADNI subjects.		
11	Neurobiol. Aging 31, 1284–1303.		
12	(3) Smailagic, N., M, R. F., Ciapponi, A., Giannakou, A., Ol, P., X, B. C., and Cullum, S.		
13	(2015) Mini-Mental State Examination (MMSE) for the detection of Alzheimer's disease and		
14	other dementias in people with mild cognitive impairment (MCI) (Review). Cochrane		
15	Database Syst Rev CD010783.		
16	(4) Reiman, E. M., Quiroz, Y. T., Fleisher, A. S., Chen, K., Velez-Pardo, C., Jimenez-Del-Rio,		
17	M., Fagan, A. M., Shah, A. R., Alvarez, S., Arbelaez, A., Giraldo, M., Acosta-Baena, N.,		
18	Sperling, R. A., Dickerson, B., Stern, C. E., Tirado, V., Munoz, C., Reiman, R. A., Huentelman,		
19	M. J., Alexander, G. E., Langbaum, J. B. S., Kosik, K. S., Tariot, P. N., and Lopera, F. (2012)		
20	Brain imaging and fluid biomarker analysis in young adults at genetic risk for autosomal		
21	dominant Alzheimer's disease in the presenilin 1 E280A kindred: A case-control study. Lancet		
22	Neurol. 11, 1048–1056.		
23	(5) Koffie, R. M., Farrar, C. T., Saidi, LJ., William, C. M., Hyman, B. T., and Spires-Jones, T.		
24	L. (2011) Nanoparticles enhance brain delivery of blood-brain barrier-impermeable probes for		
25	in vivo optical and magnetic resonance imaging. Proc. Natl. Acad. Sci. 108, 18837-18842.		

1	(6) Chamberlain, R., Wengenack, T. M., Poduslo, J. F., Garwood, M., and Jack, C. R. (2011)
2	Magnetic resonance imaging of amyloid plaques in transgenic mouse models of Alzheimer's
3	disease. Curr. Med. Imaging Rev. 7, 3–7.
4	(7) Baltes, C., Princz-Kranz, F., Rudin, M., and Mueggler, T. (2011) Detecting amyloid-β
5	plaques in Alzheimer's disease. Methods Mol. Biol. 711, 511-533.
6	(8) Wisniewski T, B. A. (2010) Vaccination as a therapeutic approach to Alzheimer's disease.
7	<i>Mt Sinai J Med</i> 77, 17–31.
8	(9) Thomas Wisniewskia, A. E. M. S. (2010) Murine models of Alzheimer's disease and their
9	use in developing immunotherapies. Biochim Biophys Acta. 1802, 847-859.
10	(10) Wadghiri, Y. Z., Sigurdsson, E. M., Sadowski, M., Elliott, J. I., Li, Y., Scholtzova, H.,
11	Tang, C. Y., Aguinaldo, G., Pappolla, M., Duff, K., Wisniewski, T., and Turnbull, D. H. (2003)
12	Detection of Alzheimer's amyloid in transgenic mice using magnetic resonance microimaging.
13	Magn. Reson. Med. 50, 293–302.
14	(11) Wadghiri, Y. Z., Li, J., Wang, J., Hoang, D. M., Sun, Y., Xu, H., Tsui, W., Li, Y.,
15	Boutajangout, A., Wang, A., de Leon, M., and Wisniewski, T. (2013) Detection of Amyloid
16	Plaques Targeted by Bifunctional USPIO in Alzheimer's Disease Transgenic Mice Using
17	Magnetic Resonance Microimaging. PLoS One 8, 1–10.
18	(12) Wadghiri YZ, Hoang DM, Wisniewski T, S. E. (2012) In vivo magnetic resonance imaging
19	of amyloid-β plaques in mice. Methods Mol Biol 849, 435–451.
20	(13) Benveniste, H., Einstein, G., Kim, K. R., Hulette, C., and Johnson, G. A. (1999) Detection
21	of neuritic plaques in Alzheimer's disease by magnetic resonance microscopy. Proc. Natl. Acad.
22	Sci. 96, 14079–14084.
23	(14) Braakman, N., Matysik, J., Van Duinen, S. G., Verbeek, F., Schliebs, R., de Groot, H. J.
24	M., and Alia, A. (2006) Longitudinal assessment of Alzheimer's beta-amyloid plaque
25	development in transgenic mice monitored by in vivo magnetic resonance microimaging. J.
	23

myloid
nden, A.
n
53, 607–
stochemical
sci. Res. 83,
netic
uman
97–1007.
Chen, K. H.,
rticles for
osci. 2, 500–
wler, D. R.,
n oxide MR
yloid
d.), pp 365–
uni, A.,
and
24

ACS Chemical Neuroscience

1	Wisniewski, T. (2008) A non-toxic ligand for voxel-based MRI analysis of plaques in AD
2	transgenic mice. Neurobiol. Aging 29, 836-847.
3	(23) Plissonneau, M., Pansieri, J., Heinrich-Balard, L., Morfin, JF., Stransky-Heilkron, N.,
4	Rivory, P., Mowat, P., Dumoulin, M., Cohen, R., Allémann, É., Tóth, É., Saraiva, M. J., Louis,
5	C., Tillement, O., Forge, V., Lux, F., and Marquette, C. (2016) Gd-nanoparticles
6	functionalization with specific peptides for ß-amyloid plaques targeting. J. Nanobiotechnology
7	14, 60.
8	(24) Ansciaux, E., Burtea, C., Laurent, S., Crombez, D., Nonclercq, D., Vander Elst, L., and
9	Muller, R. N. (2015) In vitro and in vivo characterization of several functionalized ultrasmall
10	particles of iron oxide, vectorized against amyloid plaques and potentially able to cross the
11	blood-brain barrier: Toward earlier diagnosis of Alzheimer's disease by molecular imag.
12	Contrast Media Mol. Imaging 10, 211–224.
13	(25) Poduslo JF, Hultman KL, Curran GL, Preboske GM, Chamberlain R, Marjańska M, et al.
14	(2011) Targeting vascular amyloid in arterioles of Alzheimer disease transgenic mice with
15	amyloid β protein antibody-coated nanoparticles. J Neuropathol Exp Neurol 70, 653–661.
16	(26) Jaruszewski, K. M., Curran, G. L., Swaminathan, S. K., Rosenberg, J. T., Grant, S. C.,
17	Ramakrishnan, S., Lowe, V. J., Poduslo, J. F., and Kandimalla, K. K. (2014) Multimodal
18	Nanoprobes to target cerebrovascular amyloid in Alzheimer's disease brain. Biomaterials 35,
19	1967–1976.
20	(27) Yin, Z., Yu, T., and Xu, Y. (2015) Preparation of Amyloid Immuno-Nanoparticles as
21	Potential MRI Contrast Agents for Alzheimer's Disease Diagnosis. J. Nanosci. Nanotechnol.
22	15, 6429–6434.
23	(28) Siegemund, T., Paulke, B. R., Schmiedel, H., Bordag, N., Hoffmann, A., Harkany, T.,
24	Tanila, H., Kacza, J., and Härtig, W. (2006) Thioflavins released from nanoparticles target
25	fibrillar amyloid β in the hippocampus of APP/PS1 transgenic mice. Int. J. Dev. Neurosci. 24,
26	195–201.
	2

1	(29) Hu, B., Dai, F., Fan, Z., Ma, G., Tang, Q., and Zhang, X. (2015) Nanotheranostics: Congo
2	Red/Rutin-MNPs with Enhanced Magnetic Resonance Imaging and H2 O2 -Responsive
3	Therapy of Alzheimer's Disease in APPswe/PS1dE9 Transgenic Mice. Adv. Mater. 27
4	(37):5499-5505.
5	(30) Zhang, D., Fa, HB., Zhou, JT., Li, S., Diao, XW., and Yin, W. (2015) The detection of
6	β-amyloid plaques in an Alzheimer's disease rat model with DDNP-SPIO. <i>Clin. Radiol.</i> 70, 74–
7	80.
8	(31) Cheng, K. K., Chan, P. S., Fan, S., Kwan, S. M., Yeung, K. L., Wang, Y. X. J., Chow, A.
9	H. L., Wu, E. X., and Baum, L. (2015) Curcumin-conjugated magnetic nanoparticles for
10	detecting amyloid plaques in Alzheimer's disease mice using magnetic resonance imaging
11	(MRI). Biomaterials 44, 155–172.
12	(32) Altamura, S., and Muckenthaler, M. U. (2009) Iron toxicity in diseases of aging:
13	Alzheimer's disease, Parkinson's disease and atherosclerosis. J. Alzheimer's Dis. 16, 879–895.
14	(33) Bartzokis G, T. T. (2000) MRI evaluation of basal ganglia ferritin iron and neurotoxicity in
15	Alzheimer's and Huntingon's disease. Cell Mol Biol 46, 821-833.
16	(34) Sultana, R., Boyd-Kimball, D., Cai, J., Pierce, W. M., Klein, J. B., Merchant, M., and
17	Butterfield, D. A. (2007) Proteomics analysis of the Alzheimer's disease hippocampal
18	proteome. J. Alzheimers. Dis. 11, 153–164.
19	(35) Rogers JT, Bush AI, Cho HH, Smith DH, Thomson AM, Friedlich AL, Lahiri DK,
20	Leedman PJ, Huang X, C. C. (2008) Iron and the translation of the amyloid precursor protein
21	(APP) and ferritin mRNAs: riboregulation against neural oxidative damage in Alzheimer's
22	disease. Biochem Soc Trans 36, 1282–1287.
23	(36) Grundke-Iqbal, I., Fleming, J., Tung, Y. C., Lassmann, H., Iqbal, K., and Joshi, J. G.
24	(1990) Ferritin is a component of the neuritic (senile) plaque in Alzheimer dementia. Acta
25	Neuropathol. 81, 105–110.
	26
	20

1	(37) Oakley, H., Cole, S. L., Logan, S., Maus, E., Shao, P., Craft, J., Guillozet-Bongaarts, A.,
2	Ohno, M., Disterhoft, J., Van Eldik, L., Berry, R., and Vassar, R. (2006) Intraneuronal β -
3	Amyloid Aggregates, Neurodegeneration, and Neuron Loss in Transgenic Mice with Five
4	Familial Alzheimer's Disease Mutations: Potential Factors in Amyloid Plaque Formation. J.
5	Neurosci. 26, 10129–10140.
6	(38) Smith, M. A., Harris, P. L., Sayre, L. M., and Perry, G. (1997) Iron accumulation in
7	Alzheimer disease is a source of redox-generated free radicals. Proc. Natl. Acad. Sci. U. S. A.
8	<i>94</i> , 9866–9868.
9	(39) Abo-Krysha, N., and Rashed, L. (2008) The role of iron dysregulation in the pathogenesis
10	of multiple sclerosis: an Egyptian study. Mult. Scler. 14, 602-608.
11	(40) Raven, E. P., Lu, P. H., Tishler, T. A., Heydari, P., and Bartzokis, G. (2013) Increased iron
12	levels and decreased tissue integrity in hippocampus of Alzheimer's disease detected in vivo
13	with magnetic resonance imaging. J. Alzheimer's Dis. 37, 127-136.
14	(41) Chen, J., Marks, E., Lai, B., Zhang, Z., Duce, J. A., Lam, L. Q., Volitakis, I., Bush, A. I.,
15	Hersch, S., and Fox, J. H. (2013) Iron Accumulates in Huntington's Disease Neurons:
16	Protection by Deferoxamine. PLoS One 8, 1–12.
17	(42) Mochizuki, H., and Yasuda, T. (2012) Iron accumulation in Parkinson's disease. J. Neural
18	Transm. 119, 1511–1514.
19	(43) Hametner, S., Wimmer, I., Haider, L., Pfeifenbring, S., Brück, W., and Lassmann, H.
20	(2013) Iron and neurodegeneration in the multiple sclerosis brain. Ann. Neurol. 74, 848–861.
21	(44) Meadowcroft, M. D., Connor, J. R., and Yang, Q. X. (2015) Cortical iron regulation and
22	inflammatory response in Alzheimer's disease and APP SWE/PS1ΔE9 mice: A histological
23	perspective. Front. Neurosci. 9, 1–16.
24	(45) Lopes, K. O., Sparks, D. L., and Streit, W. J. (2008) Microglial dystrophy in the aged and
25	Alzheimer's disease brain is associated with ferritin immunoreactivity. Glia 56, 1048–1060.
	P C

1	
2	
2	
1	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
∠ I วา	
22	
23	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 8 9 20 21 22 3 24 25 26 27 28 29 20 30 30	
25	
26	
27	
28	
29	
30	
31 32 33 34 35 36 37 38	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40 41	
41	
42 43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
50	

1	(46) Mrak, R.E. (2012) Microglia in Alzheimer brain: a neuropathological perspective. Int J		
2	Alzheimers Dis 2012, 165021.		
3	(47) Lipman, N. S., Jackson, L. R., Weis-Garcia, F., and Trudel, L. J. (2005) Monoclonal versus		
4	polyclonal antibodies: distinguishing characteristics, applications, and information resources.		
5	ILAR J. 46, 258–268.		
6	(48) Monagle, J. J. (1962) Carbodiimides. III. Conversion of isocyanates to carbodiimides-		
7	catalyst studies. J. Org. Chem. 27, 3851-3855.		
8	(49) Schmidt, M. L., Robinson, K. A., Lee, V. M., and Trojanowski, J. Q. (1995) Chemical and		
9	immunological heterogeneity of fibrillar amyloid in plaques of Alzheimer's disease and Down's		
10	syndrome brains revealed by confocal microscopy. Am. J. Pathol. 147, 503-515.		
11	(50) Mu, K., Zhang, S., Ai, T., Jiang, J., Yao, Y., Jiang, L., Zhou, Q., Xiang, H., Zhu, Y., Yang,		
12	X., and Zhu, W. (2015) Monoclonal antibody-conjugated superparamagnetic iron oxide		
13	nanoparticles for imaging of epidermal growth factor receptor-targeted cells and gliomas. Mol.		
14	Imaging 14.		
15	(51) Novotna, B., Jendelova, P., Kapcalova, M., Rossner, P., Turnovcova, K., Bagryantseva, Y.,		
16	Babic, M., Horak, D., and Sykova, E. (2012) Oxidative damage to biological macromolecules in		
17	human bone marrow mesenchymal stromal cells labeled with various types of iron oxide		
18	nanoparticles. Toxicol. Lett. 210, 53-63.		
19	(52) Mahmoudi, M., Monopoli, M. P., Rezaei, M., Lynch, I., Bertoli, F., Mcmanus, J. J., and		
20	Dawson, K. A. (2013) The Protein Corona Mediates the Impact of Nanomaterials and Slows		
21	Amyloid Beta Fibrillation. ChemBioChem 14, 568-572.		
22	(53) Li, L., Fang, C. J., Ryan, J. C., Niemi, E. C., Lebrón, J. a, Björkman, P. J., Arase, H., Torti,		
23	F. M., Torti, S. V, Nakamura, M. C., and Seaman, W. E. (2010) Binding and uptake of H-		
24	ferritin are mediated by human transferrin receptor-1. Proc. Natl. Acad. Sci. U. S. A. 107, 3505-		
25	3510.		

ACS Chemical Neuroscience

1	(54) Wallace, D. F., McDonald, C., and Subramaniam, V. N. (2010) Transferrin receptor 1: A
2	ferritin receptor as well? Gastroenterology 139, 1052-1053.
3	(55) Brown, R. C., Egleton, R. D., and Davis, T. P. (2004) Mannitol opening of the blood-brain
4	barrier: Regional variation in the permeability of sucrose, but not 86Rb+ or albumin. Brain Res.
5	1014, 221–227.
6	(56) Jing Yang, Youssef Zaim Wadghiri, Dung Minh Hoang, Wai Tsui, Yanjie Sun, E., and
7	Chung, Yongsheng Li, Andrew Wang, M. de L. and T. W. (2011) Detection of Amyloid
8	Plaques Targeted by USPIO-A β 1-42 in Alzheimer's Disease Transgenic Mice using Magnetic
9	Resonance Microimaging. Neuroimage 55, 1600–1609.
10	(57) Bush, A. I., and Tanzi, R. E. (2008) Therapeutics for Alzheimer's disease based on the
11	metal hypothesis. Neurotherapeutics 5, 421–432.
12	(58) Hall, a P., Davies, W., Stamp, K., Clamp, I., and Bigley, A. (2013) Comparison of
13	Computerized Image Analysis with Traditional Semiquantitative Scoring of Perls' Prussian
14	Blue Stained Hepatic Iron Deposition. Toxicol. Pathol. 992–1000.
15	(59) Bussière, T., Bard, F., Barbour, R., Grajeda, H., Guido, T., Khan, K., Schenk, D., Games,
16	D., Seubert, P., and Buttini, M. (2004) Morphological characterization of Thioflavin-S-positive
17	amyloid plaques in transgenic Alzheimer mice and effect of passive Abeta immunotherapy on
18	their clearance. Am. J. Pathol. 165, 987–995.
19	(60) Ernst, O., and Zor, T. (2010) Linearization of the Bradford Protein Assay. J. Vis. Exp. 1-6.
20	(61) Fernández-Cabada, T., Pablo, C. SL. de, Pisarchyk, L., Serrano-Olmedo, J. J., and
21	Ramos-Gómez, M. (2016) Optical Hyperthermia Using Anti-Epidermal Growth Factor
22	Receptor-Conjugated Gold Nanorods to Induce Cell Death in Glioblastoma Cell Lines. J.
23	Nanosci. Nanotechnol. 16, 7689–7695.
24	(62) Alvarez, G., Muñoz-Montaño, J. R., Satrústegui, J., Avila, J., Bogónez, E., Díaz-Nido, J.,
25	and Díaz-Nido, J. (1999) Lithium protects cultured neurons against beta-amyloid-induced
	20

2
3
4
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
10
20
21
22
23
24
25
26
20
27
28
29
30
31
32
33
34
35
36
37
38
39
40
40
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1 neurodegeneration. FEBS Lett. 453, 260–264.

- 2 (63) Berridge, M. V., Herst, P. M., and Tan, A. S. (2005) Tetrazolium dyes as tools in cell
- 3 biology: New insights into their cellular reduction. *Biotechnol. Annu. Rev. 11*, 127-152.
- 4 (64) Yardeni, T., Eckhaus, M., Morris, H. D., Huizing, M., and Hoogstraten-Miller, S. (2011)
- 5 Retro-orbital injections in mice. Lab Anim. (NY). 40, 155–160.

6 Figure captions

Figure 1: Iron, amyloid, and ferritin accumulation in 5XFAD mice. Coronal brain sections
of nontransgenic (A, C, and E) and 5XFAD transgenic (B, D, and F) mice stained with: A and
B) Prussian blue to detect iron accumulation; C and D) Thioflavin S to label amyloid plaques;
and E and F) an anti-ferritin antibody to detect the protein ferritin. No obvious label of any
markers can be detected in nontransgenic mice, while the subiculum in 5XFAD mice showed a
strong labeling for iron (arrow in B), amyloid plaques (arrow in D), and ferritin (arrow in F).

13 Scale bars in A and B: 200 μ m and in C-F: 500 μ m.

14 Figure 2: Spatial relationship between ferritin and amyloid plaques in 5XFAD mice. Serial

15 confocal microscopy images obtained every 5 µm from the top of the section to the bottom (A
16 through D) in the Z axis from the subiculum of a 5XFAD mouse. Coronal brain sections were
17 labeled with an antibody anti-ferritin (red) and Thioflavin S (green) to detect the presence of
18 ferritin and amyloid plaques, respectively. Scale bar: 25 µm.

Figure 3: Cell types that accumulate ferritin in 5XFAD mice. A) Coronal brain section of a 5XFAD mouse stained with an anti-ferritin antibody showing the accumulation of ferritin in the subiculum area (arrow). B) Higher magnification of the same anatomical region showing a high regional colocalization of amyloid plaques stained with Thioflavin S (green) and the anti-ferritin antibody (red). C) Sections stained with the astrocytic marker GFAP (green) showed a high number of GFAP-positive cells throughout the subiculum area with no colocalization with the ferritin-positive cells (red). D) Microglial cells in the subiculum area labeled with tomato lectin

ACS Chemical Neuroscience

2	
2	
3	
4	
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 23 24 25 26 27 30 31	
2	
6	
7	
8	
0	
9	
10	
11	
10	
12	
13	
14	
15	
15	
16	
17	
10	
10	
19	
20	
21	
21	
22	
23	
24	
21	
25	
26	
27	
20	
28	
29	
30	
31	
51	
32	
33	
24	
54	
35	
33 34 35 36 37	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

(green) showing a high degree of colocalization (yellow) with the ferritin stain (anti-ferritin
 antibody in red). Scale bars in A: 500 μm; in B-D: 100 μm.

3 Figure 4: Dot-blot assay to determine the effectiveness of the anti-ferritin antibody

coupling to MNPs. One µl of A) anti-ferritin antibody used for the coupling reaction, B) MNPs
functionalized with the anti-ferritin antibody, C) supernatant after the coupling reaction (antiferritin antibody not bound to MNPs), and D) MNPs used as a negative control. Note that a very
high fraction of the initial antibody present in the coupling reaction did bind to the MNPs.

8 Figure 5: Cell viability after incubation with magnetic nanoparticles. Analysis of the

9 viability of human neuroblastoma SH-SY5Y cells (A) and neuronal-glia mixed primary cell

10 cultures obtained from mouse brains (B) exposed to increasing concentrations of MNPs and

11 MNP-anti-ferritin for 72 hours, assessed by the LDH and XTT assays, respectively. No

12 remarkable changes in cell viability were observed when cells were exposed to increasing

13 concentrations of both types of MNPs for 72 hours. Cell viability in LDH and XTT assays was

14 considered maximum (100%) when cells were incubated without MNPs. The number of

15 neurons, astrocytes and microglial cells did not show any changes when primary cell cultures

16 obtained from mouse brains were incubated with either MNPs or MNPs-anti-ferritin (C).

17 Microfluorescence images of red fluorescent MNPs-treated cell cultures stained with anti-β-III-

18 tubulin (neurons), anti-GFAP (astrocytes) and anti-Iba1 (microglia) in green show that the

19 nanoparticles are uptaken preferentially by microglial cells (D). Inserts in D show single

20 staining for fluorescent MNPs (red) and microglial cells stained with anti-Iba-1 (green). Nuclei

21 were counterstained with Hoechst (blue). Each value in the graph bars represents the mean \pm

SEM of n = 3 independent experiments. ANOVA followed by the post-hoc Tukey's test

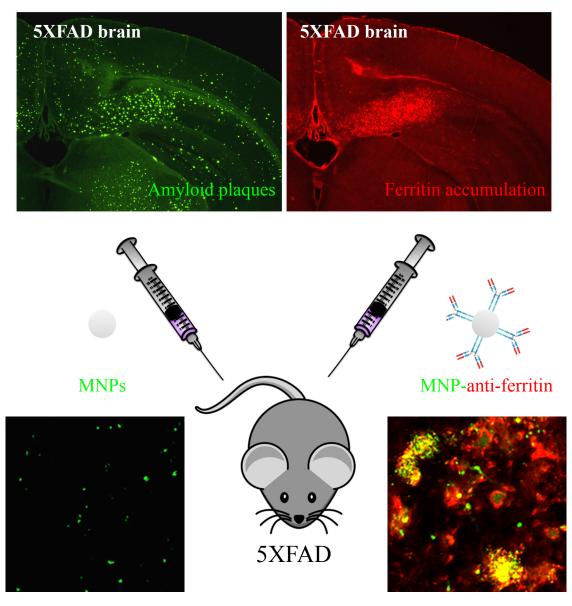
revealed the absence of significant differences (p>0.05) for each group compared to untreated

24 cells with MNPs. Scale bar in D: 50 μ m.

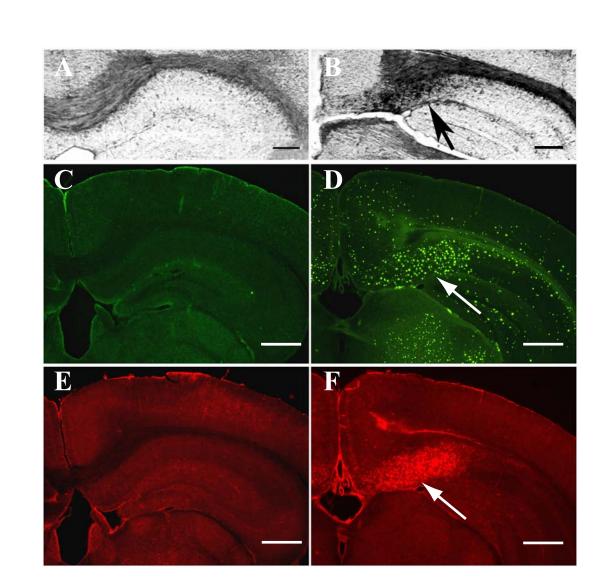
Figure 6: *In vitro* specificity of the MNP-anti-ferritin conjugate. Coronal brain sections of
 5XFAD (A) and nontransgenic (E) mice were stained with an antibody anti-ferritin to determine

ACS Chemical Neuroscience

2	
	1
3 4 5 6	2
6 7 8	3
9	4
10 11	5
12 13	6
14 15	7
16 17	8
18 19	9
20 21	10
22 23	11
24 25	
26 27	12
28 29	13
30 31	14
32	15
33 34	16
35 36	17
37 38	18
39 40	19
41 42	20
43 44	21
45 46	22
47 48	23
49 50	24
51 52	25
53 54	25
55 56	26
57 58	27
58 59 60	
00	


1

1	the accumulation of this protein in the subiculum region (boxes in A and E). Note the high		
2	accumulation of ferritin in 5XFAD brain compared to nontransgenic mice. Coronal brain		
3	sections of 5XFAD (B-D) and nontransgenic (F-H) mice, adjacent to those shown in A and E		
4	respectively, were incubated first with the nanoconjugate MNP-anti-ferritin and then with a		
5	secondary antibody-Cy3 to detect the presence of the nanoconjugate MNP-anti-ferritin stained		
6	in red (C, G). MNPs were also detected by transmitted light microscopy as black dots in		
7	5XFAD (D) and nontransgenic (H) mice. B and F show merged images of C and D, and G and		
8	H, respectively. Note the high rate of colocalization of ferritin and MNPs (B) demonstrating an		
9	optimal biofunctionalization of the particles and the absence of binding of the nanoconjugate to		
10	the nontransgenic brain sections (F-H) where no ferritin accumulation can be detected (E).		
11	Scale bars: A and E: 500 µm; B-D and F-H: 50 µm.		
12	Figure 7: In vivo specificity of the MNP-anti-ferritin conjugate in 5XFAD mice. Coronal		
13	brain section of a 5XFAD mouse showing A) the accumulation of ferritin (red) and amyloid		
14	plaques stained with Thioflavin S (green); B) the subiculum region of a 5XFAD mouse		
15	previously injected intravenously with the MNP-anti-ferritin conjugate, showing the presence of		
16	the MNP-anti-ferritin nanoconjugate (red) closely bound to amyloid plaques stained with		
17	Thioflavin S (green). Coronal sections of the subiculum of 5XFAD mice injected with the		
18	functionalized MNP-anti-ferritin nanoconjugate (C-E) and with the non-functionalized MNPs		
19	(F-H). The anti-ferritin antibody of the nanoconjugate was detected using a secondary antibody-		
20	Cy3 (red) (C, F). All MNPs were detected using an anti-dextran-FITC antibody (green) (D, G).		
21	Merged images of C and D, and F and G are shown in E and H, respectively. Note the high		
22	accumulation of MNPs in the subiculum of animals injected with the nanoconjugate MNP-anti-		
23	ferritin (C-E) and the absence of MNPs in the same area when non-functionalized MNPs were		
24	used (F-H). Scale bars: A and B: 100 µm; C-H: 50 µm.		
25	Figure 8: <i>Ex vivo</i> MRI in 5XFAD mice. Ex vivo MR images used to determine absolute T2*		
26	values (msec) in regions of interest (ROIs), which were the left and right hippocampus of		


5XFAD mice injected with MNPs (A) and MNPs-anti-ferritin (B). Graphic shows the data

1		
2	1	corresponding to the T2* value obtained in the analyzed ROIs of the left and right hippocampus
3 4	-	corresponding to the 12 - value obtained in the analyzed Rois of the fert and right inprocampus
5	2	in 5XFAD mice injected with MNPs versus MNP-anti-ferritin (*p < 0.05; ANOVA followed by
6		
7	3	the post-hoc Tukey's test).
8		
9	4	
10	7	
11 12		
13	5	
14		
15	C	
16	6	
17		
18	7	
19 20		
20 21		
22	8	
23		
24	9	
25	9	
26		
27	10	
28		
29		
30 31		
32		
33		
34		
35		
36		
37		
38		
39 40		
41		
42		
43		
44		
45		
46		
47 48		
48 49		
5 0		
51		
52		
53		
54		
55 56		
56 57		
58		
59		33
60		ACS Paragon Plus Environment

Potential use of the MNP-anti-ferritin nanoconjugate as an effective MRI contrast agent for the diagnosis of Alzheimer's disease

Non-functionalized MNPsMNP-anti-ferritin conjugatesdo not bind to 5XFAD brainsEnvironmespecifically bind to 5XFAD brains

Figure 1

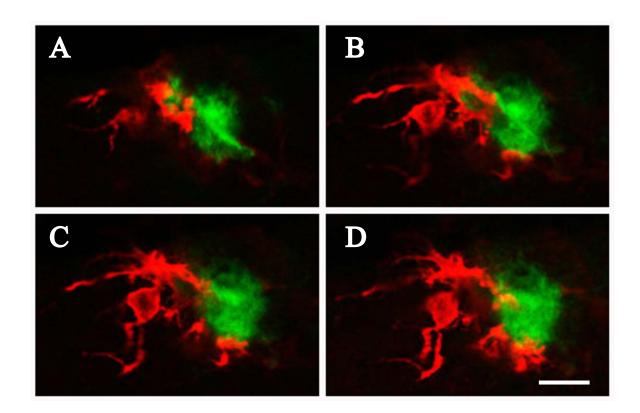
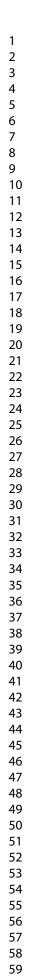



Figure 2

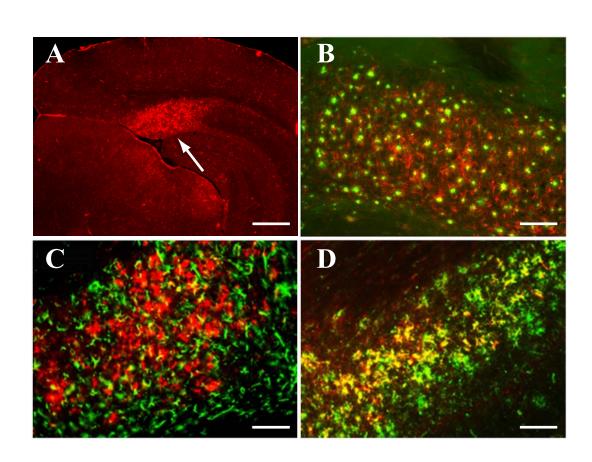


Figure 3

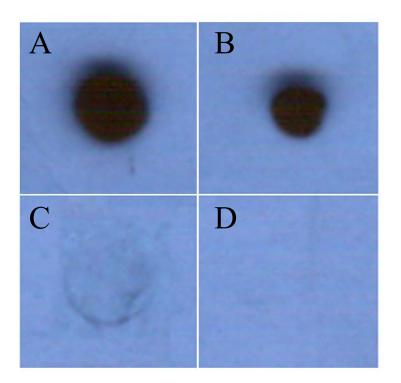


Figure 4

ACS Paragon Plus Environment

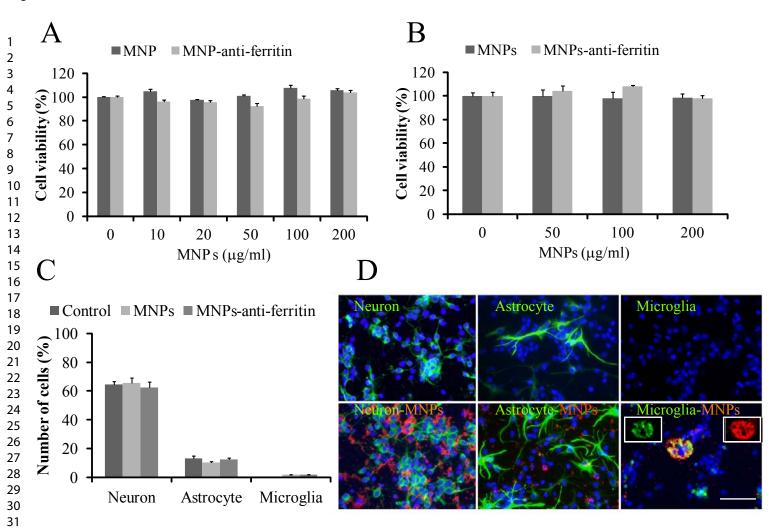
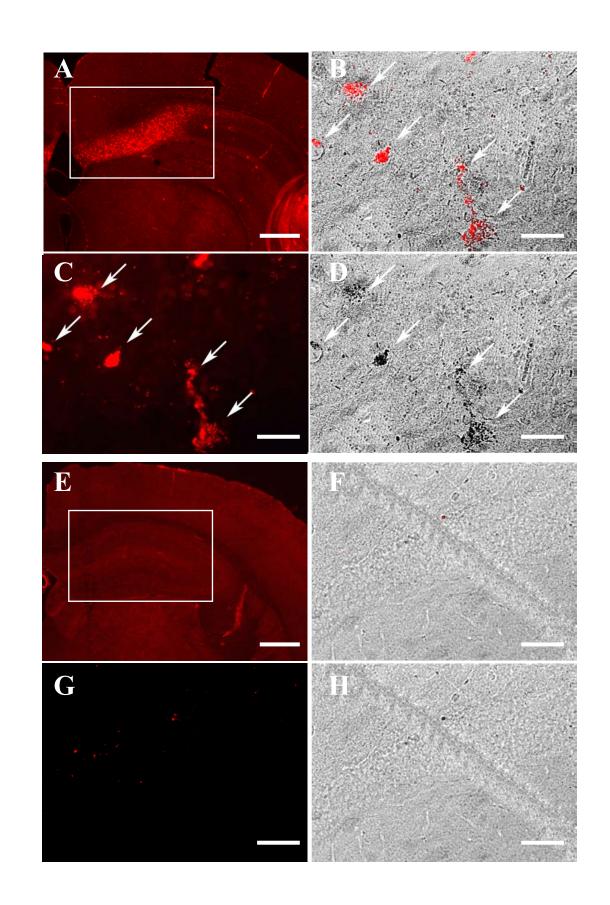
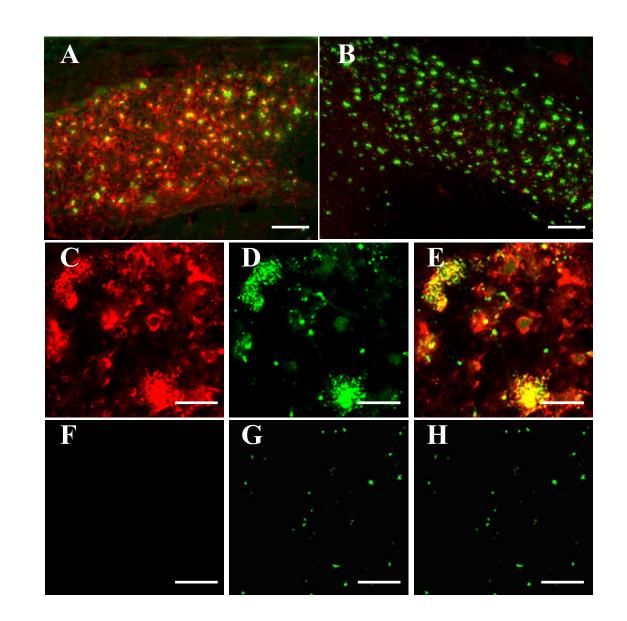
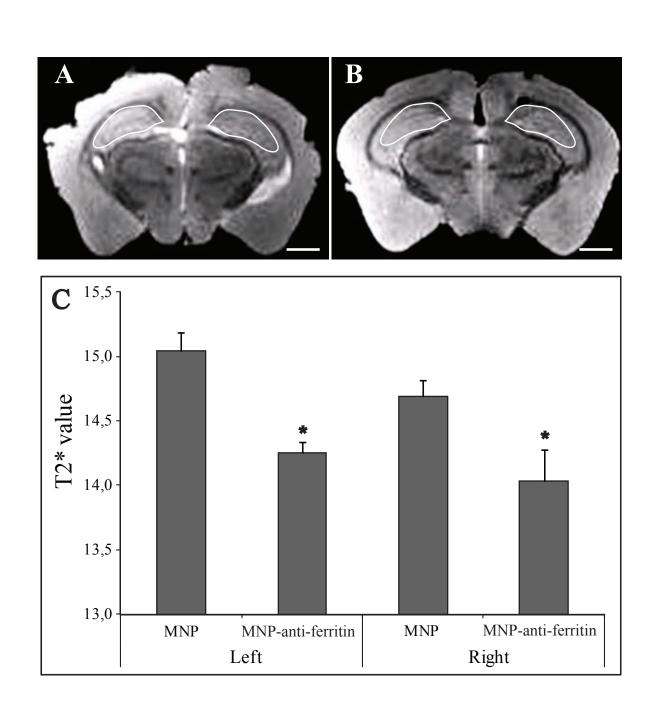





Figure 5

Figure 8