323,427 research outputs found

    Investigating human audio-visual object perception with a combination of hypothesis-generating and hypothesis-testing fMRI analysis tools

    Get PDF
    Primate multisensory object perception involves distributed brain regions. To investigate the network character of these regions of the human brain, we applied data-driven group spatial independent component analysis (ICA) to a functional magnetic resonance imaging (fMRI) data set acquired during a passive audio-visual (AV) experiment with common object stimuli. We labeled three group-level independent component (IC) maps as auditory (A), visual (V), and AV, based on their spatial layouts and activation time courses. The overlap between these IC maps served as definition of a distributed network of multisensory candidate regions including superior temporal, ventral occipito-temporal, posterior parietal and prefrontal regions. During an independent second fMRI experiment, we explicitly tested their involvement in AV integration. Activations in nine out of these twelve regions met the max-criterion (A < AV > V) for multisensory integration. Comparison of this approach with a general linear model-based region-of-interest definition revealed its complementary value for multisensory neuroimaging. In conclusion, we estimated functional networks of uni- and multisensory functional connectivity from one dataset and validated their functional roles in an independent dataset. These findings demonstrate the particular value of ICA for multisensory neuroimaging research and using independent datasets to test hypotheses generated from a data-driven analysis

    Decoding face categories in diagnostic subregions of primary visual cortex

    Get PDF
    Higher visual areas in the occipitotemporal cortex contain discrete regions for face processing, but it remains unclear if V1 is modulated by top-down influences during face discrimination, and if this is widespread throughout V1 or localized to retinotopic regions processing task-relevant facial features. Employing functional magnetic resonance imaging (fMRI), we mapped the cortical representation of two feature locations that modulate higher visual areas during categorical judgements – the eyes and mouth. Subjects were presented with happy and fearful faces, and we measured the fMRI signal of V1 regions processing the eyes and mouth whilst subjects engaged in gender and expression categorization tasks. In a univariate analysis, we used a region-of-interest-based general linear model approach to reveal changes in activation within these regions as a function of task. We then trained a linear pattern classifier to classify facial expression or gender on the basis of V1 data from ‘eye’ and ‘mouth’ regions, and from the remaining non-diagnostic V1 region. Using multivariate techniques, we show that V1 activity discriminates face categories both in local ‘diagnostic’ and widespread ‘non-diagnostic’ cortical subregions. This indicates that V1 might receive the processed outcome of complex facial feature analysis from other cortical (i.e. fusiform face area, occipital face area) or subcortical areas (amygdala)

    Alterations in Cortical Sensorimotor Connectivity following Complete Cervical Spinal Cord Injury: A Prospective Resting-State fMRI Study

    Get PDF
    Functional magnetic resonance imaging (fMRI) studies have demonstrated alterations during task-induced brain activation in spinal cord injury (SCI) patients. The interruption to structural integrity of the spinal cord and the resultant disrupted flow of bidirectional communication between the brain and the spinal cord might contribute to the observed dynamic reorganization (neural plasticity). However, the effect of SCI on brain resting-state connectivity patterns remains unclear. We undertook a prospective resting-state fMRI (rs-fMRI) study to explore changes to cortical activation patterns following SCI. With institutional review board approval, rs-fMRI data was obtained in eleven patients with complete cervical SCI (\u3e2 years post injury) and nine age-matched controls. The data was processed using the Analysis of Functional Neuroimages software. Region of interest (ROI) based analysis was performed to study changes in the sensorimotor network using pre- and post-central gyri as seed regions. Two-sampled t-test was carried out to check for significant differences between the two groups. SCI patients showed decreased functional connectivity in motor and sensory cortical regions when compared to controls. The decrease was noted in ipsilateral, contralateral, and interhemispheric regions for left and right precentral ROIs. Additionally, the left postcentral ROI demonstrated increased connectivity with the thalamus bilaterally in SCI patients. Our results suggest that cortical activation patterns in the sensorimotor network undergo dynamic reorganization following SCI. The presence of these changes in chronic spinal cord injury patients is suggestive of the inherent neural plasticity within the central nervous system

    Evaluation of atlas-based segmentation of hippocampi in healthy humans

    Get PDF
    Introduction and aim: Region of interest (ROI)-based functional magnetic resonance imaging (fMRI) data analysis relies on extracting signals from a specific area which is presumed to be involved in the brain activity being studied. The hippocampus is of interest in many functional connectivity studies for example in epilepsy as it plays an important role in epileptogenesis. In this context, ROI may be defined using different techniques. Our study aims at evaluating the spatial correspondence of hippocampal ROIs obtained using three brain atlases with hippocampal ROI obtained using an automatic segmentation algorithm dedicated to the hippocampus. Material and methods: High-resolution volumetric T1-weighted MR images of 18 healthy volunteers (five females) were acquired on a 3T scanner. Individual ROIs for both hippocampi of each subject were segmented from the MR images using an automatic hippocampus and amygdala segmentation software called SACHA providing the gold standard ROI for comparison with the atlas-derived results. For each subject, hippocampal ROIs were also obtained using three brain atlases: PickAtlas available as a commonly used software toolbox; automated anatomical labeling (AAL) atlas included as a subset of ROI into PickAtlas toolbox and a frequency-based brain atlas by Hammers et al. The levels of agreement between the SACHA results and those obtained using the atlases were assessed based on quantitative indices measuring volume differences and spatial overlap. The comparison was performed in standard Montreal Neurological Institute space, the registration being obtained with SPM5 (http://www.fil.ion.ucl.ac.uk/spm/). Results: The mean volumetric error across all subjects was 73% for hippocampal ROIs derived from AAL atlas; 20% in case of ROIs derived from the Hammers atlas and 107% for ROIs derived from PickAtlas. The mean false-positive and false-negative classification rates were 60% and 10% respectively for the AAL atlas; 16% and 32% for the Hammers atlas and 6% and 72% for the PickAtlas. Conclusion: Though atlas-based ROI definition may be convenient, the resulting ROIs may be poor representations of the hippocampus in some studies critical to under- or oversampling. Performance of the AAL atlas was inferior to that of the Hammers atlas. Hippocampal ROIs derived from PickAtlas are highly significantly smaller, and this results in the worst performance out of three atlases. It is advisable that the defined ROIs should be verified with knowledge of neuroanatomy before using it for further data analysis

    Application and validation of spatial mixture modelling for the joint detection-estimation of brain activity in fMRI.

    Get PDF
    International audienceWithin-subject analysis in event-related functional Magnetic Resonance Imaging (fMRI) first relies on (i) a detection step to localize which parts of the brain are activated by a given stimulus type, and second on (ii) an estimation step to recover the temporal dynamics of the brain response. Recently, a Bayesian detection-estimation approach that jointly addresses (i)-(ii) has been proposed in [1]. This work is based on an independent mixture model (IMM) and provides both a spatial activity map and an estimate of brain dynamics. In [2], we accounted for spatial correlation using a spatial mixture model (SMM) based on a binary Markov random field. Here, we assess the SMM robustness and flexibility on simulations which diverge from the priors and the generative BOLD model and further extend comparison between SMM and IMM on real fMRI data, focusing on a region of interest in the auditory cortex

    Distinct functional activity of the precuneus and posterior cingulate cortex during encoding in the preclinical stage of Alzheimer's Disease

    Get PDF
    In this study functional magnetic resonance imaging (fMRI) is used to investigate the functional brain activation pattern in the preclinical stage of AD (pre-AD) subjects during a visual encoding memory task. Thirty subjects, eleven in the pre-AD stage, with decreased cerebrospinal fluid levels of Aβ42 (<500 pg/ml), and 19 controls with normal Aβ42 levels (CTR) were included. fMRI was acquired during a visual encoding task. Data were analyzed through an Independent Component Analysis (ICA) and region-of-interest-based univariate analysis of task-related BOLD signal change. From the ICA decomposition, we identified the main task-related component, which included the activation of visual associative areas and prefrontal executive regions, and the deactivation of the default-mode network. The activation was positively correlated with task performance in the CTR group (p < 0.0054). Within this pattern, subjects in the pre-AD stage had significantly greater activation of the precuneus and posterior cingulate cortex during encoding. Subjects in the pre-AD stage present distinct functional neural activity before the appearance of clinical symptomatology. These findings may represent that subtle changes in functional brain activity precede clinical and cognitive symptoms in the AD continuum. Present findings provide evidence suggesting that fMRI may be a suitable biomarker of preclinical AD

    An investigation of a genomewide supported psychosis variant in ZNF804A and white matter integrity in the human brain

    Get PDF
    ZNF804A, a genomewide supported susceptibility gene for schizophrenia and bipolar disorder, has been associated with task-independent functional connectivity between the left and right dorsolateral prefrontal cortices. Several lines of evidence have converged on the hypothesis that this effect may be mediated by structural connectivity. We tested this hypothesis using diffusion tensor magnetic resonance imaging in three samples: one German sample of 50 healthy individuals, one Scottish sample of 83 healthy individuals and one Scottish sample of 84 unaffected relatives of bipolar patients. Voxel-based analysis and tract-based spatial statistics did not detect any fractional anisotropy (FA) differences between minor allele carriers and individuals homozygous for the major allele at rs1344706. Similarly, region-of-interest analyses and quantitative tractography of the genu of the corpus callosum revealed no significant FA differences between the genotype groups. Examination of effect sizes and confidence intervals indicated that this negative finding is very unlikely to be due to a lack of statistical power. In summary, despite using various analysis techniques in three different samples, our results were strikingly and consistently negative. These data therefore suggest that it is unlikely that the effects of genetic variation at rs1344706 on functional connectivity are mediated by structural integrity differences in large, long-range white matter fiber connections

    fMRI Brain-Computer Interface: A Tool for Neuroscientific Research and Treatment

    Get PDF
    Brain-computer interfaces based on functional magnetic resonance imaging (fMRI-BCI) allow volitional control of anatomically specific regions of the brain. Technological advancement in higher field MRI scanners, fast data acquisition sequences, preprocessing algorithms, and robust statistical analysis are anticipated to make fMRI-BCI more widely available and applicable. This noninvasive technique could potentially complement the traditional neuroscientific experimental methods by varying the activity of the neural substrates of a region of interest as an independent variable to study its effects on behavior. If the neurobiological basis of a disorder (e.g., chronic pain, motor diseases, psychopathy, social phobia, depression) is known in terms of abnormal activity in certain regions of the brain, fMRI-BCI can be targeted to modify activity in those regions with high specificity for treatment. In this paper, we review recent results of the application of fMRI-BCI to neuroscientific research and psychophysiological treatment

    Specific DTI seeding and diffusivity-analysis improve the quality and prognostic value of TMS-based deterministic DTI of the pyramidal tract

    Get PDF
    Object Navigated transcranial magnetic stimulation (nTMS) combined with diffusion tensor imaging (DTI) is used preoperatively in patients with eloquent-located brain lesions and allows analyzing non-invasively the spatial relationship between the tumor and functional areas (e.g. the motor cortex and the corticospinal tract [CST]). In this study, we examined the diffusion parameters FA (fractional anisotropy) and ADC (apparent diffusion coefficient) within the CST in different locations and analyzed their interrater reliability and usefulness for predicting the patients' motor outcome with a precise approach of specific region of interest (ROI) seeding based on the color-coded FA-map. Methods Prospectively collected data of 30 patients undergoing bihemispheric nTMS mapping followed by nTMS-based DTI fiber tracking prior to surgery of motor eloquent high-grade gliomas were analyzed by 2 experienced and 1 unexperienced examiner. The following data were scrutinized for both hemispheres after tractography based on nTMS-motor positive cortical seeds and a 2nd region of interest in one layer of the caudal pons defined by the color-coded FA-map: the pre- and postoperative motor status (day of discharge und 3 months), the closest distance between the tracts and the tumor (TTD), the fractional anisotropy (FA) and the apparent diffusion coefficient (ADC). The latter as an average within the CST as well as specific values in different locations (peritumoral, mesencephal, pontine). Results Lower average FA-values within the affected CST as well as higher average ADC-values are significantly associated with deteriorated postoperative motor function (p = 0.006 and p = 0.026 respectively). Segmental analysis within the CST revealed that the diffusion parameters are especially disturbed on a peritumoral level and that the degree of their impairment correlates with motor deficits (FA p = 0.065, ADC p = 0.007). No significant segmental variation was seen in the healthy hemisphere. The interrater reliability showed perfect agreement for almost all analyzed parameters. Conclusions Adding diffusion weighted imaging derived information on the structural integrity of the nTMS-based tractography results improves the predictive power for postoperative motor outcome. Utilizing a second subcortical ROI which is specifically seeded based on the color-coded FA map increases the tracking quality of the CST independently of the examiner's experience. Further prospective studies are needed to validate the nTMS-based prediction of the patient's outcome

    Classification of attention deficit hyperactivity disorder using variational autoencoder

    Get PDF
    Attention Deficit Hyperactivity Disorder (ADHD) categorize as one of the typical neurodevelopmental and mental disorders. Over the years, researchers have identified ADHD as a complicated disorder since it is not directly tested with a standard medical test such as a blood or urine test on the early-stage diagnosis. Apart from the physical symptoms of ADHD, clinical data of ADHD patients show that most of them have learning problems. Therefore, functional Magnetic Resonance Imaging (fMRI) is considered the most suitable method to determine functional activity in the brain region to understand brain disorders of ADHD. One of the ways to diagnose ADHD is by using deep learning techniques, which can increase the accuracy of predicting ADHD using the fMRI dataset. Past attempts of classifying ADHD based on functional connectivity coefficient using the Deep Neural Network (DNN) result in 95% accuracy. As Variational Autoencoder (VAE) is the most popular in extracting high-level data, this model is applied in this study. This study aims to enhance the performance of VAE to increase the accuracy in classifying ADHD using fMRI data based on functional connectivity analysis. The preprocessed fMRI dataset is used for decomposition to find the region of interest (ROI), followed by Independent Component Analysis (ICA) that calculates the correlation between brain regions and creates functional connectivity matrices for each subject. As a result, the VAE model achieved an accuracy of 75% on classifying ADHD
    corecore