37 research outputs found

    Robust Control of Uncertain Markov Decision Processes with Temporal Logic Specifications

    Get PDF
    We present a method for designing robust controllers for dynamical systems with linear temporal logic specifications. We abstract the original system by a finite Markov Decision Process (MDP) that has transition probabilities in a specified uncertainty set. A robust control policy for the MDP is generated that maximizes the worst-case probability of satisfying the specification over all transition probabilities in the uncertainty set. To do this, we use a procedure from probabilistic model checking to combine the system model with an automaton representing the specification. This new MDP is then transformed into an equivalent form that satisfies assumptions for stochastic shortest path dynamic programming. A robust version of dynamic programming allows us to solve for a Ï”\epsilon-suboptimal robust control policy with time complexity O(log⁥1/Ï”)O(\log 1/\epsilon) times that for the non-robust case. We then implement this control policy on the original dynamical system

    PageRank Optimization by Edge Selection

    Get PDF
    The importance of a node in a directed graph can be measured by its PageRank. The PageRank of a node is used in a number of application contexts - including ranking websites - and can be interpreted as the average portion of time spent at the node by an infinite random walk. We consider the problem of maximizing the PageRank of a node by selecting some of the edges from a set of edges that are under our control. By applying results from Markov decision theory, we show that an optimal solution to this problem can be found in polynomial time. Our core solution results in a linear programming formulation, but we also provide an alternative greedy algorithm, a variant of policy iteration, which runs in polynomial time, as well. Finally, we show that, under the slight modification for which we are given mutually exclusive pairs of edges, the problem of PageRank optimization becomes NP-hard.Comment: 30 pages, 3 figure

    On the connection of probabilistic model checking, planning, and learning for system verification

    Get PDF
    This thesis presents approaches using techniques from the model checking, planning, and learning community to make systems more reliable and perspicuous. First, two heuristic search and dynamic programming algorithms are adapted to be able to check extremal reachability probabilities, expected accumulated rewards, and their bounded versions, on general Markov decision processes (MDPs). Thereby, the problem space originally solvable by these algorithms is enlarged considerably. Correctness and optimality proofs for the adapted algorithms are given, and in a comprehensive case study on established benchmarks it is shown that the implementation, called Modysh, is competitive with state-of-the-art model checkers and even outperforms them on very large state spaces. Second, Deep Statistical Model Checking (DSMC) is introduced, usable for quality assessment and learning pipeline analysis of systems incorporating trained decision-making agents, like neural networks (NNs). The idea of DSMC is to use statistical model checking to assess NNs resolving nondeterminism in systems modeled as MDPs. The versatility of DSMC is exemplified in a number of case studies on Racetrack, an MDP benchmark designed for this purpose, flexibly modeling the autonomous driving challenge. In a comprehensive scalability study it is demonstrated that DSMC is a lightweight technique tackling the complexity of NN analysis in combination with the state space explosion problem.Diese Arbeit prĂ€sentiert AnsĂ€tze, die Techniken aus dem Model Checking, Planning und Learning Bereich verwenden, um Systeme verlĂ€sslicher und klarer verstĂ€ndlich zu machen. Zuerst werden zwei Algorithmen fĂŒr heuristische Suche und dynamisches Programmieren angepasst, um Extremwerte fĂŒr Erreichbarkeitswahrscheinlichkeiten, Erwartungswerte fĂŒr Kosten und beschrĂ€nkte Varianten davon, auf generellen Markov Entscheidungsprozessen (MDPs) zu untersuchen. Damit wird der Problemraum, der ursprĂŒnglich mit diesen Algorithmen gelöst wurde, deutlich erweitert. Korrektheits- und OptimalitĂ€tsbeweise fĂŒr die angepassten Algorithmen werden gegeben und in einer umfassenden Fallstudie wird gezeigt, dass die Implementierung, namens Modysh, konkurrenzfĂ€hig mit den modernsten Model Checkern ist und deren Leistung auf sehr großen ZustandsrĂ€umen sogar ĂŒbertrifft. Als Zweites wird Deep Statistical Model Checking (DSMC) fĂŒr die QualitĂ€tsbewertung und Lernanalyse von Systemen mit integrierten trainierten Entscheidungsgenten, wie z.B. neuronalen Netzen (NN), eingefĂŒhrt. Die Idee von DSMC ist es, statistisches Model Checking zur Bewertung von NNs zu nutzen, die Nichtdeterminismus in Systemen, die als MDPs modelliert sind, auflösen. Die Vielseitigkeit des Ansatzes wird in mehreren Fallbeispielen auf Racetrack gezeigt, einer MDP Benchmark, die zu diesem Zweck entwickelt wurde und die Herausforderung des autonomen Fahrens flexibel modelliert. In einer umfassenden Skalierbarkeitsstudie wird demonstriert, dass DSMC eine leichtgewichtige Technik ist, die die KomplexitĂ€t der NN-Analyse in Kombination mit dem State Space Explosion Problem bewĂ€ltigt

    A stratified decision-making model for long-term planning: application in flood risk management in Scotland

    Get PDF
    In a standard decision-making model for a game of chance, the best strategy is chosen based on the current state of the system under various conditions. There is however a shortcoming of this standard model, in that it can be applicable only for short-term decision-making periods. This is primarily due to not evaluating the dynamic characteristics and changes in status of the system and the outcomes of nature towards an a priori target or ideal state, which can occur in longer periods. Thus, in this study, a decision-making model based on the concept of stratification (CST), game theory and shared socio-economic pathway (SSP) is developed and its applicability to disaster management is shown. The game of chance and CST have been integrated to incorporate the dynamic nature of the decision environment for long-term disaster risk planning, while accounting for various states of the system and an ideal state. Furthermore, an interactive web application with dynamic user interface is built based on the proposed model to enable decision makers to identify the best choices in their model by a predictive approach. The Monte Carlo simulation is applied to experimentally validate the proposed model. Then, it is demonstrated how this methodology can suitably be applied to obtain ad hoc models, solutions, and analysis in the strategic decision-making process of flooding risk strategy evaluation. The model's applicability is shown in an uncertain real-world decision-making context, considering dynamic nature of socio-economic situations and flooding hazards in the Highland and Argyll Local Plan District in Scotland. The empirical results show that flood forecasting and awareness raising are the two most beneficial mitigation strategies in the region followed by emergency plans/response, planning policies, maintenance, and self help

    A stratified decision-making model for long-term planning: application in flood risk management in Scotland

    Get PDF
    In a standard decision-making model for a game of chance, the best strategy is chosen based on the current state of the system under various conditions. There is however a shortcoming of this standard model, in that it can be applicable only for short-term decision-making periods. This is primarily due to not evaluating the dynamic characteristics and changes in status of the system and the outcomes of nature towards an a priori target or ideal state, which can occur in longer periods. Thus, in this study, a decision-making model based on the concept of stratification (CST), game theory and shared socio-economic pathway (SSP) is developed and its applicability to disaster management is shown. The game of chance and CST have been integrated to incorporate the dynamic nature of the decision environment for long-term disaster risk planning, while accounting for various states of the system and an ideal state. Furthermore, an interactive web application with dynamic user interface is built based on the proposed model to enable decision makers to identify the best choices in their model by a predictive approach. The Monte Carlo simulation is applied to experimentally validate the proposed model. Then, it is demonstrated how this methodology can suitably be applied to obtain ad hoc models, solutions, and analysis in the strategic decision-making process of flooding risk strategy evaluation. The model's applicability is shown in an uncertain real-world decision-making context, considering dynamic nature of socio-economic situations and flooding hazards in the Highland and Argyll Local Plan District in Scotland. The empirical results show that flood forecasting and awareness raising are the two most beneficial mitigation strategies in the region followed by emergency plans/response, planning policies, maintenance, and self help

    Conflict-driven learning in AI planning state-space search

    Get PDF
    Many combinatorial computation problems in computer science can be cast as a reachability problem in an implicitly described, potentially huge, graph: the state space. State-space search is a versatile and widespread method to solve such reachability problems, but it requires some form of guidance to prevent exploring that combinatorial space exhaustively. Conflict-driven learning is an indispensable search ingredient for solving constraint satisfaction problems (most prominently, Boolean satisfiability). It guides search towards solutions by identifying conflicts during the search, i.e., search branches not leading to any solution, learning from them knowledge to avoid similar conflicts in the remainder of the search. This thesis adapts the conflict-driven learning methodology to more general classes of reachability problems. Specifically, our work is placed in AI planning. We consider goal-reachability objectives in classical planning and in planning under uncertainty. The canonical form of "conflicts" in this context are dead-end states, i.e., states from which the desired goal property cannot be reached. We pioneer methods for learning sound and generalizable dead-end knowledge from conflicts encountered during forward state-space search. This embraces the following core contributions: When acting under uncertainty, the presence of dead-end states may make it impossible to satisfy the goal property with absolute certainty. The natural planning objective then is MaxProb, maximizing the probability of reaching the goal. However, algorithms for MaxProb probabilistic planning are severely underexplored. We close this gap by developing a large design space of probabilistic state-space search methods, contributing new search algorithms, admissible state-space reduction techniques, and goal-probability bounds suitable for heuristic state-space search. We systematically explore this design space through an extensive empirical evaluation. The key to our conflict-driven learning algorithm adaptation are unsolvability detectors, i.e., goal-reachability overapproximations. We design three complementary families of such unsolvability detectors, building upon known techniques: critical-path heuristics, linear-programming-based heuristics, and dead-end traps. We develop search methods to identify conflicts in deterministic and probabilistic state spaces, and we develop suitable refinement methods for the different unsolvability detectors so to recognize these states. Arranged in a depth-first search, our techniques approach the elegance of conflict-driven learning in constraint satisfaction, featuring the ability to learn to refute search subtrees, and intelligent backjumping to the root cause of a conflict. We provide a comprehensive experimental evaluation, demonstrating that the proposed techniques yield state-of-the-art performance for finding plans for solvable classical planning tasks, proving classical planning tasks unsolvable, and solving MaxProb in probabilistic planning, on benchmarks where dead-end states abound.Viele kombinatorisch komplexe Berechnungsprobleme in der Informatik lassen sich als Erreichbarkeitsprobleme in einem implizit dargestellten, potenziell riesigen, Graphen - dem Zustandsraum - verstehen. Die Zustandsraumsuche ist eine weit verbreitete Methode, um solche Erreichbarkeitsprobleme zu lösen. Die Effizienz dieser Methode hĂ€ngt aber maßgeblich von der Verwendung strikter Suchkontrollmechanismen ab. Das konfliktgesteuerte Lernen ist eine essenzielle Suchkomponente fĂŒr das Lösen von Constraint-Satisfaction-Problemen (wie dem ErfĂŒllbarkeitsproblem der Aussagenlogik), welches von Konflikten, also Fehlern in der Suche, neue Kontrollregeln lernt, die Ă€hnliche Konflikte zukĂŒnftig vermeiden. In dieser Arbeit erweitern wir die zugrundeliegende Methodik auf Zielerreichbarkeitsfragen, wie sie im klassischen und probabilistischen Planen, einem Teilbereich der KĂŒnstlichen Intelligenz, auftauchen. Die kanonische Form von „Konflikten“ in diesem Kontext sind sog. Sackgassen, ZustĂ€nde, von denen aus die Zielbedingung nicht erreicht werden kann. Wir prĂ€sentieren Methoden, die es ermöglichen, wĂ€hrend der Zustandsraumsuche von solchen Konflikten korrektes und verallgemeinerbares Wissen ĂŒber Sackgassen zu erlernen. Unsere Arbeit umfasst folgende BeitrĂ€ge: Wenn der Effekt des Handelns mit Unsicherheiten behaftet ist, dann kann die Existenz von Sackgassen dazu fĂŒhren, dass die Zielbedingung nicht unter allen UmstĂ€nden erfĂŒllt werden kann. Die naheliegendste Planungsbedingung in diesem Fall ist MaxProb, das Maximieren der Wahrscheinlichkeit, dass die Zielbedingung erreicht wird. Planungsalgorithmen fĂŒr MaxProb sind jedoch wenig erforscht. Um diese LĂŒcke zu schließen, erstellen wir einen umfangreichen Bausatz fĂŒr Suchmethoden in probabilistischen ZustandsrĂ€umen, und entwickeln dabei neue Suchalgorithmen, Zustandsraumreduktionsmethoden, und AbschĂ€tzungen der Zielerreichbarkeitswahrscheinlichkeit, wie sie fĂŒr heuristische Suchalgorithmen gebraucht werden. Wir explorieren den resultierenden Gestaltungsraum systematisch in einer breit angelegten empirischen Studie. Die Grundlage unserer Adaption des konfliktgesteuerten Lernens bilden Unerreichbarkeitsdetektoren. Wir konzipieren drei Familien solcher Detektoren basierend auf bereits bekannten Techniken: Kritische-Pfad Heuristiken, Heuristiken basierend auf linearer Optimierung, und Sackgassen-Fallen. Wir entwickeln Suchmethoden, um Konflikte in deterministischen und probabilistischen ZustandsrĂ€umen zu erkennen, sowie Methoden, um die verschiedenen Unerreichbarkeitsdetektoren basierend auf den erkannten Konflikten zu verfeinern. Instanziiert als Tiefensuche weisen unsere Techniken Ă€hnliche Eigenschaften auf wie das konfliktgesteuerte Lernen fĂŒr Constraint-Satisfaction-Problemen. Wir evaluieren die entwickelten Methoden empirisch, und zeigen dabei, dass das konfliktgesteuerte Lernen unter gewissen Voraussetzungen zu signifikanten Suchreduktionen beim Finden von PlĂ€nen in lösbaren klassischen Planungsproblemen, Beweisen der Unlösbarkeit von klassischen Planungsproblemen, und Lösen von MaxProb im probabilistischen Planen, fĂŒhren kann

    Runtime Monitoring for Uncertain Times

    Get PDF
    In Runtime Verification (RV), monitors check programs for correct operation at execution time. Also called Runtime Monitoring, RV offers advantages over other approaches to program verification. Efficient monitoring is possible for programs where static checking is cost-prohibitive. Runtime monitors may test for execution faults like hardware failure, as well as logical faults. Unlike simple log checking, monitors are typically constructed using formal languages and methods that precisely define expectations and guarantees. Despite the advantages of RV, however, adoption remains low. Applying Runtime Monitoring techniques to real systems requires addressing practical concerns that have garnered little attention from researchers. System operators need monitors that provide immediate diagnostic information before and after failures, that are simple to operate over distributed systems, and that remain reliable when communication is not. These challenges are solvable, and solving them is a necessary step towards widespread RV deployment. This thesis provides solutions to these and other barriers to practical Runtime Monitoring. We address the need for reporting diagnostic information from monitored programs with nfer, a language and system for event stream abstraction. Nfer supports the automatic extraction of the structure of real-time software and includes integrations with popular programming languages. We also provide for the operation of nfer and other monitoring tools over distributed systems with Palisade, a framework built for low-latency detection of embedded system anomalies. Finally, we supply a method to ensure program properties may be monitored despite unreliable communication channels. We classify monitorable properties over general unreliable conditions and define an algorithm for when more specific conditions are known
    corecore