6,876 research outputs found

    A Preliminary Study of Three-Point Onboard External Calibration for Tracking Radiometric Stability and Accuracy

    Get PDF
    Absolute calibration of radiometers is usually implemented onboard using one hot and one cold external calibration targets. However, two-point calibration methods are unable to differentiate calibration drifts and associated errors from fluctuations in receiver gain and offset. Furthermore, they are inadequate to characterize temporal calibration stability of radiometers. In this paper, a preliminary study with linear radiometer systems has been presented to show that onboard external three-point calibration offers the means to quantify calibration drifts in the radiometer systems, and characterize associated errors as well as temporal stability in Earth and space measurements. Radiometers with three external calibration reference targets operating two data processing paths: i.e., (1) measurement path and (2) calibration validation path have been introduced. In the calibration validation data processing path, measurements of one known calibration target is calibrated using the other two calibration references, and temporal calibration stability and possible calibration temperature drifts are analyzed. In the measurement data processing path, the impact of the calibration drifts on Earth and space measurements is quantified and bounded by an upper limit. This two-path analysis is performed through calibration error analysis (CEA) diagrams introduced in this paper

    Microwave limb sounder

    Get PDF
    Trace gases in the upper atmosphere can be measured by comparing spectral noise content of limb soundings with the spectral noise content of cold space. An offset Cassegrain antenna system and tiltable input mirror alternately look out at the limb and up at cold space at an elevation angle of about 22. The mirror can also be tilted to look at a black body calibration target. Reflection from the mirror is directed into a radiometer whose head functions as a diplexer to combine the input radiation and a local ocillator (klystron) beam. The radiometer head is comprised of a Fabry-Perot resonator consisting of two Fabry-Perot cavities spaced a number of half wavelengths apart. Incoming radiation received on one side is reflected and rotated 90 deg in polarization by the resonator so that it will be reflected by an input grid into a mixer, while the klystron beam received on the other side is also reflected and rotated 90 deg, but not without passing some energy to be reflected by the input grid into the mixer

    Planck pre-launch status: Low Frequency Instrument calibration and expected scientific performance

    Get PDF
    We give the calibration and scientific performance parameters of the Planck Low Frequency Instrument (LFI) measured during the ground cryogenic test campaign. These parameters characterise the instrument response and constitute our best pre-launch knowledge of the LFI scientific performance. The LFI shows excellent 1/f1/f stability and rejection of instrumental systematic effects; measured noise performance shows that LFI is the most sensitive instrument of its kind. The set of measured calibration parameters will be updated during flight operations through the end of the mission.Comment: Accepted for publications in Astronomy and Astrophysics. Astronomy & Astrophysics, 2010 (acceptance date: 12 Jan 2010

    SMMR Simulator radiative transfer calibration model. 2: Algorithm development

    Get PDF
    Passive microwave measurements performed from Earth orbit can be used to provide global data on a wide range of geophysical and meteorological phenomena. A Scanning Multichannel Microwave Radiometer (SMMR) is being flown on the Nimbus-G satellite. The SMMR Simulator duplicates the frequency bands utilized in the spacecraft instruments through an amalgamate of radiometer systems. The algorithm developed utilizes data from the fall 1978 NASA CV-990 Nimbus-G underflight test series and subsequent laboratory testing

    Tropospheric Phase Calibration in Millimeter Interferometry

    Full text link
    We review millimeter interferometric phase variations caused by variations in the precipitable water vapor content of the troposphere, and we discuss techniques proposed to correct for these variations. We present observations with the Very Large Array at 22 GHz and 43 GHz designed to test these techniques. We find that both the Fast Switching and Paired Array calibration techniques are effective at reducing tropospheric phase noise for radio interferometers. In both cases, the residual rms phase fluctuations after correction are independent of baseline length for b > b_{eff}. These techniques allow for diffraction limited imaging of faint sources on arbitrarily long baselines at mm wavelengths. We consider the technique of tropospheric phase correction using a measurement of the precipitable water vapor content of the troposphere via a radiometric measurement of the brightness temperature of the atmosphere. Required sensitivities range from 20 mK at 90 GHz to 1 K at 185 GHz for the MMA, and 120 mK for the VLA at 22 GHz. The minimum gain stability requirement is 200 at 185 GHz at the MMA assuming that the astronomical receivers are used for radiometry. This increases to 2000 for an uncooled system. The stability requirement is 450 for the cooled system at the VLA at 22 GHz. To perform absolute radiometric phase corrections also requires knowledge of the tropospheric parameters and models to an accuracy of a few percent. It may be possible to perform an `empirically calibrated' radiometric phase correction, in which the relationship between fluctuations in brightness temperature differences with fluctuations in interferometric phases is calibrated by observing a celestial calibrator at regular intervals.Comment: AAS LATEX preprint format. to appear in Radio Science 199

    Planck pre-launch status: calibration of the Low Frequency Instrument flight model radiometers

    Get PDF
    The Low Frequency Instrument (LFI) on-board the ESA Planck satellite carries eleven radiometer subsystems, called Radiometer Chain Assemblies (RCAs), each composed of a pair of pseudo-correlation receivers. We describe the on-ground calibration campaign performed to qualify the flight model RCAs and to measure their pre-launch performances. Each RCA was calibrated in a dedicated flight-like cryogenic environment with the radiometer front-end cooled to 20K and the back-end at 300K, and with an external input load cooled to 4K. A matched load simulating a blackbody at different temperatures was placed in front of the sky horn to derive basic radiometer properties such as noise temperature, gain, and noise performance, e.g. 1/f noise. The spectral response of each detector was measured as was their susceptibility to thermal variation. All eleven LFI RCAs were calibrated. Instrumental parameters measured in these tests, such as noise temperature, bandwidth, radiometer isolation, and linearity, provide essential inputs to the Planck-LFI data analysis.Comment: 15 pages, 18 figures. Accepted for publication in Astronomy and Astrophysic

    Observational issues in radiometric and interferometric detection and analysis of the Sunyaev-Zel'dovich effects

    Full text link
    This review discusses the techniques used in single-dish and interferometric radiometric observations of the Sunyaev-Zel'dovich effects, the pitfalls that arise, the systematic and other sources of error in the data, and the uncertainties in the interpretation of the results.Comment: 46 pages, 23 figures. To appear in Background Microwave Radiation and Intracluster Cosmology, Proceedings of the International School of Physics "Enrico Fermi", Eds. Melchiorri, F. & Rephaeli, Y., 200

    A Dynamic Approach to Linear Statistical Calibration with an Application in Microwave Radiometry

    Full text link
    The problem of statistical calibration of a measuring instrument can be framed both in a statistical context as well as in an engineering context. In the first, the problem is dealt with by distinguishing between the 'classical' approach and the 'inverse' regression approach. Both of these models are static models and are used to estimate exact measurements from measurements that are affected by error. In the engineering context, the variables of interest are considered to be taken at the time at which you observe it. The Bayesian time series analysis method of Dynamic Linear Models (DLM) can be used to monitor the evolution of the measures, thus introducing an dynamic approach to statistical calibration. The research presented employs the use of Bayesian methodology to perform statistical calibration. The DLM's framework is used to capture the time-varying parameters that maybe changing or drifting over time. Two separate DLM based models are presented in this paper. A simulation study is conducted where the two models are compared to some well known 'static' calibration approaches in the literature from both the frequentist and Bayesian perspectives. The focus of the study is to understand how well the dynamic statistical calibration methods performs under various signal-to-noise ratios, r. The posterior distributions of the estimated calibration points as well as the 95% coverage intervals are compared by statistical summaries. These dynamic methods are applied to a microwave radiometry data set.Comment: 26 pages, 10 figure

    SARAS 2: A Spectral Radiometer for probing Cosmic Dawn and the Epoch of Reionization through detection of the global 21 cm signal

    Full text link
    The global 21 cm signal from Cosmic Dawn (CD) and the Epoch of Reionization (EoR), at redshifts z630z \sim 6-30, probes the nature of first sources of radiation as well as physics of the Inter-Galactic Medium (IGM). Given that the signal is predicted to be extremely weak, of wide fractional bandwidth, and lies in a frequency range that is dominated by Galactic and Extragalactic foregrounds as well as Radio Frequency Interference, detection of the signal is a daunting task. Critical to the experiment is the manner in which the sky signal is represented through the instrument. It is of utmost importance to design a system whose spectral bandpass and additive spurious can be well calibrated and any calibration residual does not mimic the signal. SARAS is an ongoing experiment that aims to detect the global 21 cm signal. Here we present the design philosophy of the SARAS 2 system and discuss its performance and limitations based on laboratory and field measurements. Laboratory tests with the antenna replaced with a variety of terminations, including a network model for the antenna impedance, show that the gain calibration and modeling of internal additives leave no residuals with Fourier amplitudes exceeding 2~mK, or residual Gaussians of 25 MHz width with amplitudes exceeding 2~mK. Thus, even accounting for reflection and radiation efficiency losses in the antenna, the SARAS~2 system is capable of detection of complex 21-cm profiles at the level predicted by currently favoured models for thermal baryon evolution.Comment: 44 pages, 17 figures; comments and suggestions are welcom

    Ice/frost detection using millimeter wave radiometry

    Get PDF
    A series of ice detection tests was performed on the shuttle external tank (ET) and on ET target samples using a 35/95 GHz instrumentation radiometer. Ice was formed using liquid nitrogen and water spray inside a test enclosure containing ET spray on foam insulation samples. During cryogenic fueling operations prior to the shuttle orbiter engine firing tests, ice was formed with freon and water over a one meter square section of the ET LOX tank. Data analysis was performed on the ice signatures, collected by the radiometer, using Georgia Tech computing facilities. Data analysis technique developed include: ice signature images of scanned ET target; pixel temperature contour plots; time correlation of target data with ice present versus no ice formation; and ice signature radiometric temperature statistical data, i.e., mean, variance, and standard deviation
    corecore