1,569 research outputs found

    Real-Time Decision Fusion for Multimodal Neural Prosthetic Devices

    Get PDF
    The field of neural prosthetics aims to develop prosthetic limbs with a brain-computer interface (BCI) through which neural activity is decoded into movements. A natural extension of current research is the incorporation of neural activity from multiple modalities to more accurately estimate the user's intent. The challenge remains how to appropriately combine this information in real-time for a neural prosthetic device., i.e., fusing predictions from several single-modality decoders to produce a more accurate device state estimate. We examine two algorithms for continuous variable decision fusion: the Kalman filter and artificial neural networks (ANNs). Using simulated cortical neural spike signals, we implemented several successful individual neural decoding algorithms, and tested the capabilities of each fusion method in the context of decoding 2-dimensional endpoint trajectories of a neural prosthetic arm. Extensively testing these methods on random trajectories, we find that on average both the Kalman filter and ANNs successfully fuse the individual decoder estimates to produce more accurate predictions.Our results reveal that a fusion-based approach has the potential to improve prediction accuracy over individual decoders of varying quality, and we hope that this work will encourage multimodal neural prosthetics experiments in the future

    A functional model and simulation of spinal motor pools and intrafascicular recordings of motoneuron activity in peripheral nerve

    Get PDF
    Decoding motor intent from recorded neural signals is essential for the development of effective neural-controlled prostheses. To facilitate the development of online decoding algorithms we have developed a software platform to simulate neural motor signals recorded with peripheral nerve electrodes, such as longitudinal intrafascicular electrodes (LIFEs). The simulator uses stored motor intent signals to drive a pool of simulated motoneurons with various spike shapes, recruitment characteristics, and firing frequencies. Each electrode records a weighted sum of a subset of simulated motoneuron activity patterns. As designed, the simulator facilitates development of a suite of test scenarios that would not be possible with actual data sets because, unlike with actual recordings, in the simulator the individual contributions to the simulated composite recordings are known and can be methodically varied across a set of simulation runs. In this manner, the simulation tool is suitable for iterative development of real-time decoding algorithms prior to definitive evaluation in amputee subjects with implanted electrodes. The simulation tool was used to produce data sets that demonstrate its ability to capture some features of neural recordings that pose challenges for decoding algorithms

    Long-term decoding of movement force and direction with a wireless myoelectric implant

    Get PDF
    Objective. The ease of use and number of degrees of freedom of current myoelectric hand prostheses is limited by the information content and reliability of the surface electromyography (sEMG) signals used to control them. For example, cross-talk limits the capacity to pick up signals from small or deep muscles, such as the forearm muscles for distal arm amputations, or sites of targeted muscle reinnervation (TMR) for proximal amputations. Here we test if signals recorded from the fully implanted, induction-powered wireless Myoplant system allow long-term decoding of continuous as well as discrete movement parameters with better reliability than equivalent sEMG recordings. The Myoplant system uses a centralized implant to transmit broadband EMG activity from four distributed bipolar epimysial electrodes. Approach. Two Rhesus macaques received implants in their backs, while electrodes were placed in their upper arm. One of the monkeys was trained to do a cursor task via a haptic robot, allowing us to control the forces exerted by the animal during arm movements. The second animal was trained to perform a center-out reaching task on a touchscreen. We compared the implanted system with concurrent sEMG recordings by evaluating our ability to decode time-varying force in one animal and discrete reach directions in the other from multiple features extracted from the raw EMG signals. Main results. In both cases, data from the implant allowed a decoder trained with data from a single day to maintain an accurate decoding performance during the following months, which was not the case for concurrent surface EMG recordings conducted simultaneously over the same muscles. Significance. These results show that a fully implantable, centralized wireless EMG system is particularly suited for long-term stable decoding of dynamic movements in demanding applications such as advanced forelimb prosthetics in a wide range of configurations (distal amputations, TMR).German Federal Ministry for Education and Reseach (BMBF) grant No, 16SV3695, 16SV3699, 16SV3697 and 01GQ1005C, DFG Deutsche Forschungsgemeinschaft grant No. GA1475-C

    Dampening Spontaneous Activity Improves the Light Sensitivity and Spatial Acuity of Optogenetic Retinal Prosthetic Responses

    Get PDF
    Retinitis pigmentosa is a progressive retinal dystrophy that causes irreversible visual impairment and blindness. Retinal prostheses currently represent the only clinically available vision-restoring treatment, but the quality of vision returned remains poor. Recently, it has been suggested that the pathological spontaneous hyperactivity present in dystrophic retinas may contribute to the poor quality of vision returned by retinal prosthetics by reducing the signal-to-noise ratio of prosthetic responses. Here, we investigated to what extent blocking this hyperactivity can improve optogenetic retinal prosthetic responses. We recorded activity from channelrhodopsin-expressing retinal ganglion cells in retinal wholemounts in a mouse model of retinitis pigmentosa. Sophisticated stimuli, inspired by those used in clinical visual assessment, were used to assess light sensitivity, contrast sensitivity and spatial acuity of optogenetic responses; in all cases these were improved after blocking spontaneous hyperactivity using meclofenamic acid, a gap junction blocker. Our results suggest that this approach significantly improves the quality of vision returned by retinal prosthetics, paving the way to novel clinical applications. Moreover, the improvements in sensitivity achieved by blocking spontaneous hyperactivity may extend the dynamic range of optogenetic retinal prostheses, allowing them to be used at lower light intensities such as those encountered in everyday life

    The future of upper extremity rehabilitation robotics: research and practice

    Full text link
    The loss of upper limb motor function can have a devastating effect on people’s lives. To restore upper limb control and functionality, researchers and clinicians have developed interfaces to interact directly with the human body’s motor system. In this invited review, we aim to provide details on the peripheral nerve interfaces and brain‐machine interfaces that have been developed in the past 30 years for upper extremity control, and we highlight the challenges that still remain to transition the technology into the clinical market. The findings show that peripheral nerve interfaces and brain‐machine interfaces have many similar characteristics that enable them to be concurrently developed. Decoding neural information from both interfaces may lead to novel physiological models that may one day fully restore upper limb motor function for a growing patient population.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155489/1/mus26860_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155489/2/mus26860.pd

    Decoding of grasping information from neural signals recorded using peripheral intrafascicular interfaces

    Get PDF
    The restoration of complex hand functions by creating a novel bidirectional link between the nervous system and a dexterous hand prosthesis is currently pursued by several research groups. This connection must be fast, intuitive, with a high success rate and quite natural to allow an effective bidirectional flow of information between the user's nervous system and the smart artificial device. This goal can be achieved with several approaches and among them, the use of implantable interfaces connected with the peripheral nervous system, namely intrafascicular electrodes, is considered particularly interesting
    corecore