
Anne Remke
Mariëlle Stoelinga (Eds.)

Tu
to

ria
l

LN
CS

 8
45

3

International Autumn School, ROCKS 2012
Vahrn, Italy, October 22–26, 2012
Advanced Lectures

Stochastic
Model Checking
Rigorous Dependability Analysis Using Model
Checking Techniques for Stochastic Systems

 123

Lecture Notes in Computer Science 8453
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Anne Remke Mariëlle Stoelinga (Eds.)

Stochastic
Model Checking
Rigorous Dependability Analysis Using Model
Checking Techniques for Stochastic Systems

International Autumn School, ROCKS 2012
Vahrn, Italy, October 22-26, 2012
Advanced Lectures

13

Volume Editors

Anne Remke
University of Twente
Faculty of Electrical Engineering, Mathematics and Computer Science
Design and Analysis of Communication Systems
P.O. Box 217, 7500 AE Enschede, The Netherlands
E-mail: anne@cs.utwente.nl

Mariëlle Stoelinga
University of Twente
Department of Computer Science
Formal Methods and Tools
P.O. Box 217, 7500 AE Enschede, The Netherlands
E-mail: marielle@cs.utwente.nl

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-662-45488-6 e-ISBN 978-3-662-45489-3
DOI 10.1007/978-3-662-45489-3
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014953970

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Stochastic models are widely used in the modeling and analysis of a wide range
of phenomena, ranging from psychology, speech recognition, to political coalition
forming, particle behavior, and many more applications. Their use in computer
science is also wide-spread, for instance, in performance modeling, analysis of
randomized algorithms, and communication protocols that form the structure
of the Internet. Stochastic model checking is an important field in stochastic
analysis. It has rapidly gained popularity, due to its powerful and systematic
methods for modeling and analyzing stochastic systems.

In order to inform young researchers about the fundamentals and state of
the art in stochastic model checking, an Autumn School was organized by the
ROCKS project, funded by the Dutch NWO and German DFG. The school was
held during Ocotber 22-26, 2012, in Vahrn, Italy. Leading scientists from the
field gave lectures on foundations as well as state-of-the-art research.

The seven chapters of this tutorial were initiated at the ROCKS Autumn
School, summarizing the state of the art in the field, centered around the three
areas of stochastic models, abstraction techniques, and stochastic model check-
ing. All submissions were thoroughly reviewed in a two-stage review process
by at least three Program Committee members and in the end the committee
decided to accept all seven papers.

Stochastic model checking is a rich field, which provides powerful and sys-
tematic methods for modeling and analyzing stochastic systems. A wide variety
of stochastic models exist, depending on probabilistic choices that are used (dis-
crete, continuous, or both), on whether nondeterminism is present (Markov
models versus decision models) and the state space of the models (discrete ver-
sus continuous). These models allow for a wide variety of analysis methods to
investigate their behavior and properties.

Stochastic models. The analysis of stochastic behavior starts with the choice of
a suitable modeling framework. This volume contains an introduction in three
important frameworks.

– Interactive Markov chains (IMCs) combine continuous time Markov chains
with labeled transition systems, thus leveraging the power of stochastic
choices with interaction. The paper “On Interactive Markov Chains” by
Arnold, Gebler, Guck, and Hatefi provides an in-depth treatment of their
stochastic model-checking techniques, scheduler classes, behavioral equiva-
lences, and case studies.

– The paper “A Theory for the Semantics of Stochastic and Non-deterministic
Continuous Systems” by Budde, D’Argenio, Sànchez, Terraf, and Wolovick
considers models with uncountable state spaces, emerging when modeling
continuous quantities such as time, distance, temperature. The paper studies
equivalences for these models, as well as logical characterizations.

VI Preface

– Authors Gouberman and Siegle discuss in their paper “Markov Reward Mod-
els and Markov Decision Processes in Discrete and Continuous Time: Perfor-
mance Evaluation and Optimization” stochastic models containing reward
structures and nondeterminism. They present techniques to compute rewards
and cost-optimal strategies and apply these to performance models.

Abstraction techniques. Since complex models are often too large to be analyzed,
a simpler model is used that contains fewer states, but preserves the relevant
properties.

– The paper “On Abstraction of Probabilistic Systems” by Dehnert, Gebler,
Volpato, and Jansen presents three important abstraction techniques: multi-
valued abstraction, counterexample-guided abstraction-refinement, and game-
based abstraction. The authors show how these abstraction preserve proba-
bilistic properties formulated in PCTL.

– In the paper “Computing Behavioral Relations for Probabilistic Concurrent
Systems,” Daniel Gebler, Vahid Hashemi, and Andrea Turrini study be-
havioral equivalences and preorders. In particular, they discuss strong and
weak probabilistic (bi-)simulation and provide efficient algorithms to com-
pute these relations. Finally, the paper presents approximate relations in
terms of metrics.

Advanced analysis techniques. Model checking can be an alternative to classic
analysis in terms of differential equations. This volume discusses two important
directions in this regard.

– Mean-field approximation is a powerful technique to analyze systems with a
large number of identical components. The paper by Kolesnichenko, Pour-
ranjbar, Senni, and Remke, titled “Applying Mean-field Approximation to
Continuous Time Markov Chains,” provides, through a number of real-life
examples, a rigorous introduction to classic mean-field analysis, as well as
model checking approaches.

– Oscillatory behavior, that is, periodically re-occurrent behavior, is an impor-
tant property in population models. The paper “Analyzing Oscillatory Be-
havior with Formal Methods” by Andreychenko, Krüger and Spieler presents
an overview of analysis methods for systems with cyclic behavior. The au-
thors discuss deterministic, stochastic, and mixed models and elucidate how
model checking complements traditional analysis via differential equations.

We would like to once more thank the invited speakers at the ROCKS Au-
tumn School, who helped to turn this school into a succes:

– Christel Baier
– Jean-Yves Le Boudec
– Martin Fränzle
– Thomas Henzinger
– Jane Hillston

Preface VII

– Jozef Hooman
– Joost-Pieter Katoen
– Marta Kwiatkowska
– John Lygeros
– Gethin Norman

We would also like to thank our co-organizers of the autumn school: Erika
Ábrahám, Christel Baier, David Jansen, Markus Siegle, and Verena Wolf. Fi-
nally, we thank our sponsors, NWO and DFG, for their generous support of the
ROCKS research collaboration.

We hope that this volume is enjoyable to read, and helps to give you a good
overview and understanding of the inspiring field of stochastic model checking.

June 2014 Anne Remke
Mariëlle Stoelinga

Organization

Program Committee

Christel Baier TU Dresden, Germany
David N. Jansen Radboud University Nijmegen,

The Netherlands
Anne Remke University of Twente, The Netherlands
Markus Siegle Bundeswehr University Munich, Germany
Marielle I.A. Stoelinga University of Twente, The Netherlands
Verena Wolf Saarland University, Germany

Erika Ábrahám RWTH Aachen, Germany

Additional Reviewers

Ahmad, Waheed
Arnold, Florian
Gouberman, Alexander
Guck, Dennis
Jansen, Nils

Kolesnischenko, Anna
Krčál, Jan
Ruijters, Enno
Spieler, David
Timmer, Mark

Table of Contents

Analyzing Oscillatory Behavior with Formal Methods 1
Alexander Andreychenko, Thilo Krüger, and David Spieler

A Tutorial on Interactive Markov Chains . 26
Florian Arnold, Daniel Gebler, Dennis Guck, and Hassan Hatefi

A Theory for the Semantics of Stochastic and Non-deterministic
Continuous Systems . 67

Carlos E. Budde, Pedro R. D’Argenio, Pedro Sánchez Terraf, and
Nicolás Wolovick

On Abstraction of Probabilistic Systems . 87
Christian Dehnert, Daniel Gebler, Michele Volpato, and
David N. Jansen

Computing Behavioral Relations for Probabilistic Concurrent
Systems . 117

Daniel Gebler, Vahid Hashemi, and Andrea Turrini

Markov Reward Models and Markov Decision Processes in Discrete and
Continuous Time: Performance Evaluation and Optimization 156

Alexander Gouberman and Markus Siegle

Applying Mean-Field Approximation to Continuous Time Markov
Chains . 242

Anna Kolesnichenko, Valerio Senni, Alireza Pourranjabar, and
Anne Remke

Author Index . 281

Analyzing Oscillatory Behavior

with Formal Methods

Alexander Andreychenko, Thilo Krüger, and David Spieler

Saarland University
{makedon,thilo,spieler}@mosi.uni-saarland.de

Abstract. An important behavioral pattern that can be witnessed in
many systems is periodic re-occurrence. For example, most living organ-
isms that we know are governed by a 24 hours rhythm that determines
whether they are awake or not. On a larger scale, also whole population
numbers of organisms fluctuate in a cyclic manner as in predator-prey
relationships. When treating such systems in a deterministic way, i.e., as-
suming that stochastic effects are negligible, the analysis is a well-studied
topic. But if those effects play an important role, recent publications sug-
gest that at least a part of the system should be modeled stochastically.
However, in that case, one quickly realizes that characterizing and defin-
ing oscillatory behavior is not a straightforward task, which can be solved
once and for all. Moreover, efficiently checking whether a given system
oscillates or not and if so determining the amplitude of the fluctuations
and the time in-between is intricate. This paper shall give an overview
of the existing literature on different modeling formalisms for oscillatory
systems, definitions of oscillatory behavior, and the respective analysis
methods.

1 Introduction

In the years 1926 respectively 1924, V. Volterra [102] and A. Lotka [70] indepen-
dently from each other studied the dynamics of predator and prey populations.
Their key insight was that the amount of both species showed regular oscillatory
fluctuations, where the predator population followed the prey population. But
the phenomenon of oscillation is also present at various granularities and forms
in many other systems. Examples are the 24 hour day/night rhythm of living
organisms on this planet [13] and calcium ion transport between membranes in
cells [91]. But oscillation can also be found at macroscopic levels as e.g. in whole
ecospheres like Savanna patches [76].

The tool-set that was used by Lotka and Volterra were deterministic models,
where the amount of each species was computed over time. Those models and
the respective analysis techniques are well-understood and are still used widely
today to reason about reaction networks in the fields of chemistry and systems
biology [33,60,91]. However, recent insights suggest that a completely determin-
istic approach might not be appropriate in all of the cases since noise resulting
from small populations plays an important role. For example, circadian clocks,

A. Remke and M. Stoelinga (Eds.): ROCKS Autumn School 2012, LNCS 8453, pp. 1–25, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

2 A. Andreychenko, T. Krüger, and D. Spieler

the basic mechanism behind the 24 hour rhythm, rely on stochastic effects to
maintain an oscillatory pattern and to prevent being trapped in an equilibrium
state [13]. Results like that and others [6,74] clearly speak in favor of stochas-
tic modeling. The framework of (continuous-time) Markov chains is rigorously
justified [38] for those systems from the area of biology and chemistry and it
is also used in the area of formal methods [8]. The aim of this paper is to give
an overview of how to model and analyze systems that exhibit an oscillatory
behavioral pattern by the use of formal methods. There is a great variety of
different aspects, definitions, notions, and techniques used in the literature and
not all can be handled in this paper. We therefore restrict to selected examples
characteristic for each of the three major abstraction levels, i.e., deterministic,
fully stochastic and their combination in the form of hybrid models. Further,
there is no common formal definition of terms like oscillation or attractor and
we will refer to the mostly informal and varying interpretations as presented in
the recpective references.

The structure of the paper is as follows. In Section 2, we discuss the respec-
tive modeling formalisms dependent on whether no, some, or all components
rely on a stochastic representation. Section 3 compares different notions of oscil-
latory behavior depending on the model type and describes the corresponding
approaches to analyze the models with respect to the various definitions. We
also give a series of examples for those approaches in Section 4. One of these ex-
amples is the two-species predator-prey model, which also serves as our running
example. Finally, we conclude our paper in Section 5.

2 Modeling of Oscillatory Systems

At first, we would like to clarify the notation of this paper. Vectors are written
like x = [x1 . . . xN] and e denotes the column vector of ones. Analogously, ma-
trices are written like Q = [qij]. We will assume suitable enumeration schemes
for vectors x ∈ NN such that matrices and vectors can be indexed by them, e.g.
as in qxy for x,y ∈ NN .

Next, we will give an overview of how oscillatory systems are modeled. We will
distinguish the modeling approaches by the amount of influence stochasticity has
on the behavior. In general we will treat three main classes, which are completely
deterministic models, fully stochastic models and hybrid models which have
deterministic as well as stochastic parts.

2.1 Population Structure and Chemical Reaction Networks

In order to base these models on a common framework, we first observe that
regardless of the exact semantics, they share a population structure. By pop-
ulation structure, we mean that a system consists of N different populations,
i.e., distinct quantities whose amounts determine the (possible) future behav-
ior. Consequently, those quantities make up the state of the system, are usu-
ally non-negative, and might all be discrete, real valued, or mixed. Also they

Analyzing Oscillatory Behavior with Formal Methods 3

might be bounded or unbounded. Moreover, the state of the system usually
changes over time, where time can be treated as discrete or continuous. In this
overview, we will focus on continuous-time models. We can summarize the com-
mon mathematical model structure by defining that a system X(t) is in a state
x = [x1 . . . xN] ∈ RN

≥0 for each t ∈ R≥0. The precise definition of X(t) is a
function in the deterministic setting, and a stochastic process in the stochastic
and hybrid setting as described later on.

All of the example models described in this summary paper originate from a
biologically motivated application area. Consequently, the populations described
in the previous paragraph mainly correspond to chemical species and their evo-
lutions are usually described by chemical reactions forming a chemical reaction
network (CRN). For a detailed overview of a structural analysis of CRN, we
refer to [5]. In short, a system consists of N chemical species S1, . . . , SN and R
different chemical reactions, where each reaction is of the form

ur1 · S1 + · · ·+ urN · SN

cr
−−−−→ wr1 · S1 + · · ·+ wrN · SN ,

with stoichiometric coefficients given by vectors ur = [ur1, . . . , urN]T ∈ NN and
wr = [wr1, . . . , wrN]T ∈ NN and a reaction rate cr ∈ R≥0 for r ∈ {1, . . . , R}.
The intuition of a chemical reaction is that the reactant molecules (uri molecules
of species i) can be transformed into the product molecules (wrj molecules of
species j) with the corresponding likelihood and speed determined by the reac-
tion rate cr. But the exact physical interpretation and units of cr both depend
on the model type and the order of reaction [104]. Symbol ∅ denotes that ur

respectively wr is the zero vector.

Example 1 (Predator-Prey CRN). This representation is not limited to chemical
reactions but can also be used for example to characterize population dynamics
of animals. An example is the predator-prey model proposed independently by
Lotka and Volterra [70,102]. The CRN is described by

S1

c1
−−−−→ 2 · S1, S1 + S2

c2
−−−−→ 2 · S2, S2

c3
−−−−→ ∅

where the first reaction describes reproduction of a prey species S1, the second
reaction encodes the reproduction of predators S2 consuming prey (food) and
the last reaction relates to the natural death of the predator species.

2.2 Deterministic Semantics

The traditional way of treating the behavior of chemical reaction networks is
the deterministic approach justified by the law of chemical mass action as for
example described in [51,96]. For that, the amount of molecules per chemical
species is not modeled as such but as a concentration, i.e., molecules per volume,
commonly measured in mol/L. The state space in that case is continuous, i.e.,
X : R≥0 → RN

≥0. We define the deterministic propensity αdet
r (x) of a reaction r

for state x = [x1 . . . xN] as

4 A. Andreychenko, T. Krüger, and D. Spieler

αdet
r (x) = cdetr ·

N∏
i=1

xuri

i .

Note that cr differs depending on the type of the model [104]. Here we have to
use the deterministic version. The exponent uri is the number of occurences of
the species in the reaction. It follows that if the species does not take part in the
reaction, it will not occur in the equation. Given an initial concentration X(0),
the future behavior is completely determined by a set of ordinary differential
equations (ODE) that is given for each species i by

Ẋi(t) =
R∑

r=1

(wri − uri) · αdet
r (X(t)). (1)

A deeper mathematical analysis of the law of mass action can be found in [23,78]).
There exist other ways to derive the ODE describing the concentration of certain
species in time [105]. In order to model the feedback mechanisms in physiological
systems delay differential equations can be exploited. They are capable of mod-
eling and formally reasoning about the effect of one or several feedback loops
with different delays that control many processes in living organisms [40,69].
Please also notice that the given deterministic framework does not account for
possible measurement errors neither for uncertainties in states. Taking those into
consideration leads to a stochastic differential equations model [17,38,104].

Example 2 (Predator-Prey ODE). The ODE for the predator-prey model from
Example 1 as obtained from the CRN is

Ẋ(t) = [1 0]T · αdet
1 (X(t)) + [−1 1]T · αdet

2 (X(t)) + [0 − 1]T · αdet
3 (X(t))

with αdet
1 (x) = c1 · x1, αdet

2 (x) = c2 · x1 · x2, αdet
3 (x) = c3 · x2.

2.3 Stochastic Semantics

In the fully stochastic approach, the granularity of the modeling is the molecule
level. Thus, instead of keeping track of the concentration as in the deterministic
setting, individual molecules are treated as such. The stochastic semantics of a
chemical reaction network is given by a (homogeneous) continuous-time Markov
chain (CTMC) [38,36,37]. In detail, the behavior of the system is determined by
a stochastic process {X(t)}t∈R≥0

which is a family of random variables indexed
by time. These processes satisfy the Markov and homogeneity properties, i.e.,
the possible future behavior only depends on the current state and does not
change over time, as formalized by

Pr[X(tn) = sn | X(tn−1) = sn−1, . . . , X(t0) = s0]

= Pr[X(tn) = sn | X(tn−1) = sn−1] = Pr[X(tn − tn−1) = sn | X(0) = sn−1].

Analyzing Oscillatory Behavior with Formal Methods 5

The main reason to exploit the stochastic model when analyzing biological pro-
cesses comes from the fact that given low molecular counts, the corresponding
stochastic effects can not be ignored. It is often referred to as a noisy process,
where the noise can be decoupled into two components, i.e., intrinsic and extrin-
sic noise [31]. In contrast to the deterministic setting, there is not a determined
solution, but the system is in a state x ∈ N

N with a certain probability πx(t).
Distribution π(t) is called the transient probability distribution at time t and
is defined as a row vector π(t) such that πx(t) = Pr[X(t) = x] ∈ [0, 1] and
π(t) · e = 1. Due to the above constraints, the behavior of the CTMC is fully
described by an initial distribution π(0) and an infinitesimal generator matrix
Q = [qxy] where all elements qx �=y ∈ R≥0 and diagonal entries are defined as
qxx = −

∑
y �=x qxy. More precisely, the transient distribution satisfies the Kol-

mogorov differential equations [58]

π̇(t) = π(t) ·Q (2)

also called the master equation [38,56] in the natural sciences. In order to define
the matrix entries qxy, we define the (stochastic) propensity αst(x) of a reaction
r for state x = [x1 . . . xN] as

αst
r (x) =

{
cstr ·

∏N
i=1

(
xi

uri

)
, if xi ≥ uri,

0, otherwise
(3)

and get

qxy =

{∑
{r | x−ur+wr=y} α

st
r (x), x �= y,

−
∑

z�=x qxz, x = y.

The reaction rate constant cstr encodes physical properties of reaction r and its
units depend on the type of reaction. The actual value can be computed using
the information about the rate constant cdetr used in the deterministic semantic
as described in [61,75]. The binomial coefficients refer to the number of possible
combinations of the reactants. We assume that the Kolmogorov equations (2)
have a unique solution under a given initial condition π(0). To solve the system
of ODE (2) in practice, one can exploit generally applicable analytical and nu-
merical methods for solving ODE systems (like Runge-Kutta method) as well
as those specially designed for Markov chain analysis as for example simula-
tion [17,18,35,37,39], abstraction [1,27,57,64], uniformization [30,44,46,55] and
others [16,54].

Example 3 (Predator-Prey CTMC). A stochastic treatment of the model from
Example 1 results in a CTMC with state space N2 and an infinitesimal generator
Q defined by

qxy =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

c1 · x1 if x1 > 0, y1 = x1 + 1, y2 = x2,

c2 · x1 · x2 if x1 > 0, x2 > 0, y1 = x1 − 1, y2 = x2 + 1,

c3 · x2 if x2 > 0, y1 = x1, y2 = x2 − 1,

−
∑

z�=x qxz if x = y, and

0 otherwise.

6 A. Andreychenko, T. Krüger, and D. Spieler

In order to simplify the description of stochastic models, tools like PRISM [65]
use guarded-commands, i.e., rules that for each state describe the possible tran-
sitions (consisting of successor state and rate) that are possible depending on
the validity of a boolean predicate on the current state (guard). Moreover, the
chemical species and reactions can be encoded as modules that are composed
via synchronization [65] as done for example in [11,12]. If there is no a-priori
knowledge about the bounds on molecular counts as in the previous exam-
ple, the corresponding Markov chain has a countably infinite state space. In
those cases, the stochastic simulation or specially designed numerical methods
like [15,30,48,49,80] are needed. A tool specifically tailored to analyze such sys-
tems numerically is SHAVE [66]. Sophisticated techniques like inexact matrix
vector multiplications exploiting a truncation of the state space to focus on the
significant states, i.e., states with a probability mass greater than a threshold,
and automated hybridization of populations help to cope with large or even in-
finite state spaces. Another way to treat such systems approximately is to take
the limit of the number of individuals per volume and describe the system solely
by the mean population numbers, arriving at the mean-field limit of the system.
This mean-field limit coincides with the deterministic approach modeled by the
ODE of Equation (1) but only under certain conditions [47,62].

2.4 Hybrid Semantics

Analysis of real-life case studies from biology reveals that there exist systems
where some species posses low molecular counts and others are present in ex-
tremely high amounts. Treating the whole system as discrete using the fully
stochastic approach described in the previous section, results in a very large
state space. Consequently, the direct solution of Equation (2) is inefficient. On
the other hand, we can treat the dynamics of the whole system deterministically
thus omitting the stochastic effects as described in Section 2.2, where solving
the system is computationally far less demanding. In order to still profit from
the computational speed of the deterministic model and be able to account for
the underlying stochasticity, the hybrid approach can be used. Here, the pro-
cess X(t) is split into two parts, i.e., X(t) = (M(t), Y (t)), where the discrete
stochastic component M(t) accounts for the small populations and the deter-
ministic continuous component Y (t) deals with large populations. We assume
that the dimension of M(t) is n̂ and the dimension of Y (t) is ñ with N = n̂+ ñ.
The dynamics of the stochastic component M(t) ∈ N

n̂ is described by a CTMC
where the rates not only depend on the current state m but also on the state
y of the deterministic counterpart Y (t) ∈ Rñ. Consequently, the entries of the
generator matrix Q(t) are described by

qmm′(t) =

{∑
{r | m−ur+wr=m′} α

hyb
r (m,y(t)), if m �= m′

−
∑

m′′ �=m qmm′′(t), if m = m′ (4)

Analyzing Oscillatory Behavior with Formal Methods 7

with propensity functions αhyb
r (m,y(t)) defined as

αhyb
r (m,y(t)) =

{
cstr ·

∏n̂
i=1

(
mi

uri

)
·
∏ñ

j=1 y
urj

j (t), if mi ≥ uri
0, otherwise

The transient probability distribution for M(t) follows the time-dependent Kol-
mogorov equation π̇(t) = π(t) · Q(t). As before, we assume that this system
of equations has a unique solution under the given initial condition π(0). To
solve this equation system the above mentioned methods can be applied as
well as methods designed to analyze time-dependent continuous-time Markov
chains [7,79,100] and hybrid systems [3,26,75,88]. The behavior of the continu-
ous process Y (t) is defined by the system of ODE similar to Equation (1)

Ẏi(t) =

R′∑
r=1

(wri − uri) · αdet
r (X(t)),

where R′ is the number of reactions, where only species whose concentration is
treated as a continuous quantity, take part. Such a representation is especially
useful if the Markov chainM(t) only encodes the states (on/off) of a set of genes
that control the production of proteins. Then each state variablem1,m2, . . . ,mn̂

can take values 1 or 0 and the concentration of the correspondent proteins is
controlled by the deterministic process Y (t). We can refer to states of M(t)
as to modes [92] of the hybrid system. In each mode the components of Y (t)
follow the system of ODE as in Equation (1). For a rigorous derivation of the
corresponding theory, we refer to [52].

The presented fixed decomposition of the state space vector onto two parts
is based on the molecular counts. There exist other approaches to divide the
system into subsystems. They allow for dynamical repartitioning by exploiting
the model structure. For details, we refer to [2,10,17,26,45,86,89,103].

Example 4 (Predator-Prey Hybrid). The predator-prey model from Example 1
is often used to test the applicability of hybrid solution techniques since under
certain parameter values it possesses high stiffness. In this example we assume
that the reaction rate constants are such that species S2 (predator) has low
molecular counts and that species S1 (prey) is present in high counts. A hybrid
approach leads to a definition of the process as X(t) = (S1(t), S2(t)), where S2

is treated stochastically and its behavior is determined by the time-dependent
generator matrix Q(t) with entries qs1,s′1(t) according to Equation (4), where

αhyb
2 (s1(t), s2) = cst2 · s1(t) · s2, α

hyb
3 (s1(t), s2) = cst3 · s2. The evolution of species

S1 is deterministic and follows the ODE Ṡ1(t) = cdet1 s1(t)− cdet2 s1(t)s2.

2.5 Other Model Semantics

In this tutorial we address only a selection of formalisms among many used to
describe biological and chemical systems. Other notable formalisms are more

8 A. Andreychenko, T. Krüger, and D. Spieler

structure oriented, where individual molecules even of the same type can be
distinguished as e.g. in [22]. Another way to model biological systems and sig-
naling pathways [90] is to represent them as timed automata [4]. It allows to
treat deterministic and hybrid systems [21,59,71,84,97] and formally verify their
properties using existing tools [82]. The interested reader can find more detailed
information about the variety of formalisms in [29,47].

3 Defining and Analyzing Oscillatory Behavior

Prior to describing how oscillatory behavior is defined in the literature, we first
have to agree on the quantity that shall be analyzed. This question is directly
related to what measures about a system are observable. In order to treat all
presented approaches under a common framework and to be able to compare
them, we assume that in general, the current number of individuals of each
population type at any moment in time can be observed. In detail, this means
that given the system is in state x = [x1 . . . xN] at time t, each value xi for
1 ≤ i ≤ N is visible to the analysis. In order to further simplify the presentation,
we focus on studying the behavior of single population types as the quantities
of interest. We would like to note that in all presented approaches, the analysis
of more complex observations like the mean or sum of two or more populations
is possible either directly or with little effort.

For approaches based on model checking like [11,12,22], no information about
the current state X(t) is a priori visible to the underlying logic. Consequently,
the observable information must be stated explicitly. For that, a model with
state space S is augmented with a labeling function L : S → 2AP , which assigns
to each state s ∈ S a set of atomic propositions L(s) from the set AP that
hold in that state. In [11,12] for example, each state [x1 . . . xN] is labeled by
propositions like Xi = xi for each 1 ≤ i ≤ N . In order to allow for more complex
observation queries, also inequalities like X1 �= 1 and X1 ≥ 3 are for example
used to describe a state with x1 = 4.

3.1 General and Mathematical Notions of Oscillatory Behavior

At first we would like to discuss the difficulty of choosing a general definition
of oscillatory behavior. When considering the term oscillation from an intuitive
point of view, it usually refers to a repeated fluctuation pattern in time of some
observable quantity. Before going further, we would like to differentiate the in-
tended notion from switching behavior, a phenomenon that is also studied very
often in the literature and that might be called oscillatory as well. Some stochas-
tic models like the genetic toggle switches [34,53] possess two or more regions
in the state space where the steady-state probability mass concentrates (around
global maxima). Those regions are called attracting regions and due to the high
probability mass, the system most of the time is in one of those regions. Tran-
sitions between those regions are always possible in principle but they might
be very unlikely depending on the exact parameters. Consequently, switching

Analyzing Oscillatory Behavior with Formal Methods 9

between those regions becomes a rare event. Due to the long time between sig-
nificant fluctuations, we will not treat those systems and multi-stable systems
with low switching-rate in general as oscillatory in this overview paper.

In order to approach more formal definitions, we would like to continue with a
discussion of the notions of periodic and oscillatory behavior in the strict math-
ematical sense. In general, a function f(t) is called periodic with period length p
if for all times t ∈ R≥0 holds that f(t+ p) = f(t) and oscillatory with frequency
θ and amplitude a if f(t) = a · sin(θ · t + ω). While these definitions provide
very precise notions of the behavior, their use in our setting is severely limited
[95]. In detail, they are too strict in the sense that hardly any system adheres to
them over the complete time horizon. Where their use for deterministic models
might be justified, e.g. when altering the definitions to cope with phase shifts or
more complex fluctuation patterns, their use in the stochastic setting becomes
complicated. For example, the probability measure of all paths of a CTMC based
on a biological model that follow such a predefined trajectory pattern is triv-
ially zero due to the inherent stochastic noise [95]. In addition, periodicity also
would not cover the full intended behavior where fluctuations are required, as
a constant function f(t) = c for some c ∈ R would be periodic for any period
length p ∈ R. When comparing the literature, it is therefore not surprising to
see several definitions of the intended oscillatory behavior specifically tailored
to the respective applications like an inclusion of noise corridors [11,12] in order
to relax the strict definitions.

3.2 Oscillatory Behavior in the Deterministic Setting

The most common approach to model and analyze oscillatory behavior is the
deterministic modeling via ODEs. Since this general approach is the most es-
tablished, it is reasonable to start with a short historical overview of the devel-
opment of these deterministic methods. Since this is done in detail by Tyson et
al. in 2008 [99] for the biological context, we limit ourselves to a brief overview.
First observations of oscillatory behavior in biology were made in macroscopic
biological systems. Thus the first models, that were discussed by Lotka [70]
and Volterra [102], are models of predator and prey relationships of animals.
The well-known Lotka-Volterra mechanism in CRN form and the corresponding
equations [50] are shown in Example 2. Around 1950 Beloussov for the first time
observed oscillating behavior in a homogeneous chemical reaction, the Beloussov-
Zhabotinsky-Reaction [99]. Another much simpler reaction scheme, which was
analyzed in the sixties was the so-called Brusselator, which was used as a the-
oretical system to show that oscillatory behavior is possible in homogeneous
chemical reaction systems. First larger developments in analyzing oscillatory
behavior were made in the early sixties and were summarized by a paper of
Higgins [50]. He gave a classification of oscillations that allowed to distinguish
damped oscillations, sustained oscillations and general oscillations, and gave very
general equations for oscillating ODEs. He also summarizes general thermody-
namical and kinetic considerations from different papers with the result, that
it is generally impossible to achieve sustained oscillatory behavior in closed

10 A. Andreychenko, T. Krüger, and D. Spieler

chemical systems due to thermodynamic reasons. For kinetic reasons, it is not
possible to achieve sustained oscillatory behavior with first order reactions ex-
clusively, but with pseudo first order reactions or reactions of higher order. One
important part of the work of Higgins is the classification of oscillatory mecha-
nisms in back-activation and forward inhibition mechanisms. This classification
is still valid today but is now known by the terms positive and negative feedback
loops [91]. For both mechanisms, Higgins gave possible descriptions by chemical
reaction systems and ODEs.

Also today, there is no possibility to generally verify oscillations in a system
of ODEs. The prevalent approach used to detect them is to integrate the equa-
tions numerically and to manually classify the solutions. If sustained oscillations
are detected, it is easy to get the frequency or the amplitude by inspecting the
solutions. To analyze the oscillatory behavior more deeply, Goldbeter [42] pro-
poses five steps. Two of these steps deal with analyzing the structure of the
ODE system. The third step is the evaluation of the steady state. A steady
state of a system is a state vector that satisfies Ẋ(t) = 0. Consequently, the
steady states can be computed either analytically or numerically by solving the
respective (possibly non-linear) equation system. To analyze the retrieved steady
states, linear stability analysis is used [33]. Here, the aim is to find out whether
a steady state is stable, i.e., whether after a small perturbation of the steady
state, the system comes back. The key insight is that only in cases where a
steady state is unstable, oscillations can occur. Technically, the Jacobian matrix
for the ODE is set up and evaluated at the steady state(s) (cf. [33], page 881 for
details). Finally, analysis of the eigenvalues λ1, . . . , λK of the resulting matrix
gives information about the stability. In general, if at least one eigenvalue λi
has a positive real part, the steady state is unstable. If all eigenvalues have a
negative real part, the steady state is stable. In all other cases, e.g. if some of the
real parts are zero, further analysis is necessary. With the help of linear stability
analysis it is possible to compute some general properties of the oscillating sys-
tem. For example, nullclines are functions of one species that show under which
conditions the value of the species does not change (Ẋn(t) = 0). They can be
illustrated by phase-plots of two or three species. It is now also possible to ob-
tain the Hopf bifurcation points of the system [94]. In these points, at least one
eigenvalue has to have a real part of zero. Based on Hopf bifurcation points, it is
possible to obtain bifurcation diagrams. These are plots of a system parameter,
that show under which conditions a steady state is stable or unstable. In the un-
stable region, the bifurcation diagram can also give insight into the amplitudes
of obtained oscillations. For examples of bifurcation diagrams, we refer to [99].
We want to illustrate some of these analysis techniques in the following example.

Example 5 (Predator-Prey ODE). We continue with the predator-prey model
from the previous examples. To obtain the steady states, we have to solve the
equation system

0 = x1 · (c1 − c2 · x2), 0 = x2 · (c2 · x1 − c3)

Analyzing Oscillatory Behavior with Formal Methods 11

which can be done analytically. One steady state is x1 = c3/c2, x2 = c1/c2. The
Jacobian of this steady state is J = [0 −c3, c1 0], which leads to the eigenvalues
λ1,2 = ±i · (c1 ·c3)0.5. Since there are imaginary parts of the eigenvalues, the sys-
tem oscillates. Since the real parts of the eigenvalues are zero for all parameters
c1, c2, and c3, these oscillations are sustained and are not ending in an attracting
limit circle and it is not reasonable to set up a bifurcation diagram because it is
not possible to compute Hopf bifurcation points. It is indeed necessary to have
either an ODE system with more than two equations or at least one reaction
of 3rd order in the reaction system to obtain an attracting limit cycle for an
oscillation [91].

3.3 Oscillatory Behavior in the Stochastic Setting

One principal approach that is widely used when analyzing stochastic systems
with respect to periodic and oscillatory behavior is model checking. The under-
lying mechanism is that the property of interest is encoded as a formula in some
temporal logic or as some kind of (finite state) automaton and the model check-
ing routine efficiently decides whether the model satisfies the property or not.
Model checking based approaches reason about the structure of the models and
allow precise statements that hold for sure, unlike simulative approaches which
can not give such strong guarantees [12].

Temporal Logic Based Model Checking Approaches. In an early model
checking approach used to analyze biochemical systems [22], the authors make
use of computation tree-logic (CTL) [24]. For a detailed introduction to CTL,
we refer to [9]. In the context of reasoning about qualitative aspects of biolog-
ical models, the idea of requiring an infinite repetition of cyclic (non-constant)
behavior was first described in [22]. The authors capture that property via the
CTL formula

∃� ((P ⇒ ∃♦¬P) ∧ (¬P ⇒ ∃♦P)) . (5)

Formula (5) demands that there exists at least one path such that whenever
some predicate P is satisfied it will be invalid later on, and vice versa whenever
it is not satisfied it will become valid again in the future. Intuitively, there should
exist at least one path such that the validity of P alternates forever. CTL model
checking was originally applied to labeled transition systems (LTS), but a CTMC
can be interpreted as a LTS as well by assuming a state transition whenever there
is a positive rate between a state and its successor. Using such a construction,
one can reason qualitatively about the possible behavior of a CTMC as done
in [12] for example. Here, the authors propose the CTL formula

∀�(((Xi = k)⇒ ∃♦(Xi �= k)) ∧ ((Xi �= k)⇒ ∃♦(Xi = k))), (6)

in order to query whether a system shows permanent oscillations. This formula
is similar to Formula (5) where the inner formula is strengthened by exchang-
ing the outer ∃ by a ∀ operator and predicate P is instantiated with Xi = k.

12 A. Andreychenko, T. Krüger, and D. Spieler

The intuitive meaning of this formula is that all paths should cross a level of k
molecules infinitely often.

The authors are concerned that noise could affect the fluctuations. Thus, they
change the previous formula slightly to

∀�(((Xi = k)⇒ ∃♦φn) ∧ (φn ⇒ ∃♦(Xi = k))) (7)

with φn := (Xi > k + n) ∨ (Xi < k − n). They call Formula (7) noise filtered
oscillations permanence and intuitively, in contrast to the previous formula, the
required crossing of molecule level k is extended to a crossing of the interval
[k − n, k + n] which resembles a noise band of size n around the desired level k.

So far, we have discussed how qualitative aspects like the permanence of os-
cillatory behavior are analyzed in the literature. The logic CTL proved to be
expressive enough for this task but in order to be able to reason about quan-
tities like the time needed for a fluctuation or the probability of a peak, CTL
is ill-equipped. Consequently, approaches like [11,12] make use of the continu-
ous stochastic logic (CSL) which lifts CTL to the continuous-time probabilistic
setting, i.e., to continuous-time Markov chains. For a detailed introduction to
CSL, we refer the reader to [8]. In [12], Ballarini et al. extend their qualitative
approach by incorporating time and probability bounds.

P=?[♦ (P≥1[♦(Xi = k)] ∧ P≥1[♦(Xi �= k)])] (8)

More precisely, they use Formula (8) to compute for each state s, the probability
ps that oscillations will not terminate in the respective state. With the rest of
the probability mass 1 − ps, the oscillatory pattern will end in (initial) state s
since either a level of Xi = k can not be reached or left any more with sufficient
probability. Note that Formula (8) does not explicitly encode oscillatory behavior
but is used implicitly to compute those states, where no oscillatory behavior will
be possible any more. The authors further analyze the specific model structure of
their case study (the 3-way oscillator discussed in Section 4.2) to define short-cut
predicates Xi = INV holding in states where oscillations terminate in species
i. This way, the probability of termination of oscillation for any species within
time T is captured by the formula1

P=?[♦[0,T] (X1 = INV ∨X2 = INV ∨ · · · ∨XN = INV)]. (9)

Moreover, computing the satisfaction probability of formula S=?[Xi = k] for
every molecule level k allows the authors to reason about the long-run proba-
bility distribution of molecules of type i. Finally, they use rewards introduced
in CSLR [25,63], an extension of CSL, to query the expected perimeter of k
molecules around the initial state resembling the amplitude of oscillation. We
will not elaborate the construction in detail, since the described approach is
tailored to the specific case study and can not be used for arbitrary models.

1 In [12], only three short-cut predicates were used, we generalized the formula to N
species.

Analyzing Oscillatory Behavior with Formal Methods 13

In a follow-up paper [11], the authors base their qualitative characterization of
oscillatory behavior on several notions of monotonicity. More precisely, a chemi-
cal species i is either monotonically increasing or decreasing indicated by boolean
flags inc i respectively dec i, or nothing thereof. In order to relax the strict sense
of monotonicity, increasing (decreasing) behavior might include up to a maxi-
mum of ns steps without an increase (decrease) in the number of molecules of
species i, where ns denotes the chosen maximum extent of the noise band. For
that, an additional model variable keeps track of the center of the current noise
band. This additional information is provided by the augmentation of the model
by a step counting automaton that keeps track of the noise band and the boolean
flags. Technically, the PRISM model is composed in parallel with a module en-
coding the automaton and synchronizing on the chemical reactions to detect
changes in the molecule counts. Finally, a CSL formula to query the probability
that some species i increases monotonically (modulo noise) until some level k is
reached is given by

P=?[inc i U (Xi = k)]. (10)

Oscillatory behavior of a species i, more precisely, a single period, is then char-
acterized by a monotonic increase from a current level j to some level k > j,
followed by a monotonic decrease back to level j, where the noise band ns is used.
The authors finally use (probabilistic) linear temporal logic (LTL) to formalize
such an oscillation pattern of amplitude j − 1 via2

P=? [inc i U (Xi = k ∧ (dec i U Xi = j))] . (11)

The major difference between LTL and the branching time logics CTL and CSL
is that it is a linear time logic, i.e., the semantics is based on the paths of a
model in contrast to the states as in CTL/CSL. More precisely, although there
is a path operator in CTL/CSL, the final judgment, whether a path formula is
satisfied is done per state (by validating the path formula satisfaction probability
against the probability bounds). As a consequence, path formulae can not be
nested. Since the semantics of LTL is based on paths, nesting is possible. We
will not give a full introduction to LTL but will discuss the intuitive meaning
of the presented formulae and refer to [85] for details. Formula (11) queries the
probability measure of all paths where species i is monotonically increasing until
a level of k molecules is reached, followed by a monotonic decrease until level j.

The authors further relax the requirements of oscillatory behavior by allowing
the fluctuation to stay at the peak, i.e., at around a molecule level of k (module
noise band ns), for an unlimited amount of time as described by Formula (12)3.

P=? [inc i U (Xi = k ∧ ((k − ns ≤ Xi ≤ k + ns) U (dec i U Xi = j)))] (12)

2 The original formula in [11] uses the W operator which behaves like the U operator
but is also satisfied if the first sub-formula holds forever.

3 Again, the original formula used the W operator instead of the U operator.

14 A. Andreychenko, T. Krüger, and D. Spieler

Automata Specification Based Model Checking Approaches. A differ-
ent idea to capture the essence of oscillatory behavior is to encode the desired
behavior as an automaton. One such approach is described in [77], where CTMCs
with population structure and potentially infinite state spaces are model checked
against single-clock deterministic timed automata (DTA) specifications. In the
paper, DTAs are used to describe linear-time properties, i.e., the desired behav-
ior corresponds to the set of paths that are accepted by the DTA. Consequently,
the presented model checking approach computes the probability measure of all
CTMC paths that are accepted by the DTA. In the paper, a DTA encoding
oscillatory behavior is given. This DTA describes all trajectories, that cross a
lower molecule threshold L, followed by reaching a higher thresholdH and finally
returning to the lower threshold L again. This fluctuation of amplitude H − L
must happen within a period length of t time units with t ∈ [Tmin

0 , Tmax
0]. The

real valued interval bounds Tmin
0 < Tmax

0 can be chosen freely. We note that the
requirements on oscillatory behavior are relaxed in the sense that not a specific
period length but a range of possible period lengths is allowed. Accordingly, only
a minimal but not maximal amplitude is specified. These relaxations were done
in order to be able to deal with stochastic noise. Note that in contrast to the
usual model checking based approaches, here, the state space does not necessar-
ily has to be finite. The reason is that the model checking problem is reduced to
the truncation based transient analysis [30,48] based on inexact vector matrix
multiplication, which allows the routine to concentrate on significant states, i.e.,
states with a transient probability greater than some threshold δ > 0.

3.4 Oscillatory Behavior in the Hybrid Setting

The hybrid approach is aimed at combining the advantages of the deterministic
and noisy stochastic approaches.When we are dealing with pathways where there
are species both with large and small molecular counts, the hybrid simulation
or numerical solution methods are the methods of choice. Although the analysis
is usually aimed at oscillations of species whose concentration is represented by
continuous variables, we still can reason formally about the variety of complex
behaviors that can arise. To do so we can represent the hybrid system as a timed
automaton and apply the corresponding techniques [14]. It is important to notice
that often we can apply deterministic methods to describe the mean behavior of
large quantities modelled stochastically. However for some systems the effect of
the noise can be so intense that the average behavior of stochastic components
differs from the deterministic solution [47].

4 Applications

In this section, we would like to give various examples of oscillatory models with
different underlying semantics and show how they are analyzed in the literature.

Analyzing Oscillatory Behavior with Formal Methods 15

4.1 The Predator-Prey Model

At first, we will have a look at the predator-prey model from Example 1. In
the work of Dayar et al. [28], the authors compare numerical analysis methods
applied to the mentioned model. More precisely, they solve the system deter-
ministically, stochastically and in a hybrid fashion and manually compare the
results. The ODE corresponding to the deterministic approach (cf. Example 2)
proves the system to possesses a never-ending oscillatory character according to
the curve

c2 · S1 − c3 · logS1 + c2 · S2 − c1 · logS2 = const

in the phase space, assuming c1, c2, c3 > 0 and an initial condition different from
the equilibrium [c3/c2 c1/c2]. Intuitively, a peak in the prey population is followed
by a peak in the predator population decreasing the prey and ultimately the
predator population again, and the cycle repeats. However, when considering the
system to be stochastic (cf. Example 3), i.e., treating predator and prey counts as
such and not as concentrations, simulation shows that the mean of the resulting
transient distribution behaves differently from the solution of the deterministic
approach. Here, for the parameter set c1 = c3 = 1, c2 = 0.01 and initial condition
π[20 20](0) = 1, the oscillatory pattern already breaks after the first period. The
number of predators goes to zero and the number of prey individuals grows
unboundedly. The reason is that in general, the predators will die out eventually
with probability one due to stochastic effects, allowing the prey population to
proliferate. That case suggests that depending on the granularity, with which a
system shall be analyzed, an appropriate semantics must be chosen. In contrast,
when assuming the thermo-dynamic limit, i.e., taking the limit of the number
of predator and prey individuals and of the system’s volume to infinity (such
that a fixed concentration is reached), the deterministic approach is justified.
Intuitively, the probability of extinction approaches zero. If such an assumption
can not be made, stochastic effects need to be considered. However, a problem of
the fully stochastic approach is the high run time and memory requirements due
to the large amount of individual states that need to be considered. Consequently,
the authors suggest to use a hybrid approach as described in Section 2.4 with
the additional property that populations are dynamically treated as individuals
as long as they do not surpass a certain threshold. As soon as that threshold
is reached, the respective population is treated deterministically, with the mean
and covariances of Si being computed for each time step. This helps to decrease
run time and memory requirements by up to two magnitudes while still being
able to capture the relevant stochastic effects with negligible error.

4.2 The 3-Way Oscillator Model

While the previous model has been analyzed mainly by solving the systems over
time and manually reasoning about the resulting oscillatory behavior, another
model, the 3-way oscillator [19,20] has in addition been studied using fully au-
tomated model checking. The 3-way oscillator is a CRN which consists of three

16 A. Andreychenko, T. Krüger, and D. Spieler

chemical species S1, S2, and S3 which form a positive feedback loop as described
by the chemical reactions

S1 + S2

τ1
−−−−→ 2 · S2, S2 + S3

τ2
−−−−→ 2 · S3, S3 + S1

τ3
−−−−→ 2 · S1

which resemble a cyclic predator-prey scheme, where species S1 is eaten by
species S2, which is eaten by S3, which itself is consumed by species S1. For
simplicity, we assume τ1 = τ2 = τ3 = 1 as in [12]. The corresponding ODE is

Ẋ(t) = α1(x) · [−1 1 0]T + α2(x) · [0 −1 1]T + α3(x) · [1 0 −1]T

with α1(x) = x1 ·x2, α2(x) = x2 ·x3, and α3(x) = x1 ·x2. In [12], the authors use
an initial concentration of X(0) = [100 200 10]T and conclude that the system
oscillates forever. Using Matlab [73] to solve the ODE, one can compute the
center of oscillation to be at around 133 with a peak-to-peak amplitude of 251 for
each species. Also, the oscillation is regular corresponding to the mathematical
notion of periodicity with a period length of around 0.05. However, when started
in equilibrium, i.e. x1 = x2 = x3 = 10, the system stays there forever [12].

In contrast to the deterministic semantics, a stochastic treatment results in
different characteristics. First observations resulting from stochastic simulations
starting in an initial state with x1 = x2 = x3 = 10 show that in contrast to
the ODE approach, fluctuations are present, although there is no strict regu-
larity due to stochastic noise. Moreover, the authors argue that eventually, a
terminal/absorbing state, i.e., a state with no outgoing transitions, correspond-
ing to a depletion of two of the species will be reached. Consequently, the system
will stop to oscillate since the state can not be left any more invalidating For-
mula (6) since either no state with Xi = k or Xi �= k can be reached any more.
That effect can be witnessed in the predator-prey model as well. Alongside to
this argumentation, automated model checking reveals that the permanent os-
cillation property as stated in Formula (6) is not satisfied for that system. Using
probabilistic model checking, further characteristics like the probability of de-
pletion corresponding to the termination of oscillatory behavior within T time
units as specified by Formula (9) are investigated. In order to be able to recover
from a depletion, the authors suggest to allow the direct transformation of one
species into another

S1

τ ′
1

−−−−→ S2, S2

τ ′
2

−−−−→ S3, S3

τ ′
3

−−−−→ S1,

usually with τ ′i
 τi for all i ∈ {1, 2, 3} which results in no terminal states
anymore. They call that augmentation doping and show that it indeed suffices
to finally satisfy Formula (6), i.e., to make the oscillatory character permanent.

4.3 Circadian Clocks

An interesting phenomenon common to many living organisms is the day-night
rhythm where the period length of 24 hours is kept nearly constant [87]. External
stimuli like light and temperature might help to adjust the underlying mechanism

Analyzing Oscillatory Behavior with Formal Methods 17

called circadian clock. But in order to maintain a stable period length [13], the
living organism should also cope with the external perturbations and internal
stochastic noise (induced by species presented in small molecule numbers). In
the paper [101], the authors model circadian clocks via the chemical reaction
network described by

GA

αA−−−−→ GA +MA GR

αR−−−−→ GR +MR A
δA−−−−→ ∅

GA ◦ A
α′
A−−−−→ GA ◦A+MA GR ◦ A

α′
R−−−−→ GR ◦ A+MR R

δR−−−−→ ∅
GA + A

γA−−⇀↽−−
θA

GA ◦A GR + A
γR−−⇀↽−−
θR

GR ◦ A A+R
γC−−−−→ C

MA

βA−−−−→ MA + A MR

βR−−−−→ MR +R C
δA−−−−→ R

MA

δMA−−−−→ ∅ MR

δMR−−−−→ ∅

where initially both genes are active (GA = GR = 1) and molecular count for the
rest of species is 0. The parameters are set to αA=50, α′

A=500, βA=50, δMA=10,
δA=1, γA=1, θA=50, αR=0.01, α′

R=50, βR=5, δMR=0.5, δR=0.2, γR=1, θR=100,
γC=2. In that model, genes GA and GR are transcribed to mRNA moleculesMA

andMR which are finally translated into activator proteins A and repressor pro-
teins R. The repressor protein R can bind to protein A to form a complex protein
C which then degrades to a single R protein. The activator protein can bind to
the promotor region of both genes to boost their transcription rate. The authors
compare the integration of the corresponding ODE with stochastic simulations
(cf. Figure 2 in [101]). The simulations show random fluctuations (noise) with
respect to period length and amplitude in contrast to the ODE solution, where
every period behaves the same. Using quasi-steady state assumptions [81], the de-
terministic system is reduced to the slow species R and C and it is possible to use
limit cycle and stability analysis (cf. Section 3.2) to show that the system oscil-
lates permanently. But, those results turn out not to be applicable to the stochas-
tic setting. More precisely, the set of parameters giving rise to a stable steady state
(fixed point) for the ODE semantics produce oscillations in the stochastic setting
just like for the 3-way oscillator model (cf. Section 4.2). Here, the stochastic noise
intuitively pushes the system away from the equilibrium to initiate a new cycle re-
sulting in fluctuations not present in the deterministic limit. In addition, we would
like to refer to the PRISM tutorial [83], which deals with stochastic simulation of
the described model to show the oscillatory character.

Another example for circadian rhythms is the oscillatory character of the pe-
riod protein (PER) in living organisms like Drosophila. Here, oscillations are
induced by the negative feedback of PER on the transcription of the period
gene and by the fact that PER has multiple phosphorylation sites. The minimal
deterministic model capable of generating oscillations is provided in [41] by the
system of 5 non-linear ODEs. The exact values of parameters and a detailed de-
scription of the reaction network are omitted here. Numerical integration shows
that the system follows limit cycle oscillations for PER. It allows to investigate
the influence of different factors onto the period length. The analysis shows that
the sustained oscillations occur only when the maximum degradation rate of

18 A. Andreychenko, T. Krüger, and D. Spieler

PER and the rate of PER transport both fall into a certain region. This model
is further developed in [67,68] to analyze circadian rhythms in Neurospora and
Drosophila and incorporates the influence of external stimuli. The authors in-
vestigate how day-night light cycles as well as light pulses change the oscillatory
properties, where the models account for different effects of light in both organ-
isms. The goal is to study the relative contribution of various molecular processes
to the oscillatory behavior. The possibility of chaotic behavior was revealed in
both systems for a certain range of parameter values, however the corresponding
physiological aspects are not clear yet. In [67], the authors enrich the model by
a collection of additional components in order to describe the mammalian circa-
dian clock. The resulting system is capable of generating the oscillatory cycles
in the complete absence of light. The obtained results help to explain certain
human physiological disorders associated with sleep. It is also noted that in such
a complex system the mechanism giving rise to oscillatory behavior can be non-
unique. Other refinements of this model and a comparison with experimental
data for another biological species (Arabidopsis) can be found in [93,105].

An important comparison with the results of stochastic simulation was con-
ducted in [43] under low copy numbers of mRNA and protein molecules. The
comparison includes the initial deterministic model and two newly developed
stochastic models. It studies the influence of molecular noise (controlled through
the volume of the compartment) on circadian oscillations. These oscillations re-
vealed to be quite robust with respect to the noise in both developed models. If
the influence of stochastic fluctuations is small (when the volume of the mod-
eled compartment is large) stochastic and deterministic models provide similar
predictions. This fact motivates the usage of a deterministic model whenever it
is a-priori known that molecular noise does not play an important role.

4.4 Calcium Oscillations

A well-known oscillatory process is the cellular calcium oscillation. Here, we will
present the analysis of a deterministic model of this process, for a stochastic
treatment, we refer to [61]. There are many more or less complex ODE models
of calcium oscillations but we chose a simple model by Somogyi and Stucky [94].
The populations in this model are the calcium ions in different parts of a cell, i.e.,
S1 denotes the ions in the endoplasm and S2 the ions in the cytoplasm. x1 and
x2 are the concentrations of S1 and S2. The model mostly describes transport
processes from one of these regions to the other and the reactions are

∅
c1

−−−−→ S2, S2

c2
−−−−→ S1, S1

c3·f(x2)

−−−−→ S2, S2

c4
−−−−→ ∅

which describe the flow into the cytoplasm, transfer from cytoplasm to endoplasm,
production of Ca2+ during the transport from endoplasm to the cytoplasm, and
the outflow of ions from the cytoplasm4. The ODE system corresponding to the
reactions is
4 With f(x2) = x2

2. These reactions are similar to the reactions of the Brusselator [99]
and the model in [94].

Analyzing Oscillatory Behavior with Formal Methods 19

[ẋ1, ẋ2] = [c2 · x2 − c3 · f(x2) · x1, c1 + c3 · f(x2) · x1 − c2 · x2 − c4 · x2].

In order to analyze this system, the steady state has to be obtained. Here, we
first compute the nullclines for both species as in

x1 =
c2 · x2
c3 · f(x2)

for (ẋ1 = 0) and x1 =
(c2 + c4) · x2 − c1

c3 · f(x2)
for (ẋ2 = 0).

The intersection of both nullclines is the steady states of the system

x1 = c1 · c2/(c3 · c4 · f(x2)), x2 = c1/c4.

The next steps are the computation of the Jacobian matrix in the steady state
and the calculation of the trace of the matrix to get the real part of the eigenvalue
which is

Re(λ) = c2 · c4/c1 · f ′(x2)− c3 · f(x2)− c2 − c4.
With Re(λ) = 0 it is now possible to obtain the Hopf-Bifurcation points and
to draw the bifurcation diagrams. For the Brusselator model such a diagram is
given in Figure 1b in [99].

4.5 Other Applications

The presented examples are only a selection of models that exhibit oscillatory
behavioral patterns. Another model is the repressilator [32], a chemical reaction
network consisting of three chemical species mutually repressing each other,
which has been studied mainly stochastically and which has already been im-
plemented in vivo. Another biological system, which is analyzed in detail is the
NF-κB signalling system [60]. This system is involved in several cellular pro-
cesses and most of the analysis is based on ODEs. As shown above, the calcium
oscillations can be used for intra-cellular communication. Another way to en-
code the information in extracellular communication as well is the cyclic AMP
(cAMP) signaling. An example of such system is Dictyostelium discoideum stud-
ied in [72,98].

5 Conclusion

We have presented an overview of the literature on modeling and analyzing
oscillatory population models. While the problem of characterizing such behavior
for deterministic systems has been thoroughly studied, a unifying approach for
stochastic models is not present so far. More precisely, there is no common
formal agreement on what defines oscillatory behavior, neither how to define
the respective period length and amplitude. Nevertheless, several approaches
dealing with qualitative and quantitative aspects using manual and automated
techniques have been discussed. Current work in progress by the authors tries to
give a foundational definition of oscillatory character for stochastic systems and

20 A. Andreychenko, T. Krüger, and D. Spieler

develops a fast numerical algorithm to approximate the distributions of period
length for a chosen amplitude. A problem of the fully stochastic treatment is
the high computational demand from the runtime and memory perspectives.
However, several recent evidences indicate that stochastic effects are essential for
certain systems to maintain a sustained oscillatory pattern. Consequently, hybrid
techniques treating one part of the system stochastically while approximating
the rest deterministically, have been developed to increase the scalability and
the efficiency of the analysis. We finally illustrated the presented approaches by
a large collection of examples.

Acknowledgments. This research has been partially funded by the Graduate
School of Computer Science at Saarland University and the German Research
Council (DFG) as part of the Cluster of Excellence on Multimodal Comput-
ing and Interaction at Saarland University and the Transregional Collaborative
Research Center “Automatic Verification and Analysis of Complex Systems”
(SFB/TR 14 AVACS).

References

1. de Alfaro, L., Roy, P.: Magnifying-lens abstraction for Markov decision processes.
In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 325–338.
Springer, Heidelberg (2007)

2. Alfonsi, A., Cancès, E., Turinici, G., Di Ventura, B., Huisinga, W.: Exact sim-
ulation of hybrid stochastic and deterministic models for biochemical systems.
Research Report RR-5435, INRIA (2004)

3. Alfonsi, A., Cancès, E., Turinici, G., Ventura, B.D., Huisinga, W.: Adaptive sim-
ulation of hybrid stochastic and deterministic models for biochemical systems.
ESAIM: Proc., 14:1–14:13 (2005)

4. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

5. Aris, R.: Prolegomena to the rational analysis of systems of chemical reactions.
Archive for Rational Mechanics and Analysis 19, 81–99 (1965)

6. Arkin, A., Ross, J., McAdams, H.H.: Stochastic kinetic analysis of developmen-
tal pathway bifurcation in phage lambda-infected escherichia coli cells. Genet-
ics 149(4), 1633–1648 (1998)

7. Arns, M., Buchholz, P., Panchenko, A.: On the numerical analysis of inhomoge-
neous continuous-time Markov chains. INFORMS Journal on Computing 22(3),
416–432 (2009)

8. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-checking algorithms
for continuous-time Markov chains. IEEE Transactions on Software Engineer-
ing 29(6), 524–541 (2003)

9. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press (2008)
10. Ball, K., Kurtz, T.G., Popovic, L., Rempala, G.: Asymptotic analysis of multiscale

approximations to reaction networks. The Annals of Applied Probability 16(4),
1925–1961 (2006)

11. Ballarini, P., Guerriero, M.L.: Query-based verification of qualitative trends
and oscillations in biochemical systems. Theoretical Computer Science 411(20),
2019–2036 (2010)

Analyzing Oscillatory Behavior with Formal Methods 21

12. Ballarini, P., Mardare, R., Mura, I.: Analysing biochemical oscillation through
probabilistic model checking. ENTCS 229(1), 3–19 (2009)

13. Barkai, N., Leibler, S.: Biological rhythms: Circadian clocks limited by noise.
Nature 403, 267–268 (2000)

14. Bartocci, E., Corradini, F., Merelli, E., Tesei, L.: Model checking biological oscil-
lators. ENTCS 229(1), 41–58 (2009)

15. Burrage, K., Hegland, M., Macnamara, S., Sidje, R.: A Krylov-based finite state
projection algorithm for solving the chemical master equation arising in the dis-
crete modeling of biological systems. In: Langville, A.N., Stewart, W.J. (eds.)
Markov Anniversary Meeting 2006: An International Conference to Celebrate
the 150th Anniversary of the Birth of A. A. Markov, pp. 21–38. Boston Books,
Charleston (2006)

16. Burrage, K., Tian, T.: Poisson Runge-Kutta methods for chemical reaction sys-
tems. In: Lu, Y., Sun, W., Tang, T. (eds.) Advances in Scientific Computing and
Applications, pp. 82–96. Science Press, Beijing (2004)

17. Burrage, K., Tian, T., Burrage, P.: A multi-scaled approach for simulating chem-
ical reaction systems. Progress in Biophysics and Molecular Biology 85(2-3),
217–234 (2004)

18. Cao, Y., Gillespie, D.T., Petzold, L.R.: The slow-scale stochastic simulation algo-
rithm. The Journal of Chemical Physics 122(1), 014116 (2005)

19. Cardelli, L.: Artificial biochemistry. Technical report, Microsoft Research (2006)
20. Cardelli, L.: Artificial biochemistry. In: Algorithmic Bioproceses. LNCS. Springer

(2008)
21. Casagrande, A., Mysore, V., Piazza, C., Mishra, B.: Independent dynamics hybrid

automata in systems biology. In: Proceedings of the First International Conference
on Algebraic Biology, pp. 61–73. Universal Academy Press, Tokyo (2005)

22. Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Model-
ing and querying biomolecular interaction networks. Theoretical Computer Sci-
ence 325, 25–44 (2003)

23. Chellaboina, V., Bhat, S., Haddad, W., Bernstein, D.: Modeling and analysis of
mass-action kinetics. IEEE Control Systems Magazine 29(4), 60–78 (2009)

24. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching-time temporal logic. In: Logic of Programs, pp. 52–71. Springer,
London (1982)

25. Cloth, L., Katoen, J.-P., Khattri, M., Pulungan, R.: Model-checking Markov re-
ward models with impulse rewards. In: DSN, Yokohama (2005)

26. Crudu, A., Debussche, A., Radulescu, O.: Hybrid stochastic simplifications for
multiscale gene networks. BMC Systems Biology 3(1), 89 (2009)

27. D’Argenio, P.R., Jeannet, B., Jensen, H.E., Larsen, K.G.: Reachability analysis
of probabilistic systems by successive refinements. In: de Luca, L., Gilmore, S.
(eds.) PAPM-PROBMIV 2001. LNCS, vol. 2165, pp. 39–56. Springer, Heidelberg
(2001)

28. Dayar, T., Mikeev, L., Wolf, V.: On the numerical analysis of stochastic Lotka-
Volterra models. In: IMCSIT, pp. 289–296 (2010)

29. de Jong, H.: Modeling and simulation of genetic regulatory systems: A literature
review. Journal of Computational Biology 9(1), 67–103 (2002)

30. Didier, F., Henzinger, T.A., Mateescu, M., Wolf, V.: Fast adaptive uniformiza-
tion of the chemical master equation. In: Proc., HIBI 2009, pp. 118–127. IEEE
Computer Society, Washington, DC (2009)

31. Elowitz, M.B.: Stochastic gene expression in a single cell. Science 297(5584),
1183–1186 (2002)

22 A. Andreychenko, T. Krüger, and D. Spieler

32. Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional reg-
ulators. Nature 403(6767), 335–338 (2000)

33. Ferrell, J.E., Tsai, T.Y.-C., Yang, Q.: Modeling the cell cycle: Why do certain
circuits oscillate? Cell 144(6), 874–885 (2011)

34. Gardner, T.S., Cantor, C.R., Collins, J.J.: Construction of a genetic toggle switch
in Escherichia coli. Nature 403(6767), 339–342 (2000)

35. Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical sys-
tems with many species and many channels. The Journal of Physical Chemistry
A 104(9), 1876–1889 (2000)

36. Gillespie, D.T.: A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. Journal of Computational Physics 22(4),
403–434 (1976)

37. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry 81(25), 2340–2361 (1977)

38. Gillespie, D.T.: A rigorous derivation of the chemical master equation. Physica
A 188, 404–425 (1992)

39. Gillespie, D.T.: Approximate accelerated stochastic simulation of chemically re-
acting systems. The Journal of Chemical Physics 115(4), 1716 (2001)

40. Glass, L., Beuter, A., Larocque, D.: Time delays, oscillations, and chaos in phys-
iological control systems. Mathematical Biosciences 90(1-2), 111–125 (1988)

41. Goldbeter, A.: A model for circadian oscillations in the drosophila period protein
(PER). Proceedings of the Royal Society B: Biological Sciences 261(1362), 319–324
(1995)

42. Goldbeter, A.: Computational approaches to cellular rhythms. Nature 420(6912),
238–245 (2002)

43. Gonze, D., Halloy, J., Goldbeter, A.: Deterministic versus stochastic models for
circadian rhythms. Journal of Biological Physics 28(4), 637–653 (2002)

44. Grassmann, W.: Finding transient solutions in Markovian event systems through
randomization. In: The First International Conference on the Numerical Solution
of Markov Chains, pp. 375–385 (1990)

45. Griffith, M., Courtney, T., Peccoud, J., Sanders, W.H.: Dynamic partitioning for
hybrid simulation of the bistable HIV-1 transactivation network. Bioinformat-
ics 22(22), 2782–2789 (2006)

46. Gross, D., Miller, D.R.: The randomization technique as a modeling tool and
solution procedure for transient Markov processes. Operations Research 32(2),
343–361 (1984)

47. Guerriero, M.L., Heath, J.K.: Computational modeling of biological pathways by
executable biology. Methods in Enzymology 487, 217–251 (2011)

48. Henzinger, T.A., Mateescu, M., Wolf, V.: Sliding window abstraction for infinite
Markov chains. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 337–352. Springer, Heidelberg (2009)

49. Henzinger, T.A., Mikeev, L., Mateescu, M., Wolf, V.: Hybrid numerical solution of
the chemical master equation. In: Proc., CMSB 2010, pp. 55–65. ACM, New York
(2010)

50. Higgins, J.: The theory of oscillating reactions. Industrial and Engineering Chem-
istry 59, 18–62 (1967)

51. Horn, F., Jackson, R.: General mass action kinetics. ARMA 47, 81–116 (1972)
52. Horton, G., Kulkarni, V.G., Nicol, D.M., Trivedi, K.S.: Fluid stochastic Petri nets:

Theory, applications, and solution techniques. European Journal of Operational
Research 105(1), 184–201 (1998)

Analyzing Oscillatory Behavior with Formal Methods 23

53. Lohmueller, J., et al.: Progress toward construction and modelling of a tri-stable
toggle switch in e. coli. IET Synthetic Biology 1(1.2), 25–28 (2007)

54. Jahnke, T., Huisinga, W.: Solving the chemical master equation for monomolec-
ular reaction systems analytically. Journal of Mathematical Biology 54(1), 1–26
(2006)

55. Jensen, A.: Markoff chains as an aid in the study of Markoff processes. Scandina-
vian Actuarial Journal 1953(suppl. 1), 87–91 (1953)

56. Kampen, N.V.: Stochastic processes in physics and chemistry. North Holland
(2007)

57. Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for
continuous-time Markov chains. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 311–324. Springer, Heidelberg (2007)

58. Kolmogoroff, A.: Über die analytischen Methoden in der Wahrscheinlichkeitsrech-
nung. Mathematische Annalen 104, 415–458 (1931)

59. Kowalewski, S., Engell, S., Stursberg, O.: On the generation of timed discrete
approximations for continuous systems. MCMDS 6(1), 51–70 (2000)

60. Krishna, S.: Minimal model of spiky oscillations in NF-κb signaling.
PNAS 103(29), 10840–10845 (2006)

61. Kummer, U., Krajnc, B., Pahle, J., Green, A.K., Dixon, C.J., Marhl, M.: Transi-
tion from stochastic to deterministic behavior in calcium oscillations. Biophysical
Journal 89(3), 1603–1611 (2005)

62. Kurtz, T.G.: The Relationship between Stochastic and Deterministic Models for
Chemical Reactions. The Journal of Chemical Physics 57(7), 2976–2978 (1972)

63. Kwiatkowska, M., Norman, G., Pacheco, A.: Model checking expected time and
expected reward formulae with random time bounds. In: Proc. 2nd Euro-Japanese
Workshop on Stochastic Risk Modelling for Finance, Insurance, Production and
Reliability (2002)

64. Kwiatkowska, M., Norman, G., Parker, D.: Game-based abstraction for Markov
decision processes. In: Proc. QEST, pp. 157–166. IEEE CS Press (2006)

65. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilis-
tic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

66. Lapin, M., Mikeev, L., Wolf, V.: SHAVE – Stochastic hybrid analysis of Markov
population models. In: Proc. HSCC. ACM, New York (2011)

67. Leloup, J.C.: Toward a detailed computational model for the mammalian circa-
dian clock. PNAS 100(12), 7051–7056 (2003)

68. Leloup, J.C., Gonze, D., Goldbeter, A.: Limit cycle models for circadian rhythms
based on transcriptional regulation in drosophila and neurospora. Journal of Bi-
ological Rhythms 14(6), 433–448 (1999)

69. Lewis, J.: Autoinhibition with transcriptional delay: A simple mechanism for the
zebrafish somitogenesis oscillator. Current Biology 13(16), 1398–1408 (2003)

70. Lotka, A.: Elements of mathematical biology. Dover Publications (1956);
Reprinted from Lotka, A.J. Elements of physical biology (1924)

71. Maler, O., Batt, G.: Approximating continuous systems by timed automata.
In: Fisher, J. (ed.) FMSB 2008. LNCS (LNBI), vol. 5054, pp. 77–89. Springer,
Heidelberg (2008)

72. Martiel, J.-L., Goldbeter, A.: A model based on receptor desensitization for cyclic
AMP signaling in dictyostelium cells. Biophysical Journal 52(5), 807–828 (1987)

73. MATLAB. Version 7.11.0.584 (R2010b). The MathWorks Inc., Natick,
Massachusetts (2010)

24 A. Andreychenko, T. Krüger, and D. Spieler

74. McAdams, H.H., Arkin, A.: Stochastic mechanisms in gene expression. Proceed-
ings of the National Academy of Sciences of the United States of America 94(3),
814–819 (1997)

75. Menz, S., Latorre, J.C., Schtte, C., Huisinga, W.: Hybrid stochastic–deterministic
solution of the chemical master equation. MMS 10(4), 1232–1262 (2012)

76. Meyer, K.M., Wiegand, K., Ward, D., Moustakas, A.: SATCHMO: A spatial sim-
ulation model of growth, competition, and mortality in cycling savanna patches.
Ecological Modelling 209(24), 377–391 (2007)

77. Mikeev, L., Neuhäußer, M.R., Spieler, D., Wolf, V.: On-the-fly verification and
optimization of DTA-properties for large Markov chains. FMSD, 1–25 (2012)

78. Mincheva, M.: Oscillations in non-mass action kinetics models of biochemical
reaction networks arising from pairs of subnetworks. Journal of Mathematical
Chemistry 50(5), 1111–1125 (2011)

79. van Moorsel, A.P.A., Wolter, K.: Numerical solution of non-homogeneous Markov
processes through uniformization. In: Proceedings of the 12th European Simula-
tion Multiconference on Simulation - Past, Present and Future, pp. 710–717. SCS
Europe (1998)

80. Munsky, B., Khammash, M.: The finite state projection algorithm for the solution
of the chemical master equation. The Journal of Chemical Physics 124(4), 044104
(2006)

81. Murray, J.D.: Mathematical Biology. Springer, New York (1993)
82. Nakano, S., Yamaguchi, S.: Two modeling methods for signaling pathways with

multiple signals using uppaal. Proc. BioPPN, 87–101 (2011)
83. Parker, D.: PRISM Tutorial - Circadian Clock,

http://www.prismmodelchecker.org/tutorial/circadian.php
84. Piazza, C., Antoniotti, M., Mysore, V., Policriti, A., Winkler, F., Mishra, B.: Al-

gorithmic algebraic model checking I: Challenges from systems biology. In: Etes-
sami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 5–19. Springer,
Heidelberg (2005)

85. Pnueli, A.: The temporal logic of programs. In: Proc., SFCS, pp. 46–57. IEEE
Computer Society, Washington, DC (1977)

86. Rao, C.V., Arkin, A.P.: Stochastic chemical kinetics and the quasi-steady-state
assumption: Application to the Gillespie algorithm. The Journal of Chemical
Physics 118(11), 4999 (2003)

87. Reppert, S.M., Weaver, D.R.: Coordination of circadian timing in mammals. Na-
ture 418(6901), 935–941 (2002)

88. Salis, H., Kaznessis, Y.: Accurate hybrid stochastic simulation of a system of cou-
pled chemical or biochemical reactions. The Journal of Chemical Physics 122(5),
54103 (2005)

89. Sanft, K., Gillespie, D., Petzold, L.: Legitimacy of the stochastic Michaelis Menten
approximation. IET Systems Biology 5(1), 58 (2011)

90. Schivo, S., et al.: Modelling biological pathway dynamics with timed automata.
In: BIBE, pp. 447–453. IEEE (2012)

91. Schuster, S., Marhl, M., Höfer, T.: Modelling of simple and complex calcium
oscillations. European Journal of Biochemistry 269(5), 1333–1355 (2002)

92. Singh, A., Hespanha, J.P.: Stochastic hybrid systems for studying biochemical pro-
cesses. Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences 368(1930), 4995–5011 (2010)

93. Smolen, P., Hardin, P.E., Lo, B.S., Baxter, D.A., Byrne, J.H.: Simulation of
drosophila circadian oscillations, mutations, and light responses by a model with
VRI, PDP-1, and CLK. Biophysical Journal 86(5), 2786–2802 (2004)

http://www.prismmodelchecker.org/tutorial/circadian.php

Analyzing Oscillatory Behavior with Formal Methods 25

94. Somogyi, R., Stucki, J.W.: Hormone-induced calcium oscillations in liver cells can
be explained by a simple one pool model. Journal of Biological Chemistry 266(17),
11068–11077 (1991)

95. Spieler, D.: Model checking of oscillatory and noisy periodic behavior in Marko-
vian population models. Technical report, Saarland University (2009), Master
thesis available at http://mosi.cs.uni-saarland.de/?page_id=93

96. Steinfeld, J., Francisco, J., Hase, W.: Chemical kinetics and dynamics. Prentice
Hall (1989)

97. Stiver, J.A., Antsaklis, P.J.: State space partitioning for hybrid control systems.
In: American Control Conference, pp. 2303–2304. IEEE (1993)

98. Tang, Y., Othmer, H.G.: Excitation, oscillations and wave propagation in a G-
protein-basedmodel of signal transduction in dictyostelium discoideum. Philosoph-
ical Transactions of the Royal Society B: Biological Sciences 349(1328), 179–195
(1995)

99. Tyson, J.J.: Biological switches and clocks. Journal of the Royal Society Inter-
face 5, S1–S8 (2008)

100. van Dijk, N.M.: Uniformization for nonhomogeneous Markov chains. Operations
Research Letters 12(5), 283–291 (1992)

101. Vilar, J., Kueh, H.-Y., Barkai, N., Leibler, S.: Mechanisms of noise-resistance in
genetic oscillators. PNAS 99(9), 5988–5992 (2002)

102. Volterra, V.: Fluctuations in the abundance of a species considered mathemati-
cally. Nature 118, 558–560 (1926)

103. Wagner, H., Möller, M., Prank, K.: COAST: controllable approximative stochastic
reaction algorithm. The Journal of Chemical Physics 125(17), 174104 (2006)

104. Wolkenhauer, O., Ullah, M., Kolch, W., Cho, K.-H.: Modeling and simulation of
intracellular dynamics: Choosing an appropriate framework. IEEE Transactions
on Nanobioscience 3(3), 200–207 (2004)

105. Zeilinger, M.N., Farr, E.M., Taylor, S.R., Kay, S.A., Doyle, F.J.: A novel compu-
tational model of the circadian clock in arabidopsis that incorporates PRR7 and
PRR9. Molecular Systems Biology 2 (2006)

http://mosi.cs.uni-saarland.de/?page_id=93

A Tutorial on Interactive Markov Chains

Florian Arnold1, Daniel Gebler2,
Dennis Guck1, and Hassan Hatefi3

1 Formal Methods and Tools Group, Department of Computer Science
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

2 Department of Computer Science, VU University Amsterdam,
De Boelelaan 1081a, NL-1081 HV Amsterdam, The Netherlands

3 Department of Computer Science
Saarland University, 66123 Saarbrücken, Germany

Abstract. Interactive Markov chains (IMCs) constitute a powerful sto-
chastic model that extends both continuous-time Markov chains and la-
belled transition systems. IMCs enable a wide range of modelling and
analysis techniques and serve as a semantic model for many industrial
and scientific formalisms, such as AADL, GSPNs and many more. Appli-
cations cover various engineering contexts ranging from industrial system-
on-chip manufacturing to satellite designs. We present a survey of the
state-of-the-art in modelling and analysis of IMCs.

We cover a set of techniques that can be utilised for compositional
modelling, state space generation and reduction, and model checking.
The significance of the presented material and corresponding tools is
highlighted through multiple case studies.

1 Introduction

The increasing complexity of systems and software requires appropriate formal
modelling and verification tools to gain insights into the system’s possible be-
haviour and dependability. Imagine the construction of a satellite equipped with
hardware components and software systems. Once sent into its orbit, the satellite
has to work mostly autonomously. In case of any hardware or software compo-
nent failure, the required maintenance work is time-consuming and cannot be
executed immediately, leading to excessive costs and even complete system fail-
ures. To avoid such shortcomings, the system’s components need to be highly
dependable and any design mistakes must be identified as soon as possible. Rig-
orous modelling and analysis techniques can help significantly by accompanying
the development process from the blue-print to the testing phase. They can an-
swer quantitative questions like “what is the probability that the system fails
within 3 years” by synthesising an abstract system model.

In the last years a plethora of formalisms [45, 25, 55, 47, 35, 23] and tools
(PRISM [43], ETMCC [39], MRMC [42], YMER [58], VESTA [56] and MAMA
[27]) have been developed for this purpose. The advent of large-scale, distributed,
dependable systems requires formal specification and verification methods that

A. Remke and M. Stoelinga (Eds.): ROCKS Autumn School 2012, LNCS 8453, pp. 26–66, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

A Tutorial on Interactive Markov Chains 27

capture both qualitative and quantitative aspects of systems. Labelled transi-
tion systems (LTS) allow to capture qualitative aspects of software and hard-
ware systems by defining the interaction between system components, but they
lack quantitative predicates. On the other hand, continuous time Markov chains
(CTMC) allow to model and reason over quantitative aspects of systems. How-
ever, CTMCs do not allow to model component dependencies and interaction
with the environment.

A prominent formalism to remedy these drawbacks are interactive Markov
Chains (IMCs) [35]. IMCs conservatively extend LTSs and CTMCs and thereby
allow to accurately model system dependencies as well as quantitative aspects.
IMCs strictly separate between nondeterministic choices, called interactive tran-
sitions, and exponentially distributed delays, called Markovian transitions. Hence,
they can be considered as an extension of CTMCs with nondeterminism or, the
other way around, as enriched labelled transition systems. Interactive transi-
tions, denoted as s α−−→ s′, allow to model actions that are executed in zero time
and account for nondeterministic choices by the system’s environment. They al-
low very efficient bisimulation minimisation since quotienting can be done in a
compositional fashion. A system’s progress over time can be modelled by Marko-
vian transitions, denoted by s λ��� s′. They indicate that the system is moving
from state s to s′ after a delay exponentially distributed with parameter λ, and
thereby account for time dependencies between system states.

IMCs are closely related to continuous-time Markov decision processes (CT-
MDPs), but they are strictly more expressive. CTMDPs closely entangle nonde-
terminism and stochastic behaviour in their transition relation. The separation
of nondeterministic and stochastic choices allows for a well-behaved and natural
notion of composition and hierarchy. Recently, IMCs were extended to Markov
automata (MA) [23] by adding the possibility of random switching to interactive
transitions.

Recent works on model checking opened the door for far-reaching industrial
applications. IMCs provide a strict formal semantics of modelling and engi-
neering formalisms such as generalised stochastic Petri nets (GSPNs) [50], Dy-
namic Fault Trees (DFTs) [12], the Architectural Analysis and Design Language
(AADL) [13], and STATEMATE [10]. The powerful compositional design and
verification approach of IMCs is applied for instance to Globally Asynchronous
Locally Synchronous (GALS) designs [19], supervisory control [48, 49], state-
of-the-art satellite design [24], water-treatment facilities [34] and train control
systems [10].

This paper aims to give an extensive introduction to IMCs and survey recent
developments in the field. Therefore, we present a detailed description of the
fundamentals of the IMC formalism. Besides, we introduce related concepts such
as CTMDPs and describe their relationship to IMCs. An important aspect of
IMCs is that they can be analysed with respect to certain properties. Therefore,
we introduce a logic that is capable of specifying important properties like “is the
system running at least 99% of the time?”. Furthermore, we provide a rich set of
model checking algorithms to efficiently compute and thus check these properties.

28 F. Arnold et al.

Especially for time-bounded reachability, expected time and long-run average
properties, we give an in-depth description of the algorithms with accompanying
examples. Another challenge in a model like IMCs is the state space explosion
problem. The prevention of this is a major research topic and covered by this
paper in terms of bisimulation minimisation. Therefore, we present the notion
of strong and weak bisimulation, and provide an algorithm for computing the
bisimulation quotient.

Organisation of the Paper. Section 2 introduces the model, semantics and com-
positional construction methods of IMCs. A survey on model checking techniques
is provided in Section 3 and behavioural equivalences and abstraction are dis-
cussed in Section 4. Section 5 shows extensions of IMCs, Section 6 provides a
number of case studies and applications, and Section 7 concludes the paper.

2 Preliminaries

This section summarises the basic notions and definitions to provide a formal
underpinning of the concept of interactive Markov chains [35, 14] and related
concepts. The interested reader can find more details in the referred material
throughout this section.

Before we describe interactive Markov chains, we give a brief introduction to
two widely used models which are related to them. We start with a discrete time
and nondeterministic model, namely Markov Decision Processes (MDPs). They
extend Markov chains by adding nondeterministic decisions.

Definition 1 (Markov Decision Process). A Markov decision process (MDP)
is a tupleM = (S,Act,P, s0) where S is a finite set of states, Act a finite set of
actions, s0 the initial state, and P : S×Act×S → [0, 1] the transition probability
function such that

∑
s′∈S P(s, α, s′) ∈ {0, 1} for all s ∈ S and α ∈ Act.

MDPs are a well studied model with a wide range of efficient algorithms [53]
for various types of analysis. Later on in this survey, we exploit some of those
algorithms to solve problems on interactive Markov chains.

Unsurprisingly, CTMDPs are the extension of MDPs to continuous time and
are closely related to IMCs.

Definition 2 (Continuous Time Markov Decision Process). A CTMDP
is a tuple C = (S,Act,R, s0) where S is a finite set of states, Act a finite set of
actions, s0 the initial state, and R : S×Act×S → R>0 a three dimensional rate
matrix.

A CTMDP is a stochastic nondeterministic model that describes the behaviour
of a system in continuous time. The delay of each transition (s1, α, s2) is ex-
ponentially distributed with rate R(s1, α, s2) for s1, s2 ∈ S and α ∈ Act. IMCs
extend CTMDPs by breaking the tight connection between nondeterministic and
stochastic behaviour.

A Tutorial on Interactive Markov Chains 29

2.1 Interactive Markov Chains

The Syntax of an IMC. IMCs are finite transition systems with action-
labelled interactive transitions, as well as Markovian transitions that are la-
belled with a positive real number identifying the rate of an exponential dis-
tribution. Hence, they strictly separate between interactive and Markovian be-
haviour. This enables for a wide range of modelling features. On the one hand,
based on the action-labelled interactive transitions, IMCs can be used for compo-
sitional modelling with intermittent weak bisimulation [35]. On the other hand,
the Markovian transitions allow to encode arbitrary distributions in terms of
acyclic phase-type distributions [52]. An in depth discussion of the advantages
of the IMC formalism is given in [14].

Definition 3 (Interactive Markov Chain). An interactive Markov chain is
a tuple I = (S,Act, −→ , ���, s0) where S is a nonempty, finite set of states with
initial state s0 ∈ S, Act is a finite set of actions, −→ ⊆ S × Act× S is a finite
set of interactive transitions and ��� ⊆ S×R>0×S is a finite set of Markovian
transitions.

We abbreviate (s, α, s′) ∈ −→ by s α−−→ s′ and (s, λ, s′) ∈ ��� by s λ��� s′. Let:
− IT (s) = {s α−−→ s′} be the set of interactive transitions that leave s, and

−MT (s) = {s λ��� s′} be the set of Markovian transitions that leave s.
We denote with MS ⊆ S the set of Markovian states, with IS ⊆ S the set of
interactive states and with HS ⊆ S the set of hybrid states of an IMC I, where:
− s ∈ MS iff MT (s) �= ∅ and IT (s) = ∅,
− s ∈ IS iff MT (s) = ∅ and IT (s) �= ∅, and
− s ∈ HS iff MT (s) �= ∅ and IT (s) �= ∅.
Further, we distinguish external actions from internal τ -actions. Note that a
labelled transition system (LTS) is an IMC with MS = ∅ and HS = ∅. Further,
a continuous-time Markov chain (CTMC) is an IMC with IS = ∅ and HS = ∅.
Therefore, IMCs are a natural extension of LTSs as well as CTMCs.

The Semantics of an IMC. A distribution μ over a countable set S is a
function μ : S � [0, 1] such that

∑
s∈S μ(s) = 1. If μ(s) = 1 for some s ∈ S,

μ is a Dirac distribution, and is denoted μs. Let Distr(S) be the set of all

distributions over a set S. The interpretation of a Markovian transition s λ��� s′
is that the IMC moves from state s to s′ within d time units with probability∫ d

0 λe
−λtdt = (1 − e−λ·d). For a state s ∈ MS, let R(s, s′) =

∑
{λ | s λ��� s′}

be the total rate to move from state s to s′, and let E(s) =
∑

s′∈S R(s, s′) be
the total outgoing rate of s. If s has multiple outgoing Markovian transitions to
different successors, then we speak of a race between these transitions, known
as the race condition. In this case, the probability to move from s to s′ within d
time units is R(s,s′)

E(s) · (1 − e−E(s)d), utilising that the IMC moves to a successor

state s′ after a delay of at most d time units with discrete branching probability

P(s, s′) = R(s,s′)
E(s) . As defined on CTMDPs [6], uniformity can also be adapted

to IMCs [40]. An IMC is called uniform iff there exists an e ∈ R≥0 such that

30 F. Arnold et al.

∀s ∈ MS it holds that E(s) = e. Thus, the distribution of the sojourn time is
the same for all Markovian states if the IMC is uniform.

IMCs are compositional, i. e. if a system comprises several IMC components,
then it can be assembled via parallel composition of the components. The com-
ponents can communicate through external actions visible to all of them, while
internal τ -actions are invisible and cannot communicate with any other action.
Instead of communication, we say in the following that two IMCs synchronize on
an action. Consider a state s ∈ HS with a Markovian transition with rate λ and a
τ -labelled transition. We assume that the τ -transition takes no time and is fired
immediately since it is not subject to any interaction and cannot be delayed.
On the other hand, the probability that the Markovian transition fires immedi-
ately is zero. Thus, internal interactive transitions always take precedence over
Markovian transitions.

Assumption 1 (Maximal Progress) In any IMC, internal interactive tran-
sitions take precedence over Markovian transitions.

s0 s1 s2

s3 s4 s5 s6

α

β2

2

2

1

3 3 2

α

β

Fig. 1. An interactive Markov chain

Example 1. Let I be the IMC depicted in Figure 1. Then s0 is a hybrid state
with Markovian transition s0

2��� s3 and interactive transitions s0
α−−→ s1 and

s0
β−−→ s3. We assume that all actions are no longer subject to any further syn-

chronisation. W.l.o.g. we consider α and β as τ -transitions. Hence, we can ap-
ply the maximal progress assumption and obtain s0 ∈ IS with s0

α−−→ s1 and

s0
β−−→ s3. Therefore, in s0 we have to choose between α and β. Since both tran-

sitions are fired without delay and take no precedence over each other, this
choice has to be made nondeterministicly by a scheduler, see Section 2.3. The
same holds for state s6. If we choose β in s0, then the successor state is s3, which
is a Markovian state with transition s3

3��� s4 with rate λ = 3. The delay of
this transition is exponentially distributed with parameter λ; thus, the transition
fires in the next z ∈ R≥0 time units with probability

∫ z

0 λe
−λtdt = (1− e−3z). In

case we choose α in s0 we reach state s1, which has two Markovian transitions.

A Tutorial on Interactive Markov Chains 31

We encounter a race condition, and the IMC moves along the transition whose
delay expires first. Consequently, the sojourn time in s1 is determined by the
delay of the first transition that executes. The minimum of exponential distri-
butions with parameters λ1, λ2, . . . is again exponentially distributed with the
parameter λ1 + λ2 + · · · . Thus, the sojourn time is determined by the exit rate,
in our case we have E(s1) = 4. The probability to move from a state s ∈MS to
a successor state s′ ∈ S equals the probability that one of the outgoing Marko-
vian transitions from s to s′ wins the race. Therefore, the discrete branching
probabilities for s1 are given by P(s1, s2) = P(s1, s5) =

2
4 = 1

2 . �

2.2 Behavioural and Measurability Concepts

In this section we define fundamental concepts relating to the behaviour and the
measurability of IMCs. We start with the definition of paths and then define the
σ-algebra over the set of paths.

Paths. Like in other transition systems, an execution in an IMC is described by
a path. We define finite and infinite paths and provide several useful notations
and operators relating to paths. Before proceeding with the definition, for the
uniformity of notation, we use a distinguished action ⊥ /∈ Act to indicate Marko-
vian transitions and extend the set of actions to Act⊥ = Act ∪ {⊥}. Formally,
a finite path is an initial state followed by a finite sequence of interactive and
Markovian transitions annotated with times, i. e.

π = s0
t0,α0−−−−→ s1

t1,α1−−−−→ · · · sn−1
tn−1,αn−1−−−−−−−−→ sn

with αi ∈ Act⊥, ti ∈ R≥0, i = 0 . . . n − 1 and s0 . . . sn ∈ S. Each step of a
path π describes how the IMC evolves from one state to the next; with what
action and after spending what sojourn time. For example, when the IMC is
in an interactive state s ∈ IS where only internal actions are enabled, it must
immediately (in zero time) choose an enabled action α and go to state s′. This
gives rise to the finite path s 0,α−−−→ s′. On the other hand, if s ∈ MS, the IMC
stays in s for t > 0 time units and then moves to the next state s′ based on the

distribution P(s, ·) by s t,⊥−−−→ s′.
For a finite path π we use |π| = n as the length of π and π↓ = sn as the last

state of π. Assume k ≤ n is an index, then π[k] = sk is the k + 1-th state of
π. Moreover, the time spent on π up to state π[k] is denoted by Δ(π, k) which

is zero if k = 0, and otherwise
∑k−1

i=0 ti. We use Δ(π) as an abbreviation for
Δ(π, |π|). For t ≤ Δ(π), let π@t denote the set of states that π occupies at time
t. Note that π@t is in general not a single state, but rather a set of states, as an
IMC may exhibit immediate transitions and thus may occupy various states at
the same time instant. Operator Pref extracts the prefix of length k from path

π by Pref(π, k) = s0
t0,α0−−−−→ s1 · · · sk−1

tk−1,αk−1−−−−−−−→ sk. By removing the sojourn
time from transitions of path π, we obtain a time-abstract path denoted by
abs(π) = s0

α0−−→ s1
α1−−→ · · · sn−1

αn−1−−−−→ sn. Furthermore, Pathsn refers to the
set of all paths with length n and Paths� to the set of all finite paths. In this

32 F. Arnold et al.

Table 1. An example derivation of π@t for IMCs

t ≤ Δ(π, i) 0 1 2 3 4 5 6 7 min j max j π@t

0 � � � � � � � � 0 3 〈s0s1s2s3〉
t3 − ε × × × × � � � � 4 - 〈s3〉
t3 × × × × � � � � 4 5 〈s4s5〉

t3 + ε × × × × × × � � 6 - 〈s5〉
t3 + t5 × × × × × × � � 6 7 〈s6s7〉

context, we add subscript abs for the set of time-abstract paths i. e. Pathsnabs
and Paths�abs. A (possibly time-abstract) path could be infinite which means it is
constructed by an infinite sequence of (time-abstract) transitions. Accordingly,
we use Pathsω (Pathsωabs) to refer to the set of all (time-abstract) infinite paths.

Example 2. Consider the path

π = s0 0,α0−−−−−→ s1 0,α1−−−−−→ s2 0,α2−−−−−→ s3 t3,⊥−−−−−→ s4 0,α4−−−−−→ s5 t5,⊥−−−−−→ s6 0,α6−−−−−→ s7.

Let 0 < ε < min{t3, t5}. The derivations for the sequence π@0, π@(t3−ε), π@(t3),
π@(t3 + ε) and π@(t3 + t5) are depicted in Table 1, where � indicates that
t ≤ Δ(π, i), and × denotes the states where t > Δ(π, i). Further, min j de-
scribes the minimum path length and max j the maximum path length such
that t ≤ Δ(π, j). Hence, with min j, π[j] describes the first state on path π for
the sequence π@t, respectively for max j the last state. �

σ-Algebra. Here we recall the definition of σ-algebra for IMCs as described in [40,
50]. First we recapitulate the concept of compound transitions. A compound
transition is a triple of (t, α, s), which describes the behaviour of the IMC when
it waits in its current state for t time units then takes action α and finally evolves
to the next state s. The set of all compound transitions over action space Act
and state space S is denoted by CT = R≥0 × Act⊥ × S. As a path in IMCs
is composed of a sequence of compound transitions originating from an initial
state, first we define a σ-algebra over compound transitions and then extend it
over finite and infinite paths. Let FS = 2S and FAct⊥ = 2Act⊥ be σ-algebras over
S and Act⊥, respectively. We define the σ-algebra over compound transitions
using the concept of Cartesian product of a collection of σ-algebras [4], as FCT =
σ(B(R≥0)×FAct⊥×FS), where B(R≥0) is the Borel σ-algebra over non-negative
reals. Furthermore, it can be extended to the σ-algebra over finite paths using the
same technique as follows. Let FPathsn = σ (FS ×

∏n
i=1 FCT) be the σ-algebra

over finite paths of length n, then the σ-algebra over finite paths is defined as
FPaths� = ∪∞i=0FPathsn . The σ-algebra over infinite paths is defined using the
standard cylinder set construction [4]. We define the cylinder set of a given base
B ∈ FPathsn as Cyl(B) = {π ∈ Pathsω : Pref(π, n) ∈ B}. Cyl(B) is measurable if
its base B is measurable. The σ-algebra over infinite paths, FPathsω , is therefore
the smallest σ-algebra over measurable cylinders. Finally the σ-algebra over the
set of paths is the disjoint union of the σ-algebras over the finite paths and the
infinite paths.

A Tutorial on Interactive Markov Chains 33

2.3 Schedulers

In states with more than one outgoing interactive transition the choice of the
transition to be taken is nondeterministic, just as in the LTS setting. This nonde-
terminism is resolved by schedulers. Different classes of schedulers exist in order
to resolve nondeterminism for different kinds of objectives. The most general
scheduler class maps a finite path to a distribution over the set of interactive
transitions that are enabled in the last state of the path:

Definition 4 (Generic Measurable Scheduler [40]). A generic scheduler
over IMC I = (S,Act,−→, ���, s0) is a function, D : Paths� � Distr(−→),
where the support of D(π) is a subset of ({π↓} ×Act× S)∩−→ and π↓ ∈ IS. A
generic scheduler is measurable iff for all T ⊆ −→, D(·)(T) : Paths� � [0, 1] is
measurable.

For a finite path π ending in an interactive state, a scheduler specifies how
to resolve nondeterminism by defining a distribution over the set of enabled
transitions of π↓. Measurability of scheduler D means that it never resolves
nondeterminism in a way that induces a set of paths that is not measurable,
i. e. {π | D(π)(T) ∈ B} ∈ FPaths� for all T ⊆ −→ and B ∈ B([0, 1]), where
B([0, 1]) is the Borel σ-algebra over interval [0, 1]. We use the term GM to
refer to the set of all generic schedulers. Since schedulers in IMCs are closely
related to schedulers in CTMDPs, most of the concepts are directly applied
from the latter to the former. A slight difference is that schedulers in IMCs
resolve nondeterminism only for finite paths that end up in interactive states.

A variety of scheduler classes in CTMDPs [40, 50], which can also be employed
in IMCs, has been proposed in order to resolve nondeterminism for different kinds
of objectives. These schedulers are classified according to the level of time and
history details they use to resolve nondeterminism. Another criterion is whether
they are deterministic, i. e. the distribution over the set of target transitions is
Dirac, or randomised. In history-dependent schedulers the resolution of nondeter-
minism on an interactive state may depend on the path is visited upto the state.
A scheduler is hop counting if all finite paths with the same length lead to the
same resolution of nondeterminism. It is positional if its decision for a given path
is only made based on the last state of the path. On the other hand, schedulers
can be time-dependent, total time-dependent or time-abstract. Time-dependent
schedulers utilise the whole timing information of a path including the sojourn
time of all intermediate states for resolution of nondeterminism, while total time-
dependent schedulers only employ the total time that has elapsed to reach the
current state for that purpose. No timing information is used by time-abstract
schedulers and a path is thus considered time-abstract by them.

The most general class, GM schedulers, uses the complete trajectory up to the
current interactive state to randomly determine the next state. Therefore, they
are also called time- and history-dependent randomised (THR) schedulers. The
class has an excessive power which is not necessary for most types of analysis. For
example, for time-abstract criteria like expected reachability, long-run average
and unbounded reachability, it suffices to consider time-abstract positional deter-
ministic (TAPD) schedulers [27], which are also called stationary deterministic.

34 F. Arnold et al.

Table 2. Randomised scheduler classes for IMCs. The classification criteria are de-
noted by TA (Time-Abstract), TT (Total Time-dependent), T (Time-dependent), P
(Positional), HOP (HOP counting) and H (History-dependent).

Abbreviation Scheduler Signature Parameters of Scheduler
for a given path π

TA

P TAPR D : IS � Distr(−→) π↓ ∈ IS

HOP TAHOPR D : IS× N � Distr(−→) π↓ ∈ IS, |π|
H TAHR D : Paths�abs � Distr(−→) abs(π) with π↓ ∈ IS

TT

P TTPR D : IS× R≥0 � Distr(−→) π↓ ∈ IS,Δ(π)

HOP TTHOPR D : IS× N× R≥0 � Distr(−→) π↓ ∈ IS, |π|,Δ(π)

H TTHR D : Paths�abs × R≥0 � Distr(−→) abs(π) with π↓ ∈ IS, Δ(π)

T
P TPR D : IS× R≥0 � Distr(−→) π↓ ∈ IS, Δ(π, |π|) −

Δ(π, |π| − 1)

H THR (GM) D : Paths� � Distr(−→) π with π↓ ∈ IS

Furthermore, the optimal scheduler for computing time-bounded reachability
probabilities is total time-dependent positional deterministic (TTPD) [50]. More
classes of randomised schedulers are depicted in Table 2. The deterministic ver-
sion of each class can be obtained under the assumption that Distr(−→) is Dirac.

Example 3. We define a scheduler over the IMC in Figure 1, which always
chooses action α in state s0 with probability 1. In addition, it selects α and
β in state s6 with probability p and 1 − p, respectively, provided that a path

in the set A(T1, T5) = {s0 0,α−−−→ s1
t1,⊥−−−→ s5

t5,⊥−−−→ s6 : t1 < T1 ∧ t5 < T5} has
been observed. Otherwise, action β (in state s6) is almost surely picked. Assume
that p = 0.5, T1 = 1 and T5 = 3, then the scheduler is in the THR (GM) class.
It becomes deterministic (THD) by setting p = 1 or p = 0. By taking p = 1,
T1 =∞ and T5 =∞, A(T1, T5) becomes time-abstract and the scheduler is then
time-abstract history-dependent deterministic (TAHD). On the other hand when
A(T1, T5) is replaced by the set B = {π ∈ Paths� : π↓ = s6 ∧ Δ(π, |π|) ≤ 4},
the scheduler is total time-dependent and positional deterministic (TTPD) or
randomised (TTPR), depending on the value of p. �

2.4 Probability Measures

The model induced by an IMC after the nondeterministic choices are resolved by
a scheduler is pure stochastic and then can be analysed. To that end the unique
probability measure [40, 50] for probability space (Pathsω,FPathsω) is proposed.
Given a state s, a general measurable scheduler D and a set Π of infinite paths,

A Tutorial on Interactive Markov Chains 35

then Prs,D(Π) denotes the probability of visiting all paths in Π under scheduler
D starting from state s. We omit the details due to lack of space.

Zenoness. Due to the presence of immediate state changes, an IMC might ex-
hibit Zeno behaviour, where infinitely many interactive transitions are taken
in finite time. This is an unrealistic phenomenon characterised by paths π,
where Δ(π, n) for n → ∞ does not diverge to ∞. In other words, the time
spent in the system may stop increasing if the system follows path π. Ac-
cordingly, an IMC I with initial state s0 is non-Zeno, if for all schedulers D,
Prs0,D({π ∈ Pathsω | limn→∞Δ(π, n) <∞}) = 0. As the probability of a Zeno
path in a finite CTMC is zero [5], IMC I is non-Zeno, if and only if no strongly
connected component with states T ⊆ IS is reachable from s0. In the remainder
of this paper we restrict to models without zenoness.

2.5 Composition

Compositionality is one of the key properties of IMCs. Complex models consist-
ing of various interacting IMCs can be aggregated in a stepwise manner. This
allows e. g. to model each subsystem separately and obtain a model of the whole
system by applying the following parallel composition.

Definition 5 (Parallel Composition). Let I1 = (S1,Act1, −→ 1, ���1, s0,1)
and I2 = (S2,Act2, −→ 2, ���2, s0,2) be IMCs. The parallel composition of I1
and I2 wrt. synchronisation set Syn ⊆ (Act1 ∩ Act2) \ {τ} of actions is defined
by:

I1‖I2 = (S1 × S2,Act1 ∪ Act2, −→ , ���, (s0,1, s0,2))
where −→ and ��� are defined as the smallest relations satisfying

1. s1
α−−→ 1s

′
1 and s2

α−−→ 2s
′
2 and α ∈ Syn, α �= τ implies (s1, s2)

α−−→ (s′1, s′2)
2. s1

α−−→ 1s
′
1 and α /∈ Syn implies (s1, s2)

α−−→ (s′1, s2) for any s2 ∈ S2

3. s2
α−−→ 2s

′
2 and α /∈ Syn implies (s1, s2)

α−−→ (s1, s
′
2) for any s1 ∈ S1

4. s1
λ���1 s′1 implies (s1, s2)

λ��� (s′1, s2) for any s2 ∈ S2

5. s2
λ���2 s′2 implies (s1, s2)

λ��� (s1, s
′
2) for any s1 ∈ S1.

The two IMCs have to synchronise on actions in Syn, i. e. any action α ∈ Syn
needs to be performed by both IMCs at the same time, except if α is an internal
action (first condition). The second and third conditions state that any other
action can be performed autonomously by any of the two IMCs. According to the
last two conditions, Markovian transitions are interleaved independently. This is
justified by the memoryless property of the annotated exponential distributions.

Given a set of IMCs B which need to be synchronised, the computational effort
of the composition process is crucially dependent on the order in which these
IMCs are aggregated. Crouzen and Hermanns [20] suggested an algorithm based
on heuristics to determine a composition order which induces low computing
costs. In a first step, the algorithm determines candidate subsets of B up to a
certain size. For each subset a metric is calculated which estimates how good

36 F. Arnold et al.

the composition of the IMCs in this subset is in keeping the cost of the overall
composition low. The IMCs in the subset with the maximal metric are then
composed and minimised, as described in Section 4. This process iterates until
only one IMC remains in B.

The composition of two or more IMCs involves two steps: After synchronisa-
tion on a set of actions, those actions which require no further synchronisation
are hidden.

Definition 6 (Hiding). The hiding IMC I = (S,Act, −→ , ���, s0) wrt. the
set A of actions is the IMC I\A = (S,Act\A, −→ ′, ���, s0) where −→ ′ is the
smallest relation defined by

1. s α−−→ s′ and α /∈ A implies s α−−→ ′s′

2. s α−−→ s′ and α ∈ A implies s τ−−→ ′s′

Through hiding, interactive transitions annotated with actions in A are trans-
formed into τ -transitions. Further, we distinguish between two classes of IMCs:

– closed IMCs, where all interactive transitions are hidden, such that the IMC
is not subject to any further synchronisation, and

– open IMCs, which still have visible interactive transitions, and can interact
with other IMCs.

As we will see next, closed IMCs are closely related to CTMDPs.

2.6 IMCs versus CTMDPs

The modelling of a system usually involves the composition of various communi-
cating subsystems. Therefore, open IMCs are used to describe those subsystems.
Once all open IMCs are composed to a single closed IMC, it is subject to analy-
sis. Note that a CTMDP combines the two transition relations of an IMC in one
transition rate matrix. We recapitulate a transformation from an IMC to a CT-
MDP [40, 38, 37] which preserves important properties of the original IMC, and
thus can be used to apply CTMDP analysis techniques [16, 6] on the transformed
model.

IMC vs CTMDP. In general, closed IMCs are a generalisation of CTMDPs in
which interactive and Markovian transitions are loosely coupled. Therefore, every
CTMDP can be converted into an equivalent IMC in a straightforward way. The
equivalent IMC is contained in a restricted subclass called strictly alternating
IMCs that behaves exactly like CTMDPs. Note that in a strictly alternating
IMC, Markovian and interactive transitions are exhibited in a strict alternation.
The idea of the transformation from an IMC to a CTMDP [40] is to convert a
given IMC to a strictly alternating IMC which is essentially a CTMDP.

Given an IMC I, the following steps [38] are applied: (1) obtain an alter-
nating IMC by transformation of hybrid states into interactive states, (2) turn
all successors of any Markovian state into interactive states to obtain a Markov

A Tutorial on Interactive Markov Chains 37

Alternating IMC, (3) transform any immediate successor of all interactive states
into Markovian states to obtain an Interactive Alternating IMC. By employing
these transformation steps, an arbitrary IMC turns into a strictly alternating
IMC. The strictly alternating IMC can then be transformed into a correspond-
ing CTMDP in a straightforward way. Here we explain each step by an example.

Alternating IMC. In the first step, IMC I is transformed into an alternating
IMC which does not contain any hybrid state. Owing to closeness of the IMC and
imposing Assumption 1 interactive transitions take precedence over Markovian
transitions. Hence all emanating Markovian transitions of a hybrid state can be
safely eliminated.

s0 s1 s2
{β}

s3 s4

{α}

a

τ

γ

b

μκ
λ

(a) IMC

s0 s1 s2

{β}

s3 s4

{α}

a

τ

b

μκ
λ

(b) Alternating IMC

s0 s1 s2

{β}

s′3

s3

s4

s′4

{α}

a

τ

b

μκ

λ
τ τ

(c) Markov alternating IMC

s0
{β?}

s1
{β?, β!}

s2

s′3

s3

s4

s′4 {α?, α!}

ab

τ

b
μκ

λ
τ τ

(d) Strictly alternating IMC

s0

{β?}
s1

{β?, β!}

s3

s4

{α?, α!}

τ

κ

ab

μ

b

μ

τ
κ

τ

λ

(e) Final CTMDP

Fig. 2. Step by step transformation of an IMC into a CTMDP

Markov Alternating IMC. The aim of the second step is to make sure that pre-
decessors and successors of any Markov state are interactive. In this step, a
fresh interactive state with internal action τ is inserted in between two consecu-
tive Markovian states. Due to immmediate firing of the τ transition, the timing
behaviour of the IMC is preserved.

Example 4. The state-labelled IMC (see Section 3) in Figure 2a is closed and sub-
ject to analysis. The result of the first two steps of the transformation, namely the
alternating IMC and the Markov alternating IMC, are illustrated in Figures 2b
and 2c, respectively. �

38 F. Arnold et al.

Strictly Alternating IMC. After this step we make sure that there is no se-
quence of interactive transitions, therefore each interactive state is preceded and
succeeded by Markovian states. As discussed earlier, a sequence of consecutive
interactive transitions occur in zero time and thus can be seen as a single transi-
tion labelled by a word of taken actions. Note that the sequence always ends in a
Markovian state. There are interactive states in between that have only outgoing
and incoming interactive transitions, which are eliminated from the state space.
We call those states vanishing, and all others persistent.

The above transformation is not enough to reconstruct all information from
the original model. In order to preserve the semantic structure of the model
after eliminating vanishing states, their state labels (atomic propositions) must
be adopted by persistent states. In this regard, state labels are decorated with
an extra may and/or must tag. In other words, if starting from an interactive
persistent state s, all sequences of interactive transitions ending in Markovian
states visit label α, then s will be labelled by α! (s must satisfy α). On the other
hand, if there exists such a sequence, s will be labelled by α? (s may satisfy α).
Note that must labelling implies may labelling, as a label that must occur, may
also occur. At the end since all labelling information is inherited by interactive
persistent states, labels of other states will be removed.

An alternating IMC is transformed into a strictly alternating one after the
specified Markov and interactive alternating steps are applied. Since in a strictly
alternating IMC, Markovian and interactive transitions exhibit in a strict alter-
nation, the strictly alternating IMC can be interpreted as a CTMDP. It has been
proven [38, 40] that the above transformation steps preserve the uniformity and
timed reachability of the original model. The transformation is a crucial part of
the evaluation of Statemate models as will be discussed in Section 6.2.

Example 5. The result of the transformation into the strictly alternating IMC is
shown in Figure 2d and the transformed CTMDP is illustrated in Figure 2e. �

3 Model Checking

Consider we are confronted with a IMC originated from some high level-formalism
and a performability requirement. How can one describe this performability prop-
erty and then compute the set of satisfying states in the IMC? First of all we need
a logic representing the desired property. Then the basic computational procedure
of the satisfaction set is a simple recursive descent of the logical formulae.

In this section we provide an overview of the current model checking capabili-
ties of IMCs to provide an answer to the preceded question. We first introduce a
logic which is used to specify a wide range of properties and thereafter describe
algorithms to check those properties for IMCs.

3.1 Continuous Stochastic Logic

This section describes Continuous Stochastic Logic [5] (CSL), which is suitable
to express a broad range of performance and dependability measures. CSL is an

A Tutorial on Interactive Markov Chains 39

extension of Probabilistic Computation Tree Logic (PCTL) [30, 9] to continuous-
time Markov models. This section reviews CSL and its related model checking
algorithms as introduced in [59, 50] and enriches it with expected reachability
and long-run average operators as described in [27]. CSL works on state-labelled
IMCs.

Definition 7 (State-Labelled IMC). A state-labelled IMC is a tuple I =
(S,Act, −→ , ���, s0, L) where L : S � 2AP is a state labelling function with AP
as a set of atomic propositions. All other elements are as in Definition 3.

Hence, given an IMC I and a finite set of atomic propositions AP , a state
labelling function L : S � 2AP decorates each state with a set of atomic propo-
sitions which do hold in that state.

Syntax of CSL. Let I be the set of all nonempty nonnegative real intervals
with real bounds, then Continuous Stochastic Logic (CSL) for IMCs is defined
as follows.

Definition 8 (CSL Syntax). Let a ∈ AP, p ∈ [0, 1], t ∈ R≥0, I ∈ I an
interval and � ∈ {<,≤,≥, >}, CSL state and path formulae are described by

Φ ::= a | ¬Φ | Φ ∧ Φ | P�p(φ) | E�t(Φ) | L�p(Φ)

φ ::= X IΦ | Φ U Φ | Φ UI Φ

Except for the last two operators of the state formulae this logic corresponds
to the CSL logic defined in [59]. Note that P�p(φ) denotes the probability of
the set of paths that satisfy φ. The formula E�t(Φ) describes the expected time
to reach some state satisfying Φ and L�p(Φ) denotes the average time spent in
states satisfying Φ in the long-run.

Given an infinite path π ∈ Pathsω, π satisfies X IΦ if the first transition of π
occurs within time interval I and leads to a state that satisfies Φ. Similarly, the
bounded until formula ΦUIΨ is satisfied by π if π visits states that satisfy formula
Φ until it reaches a state that satisfies formula Ψ within the time interval I. In
contrast to the bounded until, an unbounded until formula does not constrain
the time at which π may visit a state which satisfies Ψ . This corresponds to the
time interval [0,∞).

Semantics of CSL. To define the semantics of CSL we first introduce some
important notations. We denote with γ(π, n) the time interval during which a
given path π stays in its n-th state. More formally, it equals [Δ(π, n), Δ(π, n+1)]
if Δ(π, n) < Δ(π, n+1), and {Δ(π, n)} otherwise. Let VΦ : Paths → R

∞
≥0 be the

random variable which defines the elapsed time before visiting some state s 	 Φ
for the first time. In other words, for an infinite path π = s0

σ0,t0−−−→ s1
σ1,t1−−−→ · · ·

we have VΦ(π) = min {t ∈ R≥0 | s ∈ π@t ∧ s 	 Φ}. Furthermore, let IΦ be the
characteristic function of Φ, such that IΦ(s) = 1 if s 	 Φ and otherwise 0.
The fraction of time spent in states satisfying Φ on an infinite path π is given

40 F. Arnold et al.

by the random variable AΦ(π) = limt→∞ 1
t

∫ t

0
IΦ(π@u)du [2, 46]. The formal

semantics of CSL formulae is then defined as follows.

Definition 9 (CSL Semantics). Let I = (S,Act, −→ , ���,AP , L, ν) be a state-
labelled IMC, s ∈ S, a ∈ AP, p ∈ [0, 1], t ∈ R≥0, I ∈ I, � ∈ {<,≤,≥, >}, and
π ∈ Pathsω. We define the satisfaction relation 	 for state formulae: s 	 a iff
a ∈ L(s), s 	 ¬Φ iff s � Φ, s 	 Φ ∧ Ψ iff s 	 Φ ∧ s 	 Ψ , and

s 	 P�p(φ) iff ∀D ∈ GM. Prs,D({π ∈ Pathsω | π 	 φ})� p

s 	 E�t(Φ) iff ∀D ∈ GM.

∫
Pathsω

VΦ(π) Prs,D(dπ) � t

s 	 L�p(Φ) iff ∀D ∈ GM.

∫
Pathsω

AΦ(π)Prs,D(dπ)� p

For path formulae:

π 	X IΦ iff π[1] 	 Φ ∧Δ(π, 1) ∈ I
π 	Φ UI Ψ iff ∃n ∈ N0.γ(π, n) ∩ I �= ∅ ∧ π[n] 	 Ψ ∧ ∀k = 0 . . . n− 1.π[k] 	 Φ
π 	Φ U Ψ iff ∃n ∈ N0.π[n] 	 Ψ ∧ ∀k = 0 . . . n− 1.π[k] 	 Φ

Example 6. Consider a system with the two atomic propositions up and down.
We are interested in the availability of the system and want to know if we are in
an up state at least 90 percent of the time. This CSL property is described with
the long-run average operator L≥0.9(up). It is satisfied, if we are in the set of
up states with more than 90% in the long-run. We denote the states that satisfy
this property with the atomic proposition available.

Besides the availability of the system, we are also interested in its safety.
Therefore, we want to validate that the probability to reach a down state via up
state is at most 0.01 during the first 5 time units . This condition is expressed
by the CSL formula P≤0.01(up U [0,5] down). We denote all states that satisfy
this property with the atomic proposition safe.

With these propositions, one can e.g. investigate if the average time to reach
some available and safe state is at most 10 time units. This is be determined by
the CSL formula E≤10(available ∧ safe). �

3.2 Probability Bounds

Model checking a CSL formulaΦ over an IMC I entails the computation of all sub-
formulas Ψ of Φ by determining the satisfaction sets Sat(Ψ) = {s ∈ S | s 	 Ψ}.
Just like for other branching-time logics, we recursively compute those sets by
starting with the inner most formula, represented by an atomic proposition. In
general, we have Sat(a) = {s ∈ S | a ∈ L(s)} for an atomic proposition a ∈ AP ,
Sat(¬Ψ) = S \ Sat(Ψ) for negation formulae, and Sat(Ψ1 ∧ Ψ2) = Sat(Ψ1) ∩
Sat(Ψ2) for the conjunction of formulae.

A Tutorial on Interactive Markov Chains 41

Probability Bounds. The proper calculation of Sat(P�p(φ)), however, requires
deeper considerations. Sat(P�p(φ)) is defined as:

{s ∈ S | ∀D ∈ GM. Prs,D({π ∈ Pathsω | π 	 φ})� p}.

In a nutshell, determining this set requires the calculation of the maximum or
minimum (depending on �) probability measures induced by all φ-satisfying
paths starting from state s, where the maximum or minimum are to be taken
over all measurable schedulers. Let pImax(s, φ) and pImin(s, φ) be those values
respectively. In the following, we show how to compute them for different types
of path formulae φ. We only consider the maximum, since the minimum can be
handled analogously.

Next Formula. Assume that φ = X IΦ and Sat(Φ) have been already com-
puted. Let a = inf I and b = sup I. If s ∈MS is a Markovian state, then nonde-
terminism does not occur, and the computation can be done as for CTMCs [5],
i.e. pImax(s,X IΦ) =

∑
s′∈Sat(Φ) P(s, s′)(e−E(s)a − e−E(s)b). For s ∈ IS, we de-

termine the possibility to move directly from s to a Φ-satisfying state. Hence
pImax(s,X IΦ) = 1 if ∃s′ ∈ S, α ∈ Act.s α−−→ s′ ∧ s′ 	 Φ ∧ 0 ∈ I, and it is zero
otherwise.

Unbounded Until Formula. The evaluation of a given unbounded until for-
mula in an IMC can be reduced to the computation of unbounded reachability,
which in turn can be reduced to the computation of reachability in a time-
abstract model. It utilises the same technique that is used for the model checking
of an unbounded until formula in CTMCs [5]. Let I be an IMC and φ = Φ U Ψ
be an unbounded until formula. We assume that Sat(Φ) and Sat(Ψ) have al-
ready been computed. At first, we reduce the problem to the computation of
unbounded reachability in the IMC I¬Φ, which is built by turning all states
Sat(¬Φ) in I into absorbing states. This is achieved by replacing all outgoing
transitions of these states with a single Markovian self loop with an arbitrary
rate, so that once a path has entered an absorbing state it cannot leave it any-
more. The reasoning behind this transformation is that as soon as a path reaches
some state in Sat(¬Φ) \ Sat(Ψ), regardless of which states will be visited in fu-
ture, it does not satisfy φ. Consequently, making these states absorbing does
not affect the evaluation of an unbounded until formula. More formally, let
♦G be the set of paths that eventually reach some goal states G ⊆ S, then
∀s ∈ S. pImax(s, Φ U Ψ) = pI¬Φ

max(s,♦Sat(Ψ)).
In a second step, the unbounded reachability problem in I¬Φ can be trans-

formed into the computation of unbounded reachability in a time-abstract model.
We can use a time-abstract model, since the sojourn time in Markovian states is
not of importance in the evaluation of unbounded reachability. In other words,
it does not matter at which point in time a transition from a Markovian state
s to its successor s′ occurs. It is sufficient to know the probability P(s, s′) of
eventually reaching s′ from s. Therefore, it suffices to compute the unbounded

42 F. Arnold et al.

reachability in a discrete model in which all interactive transitions of I¬Φ are
mimicked and all Markovian transitions are replaced with the corresponding dis-
crete branching probabilities. The discrete model is called the embedded Markov
Decision Process induced from I¬Φ and denoted as emb(I¬Φ). Formally speaking,
the unbounded reachability property in I¬Φ is preserved by the transformation

in its embedded MDP, or ∀s ∈ S. pI¬Φ
max(s,♦Sat(Ψ)) = p

emb(I¬Φ)
max (s,♦Sat(Ψ)). In

the final step, we can compute the unbounded reachability property in emb(I¬Φ)
by using, for example, the algorithms described in [7, Chapter 10].

Time-Bounded Until Formula. The computation of a time-bounded until
formula is more complicated and requires some innovation. As above, the prob-
lem can be transformed into the computation of reachability in a first step. Let
I be an IMC, φ = ΦUI Ψ with I ∈ I be a CSL formula, and ♦IG denote the set
of paths that reach goal states G ⊆ S within interval I. We assume that Sat(Φ)
and Sat(Ψ) has been already computed. Similarly to the unbounded until, all
states in Sat(Ψ) are considered to be goal states and all states in Sat(¬Φ) are
made absorbing. The analysis of time-bounded until analysis is then replaced by
the analysis of time-bounded reachability, utilising the following theorem.

Theorem 1 (Bounded Until [50]). Let I = (S,Act, −→ , ���, s0) be an IMC
as before, and φ = Φ UI Ψ with I ∈ I be a CSL path formula and G = Sat(Ψ).
We construct I¬Φ from I by making all states in Sat(¬Φ) absorbing. Then ∀s ∈
S. pImax(s, Φ UI Ψ) = pI¬Φ

max(s,♦IG).

The computation of time-bounded reachability is explained in the following sec-
tion.

3.3 Time-Bounded Reachability

This section presents the algorithm introduced in [59, 50] which approximates
the probabilities of a time-bounded reachability analysis in IMCs. The algorithm
is based on a discretisation technique with a predefined approximation error.
Given IMC I, interval I ∈ I, a set of goal states G ⊆ S and s ∈ S, the technique
provides a fixpoint characterisation for the computation of pImax(s,♦IG) (and
similarly for pImin(s,♦IG)). The characterisation implies that TTPD schedulers
are sufficient for this purpose, i. e. pImax(s,♦IG) = supD∈TTPD Prs,D(♦IG). In
other words, it suffices to find the optimal scheduler among all TTPD schedulers,
which maximises time-bounded reachability. Note that similar results exist for
the minimum.

Example 7. Consider the IMC in Figure 3 and assume we want to compute the
maximum reachability probability from the initial state s0 to the goal state s5
within 3 time units. Thanks to the simple structure of the IMC, the fixpoint
characterisation gives us the closed form of the maximum reachability as well as
the optimal TTPD schedule. The optimal decision in state s1 depends on the
time when it is visited. Hence, the scheduler takes action α if the time is less
than 3− ln(3) time units, and action β otherwise. �

A Tutorial on Interactive Markov Chains 43

s0 s1

s2 s3

s4 s5

3

α

β

0.5

1.5

1

Fig. 3. An exemplary IMC

The fixpoint characterisation yields an integral equation system which is in
general not tractable [5]. To circumvent this problem, the fixpoint characterisa-
tion is approximated by a discretisation technique. The time horizon is divided
into equally-sized subintervals with length δ, where δ is assumed to be small
enough such that at most one Markovian transition fires with a high probability.
Under this assumption we can transform the IMC into its induced interactive
probabilistic chain [19], the discrete version of IMCs.

Definition 10 (Interactive Probabilistic Chain). An interactive proba-
bilistic chain (IPC) is a tuple D = (S,Act,−→, ���d, s0), where S, Act, −→
and s0 are as in Definition 3 and ���d ⊆ S ×Distr(S) is the set of probabilistic
transitions.

A probabilistic transition specifies the probability with which a state evolves
to its successors after one time step. The notion of probabilistic transitions re-
sembles the one-step transition matrix in DTMCs. The concepts of closed and
open models can be transferred to IPCs. Additionally, since we do not con-
sider continuous time, paths in an IPC can be seen as time-abstract paths in an
IMC, implicitly still counting discretisation steps, and thus discrete time. The
most general scheduler classes for IPCs are time-abstract history-dependent ran-
domised (TAHR) schedulers.

Discretisation from IMC to IPC. Below we describe the discretisation technique
that transforms an IMC into an IPC. Afterwards, we explain how reachability
computation in an IMC can be approximated by an analysis on the corresponding
IPC with a proven error bound.

Definition 11 (Discretisation [50]). Given an IMC I = (S,Act, −→ , ���, s0)
and a discretisation constant δ, Iδ = (S,Act,−→, ���δ, s0) is the induced IPC
from I with respect to discretisation constant δ, where ���δ= {(s, μs) | s ∈MS}
and

μs(s′) =

{
(1− e−E(s)δ)P(s, s′) s′ �= s

(1− e−E(s)δ)P(s, s′) + e−E(s)δ s′ = s

44 F. Arnold et al.

This discretisation approximates the original model by assuming that at most
one Markovian transition fires in each time-interval of length δ. Accordingly, μs

specifies the probability that either one or no Markovian transition occurs from
state s within each discretisation step. Using the fixpoint characterisation above,
it is now possible to relate the probabilities of a reachability analysis in an IMC
I to reachability probabilities in its IPC Iδ.

Example 8. Consider the IMC in Figure 1 and assume that all actions are in-
ternal. Given discretisation constant δ > 0, Figure 4a shows the induced IPC of
the original model w.r.t. δ. �

s0 s1 s2

s3 s4 s5 s6

α

β

e−4δ

1
2
(1−e−4δ)

1
2
(1−e−4δ)

1

e−3δ

1−e−3δ

e−3δ

1−e−3δ

e−2δ

1−e−2δ

α

β

(a) The induced IPC of the original model. δ is
an arbitrary positive discretisation constant.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

time bound

p
ro
b
a
b
il
it
y

only α

only β

(b) Approximate maximum time-
bounded reachability computed by
discretisation

Fig. 4. Time-bounded reachability for the IMC depicted in Figure 1

Theorem 2 (Discretisation error [50]). Let I = (S,Act, −→ , ���, s0) be an
IMC, G ⊆ S and an interval I with rational bounds such that a = inf I, b = sup I
with 0 ≤ a < b and λ = maxs∈MSE(s). Let δ > 0 be such that a = kaδ, b = kbδ
for some ka, kb ∈ N. Then, for all s ∈ S it holds that

pIδ
max(s,♦(ka,kb]G)− ka

(λδ)2

2
≤ pImax(s,♦IG) ≤ pIδ

max(s,♦(ka,kb]G)

+ kb
(λδ)2

2
+ λδ.

Theorem 2 states that the time-bounded reachability property in an IMC I
can be arbitrarily closely approximated by evaluating the same property in the
induced IPC Iδ. The error bound decreases linearly with smaller discretisation
steps δ. It has been recently improved in [33].

The remaining problem is to compute the maximum (or minimum) prob-
ability to reach G in an IPC within step bound k ∈ N. Let ♦[0,k]G be the

A Tutorial on Interactive Markov Chains 45

set of infinite paths in an IPC that reach a state in G within k steps, and
let pDmax(s,♦[0,k]G) denote the maximum probability of those paths that start
from state s and are subject to scheduler D. Then, we have pDmax(s,♦[0,k]G) =
supD∈TA Prs,D(♦[0,k]G). This expression can be solved by using an adaptation
of the well-known value iteration scheme for MDPs to IPCs [59].

The algorithm unfolds the IPC backwards in an iterative manner, starting
from the goal states. Each iteration intertwines the analysis of Markovian states
and the analysis of interactive states. The main idea is that a path from in-
teractive states to G is split into two parts:(1) reaching Markovian states from
interactive states in zero time and (2) reaching goal states from Markovian states
in interval [0, j], where j is the step count of the iteration. The computation of
the former can be reduced to an unbounded reachability analysis in the MDP in-
duced by interactive states and rewards on Markovian states. For the latter, the
algorithm operates on the previously computed reachability probabilities from
all Markovian states up to step count j. We can generalise this recipe to step
interval-bounded reachability [59].

Example 9. We want to compute the maximum reachability probability from
the initial state s0 to state s5 of the IMC shown in Figure 1. Consider the
induced IPC shown in Figure 4a which discretises the IMC. The maximum step-
bounded reachability of the IPC is illustrated in Figure 4b. The optimal decision
in state s0 depends on the time bound. When the time bound is small the optimal
action in state s0 is α, whereas for larger time bounds taking action β yields
the maximum reachability. The discretisation constant δ = 1.27e − 7 is chosen
on the basis of Theorem 2 to guarantee that the error bound is at most 1e-6.
Hence, the computation is completed after 8e+6 iterations. �

3.4 Time-Bounded Reachability in Open IMCs

IMCs feature compositional behaviour which allows them to communicate with
their environment. As discussed in Section 2, the class of IMCs which can in-
teract with other IMCs, in particular via parallel composition, is called open.
Lately, model checking of open IMCs has been studied, where the IMC is con-
sidered to be placed in an unknown environment that may delay or influence its
behaviour via synchronisation [15]. The approach is restricted to a subclass of
IMCs that are non-Zeno and do not contain states that have both internal and
external actions enabled at the same time. Let IMC I satisfy these restrictions
and be subject to an environment E, which can be seen as the composition of
several other IMCs and has the same external actions as I. IMC I is then turned
into a two-player controller-environment game, in which the controller controls
I and the environment controls E. In each state of I the controller selects one of
the enabled internal transitions, if there are some. Otherwise, the environment
either chooses an external action and synchronises I and E, or it chooses an
internal action. Given a set of goal states G and time bound b, the controller
tries to maximise the probability to reach the target set G within b time units.
The environment tries to prevent the controller from reaching its goal by ei-
ther delaying synchronisation steps or forcing the controller to take non-optimal

46 F. Arnold et al.

paths. In this setup, the time-bounded reachability can be computed by the
approximation scheme laid out in [59], which we have discussed above.

3.5 Expected Time

This section presents an algorithm to obtain the minimum and maximum ex-
pected time to reach a given set of goal states in an IMC, introduced in [27]:
We describe the expected time objective with a fixpoint characterisation, and its
transformation into a stochastic shortest path (SSP) problem. This SSP problem
can then be used to solve the expected time CSL formula. Note that we only
consider well-defined IMCs without Zeno paths.

Expected Time Objective. Let’s assume that we already computed Sat(Φ), and
denote this set as our set of goal states G. We want to compute the minimum
expected time to reach a state in G from a given state s ∈ S. Thus, we have
to consider all possible paths π induced by a given scheduler D. We define the
random variable VG : Paths → R≥0 as the elapsed time before visiting a state

in G . For an infinite path π = s0
σ0,t0−−−−→ s1

σ1,t1−−−−→ . . . let VG(π) = min{t ∈
R≥0|G ∩ π@t �= ∅} with min(∅) =∞ [27]. Then the minimal expected time to
reach G from s ∈ S is given by:

eTmin(s,♦G) = inf
D

Es,D(VG) = inf
D

∫
Paths

VG(π) Prs,D(dπ). (1)

Formula (1) expresses that we have to find a scheduler D which minimises the
time until reaching a state in G . We therefore need to consider all paths induced
by scheduler D. Note that, by definition of VG, it is sufficient to consider the
time before entering a goal state. Hence, we can transform all goal states into
absorbing Markovian states without affecting the expected time reachability.
This may result in a much smaller state space, since we can neglect those states
that become unreachable from the initial state.

Theorem 3 ([27]). The function eTmin is a fixpoint of the Bellman operator

v(s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

E(s)
+

∑
s′∈S

P(s, s′) · v(s′) if s ∈ MS \G

min
s

α−−→ s′
v(s′) if s ∈ IS \G

0 if s ∈ G.

Theorem 3 encodes expression (1) in a Bellman equation, in which we aim to
find optimal values v(s) for all states s ∈ S. If we are already in a goal state, we

have by definition that VG(π) = 0 with π = s0
σ0,t0−−−−→ . . . and s0 ∈ G. If s ∈ IS

and s has only one outgoing interactive transition, then the expected time is the
same as the one of its successor state. In case there is a nondeterministic choice
between interactive transitions in s, the next transition is determined by the
scheduler. Since we look for the infimum over all schedulers D, we choose the

A Tutorial on Interactive Markov Chains 47

action which induces the lowest expected time in the successor state. If s ∈MS,
we add the sojourn time in state s to the time to reach a state in G over all
paths starting in s induced by scheduler D. In other words, we add the sojourn
time in state s to the expected sojourn time of each successor state s′ weighted
with the probability to reach s′.

As a result of Theorem 3, the nondeterminism in eTmin(s,♦G) can be resolved
by using a stationary deterministic scheduler [27]. This implies that the scheduler
chooses an action that results in the minimum expected time for each interactive
state with a nondeterministic choice. To yield an effective algorithm as well as to
show the correctness of Theorem 3, we transform the expected time computation
into a non-negative stochastic shortest path (SSP) problem for MDPs. A SSP
problem derives the minimum expected cost to reach a set of goal states in a
MDP.

Definition 12 (SSP Problem). A non-negative stochastic shortest path prob-
lem (SSP problem) is a tuple ssp = (S,Act,P, s0, G, c, g), where (S,Act,P, s0)
is an MDP, G ⊆ S is a set of goal states, c : S \ G × Act → R≥0 is a cost
function and g : G→ R≥0 is a terminal cost function.

Given a smallest index k ∈ N of a path π with π[k] = sk ∈ G, the accumulated

costs to reach G on π is given by
∑k−1

i=0 c(si) + g(sk). The transformation of an
IMC into an SSP problem is realized with the following definition.

Definition 13 (SSP for Minimum Expected Time Reachability). The
SSP of IMC I = (S,Act, −→ , ���, s0) for the expected time reachability of G ⊆ S
is sspeTmin(I) = (S,Act ∪ {⊥} ,P, s0, G, c, g) where g(s) = 0 for all s ∈ G and
for all s, s′ ∈ S and σ ∈ Act ∪ {⊥}:

P(s, σ, s′) =

⎧⎪⎨
⎪⎩

R(s,s′)
E(s)

if s ∈ MS ∧ σ = ⊥
1 if s ∈ IS ∧ s σ−−→ s′

0 otherwise, and

c(s, σ) =

{
1

E(s)
if s ∈ MS \G ∧ σ = ⊥

0 otherwise.

The Markovian states are equipped with costs, since they are the states in which
time advances. The cost to traverse a Markovian state along path π is determined
by the sojourn time. Observe that the Bellman equation in Theorem 3 coincides
with the definition of the SSP problem. The uniqueness of the minimum expected
cost of an SSP problem [3, 8] implies that eTmin(s,♦G) is the unique fixpoint of
v(s) [27].

Example 10. Consider IMC I depicted in Figure 1 with G = {s5} being the set
of goal states and s0 being the initial state. We want to obtain eTmin(s0,♦G).
In a first step, we make goal state s5 absorbing. Afterwards, we transform the
resulting IMC into the SSP problem depicted in Figure 5. From this SSP problem
we can derive the following LP problem, where xi represents values for si:

48 F. Arnold et al.

s0

c(s0, α) = c(s0, β) = 0

s1

c(s1,⊥) = 1
4

s2

c(s2,⊥) = 1

s3

c(s3,⊥) = 1
3

s4

c(s4,⊥) = 1
3

s5

c(s5,⊥) = 0

α

β

1
2

1
2

⊥

⊥ ⊥ ⊥

⊥

Fig. 5. Resulting sspeTmin of the IMC depicted in Figure 1

Maximise x0 + x1 + x3 + x4 subject to:

x0 ≤ x1 x1 ≤
1

4
+

1

2
x2 +

1

2
x5 x3 ≤

1

3
+ x4 x5 = 0

x0 ≤ x2 x2 ≤ 1 + x2 x4 ≤
1

3
+ x5

By solving these equations we obtain x0 = 2
3 , x1 = ∞, x2 = ∞, x3 = 2

3 , x4 = 1
3 ,

which yields eTmin(s0,♦G) = 2
3 . �

An analogous approach can be applied to obtain the maximum expected time.
In this case, we search for the supremum over all schedulers, and thus, we resolve
nondeterministic choices in such a way that the scheduler chooses the actions
that maximises the expected time.

3.6 Long-Run Average

In this section we present an algorithm to compute the long-run average (Lra)
time spent in a set of goal states, as introduced in [27]. We describe the long-run
average objective and a three step procedure to obtain the long-run average and,
thus, compute the Lra CSL formula. Again, we only consider well-defined IMCs
without Zeno paths.

Long-Run Average Objective. We assume that Sat(Φ) has already been computed
with the technique explained before, and we denote this set as our set of goal
states G. Random variable AG,t(π) = 1

t

∫ t

0
1G(π@u)du defines the fraction of

time that is spent in G on an infinite path π in I up to time bound t ∈ R≥0 [2].
Note that 1G(s) = 1 if and only if s ∈ G and otherwise 0. For the computation
of the long-run average we consider the limit t → ∞ for random variable AG,t,
denoted by AG. The expectation of AG under scheduler D and initial state s
then yields the long-run average time spent in G, where the minimum long-run
average time spent in G starting from s is defined by:

Lramin(s,G) = inf
D

LraD(s,G) = inf
D

Es,D(AG). (2)

A Tutorial on Interactive Markov Chains 49

In contrast to the computation of the expected time and time-bounded reach-
ability, we may assume w.l.o.g. that G ⊆ MS, since the long-run average time
spent in any interactive state is always 0 (see Section 2). In the remainder of
this section we give the basic intuition of how to compute the minimum long-run
average. The general idea is given by the following three-step procedure:

1. Determine the maximal end components {I1, . . . , Ik} of IMC I.
2. Determine Lramin(G) for each maximal end component Ij .
3. Reduce the computation of Lramin(s0, G) in IMC I to an SSP problem.

The first step can be performed by a graph-based algorithm [1, 17], whereas the
latter two can be expressed as LP problems.

Definition 14 (End Component). An end component of IMC I is a sub-
IMC defined by the tuple (S′, A) where S′ ⊆ S and A ⊆ Act such that:

– for all Markovian states s ∈ S′ with s λ��� s′ it follows that s′ ∈ S′, and
– for all interactive states s ∈ S′ and for all α ∈ A with s α−−→ s′ it follows that
s′ ∈ S′, where at least one action is enabled in s ∈ S′.

Further, the underlying graph of (S′, A) must be a strongly connected component.

Note that a maximal end component (MEC) is an end component which is not
contained in any larger end component.

Long-Run Average in MECs. For the second step we show that for unichain
IMCs the computation of Lramin(s,G) can be reduced to the determination of
long-run ratio objectives in MDPs. An IMC is unichain if and only if under any
stationary deterministic scheduler it yields a strongly connected graph structure.
Note that an MEC is a unichain IMC. At first, we define long-run ratio objectives
for MDPs, and then show how to transform them to Lra objectives in unichain
IMCs.

Let M = (S,Act,P, s0) be an MDP and c1, c2 : S × Act⊥ → R≥0 be cost
functions. The operational interpretation is that cost c1(s, α) is incurred when α
is selected in state s, similarly for c2. The long-run ratio between the accumulated
costs c1 and c2 along an infinite path π in MDPM is defined as:

R(π) = lim
n→∞

∑n−1
i=0 c1(si, αi)∑n−1
j=0 c2(sj , αj)

.

Example 11. Consider the infinite path π = (s0
2−→ s1

3−→ s2
1−→ s3

4−→ s0)
ω where

c2(si, ·) denotes the transition labels and c1(s0, ·) = 2 and c1(si, ·) = 0 for 1 ≤ i ≤
3. Table 3 depicts the computation of the long-run ratio until n = 6. By setting
the limit n→∞ we obtain a fixpoint with R(π) = 1

5 . �

The minimum long-run ratio objective for state s of MDPM is then defined by:

Rmin(s) = inf
D

Es,D(R) = inf
D

∑
π∈Pathsabs

R(π) · Prabss,D(π).

50 F. Arnold et al.

Table 3. Example computation for the long-run ratio

n 1 2 3 4 5 6

R(π) 2
2
= 1 2

2+3
= 2

5
2

2+3+1
= 1

3
2

2+3+1+4
= 1

5
2+2

2+3+1+4+2
= 1

3
2+2

2+3+1+4+2+3
= 4

15

Pathsabs denotes the time-abstract paths of the MDP M and Prabss,D represents
the probability measure on the sets of paths starting from s induced by scheduler
D inM. Rmin(s) can be obtained by solving a linear programming problem [1].
With real variable k representing Rmin and xs representing each s ∈ S we have:

Maximise k subject to:

xs ≤ c1(s, α)− k · c2(s, α) +
∑
s′∈S

P(s, α, s′) · xs′ for each s ∈ S, α ∈ Act.

This system of inequations can be solved by linear programming algorithms, e.g.
with the simplex method [54].

Example 12. We take path π from Example 11 and assume that it is the only
path in an MDP M. Deriving the system of linear inequations with variables
k, xsi for 0 ≤ i ≤ 3 then yields:

Maximise k subject to:

xs0 ≤ 2− 2 · k + xs1 xs2 ≤ −1 · k + xs3

xs1 ≤ −3 · k + xs2 xs3 ≤ −4 · k + xs0

By solving the inequation system we obtain k = 1
5 , which is the minimum long-

run ratio onM. Note that this value equals the product of the long-run ratio as
obtained in Example 11 and the probability that path π is chosen, which is 1 in
our case. �
This result can now be transferred to a unichain IMC by transforming it into an
MDP with two cost functions.

Definition 15. Let I = (S,Act, −→ , ���, s0) be an IMC and G ⊆ S a set of
goal states. We define the MDP mdp(I) = (S,Act⊥,P, s0) with cost functions
c1 and c2, where P is defined as in Definition 13 and

c1(s, σ) =

{
1

E(s)
if s ∈ MS ∩G ∧ σ = ⊥

0 otherwise,
c2(s, σ) =

{
1

E(s)
if s ∈ MS ∧ σ = ⊥

0 otherwise.

Observe that cost function c2 keeps track of the average sojourn time in all
states s ∈ S whereas c1 only does so for states s ∈ G.

For a unichain IMC I, LRAmin(s,G) equals the long-run ratio Rmin(s) in
the transformed MDP mdp(I) [27]. Further, in a unichain IMC we have that
Lramin(s,G) and Lramin(s′, G) are the same for any two states s and s′. There-
fore, we will omit the state and write Lramin(G) when considering unichain
IMCs.

A Tutorial on Interactive Markov Chains 51

s0 s1

s3

s2

s5s6 s4

2

0.6

0.4

α β

1

2

3

1

Fig. 6. IMC with two maximal end components

Reducing Lra Objectives to an SSP Problem. Let I be an IMC with initial state
s0 and maximal end components {I1, . . . , Ik} for k > 0, where Ij has state space
Sj . Using this decomposition of I into maximal end components, we obtain the
following result:

Theorem 4 ([27]). 1 For IMC I = (S,Act, −→ , ���, s0) with MECs {I1, . . . , Ik}
with state spaces S1, . . . , Sk ⊆ S, and set of goal states G ⊆ S:

Lramin(s0, G) = inf
D

k∑
j=1

Lramin
j (G) · PrD(s0 |= ♦�Sj),

where PrD(s0 |= ♦�Sj) is the probability to eventually reach and continuously
stay in Sj from s0 under policy D and Lramin

j (G) is the Lra of G ∩ Sj in
unichain MA Ij.

Intuitively we have to find a scheduler that minimises the product of the prob-
ability to eventually reach and stay in a MEC and the minimum Lra, over all
possible combinations of MECs. We illustrate this procedure more clearly in the
following example.

Example 13. Consider the IMC in Figure 6 with G = {s2}. It consists of the two
maximal end components MEC1 with S1 = {s1, s2, s3, s4} and Act(s3) = {β},
and MEC2 with S2 = {s5, s6}. Note that only MEC1 contains a goal state.
Hence, the long-run average for MEC2 is automatically 0, wheras for MEC1 it
is greater than 0. Since we are looking for the minimum long-run average of s2
and are starting in s0, we choose action α in s3 so that we end up in MEC2.
According to Theorem 4 we have to look for the scheduler that minimises the
Lra in such a way that we eventually always stay in the desired MEC. With the
choice of α we can neglect the Lra for MEC1, since we will almost surely leave
MEC1, and thus obtain Lramin(s0, G) = 0. �

The computation of the minimum Lra for IMCs is now reducible to a non-
negative SSP problem. In IMC I we replace each maximal end component Ij
1 This theorem corrects a small flaw in the theorem for IMCs in [27].

52 F. Arnold et al.

s0 s1 u1 q1

Lramin
1 (G) = 0

u2 q2

Lramin
2 (G) = 3

7

τ1,1

τ1,2

1
2

1
2

⊥

⊥

⊥

⊥

⊥

Fig. 7. Resulting SSP for Lramin of the IMC depicted in Figure 1

with two fresh states qj and uj . Intuitively, qj represents the MEC Ij and uj
represents a decision state that has a transition to qj and contains all outgoing
interactive transitions of Sj . Let U denote the set of uj states and Q the set of
qj states. For simplification, we assume w.l.o.g. that all actions are unique and
replace actions of a state si ∈ S by τi,j where j ∈ {1 . . . ni} with ni ∈ N defined
as the number of nondeterministic choices in state si.

Definition 16 (SSP for Long-Run Average). Let I, S, G ⊆ S, Ij and Sj be
as before. The SSP induced by I for the long-run average fraction of time spent in

G is the tuple sspLRAmin(I) =
(
S \

⋃k
i=1 Si ∪ U ∪Q,Act ∪ {⊥} ,P′, s0, U, c, g

)
,

where g(qj) = Lramin
j (G) for qj ∈ Q and c(s, σ) = 0 for all s and σ ∈ Act⊥. P′

is defined as follows: Let S′ = S \
⋃k

i=1 Si. P
′ equals P for all s, s′ ∈ S′ and for

the new states in U :

P′(ui, τk,l, s
′) = P(sk, τk,l, s

′) if s′ ∈ S′ ∧ sk ∈ Si ∧ l ∈ {1 . . . nk} and

P′(ui, τk,l, uj) = P(sk, τk,l, s
′) if sk ∈ Si ∧ s′ ∈ Sj ∧ l ∈ {1 . . . nk}

Finally, we have: P′(qi,⊥, qj) = 1 = P′(ui,⊥, qi) and P′(s, σ, ui) = P (s, σ, Si) .

Here, P (s, σ, Si) is a shorthand for
∑

s′∈S′ P(s, σ, s′). An example of the SSP
transformation of IMC I from Figure 1 is given in Figure 7.

Example 14. Consider the IMC in Figure 1 with two maximal end components
MEC1 with S1 = {s2} and MEC2 with S2 = {s3, s4, s5, s6}. For each MEC we
introduce new states ui and qi, which substitute the states of MECi. Further, we
substitute α with τ1,1 and β with τ1,2. Note that both MECs are bottom strongly
connected components, which means that, under all schedulers of IMC I, we
cannot leave the MEC after entering it. Therefore, decision state ui has only one
outgoing transition to the corresponding qi state. After the transformation to
the IMC in Figure 6, the decision state of MEC1 has a nondeterministic choice
between β, to stay in MEC1, and α, to leave it. �
Note that an analogous approach can be applied to obtain the maximum Lra.
The main difference is that, in this case, we look for the supremum over all

A Tutorial on Interactive Markov Chains 53

schedulers. In the second and the third step we now resolve the nondeterminsitic
choices according to maximise the Lra.

4 Abstraction

In the previous chapter we introduced a number of IMC properties and presented
algorithms for their computation. For each presented algorithm the runtime is
crucially depends on the size of the considered IMC. On average, the complex-
ity of most algorithms grows polynomially in the size of the state space, but
in the worst case it grows exponentially resulting in extremely long computa-
tion times for complex models. Abstraction provides the means to reduce the
state space of investigated IMCs and thereby to reduce the complexity of the
verification of certain properties. In this section, we will first define the most
important behavioural equivalences, namely strong and weak bisimulation, and
outline efficient algorithms to compute bisimulation quotients. We remark that
bisimulation can be decided in polynomial time but most coarser behavioural
equivalences like trace and testing equivalences are PSPACE-complete [41].

4.1 Behavioural Equivalences

Behavioural equivalences relate states which are indistinguishable for an external
observer of the system. In the following we will present the concepts of strong and
weak bisimulation. As for non-probabilistic systems, these behavioural equiva-
lences relate states that can mimic each other’s behaviour. Weak bisimulation
relaxes strong bisimulation by allowing that interactive transitions with visible
actions may be interleaved with transitions annotated with the internal action τ .
In the context of model checking, the most important application of behavioural
equivalences is to provide the means for ‘quotienting’ a system with respect to
the behavioural equivalence to reduce its state space.

Definition 17 (Strong Bisimulation). Let I = (S,Act, −→ , ���, s0) be an
IMC. An equivalence relation R ⊆ S × S is a strong bisimulation on I, iff for
all (s, t) ∈ R, a ∈ Act and C ∈ S/R we have that:

– s a−→ s′ for some s′ ∈ C iff t a−→ t′ for some t′ ∈ C
– R(s, C) = R(t, C) whenever s

τ−→� .

Here, R(s, C) is a shorthand for
∑

s′∈C R(s, s′), as defined in Section 2. The
first condition expresses the classical bisimulation condition, requiring that for
related states sR t every interactive transition s a−→ s′ can be mimicked by an
interactive transition t a−→ t′ such that the target states are again related, i.e.
s′R t′. The second condition expresses that related states sR t need to agree on
the cumulative rates of moving from s, respectively t, to any equivalence class
C; it thereby corresponds to conditions for lumpability of Markov chains and
probabilistic bisimulation of DTMCs [44]. This condition is only required for
states which can perform Markovian transitions. Due to the maximal progress

54 F. Arnold et al.

assumption, these can only be states that have no internal action τ enabled,
denoted by

τ−→� . Bisimulation relations on IMCs are closed under union which
allows to define the largest bisimulation∼ by the union on all bisimulations of the
considered IMC. As shown in [35, Theorem. 4.3.1] both parallel composition and
hiding are defined with respect to ∼. Moreover, time-bounded and unbounded
reachability properties are preserved by bisimilar states [51, Theorem 4]. This
allows us to reason over IMCs in a compositional manner.

Strong bisimulation is rigid in the sense that it requires the mimicking of
interactive transitions for visible and internal actions τ . To achieve a higher de-
gree of abstraction, we relate states that cannot be distinguished by an external
observer by considering the visible actions only. For interactive transitions we

apply the same machinery as for LTS. We denote by τ∗−−→ the transitive reflex-
ive closure of interactive transitions labelled with the internal action τ . Weak
interactive transitions are then given by

a⇒ = τ∗
−−→ ◦ a−→ ◦ τ∗

−−→ . On the
other hand, this does not work for Markovian transitions, since sequencing of
Markovian transitions leads to the formation of the more general phase-type dis-
tributions. Thus, Markovian transitions need to be mimicked in the same way
as in strong bisimulation.

Definition 18 (Weak Bisimulation). Let I = (S,Act, −→ , ���, s0) be an
IMC. An equivalence relation R ⊆ S ×S is a weak bisimulation on I, iff for all
(s, t) ∈ R, a ∈ Act and C ∈ S/R we have that:

– s
a⇒ s′ for some s′ ∈ C if and only if t

a⇒ t′ for some t′ ∈ C
– R(s′, C) = R(t′, C) for some t τ∗

−−→ t′ and t′ τ−→� whenever s τ∗
−−→ s′ and

s′ τ−→� .

Weak bisimulation is closed under union and we denote the largest weak bisim-
ulation by ≈. Similarly to strong bisimulation, parallel composition and hiding
are compatible with ≈ [35, Theorem. 4.4.1]. Moreover, weak bisimilarity pre-
serves maximal time-bounded reachability properties [36, Theorem 10]. Strong
and weak bisimulation are suitable to compare systems and to reduce their state
space by deriving strong bisimilar (resp. weak bisimilar) IMCs with smaller state
spaces constructed from the equivalence classes of the strong bisimilarity (resp.
weak bisimilarity) and with the interactive and Markovian transitions defined
in the natural way [36, Definition 10]. We remark that, in order to reason over
the refinement of IMCs, there are appropriate notions of strong and weak simu-
lations available, for which parallel composition and hiding are precongruences
[36].

Example 15. Consider the IMC in Figure 8. We have s3 ≈ s4 and s3 ∼ s4
since these states can mimic each other’s behaviour. It follows that s1 ≈ s2 and
s1 ∼ s2; the accumulated transition rate into the bisimulation class C0 = {s3, s4}
is the same for both states. Because s0 reaches s1 and s2 via internal τ transitions
we have s0 ≈ s1 ≈ s2, but s0 is not strongly bisimilar to s1 and s2. �

A Tutorial on Interactive Markov Chains 55

s0

s1

s2

s3

s4

τ

τ

5

2

3

αα

Fig. 8. An interactive Markov chain with 5 states

4.2 Algorithmic Computation of the Strong Bisimulation Quotient

Given an IMC I, we want to determine its counterpart I’ in which strongly
bisimilar states are collapsed into one state so that I∼I’. The result I’ of this
collapsing process is called the bisimulation quotient. In the following, we present
an algorithm based on partition refinement techniques [35]. The core idea of the
algorithm is to partition the states in S, and refine the resulting partition step by
step. The refinement procedure of one particular partition consists of two stages
that validate the two conditions of Definition 14 with respect to a so-called
splitter. A splitter is a tuple formed by a set of states C and an action a. Given
a partition P of S, in each set of P we group all those states together that can
reach C via an a-transition, and those that cannot. This process is illustrated in
Figure 9. More formally, given a splitter (C, a) we refine the partition according
to the first condition in Definition 14 by applying

Refine(P, a, C) :=

(⋃
X∈P

(⋃
ν∈{true,false}

{
{s ∈ X | γ(s, a, C) = ν}

}))
\{∅}.

The function γ : S ×Act × S∗ → {true, false} applied to (s, a, C) returns true
if there is an a-transition from s to at least one state in C. Thus, the function
Refine splits each set of the partition by grouping those states together that
can reach states in C by at least one interactive a-transition and those that
cannot. Similarly, the second condition for strongly bisimilar states is validated
by refining the partition with

M Refine(P,C) :=

(⋃
X∈P

(⋃
ν∈R+

{
{s ∈ X |R(s, C) = ν}

}))
\{∅}.

In other words, M Refine splits each set of the partition P into classes so that all
states in one class reach the set C with the same accumulated rate. Note that the
result might be a set of singletons in case that all values of R(s, C) are different.
These two functions highlight the naming of the tuple (a, C) as splitter: It splits
sets of states according to the two conditions of strongly bisimilar states and
thereby refines the initial partition step by step.

56 F. Arnold et al.

P

C

a

Fig. 9. One refinement step

Equipped with these two functions we construct the algorithm. The algorithm
starts with a splitter (a, C) build from an arbitrary action a ∈ Act an the set
of states C either comprising all states which can perform a τ step or all states
which cannot perform τ . The original partition consists of one set which contains
all states. We then apply Refine and M Refine iteratively by choosing a different
splitter in each step. After each iteration we possibly obtain a finer partition
and, thus, we need to add newly formed classes to the set of splitters. A final
observation speeds this procedure up: States with outgoing internal τ -transition
will never take Markovian transitions due to the maximal progress assumption.
We therefore do not need to apply M Refine on these states. Furthermore, they
cannot be strongly bisimilar to states without outgoing τ -transition. For these
reasons we evaluate these two classes of states separately from the very start.

Algorithm 3 (Computation of the Strong Bisimulation Quotient)

Strong-bisim-quotien(S,R)

1 S Part←
{
{ P ′ ∈ S|P ′ τ−→� }

}
\{∅};

2 U Part←
{
{ P ′ ∈ S|P ′ τ−→}

}
\{∅};

3 Spl← Act× (S Part ∪ U Part);
4 while Spl not empty
5 do
6 Choose (a,C) in Spl;
7 Old:=S Part ∪ U Part;
8 S Part←Refine(S Part,a,C);
9 U Part← Refine(U Part,a,C);

10 S Part← M Refine(S Part,C);
11 New←(S Part ∪ U Part)-Old;
12 Spl← (Spl-{(a,C)}) ∪ (Act × New);
13 return S Part ∪ U Part

The algorithm can be implemented with a time complexity ofO((mI+mM)log n),
where mI is the number of interactive transitions,mM the number of Markovian
transitions and n the number of states [35].

4.3 Algorithmic Computation of the Weak Bisimulation Quotient

The computation of the weak bisimulation quotient of an IMC is more involved
and we will only briefly outline the ideas formalised in [35], which uses an adapta-
tion of the partition refinement technique described above. In contrast to strong
bisimulation, weak bisimulation does not mimic internal τ actions to achieve a
higher degree of abstraction. We therefore have to identify those states that have
no outgoing interactive transition annotated with a τ action, also called stable

A Tutorial on Interactive Markov Chains 57

states, and those that have at least one, called unstable states. We then partition
the whole state space by grouping those states together that can reach stable
states by taking only internal τ transitions, and those that cannot. We call the
first class C1 and the latter C2 . This step requires the a priori computation of

the transitive reflexive closure τ∗
−−→ of internal τ actions. The algorithm is then

similar to the computation of the strong bisimulation quotient: We initialise
the set of splitters and refine the classes C1 and C2 separately in a stepwise
fashion. The class C2 is refined with function Refine and C1 with Refine and
M RefineS, where Refine is as before and M RefineS an adaptation of M Refine.
The algorithm then computes the weak bisimulation quotient in O((m′

I+mM)n)
time where m′

I is the number of interactive transitions after transitive closure of
internal transitions [35].

4.4 Bisimulation Quotient of Acyclic IMCs

In case that the considered IMC is acyclic, the minimum strong bisimulation can
be determined at a much lower time-complexity of O(m) as suggested in [21],
where m is the total number of transitions.

Definition 19 (Acyclic IMC). An IMC P is acyclic, if it does not contain
any plausible path π with k ∈ N≥0 and π[k] = s such that ∃n.k < n ≤ |π| with
π[n] = s for all s ∈ S. A path is plausible, if it does not contain any Markovian
transition such that the maximum progress assumption is violated.

Since S is finite and P is acyclic, there is at least one state which cannot be left
by a plausible path. The idea of the following algorithm is to order the states
according to their longest distance to such an absorbing state. To do so we define
the notion of ranks for IMCs.

Definition 20 (Rank Function). The rank function R : S → N is defined by
R(s) = max{|π| | π ∈ PathsP (s)}.

Here, PathsP (s) denotes the set of all plausible paths – which are finite – such
that R(s) <∞ for all s ∈ S. The observation which sets the groundwork for the
algorithm below is that any two strongly bisimilar states have the same rank.
Vice-versa, two states with the same rank are strongly bisimular if and only if
they fulfil the two conditions of strongly bisimilar states. Note that transitions go
only from states with a higher rank to states with a lower rank. This observation
is exploited in the following algorithm. First, check states with rank 1 (states with
rank 0 are by default strongly bisimilar) for strong bisimilarity. This computation
requires only states with rank 0. We apply the same procedure iteratively to all
states with rank 2, then to all states with rank 3 and so forth. In each iteration
states with the same rank are analysed by looking at their transitions to states
at the next lower rank. The time-complexity O(m) is defined by the depth-first
search which is required for the rank computation [21]. A similar algorithm can
be adopted for the computation of the weak bisimulation quotient.

58 F. Arnold et al.

5 Extensions

The remarkable progress in the theoretic developments of IMCs in the last decade
has also triggered research on related concepts. In this section we review inho-
mogeneous IMCs and Markov automata as specific extensions of IMCs.

5.1 Inhomogeneous IMCs

Inhomogeneous IMCs extend IMCs by allowing the annotations of Markovian
transitions with functions rather than real values. So far we assumed that the
rates of the Markovian transitions were static and independent of time, i.e. the
dynamics of IMCs were assumed to be time-homogeneous. However, in many
real-world applications the progress of time crucially influences the system’s
dynamics. Hardware components tend to degrade over time due to oxidation
and deterioration, so that their failure rate is a monotonically increasing function
over time rather than a static value. Another example is the power extraction
rate of a battery, which depends on the remaining amount of stored energy.
Those natural phenomena can be accurately captured with the help of time-
inhomogeneous IMCs (I2MCs) as introduced in [29]. Technically, the Markovian

transitions λ��� of IMCs (labelled with a positive real number λ) are generalized
to transitions of the form s

rs,s′(t)��� s′ of I2MCs (labelled with a continuous
functions rs,s′ : R≥0 → R≥0). The rate to execute the transition s

rs,s′(t)��� s′ from
s to s′ at time t, is determined by rs,s′(t). The state transition probabilities
respecting the respective race condition if multiple transitions leave a single
state can be formulated analogously [29].

A process algebra and congruence results for weak and strong bisimulation
for I2MCs can be found in [29]. On the other hand, the model checking of
inhomogeneous systems is quite intricate since one needs to account for the
time-dependent dynamics and it still needs to be investigated further.

5.2 Markov Automata

Markov automata (MA) constitute a compositional behavioural model for con-
tinuous time stochastic and nondeterministic systems [23]. Markov automata are
on the one hand rooted in interactive Markov chains by extending the expres-
siveness of IMCs with instantaneous random switching. They are on the other
hand an orthogonal composition of probabilistic automata and continuous time
Markov chains. Formally, M = (S,Act, −→ , ���, s0) is a Markov automaton,
where all components ofM, but −→ , are as Definition 3 and the set of interac-
tive transitions −→ is a subset of S×Act×Distr(S). The definition of interactive
transitions characterises the ability of random switching in Markov automata.
Consequently, IMCs are special cases of Markov automata, where all distribu-
tions which prevail in the set of interactive transitions −→ are Dirac. Markov
automata are expressive enough to capture the complete semantics of gener-
alised stochastic Petri nets and of stochastic activity networks [22]. Due to these
attractive semantic and compositionality features, there is a growing interest in
tool and technique support for modelling and analysis with MA [57, 26, 32].

A Tutorial on Interactive Markov Chains 59

System fails

CPU unitCPU FDEP

P BTrigger

CS SS

Motor unit

Switching unit

MS

Motors

MA MB

Pump unit

Pump 1 Pump 2

PA PS PB

Fig. 10. The cardiac assist system DFT

6 Case Studies

IMCs have shown their practical relevance in diverse areas where memoryless
continuous delay prevails. They serve as the semantics of several modelling and
engineering formalisms such as generalised stochastic Petri nets [50], and Archi-
tectural Analysis and Design Language (AADL) [13]. Furthermore, they have
proven their practical importance in various applications like Globally Asyn-
chronous Locally Synchronous (GALS) designs [19], supervisory control [48, 49],
satellite design [24], water-treatment facilities [34], and train control systems [10].

In the following, we will demonstrate how IMCs provide a precise formal se-
mantics and enable compositional design and verification by examples about
the industrial specification formalisms of dynamic fault trees [12] and Statem-
ate [10].

6.1 Dynamic Fault Trees with Input/Output IMCs

Fault trees (FT) constitute a prominent formalism in reliability analysis to model
how the failure propagation of a system’s components induces a failure of the
whole system [13, 12]. Its intuitive graphical syntax is often used for reliability
analysis in industry. The leaves of a FT represent component failures called basic
events, and all non-leaves indicate how component failures propagate through
the system, modelled by so called gates. The root node represents the system
failure, called the top-level event.

Static fault trees allow the use of the logic AND, OR and VOTING gates.
Dynamic Fault Trees (DFT) extend them with a number of dynamic gates, to
model common patterns in reliability engineering: functional dependencies can
be specified via the FDEP gate; spare management via the SPARE gate ; and
sequencing via the PAND gate. Further, each basic event is equipped with a
probability distribution showing how the failure behaviour evolves over time.

Example 16 (Cardiac assist system). Figure 10 depicts a DFT representing a
cardiac assist system (CAS) [11] consisting of three types of subsystems: the
CPU, the motor unit, and the pump unit. If either one of these subsystem fails
then the entire CAS fails, as modelled by the top-level OR gate.

60 F. Arnold et al.

The CPU unit consists of a primary (P) and backup (B) CPU, indicated by
the SPARE gate. Both are subject to a common cause failure represented by the
CPU FDEP gate: if either a crossbar switch (CS) or the system supervisor (SS)
fails, both become unavailable.

The motor unit consists of a primary (MA) and backup motor (MB). If the
primary motor fails and the switching component (MS) is still available, the
backup motor is turned on. If the switching component fails afterwards, this can
be ignored, as modelled by the PAND gate.

The pump unit consists of two primary pumps (PA and PB) which share
a backup pump (PS). Thus, one of the primary pumps can be replaced after
failing, and the pump unit fails, if all pumps are unavailable, represented by the
AND gate. �

Given a DFT, one is typically interested in calculating the reliability of the
whole system over time. An efficient way to do so is the transformation of a DFT
into an Input/Output Interactive Markov Chains (I/O-IMC). I/O-IMCs [12]
extend IMCs by integrating features from input/output automata. Interactive
transitions are partitioned into input actions and output actions. Input actions
can only be taken, if another I/O-IMC executes a matching output action. This
refinement enables one to define which component triggers a synchronization and
which merely reacts. This can be readily exploited to model the components’
dependencies with respect to failure propagation in DFTs.

The process chain from a DFT to its semantical IMC is depicted in Figure 11.
The behaviour of each leaf and gate is encoded as an I/O-IMC. The interaction
between components is modelled by means of input and matching output actions.
Composition and abstraction techniques explained in Section 4 can then be used
to aggregate a DFT into one IMC representation for the whole system. Finally,
the IMC can be analysed either directly or after the transformation to a CTMDP.

6.2 Compositional Performability Evaluation for Statemate

Statemate [31] is a statechart-based tool set used by engineers in several avionic
and automotive companies like AIRBUS and BMW [10]. In this section we ex-
plain an approach proposed in [10], which enables performability evaluation of
Statemate models. It applies various construction, optimisation and analysis
techniques including compositional modelling using IMCs. In fact, the use of
IMCs plays a crucial role in the model construction part of the methodology.
We first recapitulate an example taken from [10] to show the applicability of
Statemate and then explain the function of IMCs in the methodology.

(a) DFT (b) Transformation (c) Composition
(d) Minimiza-
tion (e) IMC

Fig. 11. Graphical overview of the compositional aggregation of DFT models

A Tutorial on Interactive Markov Chains 61

OBSERVER

SENSOR

MONITOR

CONTROLLER

HEATER CTRL

CTRL OFF
HEATER ON

HEATER OFF

CTRL ON

C

e13

[SHUTDOWN]/
HEATER:=DISABELD

[M ACTIVE
and S ACTIVE
and not SHUTDOWN]

e02
e01

[TEMP==TOO HOT]/
HEATER:=DISABLED

[TEMP==TOO COLD]/
HEATER:=ENABLED

e14

[TEMP==TOO COLD]/
HEATER:=ENABLED

e15

[TEMP==TOO HOT]/
HEATER:=DISABLED

SAFE WAIT TLE
e03

[S FAILED and
HEATER==ENABLED]

e04

[not S FAILED
or HEATER==DISABLED]

e05

SYNC

S INIT S OK S STUCKe06

[true]/S ACTIVE:=true;
TEMP:=TEMP IN

e16

UP/
TEMP:=TEMP IN

e07

FS/
S FAILED:=true

M INIT M OK M FAILED
EMERGENCY
SHUTDOWNe11

[S ACTIVE]
/M ACTIVE:=true

e08

FM

e12

[S FAILED]/M ACTIVE:=false;
SHUTDOWN:=true

(a) A heater system [10]

symbolic processing

explicit processing

STATEMATE design

Delay Transitions

Safety-Critical States

Time Bound

LTS Generation

LTS Labels

Symbolic Minimisation

of the LTS

Quotient LTS

Weaving the time

constraint

Delay Distributions

Phase-type

Approximation

Absorbing CTMCs

Elapse

uIMCs
uIMC

CTMDP Transformation

uCTMDP

Worst Case Probabilities
Timed Reachability

Analysis

(b) The tool chain [10]

Fig. 12. An example of Statemate design and the tool chain for quantitative evalu-
ation of Statemate

Example 17. Figure 12a shows a Statemate design that represents the func-
tional behaviour of a heating system. It consists of a CONTROLLER, a MONITOR, a
SENSOR, and an OBSERVER. The SENSOR repeatedly measures and stores the temper-
ature. However, it is an unreliable component, which means that it might become
inactive due to a defect and, therefore, does not update the temperature value.
As soon as the MONITOR detects a sensor failure, it shuts the system down in order
to avoid severe damage. The CONTROLLER constantly checks the current tempera-
ture and turns the heater on/off when the temperature is too cold/too hot. The
OBSERVER’s role is to observe whether a safety-critical state has been reached. In
this example, the high level state TLE of the OBSERVER, which specifies a situation
where the sensor has failed while the heater is still on, is safety-critical. There
are also delay transitions denoted by bold arrows. They specify the event that
is triggered as a delay passes. Here they signal a component failure; for example
FM and FC indicate failures of the monitor and the sensor respectively. �

The question that is naturally raised in such models is whether the risk of
reaching some safety-critical state within a certain time bound is below a certain
threshold. Such a question can be answered by using the tool chain (Figure 12b)
devised in [10]. The input of the tool chain consists of several parts including
the Statemate model, specification of safety-critical states and distributions of
delay transitions. Based on these inputs, the tool chain computes the worst-case
probability to reach some safety-critical state within the provided time bound.
The given delay distribution is specified as a uniform IMC (uIMC), which is
then composed with the model generated from input Statemate design. The
result is later transformed into a uniform CTMDP (uCTMDP) by applying the
steps in Section 2.6. Finally, a worst case time-bounded reachability analysis [6]

62 F. Arnold et al.

is performed on the uCTMDP. As a case study, the proposed technique has been
successfully employed in the area of train control systems [10].

6.3 Tool Support

IMCA [27] is a tool for the quantitative analysis of IMCs and was recently
extended to Markov automata. In particular, it supports the verification of
IMCs against unbounded reachability, time- and interval-bounded reachability,
expected-time objectives, and long-run average objectives. Hence, it supports
the model-checking algorithms presented in this paper, whereas it is not capable
of parsing a CSL formula. IMCA computes the maximum and minimum values
for a set of goal states.

CADP. [18] supports construction, minimisation and analysis of extended
Markovian models including IMCs. It compiles and generates the state space
from a specification. The compositional verification engine of CADP then com-
poses a network of communicating IMCs. The tool set also enables minimisation
modulo strong and branching bisimulation. Furthermore, it supports the steady-
state and transient analysis of the final model via numerical verification tech-
niques or simulation. The analysis is, however, restricted to models that exhibit
only spurious nondeterminism.

SCOOP. [57] is a tool that symbolically optimises process-algebraic specifications
of probabilistic processes including IMCs. Optimisations such as dead-variable re-
duction and confluence reduction are applied automatically by SCOOP. The op-
timised state spaces are ready to be analysed by, for instance, CADP or IMCA.
Moreover, SCOOP and IMCA constitute a tool chain called MaMa [28], which
supports construction, minimisation and analysis of IMCs, among other models
(e. g. MA).

MRMC. [42] is a model checker for discrete-time and continuous-time Markov
reward models. It supports the verification of PCTL and CSL as well as their
reward extensions CSRL and PCTRL. There is also a CTMDP extension avail-
able2 which provides recent analysis techniques based on [16].

7 Conclusion

This paper presents an overview about IMCs, a fruitful combination of CTMCs
and LTSs which facilitates the modeling of and reasoning about probabilistic
systems. A great strength of IMCs is their compositional semantics which estab-
lished them as a prominent formalism for a wide range of applications. We pre-
sented the theoretical framework of IMCs and introduced related concepts such
as composition and schedulers. The main reason for the application of IMCs in

2 http://depend.cs.uni-sb.de/tools/ctmdp/

http://depend.cs.uni-sb.de/tools/ctmdp/

A Tutorial on Interactive Markov Chains 63

system models is the plethora of available analysis techniques. Given a certain
model, one typically wants to examine qualitative aspects such as reachability of
certain system states but also quantitative aspects such as time-dependent prob-
abilities and long-run behaviour. We provided an overview of state-of-the-art
algorithms to answer these questions. A key to efficient computations is the re-
duction of the state space of the underlying model by exploitation of behavioural
equivalences. In this context we introduced the notion of strong and weak bisimu-
lation and presented algorithms to derive bisimulation quotients. Equipped with
these techniques, IMCs have been successfully applied to a number of real-world
problems and integrated into various models, especially as semantical model.
We presented IMCs as the semantics of two industrial specification formalisms:
Dynamic fault trees and Statemate.

Despite extensive progress on theoretical results and numerous tools and ap-
plication developments over the last decade, IMCs still form a highly active
field of research. First progress towards the measurability and analysis of IMCs
has been made in [40] and future works might exploit IMCs’ close entangle-
ment with CTMDPs. Two extensions of IMCs, time-inhomogeneous IMCs and
Markov automata, have been introduced. The former exhibits inhomogeneity in
its embedded CTMC, while the latter adds the capability of random switching to
interactive transitions. Tool support for IMCs is already available, for instance
by CADP and IMCA. The latter has recently been integrated with SCOOP as a
fully-fledged tool chain, called MaMa, which supports modelling, reduction and
analysis of Markov automata, and IMCs as a special case of Markov automata.
However, there is still room for improvements in time-bounded computations and
possible extensions to Markov reward analysis. Given the advantages of IMCs,
especially their expressiveness and compositional semantics, one can investigate
opportunities to widen their application range to new concepts and formalisms.

References

[1] de Alfaro, L.: Formal Verification of Probabilistic Systems. Ph.D. thesis, Stanford
University (1997)

[2] de Alfaro, L.: How to specify and verify the long-run average behavior of proba-
bilistic systems. In: Proceedings of the 13th Annual IEEE Symposium on Logic
in Computer Science (LICS), pp. 454–465. IEEE (1998)

[3] de Alfaro, L.: Computing minimum and maximum reachability times in probabilis-
tic systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664,
pp. 66–81. Springer, Heidelberg (1999)

[4] Ash, R., Doléans-Dade, C.: Probability & Measure Theory. Academic Press (2000)

[5] Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Model-checking algo-
rithms for continuous-time Markov chains. IEEE Transactions on Software Engi-
neering 29(6), 524–541 (2003)

[6] Baier, C., Hermanns, H., Katoen, J.P., Haverkort, B.R.: Efficient computation of
time-bounded reachability probabilities in uniform continuous-time Markov deci-
sion processes. Theoretical Computer Science 345(1), 2–26 (2005)

[7] Baier, C., Katoen, J.P.: Principles of model checking, vol. 950. MIT Press (2008)

64 F. Arnold et al.

[8] Bertsekas, D.P., Tsitsiklis, J.N.: An analysis of stochastic shortest path problems.
Mathematics of Operations Research 16(3), 580–595 (1991)

[9] Bianco, A., de Alfaro, L.: Model checking of probabalistic and nondeterministic
systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513.
Springer, Heidelberg (1995)

[10] Böde, E., Herbstritt, M., Hermanns, H., Johr, S., Peikenkamp, T., Pulungan, R.,
Rakow, J., Wimmer, R., Becker, B.: Compositional dependability evaluation for
STATEMATE. IEEE Transactions on Software Engineering 35(2), 274–292 (2009)

[11] Boudali, H., Dugan, J.B.: A Bayesian network reliability modeling and analysis
framework. IEEE Transactions on Reliability 55, 86–97 (2005)

[12] Boudali, H., Crouzen, P., Stoelinga, M.: Dynamic fault tree analysis using
input/output interactive Markov chains. In: Proceedings of the 37th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), pp. 708–717 (2007)

[13] Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T., Roveri, M.: Safety,
dependability and performance analysis of extended AADLmodels. The Computer
Journal 54(5), 754–775 (2011)

[14] Bravetti, M., Hermanns, H., Katoen, J.P.: YMCA: Why Markov chain algebra?
Electronic Notes in Theoretical Computer Science (ENTCS) 162, 107–112 (2006)

[15] Brázdil, T., Hermanns, H., Krcál, J., Kret́ınský, J., Rehák, V.: Verification of open
interactive Markov chains. In: IARCS Annual Conference on Foundations of Soft-
ware Technology andTheoretical Computer Science (FSTTCS), pp. 474–485 (2012)

[16] Buchholz, P., Hahn, E.M., Hermanns, H., Zhang, L.: Model checking algorithms for
CTMDPs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 225–242. Springer, Heidelberg (2011)

[17] Chatterjee, K., Henzinger, M.: Faster and dynamic algorithms for maximal end-
component decomposition and related graph problems in probabilistic verification.
In: Proceedings of the Twenty-second Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 1318–1336. SIAM (2011)

[18] Coste, N., Garavel, H., Hermanns, H., Lang, F., Mateescu, R., Serwe, W.: Ten
Years of Performance Evaluation for Concurrent Systems Using CADP. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416, pp. 128–142.
Springer, Heidelberg (2010)

[19] Coste, N., Hermanns, H., Lantreibecq, E., Serwe, W.: Towards performance predic-
tion of compositional models in industrial GALS designs. In: Bouajjani, A., Maler,
O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 204–218. Springer, Heidelberg (2009)

[20] Crouzen, P., Hermanns, H.: Aggregation ordering for massively compositional
models. In: Proceedings of the10th International Conference onApplication of Con-
currency to System Design (ACSD), pp. 171–180. IEEE (June 2010)

[21] Crouzen, P., Hermanns, H., Zhang, L.: On the minimisation of acyclic models. In:
van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 295–309.
Springer, Heidelberg (2008)

[22] Eisentraut, C., Hermanns, H., Zhang, L.: Concurrency and composition in a
stochastic world. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS,
vol. 6269, pp. 21–39. Springer, Heidelberg (2010)

[23] Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: Proceedings of the 25th Annual IEEE Symposium on Logic in Computer
Science (LICS), pp. 342–351. IEEE (2010)

A Tutorial on Interactive Markov Chains 65

[24] Esteve, M.A., Katoen, J.P., Nguyen, V.Y., Postma, B., Yushtein, Y.: Formal cor-
rectness, safety, dependability, and performance analysis of a satellite. In: Pro-
ceedings of the 34th International Conference on Software Engineering (ICSE),
pp. 1022–1031. IEEE (2012)

[25] Giacalone, A., Jou, C., Smolka, S.A.: Algebraic reasoning for probabilistic concur-
rent systems. In: Proceedings of the IFIP TC2 Working Conference on Program-
ming Concepts and Methods, pp. 443–458 (1990)

[26] Guck, D.: Quantitative Analysis of Markov Automata. Master’s thesis, RWTH
Aachen University (2012)

[27] Guck, D., Han, T., Katoen, J.-P., Neuhäußer, M.R.: Quantitative timed analysis of
interactive Markov chains. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS,
vol. 7226, pp. 8–23. Springer, Heidelberg (2012)

[28] Guck, D., Hatefi, H., Hermanns, H., Katoen, J.-P., Timmer, M.: Modelling, re-
duction and analysis of Markov automata. In: Joshi, K., Siegle, M., Stoelinga,
M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 55–71. Springer,
Heidelberg (2013)

[29] Han, T., Katoen, J.-P., Mereacre, A.: Compositional modeling and minimization
of time-inhomogeneous Markov chains. In: Egerstedt, M., Mishra, B. (eds.) HSCC
2008. LNCS, vol. 4981, pp. 244–258. Springer, Heidelberg (2008)

[30] Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5), 512–535 (1994)

[31] Harel, D., Lachover, H., Naamad, A., Pnueli, A., Politi, M., Sherman, R., Shtull-
Trauring, A., Trakhtenbrot, M.B.: STATEMATE: A working environment for the
development of complex reactive systems. IEEE Transactions on Software Engi-
neering 16(4), 403–414 (1990)

[32] Hatefi, H., Hermanns, H.: Model checking algorithms for Markov automata. Elec-
tronic Communications of the ECEASST 53 (2012)

[33] Hatefi, H., Hermanns, H.: Improving time bounded reachability computations in
interactive markov chains. In: FSEN, pp. 250–266 (2013)

[34] Haverkort, B.R., Kuntz, M., Remke, A., Roolvink, S., Stoelinga, M.: Evaluating
repair strategies for a water-treatment facility using Arcade. In: Proceedings of
the 40th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pp. 419–424 (2010)

[35] Hermanns, H.: Interactive Markov Chains. Springer, Berlin (2002)
[36] Hermanns, H., Katoen, J.-P.: The how and why of interactive Markov chains. In:

de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.) FMCO 2009.
LNCS, vol. 6286, pp. 311–338. Springer, Heidelberg (2010)

[37] Hermanns,H., Johr, S.: Uniformity by construction in the analysis of nondeterminis-
tic stochastic systems. In: Proceedings of the 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pp. 718–728 (2007)

[38] Hermanns, H., Johr, S.: May we reach it? Or must we? In what time? With what
probability? In: MMB, pp. 125–140. VDE Verlag (2008)

[39] Hermanns, H., Katoen, J.P., Meyer-Kayser, J., Siegle, M.: ETMCC: Model check-
ing performability properties of Markov chains. In: Proceedings of the 33rd Inter-
national Conference on Dependable Systems and Networks (DSN). IEEE Com-
puter Society (2003)

[40] Johr, S.: Model checking compositional Markov systems. Ph.D. thesis, Saarland
University (2008)

[41] Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three
problems of equivalence. Information and Computation 86(1), 43–68 (1990)

66 F. Arnold et al.

[42] Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The Ins
and Outs of the probabilistic model checker MRMC. In: Proceedings of the 6th
International Conference on the Quantitative Evaluation of Systems (QEST), pp.
167–176. IEEE (2009)

[43] Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model
checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002.
LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002)

[44] Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing (preliminary
report). In: Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), pp. 344–352. ACM (1989)

[45] Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information
and Computation 94, 1–28 (1991)

[46] López, G.G.I., Hermanns, H., Katoen, J.-P.: Beyond memoryless distributions:
Model checking semi-Markov chains. In: de Luca, L., Gilmore, S. (eds.) PROBMIV
2001, PAPM-PROBMIV 2001, and PAPM 2001. LNCS, vol. 2165, pp. 57–70.
Springer, Heidelberg (2001)

[47] López, N., Núñez, M.: An overview of probabilistic process algebras and their
equivalences. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle,
M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 89–123. Springer,
Heidelberg (2004)

[48] Markovski, J.: Towards supervisory control of interactive Markov chains: Con-
trollability. In: 11th International Conference on Application of Concurrency to
System Design (ACSD), pp. 108–117 (2011)

[49] Markovski, J.: Towards supervisory control of interactive Markov chains: Plant
minimization. In: 9th IEEE International Conference on Control and Automation
(ICCA), pp. 1195–1200 (2011)

[50] Neuhäußer, M.R.: Model checking nondeterministic and randomly timed systems.
Ph.D. thesis, RWTH Aachen University (2010)

[51] Neuhäußer, M.R., Katoen, J.-P.: Bisimulation and logical preservation for
continuous-time Markov decision processes. In: Caires, L., Vasconcelos, V.T. (eds.)
CONCUR 2007. LNCS, vol. 4703, pp. 412–427. Springer, Heidelberg (2007)

[52] Pulungan, R.: Reduction of Acyclic Phase-Type Representations. Ph.D. thesis,
Universität des Saarlandes, Saarbruecken, Germany (2009)

[53] Puterman, M.L.: Markov decision processes: discrete stochastic dynamic program-
ming, vol. 414. John Wiley & Sons (2009)

[54] Schrijver, A.: Theory of linear and integer programming. JohnWiley & Sons (1998)
[55] Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nordic

Journal of Computing 2, 250–273 (1995)
[56] Sen, K., Viswanathan, M., Agha, G.: VESTA: A statistical model-checker and ana-

lyzer for probabilistic systems. In: Proceedings of the 2nd International Conference
on the Quantitative Evaluation of Systems (QEST), pp. 251–252. IEEE (2005)

[57] Timmer, M., Katoen, J.-P., van de Pol, J., Stoelinga, M.I.A.: Efficient modelling
and generation of markov automata. In: Koutny, M., Ulidowski, I. (eds.) CONCUR
2012. LNCS, vol. 7454, pp. 364–379. Springer, Heidelberg (2012)

[58] Younes, H.L.S.: Ymer: A statistical model checker. In: Etessami, K., Rajamani,
S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer, Heidelberg (2005)

[59] Zhang, L., Neuhäußer, M.R.: Model checking interactive markov chains. In:
Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 53–68.
Springer, Heidelberg (2010)

A Theory for the Semantics of Stochastic
and Non-deterministic Continuous Systems�

Carlos E. Budde1,2, Pedro R. D’Argenio1,2,
Pedro Sánchez Terraf1,2, and Nicolás Wolovick1

1 FaMAF, Universidad Nacional de Córdoba, Argentina
2 CONICET, Córdoba, Argentina

{cbudde,dargenio,sterraf,nicolasw}@famaf.unc.edu.ar

Abstract. The description of complex systems involving physical or biological
components usually requires to model complex continuous behavior induced by
variables such as time, distance, speed, temperature, alkalinity of a solution, etc.
Often, such variables can be quantified probabilistically to better understand the
behavior of the complex systems. For example, the arrival time of events may be
considered a Poisson process or the weight of an individual may be assumed to
be distributed according to a log-normal distribution. However, it is also common
that the uncertainty on how these variables behave makes us prefer to leave out the
choice of a particular probability and rather model it as a purely non-deterministic
decision, as it is the case when a system is intended to be deployed in a variety
of very different computer or network architectures. Therefore, the semantics of
these systems needs to be represented by a variant of probabilistic automata that
involves continuous domains on the state space and the transition relation.

In this paper, we provide a survey on the theory of such kind of models. We
present the theory of the so-called labeled Markov processes (LMP) and its exten-
sion with internal non-determinism (NLMP). We show that in these complex do-
mains, the bisimulation relation can be understood in different manners. We show
the relation between the different bisimulations and try to understand their expres-
siveness through examples. We also study variants of Hennessy-Milner logic that
provides logical characterizations of some of these bisimulations.

1 Introduction

The interplay of probabilistic and non-deterministic choices in systems that live in a
continuous state space is becoming more common. For example, they arise naturally on
software applications for mobile devices. This type of system has discrete state (mem-
ory hierarchy) as well as continuous state (position, orientation, acceleration, battery
voltage, etc.). These continuous quantities are disrupted by the environment, and such
disruption may be stochastically quantifiable. Besides, many algorithms make inter-
nal decisions sampling according to discrete probabilities. Moreover, they operate in
meshes of devices where the relative speeds of execution among them are not known in

� Supported by ANPCyT project PICT-2012-1823, SeCyT-UNC projects 05/B284 and 05/B497
and program 05/BP02, and EU 7FP grant agreement 295261 (MEALS).

A. Remke and M. Stoelinga (Eds.): ROCKS Autumn School 2012, LNCS 8453, pp. 67–86, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

68 C.E. Budde et al.

advance, therefore there is no information on how these devices interleave their opera-
tions in the time-line. Observations of discrete values like enabled or disabled buttons,
and observations of continuous values like displayed roll angle in a cell phone, are part
of these systems.

Examples of this kind which need to interact with physical or biological compo-
nents abound and they exceed the modeling capabilities of Markov processes with
continuous-state spaces or continuous time evolution (or both): they also need the con-
sideration of non-determinism. Many formal frameworks have been defined to study
them from a process theory or process algebra perspective [5,6,8,9,14–16,20,21,44,45,
etc.]. A prominent and extensive work on this area is the one that builds on top of the
so-called labeled Markov processes (LMP) [14, 20, 21, 39]. This is due to its solid and
well understood mathematical foundations. An LMP allows for many transition proba-
bility functions (or Markov kernels) leaving each state (instead of only one as in usual
Markov processes). Each transition probability function is a measure ranging on a (pos-
sibly continuous) measurable space, and the different transition probability functions
can be singled out through labels. Thus this model does not consider internal non-
determinism. From the modeling point of view, this is a significant drawback for this
theory since internal non-determinism immediately arises in the analysis of systems,
e.g., because of abstracting internal activity (such as weak bisimulation [37]) or be-
cause of state abstraction techniques (such as in model checking [2, 12]).

Many variants of continuous Markov processes that include internal non-determin-
ism have been defined [5,6,8,9,15,16,45], including a continuous probabilistic variant
of the (strong) bisimulation. Contrarily to LMPs, these models lack the sufficient struc-
ture to ensure that bisimilar models share the same observable behavior. Although [8,9]
deal with the same unstructured type of model, they lift the burden of checking mea-
surability to the semantic tools (such as bisimulation or schedulers). In particular, this
results in the definition of a bisimulation as a relation between measures rather than
states.

Contrarily to [8, 9] we preferred to follow the approach of Desharnais, Panangaden,
et al. and extend LMPs with internal non-determinism using the power of the mathe-
matics provided by measure theory. This led us to develop a theory of non-deterministic
labeled Markov processes (NLMP) [7,10,17,18,48]. An NLMP has a non-deterministic
transition function Ta for each label a that, given a state, it returns a measurable set of
probability measures, rather than only one probability measure as in LMPs.

In this paper, we provide a survey to the theory of labeled Markov processes (LMP)
and its extension with internal non-determinism (NLMP). Moreover, we introduce a
structured version of NLMPs (SNLMP) where action labels are also endowed with a
measurable structure.

The natural notion of identity on measurable spaces is given by the σ-algebra: two
points can be considered indistinguishable if they cannot be separated by the σ-algebra
(i.e. there is no measurable set that contains one point but not the other). As a conse-
quence, it is expected that bisimulation respects this principle in a setting where states
are endowed with a σ-algebra. However, Danos et al. [14] showed that this is not the
case in the LMP model and that there are bisimulation relations that may distinguish
more than what the underlying σ-algebra can distinguish. That is, states that cannot

A Theory for the Semantics of Stochastic 69

be separated by any measurable set (and hence always equated in the σ-algebra) may
not be related by some bisimulation relation. This is awkward since measurable sets
are the smallest distinguishable objects in a σ-algebra. Therefore, this raises the ques-
tion of whether this problem extends to the bisimulation equivalence. To overcome
this, [14] defines the so-called event bisimulation (in opposition to the previously ex-
isting state bisimulation—name which we will use from now on). The same situation
arises on NLMPs. Moreover two candidates for state bisimulation appear if internal
non-determinism is considered [17,18,48]. We recall here the definitions of the bisimu-
lations on the different settings. In addition, we report the relations between the different
bisimulations and try to understand their expressiveness through examples.

Behavioral equivalences like bisimulation have been characterized using logics with
modalities, notably the Hennessy-Milner logic [33] (see also [29]). Similarly, there are
Hennessy-Milner-like logics to completely characterize the different event bisimulation
equivalences in LMPs [14], NLMPs [17,18,48], and SNLMPs [7] which we also present
in this survey and show how they relate among themselves and the other bisimulations.

The next section summarizes some preliminaries on measure theory required to un-
derstand the paper. The rest of the text is structured according to each of the models.
Section 3 reviews the theory of LMPs which deals with label-deterministic models. Sec-
tion 4 reviews the theory of NLMPs which deals with internal non-determinism. Sec-
tion 5 introduces SNLMPs which are a restriction of NLMPs where non-determinism
in general is requested to be structured in a measurable space by endowing the set of
labels with a σ-algebra. The paper concludes in Section 6 by reviewing some additional
results that strongly relates to these models. We remark that the proofs of all results pre-
sented in Section 3 can be found in [14], the proofs of Section 4 can be found in [17]
or, with more detail, in [48], and the proofs of Section 5 can be found in [7]. The results
reported in Section 5 have only appeared as part of the theses [7, 48].

2 Preliminaries on Measure Theory

In this section, we recall some fundamental notions of measure theory that will be useful
throughout the paper.

Given a set S and a collection Σ of subsets of S , we call Σ a σ-algebra iff S ∈ Σ
and Σ is closed under complement and denumerable union. By σ(G) we denote the
σ-algebra generated by the family G ⊆ 2S , i.e., the minimal σ-algebra containing G.
Each element of G is called a generator and G is called the generator set. We call the
pair (S , Σ) a measurable space. A measurable set is a set Q ∈ Σ. Let (L, Λ) and (S , Σ)
be measurable spaces. A measurable rectangle is a set A × B with A ∈ Λ and B ∈ Σ.
The product σ-algebra on L × S is the smallest σ-algebra containing all measurable
rectangles, and is denoted by Λ ⊗ Σ.

A function μ : Σ → [0, 1] is a probability measure if (i) it is σ-additive, i.e.
μ(
⋃

i∈N Qi) =
∑

i∈N μ(Qi) for all countable family of pairwise disjoint measurable sets
{Qi | i ∈ N} ⊆ Σ, and (ii) μ(S) = 1. By δa we denote the Dirac probability measure
concentrated in {a}. Let Δ(S) denote the set of all probability measures over the measur-
able space (S , Σ). We let μ, μ′, μ1,. . . range over Δ(S). Let (S 1, Σ1) and (S 2, Σ2) be two
measurable spaces. A function f : S 1 → S 2 is said to be measurable if for all Q2 ∈ Σ2,

70 C.E. Budde et al.

f −1(Q2) ∈ Σ1, i.e., its inverse image maps measurable sets to measurable sets. In this
case we denote f : (S 1, Σ1)→ (S 2, Σ2) and say that f is Σ1-Σ2 measurable.

Along the article we will often set our examples on Borel σ-algebras. A σ-algebra
is Borel if it is generated by the set of all open sets in a topology. Particularly, the Borel
σ-algebra on the real line is B(R) = σ({(a, b) | a, b ∈ R and a < b}). Similarly, B([0, 1])
is the Borel σ-algebra on the interval [0, 1] generated by the open sets in the interval
[0, 1].

There is a standard construction by Giry [28] to endow Δ(S) with a σ-algebra1 as
follows: Δ(Σ) is defined as the σ-algebra generated by the sets of probability mea-
sures ΔB(Q) � {μ | μ(Q) ∈ B}, with Q ∈ Σ and B ∈ B([0, 1]). If p ∈ [0, 1], we will
write Δ≥p(Q), Δ>p(Q), Δ<p(Q), etc. for ΔB(Q) with B = [p, 1], (p, 1], [0, p), respectively.
It is known that the set {Δ≥p(Q) | p ∈ (Q ∩ [0, 1]),Q ∈ Σ} generates Δ(Σ). We let
ξ, ζ, ξ′, ζ′, ξ1, ζ1, . . . range over Δ(Σ).

3 Labeled Markov Processes

Labeled Markov processes (LMP) were developed in [20, 21] by Desharnais et al. An
LMP has a labeled set of actions where an action represents the interaction with the
environment. Thus, an LMP is a reactive model in which there are different transition
probabilities for each action. In this model, uncertainty is (only) considered to be prob-
abilistic; therefore, the LMP model can be regarded as a generalization of deterministic
processes. The thesis of Josée Desharnais [20] and the book of Prakash Panangaden [39]
contain a thorough study on LMPs.

Definition 1. A labeled Markov process is a triple (S , Σ, {τa | a ∈ L}) where Σ is a
σ-algebra on the set of states S , and for each label a ∈ L, the transition probability
function τa : S → Δ(S) ∪ {0} is a measurable function. Here, we let 0 : Σ → [0, 1] be
the null measure such that 0(Q) = 0 for all Q ∈ Σ.

The value τa(s)(Q) represents the probability of making a transition to a state in
Q provided that the system is in state s and action a has been accepted. Therefore,
the transition probability is actually a conditional probability: the probability of Q is
conditioned to the fact that the system is in state s and that it reacts to action a. Origi-
nally, [20, 39] allow τa(s) to be a subprobability measure (i.e., τa(s)(S) ≤ 1) where the
value 1 − τa(s)(S) represents the probability of refusing a. As we are going to review
other models we prefer to deal only with full probability measures and let τa(s) = 0
indicate that action a is refused at the state s with probability 1.

Example 2. Consider a computer system that measures a movement of a particle in the
real line R. The particle moves according to the dynamics of a Brownian motion, but
the system can only measure the position of the particle at discrete time. We also want
to distinguish whether the particle has passed a particular threshold h ∈ R.

1 The application S �→ Δ(S) gives rise to an endofunctor Δ of the category of measurable spaces
and measurable maps. The base space of Δ(S , Σ) is Δ(S). By an innocuous abuse of notation,
we call Δ(Σ) the σ-algebra of this measurable space; hence Δ(S , Σ) = (Δ(S), Δ(Σ)).

A Theory for the Semantics of Stochastic 71

The movement of the particle is described by a Wiener process which states that if
the particle is observed at position r, the new position after a delay of t time units is
a random variable with distribution N(r, t), i.e., a normal distribution with mean r and
variance t. More precisely, this distribution is defined by

μt
r([l, u]) =

1√
2πt

∫ u

l
e

(x−r)2

2t dx.

To construct the LMP modeling the system, we let R be the set of states with the usual
Borel σ-algebra B(R), where each state indicates the current position of the particle.
The LMP has two types of probability transitions: one that represents the measure of
the position of the particle after n ∈ N time units, and the other that indicates if the
system is below or above the threshold through the labels low and high respectively.
Thus, for each n ∈ N and state r ∈ R, τn(r) = μn

r represents the probability at position r
to read that the particle has jumped to a new position in a given interval after n (discrete)
time units have elapsed. Besides, τlow(r) = if r < h then δr else 0 is used to indicate
whether the system is below or above the threshold; if r is below the threshold τlow(r)
is a self-loop with probability 1, otherwise it refuses action low. Similarly, τhigh(r) =
if r < h then 0 else δr indicates whether the system is above the threshold.

The system is then modeled by the LMP (R,B(R), {τa | a ∈ N ∪ {low, high}}). ��
Probabilistic bisimulation was introduced by Larsen and Skou [35] in a discrete set-

ting very much like the LMP, only that distributions run on discrete sets. This notion has
been adapted by Desharnais et al. in [20, 21] to the continuous case of LMPs. The idea
behind the bisimulation equivalence is that from two equivalent states, an a-transition
should lead with equal probability to any measurable aggregate of equivalence classes
(properly speaking, to any measurable set that results of an arbitrary union of equiva-
lence classes).

Given a relation R ⊆ S × S , a set Q ⊆ S is R-closed if R(Q) ⊆ Q. Notice that if R is
symmetric, Q is R-closed if and only if for all s, t ∈ S such that s R t, s ∈ Q ⇔ t ∈ Q.
Using this definition, a symmetric relation R can be lifted to an equivalence relation in
Δ(S) as follows: μ R μ′ iff for every R-closed Q ∈ Σ, μ(Q) = μ′(Q).

Using this idea Desharnais et al. defined the notion of bisimulation that was called
state bisimulation in [14] to stress the fact that the relation is defined directly on states.

Definition 3. R ⊆ S × S is a state bisimulation on the LMP (S , Σ, {τa | a ∈ L}) if it is
symmetric and for all s, t ∈ S , a ∈ L, s R t implies that τa(s) R τa(t).

We say that two states s and t are state bisimilar (or state bisimulation equivalent),
denoted by s ∼s t, if there is a state bisimulation R such that s R t.

Relation ∼s can be proved to be a state bisimulation and also an equivalence rela-
tion [20, 21].

The definition of state bisimulation is point-wise and not event-wise as one should
expect in a measure-theoretic realm, since R has no measurability restrictions. Indeed,
as shown in [14], a state bisimulation can distinguish more states than what the under-
lying σ-algebra can distinguish. Suppose the set of states {1, 2, 3, 4}with the σ-algebra
{∅, {1, 2}, {3, 4}, {1, 2, 3, 4}}. No matter what the transition function is, the identity re-
lation is a state bisimulation. However, the identity relation distinguishes states that

72 C.E. Budde et al.

cannot be distinguished through measurable sets (i.e., events) on theσ-algebra. Take for
instance states 1 and 2: they are not related by the identity relation but they cannot be
distinguished through transition probability functions because the transition probability
function has to be measurable with respect to the σ-algebra.

The question is whether this problem extends to the state bisimulation equivalence
∼s. To understand the problem, [14] introduced a measure-theory aware notion of be-
havioral equivalence.

Definition 4. An event bisimulation on an LMP (S , Σ, {τa | a ∈ L}) is a sub-σ-algebra
Ξ of Σ s.t. (S , Ξ, {τa | a ∈ L}) is an LMP.

We extend the notion of event bisimulation to relations. We say that a relation R is
an event bisimulation if there is an event bisimulation Ξ such that R = R(Ξ), where
R(Ξ) � {(s, t) ∈ S × S | ∀Q ∈ Ξ : s ∈ Q ⇔ t ∈ Q}. More generally, we say that two
states s, t ∈ S are event bisimilar, denoted by s ∼e t, if there is an event bisimulation Ξ
such that s R(Ξ) t. The fact that ∼e is an equivalence relation is an immediate corollary
of Theorem 5.

The article [14] shows that R is a state bisimulation iff Σ(R), defined by Σ(R) =
{Q ∈ Σ | Q is R-closed}, is an event bisimulation. This is an important result that leads
to prove that the largest state bisimulation ∼s is also an event bisimulation. That is
∼s ⊆ ∼e.

Another way to understand the semantics of a process is through a modal logic. The
semantics of a process is defined by the set of properties that it satisfies. Particularly, a
formula in a Hennessy-Milner-like logic defines a possible observation of the execution
of the system [29, 33].

Besides, it would be useful if the semantics from the point of view of the logic agrees
with that defined by the bisimulation. Thus, if two states are not bisimilar there must be
an observation (a formula) that distinguishes them.

In [20,21] a variant of the Hennessy-Milner logic for LMPs is introduced. The logic,
that we call L0, is given by the following productions:

ϕ ≡ � | ϕ1 ∧ ϕ2 | 〈a〉qϕ

where a ∈ L and q ∈ Q ∩ [0, 1].
Formulas in L0 are interpreted as sets of states. Thus, a formula ϕ is satisfied by a

state s if and only if s ∈ �ϕ�.

��� := S �ϕ1 ∧ ϕ2� := �ϕ1� ∩ �ϕ2� �〈a〉qϕ� := {s ∈ S : τa(s, �ϕ�) ≥ q}

Notice, in particular, that 〈a〉qϕ is satisfied by a state s if there is an a-labeled transition
from s reaching a set of states that satisfy ϕ with probability at least q. Therefore,
for the semantics to be well defined, �ϕ� should be measurable for any formula ϕ. To
show this, first notice that all operations involved on the definition of the semantics
preserve measurability (in particular τa is a measurable function). Then, by structural
induction on the formula ϕ, it is straightforward to conclude that �ϕ� is measurable. Let
�L0� := {�ϕ� : ϕ ∈ L0}. By the previous observation, �L0� ⊆ Σ.

A Theory for the Semantics of Stochastic 73

It has been proved in [20, 21] that if the set of states is an analytic space2 and the set
of labels L is countable, then L0 characterizes state bisimulation; that is, for any two
given states s, t ∈ S , s ∼s t if and only if s R(L0) t (i.e., for all ϕ ∈ L0, s ∈ �ϕ� ⇔ t ∈
�ϕ�). Besides, [14] showed that L0 completely characterizes the event bisimulation in
general. More precisely, they proved that σ(�L0�), the σ-algebra generated by �L0�, is
the smallest σ-algebra that is also an event bisimulation.

Summarizing the results, we have:

Theorem 5. For every LMP (S , Σ, {τa | a ∈ L}), ∼s ⊆ ∼e = R(L0). Moreover, if (S , Σ)
is an analytic Borel space and L is countable then ∼s = ∼e = R(L0).

It was shown in [42] that this result does not generalize to arbitrary measurable spaces.
As we mentioned, an LMP is an inherently deterministic model in the sense that

the label determines a unique transition probability function. Thus, this model does not
consider internal non-determinism. From the process algebra point of view, this is a
significant drawback of this theory since internal non-determinism immediately arises
in the modeling and analysis of systems. For example, internal non-determinism arises
by abstracting internal activity (to later use weak bisimulation [37]) or by using state
abstraction techniques (such as in model checking [12]). This can be seen more clearly
in the next example.

Example 6. This time we consider two computer systems, each measuring a different
particle moving in the real line. One of them moves half as fast as the other, and for this
reason, the system that monitors this new particle, also samples half as fast. These two
systems can be modeled in a single LMP where the state space is defined by R × {1, 2}
and each state (r, k) indicates that the particle k is in position r. As in Ex. 2, we also
consider a threshold h.

The complete LMP is defined by: (R×{1, 2},B(R×{1, 2}), {τa | a ∈ N∪{low, high}}),
where τlow(r, k) = if r < h then δ(r,k) else 0, τhigh(r, k) = if r < h then 0 else δ(r,k), and
for all n ∈ N, τn(r, 1) = μn

r ◦ f −1
1 , τ2n(r, 2) = μn

r ◦ f −1
2 , and τ2n−1(r, 2) = 0, with

fk(x) = (x, k) for all x ∈ R.
Notice that the probability of the first particle going beyond the threshold is the

same as the probability of the second particle going beyond the threshold if both are
at the same position (i.e., in states (r, 1) and (r, 2) respectively) and the time to reach
the threshold is not important. This is easy to see since each τn transition of the fast
particle (k = 1) can be matched with a τ2n transition of the slow particle (k = 2) and
vice versa. Nevertheless, it is also clear that (r, 1) and (r, 2) are not (event nor state)
bisimilar. In particular, if q = μn

h−d([h,∞)), (h − d, 1) ∈ �〈n〉q〈high〉1�� but (h − d, 2) �
�〈n〉q〈high〉1��.

The distinction occurs only because the label n ∈ N (the elapsed time) is observ-
able. Abstracting from time would require hiding this class of label, and any reasonable
hiding operation will immediately end up with an object not expressible in terms of an
LMP. ��

2 A topological space is Polish if it is separable and completely metrizable. Examples of Polish
spaces are the Euclidean spaces Rn and all countable discrete spaces. Polish spaces are closed
under countable product, and hence AN (with A a countable discrete space) is Polish. Finally,
an analytic space is the continuous image of a Polish space.

74 C.E. Budde et al.

4 Non-deterministic Labeled Markov Processes

Non-deterministic Labeled Markov Processes (NLMP) were introduced in [17, 18] as
a generalization of LMPs that enable the modeling of internal non-determinism. That
is, in an NLMP, two different but equally labeled transition probabilities are allowed to
leave the same state.

There have been several attempts to define non-deterministic continuous probabilis-
tic transition systems and all of them are straightforward extensions of (simpler) discrete
versions. There are two fundamental differences in the NLMP model. The first one is
that the non-deterministic transition function Ta now maps states to measurable sets of
probability measures rather than arbitrary sets as previous approaches do. This is mo-
tivated by the fact that the non-determinism has to be resolved using schedulers. If we
allowed the target set of states to be an arbitrary subset (as in [6,9,15]), the system as a
whole could suffer from non-measurability issues, which would mean that it could not
be quantified. (Rigorously speaking, labels should also be provided with a σ-algebra in
order to define schedulers, but we omit it in this first approach.) The second difference is
inspired by the definition of LMP: we ask that, for each label a ∈ L, Ta is a measurable
function. One of the reasons for this restriction is to have well defined modal operators
of a probabilistic Hennessy-Milner logic, like in the LMP case.

Definition 7. A non-deterministic labeled Markov process (NLMP for short) is a struc-
ture (S , Σ, {Ta | a ∈ L}) where Σ is a σ-algebra on the set of states S , and for each label
a ∈ L, Ta : S → Δ(Σ) is measurable.

For the requirement that Ta is measurable, we need to endow Δ(Σ) with a σ-algebra.
This is a key construction for the development of the theory of NLMPs.

Definition 8. H(Δ(Σ)) is the minimal σ-algebra containing all sets Hξ � {ζ ∈ Δ(Σ) |
ζ ∩ ξ � ∅} with ξ ∈ Δ(Σ).

This construction is similar to that of the Effros-Borel spaces [34] and resembles
the so-called hit-and-miss topologies [38]. Note that the generator set Hξ contains all
measurable sets that “hit” the measurable set ξ. Also observe that T−1

a (Hξ) is the set of
all states that “hit” the set of measures ξ through label a (i.e., T−1

a (Hξ) = {s | Ta(s)∩ξ �
∅}). This forms the basis to existentially quantify over the non-determinism, and it is
fundamental for the behavioral equivalences and the logic.

The next two examples (inspired by an example in [8]) show why Ta is required to
map into measurable sets and to be measurable. For these examples we let the state
space and σ-algebra be the real unit interval with the standard Borel σ-algebra.

Example 9. Let V = {δq | q ∈ V}, where V is a non-measurable set in [0, 1] (that is,
V ⊆ [0, 1] and V � Σ). It can be shown thatV is not measurable in Δ(Σ). Let Ta(s) =V
for all s ∈ [0, 1]. The resolution of the internal non-determinism by means of so-called
schedulers (also adversaries or policies) [41, 46], would require to assign probabilities
to all possible choices. This amounts to measure the non-measurable set Ta(s). This is
why we require that Ta maps into measurable sets. ��
Example 10. Let Ta(s) = {μ} for a fixed measure μ, and let Tb(s) = if (s ∈ V) then
{δ1} else ∅, for every s ∈ [0, 1], with V being a non-measurable set. Notice that both

A Theory for the Semantics of Stochastic 75

Ta(s) and Tb(s) are measurable sets for every s ∈ [0, 1]. Assume that there is a scheduler
that chooses to first do a and then b starting at some state s. The probability under such
scheduler of reaching state 1 after preforming both transitions cannot be measured since
it requires to apply μ to the set T−1

b (HΔ(S)) = V which is not measurable. Besides, we
will later need that sets T−1

a (Hξ) are measurable so that the semantics of the logic L1

maps into measurable sets. ��
Notice that an LMP can be regarded as an NLMP without internal non-determinism,

that is, an NLMP in which Ta(s) is either a singleton or the empty set for all a ∈ L and
s ∈ S . In fact, an LMP can be encoded as an NLMP by taking Ta(s) = {τa(s)} \ {0}. For
this, it is necessary that singletons {μ} are measurable in Δ(Σ) for the NLMP to be well
defined. (In general, it suffices that Σ is countably generated to ensure that singleton
sets are measurable [17].) Moreover, it is also necessary that function Ta is measurable,
which is actually the case. Indeed, it is not difficult to verify that Ta is measurable iff τa

is measurable [48].

Example 11. Taking the previous definition, the LMP of the two particles moving on
the real line of Ex. 6, can be translated into the NLMP (R × {1, 2},B(R × {1, 2}), {Ta |
a ∈ N ∪ {low, high}}), where Tlow(r, k) = if (r < h) then {δ(r,k)} else ∅, Thigh(r, k) =
if (r < h) then ∅ else {δ(r,k)}, and for all n ∈ N, Tn(r, 1) = {μn

r ◦ f −1
1 }, T2n(r, 2) = {μn

r ◦
f −1
2 }, and T2n−1(r, 2) = ∅, with fk(x) = (x, k) for all x ∈ R.

Notice that if we abstract the time just like in process algebra, then we obtain the
NLMP (R × {1, 2},B(R × {1, 2}), {Ta | a ∈ {ε, low, high}}), with Tlow and Thigh as before
and Tε(r, k) = {μn

r ◦ f −1
k | n ∈ N}. Clearly this last set is measurable in Δ(B(R × {1, 2}))

since it is countable (singleton sets are measurable in Δ(B(R×{1, 2})), see [17]). Besides,
it can be proved that Tε is measurable which shows that this abstraction defines a proper
NLMP. ��

The original definition of bisimulation given by Larsen and Skou [35] has been gen-
eralized to a continuous setting in, e.g., [5,6,15,16,45]. These definitions closely resem-
ble the definition of Larsen and Skou, the only difference being that two measures are
considered equivalent if they agree in every measurable union of equivalence classes
induced by the relation. In our setting, this definition can be instantiated as follows

Definition 12. A relation R is a state bisimulation on an NLMP (S , Σ, {Ta | a ∈ L}) if it
is symmetric and for all a ∈ L, s R t implies that for all μ ∈ Ta(s), there is μ′ ∈ Ta(t)
s.t. μ R μ′. We say that s, t ∈ S are state bisimilar, denoted by s ∼s t, if there is a state
bisimulation R such that s R t.

The relation ∼s is the largest state bisimulation and it is also an equivalence rela-
tion [17, 48]. The proof of this follows the standard strategy of the classic bisimulation
(see [37]). Apart from the probabilistic treatment, it only differs in that the composition
R ◦ R′ is granted to be state bisimulation if R and R′ are reflexive state bisimulations.
(If one of R or R′ is not reflexive, R ◦ R′ may not be a state bisimulation.) Besides, it
is easy to show that a state bisimulation on an LMP is also a state bisimulation on the
encoding NLMP and vice versa.

The next example revisits Example 6. Using the timed abstracted version of Ex-
ample 11, it shows that it is possible to prove that the two particles behave the same
(modulo state bisimulation).

76 C.E. Budde et al.

Example 13. Take the time-abstracted NLMP of Ex. 11, and let R = {((r, 1), (r, 2)) | r ∈
R}. Notice that any measurable R-closed set has the form QB = B × {1, 2} for some B ∈
B(R). Hence μn

r ◦ f −1
1 (QB) = μn

r (B) = μn
r ◦ f −1

2 (QB) and therefore (μn
r ◦ f −1

1) R (μn
r ◦ f −1

2).
Since μ ∈ Tε(r, 1) implies that μ = μn

r ◦ f −1
1 for some n, then there is some μ′ ∈ Tε(r, 2)

such that μ R μ′ (in fact, μ′ = μn
r ◦ f −1

2). From here (and the cases of Tlow and Thigh,
which we omit) it follows that R is a state bisimulation. ��

In the case of an LMP (S , Σ, {τa | a ∈ L}), an event bisimulation is a sub-σ-algebra
Ξ ⊆ Σ such that all transition probability functions are Ξ-Δ(Ξ) measurable. We state
our generalization following the same idea.

Definition 14. An event bisimulation on an NLMP (S , Σ, {Ta | a ∈ L}) is a sub-σ-
algebra Ξ of Σ s.t. Ta : (S , Ξ)→ (Δ(Σ),H(Δ(Ξ))) is measurable for each a ∈ L.

Note that Ta is the same function from S to Δ(Σ) only that, for Ξ to be an event bisimu-
lation, it should be measurable from Ξ to H(Δ(Ξ)). Here, H(Δ(Ξ)) is the sub-σ-algebra
of H(Δ(Σ)) generated by {Hξ | ξ ∈ Δ(Ξ)}.

Just like for LMPs, the notion of event bisimulation can be extended to relations: R is
an event bisimulation if there is an event bisimulation Ξ s.t. R = R(Ξ). More generally,
we say that two states s, t ∈ S are event bisimilar, denoted by s ∼e t, if there is an
event bisimulation Ξ such that s R(Ξ) t. The fact that ∼e is an equivalence relation is an
immediate corollary of Theorem 16 given below. We remark that an event bisimulation
on an LMP is also an event bisimulation on the encoding NLMP and vice versa.

For NLMPs, we introduce a third kind of bisimulation that we call hit bisimulation3.
Rather than looking point-wise at probability measures as state bisimulations do, the
definition of the hit bisimulation follows the idea of Def. 8 and verifies that both Ta(s)
and Ta(t) hit the same measurable sets of probability measures which measure only
R-closed sets.

Definition 15. A relation R ⊆ S × S is a hit bisimulation on the NLMP (S , Σ, {Ta |
a ∈ L}) if it is symmetric and for all a ∈ L, s R t implies that, for all ξ ∈ Δ(Σ(R)),
Ta(s)∩ ξ � ∅⇔ Ta(t)∩ ξ � ∅. We say that s, t ∈ S are hit bisimilar, denoted by s ∼h t,
if there is a hit bisimulation R such that s R t.

The relation ∼h is the largest hit bisimulation and an equivalence relation. Hit bisim-
ulations relate to the event bisimulations in NLMPs very much like the the state bisim-
ulations relate to the event bisimulations in LMPs. In particular, R is a hit bisimulation
if and only if Σ(R) is an event bisimulation. This is indeed an important result that is
central to eventually prove that ∼h is also an event bisimulation and hence ∼h ⊆ ∼e. The
fact that ∼h is an equivalence relation is actually a consequence of the fact that it is also
an event bisimulation (every event bisimulation is an equivalence relation directly from
its definition). The details of all these results appeared in [17, 48].

A state bisimulation R is also a hit bisimulation. The proof of this relies on the fact
that if ξ ∈ Δ(Σ(R)), μ ∈ ξ and μ R μ′, then μ′ ∈ ξ. The rest of the proof is straightforward
from the definitions. An immediate consequence is that ∼s ⊆ ∼h. As we will see later,
the inclusion is proper.

3 In our original works [17, 18, 48], we called the state and hit bisimulations, “traditional” and
“state” respectively. We are changing the names here as we find them more appropriate.

A Theory for the Semantics of Stochastic 77

Nevertheless both notions of bisimulation agree on NLMPs that are image denumer-
able. That is, a hit bisimulation R is also a state bisimulation on any NLMP satisfying
that for all a ∈ L, s ∈ S , Ta(s) is denumerable. As a consequence of this, a state bisim-
ulation on an LMP is a hit bisimulation on the translated NLMP and vice versa, since
the translated NLMP is deterministic and hence image denumerable (|Ta(s)| ≤ 1 for all
a ∈ L and s ∈ S).

Like for LMPs, we can also provide a Hennessy-Milner-like logic for NLMPs that
characterizes event bisimulation in general and all the bisimulations under some condi-
tions. As we will see in Ex. 18, L0 is not sufficiently expressive to characterize event
bisimulation in NLMPs. Therefore, we need a richer logic. The logic we present below
was introduced in [17,18] and is related to the logic of Parma and Segala [40]. The main
difference is that we consider two kinds of formulas: one that is interpreted on states,
and another that is interpreted on measures. The syntax is as follows,

ϕ ≡ � | ϕ1 ∧ ϕ2 | 〈a〉ψ
ψ ≡ ∨i∈I ψi | ¬ψ | [ϕ]≥q

where a ∈ L, I is a denumerable index set, and q ∈ Q ∩ [0, 1]. We denote by L1 the
set of all formulas generated by the first production and by L1

Δ the set of all formulas
generated by the second production.

The semantics is defined with respect to an NLMP (S , Σ, T). Formulas in L1 are
interpreted as sets of states, and formulas in L1

Δ are interpreted as sets of measures on
the state space as follows,

��� = S �
∨

i∈I ψi� =
⋃

i�ψi�

�ϕ1 ∧ ϕ2� = �ϕ1� ∩ �ϕ2� �¬ψ� = �ψ�c

�〈a〉ψ� = T−1
a (H�ψ�) �[ϕ]≥q� = Δ≥q(�ϕ�)

In particular, notice that 〈a〉ψ is satisfied at a state s whenever there is some measure μ ∈
Ta(s) that satisfies ψ, and that [ϕ]≥q is satisfied by a measure μwhenever μ(�ϕ�) ≥ q. As
in the case of LMPs, the sets �ϕ� and �ψ� are measurable in Σ and Δ(Σ), respectively.
For the rest of the section, fix �L1� = {�ϕ� | ϕ ∈ L1}.

Note that some other operators can be encoded as syntactic sugar. For instance, we
can define [ϕ]>r ≡ ∨q∈Q∩[0,1]∧q>r[ϕ]≥q for any real r ∈ [0, 1], and [ϕ]≤r ≡ ¬[ϕ]>r.

It can be shown that L1 characterizes event bisimulation for NLMPs. Following the
lines of the proof for the logical characterization of event bisimilarity for LMPs, it can
be proved that σ(�L1�) is the smallest σ-algebra that is also an event bisimulation.
A mild generalization of the concept of event bisimulation, namely families of sets
being stable4 plays a role in the proof; it is immediate from the definition that stable
σ-algebras are exactly the event bisimulations. It is shown in [17, Sect. 5] that �L1�
is the smallest stable family of subsets that is closed under finite intersections. A key
lemma that appears in [47] ensures that σ(C) is stable whenever C is, and the result
follows:

4 The family C ⊆ Σ is stable for an NLMP (S , Σ,T) if for all a ∈ L and ξ ∈ Δ(C), T−1
a (Hξ) ∈ C.

This notion of stability was further generalized by Doberkat [25] to the concept of congruence
for stochastic systems.

78 C.E. Budde et al.

Theorem 16. The logicL1 completely characterizes event bisimulation. In other words,
R(L1) = ∼e.

A consequence of this theorem together with the previously discussed relations be-
tween the different bisimulations, is that both state and hit bisimulation are sound for
L1, i.e., they preserve the validity of formulas.

Theorem 17. ∼s ⊆ ∼h ⊆ ∼e = R(L1).

As we will review in Examples 20 and 21, these inclusions are proper in general.
Nevertheless, for image-finite NLMPs over analytic spaces it can be proved that the
same logic is complete for state bisimilarity, and hence all notions are the same. (An
NLMP is image finite if Ta(s) is finite for all a ∈ L and s ∈ S .) In fact, the sub-logic of
L1 defined by

ϕ ≡ � | ϕ1 ∧ ϕ2 | 〈a〉∧n
i=1[ϕi]��iqi (1)

where ��i ∈ {>, <} and qi ∈ Q ∩ [0, 1], is complete for ∼s under those restriction. Let
L1− be the set of all formulas generated by (1).

It should be noted that the expression 〈a〉∧n
i=1[ϕi]��iqi may not be expressed as a

conjunction of formulas 〈a〉[ϕi]��iqi because the probabilistic bounds must be satisfied
by the same non-deterministic transition. The next example from [10] illustrates this
fact.

Example 18. Take the discrete NLMPs depicted in Fig. 1. States s and t are not bisimilar
since given a measure μ ∈ Ta(s), there is no μ′ ∈ Ta(t) such that μ(Q) = μ′(Q) for all
Q ∈ {{x}, {y}, {z}} (which are the only relevant possible R-closed sets). A logic having a
modality that can only describe one behavior after a label will not be able to distinguish
between s and t. For example, �〈a〉[ϕ]>q� = {w | Ta(w) ∩ Δ>q(�ϕ�) � ∅} will always
have s and t together, or none of them. Observe that negation, denumerable conjunction
or disjunction, do not add any distinguishing power (on an image finite setting).

s

a

��

a

��

a

��

t
a

�� a

�� a

��

μ1
μ2 μ′0 μ′1

μ0 xb
��

y

c

�� z d
		

μ′2

μ0 μ1 μ2 μ′0 μ
′
1 μ

′
2

{x} 1
3

2
3 0 2

3
1
3 0

{y} 0 1
3

2
3 0 2

3
1
3

{z} 2
3 0 1

3
1
3 0 2

3

Fig. 1. s and t are not bisimilar

Notice, however, that the L1− formula 〈a〉([〈b〉�]< 2
3
∧ [〈c〉�]> 1

3
) is satisfied by s but

not by t. ��
The essential need for this new modal operator also shows that ourσ-algebra H(Δ(Σ))

in Def. 8 cannot be simplified to σ({HΔB(Q) : B ∈ B([0, 1]),Q ∈ Σ}). States s and t in the

A Theory for the Semantics of Stochastic 79

example above should be observationally distinguished from each other. Formally, this
amounts to saying that there must be some label a and some measurable Θ ∈ H(Δ(Σ))
such that T−1

a (Θ) separates s from t. Therefore, the same must be true for some genera-
tor Θ, but this does not hold for the family {HΔB(Q) : B ∈ B([0, 1]),Q ∈ Σ}.

The proof that our logic is complete for state bisimilarity follows from [17, Lemma
5.8] that states that given an NLMP (S , Σ, T) with (S , Σ) analytic, if we have a countable
logic L with �L� ⊆ Σ satisfying some local criteria, then that logic must characterize ∼s

completely. (Logic L is countable if the number of formulas in L is countable.) In our
case,L1 is not countable but the sub-logicL1− given by (1) satisfies all the requirements
and hence ∼s = R(L1−). Since R(L1) ⊆ R(L1−), by Theorem 17 we have the following
result.

Theorem 19. Let (S , Σ, T) be an image finite NLMP with (S , Σ) being analytic. For all
s, t ∈ S ,

s ∼s t ⇔ s ∼h t ⇔ s ∼e t ⇔ s R(L1) t

There are two delimiting results on possible generalizations of this theorem. First, the
hypothesis of an analytic state space cannot be dropped completely (even for deter-
ministic processes). This was seen in [42], where it is shown that state bisimilarity for
LMPs is not characterized by L0 in general. Secondly, a generalization of the same ar-
guments to image-countable processes is not feasible since there is no countable logic
having formulas with measurable extensions that characterize state bisimilarity on such
processes [43].

In fact, as we have already anticipated, the inclusions in Theorem 17 are proper in
the general case. In the following, we construct counterexamples over standard Borel
spaces witnessing that all our notions of bisimilarity are different in the case of uncount-
able non-determinism.

Moreover, it suffices to consider a non-probabilistic variant of NLMP, in which tran-
sitions only map into a set of Dirac measures. These structures look very much like
LTSs, with the additional requirement that the set of states is endowed with a σ-algebra
that the transition should respect. More formally, let (S , Σ) be a standard Borel space
and δ(Q) = {δs | s ∈ Q} for each Q ∈ Σ. An NLMP S = (S , Σ, {Ta | a ∈ L}) is called
non-probabilistic if for all a ∈ L and s ∈ S , Ta(s) ⊆ δ(S).

Example 20. We will first construct a non-probabilistic NLMP witnessing the fact that
state bisimilarity is strictly finer than the other notions. Consider the standard Borel
space (S 1, Σ1) = ([0, 1] ∪ [2, 3] ∪ {s, t, x},B([0, 1] ∪ [2, 3] ∪ {s, t, x})) where s, t, x ∈
R \ [0, 3] are different. Let V be a non-Borel subset of [2.5, 3]. Clearly, [0, 1] is equinu-
merous with [2, 3] \ V; pick a bijection f between them. Now, let L1 = {a} ∪ [0, 1] be
the set of labels and let S1 = (S 1, Σ1, {Ta : a ∈ L1}) be non-probabilistic such that

Ta(s) = {δd | d ∈ [2, 3]} Tr(r) = Tr(f (r)) = {δx} if r ∈ [0, 1]

Ta(t) = {δd | d ∈ [0, 1]} Tc(y) = ∅ otherwise.

Now, take F to be
{{s, t}, {r, f (r)}r∈[0,1]

}
and R = R(σ(F)). It is not hard to prove that S1

is a non-probabilistic NLMP, σ(F) is an event bisimulation and R is a hit bisimulation
that relate s and t. Also, it can be seen that s and t are not state bisimilar. But this shows
that ∼s differs from ∼e and ∼h. ��

80 C.E. Budde et al.

Example 21. By modifying slightly S1 we can show that the largest event bisimulation
∼e is not contained in ∼h. Take V to be the interval (2.5, 3] and let (S 2, Σ2) = (S 1, Σ1).
We complete the construction of a non-probabilistic NLMP S2 by picking any bijection
f between [0, 1] and [2, 2.5]. The transition is defined just like for S1 only that using
the the new f . We also use family F but defined with the new f . The same arguments
for S1 go through here, showing that s ∼e t but s �∼h t. ��

Some observations on the counterexamples are in order. First, counterexample S1

relies on the fact that hit bisimulation cannot distinguish a non-measurable set V while
state bisimulation can. From our point of view, such distinction should not be possible
since V has no measure. Second, counterexample S2 makes a difference on the measur-
able set V that the event bisimulation cannot distinguish. In our opinion, such distinc-
tion should be possible since some scheduler may lead to such set of states with certain
probability. Note that in this example, states in V do not allow the system to reach state
x from s, while x can always be reached from t. In particular, if the scheduler chooses
uniformly the branching on the a-transition in both cases, the system starting from s will
deadlock with probability 0.5 immediately while no deadlock is possible after a when
starting from t. In this sense, we argue that hit bisimulation is the most appropriate
definition.

Somehow, this is disappointing since logic L1 has a natural definition but, as it com-
pletely characterizes event bisimulation, it will not be able to test the presence of states
like those in V in S2. This is due to the fact that the modality 〈a〉_ can only test one
transition at a time and, together with the other operators, any L1 formula can only test
countably many transitions at a time. Notice that a state in the set V can only be distin-
guished through a formula testing that no action (in the uncountable set [0, 1]) can be
performed.

Therefore, both examples call for adding structure to the set of labels on the NLMP.
In the first case, endowing the set of labels with a σ-algebra exclude the “bad behaved”
NLMPs like S1 from the set of definable objects. In the second case, this will allow to
define a richer logic that can test measurable sets of labels in a single formula. Regard-
less of these situations, a σ-algebra on the labels is also necessary for the definition of
schedulers and probabilistic trace semantics [48].

5 Structured Non-deterministic Labeled Markov Processes

In view of the previous observations we developed a variant of NLMPs that requires that
the set of labels has a measurable space associated. Since one of the aims of introducing
structure on labels is to be able to define schedulers that resolve the (continuous) non-
determinism of the model, we need to adapt the transition probability function to the
new setting so that the different measurability aspects interact properly.

First, notice that a transition label is intended to represent the occurrence of a single
action. Therefore, we will assume that, if L is the set of labels and Λ its associated
σ-algebra, all singleton subsets of L are measurable in Λ.

Recall that a scheduler is a function that, given a particular execution history of
the system, randomly selects a transition from those enabled at the last state of the
execution. That is, given the fact that the execution finishes at state s in a given NLMP,

A Theory for the Semantics of Stochastic 81

the scheduler has to randomly chose first a label a and then a measure in Ta(s). More
precisely, a scheduler will have to randomly choose an element in θ = {(a, μ) | μ ∈
Ta(s)}. So, we actually need θ to be measurable in Λ ⊗ Δ(Σ).

Therefore, a structured NLMP has a single transition function T : S → Λ ⊗ Δ(Σ) that
assigns to each state a measurable set of pairs of label-probability measure on states.
As in the case of LMP and NLMP, we will also need that the transition function is a
measurable mapping. Hence, we need to endow Λ⊗Δ(Σ) with a σ-algebra. We proceed
in a similar way to Def. 8.

Definition 22. H(Λ ⊗ Δ(Σ)) is the smallest σ-algebra containing all sets Hλ×ξ = {θ ∈
Λ ⊗ Δ(Σ) | θ ∩ (λ × ξ) � ∅}, with λ ∈ Λ and ξ ∈ Δ(Σ).

Here we follow a slightly different approach to that of Def. 8 by taking only hit sets
induced by rectangles rather than arbitrary measurable sets in the product σ-algebra.

Now, we can formally define the structured version of NLMPs:

Definition 23. A structured non-deterministic labeled Markov process (SNLMP for
short) is a structure (S , Σ, L, Λ, T) where Σ is a σ-algebra on the set of states S , Λ
is a σ-algebra on the set of labels L so that {a} ∈ Λ for all a ∈ L, and T : S → Λ ⊗ Δ(Σ)
is measurable.

An SNLMP can be straightforwardly encoded as an NLMP by taking Ta(·) = T (·)|a,
where θ|a � {μ ∈ Δ(S) | (a, μ) ∈ θ} is the a-section of θ, known to be measurable if
θ is measurable. Also, it is not difficult to see that, in our setting, the section seen as a
function (·)|a is a measurable function. This ensures the required properties of Ta. As it
can be expected, NLMPs can not be encoded as SNLMPs in general. This is confirmed
in the following example.

Example 24. Consider the NLMP S1 of Ex. 20. To translate it into an SNLMP, take
T (d) = {(a, μ) | μ ∈ Ta(d)} for all d ∈ S 1. Notice that

T (s) = {a} × {δd | d ∈ [2, 3]} T (r) = T (f (r)) = {(r, δx)} if r ∈ [0, 1]

T (t) = {a} × {δd | d ∈ [0, 1]} T (y) = ∅ otherwise.

Though clearly T (d) is a measurable set for any d ∈ S 1, T is not a measurable function.
In effect, T−1(H[0,1]×Δ(S)) = {d | T (d)∩ ([0, 1]× Δ(S)) � ∅} = [0, 1]∪ ([2, 3] \ V) which
is not measurable, since V was chosen to be a non-Borel subset of [2.5, 3]. ��
Example 25. Notice, however, that S2 in Ex. 21 can be encoded as an SNLMP provided
function f −1 is measurable. This is immediate after observing that

T−1(Hλ×ξ) = {s | a ∈ λ ∧ {δd | d ∈ [2, 3]} ∩ ξ � ∅}
∪ { t | a ∈ λ ∧ {δd | d ∈ [0, 1]} ∩ ξ � ∅}
∪ {d | d ∈ λ ∪ f (λ) ∧ δx ∈ ξ} ��

All bisimulations introduced for NLMPs have their counterpart in SNLMPs. In fact,
state bisimulation and hit bisimulation are defined exactly in the same way as for
NLMPs by taking Ta(·) = T (·)|a. For the event bisimulation, we also have to consider
the fact that, in addition to states, labels are also observed through events.

82 C.E. Budde et al.

Definition 26. An event bisimulation on an SNLMP (S , Σ, L, Λ, T) is a sub-σ-algebra
Ξ of Σ s.t. T : (S , Ξ)→ (Λ ⊗ Δ(Σ) , H(Λ ⊗ Δ(Ξ))) is measurable.

Just like for LMPs and NLMPs, the notion of event bisimulation can be extended to
relations and the largest event bisimulation relation ∼e can be analogously defined.

This way of defining event bisimulation raises the question on why not redefining
also the hit bisimulation so that it considers the new hit sets containing pairs of labels
and probability measures as in Def. 22. It turns out that this variant does not alter the
definition of hit bisimulation as we state in the following.

Theorem 27. Consider the SNLMP (S , Σ, L, Λ, T) and let R ⊆ S × S be a symmetric
relation over states. The following characterizations for R are equivalent:

(1) if s R t then T (s)|a ∩ ξ � ∅⇔ T (t)|a ∩ ξ � ∅, for all a ∈ L and ξ ∈ Δ(Σ(R));
(2) if s R t then T (s) ∩ (λ×ξ) � ∅⇔ T (t) ∩ (λ×ξ) � ∅, for all λ ∈ Λ and ξ ∈ Δ(Σ(R));
(3) if s R t then T (s) ∩ θ � ∅⇔ T (t) ∩ θ � ∅, for all θ ∈ Λ ⊗ Δ(Σ(R)).

Clearly (3) implies (2) which implies (1). The proof that (1) implies (3) relies on the
fact that (({a}×Δ(S)) ∩ θ)|a ∈ Δ(Σ(R)). Notice that (1) is in fact the same definition of
hit bisimulation as given in Def. 15 interpreting Ta as T (·)|a.

All results presented for the different bisimulations on NLMPs repeat on SNLMPs.
In particular, it also holds that R is a hit bisimulation if and only if Σ(R) is an event
bisimulation (with the new definition of event bisimulation). Details can be found in [7].

Schedulers aside, the other reason to define SNLMPs was motivated by Ex. 21 in
which the logic L1 failed to distinguish states s and t in S2. As we saw in Ex. 25, S2 is
also an SNLMP. Therefore we would like to define a new logic that can distinguish s
and t. To understand the difference, notice that t can perform and a-transition and reach
a state where no transition labeled with r ∈ [0, 1] can be performed with probability 1.
This behavior could be described by a formula like 〈a〉¬[〈[0, 1]〉[�]≥1]≥1.

Indeed, the logicL2 is the same logic asL1 where the modal construct 〈a〉ψ has been
replaced by 〈λ〉ψ with λ ∈ Λ. The semantics of this new operator is given by

�〈λ〉ψ� � T−1
(
Hλ×�ψ�

)
.

The semantics for the rest of the operations of L2 are defined just like for L1. Again,
�ψ� is measurable for all ϕ ∈ L2.

Because singletons are measurable in Λ, 〈{a}〉ψ ∈ L2 provided a ∈ L and ψ ∈ L2 (we
will use 〈a〉ψ as a shorthand). ThereforeL2 is at least as expressive asL1. Moreover, it is
strictly more expressive since t ∈ �〈a〉¬[〈[0, 1]〉[�]≥1]≥1�but s � �〈a〉¬[〈[0, 1]〉[�]≥1]≥1�
and hence L2 can distinguish states s and t in S2.

It can be shown that L2 characterizes the event bisimulation for SNLMPs. The proof
follows the same strategy as that of Theorem 16.

Theorem 28. The logic L2 completely characterizes event bisimulation on SNLMPs.
I.e. R(L2) = ∼e.

For the next result, we need to interpret logicsL0 andL1 on SNLMP, but this is easy
since 〈a〉ψ of L1 corresponds to 〈{a}〉ψ in L2 and 〈a〉qϕ of L0 corresponds to 〈{a}〉[ϕ]≥q

in L2. The following theorem summarizes the results for bisimulations and logics in
SNLMPs.

A Theory for the Semantics of Stochastic 83

Theorem 29. ∼s ⊆ ∼h � ∼e = R(L2) � R(L1) � R(L0).

The last inclusion is shown to be proper in Ex. 18. Besides we also showed that the
inclusion R(L2) ⊆ R(L1) is proper using SNLMP S2. The next example shows that
inclusion ∼h ⊆ ∼e is also proper.

Example 30. Consider the SNLMP S3 which is a variant of S2 where V = (2.5, 3], f is
measurable, and T is redefined as follows.

T (s) = {a} × {δd | d ∈ [2, 3]}
T (t) = {a} × {δd | d ∈ [0, 1]}
T (r) = T (f (r)) = {(r, δx) | r ∈ [0, 1]\{r} } if r ∈ [0, 1]

T (d) = {(r, δx) | r ∈ [0, 1]} if d ∈ V

T (y) = ∅ otherwise.

Note that the states r and f (r) can perform any [0, 1]-labeled transition except for the
r-labeled transition whenever r ∈ [0, 1]. Instead, every d ∈ V can perform all [0, 1]-
labeled transitions. Therefore, every pair of states in V are hit bisimilar, and every state
d ∈ V can be distinguished from states in [0, 1] ∪ [2, 3]\V since T (d)|r ∩ Δ(S) = {δx} �
∅ = T (r)|r ∩ Δ(S) = T (f (r))|r ∩ Δ(S). Thus, V ∈ Σ is ∼h-closed and consequently δV =

{δd | d ∈ V} ∈ Δ(Σ(∼h)). From here we have that T (s)|a ∩ δV = δV � ∅ = T (t)|a ∩ δV ,
and therefore s and t are not hit bisimilar.

Now, take F = {{s, t}, {x}, {r, f (r)}r∈[0,1]
}
. It is not hard to prove that σ(F) is an event

bisimulation. Hence s ∼e t. ��
Contrarily to what happens in NLMPs with example S2, the example above questions

the hit bisimulation (rather than the event bisimulation) as it seems to distinguish sets of
null measure. In fact any definable scheduler starting from state t has an “almost surely
equivalent” scheduler starting from s (modulo state renaming).

Also, the question of whether state bisimilarity is strictly finer than hit bisimilarity
on SNLMPs remains open. Notice that Ex. 20 is not a valid counterexample in the realm
of SNLMPs because S1 is not an SNLMP.

6 Concluding Remarks

In this paper, we have presented the basic theory of LMPs and its extensions with in-
ternal non-determinism, namely NLMPs and SNLMPs. Much more research on this
subject has been done. For instance, pseudometrics that behave like bisimulation in
the limit have been defined and different kind of approximations for LMPs have been
studied [4, 11, 13, 23, 24, 39, etc.].

When it comes to give semantics to languages or symbolic models that includes
stochastic continuous behavior, NLMPs showed to be useful. Stochastic automata [15,
16] provide a symbolic framework to model soft real-timed systems. They can be
seen as a non-deterministic extension of generalized semi-Markov processes that are
amenable to composition. The semantics of a stochastic automaton naturally arises as a

84 C.E. Budde et al.

(structured) NLMP [48]. In a similar manner NLMPs have been used to give semantics
to more complex models, particularly stochastic hybrid automata [27, 31]. As a conse-
quence, NLMPs are also the concrete underlying semantics of a process algebra like
Spades [15, 16] and modeling languages like Modest and HModest [3, 31]. These lan-
guages have been used to analyze real case studies (e.g. [30, 32]). [48] presents also
mappings from pGCL [36] and abstract probabilistic automata [19] into NLMPs.

We have made use of the concept of schedulers to introduce SNLMPs. In fact, we
have formally defined schedulers on SNLMPs and used them to define trace distribution
semantics. See [48] for these results. We remark that a still overdue result in the setting
of LMPs and NLMPs is a correspondence execution theorem which states that if two
states are bisimilar (in any of the senses defined here), they share the same probabilistic
execution structure and hence they are also trace distribution equivalent.

Desharnais et al. [22] followed a different approach to extend LMPs with some kind
of internal non-determinism. Rather than explicitly introducing the branching set of
probability measures as in NLMPs, they relax the requirements on the LMP by only
asking that τa(s) is a super-additive function on Σ (instead of a sub-probability mea-
sure). They call this new model infLMP. An infLMP can be understood as a partially
specified system where a possible implementation is an LMP in which its transition
probability function is greater than or equal to the transition super-additive function of
the infLMP. It would be interesting to draw conclusions whether NLMPs can capture
infLMPs or not. A first (but inconclusive) approach to this relation is reported in [48].

Finally, the results in [42, 43] show that the generality of the models immediately
leads to unwanted results. It seems reasonable to restrict only to standard Borel spaces.
Confining to standard Borel spaces is not as restricting as it seems since most natural
problems arise in this setting. For example, we have that the underlying semantics of
stochastic (hybrid) automata is given in terms of an NLMP on standard Borel spaces,
and in the case of stochastic automata, such NLMP is also image finite. Recall that
stochastic automata and similar models are used to give semantics to stochastic process
algebras and specification languages, see e.g. [3, 5, 6, 15, 16, 31]. Moreover, LMP-like
models restricted to standard Borel spaces have been studied in [26].

References

1. Ash, R., Doléans-Dade, C.: Probability & Measure Theory. Academic Press (2000)
2. Baier, C., Katoen, J.: Principles of Model Checking. The MIT Press (2008)
3. Bohnenkamp, H., D’Argenio, P., Hermanns, H., Katoen, J.P.: MoDeST: A compositional

modeling formalism for real-time and stochastic systems. IEEE Trans. Softw. Eng. 32(10),
812–830 (2006)

4. Bouchard-Côté, A., Ferns, N., Panangaden, P., Precup, D.: An approximation algorithm for
labelled markov processes: towards realistic approximation. In: Proc. of QEST 2005, pp.
54–62. IEEE Computer Society (2005)

5. Bravetti, M.: Specification and Analysis of Stochastic Real-Time Systems. Ph.D. thesis,
Università di Bologna, Padova, Venezia (2002)

6. Bravetti, M., D’Argenio, P.R.: Tutte le algebre insieme: Concepts, discussions and relations
of stochastic process algebras with general distributions. In: Baier, C., Haverkort, B.R.,
Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Stochastic Systems. LNCS,
vol. 2925, pp. 44–88. Springer, Heidelberg (2004)

A Theory for the Semantics of Stochastic 85

7. Budde, C.: No determinismo completamente medible en procesos probabilísticos continuos.
Master’s thesis, FaMAF, Universidad Nacional de Córdoba (2012)

8. Cattani, S.: Trace-based Process Algebras for Real-Time Probabilistic Systems. Ph.D. thesis,
University of Birmingham (2005)

9. Cattani, S., Segala, R., Kwiatkowska, M., Norman, G.: Stochastic transition systems for con-
tinuous state spaces and non-determinism. In: Sassone, V. (ed.) FOSSACS 2005. LNCS,
vol. 3441, pp. 125–139. Springer, Heidelberg (2005)

10. Celayes, P.: Procesos de Markov Etiquetados sobre Espacios de Borel Estándar. Master’s
thesis, FaMAF, Universidad Nacional de Córdoba (2006)

11. Chaput, P., Danos, V., Panangaden, P., Plotkin, G.: Approximating labelled markov processes
again! In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp.
145–156. Springer, Heidelberg (2009)

12. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
13. Danos, V., Desharnais, J.: Labelled markov processes: Stronger and faster approximations.

In: Proc. of 18th LICS, pp. 341–350. IEEE Computer Society (2003)
14. Danos, V., Desharnais, J., Laviolette, F., Panangaden, P.: Bisimulation and cocongruence for

probabilistic systems. Inf. & Comp. 204, 503–523 (2006)
15. D’Argenio, P.: Algebras and Automata for Timed and Stochastic Systems. Ph.D. thesis,

Department of Computer Science, University of Twente (1999)
16. D’Argenio, P., Katoen, J.P.: A theory of stochastic systems, Part I: Stochastic automata, and

Part II: Process algebra. Inf. & Comp. 203(1), 1–38, 39–74 (2005)
17. D’Argenio, P., Sánchez Terraf, P., Wolovick, N.: Bisimulations for non-deterministic labelled

Markov processes. Mathematical. Structures in Comp. Sci. 22(1), 43–68 (2012)
18. D’Argenio, P., Wolovick, N., Sánchez Terraf, P., Celayes, P.: Nondeterministic labeled

Markov processes: Bisimulations and logical characterization. In: Proc. of QEST 2009, pp.
11–20. IEEE Computer Society (2009)

19. Delahaye, B., Katoen, J.-P., Larsen, K.G., Legay, A., Pedersen, M.L., Sher, F., Wąsowski,
A.: Abstract probabilistic automata. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS,
vol. 6538, pp. 324–339. Springer, Heidelberg (2011)

20. Desharnais, J.: Labeled Markov Process. Ph.D. thesis, McGill University (1999)
21. Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled Markov processes. Inf.

& Comp. 179(2), 163–193 (2002)
22. Desharnais, J., Laviolette, F., Turgeon, A.: A logical duality for underspecified probabilistic

systems. Inf. Comput. 209(5), 850–871 (2011)
23. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Approximating labelled markov

processes. Inf. Comput. 184(1), 160–200 (2003)
24. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled markov pro-

cesses. Theor. Comput. Sci. 318(3), 323–354 (2004)
25. Doberkat, E.E.: Kleisli morphisms and randomized congruences for the Giry monad. Journal

of Pure and Applied Algebra 211(3), 638–664 (2007)
26. Doberkat, E.E.: Stochastic relations. Foundations for Markov transition systems. Studies in

Informatics Series. Chapman & Hall/CRC (2007)
27. Fränzle, M., Hahn, E., Hermanns, H., Wolovick, N., Zhang, L.: Measurability and safety

verification for stochastic hybrid systems. In: Caccamo, M., Frazzoli, E., Grosu, R. (eds.)
Proc. of HSCC 2011, pp. 43–52. ACM (2011)

28. Giry, M.: A categorical approach to probability theory. In: Categorical Aspects of Topology
and Analysis. LNM, vol. 915, pp. 68–85. Springer (1981)

29. van Glabeek, R.: The linear time–branching time spectrum I. The semantics of concrete,
sequential processes. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process
Algebra, pp. 3–99. North-Holland (2001)

86 C.E. Budde et al.

30. Baró Graf, H., Hermanns, H., Kulshrestha, J., Peter, J., Vahldiek, A., Vasudevan, A.: A
verified- wireless safety critical hard real-time design. In: Proc. of WOWMOM 2011, pp.
1–9. IEEE (2011)

31. Hahn, E., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional modeling and anal-
ysis framework for stochastic hybrid systems. Formal Methods in System Design 43(2),
191–232 (2013)

32. Hartmanns, A., Hermanns, H.: Modelling and decentralised runtime control of self-
stabilising power micro grids. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS,
vol. 7609, pp. 420–439. Springer, Heidelberg (2012)

33. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.
ACM 32(1), 137–161 (1985)

34. Kechris, A.: Classical Descriptive Set Theory. Graduate Texts in Mathematics, vol. 156.
Springer (1995)

35. Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Inf. & Comp. 94(1), 1–28
(1991)

36. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Systems. Mono-
graphs in Computer Science. Springer (2005)

37. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
38. Naimpally, S.: What is a hit-and-miss topology? Topological Comment 8(1) (2003)
39. Panangaden, P.: Labelled Markov Processes. Imperial College Press (2009)
40. Parma, A., Segala, R.: Logical characterizations of bisimulations for discrete probabilis-

tic systems. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 287–301. Springer,
Heidelberg (2007)

41. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley-Interscience (1994)

42. Sánchez Terraf, P.: Unprovability of the logical characterization of bisimulation. Inf. &
Comp. 209(7), 1048–1056 (2011)

43. Sánchez Terraf, P.: Bisimilarity is not Borel. CoRR arXiv:1211.0967 (2012)
44. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. Ph.D.

thesis, Massachusetts Institute of Technology (1995)
45. Strulo, B.: Process Algebra for Discrete Event Simulation. Ph.D. thesis, Department of Com-

puting, Imperial College, University of London (1993)
46. Vardi, M.: Automatic verification of probabilistic concurrent finite-state programs. In: 26th

FOCS, pp. 327–338. IEEE (1985)
47. Viglizzo, I.: Coalgebras on Measurable Spaces. Ph.D. thesis, Department of Mathematics,

Indiana University (2005)
48. Wolovick, N.: Continuous probability and nondeterminism in labeled transition systems.

Ph.D. thesis, Universidad Nacional de Córdoba (2012)

On Abstraction of Probabilistic Systems

Christian Dehnert1, Daniel Gebler2, Michele Volpato3, and David N. Jansen3

1 Software Modeling and Verification Group,
RWTH Aachen University, Ahornstraße 55, 52056 Aachen, Germany

2 Department of Computer Science, VU University Amsterdam,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

3 Institute for Computing and Information Sciences,
Radboud University, Heyendaalseweg 135, 6500 GL Nijmegen, The Netherlands

Abstract. Probabilistic model checking extends traditional model check-
ing by incorporating quantitative information about the probability of
system transitions. However, probabilistic models that describe inter-
esting behavior are often too complex for straightforward analysis. Ab-
straction is one way to deal with this complexity: instead of analyzing
the (“concrete”) model, a simpler (“abstract”) model that preserves the
relevant properties is built and analyzed. This paper surveys various ab-
straction techniques proposed in the past decade. For each abstraction
technique we identify in what sense properties are preserved or provide
alternatively suitable boundaries.

1 Introduction

The advent of large-scale, distributed, dependable systems requires formal speci-
fication and verification methods which capture both qualitative and quantitative
properties of systems. Performance and dependability evaluation of distributed
systems therefore demands to use formal models and methods where both aspects
are represented. Labeled transition systems (LTS) allow to capture qualitative
(functional) aspects of software and hardware systems. To model the mentioned
quantitative phenomena, one uses a probabilistic formalism, typically some ex-
tension of Markov chains. For instance, exchanging messages between distributed
systems typically suffers from a failure probability. Hence, interesting properties
of real systems often express that some functional behavior can be guaranteed
to happen with at least some given probability or, dually, some bad behav-
ior appears with at most some given probability. Probabilistic models, such as
Markov chains and Markov decision processes, allow to model and reason over
both qualitative (functional) and quantitative (non-functional) aspects.

The properties of probabilistic systems are typically specified in temporal
logics such as the probabilistic computation tree logic (PCTL) [25, 6]. Model
checking is a method to verify those properties. However, it suffers from the
state space explosion problem, which means that the number of reachable states
of the model under investigation is too large. In models specified compositionally,
it is often exponential in the number of components of the model. Additionally,

A. Remke and M. Stoelinga (Eds.): ROCKS Autumn School 2012, LNCS 8453, pp. 87–116, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

88 C. Dehnert et al.

probabilistic model checking relies on expensive numerical methods, making the
problem even more pressing. Consequently, it is generally of crucial importance
to simplify the model prior to verification. However, given the complexity of
typical models, this procedure needs to be both automated and efficient.

In this paper, we present selected abstraction techniques for probabilistic sys-
tems. Intuitively, abstraction removes details from concrete models that are not
relevant to the property of interest. In many cases, only abstraction makes the
analysis of the model feasible or at least speeds up verification considerably.
Verification of realistic models requires the application of aggressive abstraction
techniques (c.f. [10]). We present the following abstraction techniques:

Multi-valued abstraction allows to partition the state space and to abstract
transition probabilities by intervals. Both positive and negative verification
results in the abstract model carry over to the concrete model. However,
in the abstract model some properties may evaluate to “unknown” if the
abstract model does not allow a conclusive evaluation of the property.

Counterexample-guided abstraction refinement (CEGAR) uses counter-
examples for the abstract model obtained from a model checker to refine the
abstraction. By (dis)proving realizability of the abstract counterexample in
the concrete model, this allows for an automatic abstraction-refinement tech-
nique that proves or refutes properties. We survey the probabilistic CEGAR
algorithm introduced by [27] and [45, Section 7].

Game-based abstraction provides the means to abstraction while maintain-
ing the separation between nondeterminism present in the concrete model
and nondeterminism introduced by the abstraction. We present probabilis-
tic game-based and menu-based abstraction, which employ two-player games
where opponent and defender take different roles in resolving the nondeter-
minism. The resulting game allows to give distinct upper and lower bounds
on reachability properties. This interval can also be understood as a measure
of the quality of the abstraction.

Organization of the paper. Section 2 provides a survey on the available literature
and the tools for the discussed subject. Section 3 introduces the formal frame-
work, i.e. probabilistic models, probabilistic temporal logics and probabilistic
games. Multi-valued abstraction is covered in Section 4. Probabilistic CEGAR
is surveyed in Section 5 and, finally, game-based abstraction techniques are pre-
sented in Section 6. We summarize and conclude in Section 7.

2 Related Work

2.1 Literature

Abstraction is of immense importance for the analysis of large probabilistic sys-
tems. Consequently, the field has been studied extensively. One of the most pop-
ular techniques is bisimulation minimization [4]. Here, the states of the abstract
system represent equivalence classes of an equivalence relation on the states, a

On Abstraction of Probabilistic Systems 89

bisimulation, such that the abstract system is guaranteed to preserve certain
properties. [18] investigates several kinds of strong and weak bisimulations re-
garding the minimality of the quotient system with respect to the number of
states, the number of transitions and transition fan-out. In [32], the authors
show that (strong) bisimulation can, in practice, lead to significant savings in
memory and runtime of explicit state probabilistic model checking. Approaches
that compute the bisimulation quotients on a symbolic representation of the
abstract state space are proposed in both [47] and [14], where the former uses
multi-terminal binary decision diagrams and the latter focuses on a representa-
tion of the state space in terms of predicates. [37, 17] compute a bisimulation
based on symmetry in the models that is easier to compute than strong bisimu-
lation, but may produce larger quotients. [15] proposes an abstraction technique
for probabilistic automata based on may and must modalities inspired by modal
transition systems [41]. [12, 13] pioneered the use of an abstraction-refinement
approach for probabilistic systems that tries to prove a reachability property on
a very coarse abstraction of the system. If the verification fails, the system is suc-
cessively refined until a conclusive answer can be given. While probabilistic CE-
GAR [27, 8] uses counterexamples obtained from a (probabilistic) model checker
to refine the abstract system, the game-based techniques [35, 45] typically rely
on disagreeing strategies for the individual players to make the abstraction more
precise when required. Magnifying-lens abstraction [1] uses a similar scheme, but
rather considers the concrete states contained in an abstract state in each step
and thus “magnifies” the state.

In infinite state probabilistic models, typically almost the whole probability
mass is concentrated in a finite subset of the states. Sliding-window abstraction
[26] is a technique to abstract from an infinite state space by “hiding” irrelevant
states (in the sense that they possess a negligible amount of probability mass)
in a way similar to the view through a window. Over time, as different states
become relevant, the window slides to different areas of the state space.

Often, probabilistic models arise from the parallel composition of several com-
ponents. Assume-guarantee verification [36, 21, 39] aims at proving a property
of the composed model without actually building a representation of the full
model by verifying the components in isolation. As the interaction between the
components is typically essential to prove a given property, these techniques
try to create small assumptions that can be proven on one component and suf-
fice to establish the property on the other components. Note that some of the
aforementioned techniques, for example bisimulation minimization, are also com-
positional in the sense that they can be applied to the individual components
that are further subject to parallel composition.

Abstraction and refinement are closely related to simulation relations. A sim-
ulation relation is a relation between two models that shows a form of weak
preservation: all properties expressible as positive formulas are preserved. In a
probabilistic context, one usually chooses a liveness view on simulation: a prob-
abilistic liveness property is a lower bound on the probability of some (good)
behavior. One wants the concrete model to be at least as good as the abstract

90 C. Dehnert et al.

one, so every liveness property ensured by the abstract model should also hold
in the concrete one. A good simulation relation shows a form of weak preserva-
tion, i. e., all liveness properties in some suitable logic are preserved. Simulation
relations for probabilistic systems have been studied for systems without [5, 29]
and with nondeterminism [43, 50]. Work in this area also explores systems with
continuous state spaces and how such state spaces can be approximated by a
finite Markov model [16].

2.2 Tools

Tools implementing one or several of the aforementioned abstraction techniques
have been developed. Such tools not only served as prototypical implementations
for evaluations in the literature, but are still available and in use. Sigref [47]
is a tool implementing bisimulation minimization for systems represented as
(variants of) binary decision diagrams that is, for example, applied in perfor-
mance analysis of AADL models [7]. Another tool, Pass [23], employs a mixture
of probabilistic CEGAR and the game-based approaches to provide lower and
upper bounds for both minimal and maximal reachability probabilities. Finally,
Prism-games [9], extends the well-known probabilistic model checker Prism [38]
by an engine for probabilistic games.

3 Preliminaries

This section briefly introduces the basic notions and definitions. All material is
standard and the interested reader is pointed to the original literature [4] and
the referred material therein.

3.1 Markov Models

Markov models are similar to transition systems in that they comprise states and
transitions between these states. In discrete-time Markov chains, each state is
associated with a discrete probability distribution over successor states according
to which the next state is chosen. Let Dist(S) be the set of discrete probability
distributions over a set S, i. e., the set of functions μ : S → [0, 1] such that∑

s∈S μ(s) = 1.

Definition 1 (Discrete-time Markov chain (DTMC)). A discrete-time
Markov chain is a tuple D = (S,P, sinit, AP, L) where

– S is a countable, non-empty set of states,
– P : S × S → [0, 1] is the transition probability function that assigns to each

pair (s, s′) of states the probability P(s, s′) of moving from state s to s′ in
one step such that P(s, ·) ∈ Dist(S),

– sinit ∈ S is the initial state,
– AP is a set of atomic propositions, and

On Abstraction of Probabilistic Systems 91

– L : S → 2AP is the labeling function that assigns a (possibly empty) set of
atomic propositions L(s) ⊆ AP to a state s ∈ S.

Let P(s, S) =
∑

s′∈S P(s, s′) be the probability to move from state s to some
state s′ ∈ S. A path in a DTMC is an infinite sequence of states of the form
ω = s1s2 . . . such that P(si, si+1) > 0 for all i ≥ 1. Let PathD denote the set
of paths in the DTMC D and PathDfin denote the set of finite prefixes of all
paths. For ω ∈ PathDfin, by last(ω) we refer to the last state of the finite path. A
probability measure PrD on the set PathD can be defined as unique extension
of the measure on the respective cones [25].

As the behavior of a DTMC is purely probabilistic, it is not well suited to
model concurrent systems. Markov decision processes add nondeterministic be-
havior to DTMCs by allowing (external) nondeterministic choice over probability
distributions in each state.

Definition 2 (Markov decision process (MDP)). A Markov decision pro-
cess is a tupleM = (S,Act ,P, sinit, AP, L) where

– S, sinit, AP and L are as for DTMCs (see Definition 1),
– Act is a finite set of actions,
– P : S×Act×S → [0, 1] is the transition probability function that specifies the

probability to move from s to s′ with action α ∈ Act such that P(s, α, ·) ∈
Dist(S) or P(s, α, ·) is the constant zero function.

Let Act(s) denote the set of enabled actions in state s, i. e., the actions α that
satisfy

∑
s′∈S P(s, α, s′) = 1. For simplicity, we require that the MDP has no

deadlock states, i. e., Act(s) �= ∅ for all states s ∈ S. We denote the set of dis-
tributions available at state s by Steps(s) = {P(s, α, ·) ∈ Dist(S) | α ∈ Act(s)}.
In each state s, first some enabled action α ∈ Act(s) is chosen nondeterministi-
cally. Then, the probabilistic choices given by P(s, α, ·) yield the successor state
s′. Thus, the set PathM is given by all sequences of the form ω = s1α1s2α2 . . .,
where si ∈ S and αi ∈ Act , such that P(si, αi, si+1) > 0 for all i ≥ 1. Similarly
to DTMCs, we define PathMfin as the set of finite prefixes, ending with a state,
of all paths and use last(·) accordingly.

Schedulers provide means to resolve the nondeterministic choices of MDPs.
The most general class of schedulers uses the complete trajectory up to the
current state and resolves the nondeterminism to a probabilistic choice (history-
dependent randomized schedulers). An important subclass are schedulers which
depend only on the current state (not on the history) and which resolve the non-
deterministic choice to a deterministic choice (memoryless deterministic sched-
ulers). Formally they are given by a function σ : S → Act such that σ(s) ∈
Act(s). They are powerful enough to reason over probabilistic reachability prop-
erties. The resolution of the nondeterministic choices in an MDP by a scheduler
σ leads to an (infinite) DTMC DM

σ = (S+,P′, sinit, AP, L′) where P′(ω, ωs′) =
P(last(ω), σ(ω), ωs′) and L′(ω) = L(last(ω)). Intuitively, the behavior of this
DTMC corresponds to the behavior of the MDP under the scheduler σ. Not sur-
prisingly, the probability measure over the infinite paths ofM under σ, denoted
PrMσ , is thus given by the measure over the DTMC DM

σ .

92 C. Dehnert et al.

In order to express properties over these models, probabilistic extensions of
common logics are used. While probabilistic computation tree logic (PCTL) [3]
is the most prominent one, a probabilistic interpretation of linear temporal logic
[44] that can enforce probability bounds on the set of paths satisfying a regular
LTL formula is also popular. We will, however, focus our attention to PCTL in
the further course of the paper. Formulae in this logic are given by the following
grammar.

Definition 3 (Probabilistic computation tree logic (PCTL)). The syntax
of PCTL state formulae over a set of atomic propositions AP is given by the
following rules:

Φ ::= true | a | Φ ∧ Φ | ¬Φ | P
�p(ϕ)

where a ∈ AP , ϕ is a PCTL path formula, �� ∈ {<,≤, >,≥} and p ∈ [0, 1].
PCTL path formulae are defined by the grammar:

ϕ ::= X Φ | Φ U Φ | Φ U≤k Φ

where Φ is a state formula and k ∈ N.

PCTL keeps the basic structure of CTL [19] and replaces the path quanti-
fiers by the single new operator P
�p(ϕ). Intuitively, this formula holds, if the
probability mass of all paths in the model that satisfy ϕ conforms to �� p. To
improve readability, we will use the abbreviations false for ¬true and Φ1∨Φ2 for
¬(¬Φ1 ∧¬Φ2). For DTMCs the interpretation of a PCTL formula is straightfor-
ward. However, for MDPs the probability mass of all paths that satisfy a given
path formula depends on the resolution of nondeterminism. A PCTL formula
holds in a state of an MDP if it holds for all possible schedulers. Fortunately,
there is no algorithmic need to optimize over all (infinitely many) schedulers,
because it can be proven that only finitely many schedulers have to be consid-
ered [6]. More specifically, memoryless schedulers attain minimal and maximal
probabilities for next-step and unbounded-until path formulae whereas k step-
bounded schedulers are sufficient for bounded-until formulae with time-bound k.
The minimal and maximal probabilities of an MDPM satisfying a given PCTL
path formula ϕ are denoted PrMmin(ϕ) and Pr

M
max(ϕ), respectively:

PrMmin(ϕ) = inf
σ
PrMσ (ϕ) PrMmax(ϕ) = sup

σ
PrMσ (ϕ).

Sometimes, we need to restrict ourselves to a fragment PCTLreach of PCTL that
only expresses probabilistic reachability properties. A probabilistic reachability
property P is a PCTL formula of the form Φ = P
� p(true U ΦF), which we
abbreviate as P
� p(♦ΦF), where p ∈ [0, 1], �� ∈ {<,≤, >,≥} and ΦF is a propo-
sitional logic formula over atomic propositions. Note that the truth value of ΦF

can be determined for each state in isolation, which is why we will treat F like
an atomic proposition and assume that states are labeled accordingly.

Yet, sometimes it is necessary to further restrict this subset of PCTL to the
set PCTLsafe of probabilistic safety properties, which are PCTL formulae that

On Abstraction of Probabilistic Systems 93

apply negation only to literals and only use comparison operators from {<,≤}.
While these restrictions seem very severe, many problems can be reduced to
reachability problems, and safety properties allow for expressing very interesting
properties of a system in practice, e. g., “the probability to reach a set of states
F is less than 0.5”.

3.2 Probabilistic Two-Player Games

While MDPs extend DTMCs with nondeterministic choices, some abstractions
rely on the separation of the nondeterminism introduced in the abstraction and
the nondeterminism present in the original model. Probabilistic, or stochastic,
two-player games are a natural formalism for this.

Definition 4 (Probabilistic game). A probabilistic two-player game is a tu-
ple G = ((V,E), vinit, (V1, V2, Vp), δ) where

– (V,E) is a directed graph with edge set E ⊆ V1 × V2 ∪ V2 × Vp ∪ Vp × V1,
– vinit ∈ V1 is the initial vertex,
– (V1, V2, Vp) is a partition of V where V1 is the set of vertices of player 1, V2

is the set of vertices of player 2, and elements of Vp are probabilistic vertices,
– δ : Vp → Dist(V1) is a function that maps each probabilistic vertex to a prob-

ability distribution specifying its successor vertices such that δ(vp)(v1) > 0
implies (vp, v1) ∈ E.

A play in this game is an infinite sequence ω = v1,1v2,1vp,1v1,2v2,2vp,2 . . ., where
v1,i ∈ V1, v2,i ∈ V2 and vp,i ∈ Vp, such that (v1,i, v2,i), (v2,i, vp,i) ∈ E and
δ(vp,i)(v1,i+1) > 0 for all i ≥ 1. Let PlayG denote the set of all plays in G,
PlayGfin the finite prefixes thereof and last(ωfin) refers to the last vertex of the
finite prefix ωfin of a play. Furthermore, ω(i) denotes the ith vertex of ω.

Intuitively, the behavior of a probabilistic game is as follows. Initially, starting
in v1,1 ∈ V1, player 1 nondeterministically chooses a successor vertex v2,1 ∈ V2
belonging to player 2. Player 2 reacts by choosing a successor state vp,1 ∈ Vp.
Then, the next vertex is chosen according to the probability distribution in vp
and it is again player 1’s turn. Thus, in order to resolve the nondeterminism,
a scheduler is needed for each of the players. In the context of games, these
are called strategies for player 1 and 2, respectively. Just like for MDPs, these
strategies are functions that map a finite prefix of a play to a possible choice. For-
mally, strategies for the players are given by functions σ1 : (V1V2Vp)

∗V1 → V2 and
σ2 : (V1V2Vp)

∗V1V2 → Vp, respectively, such that σ1(ωv1) = v2 and σ2(ωv1v2) =
vp implies (v1, v2) ∈ E and (v2, vp) ∈ E, respectively. If two strategies, σ1 for
player 1 and σ2 for player 2, are fixed, then, given a vertex v, the sets of fi-
nite and infinite plays starting in v which follow those strategies are denoted as
Playσ1,σ2

fin (v) and Playσ1,σ2(v) respectively. In such a play, all nondeterministic
choices are resolved by the strategies and the remaining behavior is purely prob-
abilistic. Hence, a probability measure, denoted Probσ1,σ2

v , can be defined over
the resulting model as in [11].

94 C. Dehnert et al.

Given a set F ⊆ V1 of target vertices, let

pσ1,σ2
v (F) = Probσ1,σ2

v ({ω ∈ Playσ1,σ2(v) | ∃i ∈ N, ω(i) ∈ F})

be the probability for reaching a vertex in F if the game is played according to
the strategies σ1 and σ2. For the case where the two players play adversarially,
we define the optimal reachability probabilities as

p+−
v (F) = sup

σ1

inf
σ2

pσ1,σ2
v (F)

p−+
v (F) = inf

σ1

sup
σ2

pσ1,σ2
v (F).

Accordingly, for the opposite case in which the two players cooperate, we have
the optimal reachability probabilities

p−−
v (F) = inf

σ1,σ2

pσ1,σ2
v (F)

p++
v (F) = sup

σ1,σ2

pσ1,σ2
v (F).

These probabilities can be computed, e. g., using value iteration [11].

3.3 Probabilistic Programs

The main motivation for abstracting models prior to verification is the hope that
this will reduce the time and memory needed for verification. As building the
full model is often the a time and memory consuming step in the verification
procedure, applying the abstraction after that step has little potential to improve
the overall performance. Hence, many successful abstraction techniques avoid
building the concrete model by employing a symbolic representation. A common
model for succinctly representing Markov models are probabilistic programs,
which are also able to finitely represent possibly infinite Markov models. Let
BExprVar denote the set of boolean expressions over a set of variables Var and
b ∈ BExprVar be an element of such a set. We denote by �b� the set of all
valuations of variables in Var under which b evaluates to true.

Definition 5 (Probabilistic program). A probabilistic program is a tuple
P = (Var, Σ, sinit, C) where

– Var = {v1, . . . , vn} is a finite set of variables,
– Σ = Σ(v1)×. . .×Σ(vn) is the state space of the program, where Σ(v) denotes

the (possibly infinite) domain of the variable v ∈ Var,
– sinit ∈ Σ is the initial state,
– C is a finite set of guarded commands of the form c = g → p1 : u1⊕ . . .⊕pm :
um where
• g ∈ BExprVar is the guard of the command,
• probabilities pi ∈ [0, 1], such that

∑
1≤i≤m pi = 1,

• update functions ui : Σ → Σ such that ui �= uj for i �= j.

On Abstraction of Probabilistic Systems 95

[a] x+ y ≤ 1 −→ 0.5 : x′ = x+ 1⊕ 0.5 : x′ = x+ 1 ∧ y′ = y + 1;

[b] 1 ≤ x+ y ≤ 2 −→ 0.8 : x′ = 2 ∧ y′ = x− 1⊕ 0.2 : x′ = 2;

[c] x = 2 −→ 1 : x′ = x ∧ y′ = y;

Fig. 1. A probabilistic program P

Additionally, without loss of generality, we assume that for every state s ∈ Σ
there is a command c ∈ C such that s ∈ �g� where g is the guard of c.

Intuitively, the state space of a probabilistic program is the set of all valuations
of its variables. The commands then define the probabilistic transitions between
these states. A guarded command is enabled in all states satisfying its guard
g, i. e., the states s ∈ �g�, which we write as s |= g. If a command is enabled
in some state, that state possesses an outgoing probability distribution that is
given by the probabilities and the update functions. Given a command c = g →
p1 : u1 ⊕ . . .⊕ pm : um and a variable valuation s ∈ Σ such that s |= g, s has a
transition with probability pi to the state si = ui(s) for all i ∈ {1, . . . ,m}.

The semantics of a probabilistic program is a DTMC or an MDP, depending
on whether there exists a state that satisfies multiple guards. If there is no such
state, each state has exactly one command that is enabled and the resulting
model is a DTMC. If a state satisfies multiple guards, this corresponds to a
nondeterministic choice between multiple commands in that particular state and,
hence, the model is an MDP.

Example 1. Consider the probabilistic programP depicted in Figure 1 with three
commands a, b and c over two integer variables x and y with range [0, 2]. The
semantics of this program is the MDP M shown in Figure 2 where we assume
that only state 〈2, 1〉 is of interest and thus labeled with the special atomic
proposition F indicated by the double circle around the state. �

Note that a set of predicates Π = {b1, . . . , bk} ⊆ BExprVar induces a (finite)
partitioning Q of the state space, where for q ∈ Q, si ∈ q and sj ∈ q if and
only if si |= p ⇔ sj |= p for all p ∈ Π . Stated differently, the partition is given
by the sets of states that satisfy exactly the same predicates of Π . Satisfiability
solvers that support richer theories, such as linear integer arithmetic, can be
used to reason over probabilistic programs and build abstractions w.r.t. a set of
predicates directly from such a representation [45]. That is, abstractions may be
built without building the full model first. In the further course of this paper,
we will only consider partitions that respect the labeling of states in the model.
That is, a partition Q is viable if for each a ∈ AP and q ∈ Q we have that
either all or no s ∈ q are labeled with a. For a given partition Q of a set S and
a probability distribution μ ∈ Dist(S), we denote by μ̄ the lifted distribution
μ̄ ∈ Dist(Q) defined by μ̄(q) =

∑
s∈q μ(s) for all q ∈ Q.

96 C. Dehnert et al.

〈0, 0〉 ◦

〈1, 0〉

〈1, 1〉

◦

◦

〈2, 0〉

〈2, 1〉

◦

◦

◦

a
0.5

0.5

a

b

b

0.5

0.5

0.8

0.2

c

b

c

1.0

0.2

1.0

0.8

Fig. 2. The MDP M induced by the program P

Example 2. Reconsider the probabilistic program from Figure 1 and let the set
of predicates Π be given as Π = {x < 2, x ≥ 2∧y ≥ 1}. Π induces the partition

Q = {{〈0, 0〉, 〈1, 0〉, 〈1, 1〉}︸ ︷︷ ︸
A

, {〈2, 0〉}︸ ︷︷ ︸
B

, {〈2, 1〉}︸ ︷︷ ︸
C

}

of the state space ofM, because, e. g., for all s ∈ A we have that s |= x < 2 and
s �|= x ≥ 2 ∧ y ≥ 1. �

3.4 MDP Quotienting

Given an MDPM = (S,Act ,P, sinit, AP, L) and a partition Q of its state space
S that respects its labeling, a first idea is to construct a simple abstract system
by merging the states of M according to Q. A state of the abstract system,
thus, corresponds to a block of Q. In order to still keep the behavior of the
original system, the transition probability function must over-approximate the
transition probability function of the concrete model. This can be achieved by
giving an abstract state q the joint behavior of all contained states s ∈ q. Put
differently, if there is a state s ∈ q and an action α ∈ Act such that α is enabled
in s and associated with the distribution μ ∈ Dist(S), then there must be an
action α′ that is enabled in q and associated with μ̄ ∈ Dist(Q). Note that this
possibly involves a renaming of the action name. This is necessary, because the
action α may be enabled in several states in q, but can only be associated with
a single probability distribution in the quotient system. Formally, the resulting
MDP is given by M/Q = (Q,Act ′,P/Q,AP,L/Q) where P/Q is such that
(P/Q)(q, α′, ·) = μ̄ if and only if there exists an s ∈ q such that P(s, α, ·) = μ
and (L/Q)(q) = L(s) for an s ∈ q. Note that the labeling is well-defined, because
of our requirement for partitions to only group states with the same labeling.

Example 3. Consider the MDP M depicted in Figure 2 and the partition Q
from Example 2. The quotient MDP M/Q is shown in Figure 3. Note that
from block A of the partition we now have the union of all (lifted) distributions

On Abstraction of Probabilistic Systems 97

A

◦ ◦

◦

B

C

◦

◦

◦

a1
1

a2

b

0.5

0.5

0.8

0.2

c

b

c

1.0

0.2

1.0

0.8

Fig. 3. The MDP M/Q

available in the states contained in A and that we preserved the labeling of
the states contained in each block. Furthermore, we needed to rename the two
distributions labeled with a to a1 and a2, respectively.

�

As can be seen from the example, this abstraction mixes the nondeterminism
present in the original model and the nondeterminism introduced by the ab-
straction. Consequently, the minimal probability for satisfying any given PCTL
path formula in the abstract MDPM/Q is a lower bound for the corresponding
probability inM. A similar result holds for the maximal probability. Formally,
we have the following theorem.

Theorem 1. LetM be an MDP, Q be a partition of its state space and ϕ be a
PCTL path formula, then

Pr
M/Q
min (ϕ) ≤ PrMmin(ϕ) ≤ PrMmax(ϕ) ≤ PrM/Q

max (ϕ)

Stated differently, this means that the abstraction only guarantees that the ex-
tremal probabilities for satisfying ϕ are in between the extremal probabilities
obtained from the abstract MDP. This can lead to very coarse results as illus-
trated by the next example.

Example 4. For M/Q of Figure 3 and ϕ = ♦F , we have Pr
M/Q
min (ϕ) = 0 and

Pr
M/Q
max (ϕ) = 1, which gives no information about the real values of PrMmin(ϕ)

and PrMmax(ϕ) which can lie anywhere in between. In fact, the correct values are
0.2 and 1, respectively. �

4 Multi-valued Abstraction

Multi-valued abstraction aims to partition the state space combined with an
abstraction of transition probabilities to sets of transition probabilities such that
both positive and negative verification results in the abstract model carry over

98 C. Dehnert et al.

to the concrete model [20]. Only assertions that evaluate to other values than
true or false in the abstract model, typically called indefinite values, are non-
conclusive for the concrete model. Hence, it is a safe (also called conservative)
abstraction in the sense that if some property can be proven or disproven in the
abstract model, then it carries over to the concrete model. In contrast, for MDP
quotients (Section 3.4) only positive verification results carry over to the concrete
model while negative verification results may occur due to over-approximation
in the quotient abstraction and are not conclusive for the concrete model.

In this section we provide a survey of the three-valued abstraction technique
presented in [33]. We consider abstractions of DTMCs and properties expressed
by PCTL. Three-valued abstraction of models without probabilistic choice [28,
40] yields abstract models that over- and under-approximate transitions in the
concrete model by may and must transitions. This concept generalizes naturally
for DTMCs to transitions equipped with intervals in the abstract model where
upper and lower bounds of the intervals represent accordingly the over- and
under-approximation of the abstract probabilistic transitions in the concrete
model. We will show that abstract states simulate the concrete states by an
adapted notion of probabilistic simulation [31]. Furthermore, we demonstrate
that an appropriate three-valued semantics of PCTL provides that affirmative
and negative verification results on abstract DTMCs carry over to the concrete
model.

As running example we will consider the DTMC presented in Figure 4a. This
DTMC corresponds to the MDP of Figure 2 after abstracting from transition
labels. The colour of states represents the state labelling L.

4.1 Three-Valued Abstraction

We start by introducing abstract DTMCs. A state in the abstract DTMC repre-
sents a set of concrete states. Transitions between abstract states are equipped
with an interval of probabilities instead of a concrete probability. The lower and
upper bound of the intervals represent the lowest and highest probability in the
concrete model. Let B3 denote the three-valued domain with carrier {⊥, ?,�}
and order ⊥ < ? < �.

Definition 6 (Abstract DTMC (ADTMC)). An abstract DTMC is a tuple
M = (S,Pl,Pu, L, μ0) where

– S is a countable set of states,
– Pl,Pu : S × S → [0, 1] are probabilistic transition functions with

• Pl(s, s′) ≤ Pu(s, s′) for all s, s′ ∈ S and
• Pl(s, S) ≤ 1 ≤ Pu(s, S),

– L : S ×AP → B3 evaluates an atomic proposition for a given state and
– μ0 ∈ Dist(S) is the initial distribution.

We write s
[a,b]−−−→ s′ for Pl(s, s′) = a and Pu(s, s′) = b. This transition may

happen with any (nondeterministically chosen) probability in the interval [a, b].

On Abstraction of Probabilistic Systems 99

Furthermore, the validity of atomic propositions, denoted by L, may now evalu-
ate to the indefinite value ? ∈ B3. Thus, ADTMCs can be described by MDPs,
where the distributions reachable from s are given by {μ ∈ Dist(S) | μ(s′) ∈
[Pl(s, s′),Pu(s, s′)]}. It is clear that every DTMC is also an ADTMC ifPl(s, s′) =
Pu(s, s′) for all s, s′ ∈ S and L(s, p) ∈ {�,⊥} for all s ∈ S, p ∈ AP .

We proceed by defining the abstraction of an ADTMC based on some parti-
tioning of its state space. Because every DTMC is also an ADTMC this directly
gives us a notion to abstract a DTMC to an ADTMC.

Definition 7 (Abstraction of ADTMC). Let M = (S,Pl,Pu, L, μ0) be an
ADTMC and Q be a finite partitioning of S. The abstraction ofM with respect
to Q is an ADTMC (Q, P̃l, P̃u, L̃, μ0) such that for any q, q′ ∈ Q we have

– P̃l(q, q′) = infs∈q P
l(s, q′),

– P̃u(q, q′) = min(sups∈q P
u(s, q′), 1)

– L̃(q, a) =

⎧⎪⎨⎪⎩
� if L(s, a) = � for all s ∈ q
⊥ if L(s, a) = ⊥ for all s ∈ q
? otherwise

We denote by M/Q the ADTMC that arises from abstracting M by Q. The

definition of the upper bound P̃u(q, q′) of the probabilistic transition between
q and q′ needs to be bounded by 1 because Pu(s, q′) =

∑
s′∈q′ P

u(s, s′) may
exceed 1. Every abstraction leads again to an ADTMC [33, Lemma 1].

Example 5. Figure 4b represents the ADTMC after grouping states 〈1, 0〉 and
〈1, 1〉 of the DTMC in Figure 4a into a single abstract state. The probabilis-
tic transition between state (〈1, 0〉, 〈1, 1〉) and 〈2, 0〉 is equipped with the inter-
val [0.5, 0.8] which represents exactly the minimal and maximal probabilities of
reaching state 〈2, 0〉 from some of the states {〈1, 0〉, 〈1, 1〉}.

�

The notion of abstraction on ADTMCs is closely related to forward simulation
[31]. In detail, for any ADTMCM and partition Q we have thatM is simulated
byM/Q [33, Theorem 1]. The three-valued abstraction technique can be adapted
to CTMCs without technical difficulties when applying prior uniformization (i. e.
all states have equal residence time).

4.2 Reachability Analysis and Model Checking

In the following section we investigate how logical properties, in detail reachabil-
ity analysis, can be verified on abstract models. The nondeterminism introduced
by intervals is resolved using schedulers which lead also to a natural notion of
induced DTMC from an ADTMC by a specific scheduler. Interestingly, extreme
schedulers, which are schedulers that resolve the probabilities in the intervals to
one of the boundaries, suffice to compute maximal/minimal reachability prop-
erties ([33, Theorem 2]).

100 C. Dehnert et al.

〈0, 0〉

〈1, 0〉

〈1, 1〉

〈2, 0〉

〈2, 1〉

0.5

0.5

0.5

0.5

0.8

0.2

0.2

1.0

0.8

(a) Concrete DTMC Mc

〈0, 0〉 〈1, 0〉
〈1, 1〉

〈2, 0〉

〈2, 1〉

[1.0, 1.0]

[0.5, 0, 8]

[0.2, 0.5]

0.2

1.0

0.8

(b) Abstract DTMC Ma

Fig. 4. Example for three-valued abstraction

The classical interpretation of PCTL is over a two-valued truth domain
{⊥,�} . ADTMCs group states together such that some PCTL properties are
no longer strictly true or false. For instance, consider the reachability property
Φ = P≥0.7(♦) which evaluates to true if the probability to reach a state with
label is at least 0.7. Let us consider the state (〈1, 0〉, 〈1, 1〉) of the ADTMCMa.
The interval of probabilities [0.5, 0.8] to reach state 〈2, 0〉 allows for probabilities
that are greater than 0.7 but also for probabilities that are less than 0.7. Hence,
the property Φ evaluates to the indefinite value ? in state (〈1, 0〉, 〈1, 1〉). On the
other hand, P≥0.9(♦) evaluates to ⊥ in (〈1, 0〉, 〈1, 1〉) because for none of the
realizable probabilities the property can become true. Similarly, P≥0.3(♦) eval-
uates in (〈1, 0〉, 〈1, 1〉) to � because for all realizable probabilities the property
becomes true.

To summarize, PCTL properties evaluate in the abstract states of ADTMCs
to B3. The semantics differs from the two-valued semantics mainly by the fact
that the evaluation of P
�p(♦ϕ) is split up in the case P<p(♦ϕ), P≤p(♦ϕ) and
case P>p(♦ϕ), P≥p(♦ϕ). For the first case, P<p(♦ϕ) (resp. P≤p(♦ϕ)) evaluates
to � if in all realizable probabilistic choices ϕ is reachable by strictly less than
p (resp. at most p). P<p(♦ϕ) (resp. P≤p(♦ϕ)) evaluates to ⊥ if in all realizable
probabilistic choices ϕ is reachable by at least p (resp. strictly more than p).
The reasoning for the second case is analogous. In all other cases the property
evaluates to ?. It was shown that abstraction preserves validity of PCTL formulae
[33, Thm. 3,5 & Cor. 1]. This paves the way for three-valued abstraction-based
model checking.

5 Counterexample-Guided Abstraction Refinement

Proposed in 2000 [10], counterexample-guided abstraction refinement (CEGAR)
quickly became a very successful technique for qualitative verification of safety

On Abstraction of Probabilistic Systems 101

properties that proceeds in an iterative manner: starting with an initially coarse
overapproximation of the concrete model, it tries to add precision to the parts
of the model where required. It does so by analyzing information obtained from
the model checking process on the abstract model. The key idea is the following:
if the abstract model violates the safety property Φ, it must be possible for
a model checker to extract a reason for this, a so-called counterexample. This
is then analyzed with respect to its realizability in the original model. If it is
in fact realizable, we can conclude that the original model also violates Φ. On
the other hand, if the counterexample is not realizable, the verification result
on the abstract model does not carry over to the concrete model. In this case,
the abstraction introduced the spurious behavior and the abstract models needs
to be refined. As it is known that the counterexample was indeed spurious, it
also carries information about the reason why the abstraction introduced this
behavior, which can be exploited to refine the current partition. The overall
approach is sketched in Figure 5. It is easy to see that for finite models the

model property

Abstract MDP Predicates

Model
Checking

Realizability
Checking

satisfied violated

spurious

realizable

counterexample

Fig. 5. A schema of the CEGAR loop

CEGAR loop will only be traversed a finite number of times until a decision
can be made, assuming that the predicate synthesis always splits at least one
abstract state. For infinite models, however, the procedure may not terminate.

We start by introducing the notion of a counterexample for safety properties.
Then, we present the core procedure of the CEGAR loop [27]; in particular we
discuss the counterexample analysis using satisfiability solvers, and the synthesis
of predicates. Note that while [27] also treats systems with arbitrary (even in-
finitely) many initial states, we restrict our attention to systems with one initial
state for the sake of simplicity.

102 C. Dehnert et al.

5.1 Counterexamples for Safety Properties in MDPs

In the traditional qualitative model checking setting, safety properties express
that a certain set of “bad” states F must not be reachable. A probabilistic safety
property P�p(♦F) with
 ∈ {<,≤} establishes an upper bound p on the prob-
ability to reach the bad states F .

Example 6. Consider for example the MDP in Figure 2 and the probabilistic
safety property Φ = P<1(♦F). Obviously, there are schedulers that violate Φ,
namely all schedulers σ that pick action b in 〈2, 0〉 and some available action in
the other states. �
Given a (deterministic memoryless) scheduler σ that violates the safety property
Φ, σ can be called a counterexample for Φ. Likewise, the DTMC Mσ resulting
from the application of σ onM can be called a counterexample. A lot of work
has been conducted on finding more succinct representations of counterexamples
to make them effectively useful in the context of debugging the system. Several
approaches [48, 2, 30] revolve around the identification of a small subsystem
of the concrete model that already violates the property. Recently, [49] showed
how to characterize and compute counterexamples in terms of the commands
of a probabilistic program. Despite this progress, it is yet unclear how to use
these sophisticated counterexample representations for the purpose of CEGAR.
Hence, we stick to the presentation in [27] and consider deterministic memoryless
schedulers σM/Q and the corresponding DTMC (M/Q)σM/Q as counterexam-
ples. As we will see in the next section, in order to avoid building a possibly huge
concrete model for checking realizability of a counterexample, the authors of [27]
resort to the notion of realizability of an abstract path and view the abstract
DTMC (M/Q)σM/Q as a set of paths. In general, however, (M/Q)σM/Q is cyclic
and thus possesses infinitely many paths contributing to the probability mass
reaching the set of “bad” states. Unfortunately, sometimes infinitely many paths
are in fact needed to prove violation of a safety property.

Example 7. Reconsider the setting of Example 6. It is easy to verify that no finite
number of paths suffices to prove that the maximal reachability probability is 1.
In this example all paths, i. e., infinitely many, are needed to witness the violation
of the safety property. �
Luckily, it can be shown that this phenomenon only occurs when the comparison
operator is strict [24]. In order words, if a property that uses only smaller-or-
equal comparisons is violated, then there is always a finite set of paths whose
probability mass exceeds the bound. In this case, following the ideas of Han and
Katoen [24], a minimal set of paths that exceeds the probability bound p can
be efficiently obtained by a reduction to a graph problem. Hence, from now on
we assume that we can obtain, one by one, a finite set of paths in decreasing
probability order whose accumulated probability mass exceeds the given bound.

5.2 Realizability of a Counterexample

Figure 5 illustrates that counterexample analysis is at the heart of the CEGAR
approach. It must be possible to determine whether a counterexample in the

On Abstraction of Probabilistic Systems 103

abstract system carries over to the concrete model without building it. In order
to do this, we first need to define what it means for a counterexample to be
realizable. For the remainder of this section, we will assume that the concrete
MDPM = (S,Act ,P, sinit, AP, L) is given as a probabilistic program such that
no two commands have the same label. Furthermore, for the current partition Q
of the state space the abstract MDP M# :=M/Q = (Q,Act ′,P/Q,AP,L/Q)
has been built and proven to violate a reachability property Φ = P≤p(♦F) by
a model checker. In addition, a counterexample σ# is provided as a witness for
the violation by the model checker.

For checking realizability of the abstract scheduler σ#, the idea is to check
whether a similarly behaving scheduler σ onM will exhibit the same violating
behavior. Formally, the concretization of a counterexample is defined as follows.

Definition 8 (Concretization and realizability of a counterexample).

(i) The concretization γ(σ#) of a counterexample σ# is defined as the sched-
uler σ for M such that for all s ∈ S

σ(s) =

{
σ#(q) s ∈ q ∧ s |= g

⊥ otherwise

where q ∈ Q and g is the guard of the command associated with the com-
mand σ#(q), which is given by the probabilistic program for M.

(ii) A counterexample σ# is called realizable if the probability of reaching a
state in F in Mγ(σ#) exceeds the given bound, i. e., ProbMγ(σ#)(♦F) > p

and spurious otherwise.

Intuitively, the concretisation γ(σ#) of a scheduler σ# is a scheduler for the
concrete MDPM that chooses an action a in a concrete state s iff σ# chooses a
in the abstract state q ∈ Q containing s and a is available in s. If a is not available
in s, because s fails to satisfy the guard of the command, the concretization will
just stop in s, which is indicated by ⊥. Now, a counterexample is realizable if the
concretization induces enough probability mass on the concrete model to violate
the bound p of the probabilistic safety property under the concrete scheduler.

Example 8. Reconsider the MDP from Figure 2 and let the safety property be
given as Φ = P≤0.6(♦F). Obviously,M# (Figure 3) does not satisfy Φ, because
the scheduler σ# that picks a2 in A, b in B and c in C achieves a probability of
1. The concretization γ(σ#), thus, has also to choose a in all states of A and so
on. However, 〈1, 1〉 fails to satisfy the guard of b, so γ(σ#)(〈1, 1〉) = ⊥. �

However, given the definition of realizability of a counterexample, it remains to
show how to actually perform the realizability check without having the concrete
model at hand. As previously mentioned, the authors of [27] resort to viewing
the abstract DTMC induced by the abstract counterexample as a set of paths
reaching a state in F . This enables to check the realizability of paths in isolation
rather than a “full” counterexample at once.

104 C. Dehnert et al.

Realizability of a Path. Intuitively, a path in the abstract counterexample DTMC
M#

σ# is realizable, if there exists a path inM that (i) starts in the initial state
and ends in F , (ii) does not visit F before the last state (iii) chooses the same
actions and updates as the abstract path and (iv) is in a concrete state si ∈ qi
whenever the abstract path is in qi ∈ Q. Note that this implies that all states
along the path satisfy the appropriate guards. The following definition captures
this formally:

Definition 9 (Concretization of a path).

Let ω# = q0α1q1α2 . . . qn ∈ Path
M#

σ#

fin be a finite path prefix.

(i) The concretization γ(ω#) of ω# is given by

{ω ∈ Path
M

γ(σ#)

fin | ω = s0α1s1α2 . . . sn with si ∈ qi for 0 ≤ i ≤ n}

(ii) ω# is called realizable if γ(ω#) �= ∅.

Example 9. Let the setting be the same as the one in Example 8. Furthermore,
consider the path prefix ω# = Aa2C in M#

σ# . By inspection, we can see that

γ(ω#) = ∅, because it is impossible to reach a state in F from the initial state of

M within one step. In fact, no finite path prefix inM#
σ# possesses a non-empty

concretization. �

The existence of an element in the concretization of the abstract path is formu-
lated as a query to an Smt solver. The actual formula ϕγ(ω

#) for the path ω#

can be constructed using repeated applications of the weakest precondition op-
erator and additional information obtainable from the path. This formula may
then be dispatched to a standard SMT solver supporting linear integer arith-
metic, as, for example, Z3 or MathSat. For details, we refer to [27].

Algorithmically checking realizability of a counterexample. Now that we have
presented a method for determining whether a path is realizable, we can check the
realizability of the counterexample as follows. Given M#

σ# , we start extracting

finite paths ω# = q0α1q1α2 . . . qn with qi �∈ F for 0 ≤ i < n and qn ∈ F
in decreasing probability order. Each of these paths is individually checked for
realizability. All realizable paths are added to a set Ω+ whereas unrealizable
paths are added to Ω− and we denote by pΩ+ and pΩ− , respectively, the sum of
the probabilities of the paths in these sets. If we get to a point where pΩ+ > p,
we know that enough probability mass of the abstract counterexample is also
present in the concrete model to exceed the bound p. This directly implies that
the counterexample is in fact realizable and we can conclude thatM violates the
given safety property as well. Conversely, we need a criterion to stop looking for
new paths inM#

σ# if there is no hope of ever exceeding p. As the model checker
that provided the abstract counterexample computed the probability pσ#(♦F)
of reaching F in the abstract model, we can at any point determine whether
there is enough probability mass left in the abstract counterexample that is

On Abstraction of Probabilistic Systems 105

potentially realizable and suffices to exceed p. If pΩ+ + (pσ#(♦F) − pΩ−) ≤ p,

we can conclude that even if all remaining paths in M#
σ# were realizable, they

could still not exceed the bound p and thus, the abstract counterexample was
determined to be spurious. Formally, we get the following result:

Lemma 1 (Termination criterion). Let ε = pσ#(♦F) − pΩ− be the proba-
bility of paths reaching F in the abstract model that were not yet proven to be
(un)realizable.

(i) pΩ+ > p implies that σ# is realizable.
(ii) pΩ+ + ε ≤ p implies that σ# is spurious.

Stated differently, the result is only inconclusive if pΩ+ ∈ (p − ε, p]. In this
case, the next most likely abstract path is considered until the result is in fact
conclusive.

Example 10. Reconsider Example 8. The model checker initially returns the
counterexample σ# along with the reachability probability pσ#(♦F) = 1. Let

the first path prefix that is found in M#
σ# by the procedure be ω# = Aa2C.

As shown in Example 9, this path prefix is found to be unrealizable. It is then
added to Ω− and its probability is added to pΩ− , which then becomes 0.5. Now,
however, ε becomes 0.5, which means that there is at most a probability mass of
0.5 left inM#

σ# that might be realizable. As this does not suffice to exceed the
bound p = 0.6 of Φ, the counterexample is known to be spurious. If this was not
directly the case, the procedure would check the next path prefix for realizability
and carry on. �

5.3 Predicate Synthesis

Suppose the decision procedure previously described determines that a given
counterexample in the abstract model is spurious. This means that the abstrac-
tion falsely introduced behavior that was not present in the original model. In
other words, we need to refine the abstract model to rule out this spurious behav-
ior. As the abstract model is built using predicate abstraction, this corresponds
to introducing additional predicates. Since the formulae ϕγ(ω

#) do not involve
quantitative aspects, but are similar to the non-probabilistic case, standard tech-
niques, such as predicate interpolation [42, 45], may be used to obtain predicates
to rule out the source of spuriousness.

Example 11. After the counterexample from Example 10 was found to be spu-
rious, the predicate x = 0 ∧ y = 0 could be added to rule out the possibility to
reach F within one step in the quotient modelM#. �

6 Game-Based Abstraction

The success of counterexample-guided abstraction refinement inspired another
abstraction-refinement framework for MDPs. First, observe that probabilistic

106 C. Dehnert et al.

CEGAR (as presented in Section 5) can only (dis)prove probabilistic safety prop-
erties. Intuitively, this is because the concrete MDP is again abstracted to an
MDP. Doing so, however, merges the nondeterminism of the concrete model with
the nondeterminism introduced by the abstraction. Effectively this means that
the minimal and maximal reachability probabilities in the abstract MDP are
lower and upper bounds, respectively, for the corresponding reachability prob-
abilities in the concrete model (see Theorem 1). Rather than merging the two
sources of nondeterminism, the two abstraction techniques presented in this sec-
tion keep them separated by using probabilistic games [11] as their underlying
abstract model. This way, they are able to provide lower and upper bounds on
both minimal and maximal reachability probabilities. Hence, they are applicable
to the broader class of probabilistic reachability properties.

6.1 Idea

Reconsider Example 4. In the abstract MDP, the minimal and maximal proba-
bility to a reach a state in F are 0 and 1, respectively. This, however, means that
the reachability probilities in the concrete model may lie anywhere in between
those values providing no information at all. This phenomenon stems from the
fact that, in the abstract state A, both the nondeterministic choices of state
〈0, 1〉 and the transitions emanating from 〈0, 0〉 are enabled.

The key idea of game-based abstraction [34] is the follwing. Instead of using
an MDP as the “target” of the abstraction, the concrete MDP is mapped to an
abstract probabilistic game. This way, the two sources of nondeterminism can
be assigned to the different players and, thus, kept separate. In other words,
one player is responsible for resolving the nondeterminism of the abstraction
while the other governs the nondeterminism of the original model. Depending
on whether the two players both try to maximize or minimize the probability
to reach the target states or they take an adversarial role, the resulting value
of the game is a lower or upper bound on the minimal or maximal reachabil-
ity probability, respectively. If these bounds are precise enough for proving or
refuting a given property, a conclusive answer for satisfaction of the property
on the concrete model can be given. In the other case, at least one block of the
abstraction can be refined based on the strategies of the players. The resulting
game then yields more precise results and, similarly to CEGAR, the procedure
may be iterated until the obtained bounds are precise enough. The approach is
sketched in Figure 6. Note that in practice this approach can be implemented
in a fully symbolic way (just like CEGAR) by using Smt solvers that avoids
building the concrete model M altogether. However, for the sake of simplicity,
our presentation will abstract from this.

6.2 Simple Game-Based Abstraction

We will now present how to obtain an appropriate (abstract) probabilistic game
from an MDP. Just like for MDP quotienting, a set of predicates is used to
partition the state space S of the concrete MDP into blocks of states

On Abstraction of Probabilistic Systems 107

model property

Abstract Game Partition

Solving
Game

Refinement

bounds

too imprecise

Fig. 6. A schema of refinement loop of game-based abstraction

Q = {S1, . . . , Sn}. Recall that μ̄ ∈ Dist(Q) denotes the lifting of μ ∈ Dist(S)
to Dist(Q).

Definition 10 (Simple probabilistic game-based abstraction). Given an
MDP M = (S,Act,P, sinit, AP, L) and a partition Q of S, the simple proba-
bilistic game-based abstraction ofM over Q is the probabilistic game

GQM = ((V = V1 ∪̇V2 ∪̇Vp, E), vinit, (V1, V2, Vp), δ)

where

– V1 = Q are player 1’s vertices,
– V2 = {v2 ⊆ Dist(Q) | v2 = {μ | μ ∈ Steps(s)} for some s ∈ S} are player

2’s vertices,
– Vp = {vp ∈ Dist(Q) | vp ∈ {μ | μ ∈ Steps(s)} for some s ∈ S} are the

probabilistic vertices,
– vinit = q ∈ Q such that sinit ∈ q is the initial vertex,
– δ : Vp → Dist(V) is the identity function,

and the set of edged E is given by

E = {(v1, v2) | v1 ∈ V1 and v2 = {μ | μ ∈ Steps(s) for some s ∈ v1}
∪ {(v2, vp) | v2 ∈ V2 and vp ∈ v2}
∪ {(vp, v1) | vp = μ̄ with μ̄(v1) > 0}.

Intuitively, the game proceeds as follows. In each v1 ∈ V1, player 1 picks a con-
crete state s ∈ v1 and moves to the corresponding player 2 vertex. Then, player
2 chooses a (lifted) probability distribution μ̄ available in s. Finally, the next

108 C. Dehnert et al.

player 1 vertex is selected according to μ̄. Hence, player 1 resolves the nonde-
terminism introduced by the abstraction by picking on particular state in an
abstract block and player 2 resolves the nondeterminism in the chosen state that
was already present in the concrete model.

Example 12. Let us reconsider the MDP in Figure 2 and the partitioning Q =
{A,B,C} with A = {〈0, 0〉, 〈1, 0〉, 〈1, 1〉}, B = {〈2, 0〉} and C = {〈2, 1〉} from
Example 4. Figure 7 shows the game-based abstraction over Q where player
2 vertices are represented as squares and the probabilistic vertices are small
circles. In block A, player 1 has the choice between any of the states contained

A

B

C

1

0.5

0.5

0.8

0.2

1

0.2

0.8

1

Fig. 7. Game-based abstraction GQ
M

in A. Say he chooses to pick state 〈1, 0〉 and, hence, moves to the topmost
successor vertex of A. Then, player 2 can choose between the two distributions
available in 〈1, 0〉 and move to the probabilistic vertex corresponding to the
lifted distribution. After the successor state was determined according to the
probability distribution, it is again player 1’s turn. �
By solving the game GQM using numerical methods, such as value iteration [11],
bounds for both minimal and maximal reachability probability in the concrete
model are defined as follows. Suppose both players try to minimize the proba-
bility to reach a target state in F . Then, the reachability probability p−−

vinit
(F)

is the minimal reachability probability for F in the MDP quotient M/Q and
is thus, by Theorem 1, a lower bound for the minimal reachability probability
in M. Suppose, on the other hand, that the player controlling the abstraction
(player 1) tries to maximize while player 2 still minimizes over the nondetermin-
istic choices available in the state selected by player 1. The probability p+−

vinit
(F)

is an upper bound for the minimal reachability probability inM. Formally, we
have the following result.

Theorem 2 (Correctness of game-based abstraction [34]). Let GQM be the
game-based abstraction for an MDPM with state space S and Q a partition of
S. Then for all v ∈ V1 and s ∈ v

p−−
v (F) ≤ p−s (F) ≤ p+−

v (F), (1)

p−+
v (F) ≤ p+s (F) ≤ p++

v (F). (2)

On Abstraction of Probabilistic Systems 109

Example 13. For the abstraction in Example 12 we obtain p−−
vinit

({C}) = 0. Un-
like the MDP abstractionM/Q, we can, however, obtain a better upper bound
on the minimal reachability probability than 1. Observe that, if only player 1
tries to maximize the probability value, he does not choose the state 〈0, 0〉 (the
bottommost choice emanating from A) but any of the other states. Then, player
2 can not completely avoid reaching C any more, but has to go to C with a
probability of at least 0.2. Indeed, solving the game yields p+−

vinit
({C}) = 0.2.

Hence, the minimal reachability probabilty inM is determined to lie in the in-
terval [0, 0.2] providing more precise information than the MDP quotient over
the same partition Q. �

As indicated in Figure 6, after obtaining bounds by solving a game, the partition
Q may need to be refined in order to obtain more precise results. We will show
how the refinement may be done in a way that guarantees termination of the
procedure for finite modelsM.

Refinement. Recall that, given the goals of players 1 and 2, solving a game not
only comprises computing the extremal reachability probability for the game,
but also produces memoryless deterministic strategies for the two players that
together achieve the computed probability. Suppose we obtained the bounds
[l, u] for the minimal reachability probability by solving the game GQM (twice).
Further assume that the bounds were imprecise, i.e., l < u. Then, two pairs
of memoryless deterministic strategies (σl1, σ

l
2) and (σu1 , σ

u
2) are generated such

that:

p
σl
1σ

l
2

vinit(F) = l and p
σu
1 σu

2
vinit (F) = u.

Since l �= u, there is at least one v1 ∈ V1 where the two player 1 strategies
disagree, i.e., σl1(v1) �= σu1 (v1). Intuitively, this means that player 1 chose different
concrete states contained in v1 depending on whether he wanted to minimize or
maximize the reachability probability. Consequently, v1 can be split to narrow
down the choices of player 1 in the resulting vertices. A possible way to achieve
this, is to split v1 into blocks vl1, v

u
1 and vr1 where

vl1 = {s ∈ v1 | σl1(v1) = {μ | μ ∈ Steps(s)}}
vu1 = {s ∈ v1 | σu1 (v1) = {μ | μ ∈ Steps(s)}}
vr1 = v1 \ (vl1 ∪ vu1).

Of course, there may be several vertices that can be split according to this crite-
rion and it is not clear which or how many blocks should be refined in order to
get more precise bounds that are able to prove or disprove the property at hand.
This refinement method is called strategy-based. There exist other refinement
techniques, for example value-based refinement, which are not covered here. For
details, we refer to [34].

Example 14. As pointed out in Example 13, player 1 chooses state 〈0, 0〉 ∈ A
or either of the states 〈1, 0〉, 〈1, 1〉 ∈ A if he wants to minimize or maximize,

110 C. Dehnert et al.

respectively, the reachability probability in GQM. Consequently, A is split into
blocks A1 = {〈0, 0〉} and A2 = {〈1, 0〉, 〈1, 1〉}. The resulting game over the
partiton Q′ = (Q\A)∪{A1, A2} is depicted in Figure 8. Solving the refined game
determines the minimal reachability probability to be in the interval [0.2, 0.2].

�

A1 A2

B

C

1

0.5

0.5

0.8

0.2

1

0.2

0.8

1

Fig. 8. Game-based abstraction after the refinement of block A

6.3 Menu-Based Abstraction

While game-based abstraction yields good results for many examples, the con-
structed game can become very large. The reason is that the game representation
may need one player 2 vertex for each combination of (lifted) probability distri-
butions available in some block q ∈ Q. The worst-case appears if all the states
contained in a particular block happen to have different (combinations of) lifted
probability distributions. Roughly speaking, in the context of MDPs given by
a probabilistic program, the game may become large if there exist many states
in which different combinations of guarded commands are enabled. In this case,
constructing and solving the game might be very expensive.

Example 15. The game GQM in Example 12 has three player 2 vertices reachable
in one step from player 1 vertex A, even though block A contained only three
states of the concrete model. �
Menu-based abstraction [46, 45] aims to overcome this by considering commands
of the probabilistic program in isolation. That is, it builds a possibly smaller game
than game-based abstraction that might produce coarser probability approxima-
tions in the hope that it can be constructed and solved more easily. Instead of
letting player 1 pick a concrete state out of a given block and move to the ver-
tex representing the enabled commands at this particular state, it lets player 1
choose a command. This means that the choice of a concrete state is still open
(among all states that have the chosen command enabled). Consequently, in the
successor vertex, player 2 has the choice between all possible realizations of the
chosen command in all states of the block.

On Abstraction of Probabilistic Systems 111

Definition 11 (Menu game). Given an MDP M = (S,Act,P, sinit, AP, L)
and a partition Q of S, the menu-based abstraction of M over Q is the proba-
bilistic game

ĜQM = ((V = V1 ∪̇V2 ∪̇Vp, E), vinit, (V1, V2, Vp), δ)

where

– V1 = Q ∪ {⊥} are player 1’s vertices,
– V2 = {(v1, a) | v1 ∈ V1, a ∈ Act(v1)} are player 2’s vertices,
– Vp = {P(s, a, ·) | s ∈ S, a ∈ Act(s)} ∪ {v⊥p } are the probabilistic vertices,
– vinit = B ∈ P such that sinit ∈ B is the initial vertex, and
– δ : Vp → Dist(V) is the identity function,

and the set of edges E is given by

E = {(v1, v2) | v1 ∈ V1, v2 = (v1, a) ∈ V2, a ∈ Act(v1)}
∪ {(v2, vp) | v2 = (v1, a) ∈ V2, ∃s ∈ v1 : vp = P(s, a, ·)}
∪ {(v2, v⊥p), (v⊥p ,⊥) | v2 = (v1, a) ∈ V2, ∃s ∈ V1 : a �∈ Act(s)}
∪ {(vp, v′) | vp ∈ Vp, v′ ∈ V1 : vp(v

′) > 0}

where v⊥p ∈ Dist(S ∪ {⊥}) is defined by v⊥p (v) = 1 iff v = ⊥.

To distinguish the probabilities obtained in the game-based abstraction GQM from

the ones obtained in the menu-based abstraction ĜQM, we will denote the latter
by p̂◦1◦2

v (F) with ◦1, ◦2 ∈ {−,+} and p̂σ1σ2
v (F).

Starting in the initial vertex, player 1 chooses one of the commands that
are enabled in at least one state in the current block. Then, player 2 implicitly
chooses a state from the current block by choosing a probability distribution
that is (i) created by the chosen command and (ii) is available at some state in
the block. Finally, the successor vertices are given by that distribution and the
play is once again in a vertex owned by player 1.

Example 16. Reconsider the MDP M in Figure 2 and the partition Q from
Example 2. The resulting menu game is shown in Figure 9. Note that the labeling
of player 1’s choices with commands is added to illustrate the correspondence,
but is not actually part of the game itself. �
As for game-based abstraction, we can state the correctness of the abstraction
in the sense that the reachability probabilities obtained from the game are lower
and upper bounds for the reachability probabilities in the original MDP.

Theorem 3 (Correctness of menu-based abstraction [45]). Let ĜQM be
the menu game for an MDPM with state space S and Q a partition of S. Then
for all v ∈ V1 and s ∈ v

p̂−−
v (F ∪ {⊥}) ≤ p−s (F) ≤ p̂−+

v (F ∪ {⊥}), (3)

p̂+−
v (F) ≤ p+s (F) ≤ p̂++

v (F). (4)

112 C. Dehnert et al.

A ⊥

B

C

b

a

1

0.8

0.2

0.5

0.5

1

c

b
0.2

0.8

c

1

1

Fig. 9. The menu game ĜQ
M

For minimal reachability objectives, ⊥ becomes a target vertex in addition to the
given set F . Intuitively, this is because it corresponds to the case where player 2
selects a concrete state in the abstract vertex in which the command previously
selected by player 1 is not enabled. This would, however, result in a lower bound
of 0 for the minimum reachability probability in all vertices that contain some
state in which at least one action is not enabled. Instead, it should be implicitly
forbidden for player 2 to choose ⊥ in this case, which is done by assigning the
worst (with respect to the goal of player 2) possible value to it. Conversely, if
player 2 tries to maximize its value, the construction would be incorrect if ⊥ was
not considered a target vertex as well, which is illustrated by the next example.

Example 17. Reconsider the probabilistic program from Figure 1 with the dif-
ference that the guard of command b is strengthened to 1 < x+y ≤ 2. Note that
the menu game ĜQM′ for the resulting modified MDP M′ is equal to ĜQM from
Example 16 even though b is now disabled in 〈1, 0〉 in M′ and the minimum
reachability probability of reaching F from 〈1, 0〉 is 0.5 then. Now, suppose ⊥
was not considered a target state in the menu game. If player 1 chooses the com-
mand b in A, the best player 2 can do to maximize the probability to eventually
reach F is to choose the state that has b enabled and achieve a probability of 0.2.
This is, however, not an upper bound for the minimal reachability probability
for all states in block A, as 〈1, 0〉 ∈ A has a minimal reachability probability of
0.5 inM′. Intuitively, it is not legal for player 1 to pick a command that is not
enabled in all states. �

The menu game can be solved in the same fashion that the previous games
were solved, e g., using value iteration. As stated by the correctness theorem,
this will result in lower and upper bounds for both the minimal and the maximal
reachability probability with respect to the given set of target states.

Compared to game-based abstraction, it should be noted that it is no longer
the case that player 1 resolves the nondeterminism introduced by the abstrac-
tion and player 2 the nondeterminism of the original model, but that the two
have swapped roles. In the game-based abstraction setting, player 1 determined
whether the resulting probability was a lower or upper bound while player 2

On Abstraction of Probabilistic Systems 113

could control whether the result was an approximation of the minimal or maxi-
mal reachability probability in the original MDP. This is exactly reversed in the
context of menu games, which is reflected in the previous correctness theorem
by swapping the goals of the two players (compared to game-based abstraction).

Also, there are examples for which game-based abstraction produces tighter
bounds than menu-based abstraction if the same partition Q of the state space
is used for building the games. Technically, this happens because game-based
abstraction constructs a game representation of the best transformer on the
partition induced by the predicates whereas menu-based abstraction represents
an abstract transformer that does not necessarily coincide with the best trans-
former [45].

Example 18. Reconsider the menu game ĜQM from Example 16. For the menu-
based abstraction, the lower bounds for minimum and maximum reachability
are both 0 and, likewise, the upper bounds are both 1, effectively yielding no
information. As shown in Example 13, this is coarser than the bounds obtained
via game-based abstraction (using the same partition Q). �

This immediately raises the issue of termination if menu-based abstraction is
to be used in a refinement loop. Fortunately, the following result can be estab-
lished.

Theorem 4 (Refinability). Any finite partition Q can be refined to a finite
partition Q′ on which the reachability probabilities in the menu game approximate
the reachability properties in the original MDP at least as precisely as the game-
based abstraction over Q. Formally, for every s ∈ S, let v ∈ Q, v′ ∈ Q′ such that
s ∈ v and s ∈ v′, then:

p−−
v,Q(F) ≤ p̂

−−
v′,Q′(F ∪ {⊥}) ≤ p−s (F) ≤ p̂−+

v′,Q′(F ∪ {⊥}) ≤ p+−
v,Q(F) (5)

p−+
v,Q(F) ≤ p̂

+−
v′,Q′(F) ≤ p+s (F) ≤ p̂++

v′,Q′(F) ≤ p++
v,Q(F). (6)

Note that the players swapped roles, so the order of the superscripts of the
reachability probabilities is important.

Extensions. For models that involve parametric transition probabilities de-
pending on state variables, the usual game construction possibly produces games
of infinite size, because infinitely many probability distributions might be avail-
able in a block. Recently, [22] proposed to solve this problem by constructing
constraint Markov games, an extension of probabilistic games that is able to deal
with variable probabilities, instead. Intuitively, the idea is to avoid introducing
a game vertex for every available distribution by shifting the selection of the
distribution into a different level of non-determinism in the game.

7 Conclusion

We have described three successful techniques for the abstraction of probabilistic
systems. Which one is most useful in a concrete situation? Multi-valued abstrac-
tion seems to be the simplest method: one stays within the model of MDPs,

114 C. Dehnert et al.

so analysis of the abstract model can use mainstream model checkers. However,
the disadvantage is that some questions cannot be answered. In those cases the
abstraction-refinement frameworks demonstrate their strengths. CEGAR over-
comes a part of the weakness of multi-valued abstraction, by providing a direction
in which to refine a model if model checking on the abstract model has led to a
spurious counterexample. Game-based techniques do not rely on MDPs as their
underlying abstract model but rather use probabilistic games. This way, they can
provide lower bounds on both minimal and maximal reachability probabilities.

References

[1] de Alfaro, L., Roy, P.: Magnifying-lens abstraction for Markov decision processes.
In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 325–338.
Springer, Heidelberg (2007)

[2] Aljazzar, H., Leue, S.: Directed explicit state-space search in the generation of
counterexamples for stochastic model checking. IEEE Trans. Software Eng. 36(1),
37–60 (2010)

[3] Aziz, A., Singhal, V., Balarin, F., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: It
usually works: The temporal logic of stochastic systems. In: Wolper, P. (ed.) CAV
1995. LNCS, vol. 939, pp. 155–165. Springer, Heidelberg (1995)

[4] Baier, C., Katoen, J.-P.: Principles of model checking. MIT Press, Cambridge
(2008)

[5] Baier, C., Katoen, J.-P., Hermanns, H., Wolf, V.: Comparative branching-time se-
mantics for Markov chains. Information and Computation 200(2), 149–214 (2005)

[6] Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic
systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513.
Springer, Heidelberg (1995)

[7] Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V.Y., Noll, T., Roveri, M.:
Safety, dependability and performance analysis of extended aadl models. Comput.
J. 54(5), 754–775 (2011)

[8] Chadha, R., Viswanathan, M.: A counterexample-guided abstraction-refinement
framework for markov decision processes. ACM Trans. Comput. Log. 12(1), 1
(2010)

[9] Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: Prism-games: A
model checker for stochastic multi-player games. In: Piterman, N., Smolka, S.A.
(eds.) TACAS 2013. LNCS, vol. 7795, pp. 185–191. Springer, Heidelberg (2013)

[10] Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

[11] Condon, A.: The complexity of stochastic games. Information and Computa-
tion 96(2), 203–224 (1992)

[12] D’Argenio, P.R., Jeannet, B., Jensen, H.E., Larsen, K.G.: Reachability analysis of
probabilistic systems by successive refinements. In: de Luca, L., Gilmore, S. (eds.)
PAPM-PROBMIV 2001. LNCS, vol. 2165, pp. 39–56. Springer, Heidelberg (2001)

[13] D’Argenio, P.R., Jeannet, B., Jensen, H.E., Larsen, K.G.: Reduction and refine-
ment strategies for probabilistic analysis. In: Hermanns, H., Segala, R. (eds.)
PAPM-PROBMIV 2002. LNCS, vol. 2399, pp. 57–76. Springer, Heidelberg (2002)

On Abstraction of Probabilistic Systems 115

[14] Dehnert, C., Katoen, J.-P., Parker, D.: SMT-based bisimulation minimisation of
markov models. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013.
LNCS, vol. 7737, pp. 28–47. Springer, Heidelberg (2013)

[15] Delahaye, B., Katoen, J.-P., Larsen, K.G., Legay, A., Pedersen, M.L., Sher, F.,
W ↪asowski, A.: Abstract probabilistic automata. In: Jhala, R., Schmidt, D. (eds.)
VMCAI 2011. LNCS, vol. 6538, pp. 324–339. Springer, Heidelberg (2011)

[16] Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Approximating la-
belled Markov processes. Information and Computation 184(1), 160–200 (2003)

[17] Donaldson, A.F., Miller, A.: Symmetry reduction for probabilistic model checking
using generic representatives. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS,
vol. 4218, pp. 9–23. Springer, Heidelberg (2006)

[18] Eisentraut, C., Hermanns, H., Schuster, J., Turrini, A., Zhang, L.: The quest for
minimal quotients for probabilistic automata. In: Piterman, N., Smolka, S.A. (eds.)
TACAS 2013. LNCS, vol. 7795, pp. 16–31. Springer, Heidelberg (2013)

[19] Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize
synchronization skeletons. Science of Computer Programming 2(3), 241–266 (1982)

[20] Fecher, H., Leucker, M., Wolf, V.: Don’t know in probabilistic systems. In: Valmari,
A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 71–88. Springer, Heidelberg (2006)

[21] Feng, L., Kwiatkowska, M.Z., Parker, D.: Compositional verification of proba-
bilistic systems using learning. In: QEST, pp. 133–142. IEEE Computer Society
(2010)

[22] Ferrer Fioriti, L.M., Hahn, E.M., Hermanns, H., Wachter, B.: Variable probabilis-
tic abstraction refinement. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012.
LNCS, vol. 7561, pp. 300–316. Springer, Heidelberg (2012)

[23] Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: Pass: Abstraction refinement
for infinite probabilistic models. In: Esparza, J., Majumdar, R. (eds.) TACAS
2010. LNCS, vol. 6015, pp. 353–357. Springer, Heidelberg (2010)

[24] Han, T., Katoen, J.-P.: Counterexamples in probabilistic model checking. In:
Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 72–86. Springer,
Heidelberg (2007)

[25] Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5), 512–535 (1994)

[26] Henzinger, T.A., Mateescu, M., Wolf, V.: Sliding window abstraction for infinite
Markov chains. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 337–352. Springer, Heidelberg (2009)

[27] Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Gupta, A., Ma-
lik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 162–175. Springer, Heidelberg (2008)

[28] Huth, M., Jagadeesan, R., Schmidt, D.: Modal transition systems: A foundation for
three-valued program analysis. In: Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028,
pp. 155–169. Springer, Heidelberg (2001)

[29] Jansen, D.N., Song, L., Zhang, L.: Revisiting weak simulation for substochastic
Markov chains. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.)
QEST 2013. LNCS, vol. 8054, pp. 209–224. Springer, Heidelberg (2013)

[30] Jansen, N., Ábrahám, E., Katelaan, J., Wimmer, R., Katoen, J.-P., Becker, B.:
Hierarchical counterexamples for discrete-time markov chains. In: Bultan, T.,
Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 443–452. Springer,
Heidelberg (2011)

[31] Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.
In: Proc. LICS 1991, pp. 266–277. IEEE Comp. Soc. Pr. (1991)

116 C. Dehnert et al.

[32] Katoen, J.-P., Kemna, T., Zapreev, I., Jansen, D.N.: Bisimulation minimisation
mostly speeds up probabilistic model checking. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424, pp. 87–101. Springer, Heidelberg (2007)

[33] Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for prob-
abilistic systems. JLAP 81(4), 356–389 (2012)

[34] Kattenbelt, M., Kwiatkowska, M., Norman, G., Parker, D.: A game-based
abstraction-refinement framework for markov decision processes. Formal Methods
in System Design 36(3), 246–280 (2010)

[35] Kattenbelt, M., Kwiatkowska, M.Z., Norman, G., Parker, D.: A game-based
abstraction-refinement framework for markov decision processes. Formal Methods
in System Design 36(3), 246–280 (2010)

[36] Komuravelli, A., Păsăreanu, C.S., Clarke, E.M.: Assume-guarantee abstraction
refinement for probabilistic systems. In: Madhusudan, P., Seshia, S.A. (eds.) CAV
2012. LNCS, vol. 7358, pp. 310–326. Springer, Heidelberg (2012)

[37] Kwiatkowska, M., Norman, G., Parker, D.: Symmetry reduction for probabilistic
model checking. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp.
234–248. Springer, Heidelberg (2006)

[38] Kwiatkowska, M., Norman, G., Parker, D.: Prism 4.0: Verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

[39] Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Assume-guarantee verifica-
tion for probabilistic systems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 23–37. Springer, Heidelberg (2010)

[40] Larsen, K.G., Thomsen, B.: A modal process logic. In: Proc. LICS 1988, pp.
203–210. Los Alamitos, Calif (1988)

[41] Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, pp. 203–210 (1988)
[42] McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)

CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)
[43] Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nordic

Journal of Computing 2, 250–273 (1995)
[44] Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state pro-

grams. In: FOCS, pp. 327–338. IEEE Comp. Soc. Pr., Washington, DC (1985)
[45] Wachter, B.: Refined probabilistic abstraction. Ph.D. thesis, Universität des Saar-

landes, Saarbrücken (2011)
[46] Wachter, B., Zhang, L.: Best probabilistic transformers. In: Barthe, G.,

Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 362–379. Springer,
Heidelberg (2010)

[47] Wimmer, R., Herbstritt, M., Hermanns, H., Strampp, K., Becker, B.: Sigref- a
symbolic bisimulation tool box. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS,
vol. 4218, pp. 477–492. Springer, Heidelberg (2006)

[48] Wimmer, R., Jansen, N., Ábrahám, E., Becker, B., Katoen, J.-P.: Minimal critical
subsystems for discrete-time markov models. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 299–314. Springer, Heidelberg (2012)

[49] Wimmer, R., Jansen, N., Vorpahl, A., Ábrahám, E., Katoen, J.-P., Becker, B.:
High-level counterexamples for probabilistic automata. In: Joshi, K., Siegle, M.,
Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 39–54.
Springer, Heidelberg (2013)

[50] Zhang, L.: Decision algorithms for probabilistic simulations. Ph.D. thesis,
Universität des Saarlandes, Saarbrücken (2009)

Computing Behavioral Relations

for Probabilistic Concurrent Systems

Daniel Gebler1, Vahid Hashemi2,3, and Andrea Turrini4

1 Department of Computer Science, VU University Amsterdam,
De Boelelaan 1081a, NL-1081 HV Amsterdam, The Netherlands

2 Max Planck Institute for Informatics, 66123 Saarbrücken, Germany
3 Department of Computer Science

Saarland University, 66123 Saarbrücken, Germany
4 State Key Laboratory of Computer Science, Institute of Software,

Chinese Academy of Sciences, 100190 Beijing, China

Abstract. Behavioral equivalences and preorders are fundamental no-
tions to formalize indistinguishability of transition systems and provide
means to abstraction and refinement. We survey a collection of models
used to represent concurrent probabilistic real systems, the behavioral
equivalences and preorders they are equipped with and the correspond-
ing decision algorithms. These algorithms follow the standard refinement
approach and they improve their complexity by taking advantage of the
efficient algorithms developed in the optimization community to solve
optimization and flow problems.

1 Introduction

1.1 Probabilistic Systems

Probability, time, and nondeterminism. These are three main characteristics of
several real-world applications. Probability occurs every time the behavior of
the applications is not unique, either by construction or by physical properties.
For example, distributed algorithms like the Zeroconf protocol or cryptographic
protocols like SSL are based on random choices to break symmetry or to insert
uncertainty in order to achieve their goals. Each time a message is transmitted
on the network, in fact, transmission protocols have to manage the corruption
of the messages, as well as their loss, as the effect of the interference with other
concurrent transmissions or physical properties of the transmission medium. For
instance, simultaneous transmissions on the same channel of a wireless network
lead to the collision of the sent messages and their corruption.

Beside probabilities, these systems often have another source of uncertainty,
namely nondeterminism, that appears whenever an event may occur with un-
predictable behavior; for instance, the event of a host starting the transmission
in a wireless network.

Time governs the evolution of the system: with the time passing, the system
performs and reacts to actions and correspondingly changes its state, according

A. Remke and M. Stoelinga (Eds.): ROCKS Autumn School 2012, LNCS 8453, pp. 117–155, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

118 D. Gebler, V. Hashemi, and A. Turrini

to its goals. Time can be considered as a discrete component (e.g., a program
running on a computer performs one operation at each tick of the digital clock)
or as a continuum behavior (e.g., the arrival and service of customers at the
information desk).

To study the properties of such real-world applications, several models have
been proposed by researchers: the basic model in the discrete time domain is the
discrete time Markov chains (DTMCs) model [26,52], where the time is discrete
(i.e., the system performs one operation per clock tick) and only probability
determines the reached states. The continuous-time counterpart is known as
the continuous-time Markov chains (CTMCs) [3, 5] model, where exponentially
distributed sojourn times distributions control the evolution of the system.

DTMCs and CTMCs are purely probabilistic, and they have been extended
with nondeterminism to permit different operations or behaviors from a specific
state. This extension results to Markov decision processes (MDPs) [10,31,32,44]
and continuous-time Markov decision processes (CTMDPs) [7,11,31,44,54], re-
spectively. These models, despite being widely used to represent and study real
systems, are not fully compositional, that is, there is no guarantee that complex
systems can be obtained by composing smaller components while preserving
the intended behavior. This property is rather important as it is usually much
easier to model and study (a set of) small systems and then combine them to-
gether rather than a single large system. Moreover, in the real world, usually
applications and protocols involve several parties each one composed by mod-
ules working together in parallel. Two models have been proposed to achieve
such compositional property: the probabilistic automata (PAs) model [47, 48]
for discrete time systems and the interactive Markov chains (IMCs) [28] model
for continuous-time systems. Recently one model has been proposed to unify
and merge all such models in a single framework: the Markov automata (MAs)
model [17, 22, 23]. This formalism is suitable for studying systems featuring
continuous-time based behaviors as well as probabilistic and nondeterministic
choices. Moreover, the Markov automata model provides the semantics to every
generalized stochastic Petri net (GSPN) [19], a popular modelling formalism for
performance and dependability analysis.

1.2 Comparing System Behaviors

Given a real world system we want to analyze, for instance by verifying whether
it satisfies a set of properties, we can model it in several ways. This analysis is
commonly known as model checking. In particular, we can decide to model it as
a DTMC or as a PA whenever we are interested in its properties as a discrete
time system; alternatively, if we want to study its behavior in continuous time,
we can use CTMCs or IMCs. The choice of the model framework depends on
the properties we are interested in and the details we want to consider.

Once the model framework has been chosen, the real system can be repre-
sented by several different models: for example, we can use different names for
the states, we can encode probabilistic choices as sequences of events or as single
events, we can detail or abstract from particular details, and so on. It is clear

Computing Behavioral Relations for Probabilistic Concurrent Systems 119

that these choices affect the resulting model whose size may vary even if all these
models represent the same real system.

A possible way to abstract away from this modelling details is to use the
so called simulation and bisimulation relations that allow us to declare that
two models are similar or equivalent whenever they are related, respectively.
Intuitively, a system S1 simulates a system S2 if S1 is able to mimic whatever S2

can do; the bisimulation requires that also S2 simulates S1. Usually, a simulation
(or bisimulation) is defined as a binary relation over the states of the model and
for each pair (s1, s2), if s1 can perform a step, then s2 has to match such step
via its own steps in order to reach states that are related to the states reached
from s1. Depending on the steps s2 is allowed to perform, simulation relations
can be classified as strong (s2 has to match with exactly one step) or as weak (s2
is free to perform an arbitrary additional number of internal steps). Computing
such simulation relations is rather easy by using classical refinement algorithms,
provided that we have a procedure for deciding the existence of the matching
step from s2 given a step from s1. As we will see in Section 6, such procedure
is the only part that has to be changed in order to decide different simulations
and it is also the bottleneck of the computation and the main source of the
complexity of the decision procedure.

We are interested in systems related by a simulation relation since also the
properties they satisfy are related, so we can check whether the real world sys-
tem satisfies a given property by verifying it in one of the similar models: the
theory ensures us that the evaluation of the property does not depend on the
specific model we consider to represent the real world system. When we consider
the bisimulation relation, among all possible bisimilar models there is a unique
minimal model (up to isomorphism) that represents the original system [21]: the
quotient model. The quotient is the model with the minimum number of states
and transitions still behaving as the system we want to analyze; this minimality
mitigates the state explosion problem of the model checking [8, 14, 34] as well
as it helps in reducing the computational effort needed to verify whether the
desired properties are fulfilled. Moreover, the computation of the quotient au-
tomaton is independent on the properties we want to check, thus even if it may
be rather time consuming, the overall gain it provides to the following model
checking phase may justify it.

1.3 Optimization Problems

Optimization or mathematical programming uses mathematical techniques to
find the best solution among a set of given alternatives. More precisely, an opti-
mization problem asks for maximizing or minimizing a real valued function for
which the variables take values from a permissible set. It includes many diverse
areas such as decision theory [42], flow network optimization [1] and so on. Flow
network optimization is a subclass of linear programming that has application
in a number of domains such as computer science, logistics, transportation sys-
tems. Although flow network based models are not as wide as models that can
be formulated mathematically using linear or integer programming, they can

120 D. Gebler, V. Hashemi, and A. Turrini

be solved very quickly which enables them to be a powerful tool for decision
making [1].

1.4 Probabilistic Systems vs. Optimization

To a casual observer, flow and optimization problems seem rather unrelated to
probabilistic concurrent systems. In fact, as we have seen, the former aim to op-
timize problems like resource allocation or goods transportation and distribution
while the latter model systems that run in parallel where the behavior depends
on probabilistic events as well like random failures, errors, and choices needed
to break symmetry. To a careful observer, flow and optimization problems and
probabilistic concurrent systems are not so unrelated, since the probability mass
concentrated in the initial state can be seen as a liquid that flows and distributes
in the network representing the possible evolution of the system. To highlight this
connection, in this survey we consider a selection of papers [29,30,55,57] that, to-
gether with other works in concurrency literature such as [2,4,13,15,20,21,43,45],
make use of flow and optimization problems to decide or solve efficiently the
challenges of probabilistic concurrent systems.

Organization of the Paper. After the mathematical preliminaries in Section 2,
we present in Section 3 the discrete and continuous-time models, followed in
Section 4 by the simulation and bisimulation relations defined on them. We recall
in Section 5 the theory about networks and flow problems that are widely used
in Section 6 to efficiently compute simulations and bisimulations. We conclude
the paper in Section 7.

2 Mathematical Preliminaries

2.1 Functions and Relations

Given a set X and ⊥ /∈ X , we denote by X⊥ the set X ∪ {⊥}.
Let X , Y be two finite sets, f : X → R and g : X × Y → R be two functions.

For X ′ ⊆ X , we denote by f(X ′) the value f(X ′) =
∑

x∈X′ f(x); for x ∈ X
and Y ′ ⊆ Y , g(x, Y ′) =

∑
y∈Y ′ g(x, y) and similarly, for y ∈ Y and X ′ ⊆ X ,

g(X ′, y) =
∑

x∈X′ g(x, y). Finally, we define for each x ∈ X and y ∈ Y the
functions g(x, ·) : Y → R and g(· , y) : X → R as g(x, ·)(y′) = g(x, y′) for
each y′ ∈ Y and g(· , y)(x′) = g(x′, y) for each x′ ∈ X , respectively. Given two
functions f, g : X → R and p ∈ R, we denote by p · f : X → R the function
(p · f)(x) = p · f(x) for each x ∈ X and f + g : X → R the function (f + g)(x) =
f(x) + g(x) for each x ∈ X .

For a function f : X → R≥0, we denote by Supp(f) the support set Supp(f) =
{ x ∈ X | f(x) > 0 }.

Given a relation R ⊆ X × Y and the sets X ′ ⊆ X and Y ′ ⊆ Y , we define
R(X ′) = { y ∈ Y | ∃x ∈ X ′.x R y } and R−1(Y ′) = { x ∈ X | ∃y ∈ Y ′.x R y }.

Given a relation R ⊆ X ×X , we call R∩R−1 the kernel of R and we denote
by R⊥ ⊆ X⊥ ×X⊥ the relation R∪ { (⊥, x) | x ∈ X⊥ }.

Computing Behavioral Relations for Probabilistic Concurrent Systems 121

2.2 Probability Distributions

For a set X , denote by Disc(X) the set of discrete probability distributions over
X , and by SubDisc(X) the set of discrete sub-probability distributions over X .
Since a discrete sub-probability distribution ρ ∈ SubDisc(X) can be seen as a
function ρ : X → [0, 1], we adopt the same terminology and operations. Given
ρ ∈ SubDisc(X), we denote by ρ(⊥) the value 1−ρ(X) where ⊥ /∈ X , and by |ρ|
the size |Supp(ρ)|. We extend ρ to a probability distribution ρ⊥ ∈ Disc(X⊥) by
defining ρ⊥(⊥) = 1− ρ(X) and ρ⊥(x) = ρ(x) for each x ∈ X . We denote by δx,
where x ∈ X⊥, the Dirac distribution such that δx(y) = 1 for y = x, 0 otherwise.
For a sub-probability distribution ρ, we also write ρ = { (x, px) | x ∈ X } where
px is the probability of x. We say that ρ is stochastic if ρ(X) = 1 and absorbing
if ρ(⊥) = δ⊥. We sometimes refer to ρ(X) as the mass of ρ.

The lifting L(R) ⊆ Disc(X) × Disc(X) [34] of a relation R ⊆ X × X to
distributions is defined as: for ρ1, ρ2 ∈ Disc(X), ρ1 L(R) ρ2 holds if there exists
a weighting function w : X ×X → [0, 1] such that

1. for each (x1, x2) ∈ X ×X , w(x1, x2) > 0 implies x1 R x2,
2. for each x1 ∈ X , w(x1, X) = ρ1(x1), and
3. for each x2 ∈ X , w(X, x2) = ρ2(x2).

This definition of lifting has been proposed for discrete systems [34, 50] and it
is indeed equivalent [55] to the definition based on R-closure introduced by [18]
for non-discrete systems: the lifting L(R) ⊆ Disc(X) × Disc(X) of a relation
R ⊆ X × X is defined as: for ρ1, ρ2 ∈ Disc(X), ρ1 L(R) ρ2 holds if for each
X ′ ⊆ X , ρ1(X

′) ≤ ρ2(R(X ′)).
Extending the lifting to sub-distributions is rather easy [57]: for ρ1, ρ2 ∈

SubDisc(X), ρ1 L(R) ρ2 holds if there exists a weighting function w : X⊥×X⊥ →
[0, 1] such that

1. for each (x1, x2) ∈ X⊥ ×X⊥, w(x1, x2) > 0 implies x1 R⊥ x2,
2. for each x ∈ X⊥, w(x,X⊥) = ρ1(x), and
3. for each x ∈ X⊥, w(X⊥, x) = ρ2(x).

3 The Models

We now introduce the formal models for probabilistic concurrent systems we
consider in this survey paper. We first recall the discrete time models and then
the continuous-time models. In this work we consider only finite models, i.e.,
systems such that states, actions, and transition relations are finite.

3.1 Discrete Time Models

The first model we consider is the labelled substochastic discrete time Markov
chain model where each state enables only a transition that may reach several
states, each one with a given probability. The status of the system is represented
by a set AP of atomic propositions that are true in the given state.

122 D. Gebler, V. Hashemi, and A. Turrini

Definition 1 (Substochastic discrete time Markov chain [8, 33]). A la-
belled substochastic Discrete Time Markov Chain (sDTMC) S is a tuple S =
(S, s̄,P, L) where S is a finite set of states, s̄ is the start state, P : S×S → [0, 1]
is a probability matrix such that P(s, ·) ∈ SubDisc(S) for all s ∈ S, and
L : S → 2AP is a labeling function.

Given a state s and the associated distribution μs = P(s, ·) ∈ SubDisc(S), we
call (s, μs) a transition and we say that (s, μs) is enabled by s and that μs is
the target of (s, μs).

s

t u v1
2

3
10

1
2

1
2

3
10

3
10

3
10

Fig. 1. An example of substochastic discrete time Markov chain

Figure 1 shows an example of a sDTMC, where s is the initial state, denoted
by the short incoming arrow. For each state, we represent the enabled transition
by a set of arrows grouped by an arc and pointing to the target states, each
one decorated with the corresponding probability. For example, the transition
enabled by s reaches t and u with probability 1

2 and 3
10 , respectively. As usual

in this kind of representation of the model, to keep the picture clear we have
omitted the arrows reaching states with probability 0. For instance, from s there
should be also an arrow reaching v with probability 0. As labels of the states, we
take AP = S = {s, t, u, v} and we let L(z) = z for each state z ∈ S. Note that
the transitions from both s and u have as target a sub-probability distribution
that is not a probability distribution. In fact, for the transition (s, μs) the mass
of μs is 8

10 and the transition (u, μu) the mass of μu is 9
10 .

We call a state s stochastic (absorbing) if the distribution P(s, ·) is stochas-
tic (absorbing) respectively. For the sDTMC in Figure 1, t is stochastic, v is
absorbing while both s and u are neither stochastic nor absorbing. If we restrict
the states of a sDTMC to be either stochastic or absorbing, we obtain a discrete
time Markov chain:

Definition 2 (Discrete time Markov chain [26, 52]). A labelled Discrete
Time Markov Chain (DTMC) D is a labelled sDTMC D = (S, s̄,P, L) such that
for each state s ∈ S, P(s, S) ∈ {0, 1}.

Figure 2 shows an example of a DTMC. It is actually the sDTMC in Figure 1
where probability distributions have been normalized to have mass 1.

These two models are suitable for systems exhibiting only probabilistic behav-
iors, that is, they are not able to represent systems where different transitions

Computing Behavioral Relations for Probabilistic Concurrent Systems 123

s

t u v5
8

3
8

1
2

1
2

1
3

1
3

1
3

Fig. 2. An example of discrete time Markov chain

are available from the states. For instance, the system that is in a particular
state may react differently to different stimuli and this can be modeled by per-
forming different transitions leading to different distributions over the states
of the system. We call this capacity nondeterminism that is encoded, together
with probability, by the following two discrete time models: Markov decision
processes and probabilistic automata. In order to have a uniform approach, for
probabilistic automata we adopt the notation of [57] instead of the one used
in [47, 48].

Definition 3 (Probabilistic automaton [47,48]). A Probabilistic Automa-
ton (PA) P is a tuple P = (S, s̄, Σ,→, L) where S is a finite set of states, s̄ is
the start state, Σ is a finite set of actions, → ⊆ S × Σ × Disc(S) is a finite
probabilistic transition relation, and L : S → 2AP is a labeling function.

The set Σ is divided in two sets H and E of internal (hidden) and external
actions, respectively. We remark that the definition of probabilistic automata
we are presenting here is different from the original one given by Segala in [48]
named simple probabilistic automata, but currently known as just probabilistic
automata. In fact, in such work (simple) probabilistic automata are defined as
follows (cf. [48, Section 3.1]): A Probabilistic Automaton (PA) P is a tuple
(S, s̄, Σ,→) where S is a countable set of states, s̄ ∈ S is the start state, Σ is a
countable set of actions, and → ⊆ S × Σ × Disc(S) is a probabilistic transition
relation. The main difference with Definition 3 is that in [48] there is no labeling
function. This difference can be easily bridged by defining L as L(s) = ∅ for each
s ∈ S. Figure 3 shows an example of a PA where H = {τ} and E = {a, b}.

In a probabilistic automaton P we can distinguish between two kinds of nonde-
terminism: external and internal nondeterminism. We say that a state s exhibits
external nondeterminism if there exist two different actions a and b such that
(s, a, μa) ∈ → and (s, b, μb) ∈ → for some μa, μb ∈ Disc(S). For instance, this
is the case for the state v of the PA in Figure 3 since we have the two transi-
tions (v, a, δs) and (v, b, δu). On the other hand, we say that a state s exhibits
internal nondeterminism if there exist an action a and two different distributions
μ1, μ2 ∈ Disc(S) such that (s, a, μ1) ∈ → and (s, a, μ2) ∈ →. This happens for
the state u that enables two different transitions both with action b. Note that

124 D. Gebler, V. Hashemi, and A. Turrini

s

t u v

τ

5
8

3
8

a

1
2

1
2

b1

b

1
2

1
2

b1

a
1

a
1

Fig. 3. An example of probabilistic automaton

a state may exhibit both internal and external nondeterminism (as happens for
v) or none of them (see states s and t).

3.2 Continuous-Time Models

We now consider the continuous-time counterparts of the previous models, where
state transitions are governed by the passing of the time. Essentially, they are
defined as the discrete time models except for the probability distributions that
are replaced by transition rates, i.e., the speed of transition firing.

The first model we recall is about continuous-time Markov chains that are
just discrete time Markov chains where the probability matrix is replaced by the
rate matrix.

Definition 4 (Continuous-time Markov chain [5, 44, 55]).
A labelled Continuous-Time Markov Chain (CTMC) C is a tuple C = (S, s̄,R, L)
such that S, s̄, and L are defined as for DTMC and R : S×S → R≥0 is the rate
matrix.

Note that the usual definition of CTMCs, such as the one in [3], requires that
R : S × S → R where for each s ∈ S, R(s, s′) ≥ 0 for each s′ �= s and
R(s, s) = −

∑
s′ �=s R(s, s′). As remarked in [5], allowing self loops neither al-

ters the transient nor the steady-state behavior of the CTMC, but it allows the
usual interpretation of the linear-time CSL operators like next-step and until.

s

t u vλ κ

λ λ

ρ

κ

Fig. 4. An example of continuous-time Markov chain

Figure 4 shows an example of a CTMC. Greek letters λ, κ, and ρ are the rates
governing the speed of the firing of the transitions. So, for example, the λ on the

Computing Behavioral Relations for Probabilistic Concurrent Systems 125

transition from s to t means that R(s, t) = λ. We omitted the transitions with
rate 0 to keep the picture clear.

The probability of performing a transition and reaching a given state can be
computed as follows: starting from the state s, the probability of performing a
transition within time t is 1−e−R(s,S)·t and the probability of reaching the state

s′ with this transition is (1− e−R(s,S)·t) · R(s,s′)
R(s,S) .

This allows us to consider the DTMC embedded into a CTMC that captures
the system behavior after abstracting away the time:

Definition 5 (Embedded DTMC [5, 55, 57]). Let C be a CTMC. The em-
bedded DTMC D of C is defined by emb(C) = (S, s̄,P, L) where for each s, s′ ∈
S, P(s, s′) is defined as P(s, s′) = R(s,s′)

R(s,S) if R(s, S) > 0, and P(s, s′) = 0

otherwise.

Similarly to CTMCs and DTMCs, the continuous-time counterparts of PAs,
called continuous-time probabilistic automata (CTPA), are obtained by replac-
ing the transition relation with a rate matrix.

We call a function r : S → R
≥0 a rate function and we denote the set of all

rate functions by Rate(S). Given the rate function r, we call r(S) the exit rate.
Given R and a state s of a CTMC C, we call R(s, ·) : S → R≥0 the rate function
associated with s and we usually denote it by rs.

Definition 6 (Continuous-time probabilistic automaton [11, 37, 44]).
A Continuous Time Probabilistic Automaton (CTPA) CP is a tuple CP =
(S, s̄, Σ,R, L), where S is a finite set of states, s̄ is the start state, Σ is a finite
set of actions, R ⊆ S × Σ × Rate(S) is a finite rate matrix, and L : S → 2AP

is a labeling function.

s

t u vλ

a
σ

a

κ

a

θ

a

λ

b

λ

c

ρc

κ a

Fig. 5. An example of continuous-time probabilistic automaton

Figure 5 shows an example of CTPA; arrows emanating from a state with the
same label and shape belong to the same transition. For instance, state s enables
two transitions (s, a, r) and (s, a, r′) with r, r′ ∈ Rate(S) such that r(t) = σ,
r(u) = θ, and r(s) = r(v) = 0 and r′(t) = λ, r′(u) = κ, and r′(s) = r′(v) = 0,
respectively.

126 D. Gebler, V. Hashemi, and A. Turrini

3.3 Mixed Discrete and Continuous-Time Models

We now present two models that merge continuous-time and discrete time be-
havior, the interactive Markov chains and the Markov automata. They exhibit
continuous-time behavior like CTMCs, where transitions are fired by the passage
of the time, as well as discrete time behavior like labelled transitions systems
where transitions are fired by actions. These two models are especially suited for
compositional reasoning over continuous-timed systems due to the separation of
action and Markovian transitions and the maximal progress assumption, that is,
if a state enables both timed transitions and internally labelled transitions, then
the latter take precedence and the former are ignored.

Definition 7 (Markov automaton [17,22,23]). A Markov Automaton (MA)
MA is a tuple MA = (S, s̄, Σ,→, R, L) where S is a finite set of states, s̄ is
the start state, Σ is a finite set of actions, → ⊆ S × Σ × Disc(S) is a finite
probabilistic transition relation, R ⊆ S × R≥0 × S is a finite set of timed
transitions, and L : S → 2AP is a labeling function.

s

t u v

τ

5
8

3
8

a

1
2

1
2

λ

b

1
2

1
2

κ

a
1

a
1

Fig. 6. An example of Markov automaton

Figure 6 shows an example of a MA. As for the CTMC in Figure 4, we
use Greek letters λ and κ for the rates governing the speed of the firing of the
transitions that we represent by dashed arrows in order to distinguish them from
probabilistic transitions.

An interactive Markov chain is an MA such that each probabilistic transition
leads to a Dirac distribution, i.e., to a single state:

Definition 8 (Interactive Markov chain [28]). An Interactive Markov
Chain (IMC) I is a tuple I = (S, s̄, Σ, →,R, L) where S is a finite set of
states, s̄ is the start state, Σ is a finite set of actions, → ⊆ S × Σ × S is
an interactive transition relation, R ⊆ S × R≥0 × S is a finite set of timed
transitions, and L : S → 2AP is a labeling function.

Figure 7 shows an example of an IMC. In particular, IMC can be seen as the
merger of labelled transitions systems and CTMCs while MA can be seen as the
merger of PAs and CTMCs. In fact, each model is an instance of the MA model
with specific restrictions on → and R (cf. [22, Section 3]). As for probabilistic
automata, the original definitions do not involve the labeling function L that
we have added for uniformity. Again, the original model can be recovered by
defining L(s) = ∅ for each s ∈ S.

Computing Behavioral Relations for Probabilistic Concurrent Systems 127

s

t u v

τ τ

a

a

λ

b

b

κ

a

a

Fig. 7. An example of interactive Markov chain

3.4 Terminology and Notation

In the remaining of the paper we adopt the following terminology and notation,
given in the context of probabilistic automata [27, 29, 47, 48, 57].

We refer to each instance of the discrete and continuous-time models as au-
tomaton and we denote it by A, that is, we use the term (discrete time) automa-
ton and A for the sDTMC S, the DTMC D, and the PA P as well as the term
(continuous-time) automaton and A for the CTMC C and the CTPA CP.

Given a PA P , we let s,t,u,v, and their variants with indices range over S; a, b
range over actions; and τ range over internal actions. A transition tr = (s, a, μ) ∈
→, also denoted by s a−→ μ, is said to leave from state s, to be labelled by a, and
to lead to the target distribution μ, also denoted by μtr . We denote by src(tr)
the source state s and by act(tr) the action a. We also say that s enables action
a, that action a is enabled from s, and that (s, a, μ) is enabled from s. Finally,
we let s −→ = { tr ∈ → | src(tr) = s } be the set of transitions enabled by s and
a→ = { tr ∈ → | act(tr) = a } be the set of transitions with label a.
An execution fragment of a PA P is a finite or infinite sequence of alternating

states and actions α = s0a1s1a2s2 . . . starting from a state s0, also denoted by
first(α), and, if the sequence is finite, ending with a state denoted by last(α),
such that for each i > 0 there exists a transition (si−1, ai, μi) ∈ → such that
μi(si) > 0. The length of α, denoted by len(α), is the number of occurrences of
actions in α. If α is infinite, then len(α) = ∞. Denote by frags(P) the set of
execution fragments of P and by frags∗(P) the set of finite execution fragments
of P . An execution fragment α is a prefix of an execution fragment α′, denoted
by α � α′, if the sequence α is a prefix of the sequence α′. The trace trace(α) of
α is the sub-sequence of external actions of α; we denote by ε the empty trace
and we define trace(a) = a for a ∈ E and trace(a) = ε for a ∈ H.

We extend the above terminology to the other models introduced so far, when
applicable; in particular, we use→ to denote the transition relations P and R of
DTMCs and sDTMCs, and of CTMCs and CTPAs, respectively. For instance,
given a DTMC D, a state s, and a probability distribution μ, we still call (s, τ, μ)
a transition, denoted by s τ−→ μ, also written (s, τ, μ) ∈ P, provided that μ =
P(s, ·). Note that here τ denotes just a step since it is not an actual action
labeling the transition. Similarly, given a CTPA CP, a state s, an action a, and

128 D. Gebler, V. Hashemi, and A. Turrini

a rate function r, we still write (s, a, r) ∈ → if R(s, a) = r and we call (s, a, r) a
transition, denoted by s a−→ r as well.

For a CTPA CP and a rate function r, we denote by μr ∈ SubDisc(S) the
induced sub-probability distribution defined by: if r(S) > 0, then for each s ∈ S,
μr(s) =

r(s)
r(S) , and if r(S) = 0, then μr = δ⊥.

We adopt a similar notation also for CTMCs: for a CTMC C and a state s,
we denote by μrs ∈ SubDisc(S) the sub-probability distribution induced by the
rate function rs = R(s, ·), i.e., μrs = P(s, ·) for the embedded DTMC emb(C).

Given an automatonA and a state s, we denote by post(s) the set of successors
of the state s, that is, post(s) = Supp(P(s, ·)) if A is a DTMC or a sDTMC,
and post(s) = { s′ ∈ S | R(s, s′) > 0 } if A is a CTMC. For a sDTMC S
and a state s, we denote by post⊥(s) the set post⊥(s) = Supp(μ⊥) where μ =
P(s, ·). Similarly, we denote by pre(s) the set of predecessors of the state s,
that is, pre(s) = { s′ ∈ S | P(s′, s) > 0 } if A is a DTMC or a sDTMC, and
pre(s) = { s′ ∈ S | R(s′, s) > 0 } if A is a CTMC. Finally, we denote by
reach(s) the states that are reachable with positive probability from s, that is,
reach(s) = { t ∈ S | ∃α ∈ frags∗(A).last(α) = t }.

4 Simulations and Bisimulations

We recall now the main behavioral preorders and equivalences that are used
for the models presented in Section 3. These relations allow us to relate system
that are syntactically different, for instance because they use different names for
the states, but exhibit equivalent behaviors. Moreover, they allow to reduce the
size of the automata without changing their properties. This is especially useful
to mitigate the state space explosion problem that usually happens in model
checking [8, 14, 34]. An empirical investigation to show the effectiveness of such
behavioral relations minimization is performed in [36]. This study indicates that
for traditional model checking, huge state space reductions (up to logarithmic)
may be acquired. It is worthwhile to mention that the definition of such relations
is based on a single automaton; however, as we will see, they are usually used
to relate two automata A1 and A2. This technical problem is easily solved by
taking the disjoint union of the two automata, that is, the automaton whose set
of states is the disjoint union of the sets of states of A1 and A2, and whose other
components are the union of the corresponding components of A1 and A2.

4.1 Strong Simulation and Bisimulation

The first relations we introduce are the strong simulation and bisimulation, that
are the natural extension to probabilistic systems of the homonymous relations
for labelled transition systems [39].

Definition 9 (Strong simulation for discrete time probabilistic automa-
ta [9, 50, 56, 57]). Let A be a discrete time probabilistic automaton. A relation
R on S is a strong simulation if, for each pair of states s, t ∈ S such that s R t,

Computing Behavioral Relations for Probabilistic Concurrent Systems 129

– L(s) = L(t) and
– if s a−→ μs for some probability distribution μs, then there exists μt such that
t a−→ μt and μs L(R) μt.

We say that the discrete time automaton A2 strongly simulates A1 if there
exists a strong simulation R on the disjoint union S1 � S2 such that s̄1 R s̄2
and we say that the state t strongly simulates the state s if there exists a strong
simulation R such that s R t. We denote the coarsest strong simulation, called
strong similarity, by �.

In the remaining of the paper and similarly for the following simulations, we
refer to the second condition (if s a−→ μs for some probability distribution μs,
then there exists μt such that t a−→ μt and μs L(R) μt) as the step condition
since it ensures that from two similar states s and t, each transition (or step)
from s is matched by a transition/step from t and the reached states are still
related according to the lifting of the reached distributions.

A1 A2

s1

t1 u1 z1 v1

a

1

b

1

a

1

b

1

1
2

a

1
2

2
3

b

1
3

s2

t2 u2 v2

a

1

a, b

1

b

1

1
3

a

2
3

1
3

b

2
3

Fig. 8. Two PAs with L(x) = ∅ for each state x such that A1 � A2. The single
transition from u2 with action a, b is just a compact form for the two transitions
(u2, a, δu2) and (u2, b, δu2).

Figure 8 shows two probabilistic automata A1 and A2 such that A1 � A2. In
fact, consider the relation R = {(s1, s2), (t1, t2), (u1, u2), (v1, v2), (z1, u2)}; it is
rather easy to verify that R satisfies Definition 9: it is trivial to verify the step
condition for the pairs (t1, t2), (u1, u2), (v1, v2), and (z1, u2). The only interesting
case is the pair (s1, s2); the transition s1

a−→ μ1a with μ1a = {(t1, 12), (u1,
1
2)} is

matched by s2 via the transition s2
a−→ μ2a with μ2a = {(t2, 13), (u2,

2
3)} such

that μ1a L(R) μ2a. The weighting function [34,56,57] wa justifying μ1a L(R) μ2a
is defined as follows:

wa(x1, x2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
3 if x1 = t1 and x2 = t2,
1
6 if x1 = t1 and x2 = u2,
1
2 if x1 = u1 and x2 = u2, and

0 otherwise.

Similarly, the transition s1
b−→ μ1b with μ1b = {(z1, 13), (v1,

2
3)} is matched by s2

via the transition s2
b−→ μ2b with μ2b = {(u2, 23), (v2,

1
3)} such that μ1b L(R) μ2b.

130 D. Gebler, V. Hashemi, and A. Turrini

The weighting function wb justifying μ1b L(R) μ2b is:

wb(x1, x2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
3 if x1 = z1 and x2 = u2,
1
3 if x1 = v1 and x2 = u2,
1
3 if x1 = v1 and x2 = v2, and

0 otherwise.

The definition of strong simulation for continuous-time automata is almost
the same, except for the fact that we require that t can move stochastically
faster than s, i.e., t has a rate higher than s:

Definition 10 (Strong simulation for continuous-time probabilistic au-
tomata [9,56,57]). Let A be a continuous-time probabilistic automaton. A re-
lation R on S is a strong simulation if, for each pair of states s, t ∈ S such that
s R t,

– L(s) = L(t) and
– if s a−→ rs for some rate function rs, then there exists a rate function rt such

that t a−→ rt, μrs L(R) μrt , and rs(S) ≤ rt(S).

We say that the continuous-time automaton A2 strongly simulates A1 if there
exists a strong simulation R on the disjoint union S1 � S2 such that s̄1 R s̄2
and we say that the state t strongly simulates the state s if there exists a strong
simulation R such that s R t. We denote the coarsest strong simulation, called
strong similarity, by �.

A1 A2

s1

t1 u1

λ 2λ

a a
2λ λ

b c

λa

2λ a

s2

t2 u2

λ 3λ

a a
4λ 4λ

c b

3λa

3λ a

Fig. 9. Two CTPAs with L(s1) = L(s2) = {s} and L(x) = ∅ for each remaining state
x such that A1 � A2

Figure 9 shows two continuous time probabilistic automata A1 and A2 such
that A1 � A2. The relation R = {(s1, s2), (t1, t2), (u1, u2), (t1, u2), (u1, t2)} in-
deed justifies A1 � A2: consider for instance the pair (t1, t2); the rate func-
tion rt1 induces the probability distribution μrt1 = δu1 and the overall rate
rt1(S) = λ. For t2, we have the rate function rt2 that induces the probability
distribution μrt2 = δu2 and the overall rate rt1(S) = 3λ, thus rt1(S) ≤ rt2(S).
Since (u1, u2) ∈ R, then δu1 L(R) δu2 is trivially satisfied, hence the step con-
dition is satisfied. A similar argument shows that the step condition is satisfied
for the pairs (u1, u2), (t1, u2), and (u1, t2).

Computing Behavioral Relations for Probabilistic Concurrent Systems 131

Now, consider the pair (s1, s2): we distinguish the case of the transitions with
label b and c and the transition with label a, all from s1. The transition from s1
with label b induces the probability distribution μrbs1

= δt1 and the overall rate

rbs1(S) = 2λ. For s2, we have the rate function rbs2 that induces the probability
distribution μrbs2

= δu2 and the overall rate rbs2 (S) = 4λ, thus rbs1(S) ≤ rbs2(S).
Since (t1, u2) ∈ R, then δt1 L(R) δu2 trivially holds, hence the step condition is
satisfied. The case for the label c is similar.

The last step condition we have to check involves the transition with label
a from s1. The rate function ras1 induces the probability distribution μras1 =

{(t1, λ
3λ), (u1,

2λ
3λ)} and the overall rate ras1 (S) = 3λ. For s2, we have the rate

ras2 that induces the probability distribution μras2 = {(t2, λ
4λ), (u2,

3λ
4λ)} and the

overall rate ras2(S) = 4λ. Obviously, ras1(S) ≤ ras2(S); μras1 L(R) μras2 is justified
by the weighting function w defined as

w(x1, x2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
4 if x1 = t1 and x2 = t2,
1
12 if x1 = t1 and x2 = u2,
2
3 if x1 = u1 and x2 = u2, and

0 otherwise

The definition of strong bisimulation and strong bisimilarity, denoted by ∼,
is obtained by requiring R to be a symmetric relation.

Definition 11 (Strong bisimulation [38]). Let A be a discrete time or a
continuous-time probabilistic automaton. A relation R on S is a strong bisimu-
lation if R is symmetric and a strong simulation.

We denote the coarsest strong bisimulation, called strong bisimilarity, by ∼.
Other definitions of strong bisimulation require R to be an equivalence relation
but it is easy to show that such definitions are equivalent to Definition 11.

Finally, only strong bisimulation on IMCs has been defined [28], and it is the
expected merge of the bisimulation for CTMCs and labelled transition systems:

Definition 12 (Strong bisimulation for IMCs [28]). Let I be a IMC. An
equivalence relation R on S is a strong bisimulation if, for each pair of states
s, t ∈ S such that s R t,

– L(s) = L(t),
– if s a−→ s′ for some s′ ∈ S and a ∈ Σ, then there exists t′ such that t a−→ t′

and s′ R t′, and
– if s does not enable a transition with label τ , then for each C ∈ S/R, γ(s, C) =
γ(t, C) where γ(v, C) =

∑
{λ∈R≥0|v λ−→v′,v′∈C } λ.

We say that the IMC A2 strongly bisimulates A1 if there exists a strong
bisimulation R on the disjoint union S1 � S2 such that s̄1 R s̄2 and we say that
the state t strongly bisimulates the state s if there exists a strong bisimulation
R such that s R t. We denote the coarsest strong bisimulation, called strong
bisimilarity, by ∼.

132 D. Gebler, V. Hashemi, and A. Turrini

A simulation (and a bisimulation) can be seen as a game where in each round
the challenger, or attacker, s proposes a transition, or step, that has to be
matched by the defender t. The two states s and t are strong (bi-)similar if
the defender is always able to match the challenging transitions proposed by the
attacker, that is, the game can be played forever.

4.2 Strong Probabilistic Simulation and Bisimulation

The fact that (continuous-time) probabilistic automata may exhibit internal non-
determinism, i.e., a state can enable different transitions with the same label,
allows us to define the probabilistic counterpart of strong simulation and bisim-
ulation where each transition proposed by the challenger is matched by some
convex combination of the defender’s enabled transitions.

Given a PA P , a state s ∈ S, an action a ∈ Σ, and a distribution μ ∈ Disc(S),
we say that there exists a combined transition s a−→C μ if there exists a finite
set I of indexes, a family {pi}i∈I ⊆ [0, 1] such that

∑
i∈I pi = 1, and a family

{s a−→ μi}i∈I ⊆ → such that μ =
∑

i∈I pi · μi.

Definition 13 (Strong probabilistic simulation for PAs [49, 50]). Let A
be a PA. A relation R on S is a strong probabilistic simulation if, for each pair
of states s, t ∈ S such that s R t,

– L(s) = L(t) and
– if s a−→ μs for some probability distribution μs, then there exists μt such that
t a−→C μt and μs L(R) μt.

We say that the PA P2 strongly probabilistically simulates P1 if there exists a
strong probabilistic simulation R on the disjoint union S1�S2 such that s̄1 R s̄2
and we say that the state t strongly probabilistically simulates the state s if there
exists a strong probabilistic simulation R such that s R t. We denote the coarsest
strong probabilistic simulation, called strong probabilistic similarity, by �p.

P1 P2

s1

t1 u1

1

a

1

a

1
2

a

1
2

1
c

1
b

s2

t2 u2

1

a

1

a

1
c

1
b

Fig. 10. Two PAs with Li(xi) = {x} for each state xi, i = 1, 2 such that A1 �p A2

Figure 10 shows two PAs A1 and A2 such that A1 �p A2. The relation jus-
tifying A1 �p A2 is R = { (x1, x2) | x ∈ {s, t, u} }. All cases are trivial, except

Computing Behavioral Relations for Probabilistic Concurrent Systems 133

for the pair (s1, s2) and the transition s1
a−→ μ1 with μ1 = {(t1, 12), (u1,

1
2)}.

This transition is matched by s2 via the combined transition s2
a−→ μ2 with

μ2 = {(t2, 12), (u2,
1
2)}. Such combined transition is obtained by taking transi-

tions s2
a−→ δt2 and s2

a−→ δu2 both with probability 1
2 .

The definition of combined transition for CTPAs requires to consider for the
convex combination only transitions with the same exit rate, in order to obtain a
combined transition that is still exponentially distributed (see [57, Example 2.17]
for more details).

Given a CTPA CP, a state s ∈ S, an action a ∈ Σ, and a rate function
r : S → R≥0, we say that there exists a combined transition s a−→C r if there
exists a finite set I of indexes, a family {pi}i∈I ⊆ [0, 1] such that

∑
i∈I pi = 1,

and a family {s a−→ ri}i∈I ⊆ R such that ri(S) = rj(S) for each i, j ∈ I and
r =

∑
i∈I pi · ri.

As before, the definition of strong probabilistic simulation for CTPAs is the
obvious continuous-time counterpart of the definition for PAs:

Definition 14 (Strong probabilistic simulation for CTPAs [9, 28, 56,
57]). Let A be a CTPA. A relation R on S is a strong probabilistic simulation
if, for each pair of states s, t ∈ S such that s R t,

– L(s) = L(t) and
– if s a−→ rs for some rate rs, then there exists rt such that t a−→C rt, μrs L(R)
μrt , and rs(S) ≤ rt(S).

We say that the CTPA CP2 strongly probabilistically simulates CP1 if there
exists a strong probabilistic simulation R on the disjoint union S1�S2 such that
s̄1 R s̄2 and we say that the state t strongly probabilistically simulates the state
s if there exists a strong probabilistic simulation R such that s R t. We denote
the coarsest strong probabilistic simulation, called strong probabilistic similarity,
by �p.

As for the strong case, the definition of strong probabilistic bisimulation and
strong probabilistic bisimilarity, denoted by ∼p, is obtained by requiring R to
be a symmetric relation. Note that the two PAs in Figure 10 are actually strong
probabilistic bisimilar, not just strongly probabilistic similar.

4.3 Weak Simulation and Bisimulation

Strong (probabilistic) simulations and bisimulations require that each transition
proposed by the challenger is matched by the defender via a single (combined)
transition. If we are not interested in internal computations, but just on the
visible behavior, these relations are too restrictive. In order to abstract away in-
ternal steps, such relations have been relaxed to weak (probabilistic) simulations
and bisimulations where the defender is able to match the challenging transition
by performing several internal steps before and after having exhibited the same
visible behavior, for instance, the same external action. The simplest example
of weak transition is the one for labelled transition systems [39]: it is just the

134 D. Gebler, V. Hashemi, and A. Turrini

concatenation of arbitrarily many internal steps, the external transition (if we
have to match an external challenging transition), and again arbitrarily many
internal steps.

The definition of weak transition for probabilistic systems is not so easy as we
have to take into account probabilistic choices. We first consider weak simulation
and bisimulation for Markov chains and sDTMCs, and then for probabilistic au-
tomata. We are not aware of any definition of weak simulation and bisimulation
for CTPAs where sequences of transitions are involved.

Markov Chains. Before presenting the weak simulation and bisimulation for
Markov chains, we need to introduce some additional definition [55, 57].

For a given pair of states (s1, s2) of the automaton A and functions γi : S →
[0, 1], we denote by Ui and Vi the sets { u ∈ post(si) | γi(u) > 0 } and { v ∈
post(si) | γi(v) < 1 }, respectively. Essentially, Ui represents the states that
can be reached with non-zero probability according to γi from si by performing
one transition while Vi represents the states that cannot be reached with prob-
ability 1 according to γi from si by performing one transition. It is, however,
worthwhile to mention that Ui and Vi are in general non-disjoint. The definition
of weak simulation for DTMCs is not so immediate, because the “weak step”
does not represent the fact that multiple transitions can be performed as in non-
probabilistic settings like CCS and π-calculus [39,40] or in the other probabilistic
models, as we will see later in the section, but that a single transition represents
a visible or stutter step to a reached state z depending on whether z is in U
or in V , respectively. More precisely we require for the visible steps (i.e., steps
reaching states in Ui) that there exists a weighting function w for the condi-

tional distributions P(s1, ·)
K1

and P(s2, ·)
K2

where Ki is essentially the probability to
perform a visible step. The stutter steps (i.e., steps reaching states in Vi) must
respect the weak bisimulations, that is, states in V1 are weakly simulated by s2
and s1 is weakly simulated by all states in V2, as depicted in Figure 11. Since a
state t may belong to both U and V , the functions γi take care of distributing
si over Ui and Vi. See [55, Section 4.3.1] for more details.

s1 s2

u1 v1 v2 u2

K1 1 − K1 1 − K2 K2

Fig. 11. Splitting of successor states in weak simulations for DTMCs

Computing Behavioral Relations for Probabilistic Concurrent Systems 135

Definition 15 (Weak simulation for DTMCs [6, 9, 56, 57]). Let D be a
DTMC. A relation R on S is a weak simulation if, for each pair of states
s1, s2 ∈ S such that s1 R s2,

– L(s1) = L(s2) and
– there exist functions γi : S → [0, 1] for i ∈ {1, 2} such that

1. (a) v1 R s2 for each v1 ∈ V1 and (b) s1 R v2 for each v2 ∈ V2;
2. there exists a weighting function w : S × S → [0, 1] such that

(a) w(u1, u2) > 0 implies u1 ∈ U1, u2 ∈ U2, and u1 R u2,
(b) if K1 > 0 and K2 > 0, then for all states t ∈ S,

K1 · w(t, U2) = P(s1, t) · γ1(t) and K2 · w(U1, t) = P(s2, t) · γ2(t)

where Ki =
∑

ui∈Ui
P(si, ui) · γi(ui) for i ∈ {1, 2}; and

3. for u1 ∈ U1 there exist an execution fragment s2t1 . . . tnu2 with positive
probability such that n ∈ N, s1 R tj for 0 < j ≤ n, and u1 R u2.

We say that the DTMC D2 weakly simulates D1 if there exists a weak sim-
ulation R on the disjoint union S1 � S2 such that s̄1 R s̄2 and we say that the
state t weakly simulates the state s if there exists a weak simulation R such that
s R t. We denote the coarsest weak simulation, called weak similarity, by
.

Figure 12 shows a DTMC for which si
 tj for i, j ∈ {1, 2, 3}. For each of
these pairs we can select U1 = ∅ and V2 = ∅. Since K1 = 0, we need to check only
the Condition 1. However, since all the successor states of si are either empty
or itself, this conditions holds trivially. It holds similarly that v1
 v2.

s1 s2 t1

v1

t2

t3

v2

s3

1
1 1

1

1

Fig. 12. A DTMC with L(v1) = L(v2) = {v} and L(x) = ∅ for each other state x

The definition of weak simulation for CTMCs is similar, where condition (3)
is replaced by K1 ·R(s1, S) ≤ K2 ·R(s2, S).

Similarly, the definition of weak simulation for sDTMCs is just a slight vari-
ation of the one for DTMCs, where we consider sub-distributions instead of
distributions: for a given pair of states (s1, s2) of the sDTMC S and functions
γi : S⊥ → [0, 1], we change the definition of Ui and Vi as follows: Ui and Vi are the
sets { u ∈ post⊥(si) | γi(u) > 0 } and { v ∈ post⊥(si) | γi(v) < 1 }, respectively.

136 D. Gebler, V. Hashemi, and A. Turrini

Definition 16 (Weak simulation for sDTMCs [6, 9, 56, 57]). Let S be a
sDTMC. A relation R on S is a weak simulation if, for each pair of states
s1, s2 ∈ S such that s1 R s2,

– L(s1) = L(s2) and
– there exist functions γi : S⊥ → [0, 1] for i ∈ {1, 2} such that

1. (a) v1 R s2 for each v1 ∈ V1\{⊥} and (b) s1 R v2 for each v2 ∈ V2\{⊥};
2. there exists a function w : S⊥ × S⊥ → [0, 1] such that

(a) w(u1, u2) > 0 implies u1 ∈ U1, u2 ∈ U2, and u1 R⊥ u2,
(b) if K1 > 0 and K2 > 0, then for all states t ∈ S,

K1 · w(t, U2) = P(s1, t) · γ1(t) and K2 · w(U1, t) = P(s2, t) · γ2(t)

where Ki =
∑

ui∈Ui
P(si, ui) · γi(ui) for i ∈ {1, 2}; and

3. for u1 ∈ U1 \ {⊥} there exist an execution fragment s2t1 . . . tnu2 with
positive probability such that n ∈ N, s1 R tj for 0 < j ≤ n, and u1 R u2.

We say that the sDTMC S2 weakly simulates S1 if there exists a weak sim-
ulation R on the disjoint union S1 � S2 such that s̄1 R s̄2 and we say that the
state t weakly simulates the state s if there exists a weak simulation R such that
s R t. We denote the coarsest weak simulation, called weak similarity, by
.

As for the strong bisimulation, the definition of weak bisimulation and weak
bisimilarity, denoted by≈, is obtained by requiringR to be a symmetric relation.

Remark 1. The definition of weak simulation for sDTMC we present here is nei-
ther sound nor complete for the liveness fragment of PCTL without the next
operator [33]. To fix this problem, [33] proposes a new definition of weak simu-
lation for sDTMC that is sound and conjectured to be complete. However, the
associated technical report shows that completeness does not hold as well.

We have decided to maintain the definition from [55, 57] instead of switching
to the definition proposed in [33] because the latter currently lacks of a published
decision algorithm while such algorithm is available for the former.

Interactive Markov Chains. The definition of weak bisimulation for IMC is
rather simple, since it is the obvious extension to the weak case of the strong
bisimulation. Given an IMC I, two state s and t, and an action a, we denote
by s a=⇒ t the sequence of transitions s τ=⇒ s′ a−→ t′ τ=⇒ t for some state s′

and t′ where s τ=⇒ s′ is the reflexive and transitive closure of τ−→, as defined
for labelled transition systems [40]. For an IMC I, we recall that γ(v, C) =∑

{λ∈R≥0|v λ−→v′,v′∈C } λ.

Definition 17 (Weak bisimulation for IMCs [28]). Let I be a IMC. An
equivalence relation R on S is a weak bisimulation if, for each pair of states
s, t ∈ S such that s R t,

– L(s) = L(t),

Computing Behavioral Relations for Probabilistic Concurrent Systems 137

– if s a=⇒ s′ for some s′ ∈ S and a ∈ Σ, then there exists t′ such that t a=⇒ t′

and s′ R t′, and
– if s τ=⇒ s′ and s′ does not enable a transition with label τ , then there exists
t′ such that t′ does not enable a transition with label τ , t τ=⇒ t′, and for each
C ∈ S/R, γ(s′, Cτ) = γ(t′, Cτ) where Cτ = { u | ∃v ∈ C.u τ=⇒ v }.

We say that the IMC A2 weakly bisimulates A1 if there exists a weak bisim-
ulation R on the disjoint union S1 � S2 such that s̄1 R s̄2 and we say that the
state t weakly bisimulates the state s if there exists a weak bisimulation R such
that s R t. We denote the coarsest weak bisimulation, called weak bisimilarity,
by ≈.

I1 I2

s1

t1 u1 v1

λ 2λ 2λ

τ τ

a

s2

t2 u2 v2

λ 4λ

τ τ

a

Fig. 13. Two IMCs with Li(x) = ∅ for each state x except for Li(ti) = {t}, i = 1, 2,
such that I1 ≈ I2

Figure 13 shows two IMCs that are weak bisimilar. This is justified by the
equivalence relation whose classes are Cs = {s1, s2}, Ct = {t1, t2}, and Co =
{u1, u2, v1, v2}. The first two conditions about labeling and interactive transi-
tions are trivial for all pairs of related states; in particular, classes Ct and Co (or
Cs) cannot be merged since labels are different: for instance, L(t1) = {t} �= ∅ =
L(u1), so the first condition would be violated. Consider the classes Co and Cs:
they have the same labeling (each state in them has label ∅) but they cannot be
merged since for instance the state u1 ∈ Co enables an a weak transition reach-
ing s1 that cannot be matched by the state s2 ∈ Cs, so the second condition
would not be satisfied. The third condition about rates is obvious as well for
pairs of states in the classes Ct and Co since none of their states enables a timed
transition, so γ(x, Cτ) is 0 for each x ∈ Ct ∪ Co and C ∈ {Cs, Ct, Co}. The only
non-trivial case is the pair (s1, s2) (the symmetric case is analogous). The only
weak transitions with label τ enabled by s1 and s2 are s1

τ=⇒ s1 and s2
τ=⇒ s2,

since neither s1 nor s2 enables a transition with label τ ; s1 R s2 trivially holds.
γ(s1, Cτs) = 0 = γ(s2, Cτs) since Cτs = Cs and there is no timed transition reaching
Cs; γ(s1, Cτt) = λ = γ(s2, Cτt) since Cτt = Ct and both s1 and s2 have a single
timed transition with rate λ reaching Ct; finally, γ(s1, Cτo) = 5λ = γ(s2, Cτo) since
Cτo = Co ∪ Ct.

138 D. Gebler, V. Hashemi, and A. Turrini

Probabilistic Automata. Before introducing the weak (combined) transition
for probabilistic automata, we need some preliminary definition.

A scheduler for a PA P is a function σ : frags∗(P) → SubDisc(→) such that
for each α ∈ frags∗(P), σ(α) ∈ SubDisc({ tr ∈ → | src(tr) = last(α) }). Given
a scheduler σ and a finite execution fragment α, the distribution σ(α) describes
how transitions are chosen to move on from last(α). We say that a scheduler
σ is a Dirac scheduler if for each α ∈ frags∗(P), σ(α) is a Dirac distribution
and we say that σ is a determinate scheduler if for each α, α′ ∈ frags∗(P), if
trace(α) = trace(α′) and last(α) = last(α′), then σ(α) = σ(α′). A scheduler σ
and a state s induce a probability distribution μσ,s over execution fragments as
follows. The basic measurable events are the cones of finite execution fragments,
where the cone of α, denoted by Cα, is the set {α′ ∈ frags(P) | α � α′ }. The
probability μσ,s of a cone Cα is defined recursively as follows:

μσ,s(Cα) =

⎧⎪⎨⎪⎩
0 if α = t for a state t �= s,

1 if α = s,

μσ,s(Cα′) ·
∑

tr∈ a→ σ(α′)(tr) · μtr (t) if α = α′at.

Standard measure theoretical arguments ensure that μσ,s extends uniquely to
the σ-field generated by cones. We call the resulting measure μσ,s a probabilistic
execution fragment of P and we say that it is generated by σ from s. Given a
finite execution fragment α, we define μσ,s(α) as μσ,s(α) = μσ,s(Cα) · σ(α)(⊥),
where σ(α)(⊥) is the probability of terminating the computation after α has
occurred.

We say that there is a weak combined transition from s ∈ S to μ ∈ Disc(S)
labelled by a ∈ Σ, denoted by s a=⇒C μ, if there exists a scheduler σ such that
the following holds for the induced probabilistic execution fragment μσ,s:

1. μσ,s(frags
∗(P)) = 1;

2. for each α ∈ frags∗(P), if μσ,s(α) > 0 then trace(α) = trace(a);

3. for each state t, μσ,s({α ∈ frags∗(P) | last(α) = t }) = μ(t).

In this case, we say that the weak combined transition s a=⇒C μ is induced by
σ. When σ is a Dirac scheduler, then we say that it induces a weak transition
from s ∈ S to μ ∈ Disc(S) labelled by a ∈ Σ, denoted by s a=⇒ μ.

Albeit the definition of weak (combined) transitions is somewhat intricate,
this definition is just the obvious extension of weak transitions on labelled tran-
sition systems to the setting with probabilities. See [48] for more details on weak
combined transitions.

As an example of weak combined transition, consider the PA in Figure 14. We
now show that there exists a scheduler inducing the weak combined transition
s a=⇒C μ where μ = {(, 4

18), (, 7
18), (, 7

18)}. Let μs be {(t, 13), (u,
1
3), (v,

1
3)}

Computing Behavioral Relations for Probabilistic Concurrent Systems 139

s

t

u

v

τ 1/3

1/3

1

τ

1/3

1a

1a

1a

1
a

1

a
1

τ

Fig. 14. A probabilistic automaton

and consider the scheduler σ defined as follows:

σ(α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ
s

τ−→μs
if last(α) = s,

{(t τ−→ δs,
1
2), (t

a−→ δ , 12)} if α = sτt,

δ
t

a−→δ
if α = sτtτsτt,

δ
u

a−→δ
if last(α) = u,

δ
v

a−→δ
if last(α) = v, and

δ⊥ otherwise.

It is easy to show that indeed σ induces s a=⇒C μ. For instance, consider the state
; in fact, μσ,s({α ∈ frags∗(P) | last(α) = }) = μσ,s({sτta , sτtτsτta }) +
μσ,s({α ∈ frags∗(P) | last(α) = } \ {sτta , sτtτsτta }) = μσ,s(sτta) +
μσ,s(sτtτsτta) + 0 = 1 · 1 · 13 ·

1
2 · 1 · 1+ 1 · 1 · 13 ·

1
2 · 1 · 1 ·

1
3 · 1 · 1 · 1 = 4

18 = μ().
Note that σ is neither Dirac nor determinate; moreover it is not the only

scheduler inducing s a=⇒C μ: in fact, also the determinate scheduler σ′ defined
as follows induces s a=⇒C μ.

σ′(α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

δ
s

τ−→μs
if last(α) = s,

{(t τ−→ δs,
3
7), (t

a−→ δ , 47)} if last(α) = t,

δ
u

a−→δ
if last(α) = u,

δ
v

a−→δ
if last(α) = v, and

δ⊥ otherwise.

Definition 18 (Weak (probabilistic) simulation on PAs [6,9,43,51,56,
57]). Let P be a PA. A relation R on S is a weak (probabilistic) simulation if,
for each pair of states s, t ∈ S such that s R t,

– L(s) = L(t) and
– if s a−→ μs for some probability distribution μs, then there exists μt such that
t a=⇒ μt (t

a=⇒C μt) and μs L(R) μt.
We say that the PA P2 weakly (probabilistically) simulates P1 if there exists a

weak (probabilistic) simulation R on the disjoint union S1�S2 such that s̄1 R s̄2
and we say that the state t weakly (probabilistically) simulates the state s if there
exists a weak (probabilistic) simulation R such that s R t. We denote the coarsest
weak (probabilistic) simulation, called weak (probabilistic) similarity, by
 (
p).

140 D. Gebler, V. Hashemi, and A. Turrini

As usual, the weak (probabilistic) bisimulations [27, 29, 43, 51], denoted by ≈
(≈p), are obtained by requiring R to be a symmetric relation.

P1 P2

s1

t1 u1

1
4

τ

1
4

1
2

1c

1
b

s2

t2 u2

2
5

τ

2
5

1
5

1c

1
b

Fig. 15. Two PAs with Li(xi) = {x} for each state xi, i = 1, 2 such that P1 ≈p P2

Figure 15 shows two PAs that are weak probabilistic bisimilar. The rela-
tion justifying P1 ≈p P2 is the equivalence relation whose classes are {s1, s2},
{t1, t2}, and {u1, u2}. Checking the pairs in {t1, t2} and {u1, u2} is trivial,
so consider for instance the pair (s1, s2) and the transition s1

τ−→ μ1 where
μ1 = {(s1, 12), (t1,

1
4), (u1,

1
4)}. s2 can match such transition via the weak com-

bined transition s2
τ=⇒C μ where μ = {(s2, 12), (t2,

1
4), (u2,

1
4)} induced by the

scheduler σ defined as

σ(α) =

{
{(s2 τ−→ μ2,

5
8), (⊥,

3
8)} if α = s2 and

δ⊥ otherwise,

where μ2 = {(s2, 15), (t2,
2
5), (u2,

2
5)}. The transition s2

τ−→ μ2 can be matched
by s1 via the weak combined transition s1

τ=⇒C μ
′ where μ′ is the distribution

{(s1, 15), (t1,
2
5), (u1,

2
5)}, transition that is induced by the scheduler σ′ defined

as

σ′(α) =

⎧⎪⎨⎪⎩
δ
s1

τ−→μ1
if α = s1 or α = s1τs1,

{(s1 τ−→ μ1,
2
5), (⊥,

3
5)} if α = s1τs1τs1, and

δ⊥ otherwise.

4.4 Markov Automata

Finally, we discuss simulations and bisimulations for Markov Automata. For the
strong (probabilistic) simulations and bisimulations, they are just the merge of
the corresponding definitions for PAs and CTMCs, where the timed transitions
are considered only if the states do not enable internal transitions, as happens
for IMCs.

For the weak (probabilistic) simulations and bisimulations, the approach is
quite different from the previous definitions since they relate distributions in-
stead of states. This makes the definition quite involved and out of the scope of
this survey, also by considering that the exponential decision algorithms [20,46]

Computing Behavioral Relations for Probabilistic Concurrent Systems 141

for these bisimulations just make use of the algorithm for PA weak combined
transitions we will see in Section 6.2 as a black box.

We refer the interested reader to [20, 46] for the technical details and the-
oretical considerations that allow to define a state-based bisimulation that is
equivalent to the distribution-based one as defined in [17, 22, 23].

5 Networks and Maximum Flow Problem

Given a set V , we say that (V,E) is a directed graph with vertices V and edges
E if E ⊆ V × V . A network N is a tuple (V,E,�,�, c) where (V,E) is a finite
directed graph, � and � are distinguished vertices called source and sink, respec-
tively, and c : E → R≥0 ∪ {∞} is a total function called edge capacity function.
The capacity function, however, can be generalized to all pairs of vertexes by
defining c(u, v) = 0 for each (u, v) /∈ E.

Definition 19 (Flow [1, 12]). A flow f on N is a function f : V × V → R

such that:

1. f(u, v) ≤ c(u, v) for each (u, v) ∈ V × V capacity constraints
2. f(u, v) = −f(v, u) for each (u, v) ∈ V × V antisymmetry constraint
3. f(V, v) = 0 for each v ∈ V \ {�,�} conservation rule

The value of a flow function is computed as f(�, V), also denoted by |f |. A
flow of maximum value is called a maximum flow.

5.1 Computing the Maximum Flow

A preflow [1] is a function f : V × V → R that satisfies the first two conditions
above and the following relaxation of the last condition: f(V, v) ≥ 0 for each
v ∈ V \ {�}.

For each vertex v, its excess e(v) is defined by f(V, v). A vertex v ∈ V \{�,�}
is called active if e(v) > 0. It is easy to check that when no vertex v ∈ V \{�,�}
is active, the preflow function is actually a flow function. A pair (u, v) is said to
be a residual edge of f if f(u, v) < c(u, v). We denote the set of residual edges
with regard to f by Ef . Corresponding to each residual edge (u, v) we define
the residual capacity cf (u, v) as c(u, v) − f(u, v). We say that the edge (u, v) is
saturated if it is not a residual edge. A valid distance function d (also known as
valid labeling [25]) is a function d : V → N∪{∞} such that d(�) = |V |, d(�) = 0,
and d(u) ≤ d(v) + 1 for each residual edge (u, v). A residual edge (u, v) is called
admissible if d(u) = d(v) + 1.

The maximal flow can be computed by means of preflow as follows: the algo-
rithm initializes the preflow f by defining f(u, v) = 0 for each (u, v) ∈ V × V
except for f(�, v) = c(�, v) for each v ∈ V . The distance function d has ini-
tial values d(�) = |V | and d(v) = 0 for each other vertex v ∈ V . In order
to maintain the validity of the preflow f and of the distance function d, the
algorithm looks for active vertices in the network. If there exists an active

142 D. Gebler, V. Hashemi, and A. Turrini

vertex v and a residual edge (v, u) that is admissible, then, we push through
(v, u) the amount of flow χ = min{e(v), cf (v, u)}. This is done by increasing
f(v, u) (and decreasing f(u, v)) by χ and similarly, the excesses of v and u
are updated by setting e(v) = e(v) − χ and e(u) = e(u) + χ. If v is active
but there is no admissible edge leaving it, the algorithm relabels v by defining
d(v) = min{ d(u) + 1 | (v, u) ∈ Ef }. Pushing and relabeling are repeated until
all vertexes are not active. It can be proved that the resulting ultimate flow f
is a maximum flow [1, 25]. The generic preflow-push algorithm terminates after
O(n2m) iterations where n and m are the number of nodes and the number of
arcs of the network G, respectively.

5.2 Relation between Lifting and Maximum Flow

As we have seen in Section 2, the lifting L(R) ⊆ Disc(X)×Disc(X) of a relation
R ⊆ X ×X has two different characterizations: via weighting functions and via
R-closure. It can be indeed characterized also via the maximum flow in a network
as follows. First, we construct the network induced by the relationR and the two
(sub-)probability distributions ρ1 and ρ2 and then we compute the maximum
flow for such network. Given a set X , let X be the set X = { x | x ∈ X }.
Definition 20 ([4, 57]). Let ρ1, ρ2 ∈ Disc(X) and R ⊆ X ×X. The induced
network N (R, ρ1, ρ2) = (V,E,�,�, c) is defined by

– V = X ∪X ∪ {�,�},
– E = { (x, y) | (x, y) ∈ R} ∪ { (�, x) | x ∈ X } ∪ { (y,�) | y ∈ X }, and
– c(�, x) = ρ1(x), c(y,�) = ρ2(y), and c(x, y) = 1 for all x, y ∈ X.

As shown in [55], ρ1 L(R) ρ2 if and only if the maximum flow of the induced
network N (R, ρ1, ρ2) is 1.

It is worthwhile to note that for each x /∈ Supp(ρ1), c(�, x) = 0 (and similarly,
for each y /∈ Supp(ρ2), c(y,�) = 0), thus the flow along the edge (�, x) is
always 0. Therefore the induced network can be equivalently simplified as follows:
let ρ1, ρ2 ∈ Disc(X) and R ⊆ X × X . The induced network N (R, ρ1, ρ2) =
(V,E,�,�, c) is defined by

– V = Supp(ρ1) ∪ Supp(ρ2) ∪ {�,�},
– E = { (x, y) | (x, y) ∈ R, x ∈ Supp(ρ1), y ∈ Supp(ρ2) } ∪ { (�, x) | x ∈

Supp(ρ1) } ∪ { (y,�) | y ∈ Supp(ρ2) }, and
– c(�, x) = ρ1(x), c(y,�) = ρ2(y), and c(x, y) = 1 for all x, y ∈ X .

In the remaining of the paper we use the more appropriate definition of induced
network without further mentioning which one we are considering.

6 The Algorithms

We now consider the algorithms and their complexity that are used to decide
the simulations and the bisimulations introduced in Section 4. In the following,
we denote by s a−→� ρ the matching transition involved in the step condition
of the relation �. For instance, when � is �, then s a−→� ρ stands for s a−→ ρ
while when � is
p, then s

a−→� ρ stands for s a=⇒C ρ.

Computing Behavioral Relations for Probabilistic Concurrent Systems 143

Sim(�,A)

1. i ← 0; Ri ← { (s1, s2) ∈ S × S | L(s1) = L(s2) };
2. repeat
3. Ri+1 ← Ri;
4. for all s1

a−→ ρ1 ∈ s1 −→ do
5. for all s2 ∈ S such that s1Ris2 do
6. if there does not exist s2

a−→� ρ2 satisfying the step condition
7. Ri+1 ← Ri+1 \ {(s1, s2)};
8. i ← i+ 1;
9. until Ri = Ri−1;
10. return Ri;

Fig. 16. Algorithm for computing simulation

6.1 The General Algorithms for Simulations and Bisimulations

Simulation Algorithm. Figure 16 depicts the algorithm Sim, proposed for in-
stance in [4], that computes the simulation � for the automaton A. The proce-
dure begins with the initial relation R0 = { (s1, s2) ∈ S × S | L(s1) = L(s2) }
which is coarser than �. In each iteration i of the main loop, the relation Ri,
initialized with Ri−1, is refined by deleting each pair (s1, s2) such that s2 is not
able to exhibit the transition s2

a−→� ρ2 such that ρ1 L(Ri−1) ρ2 required by
the step condition of �. The main loop terminates when all pairs of Ri satisfy
the step condition, that is, when Ri = Ri−1. The resulting similarity � is then
Ri.

It is immediate to see that the core of this algorithm is the check for the
existence of the step condition for s1 and s2, and that this is also the main
source of the complexity of the algorithm. In fact, if we denote by N the size of
the automaton, i.e., N = max{|S|, |→|}, it is easy to derive that the complexity
of the algorithm is O(N4 ·C) where C is the complexity of deciding the existence
of the matching transition s2

a−→� ρ2.

Bisimulation Algorithm. In order to compute the bisimulation � for the au-
tomaton A we can follow the standard partition refinement approach [13,20,29,
35, 41, 43] depicted in Figure 17: the procedure Bisim takes as parameter the
bisimulation � and the automaton A and iteratively constructs the set S/�,
the set of equivalence classes of states S under �, starting with the partitioning
W = { (s1, s2) ∈ S × S | L(s1) = L(s2) } and refining it until W satisfies the
definition of � and thus the resulting partitioning is the coarsest one, i.e., the
algorithm computes �. In the refinement phase, the algorithm checks for each
partition whether all pairs respect the step condition; if a pair (s1, s2) fails, then
such partition is split in two partitions: one containing s1 and all states satisfy-
ing the step condition with respect to transitions from s, the other containing
the remaining states, including s2. On termination, the partitioning W is the
bisimilarity �.

144 D. Gebler, V. Hashemi, and A. Turrini

Bisim(�,A)

1. W ← { (s1, s2) ∈ S × S | L(s1) = L(s2) };
2. repeat
3. W ′ ← W;
4. (C, a, ρ) ← FindSplit(A,W);
5. W ← Refine(C, a, ρ);
6. until W ← W ′

7. return W

FindSplit(A,W)

1. for all (s1, a, ρ1) ∈ → do
2. for all s2 ∈ [s1]W do
3. if there does not exist s2

a−→� ρ2 satisfying the step condition
4. return ([s1]W , a, ρ1)
5. return (∅, τ, δ⊥)

Fig. 17. Algorithm for computing bisimulation

As happens for Sim, it is immediate to see that the core of this algorithm
is the check whether the step condition for s1 and s2 holds, and that this is
also the main source of the complexity of the algorithm. In fact, as done for
the simulation procedure, if we denote by N the size of the automaton, i.e.,
N = max{|S|, |→|}, it is easy to derive that the complexity of the algorithm is
O(N3 · C) where C is the complexity of deciding the existence of the matching
transition s2

a−→� ρ2.

6.2 The Specialized Algorithms

Strong Simulation. We now present an improved algorithm [57] for the strong
simulation on sDTMCs, DTMCs, and CTMCs, respectively, based on the prop-
erties of the network flow setting.

Let A be either a sDTMC or a DTMC. Since for sDTMCs and DTMCs
every state s enables a single transition, checking the existence of the matching
transition s2

τ−→� μ2 reduces to check whether μ1 L(Ri) μ2 where μ1 = P(s1, ·)
and μ2 = P(s2, ·). As we have seen in Section 5.2, μ1 L(Ri) μ2 is equivalent
to check whether the induced network N (Ri, μ1, μ2) has 1 as maximum flow.

Since finding the maximum flow has complexity O(N3

logN), thus the resulting

complexity of Sim(�,A) is O(N7

logN) [4, 57].

Improved Algorithm for sDTMCs. Consider the Sim(�,A) procedure and a pair
of states (s1, s2) ∈ R1. Let μ1 = P(s1, ·) and μ2 = P(s2, ·) and suppose that
(s1, s2) belongs toR1, . . . ,Rk during the whole of the iterations i = 1, . . . , k until
the pair either violates the step condition with respect to Rk or the algorithm
terminates after iteration k. This means that the maximum flow algorithm is used
k times for this pair. As a matter of fact, the induced networks N (Ri, μ1, μ2)

Computing Behavioral Relations for Probabilistic Concurrent Systems 145

built in successive iterations are very similar, and may often be the same across
iterations. From iteration to iteration, in fact, they differ only for the removal of
some edge (t1, t2) induced by Ri ← Ri \ {(t1, t2)} but this does not change the
network when t1 /∈ Supp(μ1) or t2 /∈ Supp(μ2). This observation, inspired by [24],
is the key point of [57] for improving the basic algorithm. In fact, the authors
reuse the previous computed maximum flow in the sense that whatever happens
to the network is good: if the network N (Ri, μ1, μ2) is equal to N (Ri−1, μ1, μ2),
then the maximum flow is the same as the one in the previous iteration. On the
other hand, if the two networks are different, then the preflow algorithm can be
adapted to compute the new maximum flow using the previous maximum flow
and distance function as a starting point.

Smfinit (i,Ri, μ1, μ2)

1. Initialize the network N (Ri, μ1, μ2);
2. Apply the preflow algorithm to compute the maximum flow for N (Ri, μ1, μ2);
3. return (|fi| = 1,N (Ri, μ1, μ2), fi, di);

Smf(i,N (Ri−1, μ1, μ2), fi−1, di−1, Di−1)

1. N (Ri, μ1, μ2) ← N (Ri−1 \Di−1, μ1, μ2); fi ← fi−1; di ← di−1;
2. for all (v1, v2) ∈ Di−1 do
3. fi(v2,�) ← fi(v2,�)− fi(v1, v2);
4. fi(v1, v2) ← 0;
5. Apply the preflow algorithm initialized with fi and di to compute the maximum

flow for N (Ri, μ1, μ2);
6. return (|fi| = 1,N (Ri, μ1, μ2), fi, di);

Fig. 18. Algorithm for computing a sequence of maximum flows

To explain this approach in more detail, consider the network N (R1, μ1, μ2)
and let D1, . . . , Dk be pairwise disjoint subsets of R1 that correspond to the
pairs deleted from R1 in iteration i, i.e., Ri+1 = Ri \ Di for 1 ≤ i ≤ k. Let

f
(s1,s2)
i be the flow and d

(s1,s2)
i the distance function of the networkN (Ri, μ1, μ2)

where 0 ≤ i ≤ k, respectively. The algorithm for updating the sequences of
maximum flows and distances of the network N (Ri, μ1, μ2) where 1 ≤ i ≤
k is depicted in Figure 18 and it works as follows: starting from the network
N (Ri−1\Di−1, μ1, μ2) with flow fi−1 and distance di−1, it computes for each pair
(v1, v2) ∈ Di−1 the flow fi(v2,�) by decreasing the previous value fi−1(v2,�) by
the value of the flow fi−1(v1, v2) and then forces fi(v1, v2) to be 0. Then it calls
the preflow algorithm initialized with the updated flow and distance function to
compute the maximum flow for the new network and returns the network, the
updated flow and distance functions, and a boolean representing whether the
maximum flow is 1.

The Smf(i,N (Ri−1, μ1, μ2), fi−1, di−1, Di−1) algorithm is the building block
for the improved algorithm SimsDTMC(�,S) that computes the strong simulation
on sDTMCs, depicted in Figure 19.

146 D. Gebler, V. Hashemi, and A. Turrini

SimsDTMC(�, sDTMC)

1. R1 ← { (s1, s2) ∈ S × S | L(s1) = L(s2) }; i ← 1;
2. R2 ← ∅;
3. for all (s1, s2) ∈ R1 do
4. Listener (s1, s2) ← { (u1, u2) | u1 ∈ pre(s1), u2 ∈ pre(s2), L(u1) = L(u2) };
5. (match ,N (R1, μ1, μ2), f

(s1,s2)
1 , d

(s1,s2)
1) ← Smfinit (1,R1, μ1, μ2)

6. if match
7. R2 ← R2 ∪ {(s1, s2)};
8. while Ri+1 �= Ri do
9. i ← i+ 1; Ri+1 ← ∅; Di−1 ← Ri−1 \ Ri;
10. for all (s1, s2) ∈ Ri do

11. D
(s1,s2)
i−1 ← ∅;

12. for all (s1, s2) ∈ Di−1, (u1, u2) ∈ Listener(s1, s2) ∩Ri−1 do

13. D
(u1,u2)
i−1 ← D

(u1,u2)
i−1 ∪ {(s1, s2)};

14. for all (s1, s2) ∈ Ri do

15. (match ,N (Ri, μ1, μ2), f
(s1,s2)
i , d

(s1,s2)
i)

← Smf(i,N (Ri−1, μ1, μ2), f
(s1,s2)
i−1 , d

(s1,s2)
i−1 , D

(s1,s2)
i−1);

16. if match
17. Ri+1 ← Ri+1 ∪ {(s1, s2)};
18. return Ri;

where μ1 = P(s1, ·) and μ2 = P(s2, ·)

Fig. 19. Improved algorithm for deciding strong simulation for sDTMCs

The first part of the algorithm, from line 1 to 7 is essentially the same as in
Sim(�, sDTMC), except for line 4 where the set

Listener(s1, s2) = { (u1, u2) | u1 ∈ pre(s1), u2 ∈ pre(s2), L(u1) = L(u2) }

is computed for the remainder of the procedure. In particular, this set contains
all pairs (u1, u2) such that (s1, s2) is an edge of N (R0,P(u1, ·),P(u2, ·)).

In each iteration i of the loop at lines 8–17, the procedure generates Ri+1

from Ri by performing several steps: first, with the loop at line 12, it collects

in D
(u1,u2)
i−1 the edges that should be removed from N (Ri−1,P(u1, ·),P(u2, ·)).

Then, at line 15, the algorithm Smf builds the maximum flow by using informa-

tion from the previous iteration i − 1. Basically, N (Ri−1, μ1, μ2), f
(s1,s2)
i−1 , and

d
(s1,s2)
i−1 are updated according to the set D

(s1,s2)
i−1 ; this generates the new maxi-

mum flow f
(s1,s2)
i for the network N (Ri, μ1, μ2) and if such flow is 1 (i.e., match

is true), then (s1, s2) is added to Ri+1 and survives this iteration. Eventually the
while loop terminates and the last candidate simulation Ri is actually a strong
bisimilarity.

The correctness and time complexity of this algorithm is stated in [57, Theo-
rem 4.5 and 4.6], respectively. In particular, the time complexity is O(m2 ·N +

N2), where m =
∑

s∈S |post(s)|, that is significantly smaller than O(N7

logN) of

the general algorithm Sim(�, sDTMC).

Computing Behavioral Relations for Probabilistic Concurrent Systems 147

Strong Simulation for DTMCs and CTMCs. We now take into account DTMCs
and CTMCs. Since every DTMC D is a sDTMC, we can use directly the algo-
rithm SimsDTMC(�,D). For CTMCs, we have to take care of the rate condition;
this is easily obtained by replacing the assignment to R1 at the line 1 of the
algorithm with

R1 ← { (s1, s2) ∈ S × S | L(s1) = L(s2),R(s1, S) ≤ R(s2, S) }

It is immediate to see that this change does not increase the complexity of the
algorithm; in particular, the time complexity may be reduced, since there may
be fewer pairs satisfying the rate condition as well.

Strong Probabilistic Simulation and Bisimulation. Strong probabilistic
simulation and bisimulation are defined only for PAs and CTPAs since they are
the only models that exhibit internal nondeterminism, thus they allow to com-
bine transitions with the same label (and the same rate, for CTPAs). Checking
the step condition thus requires to find such combined transition. One possibility
is to check, for every possible combined transition, whether it satisfies the step
condition; however this approach is not practical since given two transitions,
there are uncountable many different convex combinations of them. The other
possibility is to check whether there exists a choice for the coefficients of the
convex combination by solving a linear programming problem encoding convex
combination and lifting [57].

For a PA P , the LP problem relative to relation R, transition s1 a−→ μ and
state s2 is: ∑k

i=1 ci = 1
0 ≤ ci ≤ 1 for 1 ≤ i ≤ k
0 ≤ fu,v ≤ 1 for each (u, v) ∈ R⊥
μ(s) =

∑
t∈R⊥(s) fs,t for each s ∈ S⊥∑

s∈R−1
⊥ (t) fs,t =

∑k
i=1 ciρi(t) for each t ∈ S⊥

where {ρ1, . . . , ρk} = { ρ | (s2, a, ρ) ∈ →}.
For a CTPA CP, the LP problem relative to relation R, transition s1 a−→ r

and state s2 is similar:∑k
i=1 ci = 1

0 ≤ ci ≤ 1 for 1 ≤ i ≤ k
0 ≤ fu,v ≤ 1 for each (u, v) ∈ R⊥
r(s) = r(S) ·

∑
t∈R⊥(s) fs,t for each s ∈ S⊥

E ·
∑

s∈R−1
⊥ (t) fs,t =

∑k
i=1 ciri(t) for each t ∈ S⊥

for some E ∈ { r′(S) | (s2, a, r′) ∈ R }, E ≥ r(S) where {r1, . . . , rk} = { r′ |
(s2, a, r

′) ∈ R, r′(S) = E }.
The complexity of the Sim(�p,A) and Bisim(∼p,A) algorithms is then poly-

nomial and directly depends on the polynomial complexity [53] of solving the
above LP problems, each one with at most O(N2) constraints.

148 D. Gebler, V. Hashemi, and A. Turrini

It is worthwhile to note that by combining a preflow approach, as the one
adopted for Smf, and abstract interpretation techniques, the complexity can be
reduced to O(N3) for simulation and O(N2 · logN) for bisimulation [15].

Weak Simulation and Bisimulation for DTMCs and CTMCs. Now, we
focus our attention to weak simulations. As it was the case for strong simulations,
the core of the algorithm is to check the step condition with respect to the current
relation R. Based on the definition of weak simulation, for fixed characteristic
functions γi for i = 1, 2, maximum flow algorithms can be used in order to check
condition (2) in definition 15. In order to improve this check, we can make use of
the parametric maximum flow algorithm in order to determine whether functions
γi exist, with the aid of breakpoints, as we will see in the following.

As shown in [57], checking the step condition of the weak simulation for the
pair of states (s1, s2) for both DTMCs and CTMCs is equivalent to finding the
parameter ψ that makes a parametric network valid. In particular, the considered
parametric network is Nψ(R, μ1, μ2) that is defined as N (R, μ1, ψ · μ2); this
means that N (R, μ1, ψ ·μ2) is the network N (R, μ1, μ2) where the capacities for
the edges leading to the sink are c(t,�) = ψ · μ2(t). The network Nψ(R, μ1, μ2)
is valid if there exists a flow f that saturates all edges (�, u1) and (u2,�) where
u1 belongs to the set MU 1 = post(s1) \ PV 1 with PV 1 = post(s1) ∩ R−1(s2)
and u2 belongs to the set MU 2 = post(s2) \PV 2 with PV 2 = post(s2) ∩R(s1).

Sets MU i and PV i are strictly related to the sets Ui and Vi used for the strong
simulation algorithm. Indeed, MU i stands for “must be in Ui” while PV i stands
for “potentially in Vi”. Functions γi are extended as expected by γi(u) = 1 for
u ∈ MU i, i ∈ {1, 2}.

If we fix ψ ∈ R
≥0, then checking whether Nψ(R, μ1, μ2) is valid reduces to

verify the feasibility of a flow problem (f has to saturate edges to MU 1 and
from MU 2); this can be done by applying a simple transformation to the graph
(in time O(|MU 1|+ |MU 2|)), solving the maximum flow problem for the trans-
formed graph, and checking whether the flow saturates all edges from the new
source [1]. So now the problem is to find a good ψ that makes Nψ(R, μ1, μ2)
valid, but there are uncountably many of such ψ we may check for. However,
the candidates that really matter are finite, not uncountably many, and are
called breakpoints. In particular, breakpoints can be identified by solving one
more parametric maximum flow problem: Let κ(ψ) be the minimum cut capac-
ity function for the parameter ψ, that is, the capacity of a minimum cut of
Nψ(R, μ1, μ2) as a function of ψ. Based on the Max flow Min cut theorem [1],
the capacity of a minimum cut equals the value of a maximum flow. On the
other hand, if the edge capacities in the network are linear functions of ψ, κ(ψ)
is a piecewise linear concave function with at most |V | − 2 breakpoints [24]. In
particular, |V | − 1 or fewer line segments of the graph of κ(ψ) are equivalent
to |V | − 1 or fewer distinct minimal cuts. For some ψ∗, the capacity of a min-
imum cut gives an equation that leads to a line segment to the function κ(ψ)
at ψ = ψ∗. Furthermore, this line segment attaches the two points (ψ1, κ(ψ1))
and (ψ2, κ(ψ2)), where ψ1, ψ2 are the nearest breakpoints to the left and right,

Computing Behavioral Relations for Probabilistic Concurrent Systems 149

StepCondition�(D,R, s1, s2)

1. if post(s1) ⊆ R−1(s2)
2. return true
3. if post(s2) ⊆ R(s1)
4. U1 ← { s′1 ∈ post(s1) | s′1 /∈ R−1(s2) }
5. return ∀u1 ∈ U1.∃s ∈ post(reach(s2)) ∩R(s1).s ∈ R(u1)
6. Compute all of the breakpoints ψ1 < ψ2 < · · · < ψj of Nψ(R, μ1, μ2)
7. return ∃i ∈ {1, . . . , j}.ψi is valid for Nψj (R, μ1, μ2)

where μ1 = P(s1, ·) and μ2 = P(s2, ·)
Fig. 20. Algorithm to check whether s2 weakly simulates s1 with respect to R

respectively. Therefore, as it would be expected, it is enough to examine only
the breakpoints of Nψ(R, μ1, μ2): there exists a valid ψ for Nψ(R, μ1, μ2) if and
only if one of the breakpoints of Nψ(R, μ1, μ2) is valid.

For a fixed breakpoint, it is adequate to solve one feasible flow problem to
check if it is valid. In the network Nψ(R, μ1, μ2) the capacities of the edges
going to the sink are increasing functions of the real-valued parameter ψ. If
Nψ(R, μ1, μ2) is reversed, a parametric network that satisfies the conditions
in [24] can be derived: the capacities emanating from � are non-decreasing func-
tions of ψ. Therefore, the breakpoint algorithm [24] can be applied to compute
the breakpoints of Nψ(R, μ1, μ2).

The Algorithm for DTMCs. We are now able to provide the decision algorithm
for the DTMC weak simulation: we just consider the Sim(
,D) where the step
condition is verified by invoking the algorithm in Figure 20 that, given two states
s1 and s2, it actually computes whether s1
 s2.

By using this approach, the resulting complexity of the algorithm that com-
putes the weak simulation for DTMCs is O(N5). This complexity can be im-
proved in practice by exploiting the network Nψ(R, μ1, μ2) whenever it can be
parted into sub-networks. We refer the reader interested in this approach to [57,
Section 5.1.4]

An Algorithm for CTMCs. The algorithm for computing weak simulation on
CTMCs is very close to the one for DTMCs since the only difference is the last
requirement of the step condition: “K1 ·R(s1, S) ≤ K2 ·R(s2, S)” instead of “for
u1 ∈ U1 there exist an execution fragment s2t1 . . . tnu2 with positive probability
such that n ∈ N, s1 R tj for 0 < j ≤ n, and u1 R u2”.

This makes the algorithm for C simpler: if K1 > 0 and K2 = 0, then s1 �Rs2
for the rate condition. Therefore, the reachability condition does not need to be
checked and the lines 3–5 of the algorithm StepCondition�(D,R, s1, s2) can be
omitted. In general, the rate condition can be verified by checking the validity of
the network Nψ(R, μ1, μ2) induced in the embedded DTMC emb(C). In particu-

lar, the step condition holds if and only if there exists ψ ≤ R(s2,S)
R(s1,S) such that ψ is

valid for Nψ(R, μ1, μ2). This means that we can replace the returned value

150 D. Gebler, V. Hashemi, and A. Turrini

∃i ∈ {1, . . . , j}.ψi is valid for Nψj (R, μ1, μ2)

of line 7 of StepCondition�(D,R, s1, s2) with

∃i ∈ {1, . . . , j}.ψi ≤
R(s2, S)

R(s1, S)
∧ ψi is valid for Nψj (R, μ1, μ2).

These improvements do not change the worst case complexity of the algorithm,
but they improve it in practice, in particular when merged with the improved
algorithm for DTMCs.

Weak Probabilistic Simulation and Bisimulation for PAs. To complete
the survey on the simulations and bisimulations defined on PAs, we consider
the weak probabilistic (bi)simulation and the weak (bi)simulation. The latter
relation is a restriction of the former where the step condition for the pair (s, t)
requires that t matches the challenging transition proposed by s via a weak
transition instead of a weak combined transition. By using the PAs proposed
by [16], it is possible to show that both weak simulation and bisimulation are not
transitive, so we omit them. On the contrary, both weak probabilistic simulation
and bisimulation are transitive [47] and they can be used whenever we want to
abstract away from the internal computation of a probabilistic automaton.

The decidability of weak probabilistic bisimulation has been stated in [13]
and it is based on the standard partition refinement approach. The complexity
of such algorithm is exponential in the number of transitions and only recently
it has been improved to polynomial [29]. Indeed, [29] reduces the complexity to
polynomial by constructing a flow network enriched with side constraints that
admits a valid flow if and only if there exists a determinate scheduler that induces
the desired weak combined transition.

With some inspiration from network flow problems, authors of [29, 30] were
able to see a transition t a=⇒C μt of the PA P as a flow where the initial probabil-
ity mass δt flows and splits along internal transitions (and exactly one transition
with label a for each stream when a �= τ) according to the transition target
distributions and the scheduler resolution of the nondeterminism. The resulting
flow problem is then translated into an LP extended with balancing constraints
that encode the need to respect transition probability distributions. To describe
the structure of the LP problem, we first recall the original definition of the
network graph corresponding to a weak combined transition.

Given a PA P = (S, s̄, Σ,→) and a relation R ⊆ S×S, for a ∈ E, the network
G(t, a, μ,R) = (V,E,�,�, c) has the set of vertices V = {�,�} ∪ S ∪ Str ∪ Sa ∪
Str
a ∪ SR where

Str = { vtr | tr = v b−→ ρ ∈ →, b ∈ {a, τ} },
Sa = { va | v ∈ S },
Str
a = { vtra | vtr ∈ Str }, and
SR = { sR | s ∈ S }

Computing Behavioral Relations for Probabilistic Concurrent Systems 151

t

u

v

x

y

z

τ
0.2

0.8

1a

1a 0.4
τ

0.6

1
τ

Fig. 21. A probabilistic automaton

�

t ttrt

u

v

utru
a

vtrv
a

xa xtrx
a

ya y
try
a

za [z]R � [t]R ta ttrta

ua

va

x xtrx yytryz

Fig. 22. The network graph G(t, a, δz,R) for the automaton A

and the set of edges

E = {(�, t)} ∪ { (va, uR), (uR,�) | u ∈ S, v R u }
∪ { (v, vtr), (vtr , v′), (va, vtra), (vtra , v

′
a) | tr = v τ−→ ρ ∈ →, v′ ∈ Supp(ρ) }

∪ { (v, vtra), (vtra , v
′
a) | tr = v a−→ ρ ∈ →, v′ ∈ Supp(ρ) }.

For each (u, v) ∈ E, c(u, v) = ∞. When a ∈ H, the definition is similar:
V = {�,�} ∪ S ∪ Str ∪ SR and E = {(�, t)} ∪ { (v, uR), (uR,�) | u ∈ S, v R
u } ∪ { (v, vtr), (vtr , v′) | tr = v τ−→ ρ ∈ →, v′ ∈ Supp(ρ) }. As a concrete exam-
ple to illustrate the construction of the flow network, consider the probabilistic
automaton P given in Figure 21. The flow network G(t, a, δz ,R) is depicted
in Figure 22, where R is the equivalence relation inducing classes {t, u, v} and
{x, y, z}.

As pointed out in [29], the fact that the network admits a flow that respects
the probability distribution μt does not imply the existence of a corresponding
weak combined transition, because the flow may not respect probability ratios.
Moreover, in order to define a flow problem, we need to define the capacity for
each arc. There are several possibilities for doing this: the first possibility is to
use as capacity for the arc (vtr , u) corresponding to the transition tr = s τ−→ ρ
with u ∈ Supp(ρ) the probability ρ(u); the capacity of the remaining arcs is 1. As
we will see, such capacity in general is not suitable for arcs that are part of cy-
cles. Another possibility is to use as capacity the value 1

1−ρ(u) for arcs of the kind

(vtr , u), max{ 1
1−ρ(u) | u ∈ Supp(μ) } for the arc (v, vtr), and 1 for other arcs;

in this case such capacity is suitable for the arcs involved in cycles, but still it
does not force to respect probability ratios. Finally, arcs have infinite capacity;
this is the simplest choice that has been adopted in [29]. Therefore, the net-
work is converted into a linear programming problem for which the feasibility is
shown to be equivalent to the existence of the desired weak combined transition.

152 D. Gebler, V. Hashemi, and A. Turrini

The idea is to convert the flow network into the canonical LP problem and
then to add the balancing constraints that force the “flow” to split according to
transition probability distributions.

Definition 21 (cf. [30, Definition 1]). Given a PA P, R ⊆ S × S, μ ∈
Disc(S), and t ∈ S, for a ∈ E we define the t a=⇒C !· L(R) μ LP problem associ-
ated to the network graph (V,E) = G(t, a, μ,R) as follows:

max
∑

(x,y)∈E−fx,y
under constraints
fu,v ≥ 0 for each (u, v) ∈ E
f�,t = 1
fvR,� = μ(v) for each v ∈ SR∑

u∈{ x|(x,v)∈E } fu,v −
∑

u∈{ y|(v,y)∈E } fv,u = 0 for each v ∈ V \ {�,�}
fvtr ,v′ − ρ(v′)fv,vtr = 0 for each tr = v τ−→ ρ ∈ → and v′ ∈ Supp(ρ)
fvtr

a ,v′
a
− ρ(v′)fva,vtr

a
= 0 for each tr = v τ−→ ρ ∈ → and v′ ∈ Supp(ρ)

fvtr
a ,v′

a
− ρ(v′)fv,vtr

a
= 0 for each tr = v a−→ ρ ∈ → and v′ ∈ Supp(ρ)

When a is τ , the LP problem t τ=⇒C !· L(R) μ associated to G(t, τ, μ,R) is de-
fined as above without the last two groups of constraints.

Since it is possible to solve a linear programming problem in polynomial
time [53], so it is to find a feasible solution for t a=⇒C !· L(R) μ (cf. [29, The-
orem 7]), hence computing the weak probabilistic similarity and bisimilarity for
probabilistic automata is polynomial as well. A comprehensive efficiency analysis
about deciding weak probabilistic bisimulation on PAs is presented in [27].

6.3 The Algorithms for Mixed Time Models Relations

We do not present explicitly the algorithms for the simulations and bisimulations
defined on IMCs and MAs: the former just makes use of the algorithms for
CTMCs and graph visiting (as a depth first search) [28], while the latter just
takes the LP problem for finding a weak transition in a PA as a blackbox [20,46].

7 Conclusion

In this survey we have presented several discrete and continuous time systems
with external and/or internal nondeterminism and investigated the models of
CTMCs, DTMCs, PAs, and CTPAs, and discussed IMCs and MAs. For these
models, we have recalled the behavioral relations they are equipped with like
simulations and bisimulations and we have described the corresponding decision
algorithms. These procedures follow the standard refinement approach and they
improve their complexity by using algorithms for optimization and flow net-
work problems. We omitted some of the technical details but provided extensive
references to the original literature.

Computing Behavioral Relations for Probabilistic Concurrent Systems 153

Acknowledgements. The authors would like to thank Holger Hermanns for his
invaluable assistance to motivate and improve the results of the paper. We would
also like to thank the three anonymous reviewers for their many constructive
comments and suggestions on the manuscript. This work has been supported by
the DFG/NWO Bilateral Research Programme ROCKS, by the DFG as part
of the SFB/TR 14 “Automatic Verification and Analysis of Complex Systems”
(AVACS), and by the European Union Seventh Framework Programme under
grant agreement no. 295261 (MEALS) and 318490 (SENSATION).

References

[1] Ahuja, R.K., Magnanti, T.J., Orlin, J.B.: Network Flows: Theory, Algorithms,
and Applications. Prentice Hall (1993)

[2] Andova, S., Willemse, T.A.C.: Branching bisimulation for probabilistic systems:
Characteristics and decidability. TCS 356(3), 325–355 (2006)

[3] Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Model-checking continuous-time
Markov chains. ACM Transactions on Computational Logic 1(1), 162–170 (2000)

[4] Baier, C., Engelen, B., Majster-Cederbaum, M.: Deciding bisimilarity and simi-
larity for probabilistic processes. J. Computer and Systems Science 60(1), 187–231
(2000)

[5] Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Model-checking algo-
rithms for continuous-time Markov chains. IEEE Transactions on Software Engi-
neering 29(6), 524–541 (2003)

[6] Baier, C., Hermanns, H.: Weak bisimulation for fully probabilistic processes. In:
Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 119–130. Springer, Heidelberg
(1997)

[7] Baier, C., Hermanns, H., Katoen, J.P., Haverkort, B.R.: Efficient computation of
time-bounded reachability probabilities in uniform continuous-time Markov deci-
sion processes. TCS 345(1), 2–26 (2005)

[8] Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
[9] Baier, C., Katoen, J.P., Hermanns, H., Wolf, V.: Comparative branching-time

semantics for Markov chains. I&C 200(2), 149–214 (2005)
[10] Bellman, R.: A Markovian decision process. Indiana University Mathematics Jour-

nal 6, 679–684 (1957)
[11] Bertsekas, D.P.: Dynamic Programming and Optimal Control. Athena Scientific

(2005)
[12] Bertsimas, D., Tsitsiklis, J.N.: Introduction to Linear Optimization. Athena Sci-

entific (1997)
[13] Cattani, S., Segala, R.: Decision algorithms for probabilistic bisimulation. In:

Brim, L., Jančar, P., Křet́ınský, M., Kučera, A. (eds.) CONCUR 2002. LNCS,
vol. 2421, pp. 371–385. Springer, Heidelberg (2002)

[14] Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Transactions on Programming Languages and Systems 16(5), 1512–1542 (1994)

[15] Crafa, S., Ranzato, F.: Probabilistic bisimulation and simulation algorithms by
abstract interpretation. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011,
Part II. LNCS, vol. 6756, pp. 295–306. Springer, Heidelberg (2011)

[16] Deng, Y.: Axiomatisations and Types for Probabilistic and Mobile Processes.
Ph.D. thesis, École des Mines de Paris (2005)

[17] Deng, Y., Hennessy, M.: On the semantics of Markov automata. I&C 222, 139–168
(2012)

154 D. Gebler, V. Hashemi, and A. Turrini

[18] Desharnais, J.: Labelled Markov Processes. Ph.D. thesis, McGill University (1999)
[19] Eisentraut, C., Hermanns, H., Katoen, J.-P., Zhang, L.: A semantics for every

GSPN. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927,
pp. 90–109. Springer, Heidelberg (2013)

[20] Eisentraut, C., Hermanns, H., Krämer, J., Turrini, A., Zhang, L.: Deciding bisim-
ilarities on distributions. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R.
(eds.) QEST 2013. LNCS, vol. 8054, pp. 72–88. Springer, Heidelberg (2013)

[21] Eisentraut, C., Hermanns, H., Schuster, J., Turrini, A., Zhang, L.: The quest
for minimal quotients for probabilistic automata. In: Piterman, N., Smolka, S.A.
(eds.) TACAS 2013. LNCS, vol. 7795, pp. 16–31. Springer, Heidelberg (2013)

[22] Eisentraut, C., Hermanns, H., Zhang, L.: Concurrency and composition in a
stochastic world. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS,
vol. 6269, pp. 21–39. Springer, Heidelberg (2010)

[23] Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: LICS, pp. 342–351 (2010)

[24] Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow al-
gorithm and applications. SIAM J. Comp. 18(1), 30–55 (1989)

[25] Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J.
ACM 35(4), 921–940 (1988)

[26] Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5), 512–535 (1994)

[27] Hashemi, V., Hermanns, H., Turrini, A.: On the efficiency of deciding probabilistic
automata weak bisimulation. ECEASST 66 (2013)

[28] Hermanns, H.: Interactive Markov Chains. LNCS, vol. 2428. Springer, Heidelberg
(2002)

[29] Hermanns, H., Turrini, A.: Deciding probabilistic automata weak bisimulation in
polynomial time. In: FSTTCS, pp. 435–447 (2012)

[30] Hermanns, H., Turrini, A.: Cost preserving bisimulations for probabilistic au-
tomata. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency
Theory. LNCS, vol. 8052, pp. 349–363. Springer, Heidelberg (2013)

[31] Howard, R.A.: Dynamic Programming and Markov Processes. John Wiley and
Sons, Inc. (1960)

[32] Howard, R.A.: Dynamic Probabilistic Systems: Semi-Markov and Decision Pro-
cesses, vol. II. Dover Publications (2007)

[33] Jansen, D.N., Song, L., Zhang, L.: Revisiting weak simulation for substochastic
Markov chains. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.)
QEST 2013. LNCS, vol. 8054, pp. 209–224. Springer, Heidelberg (2013)

[34] Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.
In: LICS, pp. 266–277 (1991)

[35] Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three
problems of equivalence. I&C 86(1), 43–68 (1990)

[36] Katoen, J.-P., Kemna, T., Zapreev, I., Jansen, D.N.: Bisimulation minimisation
mostly speeds up probabilistic model checking. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424, pp. 87–101. Springer, Heidelberg (2007)

[37] Knast, R.: Continuous-time probabilistic automata. Information and Con-
trol 15(4), 335–352 (1969)

[38] Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing (preliminary
report). In: POPL, pp. 344–352 (1989)

[39] Milner, R.: Communication and Concurrency. Prentice-Hall International,
Englewood Cleiffs (1989)

Computing Behavioral Relations for Probabilistic Concurrent Systems 155

[40] Milner, R.: Communicating and Mobile Systems: the π-calculus. Cambridge
University Press (1999)

[41] Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. on Com-
puting 16(6), 973–989 (1987)

[42] Peterson, M.: An Introduction to Decision Theory. Cambridge University Press
(2009)

[43] Philippou, A., Lee, I., Sokolsky, O.: Weak bisimulation for probabilistic systems.
In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 334–349. Springer,
Heidelberg (2000)

[44] Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Statistics, vol. (594). John Wiley &
Sons, Inc. (2005)

[45] Sack, J., Zhang, L.: A general framework for probabilistic characterizing formu-
lae. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp.
396–411. Springer, Heidelberg (2012)

[46] Schuster, J., Siegle, M.: Markov automata: Deciding weak bisimulation by means
of “non-näıvely” vanishing states. I&C (to appear, 2014),
http://dx.doi.org/10.1016/j.ic.2014.02.001

[47] Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. Ph.D. thesis, MIT (1995)

[48] Segala, R.: Probability and nondeterminism in operational models of concurrency.
In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 64–78.
Springer, Heidelberg (2006)

[49] Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. In: Jon-
sson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 481–496. Springer,
Heidelberg (1994)

[50] Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes.
Nordic J. Computing 2(2), 250–273 (1995)

[51] Segala, R., Turrini, A.: Comparative analysis of bisimulation relations on alter-
nating and non-alternating probabilistic models. In: QEST, pp. 44–53 (2005)

[52] Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Prince-
ton University Press (1994)

[53] Todd, M.J.: The many facets of linear programming. Mathematical Program-
ming 91(3), 417–436 (2002)

[54] Wolovick, N., Johr, S.: A characterization of meaningful schedulers for continuous-
time Markov decision processes. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006.
LNCS, vol. 4202, pp. 352–367. Springer, Heidelberg (2006)

[55] Zhang, L.: Decision Algorithm for Probabilistic Simulations. Ph.D. thesis, Saarland
University (2008)

[56] Zhang, L., Hermanns, H.: Deciding simulations on probabilistic automata. In:
Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS,
vol. 4762, pp. 207–222. Springer, Heidelberg (2007)

[57] Zhang, L., Hermanns, H., Eisenbrand, F., Jansen, D.N.: Flow faster: Efficient de-
cision algorithms for probabilistic simulations. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424, pp. 155–169. Springer, Heidelberg (2007)

http://dx.doi.org/10.1016/j.ic.2014.02.001

Markov Reward Models and Markov Decision

Processes in Discrete and Continuous Time:
Performance Evaluation and Optimization

Alexander Gouberman and Markus Siegle

Department of Computer Science
Universität der Bundeswehr, München, Germany

{alexander.gouberman,markus.siegle}@unibw.de

Abstract. State-based systems with discrete or continuous time are
often modelled with the help of Markov chains. In order to specify perfor-
mance measures for such systems, one can define a reward structure over
the Markov chain, leading to the Markov Reward Model (MRM) formal-
ism. Typical examples of performance measures that can be defined in
this way are time-based measures (e.g. mean time to failure), average en-
ergy consumption, monetary cost (e.g. for repair, maintenance) or even
combinations of such measures. These measures can also be regarded as
target objects for system optimization. For that reason, an MRM can be
enhanced with an additional control structure, leading to the formalism
of Markov Decision Processes (MDP).

In this tutorial, we first introduce the MRM formalism with different
types of reward structures and explain how these can be combined to a
performance measure for the system model. We provide running exam-
ples which show how some of the above mentioned performance measures
can be employed. Building on this, we extend to the MDP formalism and
introduce the concept of a policy. The global optimization task (over the
huge policy space) can be reduced to a greedy local optimization by
exploiting the non-linear Bellman equations. We review several dynamic
programming algorithms which can be used in order to solve the Bellman
equations exactly. Moreover, we consider Markovian models in discrete
and continuous time and study value-preserving transformations between
them. We accompany the technical sections by applying the presented
optimization algorithms to the example performance models.

1 Introduction

State-based systems with stochastic behavior and discrete or continuous time are
often modelled with the help of Markov chains. Their efficient evaluation and
optimization is an important research topic. There is a wide range of application
areas for such kind of models, coming especially from the field of Operations
Research, e.g. economics [4,23,31] and health care [14,36], Artificial Intelligence,
e.g. robotics, planning and automated control [11,40] and Computer Science [2,6,
12,13,21,25,34]. In order to specify performance and dependability measures for

A. Remke and M. Stoelinga (Eds.): ROCKS Autumn School 2012, LNCS 8453, pp. 156–241, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Markov Reward Models and Markov Decision Processes 157

such systems, one can define a reward structure over the Markov chain, leading to
the Markov Reward Model (MRM) formalism. Typical examples of performance
measures that can be defined in this way are time-based measures (e.g. mean
time to failure), average energy consumption, monetary cost (e.g. for repair,
maintenance) or even combinations of such measures. These measures can also
be regarded as target objects for system optimization. For that reason, an MRM
can be enhanced with an additional control structure, leading to the formalism of
Markov Decision Processes (MDP) [20]. There is a huge number of optimization
algorithms for MDPs in the literature, based on dynamic programming and
linear programming [7, 8, 17, 33] – all of them rely on the Bellman optimality
principle [5].

In many applications, the optimization criteria are a trade-off between several
competing goals, e.g. minimization of running cost and maximization of profit
at the same time. For sure, in these kinds of trade-off models, it is important
to establish an optimal policy which in most cases is not intuitive. However,
there are also examples of target functions with no trade-off character (e.g.
pure lifetime maximization [16]) which can also lead to counterintuitive optimal
policies. Therefore, using MDPs for optimization of stochastic systems should
not be neglected, even if a heuristically established policy seems to be optimal.

In order to build up the necessary theoretical background in this introductory
tutorial, we first introduce in Sect. 2 the discrete-time MRM formalism with
finite state space and define different types of reward measures typically used
in performance evaluation, such as total reward, discounted reward and average
reward. In contrast to the majority of literature, we follow a different approach
to deduce the definition of the discounted reward through a special memoryless
horizon-expected reward. We discuss properties of these measures and create a
fundamental link between them, which is based on the Laurent series expansion
of the discounted reward (and involves the deviation matrix for Markov chains).
We derive systems of linear equations used for evaluation of the reward measures
and provide a running example based on a simple queueing model, in order to
show how these performance measures can be employed.

Building on this, in Sect. 3 we introduce the MDP formalism and the concept
of a policy. The global optimization task (over the huge policy space) can be
reduced to a greedy local optimization by exploiting the set of non-linear Bell-
man equations. We review some of the basic dynamic programming algorithms
(policy iteration and value iteration) which can be used in order to solve the
Bellman equations. As a running example, we extend the queueing model from
the preceding section with a control structure and compute optimal policies with
respect to several performance measures.

From Sect. 4 on we switch to the continuous-time setting and present the CT-
MRM formalism with a reward structure consisting of the following two different
types: impulse rewards which measure discrete events (i.e. transitions) and rate
rewards which measure continuous time activities. In analogy to the discrete-time
case, we discuss the performance measures given by the total, horizon-expected,
discounted and average reward measures. In order to be able to evaluate these

158 A. Gouberman and M. Siegle

measures, we present model transformations that can be used for discretizing the
CTMRM to a DTMRM by embedding or uniformization [24]. As a third trans-
formation, we define the continuization which integrates the discrete impulse re-
wards into a continuous-time rate, such that the whole CTMRM possesses only
rate rewards. We further study the soundness of these transformations, i.e. the
preservation of the aforementioned performance measures. Similar to DTMRMs,
the discounted reward measure can be expanded into a Laurent series which once
again shows the intrinsic structure between the measures. We accompany Sect.
4 with a small wireless sensor network model.

In Sect. 5 we finally are able to define the continuous-time MDP formalism
which extends CTMRMs with a control structure, as for discrete-time MDPs.
With all the knowledge collected in the preceding sections, the optimization
algorithms for CTMDPs can be performed by MDP algorithms through time
discretization. For evaluation of the average reward measure, we reveal a slightly
different version of policy iteration [17], which can be used for the continuization
transformation. As an example, we define a bridge circuit CTMDP model and
optimize typical time-based dependability measures like mean time to failure
and the availability of the system.

Figure 1.1 shows some dependencies between the sections in this tutorial in
form of a roadmap. One can read the tutorial in a linear fashion from beginning
to end, but if one wants to focus on specific topics it is also possible to skip cer-
tain sections. For instance, readers may wish to concentrate on Markov Reward
Models in either discrete or continuous time (Sects. 2 and 4), while neglecting
the optimization aspect. Alternatively, they may be interested in the discrete
time setting only, ignoring the continuous time case, which would mean to read
only Sects. 2 (on DTMRMs) and 3 (on MDPs). Furthermore, if the reader is in-
terested in the discounted reward measure, then he may skip the average reward
measure in every subsection.

Readers are assumed to be familiar with basic calculus, linear algebra and
probability theory which should suffice to follow most explanations and deriva-
tions. For those wishing to gain insight into the deeper mathematical structure of
MRMs and MDPs, additional theorems and proofs are provided, some of which
require more involved concepts such as measure theory, Fubini’s theorem or Lau-
rent series. For improved readability, long proofs are moved to the Appendix in
Sect. A.

The material presented in this tutorial paper has been covered previously by
several authors, notably in the books of Puterman [33], Bertsekas [7, 8], Bert-
sekas/Tsitsiklis [10] and Guo/Hernandez-Lerma [17]. However, the present pa-
per offers its own new points of view: Apart from dealing also with non-standard
measures, such as horizon-expected reward measures and the unified treatment
of rate rewards and impulse rewards through the concept of continuization, the
paper puts an emphasis on transformations between the different model classes
by embedding and uniformization. The paper ultimately anwers the interesting
question of which measures are preserved by those transformations.

Markov Reward Models and Markov Decision Processes 159

Fig. 1.1. Roadmap of the tutorial with dependencies between the sections and sub-
sections. As an example, Sect. 3.3 on stochastic shortest paths, needs Sect. 3.2 and
therefore also Sect. 2.3 but not Sect. 2.4. The Big Picture in Sect. 4.7 is one of the
main goals of this tutorial and also necessary for the section on CTMDPs.

Symbols

BA set of functions f : A→ B
2A power set of A
D(S) set of probability distributions over S
P probability measure, probability transition matrix
Ps probability measure assuming initial state s
Es expectation from initial state s
�A(x) indicator function, �A(x) = 1 if x ∈ A and 0 otherwise
δs,s′ Kronecker-δ, δs,s′ = 1 if s = s′ and 0 otherwise
I identity matrix
1 column vector consisting of ones in each entry
p p = 1− p
ker(A) kernel of a matrix A
γ discount factor, 0 < γ < 1
α discount rate, α > 0
V value function
g average reward
h bias

160 A. Gouberman and M. Siegle

2 Discrete Time Markov Reward Models

2.1 Preliminaries

Definition 2.1. For a finite set S let D(S) :=
{
δ : S → [0, 1] |

∑
s∈S δ(s) = 1

}
be the space of discrete probability distributions over S.

Definition 2.2. A discrete-time Markov chain (DTMC) is a structure
M = (S, P) consisting of a finite set of states S (also called the state space
of M) and a transition function P : S → D(S) which assigns to each state s
the probability P (s, s′) := (P (s)) (s′) to move to state s′ within one transition.
A discrete-time Markov Reward Model (DTMRM) enhances a DTMC
(S, P) by a reward function R : S × S → R and is thus regarded as a structure
M = (S, P,R).

In the definition, the rewards are defined over transitions, i.e. whenever a tran-
sition from s to s′ takes place, a reward R(s, s′) is gained. Alternatively, a
DTMRM can also be defined with state-based rewards R : S → R. There is
a correspondence between transition-based and state-based reward models: A
state-based reward R(s) can be converted into a transition-based reward by
defining R(s, s′) := R(s) for all s′ ∈ S. On the other hand, a transition-based
reward R(s, s′) can be transformed by expectation into its state-based version
by defining R(s) :=

∑
s′∈S R(s, s

′)P (s, s′). Of course, this transformation can
not be inverted, but as we will see, the reward measures that we consider do not
differ. Note that for state-based rewards there are two canonical but totally dif-
ferent possibilities to define the point in time, when such a reward can be gained:
either when a transition into the state or out of the state is performed. This cor-
responds to the difference in the point of view for “arrivals” and “departures” of
jobs in queueing systems. When working with transition-based rewards R(s, s′)
as in Definition 2.2, then such a confusion does not occur since R(s, s′) is gained
in state s after transition to s′ and thus its expected value R(s) corresponds to
the “departure” point of view. For our purposes we will mix both representions
and if we write R for a reward then it is assumed to be interpreted in a context-
dependent way as either the state-based or the transition-based version.

Each bijective representation

ϕ : S → {1, 2, . . . , n} , n := |S| (2.1)

of the state space as natural numbered indices allows to regard the rewards and
the transition probabilities as real-valued vectors in Rn respectively matrices in
Rn×n. We indirectly take such a representation ϕ, especially when we talk about
P and R in vector notation. In this case the transition function P : S → D(S)
can be regarded as a stochastic matrix, i.e. P1 = 1, where 1 = (1, . . . , 1)T is
the column vector consisting of all ones.

Example 2.1 (Queueing system). As a running example, consider a system con-
sisting of a queue of capacity k and a service unit which can be idle, busy or

Markov Reward Models and Markov Decision Processes 161

 0,0,
idle

 0,1,
busy

 1,1,
busy

 0,0,
vac

 1,0,
vac

1

2

3

4

5

Fig. 2.1. Queueing model with queue capacity k = 1 and a service unit which can be
idle, busy or on vacation. State (0, 1,busy) represents 0 jobs in the queue, 1 job in
service and server is busy. The dashed transitions represent the event that an incoming
job is discarded. The parameter values are q = 0.25, pd = 0.5, pv = 0.1 and pr = 0.25.
Overlined probabilities are defined as p := 1− p.

on vacation (Fig. 2.1) [38]. A job arrives with probability q = 0.25 and gets en-
queued if the queue is not full. If the server is idle and there is some job waiting
in the queue, the server immediately gets busy and processes the job. At the
end of each unit of service time, the server is done with the job with probability
pd = 0.5 and can either go idle (and possibly getting the next job) or the server
needs vacation with probability pv = 0.1. From the vacation mode the server
returns with probability pr = 0.25. Figure 2.1 shows the model for the case of
queue capacity k = 1, where transitions are split into regular transitions (solid
lines) and transitions indicating that an incoming job gets discarded (dashed
lines). The reward model is as follows: For each accomplished service a reward
of Racc = $100 is gained, regardless of whether the server moves to idle or to va-
cation. However, the loss of a job during arrival causes a cost of Closs = −$1000.
Therefore we consider the following state-based reward structures:

Rprofit =

⎛⎜⎜⎜⎜⎝
0
0

Raccpd
0

Raccpd

⎞⎟⎟⎟⎟⎠ , Rcost =

⎛⎜⎜⎜⎜⎝
0
0
0

Clossqpr
Closs (qpd + qpdpv)

⎞⎟⎟⎟⎟⎠ , Rtotal = Rprofit +Rcost,

(2.2)
where p := 1− p for some probability p. "#

There are several ways how the rewards gained for each taken transition (re-
spectively for a visited state) can contribute to certain measures of interest. In
typical applications of performance evaluation, rewards are accumulated over
some time period or a kind of averaging over rewards is established. In order
to be able to define these reward measures formally, we need to provide some
basic knowledge on the stochastic state process induced by the DTMC part of
a DTMRM.

162 A. Gouberman and M. Siegle

2.1.1 Sample Space
For a DTMCM = (S, P) define Ω as the set of infinite paths, i.e.

Ω :=
{
(s0, s1, s2, . . .) ∈ SN | P (si−1, si) > 0 for all i ≥ 1

}
(2.3)

and let B(Ω) be the Borel σ-algebra over Ω generated by the cylinder sets

C(s0, s1, . . . , sN) := {ω ∈ Ω | ωi = si ∀i ≤ N} .

Each s ∈ S induces a probability space (Ω,B(Ω), Ps) with a probability distri-
bution Ps : B(Ω)→ R over paths, such that for each cylinder set C(s0, . . . , sN) ∈
B(Ω)

Ps (C(s0, . . . , sN)) = δs0,sP (s0, s1)P (s1, s2) . . . P (sN−1, sN),

where δ is the Kronecker-δ, i.e. δs,s′ = 1 if s = s′ and 0 otherwise.

Definition 2.3. The DTMCM induces the stochastic state process (Xn)n∈N

over Ω which is a sequence of S-valued random variables such that Xn(ω) := sn
for ω = (s0, s1, . . .) ∈ Ω.

Note that

Ps(Xn = s′) =
∑

s1,...,sn−1

P (s, s1)P (s1, s2) . . . P (sn−2, sn−1)P (sn−1, s
′) = Pn(s, s′),

where
∑

s1,...,sn−1
denotes summation over all tuples (s1, . . . , sn−1) ∈ Sn−1. The

process Xn also fulfills the Markov property (or memorylessness): For all
s, s′, s0, s1, . . . sn−1 ∈ S it holds that

Ps0(Xn+1 = s′ | X1 = s1, . . . , Xn−1 = sn−1, Xn = s) = P (s, s′), (2.4)

i.e. if the process is in state s at the current point in time n, then the probability
to be in state s′ after the next transition does not depend on the history of
the process consisting of the initial state X0 = s0 and the traversed states
X1 = s1, . . . , Xn−1 = sn−1 up to time n− 1.
We denote the expectation operator over (Ω,B(Ω), Ps) as Es. For a function
f : Sn+1 → R it holds

Es [f(X0, X1, . . . , Xn)] =
∑

s1,...,sn

f(s, s1 . . . , sn)P (s, s1)P (s1, s2) . . . P (sn−1, sn).

In vector representation we often write E [Y] := (Es [Y])s∈S for the vector con-
sisting of expectations of a real-valued random variable Y .

2.1.2 State Classification
In the following, we briefly outline the usual taxonomy regarding the classifica-
tion of states for a discrete-time Markov chainM = (S, P). The state process
Xn induced byM allows to classify the states S with respect to their recurrence

Markov Reward Models and Markov Decision Processes 163

and reachability behavior. If X0 = s is the initial state then the random vari-
able Ms := inf {n ≥ 1 | Xn = s} ∈ N ∪ {∞} is the first point in time when the
process Xn returns to s. If along a path ω ∈ Ω the process never returns to s
then Ms(ω) = inf ∅ = ∞. If there is a positive probability to never come back
to s, i.e. Ps(Ms = ∞) > 0 then the state s is called transient. Otherwise, if
Ps(Ms <∞) = 1 then s is recurrent. We denote St as the set of transient states
and Sr as the set of recurrent states. A state s′ is reachable from s (denoted by
s → s′), if there exists n ∈ N with Ps(Xn = s′) > 0. The notion of reachability
induces the (communcation) equivalence relation

s↔ s′ ⇔ s→ s′ and s′ → s.

This relation further partitions the set of recurrent states Sr into the equivalence
classes Sr

i , i = 1, . . . , k such that the whole state space S can be written as the

disjoint union S =
⋃k

i=1 S
r
i ∪ St. Each of these equivalence classes Sr

i is called a
closed recurrent class, since (by the communication relation) for every s ∈ Sr

i

there are no transitions out of this class, i.e. P (s, s′) = 0 for all s′ ∈ S\Sr
i . For this

reason each Sr
i is a minimal closed subset of S, i.e. there is no proper nonempty

subset of Sr
i which is closed. In case a closed recurrent class consists only of one

state s, then s is called absorbing. The DTMCM is unichain if there is only
one recurrent class (k = 1) and if in addition St = ∅ thenM is irreducible. A
DTMC that is not unichain will be called multichain. The queueing system in
Example 2.1 is irreducible, since every state is reachable from every other state.
For discrete-time Markov chains there are some peculiarities regarding the long-
run behavior of the Markov chain as n → ∞. If X0 = s is the initial state
and the limit ρs(s

′) := limn→∞ Ps(Xn = s′) exists for all s′, then ρs ∈ D(S)
is called the limiting distribution from s. In general this limit does not need
to exist, since the sequence Ps(Xn = s′) = Pn(s, s′) might have oscillations
between distinct accumulation points. This fact is related to the periodicity of a
state: From state s the points in time of possible returns to s are given by the
set Rs := {n ≥ 1 | Ps(Xn = s) > 0}. If all n ∈ Rs are multiples of some natural
number d ≥ 2 (i.e. Rs ⊆ {kd | k ∈ N}) then the state s is called periodic and the
periodicity of s is the largest such integer d. Otherwise s is called aperiodic
and the periodicity of s is set to 1. The periodicity is a class property and means
that for every closed recurrent class Sr

i and for all s, s′ ∈ Sr
i the periodicity of s

and s′ is the same. A Markov chain which is irreducible and aperiodic is often
called ergodic in the literature. As an example, a two-state Markov chain with
transition probability matrix

P =

(
0 1
1 0

)
is irreducible but not ergodic, since it is periodic with periodicity 2.

One can show that a recurrent state s in a DTMC with finite state space
is aperiodic if and only if for all s′ ∈ S the sequence Pn(s, s′) converges.
Therefore, the limiting distribution ρs exists (for s recurrent) if and only if s
is aperiodic. In this case ρs(s

′) =
∑

t ρs(t)P (t, s
′) for all s′, which is written in

vector notation by ρs = ρsP . This equation is often interpreted as the invariance

164 A. Gouberman and M. Siegle

(or stationarity) condition: If ρs(s
′) is the probability to find the system in state

s′ at some point in time, then this probability remains unchanged after the sys-
tem performs a transition. In general, there can be several distributions ρ ∈ D(S)
with the invariance property ρ = ρP and any such distribution ρ is called a sta-
tionary distribution. It holds that the set of all stationary distributions forms
a simplex in R

S and the number of vertices of this simplex is exactly the number
of recurrent classes k. Therefore, in a unichain model M there is only one sta-
tionary distribution ρ and ifM is irreducible then ρ(s) > 0 for all s ∈ S. Since
a limiting distribution is stationary it further holds that if M is unichain and
aperiodic (or even ergodic), then for all initial states s the limiting distribution
ρs exists and ρs = ρ is the unique stationary distribution and thus independent
of s.

We will draw on the stationary distributions (and also the periodic behavior)
of a Markov chain in Sect. 2.4, where we will outline the average reward analysis.
In order to make the intuition on the average reward clear, we will also work
with the splitting S =

⋃k
i=1 S

r
i ∪ St into closed recurrent classes and transient

states. The computation of this splitting can be performed by the Fox-Landi
state classification algorithm [15]. It finds a representation ϕ of S (see (2.1))
such that P can be written as

P =

⎛⎜⎜⎜⎜⎜⎝
P1 0 0 . . . 0 0
0 P2 0 . . . 0 0
...

...
...

. . .
... 0

0 0 0 . . . Pk 0

P̃1 P̃2 P̃3 . . . P̃k P̃k+1

⎞⎟⎟⎟⎟⎟⎠ (2.5)

where Pi ∈ Rri×ri , P̃i ∈ Rt×ri , P̃k+1 ∈ Rt×t with ri := |Sr
i | for i = 1, . . . , k and

t := |St|. The matrix Pi represents the transition probabilities within the i-th

recurrent class Sr
i and P̃i the transition probabilities from transient states St

into Sr
i if i = 1, . . . , k, respectively transitions within St for i = k + 1. Every

closed recurrent class Sr
i can be seen as a DTMC Mi = (Sr

i , Pi) by omitting
incoming transitions from transient states. It holds that Mi is irreducible and
thus has a unique stationary distribution ρi ∈ D(Sri) with ρi(s) > 0 for all
s ∈ Sri . This distribution ρi can be extended to a distribution ρi ∈ D(S) on
S by setting ρi(s) := 0 for all s ∈ S \ Sr

i . Note that ρi is also stationary on
M. Since transient states St ofM are left forever with probability 1 (into the
recurrent classes), every stationary distribution ρ ∈ D(S) fulfills that ρ(s) = 0
for all s ∈ St. Thus, an arbitrary stationary distribution ρ ∈ D(S) is a convex

combination of all the ρi, i.e. ρ(s) =
∑k

i=1 aiρi(s) with ai ≥ 0 and
∑k

i=1 ai = 1.
(This forms the k-dimensional simplex with vertices ρi as mentioned above.)

2.1.3 Reward Measure
We now consider a DTMRM M = (S, P,R) and want to describe in the fol-
lowing sections several ways to accumulate the rewards R(s, s′) along paths
ω = (s0, s1, . . .) ∈ Ω. As an example, for a fixed N ∈ N ∪ {∞} (also called the

Markov Reward Models and Markov Decision Processes 165

horizon length) we can accumulate the rewards for the first N transitions by
simple summation: the reward gained for the i-th transition is R(si−1, si) and is

summed up to
∑N

i=1 R(si−1, si), which is regarded as the value of the path ω for
the first N transitions. The following definition introduces the notion of a value
for state-based models, with which we will be concerned in this tutorial.

Definition 2.4. Consider a state-based model M with state space S and a real
vector space V. A reward measure R is an evaluation of the model M that
maps M with an optional set of parameters to the value V ∈ V of the model.
If V is a vector space of functions over S, i.e. V = RS = {V : S → R}, then a
value V ∈ V is also called a value function of the model.

Note that we consider in this definition an arbitrary state-based model, which
can have discrete time (e.g. DTMRM or MDP, cf. Sect. 3) or continuous time
(CTMRM or CTMDP, cf. Sects. 4 and 5). We will mainly consider vector spaces
V which consist of real-valued functions. Beside value functions V ∈ RS which
map every state s ∈ S to a real value V (s) ∈ R, we will also consider value
functions that are time-dependent. For example, if T denotes a set of time values
then V = R

S×T consists of value functions V : S × T → R such that V (s, t) ∈ R

is the real value of state s ∈ S at the point in time t ∈ T . In typical applications
T is a discrete set for discrete-time models (e.g. T = N or T = {0, 1, . . . , N}), or
T is an interval for continuous-time models (e.g. T = [0,∞) or T = [0, Tmax]).
The difference between the notion of a reward measure R and its value function
V is that a reward measure can be seen as a measure type which needs additional
parameters in order to be able to formally define its value function V . Examples
for such parameters are the horizon length N , a discount factor γ (in Sect. 2.3)
or a discount rate α (in Sect. 4.5). If clear from the context, we use the notions
reward measure and value (function) interchangeably.

2.2 Total Reward Measure

We now define the finite-horizon and infinite-horizon total reward measures
which formalize the accumulation procedure along paths by summation as men-
tioned in the motivation of Definition 2.4. The finite-horizon reward measure is
used as a basis upon which all the following reward measures will be defined.

Definition 2.5. LetM be a DTMRM with state process (Xn)n∈N and N <∞ a
fixed finite horizon length. We define the finite-horizon total value function
VN : S → R by

VN (s) := Es

[
N∑
i=1

R(Xi−1, Xi)

]
. (2.6)

If for all states s the sequence Es

[∑N
i=1 |R(Xi−1, Xi)|

]
converges with N →∞,

we define the (infinite-horizon) total value function as

V∞(s) := lim
N→∞

VN (s).

166 A. Gouberman and M. Siegle

In general VN (s) does not need to converge as N → ∞. For example, if all
rewards for every recurrent state are strictly positive, then accumulation of pos-
itive values diverges to ∞. Even worse, if the rewards have different signs then
their accumulation can also oscillate. In order not to be concerned with such
oscillations, we impose as a stronger condition the absolute convergence for the
infinite-horizon case as in the definition.

As next we want to provide a method which helps to evaluate the total reward
measure for the finite and infinite horizon cases. The proof of the following
theorem can be found in the Appendix (page 234).

Theorem 2.1 (Evaluation of the Total Reward Measure).

(i) The finite-horizon total value VN (s) can be computed iteratively through

VN (s) = R(s) +
∑
s′∈S

P (s, s′)VN−1(s
′),

where V0(s) := 0 for all s ∈ S.

(ii) If the infinite-horizon total value V∞(s) exists, then it solves the system of
linear equations

V∞(s) = R(s) +
∑
s′∈S

P (s, s′)V∞(s′). (2.7)

We formulate the evaluation of the total value function in vector notation:

VN = R+ PVN−1 =
N∑
i=1

P i−1R. (2.8)

For the infinite-horizon total value function it holds

V∞ = R+ PV∞ respectively (I − P)V∞ = R. (2.9)

Note that Theorem 2.1 states that if V∞ exists, then it solves (2.9). On the
other hand the system of equations (I−P)X = R with the variable X may have
several solutions, since P is stochastic and thus the rank of I−P is not full. The
next proposition shows a necessary and sufficient condition for the existence of
V∞ in terms of the reward function R. Furthermore, it follows that if V∞ exists
then V∞(s) = 0 on all recurrent states s and V∞ is also the unique solution to
(I − P)X = R with the property that X(s) = 0 for all recurrent states s. A
proof (for aperiodic Markov chains) can be found in the Appendix on page 235.

Proposition 2.1. For a DTMRM (S, P,R) let S =
⋃k

i=1 S
r
i ∪ St be the par-

titioning of S into k closed recurrent classes Sr
i and transient states St. The

infinite-horizon total value function V∞ exists if and only if for all i = 1, . . . , k
and for all s, s′ ∈ Sr

i it holds that

R(s, s′) = 0.

Markov Reward Models and Markov Decision Processes 167

Example 2.2. Let us go back to the queueing model introduced in Example 2.1.
The finite-horizon total value function for the first 30 transitions and reward
function R := Rtotal is shown in Fig. 2.2 for the initial state sinit = (0, 0, idle).

5 10 15 20 25 30
N

-40

-20

20

40

VN

Fig. 2.2. Finite-horizon total value function with horizon length N = 30 for the queue-
ing model in Example 2.1 and initial state sinit = (0, 0, idle)

As one can see, at the beginning the jobs need some time to fill the system
(i.e. both the queue and the server) and thus the expected accumulated reward
increases. But after some time steps the high penalty of Closs = −$1000 for
discarding a job outweighs the accumulation of the relatively small rewardRacc =
$100 for accomplishing a job and the total value decreases. The infinite-horizon
total value does not exist in this model, since VN (sinit) diverges to −∞. However,
in case the total reward up to the first loss of a job is of interest, one can
introduce an auxiliary absorbing state loss with reward 0, which represents that
an incoming job has been discarded (Fig. 2.3).

Fig. 2.3. Queueing model enhanced with an auxiliary absorbing state ’loss’ represent-
ing the loss of an incoming job due to a full queue

Since the single recurrent state loss in this DTMRM has reward 0, the total value
function exists and fulfills (2.7) (respectively (2.9)) with R(s) := Rprofit(s) for

168 A. Gouberman and M. Siegle

s �= loss (see (2.2)) and R(loss) := 0. Note that I −P has rank 5 since P defines
an absorbing state. From R(loss) = 0 it follows that the total value function V∞
is the unique solution for (2.7) with the constraint V∞(loss) = 0 and is given by

V∞ ≈ (1221.95, 980.892, 1221.95, 659.481, 950.514, 0)
T
. "#

2.3 Horizon-Expected and Discounted Reward Measure

In order to be able to evaluate and compare the performance of systems in which
the total value does not exist, we need other appropriate reward measures. In
this and the following subsection, we will present two other typically used reward
measures: the discounted and the average reward measure. Roughly speaking,
the average reward measures the derivation of the total value with respect to the
horizon length N , i.e. its average growth. The discounted measure can be used
if the horizon length for the system is finite but a priori unknown and can be
assumed as being random (and memoryless). In order to define the discounted
reward measure, we first introduce the more general horizon-expected reward
measure.

Definition 2.6. LetM = (S, P,R) be a DTMRM and consider a random hori-
zon length N for M, i.e. N is a random variable over N that is independent of
the state process Xn ofM. Let V(N) denote the random finite-horizon total value

function that takes values in
{
Vn ∈ RS | n ∈ N

}
. Define the horizon-expected

value function by

V (s) := E
[
V(N)(s)

]
,

if the expectation exists for all s ∈ S, i.e. |V(N)(s)| has finite expectation.

In order to be formally correct, the random variable V(N)(s) is the conditional ex-

pectation V(N)(s) = Es

[∑N
i=1R(Xi−1, Xi) | N

]
and thus if N = n then V(N)(s)

takes the value Es

[∑N
i=1R(Xi−1, Xi) | N = n

]
=Es [

∑n
i=1R(Xi−1, Xi)] = Vn(s).

By the law of total expectation it follows that

V (s) = E

[
Es

[
N∑
i=1

R(Xi−1, Xi) | N
]]

= Es

[
N∑
i=1

R(Xi−1, Xi)

]
,

i.e. V (s) is a joint expectation with respect to the product of the probability
measures of N and all the Xi.

The following lemma presents a natural sufficient condition that ensures the
existence of the horizon-expected value function.

Lemma 2.1. If the random horizon length N has finite expectation E [N] <∞
then V (s) exists.

Markov Reward Models and Markov Decision Processes 169

Proof. Since the state space is finite there exists C ∈ R such that |R(s, s′)| ≤ C
∀s, s′ ∈ S. Therefore

|Vn(s)| ≤ Es

[
n∑

i=1

|R(Xi−1, Xi)|
]
≤ n · C

and thus

E
[
|V(N)(s)|

]
=

∞∑
n=0

|Vn(s)| · P (N = n) ≤ C · E [N] <∞. "#

In many applications the horizon length is considered to be memoryless, i.e.
P (N > n+m | N > m) = P (N > n) and is therefore geometrically distributed.
This fact motivates the following definition.

Definition 2.7. For γ ∈ (0, 1) let N be geometrically distributed with parameter
1 − γ, i.e. P (N = n) = γn−1(1 − γ) for n = 1, 2, In this case the horizon-
expected value function is called discounted value function with discount
factor γ (or just γ-discounted value function) and is denoted by V γ.

As for the total value function in Sect. 2.2 we can explicitly compute the dis-
counted value function:

Theorem 2.2 (Evaluation of the Discounted Reward Measure). For a
discount factor γ ∈ (0, 1) it holds that

V γ(s) = lim
n→∞Es

[
n∑

i=1

γi−1R(Xi−1, Xi)

]
. (2.10)

Furthermore, V γ is the unique solution to the system of linear equations

V γ(s) = R(s) + γ
∑
s′∈S

P (s, s′)V γ(s′) (2.11)

which is written in vector notation as

(I − γP)V γ = R.

Proof. Let N be geometrically distributed with parameter γ. By conditional
expectation we get

V γ(s) = E

[
Es

[
N∑
i=1

R(Xi−1, Xi) | N
]]

=

∞∑
n=1

Es

[
n∑

i=1

R(Xi−1, Xi)

]
P (N = n)

= (1− γ)
∞∑
i=1

Es [R(Xi−1, Xi)]

∞∑
n=i

γn−1 =

∞∑
i=1

Es [R(Xi−1, Xi)] γ
i−1,

which gives (2.10). The derivation of the linear equations (2.11) is completely
analogous to the total case by comparing (2.10) to (2.6) (see proof of Theorem
2.1). Since I − γP has full rank for γ ∈ (0, 1) the solution is unique. "#

170 A. Gouberman and M. Siegle

Equation (2.10) yields also another characterization of the discounted reward
measure. Along a path ω = (s0, s1, s2, . . .) the accumulated discounted reward
is R(s0, s1) + γR(s1, s2) + γ

2R(s2, s3) + The future rewards R(si, si+1) are
reduced by the factor γi < 1 in order to express some kind of uncertainty about
the future reward value (e.g. induced by inflation). In many applications, the
discounted reward measure is used with a high discount factor close to 1 which
still avoids possible divergence of the infinite-horizon total value. Qualitatively
speaking, for high γ < 1 the sequence γi decreases for the first few points in time
i slowly, but exponentially to 0. If we assume that the rewards R(s) are close to
each other for each state s, then the rewards accumulated within the first few
time steps approximately give the discounted value.

Remark 2.1. Note that the discounted value function can be equivalently char-
acterized as an infinite-horizon total value function by adding an absorbing and
reward-free final state abs to the state space S such that abs is reachable from
any other state with probability 1 − γ and any other transition probability is
multiplied with γ (see Fig. 2.4). Since abs is eventually reached on every path
within a finite number of transitions with probability 1 and has reward 0, it
characterizes the end of the accumulation procedure. The extended transition
probability matrix P ′ ∈ R(|S|+1)×(|S|+1) and the reward vector R′ ∈ R|S|+1 are
given by

P ′ =
(
γP (1− γ)1
0 1

)
and R′ =

(
R
0

)
,

where 1 = (1, . . . , 1)T . Since abs is the single recurrent state and R(abs) = 0 it
follows by Proposition 2.1 that V∞ exists. Furthermore, it satisfies (I−P ′)V∞ =
R′ and because V∞(abs) = 0 it is also the unique solution with this property.

On the other hand (V γ , 0)
T
is also a solution and thus V∞ = (V γ , 0)

T
.

s''s'

s

abss''s'

s

Fig. 2.4. Equivalent characterization of the γ-discounted reward measure as a total
reward measure by extending the state space with an absorbing reward-free state

Example 2.3. As an example we analyze the queueing model from Example 2.1
with respect to the discounted reward measure. Figure 2.5 shows V γ(s) for the
inital state sinit = (0, 0, idle) as a function of γ. As we see, for small values
of γ the discounted values are positive, since the expected horizon length 1

1−γ
is also small and thus incoming jobs have a chance to be processed and not
discarded within that time. However for γ approaching 1, the expected horizon
length gets larger and the accumulation of the negative reward Closs = −$1000
for discarding jobs in a full queue prevails. "#

Markov Reward Models and Markov Decision Processes 171

0.6 0.7 0.8 0.9 1.0
g

-400

-300

-200

-100

V g

Fig. 2.5. Discounted reward V γ(sinit) as a function of γ for the queueing model in
Example 2.1 and initial state sinit = (0, 0, idle)

2.4 Average Reward Measure

We now provide another important reward measure for the case that the horizon
length is infinite (and not random as assumed in Sect. 2.3). We assume for this
section that the reader is familiar with the concept of periodicity as presented
in Sect. 2.1.2. If for a DTMRM M = (S, P,R) the infinite-horizon total value
function V∞ does not exist, then either VN (s) diverges to ±∞ for some state s
or VN (s) is oscillating over time. The problem with this measure is that V∞ in-
finitely often collects the rewards and sums them all up. Instead of building such
a total accumulation, one can also measure the system by considering the gained
rewards only per time step. As an example, consider an ergodic modelM in the
long run with limiting distribution ρ := ρs given by ρs(s

′) := limn→∞ Pn(s, s′)
for an arbitrary intial state s. Then in steady-state the system is rewarded at
each time step with ρR =

∑
s ρ(s)R(s) ∈ R, i.e. an average of all the rewards

R(s) weighted by the probability ρ(s) that the system occupies state s in steady-
state. But averaging the rewardsR(s) shall not be restricted to only those models
M for which a limiting distribution exists. First of all, the limiting distribution
ρs can depend on the initial state s, if M has several closed recurrent classes.
More important, the limiting distribution might even not exist, as one can see
for the periodic model with

P =

(
0 1
1 0

)
and R =

(
2
4

)
.

However, in this case one would also expect an average reward of 3 for each time
step and for every state, since P is irreducible and has the unique stationary
distribution ρ = (0.5, 0.5). This means that the average reward measure shall
also be applicable to models for which the limiting distribution does not exist.
Instead of computing an average per time step in steady-state, one can also
think of calculating an average in the long-run by accumulating for each horizon
length N the total value VN and dividing it by the time N . The limit of the

172 A. Gouberman and M. Siegle

sequence of these finite horizon averages establishes the desired long-run aver-
age. As we will see in Proposition 2.2, this long-run average always converges,
independent of the structure of the underyling DTMRM. Furthermore, in case
the limiting distribution exists then the steady-state average and the long-run
average coincide and thus the long-run average fulfills the desired requirements
from the motivation.

Definition 2.8. The average reward measure (or gain) of a DTMRM with
value function g(s) is defined by

g(s) := lim
N→∞

1

N
VN (s)

if the limit exists.

In the following, we summarize well-known results from linear algebra which
first of all directly imply that the average reward exists (at least for finite state
spaces) and furthermore also allow us to provide methods for its evaluation.

Definition 2.9. For a stochastic matrix P define the limiting matrices P∞

and P ∗ as:

P∞ := lim
N→∞

PN and P ∗ := lim
N→∞

1

N

N∑
i=1

P i−1,

if the limits exist. (P ∗ is the Cesàro limit of the sequence P i.)

Suppose that P ∗ exists. Then the average reward can be computed by

g = P ∗R, (2.12)

since by (2.8) it holds that

g(s) = lim
N→∞

1

N
VN (s) = lim

N→∞
1

N

N∑
i=1

(
P i−1R

)
(s) = (P ∗R) (s).

Note also that if P∞ exists, then the i-th row in P∞ (with i = ϕ(s), see (2.1))
represents the limiting distribution ρi of the model, given that the initial state of
the system is s. By the motivation from above it should also hold that g(s) = ρiR.
The following proposition relates these two quantities to each other. We refer
for proof to [33].

Proposition 2.2. Consider a DTMC M = (S, P) with finite state space.

(i) The limiting matrix P ∗ exists.
(ii) If P∞ exists, then P ∗ = P∞.
(iii) If P is aperiodic then P∞ exists and if in addition P is unichain (or ergodic)

with limiting distribution ρ then ρP = ρ and P∞ has identical rows ρ, i.e.

P ∗ = P∞ = 1ρ,

where 1 = (1, . . . , 1)T is the column vector consisting of all ones.

Markov Reward Models and Markov Decision Processes 173

From Proposition 2.2(ii) it follows that the definition of the average reward cor-
responds to its motivation from above in the case that the limiting distribution
ρi exists for all i. However, in the case of periodic DTMRMs (when the limiting
distribution is not available), Proposition 2.2(i) ensures that at least P ∗ exists
and due to (2.12) this is sufficient for the computation of the average reward.

Remark 2.2. The limiting matrix P ∗ satisfies the equalities

PP ∗ = P ∗P = P ∗P ∗ = P ∗. (2.13)

P ∗ can be computed by partitioning the state space S = ∪ki=1S
r
i ∪St into closed

recurrent classes Sr
i and transient states St which results in a representation of P

as in (2.5). Let the row vector ρi ∈ Rri denote the unique stationary distribution
of Pi, i.e. ρiPi = ρi. Then

P ∗ =

⎛⎜⎜⎜⎜⎜⎝
P ∗
1 0 0 . . . 0 0
0 P ∗

2 0 . . . 0 0
...

...
...

. . .
... 0

0 0 0 . . . P ∗
k 0

P̃ ∗
1 P̃

∗
2 P̃

∗
3 . . . P̃

∗
k 0

⎞⎟⎟⎟⎟⎟⎠ (2.14)

where P ∗
i = 1ρi has identical rows ρi ∈ Rri and P̃ ∗

i = (I − P̃k+1)
−1P̃iP

∗
i

consists of trapping probabilities from transient states into the i-th recurrent
class. It follows that the average reward g is constant on each recurrent class,
i.e. g(s) = gi := ρiRi for all s ∈ Sr

i where Ri ∈ Rri is the vector of rewards on
Sr
i . On transient states the average reward g is a weighted sum of all the gi with

weights given by the trapping probabilities.

We want to provide another method to evaluate the average reward measure,
because it will be useful for the section on MDPs. This method relies on the key
aspect of a Laurent series decomposition which also links together the three pro-
posed measures total reward, discounted reward and average reward. Consider
the discounted value V γ = (I − γP)−1R as a function of γ (cf. Theorem 2.2). If
the total value function V∞ = (I − P)−1R exists then V γ converges to V∞ as
γ ↗ 1. But what happens if V∞ diverges to ∞ or −∞? In this case V γ has a
pole singularity at γ = 1 and can be expanded into a Laurent series. Roughly
speaking, a Laurent series generalizes the concept of a power series for (differ-
entiable) functions f with poles, i.e. points c at the boundary of the domain of
f with limx→c f(x) = ±∞. In such a case, f can be expanded in some neigh-
borhood of c into a function of the form

∑∞
n=−N an(x − c)n for some N ∈ N

and an ∈ R, which is a sum of a rational function and a power series. In our
case, since γ &→ V γ might have a pole at γ = 1, the Laurent series is of the form
V γ =

∑∞
n=−N an(γ − 1)n for γ close to 1. The coefficients an in this expansion

are given in Theorem 2.3 in the sequel which can be deduced from the following
Lemma. A proof for the lemma can be found in [33].

Lemma 2.2 (Laurent Series Expansion). For a stochastic matrix P the
matrix (I − P + P ∗) is invertible. Let

H := (I − P + P ∗)−1 − P ∗.

174 A. Gouberman and M. Siegle

There exists δ > 0 such that for all 0 < ρ < δ the Laurent series of the matrix-
valued function ρ &→ (ρI + (I − P))−1 is given by

(ρI + (I − P))−1 = ρ−1P ∗ +
∞∑
n=0

(−ρ)nHn+1.

Theorem 2.3 (Laurent Series of the Discounted Value Function). Let
M = (S, P,R) be a DTMRM. For a discount factor γ < 1 close to 1 write
γ(ρ) := 1

1+ρ where ρ = 1−γ
γ > 0 and consider the discounted value V γ(ρ) as a

function of ρ.

(i) The Laurent series of ρ &→ V γ(ρ) at 0 is given (for small ρ > 0) by

V γ(ρ) = (1 + ρ)

(
ρ−1g +

∞∑
n=0

(−ρ)nHn+1R

)
, (2.15)

where g is the average reward.
(ii) It holds that

V γ =
1

1− γ g + h+ f(γ) (2.16)

where h := HR and f is some function with lim
γ↗1

f(γ) = 0. Furthermore,

g = lim
γ↗1

(1− γ)V γ .

Proof. (i) We apply the Laurent series from Lemma 2.2 as follows:

V γ = (I − γP)−1R = (1 + ρ)(ρI + (I − P))−1R

= (1 + ρ)

(
ρ−1P ∗R+

∞∑
n=0

(−ρ)nHn+1R

)

and the claim follows from (2.12). Furthermore, by substituting γ = (1 + ρ)
−1

V γ =
1

γ

(
γ

1− γ g + h+

∞∑
n=1

(
γ − 1

γ

)n

Hn+1R

)
=

1

1− γ g + h+ f(γ)

where f(γ) :=
1− γ
γ

h+

∞∑
n=1

(
γ − 1

γ

)n

Hn+1R and f(γ)→ 0 when γ ↗ 1 such

that (ii) follows. "#

The vector h in (2.16) is called the bias for the DTMRM. We provide an equiva-
lent characterization for h that allows a simpler interpretation of the term “bias”
as some sort of deviation. If the reward function R is replaced by the average
reward g, such that in every state s the average reward g(s) is gained instead of

R(s), then the finite horizon total reward is given by GN (s) := Es

[∑N
i=1 g(Xi)

]
,

Markov Reward Models and Markov Decision Processes 175

where Xi is the state process. In this case ΔN := VN − GN describes the de-
viation in accumulation between the specified reward R and its corresponding
average reward g = P ∗R within N steps. By (2.8) it holds that

ΔN =

N−1∑
n=0

Pn(R− g) =
N−1∑
n=0

(Pn − P ∗)R.

Note that Pn − P ∗ = (P − P ∗)n for all n ≥ 1 which follows from (2.13) and∑n
k=0(−1)k

(
n
k

)
= 0 applied on (P−P ∗)n =

∑n
k=0

(
n
k

)
Pn−k(−P ∗)k. If we assume

that ΔN converges for any reward function R then
∑∞

n=0(P − P ∗)n converges
and it holds that

∑∞
n=0(P − P ∗)n = (I − (P − P ∗))−1. It follows

lim
N→∞

ΔN =

∞∑
n=0

(Pn − P ∗)R =

(
(I − P ∗) +

∞∑
n=1

(P − P ∗)n
)
R =(∞∑

n=0

(P − P ∗)n − P ∗
)
R =

(
(I − (P − P ∗))−1 − P ∗)R = HR = h.

Therefore, the bias h(s) is exactly the long-term deviation between VN (s) and
GN (s) as N →∞. This means that the value h(s) is the excess in the accumu-
lation of rewards beginning in state s until the system reaches its steady-state.
Remember that g is constant on recurrent classes. Thus, for a recurrent state s

it holds that GN (s) = Es

[∑N
i=1 g(Xi)

]
= g(s)N is linear in N and g(s)N+h(s)

is a linear asymptote for VN (s) as N →∞, i.e. VN (s)− (g(s)N + h(s))→ 0 (see
Fig. 2.6). The matrix H is often called the deviation matrix for the DTMRM
since it maps any reward function R to the corresponding long-term deviation
represented by the bias h = HR.

5 10 15 20
N

- 5

5

10

15

20

Fig. 2.6. Interpretation of the bias h(s) as the limit of the deviation VN(s) − GN (s)
as N → ∞. For a recurrent state s it holds that GN (s) = g(s)N .

Another characterization for the bias can be given by considering ΔN as a
finite-horizon total value function for the average-corrected rewards R − g, i.e.

176 A. Gouberman and M. Siegle

ΔN (s) = Es

[∑N
i=1 (R(Xi)− g(Xi))

]
. For this reason the bias h is a kind of

infinite-horizon total value function for the model (S, P,R − g) 1.
In the above considerations we have assumed that ΔN converges (for any

reward function R), which is guaranteed if the DTMRM is aperiodic [33]. On
the other hand, one can also construct simple periodic DTMRMs for which ΔN

is oscillating. For this reason, there is a similar interpretation of the bias h if
the periodicity of P is averaged out (by the Cesàro limit). This is related to
the distinction between the two limiting matrices P∞ and P ∗ from Definition
2.9 and goes beyond the scope of this tutorial. In Sect. 4 we will introduce the
average reward for continuous-time models (where periodicity is not a problem)
and define the deviation matrix H by a continuous-time analogon of the discrete
representation H =

∑∞
n=0(P

n − P ∗).

Remark 2.3. In the Laurent series expansion of V γ respectively V γ(ρ) as in (2.15)
the vector value Hn+1R for n ≥ 0 is often called the n-bias of V γ and therefore
the bias h = HR is also called the 0-bias. We will see in Sect. 3.4 (and especially
Remark 3.6) that these values play an important role in the optimization of
MDPs with respect to the average reward and the n-bias measures.

We now provide some methods for computing the average reward based on the
bias h of a DTMRMM = (S, P,R). IfM is ergodic then from Proposition 2.2 it
holds that P ∗ = 1ρ and thus the average reward g = P ∗R = 1(ρR) is constantly
ρR for each state. In the general case (e.g. M is multichain or periodic), the
following theorem shows how the bias h can be involved into the computation
of g. The proof is based on the following equations that reveal some further
connections between P ∗ and H :

P ∗ = I − (I − P)H and HP ∗ = P ∗H = 0. (2.17)

These equations can be deduced from the defining equation for H in Lemma 2.2
together with (2.13).

Theorem 2.4 (Evaluation of the Average Reward Measure). The av-
erage reward g and the bias h satisfy the following system of linear equations:(

I − P 0
I I − P

)(
g
h

)
=

(
0
R

)
. (2.18)

Furthermore, a solution (u, v) to this equation implies that u = P ∗R = g is the
average reward and v differs from the bias h up to some w ∈ ker(I − P), i.e.
v − w = h.

1 Note that in Definition 2.5 we restricted the existence of the infinite-horizon total
value function to an absolute convergence of the finite-horizon total value function
ΔN . By Proposition 2.1 this is equivalent to the fact that the rewards are zero on
recurrent states. For the average-corrected model this restriction is in general not
satisfied. The reward function R − g can take both positive and negative values on
recurrent states which are balanced out by the average reward g such that ΔN is
converging (at least as a Cesàro limit).

Markov Reward Models and Markov Decision Processes 177

Proof. We first show that g and h are solutions to (2.18). From PP ∗ = P ∗ it
follows that Pg = PP ∗R = P ∗R = g and from (2.17) we have

(I − P)h = (I − P)HR = (I − P ∗)R = R − g

and thus (g, h) is a solution to (2.18). Now for an arbitrary solution (u, v) to
(2.18) it follows that

(I−P+P ∗)u=(I−P)u+P ∗u+P ∗(I−P)v=(I−P)u+P ∗(u+(I−P)v) = 0+P ∗R.

Since I − P + P ∗ is invertible by Lemma 2.2, we have

u = (I − P + P ∗)−1P ∗R =
(
(I − P + P ∗)−1 − P ∗ + P ∗)P ∗R = HP ∗R+ P ∗R.

From (2.17) it holds that HP ∗ = 0 and thus u = P ∗R = g. Furthermore, since
both h and v fulfill (2.18) it follows that

(I − P)v = R− g = (I − P)h

and thus w := v − h ∈ ker(I − P), such that h = v − w. "#

From (2.18) it holds that h = (R− g)+Ph, which reflects the motivation of the
bias h as a total value function for the average-corrected model (S, P,R − g).
Furthermore, the theorem shows that the equation h = (R − u) + Ph is only
solvable for u = g. This means that there is only one choice for u in order to
balance out the rewards R such that the finite-horizon total value function ΔN

for the model (S, P,R − u) converges (as a Cesàro limit).

Remark 2.4. Assume that S =
⋃k

i=1 S
r
i ∪St is the splitting of the state space of

M into closed recurrent classes Sr
i and transient states St.

(i) As we saw from (2.12) and (2.14) one can directly compute g from the
splitting of S. Equation (2.18) shows that such a splitting is not really
necessary. However, performing such a splitting (e.g. by the Fox-Landi al-
gorithm [15]) for the computation of g by P ∗R can be more efficient than
simply solving (2.18) [33].

(ii) In order to compute g from (2.18) it is enough to compute the bias h up to
ker(I − P). The dimension of ker(I − P) is exactly the number k of closed
recurrent classes Sr

i . Hence, if the splitting of S is known, then v(s) can be
set to 0 for some arbitrary chosen state s in each recurrent class Sr

i (leading
to a reduction in the number of equations in Theorem 2.4).

(iii) In order to determine the bias h, it is possible to extend (2.18) to⎛⎝I − P 0 0
I I − P 0
0 I I − P

⎞⎠⎛⎝uv
w

⎞⎠ =

⎛⎝0
R
0

⎞⎠ . (2.19)

It holds that if (u, v, w) is a solution to (2.19) then u = g and v = h [33].
In a similar manner, one can also establish a system of linear equations in
order to compute the n-bias values (see Remark 2.3), i.e. the coefficients in
the Laurent series of the discounted value function V γ(ρ).

178 A. Gouberman and M. Siegle

The following corollary drastically simplifies the evaluation of the average reward
for the case of unichain modelsM = (S, P,R). In this case, the state space can
be split to S = Sr ∪ St and consists of only one closed recurrent class Sr.

Corollary 2.1. For a unichain model (S, P,R) the average reward g is constant
on S. More precisely, g = g01 for some g0 ∈ R and in order to compute g0 one
can either solve

g01+ (I − P)h = R (2.20)

or compute g0 = ρR, where ρ is the unique stationary distribution of P .

The proof is obvious and we leave it as an exercise to the reader.

Note that (2.20) is a reduced version of (2.18) since (I−P)g = 0 for all constant
g. Many models in applications are unichain or even ergodic (i.e. irreducible and
aperiodic), thus the effort for the evaluation of the average reward is reduced
by (2.20). If it is a priori not known if a model is unichain or multichain, then
either a model classification algorithm can be applied (e.g. Fox-Landi [15]) or
one can directly solve (2.18). In the context of MDPs an analogous classification
into unichain and multichain MDPs is applicable. We will see in Sect. 3.4 that
Theorem 3.8 describes an optimization algorithm, which builds upon (2.18). In
case the MDP is unichain, this optimization algorithm can also be built upon
the simpler equation (2.20), thus gaining in efficiency. However, the complexity
for the necessary unichain classification is shown to be NP-hard [39]. We refer
for more information on classification of MDPs to [19].

Example 2.4. We want to finish this section by showing an example with multi-
chain structure based on the queuing model from Example 2.1. Assume a queue
with capacity size k in which jobs are enqueued with probability q and a server
with the processing states “idle” and “busy” (with no vacation state). Once
again, an accomplished job is rewarded Racc = $100 and a discarded job costs
Closs = −$1000. Additional to the processing behavior a server can also occupy
one of the following modes: “normal”, “intense” or “degraded” (see Fig. 2.7).

In normal mode the server accomplishes a job with probability pd,n = 0.5.
From every normal state the server degrades with probability rd = 0.01. In this
degraded mode jobs are accomplished with a lower probability pd,d = 0.25. If
the system is in normal mode, the queue is full and a job enters the system, then
the server moves from the normal mode to the intense mode. This move can
only happen, if the system does not degrade (as in state (1, 1, normal, busy)). In
the intense mode the processing probability increases to pd,i = 1.0 but with the
drawback that a job can be served not correctly with probability 0.1. A non-
correctly served job behaves as if it would be lost, i.e. the job involves a cost
of Closs = −$1000. Being in intense mode or degraded mode, there is no way
to change to any other mode. This means that both the intense mode and the
degraded mode represent closed recurrent classes in the state space and thus the
model is multichain.

Markov Reward Models and Markov Decision Processes 179

 0,0,
normal

idle

 0,1,
normal
busy

 1,1,
normal
busy

 0,0,
intense

idle

 0,1,
intense

busy

 1,1,
intense

busy

 0,0,
degraded

idle

 0,1,
degraded

busy

 1,1,
degraded

busy

1 2 3

4 5 6

7 8 9

Fig. 2.7. Queueing model with queue capacity k = 1 and a service unit with process-
ing behavior idle or busy and processing modes normal, intense or degraded. State
(0, 1, normal,busy) represents 0 jobs in the queue, 1 job served, server is busy and in
normal mode. The parameter values are q = 0.25, pd,n = 0.5, pd,i = 1.0 and pd,d = 0.25
and rd = 0.01. Probabilities for self-loops complete all outgoing probabilities to 1.0.

By solving (2.18) with P as in Fig. 2.7 and

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
Raccpd,n
Raccpd,n

0
Raccpd,i · 0.9 + Closspd,i · 0.1
Raccpd,i · 0.9 + Closspd,i · 0.1

0
Raccpd,d
Raccpd,d

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

Clossqpd,n
0
0

Clossqpd,i
0
0

Clossqpd,d

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
50
−75
0
−10
−10
0
25

−162.5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
the average reward can be computed to

g ≈ (−25.8,−24.8,−19.8 − 2.5,−2.5,−2.5 − 50,−50,−50)T .
As we see the average reward is constant on recurrent classes, i.e. −2.5 in the in-
tense mode and −50 in the degraded mode. For the transient states (represented
by the normal mode) the average reward is a state-dependent convex combina-
tion of the average rewards for the recurrent classes, since the probability to
leave the normal mode to one of the recurrent classes depends on the particular
transient state. The bias h can be determined from (2.19) to

h ≈ (1853.3, 1811.3, 1213.9 2.5,−7.5,−17.5 363.6, 163.6,−436.364) .
This means that if (0, 0, normal, idle) is the initial state then the reward accu-
mulation process of the finite-horizon total value function VN follows the linear
function −25.8 ·N + 1853.3 asymptotically as N →∞ (see Fig. 2.6). "#

180 A. Gouberman and M. Siegle

3 Markov Decision Processes

This section is devoted to Markov Decision Processes with discrete time. Section
3.1 provides the necessary definitions and terminology, and Sect. 3.2 introduces
the discounted reward measure as the first optimization criterion. We present
its most important properties and two standard methods (value iteration and
policy iteration) for computing the associated optimal value function. Depend-
ing on the reader’s interest, one or both of the following two subsections may be
skipped: Stochastic Shortest Path Problems, the topic of Sect. 3.3, are special
MDPs together with the infinite-horizon total reward measure as optimization
criterion. The final subsection (Sect. 3.4) addresses the optimization of the aver-
age reward measure for MDPs, where we involve the bias into the computation
of the average-optimal value function.

3.1 Preliminaries

We first state the formal definition of an MDP and then describe its execution
semantics. Roughly speaking, an MDP extends the purely stochastic behavior of
a DTMRM by introducing actions, which can be used in order to control state
transitions.

Definition 3.1. A discrete-time Markov Decision Process (MDP) is a
structureM = (S,Act, e, P,R), where S is the finite state space, Act �= ∅ a finite
set of actions, e : S → 2Act \ ∅ the action-enabling function, P : S×Act→ D(S)
an action-dependent transition function and R : S × Act × S → R the action-
dependent reward function. We denote P (s, a, s′) := (P (s, a))(s′).

From a state s ∈ S an enabled action a ∈ e(s) must be chosen which induces
a probability distribution P (s, a) over S to target states. If a transition to s′

takes place then a reward R(s, a, s′) is gained and the process continues in s′.
In analogy to DTMRMs we denote R(s, a) :=

∑
s′∈S P (s, a, s

′)R(s, a, s′) as the
expected reward that is gained when action a has been chosen and a transition
from state s is performed. The mechanism which chooses an action in every state
is called a policy. In the theory of MDPs there are several possibilities to define
policies. In this tutorial, we restrict to the simplest type of policy.

Definition 3.2. A policy is a function π : S → Act with π(s) ∈ e(s) for all
s ∈ S. Define Π ⊆ ActS as the set of all policies.

A policy π of an MDPM resolves the non-deterministic choice between actions
and thus reducesM into a DTMRMMπ := (S, P π, Rπ), where

P π(s, s′) := P (s, π(s), s′) and Rπ(s, s′) := R(s, π(s), s′).

Remark 3.1. In the literature one often finds more general definitions of policies
in which the choice of an action a in state s does not only depend on the current
state s but also

Markov Reward Models and Markov Decision Processes 181

– on the history of both the state process and the previously chosen actions
and

– can be randomized, i.e. the policy prescribes for each state s a probability
distribution π(s) ∈ D(e(s)) over all enabled actions and action a is chosen
with probability (π(s))(a).

The policy type as in Definition 3.2 is often referred to “stationary Markovian
deterministic”. Here, deterministic is in contrast to randomized and means that
the policy assigns a fixed action instead of some probability distribution over
actions. A policy is Markovian, if the choice of the action does not depend on the
complete history but only on the current state and point in time of the decision.
A Markovian policy is stationary, if it takes the same action a everytime it visits
the same state s and is thus also independent of time. For simplicity we stick to
the type of stationary Markovian deterministic policies as in Definition 3.2 since
this is sufficient for the MDP optimization problems we discuss in this tutorial.
The more general types of policies are required if e.g. the target function to be
optimized is of a finite-horizon type or if additional constraints for optimization
are added to the MDP model (see also Remark 3.3).

Example 3.1 (Queueing model). We consider the queueing model introduced in
Example 2.4. Assume that the server can be either idle or busy and operate in
normal or intense mode. Figure 3.1 shows an MDP for queue capacity size k = 2
and the two actions “keep” and “move”, which enable swichting between the
processing modes.

Fig. 3.1. An excerpt of the MDP queueing model with queue capacity k = 2, a service
unit with processing behavior idle or busy and processing modes normal or intense.
In each state the “keep” action keeps the current processing mode, while the “move”
action changes the mode. State (0, 1, normal,busy) represents 0 jobs in the queue, 1
job served, server is busy and in normal mode. The parameter values are q = 0.25,
pd,n = 0.5 and pd,i = 1.0. For better overview transitions from normal mode are bold,
whereas transitions from intense mode are dashed.

A job enters the system with probability q = 0.25. If the queue is full then the
system refuses the job, which causes a cost of Closs = −$1000. A normal operat-
ing server accomplishes the job with probability pd,n = 0.5, whereas in intense

182 A. Gouberman and M. Siegle

mode the server succeeds with probability pd,i = 1.0. If a job is accomplished
the system is rewarded with Racc = $100. In contrast to the normal mode, in
intense mode the system raises a higher operating cost of Cint = −$10 per time
step. Furthermore a change from normal to intense mode causes additionally
Cmove = −$50. All together the rewards can be represented by

Rkeep =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
Raccpd,n
Raccpd,n

Raccpd,n + Clossqpd,n
Cint

Raccpd,i + Cint

Raccpd,i + Cint

Raccpd,i + Clossqpd,i + Cint

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Rmove = Rkeep +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Cmove

Cmove

Cmove

Cmove

0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.1)

"#

3.1.1 Classification of MDPs
The state classification introduced in Sect. 2.1.2 for DTMRMs also implies a
classification of MDP models. An MDPM is called unichain, if for all policies
π ∈ Π the induced DTMRM Mπ is unichain. Otherwise, if there is a policy
π, for which Mπ has at least two closed recurrent classes, then M is called
multichain. As for DTMRMs, this classification will be mainly used for the
analysis and optimization of the average reward in Sect. 3.4. There are also other
classification criteria possible, e.g. regarding the reachability under policies [33].
However, in this tutorial, we only need the above described classification with
respect to the chain structure of the MDP.

3.1.2 Reward Measure and Optimality
As in Sect. 2.1.3 we choose a reward measure R (see Definition 2.4) which will
be applied to the MDPM. For a policy π ∈ Π let V π ∈ V denote the value of
R for the induced DTMRM Mπ (if it is defined). In this section, we will only
work with V = RS . This allows us to define a value function V ∗ ∈ V of R for
the complete MDP modelM.

Definition 3.3. LetM be an MDP with reward measure R. Define the (opti-
mal) value function V ∗ ofM by

V ∗(s) := sup
π∈Π

V π(s), (3.2)

if V ∗(s) is finite for all s. A policy π∗ ∈ Π is called optimal if V π∗
is defined

and
∀s ∈ S ∀π ∈ Π : V π∗

(s) ≥ V π(s). (3.3)

Note that in the definition of V ∗ the supremum is taken in a state-dependent
way. Furthermore, since the state and action spaces are finite, the policy space

Markov Reward Models and Markov Decision Processes 183

Π is finite as well. Therefore, the supremum in the above definition is indeed a
maximum. It follows that if for all π ∈ Π the value V π(s) is defined and finite
then V ∗(s) is also finite for all s.

In case R is the infinite-horizon total reward measure, we allow in contrast
to Definition 2.5 the value V π(s) to converge improperly to −∞. Taking the
supremum in (3.2) doesn’t care of this kind of convergence, if there is at least
one policy providing a finite value V π(s). The same holds for (3.3) since here
V π∗

has to exist in the sense of Definition 2.5 (and thus be finite).
Note further that through the definition of an optimal policy it is not clear if

an optimal policy π∗ exists, since π∗ has to fulfill the inequality in (3.3) uniformly
over all states. Definition 3.3 gives rise to the following natural question: Under
which conditions does an optimal policy π∗ exist and how is it related to the
optimal value V ∗? These questions will be answered in the following subsections.

3.2 Discounted Reward Measure

We first address the above mentioned questions in the case of the discounted
reward measure with discount factor γ ∈ (0, 1), since this measure is analytically
simpler to manage than the infinite-horizon or the average reward measure.
For motivation, let us first provide some intuition on the optimization problem.
Assume we have some value function V : S → R and we want to check whether V
is optimal or alternatively in what way can we modify V in order to approach the
optimal value V ∗. When in some state s one has a choice between enabled actions
a ∈ e(s), then for each of these actions one can perform a look-ahead step and
computeQ(s, a) := R(s, a)+γ

∑
s′∈S P (s, a, s

′)V (s′). The valueQ(s, a) combines
the reward R(s, a) gained for the performed action and the expectation over the
values V (s′) for the transition to the target state s′ induced by action a. If now
Q(s, a′) > V (s) for some a′ ∈ e(s) then clearly one should improve V by the
updated value V (s) := Q(s, a′) or even better choose the best improving action
and set V (s) := maxa∈e(s)Q(s, a). This update procedure can be formalized by
considering the Bellman operator T : RS → RS which assigns to each value
function V ∈ RS its update T V := T (V) ∈ RS defined by

(T V)(s) := max
a∈e(s)

{
R(s, a) + γ

∑
s′∈S

P (s, a, s′)V (s′)

}
.

Note that T is a non-linear operator on the vector space R
S , since it involves

maximization over actions. If we proceed iteratively, a sequence of improving
value functions V is generated and the hope is that this sequence convergences
to the optimal value function V ∗. In case V is already optimal, there should be
no strict improvement anymore possible. This means that for every state s the
value V (s) is maximal among all updates Q(s, a), a ∈ e(s) on V (s), i.e.

V (s) = max
a∈e(s)

{
R(s, a) + γ

∑
s′∈S

P (s, a, s′)V (s′)

}
. (3.4)

184 A. Gouberman and M. Siegle

This non-linear fixed-point equation V = T V is also known as the Bellman
optimality equation and we have to solve it, if we want to detemine V ∗.
The following Theorem 3.1 establishes results on existence and uniqueness of
solutions to this equation. Furthermore, it also creates a connection between the
optimal value function V ∗ and optimal policies π∗.

Theorem 3.1 (Existence Theorem). Consider an MDP (S,Act, e, P,R) and
the discounted reward measure with discount factor γ ∈ (0, 1).

(i) There exists an optimal value (V γ)
∗
which is the unique fixed point of T ,

i.e. the Bellman optimality equation holds:

(V γ)
∗
= T (V γ)

∗
. (3.5)

(ii) There exists an optimal policy π∗ and it holds that (V γ)
π∗

= (V γ)
∗
.

(iii) Every optimal policy π∗ can be derived from the optimal value (V γ)
∗
by

π∗(s) ∈ argmax
a∈e(s)

{
R(s, a) + γ

∑
s′∈S

P (s, a, s′) (V γ)
∗
(s′)

}
.

The complete proof can be found in [33]. The key ingredient for this proof relies
on the following lemma, which provides an insight into the analytical properties
of the Bellman operator T .

Lemma 3.1. (i) T is monotonic, i.e. if U(s) ≤ V (s) for all s ∈ S then
(T U)(s) ≤ (T V)(s) for all s.

(ii) T is a contraction with respect to the maximum norm ||V || := maxs∈S |V (s)|,
i.e. there exists q ∈ R with 0 ≤ q < 1 such that

||T U − T V || ≤ q||U − V ||.

The constant q is called Lipschitz constant and one can choose q := γ.

Remark 3.2. Lemma 3.1(ii) allows to apply the Banach fixed point theorem on
the contraction T which ensures existence and uniqueness of a fixed point Vfix.
Furthermore the sequence

Vn+1 := T Vn (3.6)

converges to Vfix for an arbitrary initial value function V0 ∈ RS . From the mono-
tonicity property of T it can be shown that the sequence in (3.6) also converges
to the optimal value (V γ)

∗
and thus Vfix = (V γ)

∗
.

Writing (3.5) in component-wise notation yields exactly the Bellman optimality
equation (3.4) as motivated, for which (V γ)∗ is the unique solution. Note that
(V γ)

∗
is defined in (3.2) by a maximization over the whole policy space Π , i.e.

for each state s all policies π ∈ Π have to be considered in order to establish
the supremum. In contrast, the Bellman optimality equation reduces this global
optimization task into a local state-wise optimization over the enabled actions
a ∈ e(s) for every s ∈ S. Note also that from Theorem 3.1 one can deduce that

Markov Reward Models and Markov Decision Processes 185

T ((V γ)
π∗
) = (V γ)

π∗
, such that an optimal policy π∗ can be also considered as

a “fixed-point” of the Bellman operator T . However, an optimal policy does not
need to be unique.

From the Bellman equation (3.4) several algorithms based on fixed-point itera-
tion can be derived which can be used in order to compute the optimal policy
together with its value function. The following value iteration algorithm is based
on (3.6). Its proof can be found in the Appendix on page 236.

Theorem 3.2 (Value Iteration). For an arbitrary initial value function V0 ∈
RS define the sequence of value functions

Vn+1(s) := (T Vn) (s) = max
a∈e(s)

{
R(s, a) + γ

∑
s′∈S

P (s, a, s′)Vn(s′)

}
.

Then Vn converges to (V γ)∗. As a termination criterion choose ε > 0 and con-
tinue iterating until ||Vn+1 − Vn|| < 1−γ

2γ ε and let

πε(s) ∈ argmax
a∈e(s)

{
R(s, a) + γ

∑
s′∈S

P (s, a, s′)Vn+1(s
′)

}
. (3.7)

Then ||V πε − (V γ)
∗ || < ε.

The value iteration algorithm iterates on the vector space RS of value functions.
From an arbitrary value function an improving policy can be generated by (3.7).
In contrast, the following policy iteration algorithm iterates on the policy space
Π . From a policy π its value can be generated the other way round by solving a
system of linear equations.

Theorem 3.3 (Policy Iteration). Let π0 ∈ Π be an initial policy. Define the
following iteration scheme.

1. Policy evaluation: Compute the value V πn of πn by solving

(I − γP πn)V πn = Rπn

and define the set of improving actions

An+1(s) := argmax
a∈e(s)

{
R(s, a) + γ

∑
s′∈S

P (s, a, s′)V πn(s′)

}
.

Termination: If πn(s) ∈ An+1(s) for all s then πn is an optimal policy.
2. Policy improvement: Otherwise choose an improving policy πn+1 such

that πn+1(s) ∈ An+1(s) for all s ∈ S.

The sequence of values V πn is non-decreasing and policy iteration terminates
within a finite number of iterations.

186 A. Gouberman and M. Siegle

Proof. By definition of πn+1 it holds for all s that

V πn+1(s) = max
a∈e(s)

{
R(s, a) + γ

∑
s′∈S

P (s, a, s′)V πn(s′)

}
≥ R(s, πn(s)) + γ

∑
s′∈S

P (s, πn(s), s
′)V πn(s′) = V πn(s).

Since there are only finitely many policies and the values V πn are non-decreasing,
policy iteration terminates in a finite number of iterations. Clearly, if πn(s) ∈
An+1(s) for all s then πn is optimal, since

V πn(s) = max
a∈e(s)

{
R(s, a) + γ

∑
s′∈S

P (s, a, s′)V πn(s′)

}
= (T V πn) (s).

The conclusion follows by Theorem 3.1. "#

Both presented algorithms value iteration and policy iteration create a converg-
ing sequence of value functions. For value iteration we mentioned in Remark 3.2
that the generated sequence Vn+1 = T Vn converges to the fixed point of T which
is also the global optimal value (V γ)

∗
of the MDP since T is monotonic. Same

holds for the sequence V πn in policy iteration, since V πn is a fixed-point of T
for some n ∈ N and thus V πn = (V γ)

∗
. The convergence speed of these algo-

rithms is in general very slow. Value iteration updates in every iteration step the
value function Vn on every state. This means especially that states s that in the
current iteration step do not contribute to a big improvement |Vn+1(s)− Vn(s)|
in their value will be completely updated like every other state. However, it can
be shown that convergence in value iteration can also be guaranteed, if every
state is updated infinitely often [37]. Thus, one could modify the order of up-
dates to states regarding their importance or contribution in value improvement
(asynchronous value iteration).

Policy iteration on the other hand computes at every iteration step the ex-
act value V πn of the current considered policy πn, by solving a system of linear
equations. If πn is not optimal, then after improvement to πn+1 the effort for the
accurate computation of V πn is lost. Therefore, the algorithms value iteration
and policy iteration just provide a foundation for potential algorithmic improve-
ments. Examples for such improvements are relative value iteration, modified
policy iteration or action elimination [33]. Of course, heuristics which use model-
dependent meta-information can also be considered in order to provide a good
initial value V0 or initial policy π0.

Note that MDP optimization underlies the curse of dimensionality: The explo-
sion of the state space induces an even worse explosion of the policy space since
|Π | ∈ O

(
|Act||S|). There is a whole branch of Artificial and Computational

Intelligence, which develops learning algorithms and approximation methods
for large MDPs (e.g. reinforcement learning [37], evolutionary algorithms [29],
heuristics [28] and approximate dynamic programming [8, 10, 26, 27, 32]).

Markov Reward Models and Markov Decision Processes 187

Example 3.2. We now want to optimize the queueing model MDP from Example
3.1 by applying both algorithms value iteration and policy iteration. Table 3.1
shows a comparison between values for the initial state sinit = (0, 0, normal, idle)
under the policies πnormal (respectively πintense) which keeps normal (intense)
mode or moves to normal (intense) mode and the discount-optimal policy π∗ for
γ = 0.99, i.e.

πnormal =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

keep
keep
keep
keep
move
move
move
move

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, πintense =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

move
move
move
move
keep
keep
keep
keep

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, π∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

keep
keep
keep
move
move
move
keep
keep

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Table 3.1. Discounted values with γ = 0.99 for different policies from initial state
sinit = (0, 0, normal, idle).

policy
(
V 0.99

)π
(sinit)

πnormal 1952.36
πintense 1435.00
π∗ 2220.95

The optimal policy was computed by policy iteration with initial policy πnormal

and converged after 3 iterations. In each iteration a system of linear equations
with |S| = 8 variables had to be solved and

∑
s∈S |e(s)| = 16 updates (sets of

improving actions) computed. With standard algorithms like Gaussian elimina-
tion for solving the system of linear equations the worst-case complexity in each
iteration is O(|S|3 + |Act||S|). Note that the number of all available policies is
|Π | = |S||Act| = 256. Thus policy iteration is a huge gain in efficiency in contrast
to the brute-force method, which computes the values V π for every policy π ∈ Π
in order to establish the global maximum V ∗(s) = maxπ∈Π V

π(s).
The value iteration algorithm with initial value function constantly 0, ε = 0.1

and maximum norm ||.|| converged after 1067 iterations to the value V 0.99
1067 (sinit) =

2220.90 and the value-maximizing policy πε = π∗. In each iteration the values
Vn(s) for all states s have to be updated, thus the worst-case complexity for
one iteration is O(|Act||S|). Also note that value iteration already finds π∗ after
only 6 iterations with value V 0.99

6 (sinit) = 89.08 – all the other remaining steps
just solve the linear equation V 0.99 = Rπ∗

+ 0.99P π∗
V 0.99 for π∗ by the itera-

tive procedure V 0.99
n+1 = Rπ∗

+ 0.99P π∗
V 0.99
n . Nevertheless, value iteration in its

presented form has to run until it terminates, in order to find a value function
which can be guaranteed to be close to the optimal value (distance measured in
maximum norm). Furthermore, it is a priori not known at which iteration step
the optimization phase stops, i.e. the actions not improvable anymore. "#

188 A. Gouberman and M. Siegle

Remark 3.3. (i) One of the main theorems in Markov Decision Theory states
(at least for the models we consider in this tutorial) that if one searches
for an optimal value function within the broader space of randomized and
history-dependent policies, then an optimal policy is still stationary Marko-
vian deterministic, i.e. lies within Π (see also Remark 3.1). This is the reason
why we stick in this introductory tutorial from beginning to the smaller pol-
icy space Π .

(ii) An MDP problem can also be transformed to a linear programming problem,
such that methods coming from the area of linear optimization can be applied
to solve MDPs [33]. In its generality, a linear optimization formulation also
allows to add further constraints to the set of linear constraints induced
by the Bellman equation. An MDP model with an additional set of linear
constraints is also known as a Constrained MDP [1]. It can be shown that in
this case stationary Markovian deterministic policies π ∈ Π can indeed be
outperformed in their value by randomized and history-dependent policies.
Also note that history-dependent policies can also be better then stationary
Markovian deterministic policies in the finite-horizon case.

3.3 Stochastic Shortest Paths

We now address the problem of optimizing MDPs with respect to the infinite-
horizon total reward measure. In contrast to the discounted case, the existence
of an optimal value in general can not be guaranteed. In case it exists, it is
difficult to provide convergence criteria for dynamic programming algorithms.
Therefore, in literature one finds existence results and convergence criteria only
for special classes of MDPs with respect to this measure. In the following, we
show only one frequently used application for this type of measure.

Definition 3.4. A stochastic shortest path problem (SSP) is an MDP
(S,Act, e, P,R) with an absorbing and reward-free state goal ∈ S, i.e. for all
policies π ∈ Π it holds

P π(goal, goal) = 1 and Rπ(goal) = 0.

Typically, in SSPs the goal is to minimize costs and not to maximize rewards
(see Definition 3.3). Of course, maximization of rewards can be transformed to
a minimization of costs, where costs are defined as negative rewards. Note that
we allow for rewards (and therefore also for costs) to have both a positive and a
negative sign. In order to be consistent with the rest of this tutorial, we stick in
the following to the maximization of rewards. For being able to provide results
on the existence of optimal solutions, we have to define the notion of a proper
policy.

Definition 3.5. A policy π is called proper if there is m ∈ N such that under
π the goal state can be reached from every state with positive probability within
m steps, i.e.

∃m ∈ N ∀s ∈ S : (P π)m(s, goal) > 0.

A policy is called improper if it is not proper.

Markov Reward Models and Markov Decision Processes 189

Define the Bellman operator T : RS → RS by

(T V)(s) := max
a∈e(s)

{
R(s, a) +

∑
s′∈S

P (s, a, s′)V (s′)

}
.

In analogy to the discounted case it holds that T is monotonic (see Lemma 3.1).
But the contraction property with respect to the maximum norm is in general not
satisfied. However, Bertsekas and Tsitsiklis proved for typical SSPs the existence
and uniqueness of optimal values and the existence of optimal policies [9, 10].

Theorem 3.4 (Existence Theorem). Consider an SSPM = (S,Act, e, P,R)
with infinite-horizon total reward measure. Further assume that there exists a
proper policy πp ∈ Π and for every improper policy πi there exists s ∈ S such
that V πi∞ (s) = −∞.

(i) There exists an optimal value V ∗∞ which is the unique fixed point of T , i.e
T V ∗

∞ = V ∗
∞.

(ii) There exists an optimal policy π∗ and it holds that V π∗
∞ = V ∗

∞.
(iii) Every optimal policy π∗ can be derived from the optimal value V ∗∞ by

π∗(s) ∈ argmax
a∈e(s)

{
R(s, a) +

∑
s′∈S

P (s, a, s′)V ∗
∞(s′)

}
.

The dynamic programming algorithms value iteration and policy iteration as
presented for discounted MDPs (Theorems 3.2 and 3.3) can be applied for SSPs
in an analogous way and are shown in Theorems 3.5 and 3.6. The most important
difference is the termination criterion in value iteration, which in contrast to the
discounted case uses a weighted maximum norm in order to measure the distance
between the iterated values and the optimal value. The proofs for both theorems
can be found in [8, 10].

Theorem 3.5 (Value Iteration). Consider an SSPM with the assumptions
from Theorem 3.4. Let V0(s) be an arbitrary value function with V0(goal) = 0.
Define the sequence

Vn+1(s) := (T Vn) (s) = max
a∈e(s)

{
R(s, a) +

∑
s′∈S

P (s, a, s′)Vn(s′)

}
.

(i) Vn converges to V ∗.
(ii) If every policy is proper, then there exists ξ ∈ RS with ξ(s) ≥ 1 for all s ∈ S,

such that T is a contraction with respect to the ξ-weighted maximum norm
||.||ξ defined by

||V ||ξ := max
s∈S

|V (s)|
ξ(s)

.

As Lipschitz constant q for contraction of T choose q := maxs∈S
ξ(s)−1
ξ(s) . For

a given ε > 0 stop value iteration when ||Vn+1 − Vn||ξ < 1−q
2q ε and choose

πε(s) ∈ argmax
a∈e(s)

{
R(s, a) +

∑
s′∈S

P (s, a, s′)Vn+1(s
′)

}
.

190 A. Gouberman and M. Siegle

Then ||V πε − V ∗||ξ < ε.

In the following, we want to briefly outline, how ξ(s) can be determined. Consider
an arbitrary policy π. Since π is proper by assumption, the expected number of
transitions t(s) from s to goal is finite. If π is the single available policy, then
take ξ(s) := t(s). In case there are more policies available, it could be the case,
that there exists another policy which enlarges for some state s the expected
number of transitions towards goal. Thus ξ(s) can be chosen as the maximal
expected number of transitions to goal among all policies. In order to compute
ξ exactly, a modified SSP can be considered: Define a reward R(s, a) which acts
as a counter for the number of transitions to goal, i.e. each state s �= goal is
rewarded R(s, a) := 1 independent of a ∈ e(s) and the goal state is rewarded 0.
Choose ξ as the optimal solution to the induced Bellman equation:

ξ(s) = 1 + max
a∈e(s)

{∑
s′∈S

P (s, a, s′)ξ(s′)

}
for s �= goal and ξ(goal) = 0. (3.8)

Note that if we allow improper policies πi in the termination check of Theorem
3.5 then by definition of πi there is some state si from which goal is reached with
probability 0. In this case the Bellman equation (3.8) is not solvable, since any
solution ξ would imply that ξ(si) =∞. The proof for the termination criterion
in Theorem 3.5 is completely analogous to the proof of Theorem 3.2 (see Ap-
pendix, page 236). It holds that for every policy π the linear operator T π defined
by T πV = Rπ + P πV is also a contraction with respect to ||.||ξ and Lipschitz
constant q as defined in Theorem 3.5.

For completeness we also state the policy iteration algorithm which is directly
transfered from the discounted case as in Theorem 3.3 by setting the discount
factor γ := 1. We omit the proof since it is analogous.

Theorem 3.6 (Policy Iteration). Let π0 ∈ Π an arbitrary initial policy. De-
fine the following iteration scheme.

1. Policy evaluation: Compute the value V πn of πn by solving

(I − P πn)V πn = Rπn with V πn(goal) = 0

and define the set of improving actions

An+1(s) := argmax
a∈e(s)

{
R(s, a) +

∑
s′∈S

P (s, a, s′)V πn(s′)

}
.

Termination: If πn(s) ∈ An+1(s) for all s then πn is an optimal policy.
2. Policy improvement: Otherwise choose an improving policy πn+1(s) such

that πn+1(s) ∈ An+1(s).

The sequence of values V πn is non-decreasing and policy iteration terminates in
a finite number of iterations.

Markov Reward Models and Markov Decision Processes 191

Example 3.3. Coming back to our queueing model from Example 3.1, we are
now interested in the following two SSP problems:

(i) M1: the total expected profit up to first loss and
(ii) M2: the total expected number of accomplished jobs up to first loss.

For both models we add toM from Fig. 3.1 a reward-free goal state and redirect
from the states representing a full queue into goal the probability mass for the
job loss event (i.e. qpd,n respectively qpd,i). Since by Definition 3.1 every state
must have at least one action, we add an artificial action idle for looping in
goal with probability 1.0. For modelM1 and s �= goal the rewards Rkeep

1 (s) and
Rmove

1 (s) are given as in (3.1) with Closs = $0. For modelM2 the rewards Rmove
2

and Rkeep
2 are independent of the action and equal to 1 · pd,n in normal mode

and 1 · pd,i in intense mode. We set all the rewards for both models to 0 in state
goal when taking action idle.

If we set the completion probability pd,i = 1.0 in the intense mode, it is ob-
vious that going to intense mode would be optimal, since the expected reward
for accomplishing a job is greater than the running costs in intense mode. Fur-
thermore, no jobs would be lost in intense mode and thus the total value would
diverge to ∞ for all states. Comparing this fact to the assumptions of Theorem
3.4, it holds that pd,i = 1.0 implies the existence of an improper policy (moving
respectively keeping in intense mode) which does not diverge to −∞. There-
fore, we set in the following pd,i = 0.6. Now, every policy is proper, since the
probability to be absorbed in goal is positive for all states and all policies. The
following optimal policies π∗i for model Mi and values V ∗

i were computed by
policy iteration.

π∗1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

keep
keep
move
move
keep
keep
keep
keep
idle

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, V ∗

1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11447.5
11447.5
11047.5
8803.75
11450.0
11490.0
11170.0
9230.0
0.0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, π∗2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

move
move
move
move
keep
keep
keep
keep
idle

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, V ∗

2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

193.5
193.25
186.13
148.06
193.5
193.5
187.5
154.5
0.0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Note also that if value iteration is applied, then the maximal expected number
ξ(s) of transitions from s to goal is given as the optimal solution of the SSP in
(3.8) by

ξ = (790.0, 785.0, 752.5, 596.25, 790.0, 786.0, 758.0, 622.0, 0.0) .

Therefore, the Lipschitz constant q = 0.9988 can be chosen, which is very high
and makes value iteration in the ξ-weighted maximum norm terminating very
late. Thus, the termination criterion in the ξ-weighted norm is a theoretical
guarantee, but in general not applicable in practice. "#

192 A. Gouberman and M. Siegle

We finish the section on the infinite-horizon total reward measure with an out-
look to other typical total value problems discussed in [33].

Remark 3.4. Beside SSPs one also often considers the following model types:

(i) Positive models: For each state s there exists a ∈ e(s) with R(s, a) ≥ 0
and for all policies π the value V π(s) <∞ (this assumption can be relaxed).

(ii) Negative models: For each state s all rewards R(s, a) ≤ 0 and there exists
a policy π with V π(s) > −∞ for all s.

In a positive model the goal is to maximize the accumulation of positive rewards
towards∞. The model assumptions make this possible, since in every state there
is at least one non-negative reward available and the accumulation does not
diverge to ∞. In contrast, the goal in a negative model is to maximize negative
rewards, i.e. to minimize costs towards 0. The value iteration algorithm for both
models is the same as in Theorem 3.5, but without convergence criteria. The
policy iteration algorithm however differs from the policy iteration for SSPs. In
a positive model, the initial policy π0 has to be chosen suitable with Rπ0(s) ≥ 0.
Furthermore, in the policy evaluation phase the solutions to the linear equation
V = Rπ+P πV for a policy π spans up a whole subspace of RS . In this subspace
a minimal solution Vmin ≥ 0 has to be chosen in order to perform the policy
improvement phase on Vmin. In contrast, in a negative model, the initial policy
π0 has to fulfill V π0 > −∞ and in the policy evaluation phase the maximal
negative solution has to be computed. Puterman shows in [33] that for both
model types value iteration converges for V0 = 0, but convergence of policy
iteration is only assured for positive models.

3.4 Average Reward Measure

We now come to the final part of the MDP section, which is devoted to the
optimization of the average reward measure. As a reminder, let us consider for the
moment a discrete-time Markov Reward ModelM = (S, P,R). From Theorem
2.4 we know that if g is the average reward of M then g = Pg. On the other
hand, the average reward cannot be uniquely determined by this single equation.
Any solution u to u = Pu defines a further linear equation u+ (I − P)v = R in
v. If this additional equation is solvable, then and only then u = g is the average
reward. In this case the bias h is one of the possible solutions to the second
equation (and unique modulo ker(I − P)). We write both of these equations in
the fixed-point form

g = Pg and h = (R+ Ph)− g. (3.9)

Also remember, that ifM is unichain, then by Corollary 2.1 the equation g = Pg
can be simplified to “g is constant”.

We are concerned in this section with the optimization of the average reward
for an MDP M = (S,Act, e, P,R). Surely, every policy π ∈ Π of M induces a
DTMRMMπ = (S, P π, Rπ) and we can compute for each π the average reward

Markov Reward Models and Markov Decision Processes 193

gπ as described above. By Definition 3.3 the optimal average value function is
g∗(s) = supπ∈Π g

π(s) and in case an optimal policy π∗ exists then gπ
∗
(s) ≥ gπ(s)

for all s and all π. In analogy to the previous sections, it is possible to establish
Bellman equations which reduce the global optimization task over all policies
π ∈ Π to a local state-wise search over actions e(s) for all states s. Since the
formal derivation of these Bellman equations is slightly involved, we just state
them and refer for proof to [33]. Define for each of the two linear fixed-point
equations in (3.9) the Bellman operators Tav : RS → RS and T g

bias : R
S → RS

(parametrized by g ∈ RS) as follows:

(Tavg)(s) := max
a∈e(s)

{∑
s′∈S

P (s, a, s′)g(s′)

}
(3.10)

(T g
biash)(s) := max

a∈eg(s)

{
R(s, a) +

∑
s′∈S

P (s, a, s′)h(s′)

}
− g(s) (3.11)

where eg(s) :=

{
a ∈ e(s) | g(s) =

∑
s′∈S

P (s, a, s′)g(s′)

}
.

The corresponding Bellman optimality equations for the average reward are just
the fixed-point equations of these operators and read as

g(s) = max
a∈e(s)

{∑
s′∈S

P (s, a, s′)g(s′)

}
(3.12)

h(s) = max
a∈eg(s)

{
R(s, a) +

∑
s′∈S

P (s, a, s′)h(s′)

}
− g(s). (3.13)

Equations (3.12) and (3.13) are referred to as the first and the second optimality
equation. In order to provide an intuition for these equations, assume for the
moment that there is an optimal policy π∗ with gπ

∗
= g∗ and moreover that

the MDP M is unichain. In this case, the average reward gπ(s) is a constant
function for any policy π and thus the first optimality equation does not yield
any further restriction since it is satisfied for every constant function g. Only the
second equation takes the reward values R(s, a) into account that are needed in
order determine their average. For each policy π the average reward gπ and the
bias hπ satisfy

hπ(s) = (Rπ(s)− gπ(s)) +
∑
s′∈S

P π(s, s′)hπ(s′),

i.e. the bias hπ is the total value function for the DTMRM with average-corrected
rewards Rπ(s) − gπ(s). Since this holds especially for π = π∗, the second op-
timality equation can be seen as a Bellman equation for maximizing the total
value function for the MDP model with rewards R(s, a)− g∗(s). In other words,
if π is an arbitrary policy then the DTMRM with rewards R(s, π(s)) − g∗(s)

194 A. Gouberman and M. Siegle

has a total value function if and only if g∗(s) is the average reward for the
DTMRM (S, P π, Rπ) and this holds especially for π = π∗. In case M is mul-
tichain, then gπ

∗
(s) is only constant on recurrent classes of Mπ∗

, whereas if
s is transient then gπ

∗
(s) is a weighted sum over all those average rewards on

recurrent classes. This means that gπ
∗
has to fulfill gπ

∗
= P π∗

gπ
∗
in addition

and thus gπ
∗
is a solution to the first optimality equation. Since both Bellman

equations are nested and have to be satisfied simultaneously, it is possible to
reduce the set of actions e(s) in the second equation to the maximizing ac-
tions eg(s) = argmaxa∈e(s)

{∑
s′∈S P (s, a, s

′)g(s′)
}
for a solution g of the first

equation. Note that in case of unichain models it holds that eg(s) = e(s) for all s.

The following theorem formalizes the explanations in the motivation above and
connects the Bellman equations to the optimal value and optimal policies. We
refer for proof to [33].

Theorem 3.7 (Existence Theorem). Consider an MDPM=(S,Act, e, P,R)
with average reward measure.

(i) The average optimal value function g∗ is a solution to (3.12), i.e g∗ =

Tavg∗. For g = g∗ there exists a solution h to (3.13), i.e. h = T g∗
biash. If g

and h are solutions to (3.12) and (3.13) then g = g∗.
(ii) There exists an optimal policy π∗ and it holds that gπ

∗
= g∗.

(iii) For any solution h to (3.13) with g = g∗ an optimal policy π∗ can be derived
from

π∗(s) ∈ argmax
a∈eg∗ (s)

{
R(s, a) +

∑
s′∈S

P (s, a, s′)h(s′)

}
.

As a special case of part (iii) in this theorem it holds that if for a policy π the
average reward gπ and the bias hπ solve the Bellman optimality equations, then
π is optimal. In contrast to the discounted and total reward cases, the converse
does not hold. This means that if a policy π is optimal then gπ and hπ are not
necessary solutions to the Bellman equations.
The following policy iteration algorithm, can be applied in order to compute the
optimal average reward g∗ as well as an optimal policy π∗. A proof can be found
in [33].

Theorem 3.8 (Policy Iteration). Let π0 ∈ Π be an initial policy. Define the
following iteration scheme:

1. Policy evaluation: Compute a solution (gπn , hπn , w)
T
to⎛⎝I − P πn 0 0

I I − P πn 0
0 I I − P πn

⎞⎠⎛⎝gπn

hπn

w

⎞⎠ =

⎛⎝ 0
Rπn

0

⎞⎠ . (3.14)

Define

Gn+1(s) := argmax
a∈e(s)

{∑
s′∈S

P (s, a, s′)gπn(s′)

}
.

Markov Reward Models and Markov Decision Processes 195

2. Policy improvement: If πn(s) �∈ Gn+1(s) for some s then choose an im-
proving policy πn+1 with πn+1(s) ∈ Gn+1(s) and go to the policy evaluation
phase. Otherwise if πn(s) ∈ Gn+1(s) for all s then define

Hn+1(s) := argmax
a∈egπn (s)

{
R(s, a) +

∑
s′∈S

P (s, a, s′)hπn(s′)

}
.

If πn(s) �∈ Hn+1(s) for some s then choose an improving policy πn+1 such
that πn+1(s) ∈ Hn+1(s) and go to the policy evaluation phase.
Termination: If πn(s) ∈ Hn+1(s) for all s then πn is an optimal policy.

The values gπn are non-decreasing and policy iteration terminates in a finite
number of iterations with an optimal policy πn and optimal average value gπn .

Note that (3.14) corresponds to (2.19) instead of (2.18) for the following reason:
For each policy π (2.18) provides a unique solution gπ to the average reward, but
in general the bias hπ cannot be uniquely determined. Policy iteration can be
assured to converge if the bias hπn is computed for each iterated policy πn [33].
As described in Remark 2.4(iii) this can be done by solving (2.19), i.e. the equa-
tion v + (I − P πn)w = 0 in addition to (2.18) for which v = hπn is the unique
solution. There are also other possibilities to assure convergence of policy it-
eration by solving only (2.18) and fixing a scheme that chooses a solution v to
g+(I−P)v = R in order to prevent cycles in policy iteration (see Remark 2.4(ii)).

Before showing the application of policy iteration on our queueing model running
example, we first state the following remark regarding some algorithmic aspects.

Remark 3.5. (i) During policy iteration the action set eg
πn(s)

can be replaced
by the whole action set e(s) – this leads to the so-called modified optimal-
ity equations. The convergence and the optimality of the solution in policy
iteration are not influenced by this replacement.

(ii) In the policy improvement phase, there are two jumps to the policy evalua-
tion phase, which represent two nested cycles of evaluation and improvement
phases. First, a policy πn has to be found, which solves the first optimality
equation. Then in a nested step, πn is tested on the second optimality equa-
tion. If πn can be improved by a better policy πn+1 with actions from Hn+1

then πn+1 has to be sent back to the first evaluation and improvement cycle
until it again solves the first optimality equation, and so on.

(iii) As already mentioned in the introducing motivation, if it is a priori known
that the MDP is unichain, i.e. for all policies there is only one closed re-
current class of states, then the optimal average reward is constant and the
first optimality equation is automatically satisfied (see Corollary 2.1). This
reduces the complexity of policy iteration, since only the second optimality
equation has to be considered for optimization.

(iv) We skip the value iteration algorithm in this tutorial since it is exactly
the same as for the discounted case (Theorem 3.2) with γ := 1. It can be

196 A. Gouberman and M. Siegle

proven that the sequence Vn+1−Vn converges to the optimal average reward
g∗, if for every (optimal) policy the transition matrix is aperiodic [33]. The
aperiodicity constraint is not a restriction, since every periodic DTMRM can
be made aperiodic, by inserting self-loops with strictly positive probability
for every state. (The reward function has to be transformed accordingly.)
However, [33] presents a termination criterion for value iteration only for
models with g∗(s) constant for all s (e.g. unichain models).

Example 3.4. Consider the queueing MDP model from Example 3.1. We want
to compute the optimal average value function for the queueing model with
parameters q = 0.25, pd,n = 0.5 and pd,i = 1.0 and the reward structure as
specified in (3.1). Note that the model is multichain, since the policy that takes
the action keep in every state induces a DTMRM with two recurrent classes.
Policy iteration converges after three iterations (with initial policy π0 which
keeps in normal mode or moves to it from intense mode) and results in the
following optimal policy π∗, optimal average value g∗ = gπ

∗
and bias hπ

∗
:

π∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

keep
keep
keep
move
move
move
keep
keep

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, gπ

∗
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

22.7
22.7
22.7
22.7
22.7
22.7
22.7
22.7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, hπ

∗
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−49.4
41.3
95.3
38.7
−59.4
40.6
130.3
220.0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Thus, the optimal policy induces a DTMRM that is unichain with constant
optimal average reward 22.7. The finite-horizon total value function V π∗

N from
state (0, 0, normal, idle) increases asymptotically with 22.7 ·N−49.4 as N →∞.

"#

We conclude the MDP section by a further remark, which presents a short out-
look on other optimization criteria that are applicable for MDPs.

Remark 3.6. The average reward considers reward accumulation in the long-
run. Therefore, it is not very sensitive in the selection between policies with the
same average reward: If two policies have the same long-run average reward but
different short-run rewards, then one would prefer among all policies with the
same average reward such a policy that also maximizes the short-run reward
accumulation. This idea leads to the so-called bias (or more general n-bias
or n-discount) optimization criteria, which belongs to the class of sensitive
discount optimality criteria. In more detail, policies π ∈ Π are compared
regarding their Laurent series expansions (2.15)

(V γ)
π
= a−1g

π + a0H
πRπ + a1 (H

π)
2
Rπ + . . . ,

Markov Reward Models and Markov Decision Processes 197

where ai are constants (depending only on γ) and HπRπ = hπ is the bias,
which represents the excess in reward accumulation up to steady-state. Now if a
subset of policies Π∗−1 ⊆ Π maximize gπ then this subset can be further refined
to a reduced subset Π∗

0 ⊆ Π∗
−1 by maximizing the bias hπ for π ∈ Π∗

−1 in
addition to the average reward gπ. If Π∗

0 still consists of more then one policy,
then one can proceed iteratively and compare the higher order n-bias terms
sequentially. Note that the n-bias reward measure specifies the vector space
V of value functions as V =

{
V : S → Rn+1

}
and values can be compared in

Definition 3.3 by lexicographic order.
The most sensitive optimization criterion is the Blackwell optimality cri-

terion, which selects a policy π∗, such that the entire Laurent series expansion
(i.e. the complete discounted value) is maximal among the discounted values for
all policies and for all discount factors high enough, i.e.

∃γ∗ ∈ [0, 1) ∀γ ∈ [γ∗, 1) ∀π ∈ Π : (V γ)π
∗
≥ (V γ)π .

It can be shown, that Blackwell optimal policies exist and a Blackwell optimal
policy is n-bias optimal for all n [33]. Furthermore, such a policy can be computed
by proceeding with the policy space reduction as described above until some Π∗

n

consists of only one policy, which is Blackwell optimal (or if n ≥ |S|− 2 then Π∗
n

is a set of Blackwell optimal policies).

4 Continuous Time Markov Reward Models

In both DTMRMs and MDPs time is discrete, i.e. it proceeds in a step by step
manner. However, this is unrealistic for many applications – one rather wishes
to work with a continuous notion of time. Therefore, in this and the following
section, we study continuous-time models. Since we stick to the principle of mem-
orylessness, it will turn out that the state sojourn times follow an exponential
distribution (as opposed to the geometrically distributed sojourn times in the
discrete-time setting).

4.1 Preliminaries

Definition 4.1. A continuous-time Markov chain (CTMC) is a structure
M = (S,Q) with finite state space S and generator function Q : S×S → R such
that Q(s, s′) ≥ 0 for s′ �= s and

∑
s′∈S Q(s, s

′) = 0 for all s. A continuous-
time Markov Reward Model (CTMRM) is a structure (S,Q, i, r) which
enhances a CTMC (S,Q) by a reward structure consisting of an impulse reward
function i : S × S → R for transitions with i(s, s) = 0 for all s ∈ S and a rate
reward function r : S → R for states.

From state s ∈ S each quantity Q(s, s′) with s′ �= s defines an event which occurs
after a random amount of time τs,s′ ∈ R ∪ {∞} to trigger. If Q(s, s′) > 0 then
τs,s′ is exponentially distributed with rate Q(s, s′) and otherwise if Q(s, s′) = 0
then we set τs,s′ :=∞. For a fixed s ∈ S all these times τs,s′ are independent and

198 A. Gouberman and M. Siegle

concurrently enabled. Therefore, they define a race among each other and only
that τs,s′0 which triggers first, within a finite amount of time (i.e. τs,s′0 ≤ τs,s′

for all s′ ∈ S), wins the race. In this case the system performs a transition
from s to s′0 �= s and collects the impulse reward i(s, s′0) ∈ R. The time τs
that the system resides in state s (up to transition) is called the sojourn time
and fulfills τs = min {τs,s′ | s′ �= s}. While the system is in state s the rate
reward r(s) is accumulated proportionally to the sojourn time τs. Thus, the
accumulated reward in s for the sojourn time including the transition to state
s′0 is given by R(s) := i(s, s′0) + r(s)τs. The quantity E(s) :=

∑
s′ �=sQ(s, s

′) is
called the exit rate in state s and by definition of the generator function Q it
holds that E(s) = −Q(s, s) ≥ 0. If E(s) > 0 then there is some state s′ with
Q(s, s′) > 0 and due to the race condition it holds that τs is exponentially dis-
tributed with rate E(s). The transition probability P (s, s′) is the probability

that τs,s′ wins the race and is given by P (s, s′) = P (τs,s′ = τs) =
Q(s,s′)
E(s) . Oth-

erwise, if E(s) = 0 (or all Q(s, s′) = 0) then τs = ∞ and state s is absorbing.
In this case we set P (s, s′) := δs,s′ , i.e. P (s, s

′) = 1 if s′ = s and P (s, s′) = 0 if
s′ �= s. The function P : S → D(S) with (P (s))(s′) := P (s, s′) is called the em-
bedded transition probability function. The model (S, P) can be considered
as a discrete-time Markov chain, which models the transitions of the underlying
CTMC and abstracts from the continuous time information. Similarly to DT-
MRMs, i(s) :=

∑
s′ �=s P (s, s

′)i(s, s′) will denote the state-based version of the
transition-based impulse reward i(s, s′), i.e. i(s) is the expected impulse reward
from state s to some other state s′ �= s.

Example 4.1 (WSN node model). A wireless sensor network (WSN) consists of
nodes that have to observe their environment by sensing activities and transmit
information towards a destination. Each node consists of a battery unit with
some initial capacity, a sensor and a transmitter. Furthermore, environmental
events occur randomly. For the purposes of this section and in order to show
how CTMRMs can be modelled, we assume a very simple WSN node model (see
Fig. 4.1), which consists only of

– one sensor node, which randomly switches between “idle” and “listen” states
after an exponentially distributed time and does not transmit any informa-
tion and

– the environment, in which activities occur and endure in a memoryless way.

For simplicity we further assume that the node has infinite energy supply and
does not consume any energy in idle mode. In case an environmental activity
takes place and the node is listening, it must observe the activity at least until it
stops. When the sensor switches from idle to listen it consumes instantaneously
5 energy units. While if the sensor is listening it consumes energy with rate 10.
We want to measure the energy consumption in this model. Suitable measures
could be the average energy consumption (per time unit) or some discounted
energy consumption. "#

Markov Reward Models and Markov Decision Processes 199

silence

environment sensor

activity

idle

listen

 silence,
idle

 activity,
idle

composed WSN node model

 activity,
listen

 silence,
listen

1

2 3

4

Fig. 4.1. A simple WSN node model, which consists of a single node which can listen to
activities in the environment. The transition rates are λ = 2, μ = 4, λs = 4, μs = 30. If
the sensor is listening, it uses 10 energy units per time. For every activation to “listen”
or deactivation to “idle” an impulse energy of 5 units is employed.

Remark 4.1. Puterman [33] allows impulse rewards which are state-based and
are gained in a state s if s is the initial state or when s is reached after some
transition from s′ to s (“arrival” point of view). In contrast, we have defined
transition-based impulse rewards i(s, s′) that are gained when state s is left, i.e.
a transition from s to s′ is performed (“departure” point of view). Therefore,
the impulse reward can be considered state-based as the expectation i(s) =∑

s′ �=s i(s, s
′)P (s, s′) over transition probabilities. When considering the infinite-

horizon total reward measure or the average reward measure, then both points of
view lead to the same value functions and thus their distinction doesn’t matter
in this case. However, this difference is important when we are dealing with the
finite-horizon total reward measure and the discounted reward measure.

Before being able to define and evaluate reward measures for the continuous-
time case, we have to provide more theoretical background. The next section is
devoted to this.

4.2 Probability Space for CTMCs

In the following, we want to formalize the transition behavior of a CTMCM =
(S,Q) that we have informally introduced in Sect. 4.1. For this reason, we first
define a suitable sample space Ω together with a Borel σ-algebra B(Ω) consisting
of those measurable events for which we will assign probabilities. Subsequently,
we will define several stochastic processes upon Ω that are all induced by the
CTMCM. These processes will allow us to define a time-dependent transition
probability matrix, which in turn will play an important role for the definition
of reward measures for a CTMRM.

4.2.1 Sample Space
Since continuous time plays a role for these measures, we put this information
along with the state space S into the sample space. Define the sample space Ω ⊆

200 A. Gouberman and M. Siegle

(S× (0,∞])N as the set of infinite paths of the form ω = (s0, t0, s1, t1, s2, t2, . . .)
such that for all i ∈ N:

(E(si) > 0⇒ Q(si, si+1) > 0 ∧ ti <∞) ∨ (E(si) = 0⇒ si+1 = si ∧ ti =∞) .

Roughly speaking, ω represents a sample path, where ti <∞ is the finite sojourn
time in a non-absorbing state si or otherwise if si is absorbing then for all j ≥ i
it holds that tj =∞ and sj = si. A sample path ω = (s0, t0, s1, t1, . . .) can also
be considered as a jump function ω : [0,∞) → S that is constantly s0 for all
t ∈ [0, t0) and if t0 �= ∞ then ω jumps to state s1 �= s0 at t0 and ω(t) = s1
for all t ∈ [t0, t0 + t1). If t1 �= ∞ then ω has a next jump to state s2 �= s1
at t0 + t1 and so on, until there is eventually a first index i with ti = ∞ and
therefore ω(t) = si for all t ≥

∑i−1
k=0 tk. In order to define a probability space

over Ω we transform Ω to the set Path of finite absorbing and infinite paths as
defined in [3]. Let ψ : Ω → Path be the transformation that drops the artificial
repetitions of absorbing states, i.e.

ψ(s0, t0, s1, t1, . . .) :=

{
(s0, t0, s1, t1, . . .), if ∀k ∈ N : tk <∞
(s0, t0, s1, t1, . . . , sl), l := min {k | tk =∞} <∞

where min ∅ := ∞. Note that in the definition of ψ the two cases are disjoint.
Since ψ is bijective the probability space (Path,F(Path),Prα) as defined in [3]
(where α ∈ D(S) is a distribution over initial states) induces for each s ∈ S a
probability space (Ω,B(Ω), Ps) in a canonical way:

B(Ω) := {A ⊆ Ω | ψ(A) ∈ F(Path)} and Ps := Prδs ◦ ψ,

where we choose α := δs with δs(s
′) := δs,s′ (i.e. s is the initial state). Before

moving on, we want to mention that both sample spaces Ω and Path are equiv-
alent, since ψ is bijective (and measurable by definition of B(Ω)). The sample
space Path allows for an intuitive interpretation of sample paths ω regarded as
jump functions ω : [0,∞)→ S as described above. Every jump function that is
constant on intervals of positive length has at most a finite or countably infinite
number of jumps – this distinction is encoded in the sample paths of Path. How-
ever, this differentiation of cases would directly be transferred to a corresponding
differentiation in the definition of stochastic processes that we will introduce in
the sequel. For this reason, we have chosen Ω as the sample space which em-
bedds these cases already in its definition and thus does not lead to an overload
of notation in the definition of these processes.

4.2.2 Induced Stochastic Processes
The CTMC M = (S,Q) induces a number of stochastic processes over Ω. For
ω = (s0, t0, s1, t1, . . .) ∈ Ω define the

(i) discrete-time state process (Xn)n∈N by

Xn(ω) := sn

Markov Reward Models and Markov Decision Processes 201

(ii) sojourn time (τn)n∈N, where

τn(ω) := tn ≤ ∞

(iii) total elapsed time (Tn)n∈N for the first n transitions as

Tn(ω) :=

n−1∑
i=0

τi(ω)

(iv) number of transitions (Nt)0≤t<∞ up to time t as

Nt(ω) := max {n | Tn(ω) ≤ t} ∈ N

(note that with probability 1 the maximum is taken over a finite set and
thus Nt is almost surely finite, i.e. P (Nt <∞) = 1)

(v) continuous-time state process (Zt)0≤t<∞, where

Zt(ω) := XNt(ω)(ω),

i.e. Zt is the state of the system at point in time t ≥ 0.

Remark 4.2. For all t ∈ [0,∞) and n ∈ N the following equalities of events hold:

{Nt = n} = {Tn ≤ t < Tn+1} and {Nt ≥ n} = {Tn ≤ t} .

The discrete-time state process Xn represents the n-th visited state (or an ab-
sorbing state) and it fulfills the discrete-time Markov property as in (2.4), i.e.
for all s, s0, s1, . . . sk ∈ S and 0 < n1 < · · · < nk < n

Ps0(Xn = s | Xn1 = s1, . . . , Xnk
= sk) = Ps0 (Xn = s | Xnk

= sk).

From Zt(ω) = XNt(ω)(ω) and Nt(ω) non-decreasing for all ω it follows that the
continuous-time state process Zt also fulfills the Markov property, which reads
as a continuous time version:

Ps0(Zt = s | Zt1 = s1, . . . , Ztk = sk) = Ps0(Zt = s | Ztk = sk)

for all s, s0, s1, . . . sk ∈ S and 0 ≤ t1 < · · · < tk < t. Thus given knowledge
about the state Ztk = sk of the process for any arbitrary point in time tk < t,
then the process Zt does not depend on its history comprising the visited states
before time tk. It further holds that Zt is homogeneous in time, i.e. the following
property holds:

Ps0(Zt+t′ = s′ | Zt = s) = Ps(Zt′ = s′).

As in Sect. 2 we fix a representation of the state space S through indices
{1, 2, . . . , n} , n := |S| such that functions S → R can be represented by vec-
tors in Rn and functions S × S → R as matrices in Rn×n. Define the transient
probability matrix P (t) as

P (t)(s, s′) := Ps(Zt = s′). (4.1)

202 A. Gouberman and M. Siegle

The matrix P (t) is stochastic for all t ≥ 0 and fulfills the property

P (t+ t′) = P (t)P (t′) ∀t, t′ ≥ 0,

which reads componentwise as P (t+ t′)(s, s′) =
∑

u P (t)(s, u) ·P (t′)(u, s′). This
means that from state s the probability to be in state s′ after t+ t′ time units is
the probability to be in some arbitrary state u ∈ S after t time units and traverse
from there within further t′ time units to state s′. It can be shown that all entries
of P (t) are differentiable for all t ≥ 0 and P (t) is related to the generator matrix
Q of the CTMC by the Kolmogorov differential equations

d

dt
P (t) = QP (t) and

d

dt
P (t) = P (t)Q, (4.2)

which read in componentwise notation as

d

dt
(P (t)(s, s′)) =

∑
u

Q(s, u) · P (t)(u, s′) =
∑
v

P (t)(s, v) ·Q(v, s′).

All solutions to these equations are of the form P (t) = eQt since P (0) = I is
the identity matrix, where for a matrix A the quantity eA denotes the matrix
exponential that is given by eA =

∑∞
k=0

1
k!A

k.

4.2.3 State Classification
As in Sect. 2.1.2 there is also a classification of states in case of continuous time
Markov chains. Since this taxonomy is almost the same as in the discrete-time
case, we only present it very briefly. The most important difference is that in
the continuous-time setup there is no notion for periodicity of states and it can
be shown that the matrix P (t) converges as t→∞ (for finite state spaces). We
denote the limit by P ∗ := limt→∞ P (t). Note that in Definition 2.9 we denoted
the corresponding discrete-time limiting matrix as P∞ and its time-averaged
version as P ∗ and mentioned in Proposition 2.2 that they both coincide if P∞

exists. Since the existence of this limit in the continuous-time case is always
guaranteed, we call this limit directly P ∗ instead of P∞ in order to use similar
notation. One can show that P ∗ is stochastic and fulfills the invariance conditions

P ∗P (t) = P (t)P ∗ = P ∗P ∗ = P ∗.

Therefore, the probability distribution P ∗(s, ·) ∈ D(S) in each row of P ∗ is a
stationary distribution and since P (t)(s, ·)→ P ∗(s, ·) as t→∞ it is also the
limiting distribution from state s. Furthermore, it holds that

P ∗Q = QP ∗ = 0,

which can be derived from (4.2) and d
dtP (t)→ 0 as t→∞.

Let the random variable Ms ∈ (0,∞] denote the point in time when the
state process Zt returns to s for the first time (given Z0 = s). A state s is
transient if Ps(Ms = ∞) > 0 or equivalently P ∗(s, s) = 0. In the other case,

Markov Reward Models and Markov Decision Processes 203

if Ps(Ms <∞) = 1 then s is called recurrent and it holds equivalently that
P ∗(s, s) > 0. It can be shown that there is always at least one recurrent state
if the state space is finite. A state s′ is reachable from s if P (t)(s, s′) > 0 for
some t ≥ 0. The states s and s′ are communicating if s′ is reachable from s and s
is reachable from s′. This communication relation is an equivalence relation and
partitions the set of recurrent states into closed recurrent classes. Therefore,
the state space partitions into S =

⋃k
i=1 S

r
i ∪ St, where St denotes the set

of transient states and Sr
i is a closed recurrent class for all i = 1, . . . , k. For

s, s′ ∈ Sr
i in the same recurrent class it holds that P ∗(s, s′) > 0. As in the

discrete-time case P ∗ can be represented by

P ∗ =

⎛⎜⎜⎜⎜⎜⎝
P ∗
1 0 0 . . . 0 0
0 P ∗

2 0 . . . 0 0
...

...
...

. . .
... 0

0 0 0 . . . P ∗
k 0

P̃ ∗
1 P̃

∗
2 P̃

∗
3 . . . P̃

∗
k 0

⎞⎟⎟⎟⎟⎟⎠ (4.3)

where P ∗
i has identical rows for the stationary distribution in class Sr

i and P̃ ∗
i

contains the trapping probabilities from transient states St into Sr
i . If a closed

recurrent class consists of only one state s, then s is called absorbing. A CTMC
is unichain if k = 1 and multichain if k ≥ 2. A unichain CTMC is called
irreducible or ergodic if St = ∅.

4.3 Model Transformations

In this section we present a set of model transformations, which will allow us to

– unify the different types of rewards (impulse reward and rate reward) in the
reward accumulation process (“Continuization”) and

– relate some continuous-time concepts to discrete-time Markov Reward Mod-
els from Sect. 2 (“Embedding” and “Uniformization”).

These transformations simplify the evaluation process of all the reward measures
and map the computation of the value functions for continuous-time models to
the discrete-time case.

4.3.1 Embedding
As mentioned in Sect. 4.1, a CTMC (S,Q) defines for all states s, s′ ∈ S the
embedded transition probabilities P (s, s′). The structure (S, P) can be con-
sidered as a discrete-time Markov chain and it induces on the sample space
Ω′ :=

{
(s0, s1, s2, . . .) ∈ SN | P (si−1, si) > 0 for all i ≥ 1

}
as in (2.3) the state

process X ′
n (by Definition 2.3) given by X ′

n(s0, s1, . . .) = sn. This stochastic
process is related to the discrete-time state process Xn : Ω → S by abstracting
away from the time information, i.e. for all n ∈ N

Xn(s0, t0, s1, t1, . . .) = X ′
n(s0, s1, . . .).

204 A. Gouberman and M. Siegle

This equation establishes the connection to DTMCs and thus Xn can be con-
sidered as the state process of the DTMC (S, P). Therefore, (S, P) is also called
the embedded discrete-time Markov chain and Xn is the embedded state
process of the CTMC (S,Q).

Now consider a CTMRM (S,Q, i, r) and define a function R : S×S → R where
R(s, s′) denotes the expected accumulated rate reward r(s) in state s over time
including the impulse reward i(s, s′) gained for transition from s to some other
state s′ �= s (as in Sect. 4.1). If s is non-absorbing, then the sojourn time τs in s
is exponentially distributed with rate E(s) > 0 and R(s, s′) is given by

R(s, s′) := i(s, s′) +
r(s)

E(s)
. (4.4)

Otherwise, if s is absorbing, the embedding is only possible if r(s) = 0 and in
this case we define R(s, s′) := 0 for all s′.

It is very important to note that if we consider a reward measure on the
CTMRM with value function V and a corresponding reward measure on the
transformed DTMRM with value function V ′, then it is of course desirable that
V = V ′, i.e. the transformation should be value-preserving. This allows to
compute the value V by applying the theory and algorithms for the discrete-
time models as presented in Sect. 2. However, as we will see, such a model
transformation needs in general the reward measure itself as input in order to be
value-preserving. As an example, the integration of the rate reward r(s) into the
reward R(s, s′) is performed by total expectation over an infinite time-horizon,

which gives the term r(s)
E(s) . If one considers a finite horizon for the continuous-

time model, then R(s, s′) as defined is obviously not the appropriate reward
gained in state s in the embedded discrete-time model.

4.3.2 Uniformization
We have seen in Sect. 4.1 that the quantities Q(s, s′) for s′ �= s can be re-
garded as rates of exponentially distributed transition times τs,s′ . All these
transition events define a race and only the fastest event involves a transi-
tion to another state s′ �= s. We can manipulate this race, by adding to the
set of events {τs,s′ | s′ �= s} of a state s an auxiliary exponentially distributed
event τs,s with an arbitrary positive rate L(s) > 0 that introduces a self-loop
(i.e. a transition from s to s), if it wins the race. The time up to transition is
τs := min {τs,s′ | s′ ∈ S} and it is exponentially distributed with increased exit

rate Ẽ(s) := E(s) + L(s). The probability that τs,s wins the race can be com-

puted to P (τs,s ≤ τs,s′ ∀s′ ∈ S) = L(s)

Ẽ(s)
= 1 + Q(s,s)

Ẽ(s)
and for all s′0 �= s it holds

that P (τs,s′0 ≤ τs,s′ ∀s′ ∈ S) = Q(s,s′)
Ẽ(s)

. We can add such events τs,s to a set

of states s and thus increase the exit rates for all these states simultaneously.
Moreover, we can choose an arbitrary μ > 0 with max {E(s) | s ∈ S} ≤ μ < ∞
(called uniformization rate) such that Ẽ(s) ≡ μ is constant for all s ∈ S. The
uniformization rate μ allows to define a transformation to the μ-uniformized

Markov Reward Models and Markov Decision Processes 205

DTMRM Mμ := (S, Pμ, Rμ) where a transition from s to s′ inMμ captures
the event that τs,s′ wins the race and thus

Pμ(s, s′) := δs,s′ +
Q(s, s′)
μ

. (4.5)

Note that the probability to eventually leave state s to a state s′ �= s is exactly
the embedded transition probability P (s, s′) =

∑∞
i=0 P

μ(s, s)iPμ(s, s′). The re-
ward Rμ(s, s′) combines the accumulated rate reward in state s and the impulse
reward up to transition to some state s′. In the CTMRM the rate reward r(s)
is accumulated for the complete sojourn time in s. Since self-loops are possible
in the uniformized DTMRM the accumulation process stops when an arbitrary
transition occurs. The expected value of the accumulated rate reward up to tran-
sition is given by r(s) · 1μ . Furthermore, the impulse reward i(s, s′) is only gained

if a transition to another state s′ �= s takes place. But since i(s, s) = 0 for all
s ∈ S by Definition 4.1 it follows that for all s, s′ ∈ S the total uniformized
reward Rμ(s, s′) is given by

Rμ(s, s′) := i(s, s′) +
r(s)

μ
. (4.6)

This equation is similar to (4.4) with the difference that the exit rate E(s) is
replaced by the uniformization rate μ ≥ E(s). A further difference comes into
the picture when considering the accumulation of these rewards. Both rewards
R(s, s) and Rμ(s, s) for self-loops are possibly non-zero. In case of the embed-
ded DTMRM the probability P (s, s) for self-loops is 0 in non-absorbing states s
and thus R(s, s) is not accumulated, in contrast to the uniformized model where
Pμ(s, s) > 0 is possible.

So far we have defined the two transformations “Embedding” and “Uniformiza-
tion” both discretizing the continuous time of a CTMRM and the accumulation
of the rate reward over time. In contrast, the upcoming third transformation does
not modify the time property itself, but rather merges the impulse rewards into
the rate reward. In this way, the CTMRM model has no discrete contributions
in the reward accumulation process, which allows to simplify the evaluations of
the reward measures (as we will see in the upcoming sections).

4.3.3 Continuization
Let M = (S,Q, i, r) be a CTMRM and for a non-absorbing state s denote
R(s) :=

∑
s′ �=s P (s, s

′)R(s, s′), where R(s, s′) is as in (4.4) and P (s, s′) is the
embedded transition probability. Thus

R(s) =
∑
s′ �=s

P (s, s′)i(s, s′) +
r(s)

E(s)

is the expected accumulated rate reward r(s) in state s including the expected
impulse reward

∑
s′ �=s P (s, s

′)i(s, s′) = i(s) gained for transition from s to

206 A. Gouberman and M. Siegle

some other state s′ �= s. Consider for the moment that i(s, s′) = 0 for all
s, s′, i.e. there are no impulse rewards defined. Then r(s) = R(s)E(s), which
means that the rate reward r(s) is the same as the expected reward R(s)
accumulated in s weighted by the exit rate E(s). More generally, if the im-

pulse rewards i(s, s′) were defined then from P (s, s′) = Q(s,s′)
E(s) it follows that

R(s)E(s) =
∑

s′ �=s i(s, s
′)Q(s, s′) + r(s). This means that we can transform the

original CTMRMM with impulse rewards into a CTMRMM = (S,Q, r) with-
out impulse rewards by integrating the original impulse rewards into a new rate
reward

r(s) :=
∑
s′ �=s

i(s, s′)Q(s, s′) + r(s).

We call r the continuized rate reward since in the continuized modelM there
is no discrete contribution to the reward accumulation process. As we will see
in Theorem 4.1 this (rather heuristically deduced) transformation preserves the
finite-horizon total reward measure and thus all the reward measures that are
derived from the finite-horizon case.

Figure 4.2 shows a diagram with all the presented transformations and also some
relations between them. It is interesting to note that this diagram commutes.

Fig. 4.2. Commuting model transformations

This means that instead of computing the embedded or uniformized DTMRM
from the CTMRM (S,Q, i, r) it is possible to continuize the model before per-
forming such a transformation and the resulting DTMRM is the same. We show
the commutation of the transformation only for the μ-uniformization, since anal-
ogous arguments can be employed for the embedding. When performing the μ-

uniformization on (S,Q, i, r) then Rμ(s, s′) = i(s, s′)+ r(s)
μ by (4.6). Also denote

R
μ
(s) as the μ-uniformization of the continuized rate reward r(s). Due to the

absence of impulse rewards in the continuized model it follows for all s ∈ S that

R
μ
(s) =

r(s)

μ
=

1

μ

⎛⎝∑
s′ �=s

i(s, s′)Q(s, s′) + r(s)

⎞⎠ =
∑
s′ �=s

i(s, s′)Pμ(s, s′) +
1

μ
r(s)

Markov Reward Models and Markov Decision Processes 207

by definition of Pμ as in (4.5). Furthermore, since i(s, s) = 0 it follows

R
μ
(s) =

∑
s′∈S

i(s, s)Pμ(s, s′) +
1

μ
r(s) =

∑
s′∈S

Rμ(s, s′)Pμ(s, s′) = Rμ(s).

Thus, the μ-uniformization of the continuized rate reward R
μ
(s) is exactly the

state-based view on the μ-uniformized reward Rμ(s, s′). Also note that the def-
inition of recurrency and reachability in the discrete-time and continuous-time
cases are similar. For this reason the classification of states into closed recurrent
classes Sr

i and transient states St is invariant under the model transformations,
since the directed graph structure of the model does not change.

In the following we are going to provide natural definitions for the value functions
of the reward measures that we have also considered in the discrete-time case
in Sect. 2. The most important question that we will consider is whether the
transformations we have presented in this section are value-preserving. More
clearly, let R be a reward measure with value function V on the CTMRM M.
We can also evaluate R on one of the transformed models, e.g. on Mμ which
gives a value function V μ. Under what circumstances is V = V μ? This question
will be answered in the forthcoming sections.

4.4 Total Reward Measure

With all the definitions and tools introduced in the preceding sections we are
now set to define the total reward measure. We write Es for the expectation
operator if X0 = s (or Z0 = s) is the initial state. For a random variable Y we
also write E[Y] for the function s &→ Es [Y] ∈ R, respectively for the vector in
R|S| consisting of the expected values Es[Y].

Definition 4.2. Let T ∈ R, T ≥ 0 be some finite real time horizon and NT the
random number of transitions up to time T . The finite-horizon total value
function is defined as

VT (s) := Es

[
NT∑
k=1

i(Xk−1, Xk)

]
+ Es

[∫ T

0

r(Zt) dt

]
, (4.7)

if both expectations exist. If furthermore the expectations Es

[∑NT

k=1 |i(Xk−1, Xk)|
]

and Es

[∫ T

0
|r(Zt)| dt

]
converge as T → ∞, then we also define the (infinite-

horizon) total value function as

V∞(s) := lim
T→∞

VT (s).

In (4.7) the rate reward r(Zt) in state Zt is continuously accumulated over the
time interval [0, T] by integration, whereas the impulse rewards i(Xk−1, Xk) for
the NT transitions from states Xk−1 to Xk for k = 1, . . . , NT are discretely ac-
cumulated via summation. Note that the upper bound NT = max {n | Tn ≤ T }

208 A. Gouberman and M. Siegle

in the summation is random. If ω = (s0, t0, s1, t1, . . .) ∈ Ω then NT (ω) ∈ N and

the random variable
∑NT

k=1 i(Xk−1, Xk) takes the value
∑NT (ω)

k=1 i(sk−1, sk) ∈ R.
Furthermore, NT has finite expectation (see Lemma A.3 in the Appendix). Since
the state space is finite there exists C ≥ 0 such that |r(s)| ≤ C and |i(s, s′)| ≤ C
for all s, s′ ∈ S. Therefore

Es

[∣∣∣∣∣
∫ T

0

r(Zt) dt

∣∣∣∣∣
]
≤ C ·T <∞ and Es

[∣∣∣∣∣
NT∑
k=1

i(Xk−1, Xk)

∣∣∣∣∣
]
≤ C ·E [NT] <∞

such that VT (s) is defined for all T ≥ 0. In the prerequisites for the definition
of the total value function V∞ we require a more restrictive absolute conver-
gence. However, this property is quite natural since it is equivalent to the (joint)
integrability of the function r(Zt) : [0,∞) × Ω → R with respect to the prob-
ability measure Ps on Ω for the expectation Es and the Lebesgue measure for
the integral over [0,∞).

Note that Es [r(Zt)] =
∑

s′ Ps(Zt = s′)r(s′) is the s-th row of the vector
P (t)r. If we assume that i(s, s′) = 0 for all s, s′ ∈ S then the finite-horizon total
value function VT ∈ RS regarded as a vector in R|S| can be computed by

VT = E

[∫ T

0

r(Zt) dt

]
=

∫ T

0

P (t)r dt. (4.8)

The following theorem generalizes this computation for the case with impulse
rewards i(s, s′). Furthermore, it explains why the continuization transformation
as defined in Sect. 4.3.3 preserves the finite-horizon total reward measure. There-
fore, this can be considered as the main theorem in the section on CTMRMs.

Theorem 4.1 (Value Preservation of Continuization).
For a CTMRM M = (S,Q, i, r) let M = (S,Q, r) be its continuization with

r(s) =
∑
s′ �=s

i(s, s′)Q(s, s′) + r(s).

For the finite-horizon total value function it holds that

VT (s) = Es

[∫ T

0

r(Zt) dt

]
.

VT can be computed by

VT =

∫ T

0

P (t)r dt,

which reads in componentwise notation as

VT (s) =
∑
s′∈S

r(s′)
∫ T

0

P (t)(s, s′) dt.

Markov Reward Models and Markov Decision Processes 209

Proof. In (4.8) we have already shown the statement for the integral term in the
definition of VT in (4.7). It remains to show the statement for the summation
term. We have already mentioned that NT has finite expectation. By Lemma
A.1 in the Appendix and the law of total expectation it follows for an arbitrary
initial state s0 ∈ S that

Es0

[
NT∑
k=1

i(Xk−1, Xk)

]
=

∞∑
k=1

Es0 [i(Xk−1, Xk)]Ps0 (NT ≥ k) =

∞∑
k=1

∑
s,s′

i(s, s′)Ps0 (Xk−1 = s,Xk = s′)Ps0 (NT ≥ k) =
∑
s,s′

i(s, s′)nT (s, s′),

where

nT (s, s
′) :=Es0

[
NT∑
k=1

�{Xk−1=s,Xk=s′}

]
=

∞∑
k=1

Ps0(Xk−1 = s,Xk = s′)Ps0(NT ≥ k)

is the expected number of transitions from s to s′ up to time T from initial state
s0. If we can show that

nT (s, s
′) = Q(s, s′) ·

∫ T

0

Ps0(Zt = s) dt

then we are done. The proof for this equation is outsourced to the Appendix.
There, in Lemma A.2 we present a proof which uses the uniformization method
and in Remark A.2 we sketch a more direct proof without the detour with
uniformization which relies on facts from queueing theory. "#

Example 4.2. We come back to our WSN node model introduced in Example
4.1 and assume λ = 2 activities per hour and an average duration of 15 minutes,
i.e. μ = 4 and for the sensor λs = 4 and μs = 30. Figure 4.3 shows the transient
probabilities P (t)(sinit, s) for the initial state sinit = (silence, idle) and the finite-
horizon total value function

VT (sinit) = (1, 0, 0, 0)

∫ T

0

eQtr dt = (4.9)

220

7
T +

10

49
+

5

833
e−22T

((
13
√
51− 17

)
e−2

√
51T −

(
13
√
51 + 17

)
e2

√
51T

)
indicating the total energy consumption up to time T . The continuized rate
reward is given by

r = (5λs, 5λs, 10 + 5μs, 10)
T = (20, 20, 160, 10)T . "#

In the following we provide methods for the evaluation of the infinite-horizon
total reward measure V∞. We also show that the model transformations embed-
ding, uniformization and continuization are value-preserving with respect to this

210 A. Gouberman and M. Siegle

P1,1

P1,2

P1,3

P1,4

0.2 0.4 0.6 0.8 1.0
t

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0
T

5

10

15

20

25

30

VT

Fig. 4.3. Left: Transient probability functions for initial state sinit = (silence, idle)
converging to the limiting distribution. Right: Total energy consumption during the
first hour given by the finite-horizon total value function VT (sinit) as a function of T .

measure. This enables us to provide several methods for the evaluation of V∞.
Before presenting Theorem 4.2, we start with an important proposition about
the relation between the existence of the infinite-horizon total value function and
the model data Q, i and r of a CTMRM. A proof can be found in the Appendix
on page 237.

Proposition 4.1. For a CTMRM (S,Q, i, r) let S =
⋃k

i=1 S
r
i ∪ St be the parti-

tioning of S into the k closed recurrent classes Sr
i and transient states St. The

infinite-horizon total value function V∞ exists if and only if for all i = 1, . . . , k
and for all s, s′ ∈ Sr

i it holds that

r(s) = 0 and i(s, s′) = 0.

Theorem 4.2 (Total Reward Measure – Direct Evaluation and Em-
bedding). If for a CTMRM (S,Q, i, r) the total value function V∞ exists, then
it is the unique solution to the system of linear equations

V∞(s) = R(s) +
∑
s′ �=s

P (s, s′)V∞(s′) for s ∈ St

V∞(s) = 0 for s ∈ S \ St.

(4.10)

Here, P (s, s′) are the embedded transition probabilities and R(s) is the state-
based embedded reward, i.e. R(s) =

∑
s′∈S R(s, s

′)P (s, s′) (see (4.4)). In vector
notation this system of equation reads as

(I − P)V∞ = R with V∞(s) = 0 ∀s ∈ S \ St.

If the impulse reward function i is represented as a matrix with entries i(s, s′)
then this system of equations can be written in vector notation as

−QV∞ = diag(iQT) + r, (4.11)

where QT is the transpose of the matrix Q and diag(iQT) is the diagonal of the
matrix iQT . This equation represents the direct evaluation of the total reward
measure (without performing the embedding).

Markov Reward Models and Markov Decision Processes 211

Proof. In Sect. 4.5 on the discounted reward measure we establish similar equa-
tions to (4.10) which involve a discount rate parameter α. By setting α to 0 and
noting that all occuring expectations exist (4.10) can be derived analogously.
By multiplying (4.10) with E(s) and rearranging terms one can directly deduce
(4.11). The uniqueness holds since the (|St| × |St|)-submatrix of Q with entries
Q(s, s′) for transient states s, s′ ∈ St has full rank. "#

Corollary 4.1 (Total Reward Measure – Continuization).
Let M = (S,Q, i, r) be a CTMRM and M = (S,Q, r) its continuization. If the
total value function V∞ for M exists then it also exists for M and in this case
they are equal, i.e. V∞ is the unique solution to the system of linear equations

QV∞ = −r (4.12)

with V∞(s) = 0 for all recurrent states s.

Proof. Let Sr
i ⊆ S be a closed recurrent class of S and consider a recurrent state

s ∈ Sr
i . If V∞ exists for M, then by Proposition 4.1 it holds that r(s) = 0 and

i(s, s′) = 0 for all s′ ∈ Sr
i in the same recurrent class. Furthermore, if s′ ∈ S \Sr

i

then Q(s, s′) = 0 and therefore r(s) =
∑

s′ �=s i(s, s
′)Q(s, s′) + r(s) = 0. Thus,

the total value function forM denoted by V∞ is also defined and it solves (4.11)
which reads as −QV∞ = r. In order to show that V∞ = V∞ note that the s-th
diagonal entry of the matrix iQT is

∑
s′∈S i(s, s

′)Q(s, s′) =
∑

s′ �=s i(s, s
′)Q(s, s′)

since i(s, s) = 0. Therefore, diag(iQT)+r = r is the continuized rate reward and
the conclusion follows since both V∞ and V∞ solve −QX = r and the solution
is unique (with the property that both are 0 on recurrent states). "#

Corollary 4.2 (Total Reward Measure – Uniformization).
Let M = (S,Q, i, r) be a CTMRM and Mμ = (S, Pμ, Rμ) the μ-uniformized
DTMRM. If the total value function V∞ forM exists then it also exists forMμ

and in this case they are equal, i.e. V∞ is the unique solution to

(I − Pμ)V∞ = Rμ

with V∞(s) = 0 for all recurrent states s.

Proof. From (4.5) and (4.6) it holds that Rμ(s, s′) = i(s, s′) + r(s)
μ and Pμ =

I + 1
μQ. If s and s′ are communicating recurrent states (i.e. in the same closed

recurrent class) then r(s) = 0 and i(s, s′) = 0 by Proposition 4.1 and therefore
Rμ(s, s′) = 0. If V μ∞ denotes the total value function for the μ-uniformized model
Mμ then V μ

∞ exists by Proposition 2.1 since Rμ(s, s′) = 0 for all states s and s′

in the same closed recurrent class and by Theorem 2.1 V μ
∞ is also a solution of

(I − Pμ)V μ∞ = Rμ. It follows from (4.12) that

(I − Pμ)V∞ = − 1

μ
QV∞ =

1

μ
r = Rμ

and since V∞ and V μ
∞ are 0 on recurrent states, it follows that V∞ = V μ

∞. "#

212 A. Gouberman and M. Siegle

4.5 Horizon-Expected and Discounted Reward Measure

In analogy to Sect. 2.3 we want to introduce the discounted reward measure in
the continuous-time case. This reward measure can be formally deduced from
the horizon-expected reward measure, which we are going to define first.

Definition 4.3. Let M = (S,Q, i, r) be a CTMRM and consider a random
horizon length T for M, i.e. T is a non-negative continuous random variable
that is independent of the state process Zt of M. Let V(T) denote the random

finite-horizon total value function that takes values in
{
Vt ∈ RS | t ∈ [0,∞)

}
.

Define the horizon-expected value function as

V (s) := E
[
V(T)(s)

]
,

if the expectation exists for all s ∈ S, i.e. |V(T)(s)| has finite expectation.

The random variable V(T)(s) can be regarded as the conditional expectation

V(T)(s) = Es

[
NT∑
k=1

i(Xk−1, Xk) +

∫ T

0

r(Zt) dt | T
]
= Es

[∫ T

0

r(Zt) dt | T
]

that takes the value Vt(s) if T = t. Let PT denote the probability measure of T .
Due to the law of total expectation the horizon-expected value function V (s) is
the joint expectation with respect to the probability measures PT of T and Ps

of all the Zt, i.e.

V (s) = E

[
Es

[∫ T

0

r(Zt) dt | T
]]

= Es

[∫ T

0

r(Zt) dt

]
, (4.13)

where Es on the right hand side denotes the joint expectation.

Lemma 4.1. Let T be a random horizon length with E [T] <∞ and probability
measure PT . Then the horizon-expected value function V (s) exists and is given
by

V (s) = Es

[∫ ∞

0

r(Zt)PT (T ≥ t) dt
]
= Es

[∞∑
n=0

r(Xn)

∫ Tn+1

Tn

PT (T ≥ t) dt
]
.

The proof can be found in the Appendix on page 237. Note that V (s) can also be
represented directly in terms of the impulse reward i and rate reward r (instead
of the continuized rate reward r) as

V (s) = Es

[∞∑
n=0

(
i(Xn, Xn+1) · PT (T ≥ Tn+1) + r(Xn)

∫ Tn+1

Tn

PT (T ≥ t) dt
)]

.

In this equation, one can also see that an impulse reward i(Xn, Xn+1) for the
(n + 1)-st transition is only accumulated if the time horizon T is not exceeded
by the total elapsed time Tn+1 up to this transition.

Markov Reward Models and Markov Decision Processes 213

Definition 4.4. Let the horizon length T be exponentially distributed with rate
α > 0. In this case the horizon-expected reward measure is called discounted
reward measure with discount rate α (or just α-discounted reward measure)
and its value function will be denoted by V α(s).

The discounted value function V α represented as a vector in R|S| is given by

V α =

∫ ∞

0

e−αtP (t)r dt. (4.14)

This follows directly from Lemma 4.1 together with PT (T ≥ t) = e−αt and
E [r(Zt)] = P (t)r. As in Sect. 2.3 in the discrete-time setting we can also derive a
system of linear equations which allows to compute the discounted value function
V α. The proof can be found in the Appendix on page 238.

Theorem 4.3 (Discounted Reward Measure – Continuization).
The discounted value function with discount rate α > 0 is the unique solution to
the system of linear equations

V α(s) =
r(s)

α+ E(s)
+
∑
s′ �=s

Q(s, s′)
α+ E(s)

V α(s′). (4.15)

In vector notation this system of equations reads as

(Q− αI)V α = −r. (4.16)

Note that in case the total value function V∞ exists (and is thus finite) it is the
limit of the α-discounted value function as α decreases to 0, i.e. for all s ∈ S it
holds that

V∞(s) = lim
α↘0

V α(s). (4.17)

Example 4.3. Figure 4.4 shows the α-discounted value function V α(sinit) for the
initial state sinit = (silence, idle) of the WSN node model from Example 4.1
dependent on the discount rate α. By solving (4.16) we get

V α(sinit) =
20

(
α2 + 72α+ 440

)
α (α2 + 44α+ 280)

.

Clearly, for increasing α the expected horizon length E [T] = 1
α decreases and

thus the discounted value representing the expected energy consumption up to
time T also decreases. On the other hand, if α decreases towards 0, then the
discounted value increases and in our case it diverges to ∞. Note that the total
value function V∞ does not exist for this model. "#

Remember that one of our main goals in this section is to check, whether all the
model transformations in Fig. 4.2 are value-preserving. For a CTMRM (S,Q, r)
with α-discounted value function V α consider its μ-uniformization (S, Pμ, Rμ)

214 A. Gouberman and M. Siegle

0 2 4 6 8 10
Α

20

40

60

80

100
V Α

Fig. 4.4. The discounted value V α(sinit) for the initial state sinit = (silence, idle) as a
function of the discount rate α

with γ-discounted value function V γ . We show that there is no choice of γ ∈ (0, 1)
such that V α = V γ . Thus the μ-uniformization is not value-preserving with
respect to the discounted reward measure. (As a special case it also follows, that
the embedding is not value-preserving as well.)
Assume that there exists γ ∈ (0, 1) such that V α = V γ . On the one hand V α

is the unique solution to (Q − αI)V α = −r and thus QV γ = αV γ − r. On the
other hand, V γ is by Theorem 2.2 the unique solution to (I − γPμ)V γ = Rμ

where Pμ = I + 1
μQ and Rμ = 1

μr. Thus

Rμ = (I − γPμ)V γ =

(
I − γ

(
I +

1

μ
Q

))
V γ = (1− γ)V γ − γ 1

μ
(αV γ − r) .

By rearranging terms it follows that(
1− γα

(1− γ)μ

)
V γ = Rμ,

which means that V γ is a multiple ofRμ and is thus independent of the transition
probabilities Pμ! However, we can save the value-preserving property by observ-
ing the following link between the discounted and the total reward measure in
analogy to the discrete-time case as shown in Remark 2.1.

Remark 4.3. If M = (S,Q, i, r) is a CTMRM then extend M to a CTMRM
M′ = (S′, Q′, i′, r′) with an artificial absorbing reward-free state abs that is
reachable with rate α > 0 from every other state in S, i.e.

S′ := S ∪ {abs} , Q′ :=
(
Q− αI α1

0 0

)
, i′ :=

(
i 0
0 0

)
and r′ :=

(
r
0

)
.

Since abs is the single recurrent state inM′ it follows that the total value function
V ′
∞ forM′ with V ′

∞(abs) = 0 is a solution to (4.12), i.e.

Q′V ′
∞ = −r′,

Markov Reward Models and Markov Decision Processes 215

where r′ is the continuized rate reward ofM′. By definition ofM′ it holds for
all s ∈ S′ \ {abs} = S that i′(s, abs) = 0 and r′(s) = r(s) and it follows that

r′(s) =
∑
s′∈S′
s′ �=s

i′(s, s′)Q′(s, s′) + r′(s) =
∑
s′∈S
s′ �=s

i(s, s′)Q(s, s′) + r(s) = r(s).

Since V α is the α-discounted value function for M it is the unique solution to
(Q− αI)V α = −r and thus

Q′
(
V α

0

)
=

(
Q− αI α1

0 0

)(
V α

0

)
= −

(
r
0

)
= −r′.

Since V ′
∞ is also a solution to Q′V ′

∞ = −r′ and also unique with the property
V ′
∞(abs) = 0 it follows that V α(s) = V ′

∞(s) for all s ∈ S.

This remark allows to provide a further method for the evaluation of the dis-
counted value function by means of uniformization. Note that if μ ≥ E(s) for
all s ∈ S is a uniformization rate for the original model M then μ + α is a
uniformization rate for the extended model M′ = (S′, Q′, i′, r′). The following
theorem states that the rates and the rewards have to be uniformized differ-
ently in order to be able to establish a connection between the α-discounted
value function and a γ-discounted value function for some suitable DTMRM.
For this reason, we refer to the transformation to that DTMRM as separate
uniformization.

Theorem 4.4 (Discounted Reward Measure – separate Uniformiza-
tion). Let M = (S,Q, i, r) be a CTMRM, μ > 0 a uniformization rate for
M and α > 0 a discount rate. Then V α is the unique solution to the system of
linear equations

(I − γPμ) V α = Rμ+α,

where Pμ = I + 1
μQ is the μ-uniformized transition probability matrix, Rμ+α =

1
μ+αr is the (μ+α)-uniformized reward vector and γ = μ

μ+α ∈ (0, 1) is a discount
factor. In other words the α-discounted value function V α for the CTMRMM is
precisely the γ-discounted value function for the DTMRM M̃ := (S, Pμ, Rμ+α)

denoted by Ṽ γ , i.e.
V α = Ṽ γ .

The proof is straightforward and integrated in the following discussion on several
relationships between models and value functions that can occur by the model
transformations. Figure 4.5 shows transformations between Markov chains with-
out rewards. A CTMC (S,Q) is uniformized into a DTMC (S, Pμ) and afterwards
the model is extended with an auxiliary absorbing state abs as described in Re-
mark 2.1 which leads to a DTMC (S′, (Pμ)′) with S′ = S ∪{abs} (γ-extension).
On the other hand, (S,Q) can be directly extended with abs as described in
Remark 4.3 to the model (S′, Q′) and then uniformized with rate μ + α (α-
extension). This diagram commutes, since

216 A. Gouberman and M. Siegle

(Pμ)′ =
(
γPμ (1 − γ)1
0 1

)
=

(μ
μ+α (I +

1
μQ)

α
μ+α1

0 1

)
=

(
I 0
0 1

)
+

1

μ+ α

(
Q − αI α1

0 0

)
= (P ′)μ+α.

Fig. 4.5. Commuting model transformations on discrete-time and continuous-time
Markov chains

In contrast, Fig. 4.6 shows the same transformations applied to (continuized)
Markov reward models. This diagram does not commute, since in general

(Rμ)′ =
1

μ

(
r
0

)
�= 1

μ+ α

(
r
0

)
= (R′)μ+α.

However, due to (P ′)μ+α = (Pμ)′ it is possible to compute the infinite-horizon
total value function V∞ on the DTMRM (S′, (P ′)μ+α, (R′)μ+α). Let us call its

restriction on S as Ṽ γ . Since the uniformization is value-preserving with re-
spect to the infinite-horizon total reward measure (see Corollary 4.2) and due to

Remark 4.3 it follows that V α = Ṽ γ , which concludes the proof of Theorem 4.4.

4.6 Average Reward Measure

In Sect. 2.4 we defined the discrete-time average reward by considering a se-
quence of finite-horizon value functions VN which were averaged over the hori-
zon length N and the limit as N →∞ was considered. In complete analogy we
define the average reward in the continuous-time case.

Definition 4.5. Let M = (S,Q, i, r) be a CTMRM with finite-horizon total
value function VT . The average reward value function is defined as

g(s) = lim
T→∞

1

T
VT (s),

if the limit exists for all s ∈ S.

Markov Reward Models and Markov Decision Processes 217

Fig. 4.6. Model transformations (big arrows) on discrete-time and continuous-time
reward models that do not commute. A small arrow indicates an evaluation of a reward
measure on a model. The dashed lines connect value functions that are related by
equality. The value function Ṽ γ is not directly evaluated on (S′, (Pμ)′, (R′)μ+α) but is

induced by V∞ (feathered arrow) as a restriction from S′ to S and it holds V α = Ṽ γ .

Example 4.4. In the WSN node model from Example 4.1 we saw in (4.9) that

VT (sinit) =
220
7 T +f(T) with some function f(T) such that f(T)

T → 0 as T →∞.
This result means, that on average over infinite time the energy consumption is
g(s) = 220

7 per hour (compare this with the slope of VT (sinit) in Fig. 4.3). "#

In the following we want to provide methods for the computation of the average
reward that do not rely on an explicit representation of VT which is computed
by integration over the transient probability matrix P (t) = eQt as in Theorem
4.1. In Sect. 4.2.3 we mentioned that P (t) converges to the limiting matrix P ∗.
Remind that P ∗ fulfills the properties

P (t)P ∗ = P ∗P (t) = P ∗P ∗ = P ∗ and P ∗Q = QP ∗ = 0.

Proposition 4.2. Let r be the continuized rate reward of a CTMRM (S,Q, i, r).
Then the average reward can be computed by

g = P ∗r.

Proof. By Theorem 4.1 it holds that

g = lim
T→∞

1

T
VT = lim

T→∞
1

T

∫ T

0

P (t)r dt.

Fix two states s and s′ and consider the monotonically increasing function

h(T) :=
∫ T

0
P (t)(s, s′) dt ≥ 0. If h(T) is unbounded it follows by the rule of

l’Hospital that

lim
T→∞

h(T)

T
= lim

T→∞
P (T)(s, s′) = P ∗(s, s′).

218 A. Gouberman and M. Siegle

In the other case if h(T) is bounded then clearly P (t)(s, s′) converges to 0. But
this is only the case if either s and s′ are in different closed recurrent classes or
s′ is transient and in both cases it holds that P ∗(s, s′) = 0. Thus from

lim
T→∞

h(T)

T
= 0 = P ∗(s, s′)

the conclusion follows. "#

As in Sect. 2.4 we also show another possibility to evaluate the average reward
which does not rely on the computation of P ∗ and will be used in the subsequent
section on CTMDPs. For this reason we define the notion of a deviation matrix
H and a bias h in the continuous-time case.

Definition 4.6. For a CTMRMM = (S,Q, i, r) define the deviation matrix
H as

H :=

∫ ∞

0

(P (t)− P ∗) dt,

where integration is performed componentwise. Further define

h := Hr =

∫ ∞

0

(P (t)r − g) dt

as the bias ofM.

Note that Q, H and P ∗ satisfy the following equations:

QH = HQ, P ∗ = I +QH and HP ∗ = P ∗H = 0. (4.18)

That can be easily derived by the Kolmogorov equations (4.2).
In the following, we connect the discounted and the average reward measures.
Consider for a fixed s ∈ S the discounted value V α(s) as a function of α ≥ 0.
Then V α(s) might have a pole at α = 0 and can be extended as a Laurent series
in α. For more information on the Laurent series expansion in continuous time
we refer to Theorem A.1 in the Appendix. This theorem directly induces the
Laurent series decomposition of the α-discounted value function as is stated in
the following corollary.

Corollary 4.3 (Laurent Series of the Discounted Value Function). The
Laurent series expansion of V α is given by

V α = α−1g +

∞∑
n=0

αnHn+1r.

Recall (4.17): In case the infinite-horizon total value V∞ exists it follows for the
average reward g and the bias h from the Laurent expansion for α → 0 that
g = 0 and h = V∞. Thus on average no reward is gained over the infinite horizon
which can also be seen by Proposition 4.1 since there are no rewards in recurrent
states. By Definition 4.6 the bias h measures the total long-term deviation of the

Markov Reward Models and Markov Decision Processes 219

accumulated rewards from the average reward, i.e. h = limT→∞ (VT − g · T). As
in the discrete-time setting, the bias can also be seen as the excess of rewards r
until the system reaches its steady-state. Moreover, h is also the infinite-horizon
total value function for the CTMRM with average-corrected rewards r − g (if
we also allow for non-absolute convergence in Definition 4.2). Thus, if g = 0 it
follows that h = V∞.

Example 4.5. If we decompose the rational function for V α(sinit) in Example 4.3
into a Laurent series at α = 0 then

V α(sinit) =
20

(
α2 + 72α+ 440

)
α (α2 + 44α+ 280)

=
220

7α
+

10

49
− 25α

343
+

103α2

9604
+O

(
α3
)
.

We see that the average reward g for sinit is
220
7 and the bias h is 10

49 . Compare
these values also with (4.9). "#
In the following we show two possibilities to compute the average reward by
a system of linear equations. The first is a direct evaluation which uses the
CTMRM model data Q, r and i and the second system of linear equations relies
on the uniformized DTMRM.

Theorem 4.5 (Average Reward Measure – Direct Evaluation). The av-
erage reward g and the bias h fulfill the following system of linear equations:(

−Q 0
I −Q

)(
g
h

)
=

(
0
r

)
. (4.19)

Furthermore, a solution (u, v) to this equation implies that u = P ∗r = g is the
average reward and there exists w ∈ ker(I −P ∗) such that v−w = h is the bias.

Proof. Let g = P ∗r be the average reward and h = Hr the bias. From QP ∗ = 0
it follows that Qg = 0 and by using the Kolmogorov equations (4.2) it holds
that

Qh = Q

∫ ∞

0

(P (t)− P ∗)r dt =
∫ ∞

0

P ′(t)r dt = (P ∗ − I)r = g − r

and thus (4.19) follows. Now let (u, v) be a solution to (4.19). Then clearly

0 = Qu = P (t)Qu = P ′(t)u and by integrating
∫ t

0
P ′(τ)u dτ = 0 and using

P (0) = I it follows that P (t)u = u for all t ≥ 0. Therefore, if t → ∞ together
with u = r + Qv and P ∗Q = 0 it follows u = P ∗u = P ∗(r + Qv) = P ∗r = g.
Now

(I − P ∗)v = −
∫ ∞

0

P ′(t)v dt P (0) = I

=−
∫ ∞

0

P (t)Qv dt = −
∫ ∞

0

P (t)(g − r) dt (4.2), u−Qv = r, u = g

=

∫ ∞

0

(P (t)r − g) dt =
∫ ∞

0

(P (t)− P ∗)r dt P (t)g = g ∀t ≥ 0

=Hr = (H − P ∗H)r = (I − P ∗)h. (4.18), h = Hr

Therefore, v = h+ w for some w ∈ ker(I − P ∗). "#

220 A. Gouberman and M. Siegle

In the special case, ifM is unichain then ker(Q) = 1R is one-dimensional and
therefore g = g01 ∈ ker(Q) is constant with g0 ∈ R. This value can be computed
by finding a solution to g01−Qh = r. Alternatively, in a unichain CTMRM the
unique stationary distribution ρ fulfills ρQ = 0 and ρ1 = 1 and thus g0 = ρr.

Theorem 4.6 (Average Reward Measure – Uniformization). Consider
a CTMRMM = (S,Q, i, r) with average reward g and let μ be a uniformization
rate. Then g is the unique solution to the system of equations(

I − Pμ 0
μI I − Pμ

)(
g
h

)
=

(
0
Rμ

)
.

If Mμ = (S, Pμ, Rμ) is the μ-uniformized model and gμ the average reward of
the DTMRMMμ then

g = μgμ.

The statement of this theorem can be interpreted as follows: In the continuous-
time model g(s) is the average reward per time from initial state s, while in the
corresponding μ-uniformized discrete-time model gμ(s) is the average reward
per transition. In the uniformized model the expected number of transitions per
time unit is exactly the rate μ (which corresponds to Little’s law) and thus
g(s) = μgμ(s). Note also that one can assume without loss of generality that all
exit rates E(s) satisfy E(s) ≤ 1 by changing the time scale. In this case, one
can choose μ := 1 and it follows that g = gμ. For this reason, the uniformiza-
tion transformation (with μ = 1 expected number of transitions per time unit)
preserves the average reward measure.

Proof. We first show that g = μgμ. Theorem 4.4 allows to link for each dis-
count rate α > 0 the α-discounted continuous-time value V α to the γ-discounted
discrete-time value Ṽ γ of the separate uniformized DTMRM (S, Pμ, Rμ+α) with
discount factor γ = μ

μ+α . From the continuous-time Laurent series in Corollary

4.3 it follows that g = limα→0 αV
α. On the other hand, since limα→0R

μ+α =
Rμ it follows from the discrete-time Laurent series in Theorem 2.3 that gμ =
limρ→0

ρ
1+ρ Ṽ

γ , where ρ = 1−γ
γ = α

μ . Combining both gives

gμ = lim
ρ→0

ρ

1 + ρ
Ṽ γ = lim

α→0

α

μ+ α
V α =

1

μ
g

and the conclusion follows. The system of the linear equations can be directly
established from Theorem 2.4 with Pμ = I + 1

μQ and Rμ = 1
μr. "#

4.7 Big Picture – Model Transformations

We summarize all the transformations and evaluation methods presented in this
section in Fig. 4.7. Theorem 4.1 allows to continuize a CTMRM (S,Q, i, r) into
a CTMRM (S,Q, r) and hereby preserving all considered value functions. For

Markov Reward Models and Markov Decision Processes 221

Fig. 4.7. Big Picture: Value-preserving transformations from the continuization
(S,Q, r) of a CTMRM (S,Q, i, r)

this reason, we omit the model (S,Q, i, r) in the figure. The embedded DTMRM
(S, P,R) is defined by

P = I + E−1Q and R = diag(iPT) + E−1r ∈ R
|S|,

where E−1 is defined as a diagonal matrix with entries 1
E(s) if E(s) �= 0 and 0

otherwise. The vector diag(iPT) is the state-based view on the impulse rewards
i(s, s′) collected in a matrix i. The μ-uniformized DTMRM (S, Pμ, Rμ) is defined
by

Pμ = I +
1

μ
Q and Rμ = diag

(
i (Pμ)T

)
+

1

μ
r ∈ R

|S|.

The total reward measure is value-preserving for both transformations embed-
ding and uniformization. Therefore, all presented methods for computation of

222 A. Gouberman and M. Siegle

V∞ in continuous and discrete time can be used. In order to transform the dis-
counted reward measure with discount rate α we need to consider an extended
model (see Remark 4.3). The evaluation of the total reward measure on the ex-
tended model is equivalent to the evaluation of the discounted reward measure
on the original model. For the average reward model, there is in general no simple
direct method to compute the average reward g via embedding, since continuous
time and the transition-counting time are not compatible when building aver-
ages over time.

We want to conclude this section with a remark on more general reward
structures. Beyond impulse rewards or rate rewards as we defined, the authors
of [22], [23] and [35] also analyze rewards that can vary over time. This varia-
tion can be homogeneous (depending on the length of a time interval) or non-
homogeneous (depending on two points in time). These reward structures are
mostly accompanied by the more general model class of Semi-Markov Reward
Processes. Furthermore, [30] defines path-based rewards which can be analyzed
by augmenting the model with special reward variables, such that the state space
does not need to be extended for path information.

5 Continuous Time Markov Decision Processes

In this section we merge both model types MDP and CTMRM together into a
CTMDP model. This section is rather short, because all of the necessary work
has been already done in the preceding sections. For this reason, we establish
connections to the previous results. Moreover, we also present an additional
method for the computation of the average reward which directly works on
CTMDPs.

5.1 Preliminaries and Retrospection

Definition 5.1. A continuous-time Markov Decision Process (CTMDP)
is a structureM = (S,Act, e,Q, i, r), where S is a finite state space, Act a finite
set of actions, e : S → 2Act \∅ the action-enabling function, Q : S×Act×S → R

an action-dependent generator function, i : S×Act×S → R the action-dependent
impulse reward function with i(s, a, s) = 0 for all a ∈ e(s) and r : S × Act → R

the action-dependent rate reward function.

Completely analogous to Sect. 3 we define the set of policies

Π := {π : S → Act | π(s) ∈ e(s)} .

Applying π to a CTMDPM induces a CTMRMMπ = (S,Qπ, iπ, rπ), where

Qπ(s, s′) := Q(s, π(s), s′), iπ(s, s′) := i(s, π(s), s′) and rπ(s) := r(s, π(s)).

A reward measure R for the CTMDPM induces for each policy π a value V π

forMπ.

Markov Reward Models and Markov Decision Processes 223

Definition 5.2. Let M be a CTMDP with reward measure R and for each
π ∈ Π let V π be the value of π with respect to R. The value V ∗ ofM is defined
as

V ∗(s) := sup
π∈Π

V π(s).

A policy π∗ ∈ Π is called optimal if

∀s ∈ S ∀π ∈ Π : V π∗
(s) ≥ V π(s).

In order to optimize the CTMDP we can transform M by embedding or uni-
formization into an MDP and by continuization into another CTMDP. The trans-
formations follow the Big Picture as presented in Sect. 4.7 (Fig. 4.7) with the
difference that all action-dependent quantities (i.e. Q, i and r) are transformed in
an action-wise manner. The following theorem states that these transformations
preserve both the optimal value and the optimal policies.

Theorem 5.1. LetM be a CTMDP with policy space Π, optimal value V ∗ and
a set of optimal policies Π∗ ⊆ Π. Further let M̂ be a transformed model (MDP

or CTMDP) as in Fig. 4.7 with policy space Π̂, value V̂ ∗ and optimal policies

Π̂∗ ⊆ Π̂. Then
V ∗ = V̂ ∗ and Π∗ = Π̂∗.

Proof. Note that V ∗ and V̂ ∗ are defined over policies, i.e.

V ∗ = sup
π∈Π

V π and V̂ ∗ = sup
π∈Π̂

V̂ π.

All the transformations in Fig. 4.7 do not transform S, Act and e, thus Π = Π̂ .
Furthermore, for each π ∈ Π the transformations preserve the value V π, i.e.
V π = V̂ π and thus V ∗ = supπ∈Π V

π = supπ∈Π̂ V̂
π = V̂ ∗. In order to show that

Π∗ = Π̂∗ let π∗ ∈ Π∗. Then for all s and for all π ∈ Π by definition of π∗ it
holds that

V π∗
(s) ≥ V π(s) = V̂ π(s) and V π∗

(s) = V̂ π∗
(s).

and therefore π∗ is optimal for M̂ , i.e. π∗ ∈ Π̂∗. In complete analogy it follows
that Π̂∗ ⊆ Π∗ and the equality for the sets of optimal policies follows. "#

5.2 Average Reward Measure

All the necessary work has already been done for analyzing CTMDPs by trans-
formation to MDPs. It remains to provide optimality equations for the average
reward and algorithms which can be used directly on CTMDPs. Consider a
CTMDP (S,Act, e,Q, i, r) with average reward measure and let

r(s, a) =
∑
s′ �=s

i(s, a, s′)Q(s, a, s′) + r(s, a)

224 A. Gouberman and M. Siegle

denote the continuized rate reward. Define the Bellman operators Bav : RS → RS

and Bg
bias : R

S → RS (parametrized by g ∈ RS) as follows:

(Bavg)(s) := max
a∈e(s)

{∑
s′∈S

Q(s, a, s′)g(s′)

}

(Bg
biash)(s) := max

a∈eg(s)

{
r(s, a) +

∑
s′∈S

Q(s, a, s′)h(s′)

}
− g(s)

where eg(s) :=

{
a ∈ e(s) |

∑
s′∈S

Q(s, a, s′)g(s′) = 0

}

These operators look similar to the Bellman operators (3.10) and (3.11) in the
discrete-time case. The difference is that instead of searching for fixed-points we
need to search for zeros of Bav and Bg

bias (see (4.19)). This gives the first and the
second Bellman optimality equations

max
a∈e(s)

{∑
s′∈S

Q(s, a, s′)g(s′)

}
= 0 (5.1)

max
a∈eg(s)

{
r(s, a) +

∑
s′∈S

Q(s, a, s′)h(s′)

}
− g(s) = 0. (5.2)

The following existence theorem is the analogue version of Theorem 5.2 for
discrete-time MDPs.

Theorem 5.2 (Existence Theorem).

(i) The average optimal value function g∗ is a solution to (5.1), i.e Bavg∗ = 0.

For g = g∗ there exists a solution h to (5.2), i.e. Bg∗
biash = 0. If g and h are

solutions to (5.1) and (5.2) then g = g∗.
(ii) There exists an optimal policy π∗ and it holds that gπ

∗
= g∗.

(iii) For any solution h to (5.2) with g = g∗ an optimal policy π∗ can be derived
from

π∗(s) ∈ argmax
a∈eg∗ (s)

{
r(s, a) +

∑
s′∈S

Q(s, a, s′)h(s′)

}
.

For a direct proof we refer to [17]. We propose here another proof sketch based
on uniformization and its value-preserving property.

Proof. Without loss of generality we assume that E(s, a) ≤ 1 and set the uni-
formization rate μ := 1 such that the uniformization is value-preserving. The
μ-uniformized MDP is given byMμ = (S,Act, e, Pμ, Rμ) where

Pμ(s, a, s′) = δs,s′ +Q(s, a, s′) and Rμ(s, a) = r(s, a).

If (gμ)∗ denotes the optimal average reward forMμ then by Theorem 5.1 it holds
that g∗ = (gμ)∗. Since finding a fixed point of some operator T is equivalent to

Markov Reward Models and Markov Decision Processes 225

finding a zero of the operator B = T − id, where id is the identity operator, part
(i) follows. Furthermore, Theorem 3.7 guarantees the existence of an optimal
policy for Mμ and by Theorem 5.1 also for M such that parts (ii) and (iii)
follow. "#

We restate the policy iteration algorithm from [17] since our CTMDP model as
introduced in Definition 5.1 allows also impulse rewards.

Theorem 5.3 (Policy Iteration). Let M = (S,Act, e,Q, i, r) be a CTMDP
and r(s, a) the continuized rate reward. For an initial policy π0 ∈ Π define the
following iteration scheme:

1. Policy evaluation: Compute a solution (gπn , hπn , w)T to⎛⎝−Qπn 0 0
I −Qπn 0
0 I −Qπn

⎞⎠⎛⎝gπn

hπn

w

⎞⎠ =

⎛⎝ 0
rπn

0

⎞⎠
2. Policy improvement: Define for each state s the set of improving actions

Bn+1(s) :=

⎧⎨⎩a ∈ e(s) |
∑

s′ Q(s, a, s
′)gπn(s′) > 0 ∨

(
∑

s′ Q(s, a, s
′)gπn(s′) = 0

⇒ r(s, a) +
∑

s′ Q(s, a, s
′)hπn(s′) > gπn(s))

⎫⎬⎭
and choose an improving policy πn+1 such that

πn+1(s) ∈ Bn+1(s) if Bn+1(s) �= ∅ or πn+1(s) := πn(s) if Bn+1(s) = ∅.

Termination: If πn+1 = πn then πn is an optimal policy. Otherwise go to the
policy evaluation phase with πn+1.

The values gπn are non-decreasing and policy iteration terminates in a finite
number of iterations with an optimal policy πn and optimal average reward gπn.

The policy evaluation phase in this algorithm can be derived from the evaluation
phase of the policy iteration algorithm in Theorem 3.8 for the uniformized model.
However, the main difference between these algorithms is the policy improvement
phase. Here Bn+1(s) provides all actions which lead to at least some improvement
in the policy πn whereas in Theorem 3.8 a greedy maximal improving policy is
chosen: Gn+1(s) respectively Hn+1(s). Note that Gn+1(s)∪Hn+1(s) ⊆ Bn+1(s).
Of course, the choice of πn+1 in Theorem 5.3 can also be established by the
greedy improving policy.

Example 5.1 (Bridge circuit). Consider a brige circuit as outlined in the relia-
bility block diagram in Fig. 5.1.

The system is up, if there is at least one path of working components from
s to t and it is down if on every path there is at least one failed component.
Each working component C ∈ {L1, L2, B,R1, R2} can fail after an exponentially
distributed time with rate λC and there is a single repair unit, which can fix
a failed component C after an exponentially distributed time with rate μC .

226 A. Gouberman and M. Siegle

Fig. 5.1. The reliability block diagram of the bridge circuit system. An edge represents
a component, which can be working or failed.

We assume that the components L1 and L2 (respectivelyR1 andR2) are identical
and the parameter values for all components are

λLi = 1.0 λB = 0.1 λRi = 2.0

μLi = 10.0 μB = 100.0 μRi = 10.0.

The action model allows the repair unit to be assigned to a failed component
or to decide not to repair. We further assume that repair is preemptive, i.e. if
during repair of a failed component another component fails, then the repair
unit can decide again which component to repair. Note that due to the memory-
less property of the exponential repair distribution, the remaining repair time in
order to complete the repair does not depend on the elapsed time for repair. We
want to find optimal repair policies, in order to pursue the following two goals:

(G1): maximize the MTTF (mean time to failure)
(G2): maximize the availability (i.e. the fraction of uptime in the total time).

Figure 5.2 shows an excerpt of the state space (with 32 states), which we apply
to both goals (G1) and (G2). Note that for both measures (MTTF and avail-
ability) we define the reward structure which consists only of the rate reward r,
which is 1 on up states and 0 on down states. The difference between both goals
affects the state space as follows: For (G1) the 16 down states are absorbing
(for every policy), while for (G2) a repair of failed components is also allowed in
down system states.

We optimize (G1) by transforming the CTMDP by embedding into a discrete-
time SSP (S, P,R) (cf. Definition 3.4 and Fig. 4.7) and hereby aggregate all
absorbing down states to the goal state for the SSP. By embedding transforma-
tion, the reward R(s, a) is the expected sojourn time in state s under action a
in the CTMDP model, i.e. for all a ∈ e(s)

R(s, a) =

{
1

E(s,a) , for s �= goal

0, for s = goal
,

where E(s, a) is the exit rate. Table 5.1 shows the resulting optimal policy and
its corresponding maximal MTTF value function.

Markov Reward Models and Markov Decision Processes 227

Fig. 5.2. State space of the bridge circuit CTMDP model. State encoding 01011 repre-
sents (from left to right) that L1 has failed, L2 is working, B has failed, R1 is working
and R2 is working. From every state where at least some component has failed, there
are repair actions and from each state there is also the idle action indicating that the
repair unit can choose not to repair. Shadowed states represent down system states.

Table 5.1. Optimal policy and maximal MTTF value function of the bridge ciruit
system (Example 5.1)

11111 11110 11101 11011 11010 11001 10111 10110 10101
idle repR2 repR1 repB repB repB repL2 repR2 repR1
1.449 1.262 1.262 1.448 1.234 1.234 1.324 1.095 1.087

10011 10010 01111 01110 01101 01011 01001 goal
repB repB repL1 repR2 repR1 repB repB idle
1.291 1.073 1.324 1.087 1.095 1.291 1.073 0.000

Problem (G2) is optimized by applying the CTMDP policy iteration algo-
rithm for the average reward as outlined in Theorem 5.3. Beginning with the
initial policy constantly idle, policy iteration converged in 6 iteration steps to
the optimal policy given in Table 5.2.

Note that for (G2) the model can be shown to be unichain. Thus, the average
reward gπ is constant for all policies π such that Qπgπ = 0. For this reason, the
policy evaluation and improvement phases in the policy iteration algorithm can
be simplified. "#

228 A. Gouberman and M. Siegle

Table 5.2. Optimal policy for the availability of the bridge ciruit system (Example
5.1). The maximal availability is 0.917757 independent of the initial state.

11111 11110 11101 11100 11011 11010 11001 11000 10111 10110 10101
idle repR2 repR1 repR1 repB repR2 repR1 repR1 repL2 repR2 repR1

10100 10011 10010 10001 10000 01111 01110 01101 01100 01011 01010
repR1 repB repR2 repB repR1 repL1 repR2 repR1 repR2 repB repB

01001 01000 00111 00110 00101 00100 00011 00010 00001 00000
repR1 repR2 repL1 repL1 repL2 repL1 repL1 repL1 repL2 repL2

6 Conclusion and Outlook

In this tutorial, we presented an integrated picture of MRMs and MDPs over
finite state spaces for both discrete and continuous time. The theory and appli-
cation area for this kind of models is very popular and broad. For this reason, we
just focussed on the fundamentals of the theory. We reviewed the most impor-
tant basic facts from literature, which are inevitable for a deeper understanding
of Markovian models. Furthermore, we set up the theory step by step from
discrete-time MRMs up to continuous-time MDPs and pointed out important
links between these theories. We also connected these models by a number of
model transformations and highlighted their properties. In order to show the ap-
plicability of these models, we introduced small prototypical examples, coming
from the domain of performance and dependability evaluation and optimization.
Of course, many current applications in the optimization of dependable systems
suffer from the curse of dimensionality. However, there are established tech-
niques which can be used in order to overcome this curse and make evaluation
and optimization for large practical models accessible, e.g. approximate solutions
(e.g. approximate dynamic programming), simulative approaches (reinforcement
learning) or the use of structured models. There are also several important ex-
tensions to the Markov model types we could not address in this introductory
tutorial, such as partially observable MDPs (used especially in the area of AI),
denumerable state and action spaces (e.g. for queueing systems) or even contin-
uous state and action spaces (leading directly to control theory).

A Appendix

A.1 Lemmata and Remarks

Lemma A.1.

(i) Let N be a non-negative discrete random variable with expected value and
(an)n∈N a bounded sequence. Then

E

[
N∑

n=0

an

]
=

∞∑
n=0

anP (N ≥ n).

Markov Reward Models and Markov Decision Processes 229

(ii) Let T be a non-negative continuous random variable with expected value and
a : [0,∞)→ R an integrable and bounded function. Then

E

[∫ T

0

a(t) dt

]
=

∫ ∞

0

a(t)P (T ≥ t) dt.

Proof. We show only (i) – the proof for (ii) is analogous when summation is
replaced by integration. Since an is bounded and E [N] =

∑∞
n=0 P (N ≥ n) <∞

it follows that
∑∞

n=0 anP (N ≥ n) converges absolutely. From
∞∑

n=0

anP (N ≥ n) =
∞∑
n=0

∞∑
k=n

anP (N = k) =
∞∑
n=0

∞∑
k=0

anP (N = k)�{k≥n}(n, k)

we can interchange both infinite summations by the Fubini theorem. It follows

∞∑
n=0

anP (N ≥ n) =
∞∑
k=0

∞∑
n=0

anP (N = k)�{n≤k}(n, k)

=
∞∑
k=0

k∑
n=0

anP (N = k) = E

[
N∑

n=0

an

]
. "#

Remark A.1. As presented in Sect. 4.2.2 a CTMC M = (S,Q) induces the
stochastic processes Xn, τn, Tn, Nt and Zt. If we fix a uniformization rate μ >
0 then M also induces the uniformized stochastic processes X̃n, τ̃n, T̃n,
Ñt and Z̃t over Ω = (S × (0,∞])N. Here X̃n is the n-th visited state in the

uniformized DTMC and τ̃n is the time up to transition in state X̃n, i.e. all τ̃n
are independent and exponentially distributed with rate μ. Moreover, the total
elapsed time T̃n :=

∑n−1
k=0 τ̃k for the first n transitions is Erlang distributed with

n phases and rate μ and the number Ñt := max{n | T̃n(ω) ≤ t} of (uniformized)
transitions up to time t ≥ 0 is Poisson distributed with parameter μt. Note
also that Z̃t := X̃Ñt

= XNt = Zt for all t ≥ 0. Thus, when uniformization is
considered as adding exponentially distributed self-loop transitions to states of
the CTMC M, then the continuous-time state process Zt is not modified at
all. Therefore, the probability measures Ps of the CTMC for all s ∈ S are left
invariant under uniformization and especially the transient probability matrix
P (t) as defined in (4.1). "#
Lemma A.2. Consider a CTMCM=(S,Q) with discrete-time and continuous-
time state processes Xn and Zt. Let

nT (s, s
′) := Es0

[
NT∑
k=1

�{Xk−1=s,Xk=s′}

]
be the expected number of transitions from state s to state s′ �= s within the time
interval [0, T] from a fixed initial state X0 = s0. Then

nT (s, s
′) = Q(s, s′)

∫ T

0

Ps0 (Zt = s) dt. (A.1)

230 A. Gouberman and M. Siegle

Proof. If s is absorbing then clearly (A.1) holds and we can assume in the fol-
lowing that E(s) > 0. We abbreviate in the following the notation by E := Es0

and P := Ps0 . Define

nT (s) :=
∑
s′ �=s

nT (s, s
′) = E

[
NT∑
k=1

�{Xk−1=s}

]
=

∞∑
k=1

P (Xk−1 = s)P (NT ≥ k)

as the number of complete visits to state s, such that s has been left before time
T . From P (Xk−1 = s,Xk = s′) = P (Xk = s′|Xk−1 = s)P (Xk−1 = s) it follows
that

nT (s, s
′) = P (s, s′)

∞∑
k=1

P (Xk−1 = s)P (NT ≥ k) = P (s, s′)nT (s),

where P (s, s′) = δs,s′ +
Q(s,s′)
E(s) is the embedded transition probability. We use

uniformization as means for proof with a uniformization rate μ ≥ maxs∈S E(s).

Let X̃k, τ̃k, T̃k and Ñt be the uniformized stochastic processes as defined in

Remark A.1. Then T̃k is Erlang distributed with density fT̃k
(t) = e−μt μ

ktk−1

(k−1)! for

t ≥ 0 and Ñt has the Poisson probabilities P (Ñt = k) = e−μt (μt)
k

k! . The total
accumulated time for complete visits in s up to time T fulfills

1

E(s)
E

[
NT∑
k=1

�{Xk−1=s}

]
=

1

μ
E

⎡⎣ ÑT∑
k=1

�{X̃k−1=s}

⎤⎦
and therefore

nT (s) =
E(s)

μ
E

⎡⎣ ÑT∑
k=1

�{X̃k−1=s}

⎤⎦
is a fraction of the number of uniformized transitions up to time T from state s
to some arbitrary state s′. It follows that

nT (s) =
E(s)

μ
E

⎡⎣ ÑT∑
k=1

�{X̃k−1=s}

⎤⎦ =
E(s)

μ

∞∑
k=1

P (X̃k−1 = s)P (ÑT ≥ k)

=
E(s)

μ

∞∑
k=0

P (X̃k = s)P (T̃k+1 ≤ T)

=
E(s)

μ

∞∑
k=0

P (X̃k = s)

∫ T

0

e−μtμ
k+1tk

k!
dt

= E(s)

∫ T

0

e−μt
∞∑
k=0

P (X̃k = s)
(μt)k

k!
dt = E(s)

∫ T

0

P (Zt = s) dt

since

P (Zt = s) =

∞∑
k=0

P (Zt = s | Ñt = k)P (Ñt = k) =

∞∑
k=0

P (X̃k = s)e−μt (μt)
k

k!
.

Markov Reward Models and Markov Decision Processes 231

Thus, (A.1) follows from P (s, s′) = Q(s,s′)
E(s) for s′ �= s and nT (s, s

′) =P (s, s′)nT (s).
"#

Remark A.2. In the proof of Lemma A.2, we have applied uniformization as a
detour in order to show that

nT (s, s
′) = Q(s, s′)

∫ T

0

Ps0 (Zt = s) dt.

There is also a more direct way to show this equation by an argument that is used
in the proof of the PASTA property (“Poisson Arrivals See Time Averages”) [41].
The PASTA property is a tool that is frequently used in the theory of queueing
systems. Consider a system that is represented by the Markov chainM = (S,Q)
with state process Zt for t ≥ 0 and fix two states s and s′ with Q(s, s′) > 0.
Let τs,s′ be the exponentially distributed time with rate Q(s, s′) that governs
the transition from s to s′ as shown in Sect. 4.1. Further define an independent

sequence of such random variables τ
(n)
s,s′ , n ∈ N with same distribution as τs,s′ .

Then the process At := max
{
n |

∑n−1
k=0 τ

(k) ≤ t
}
is a Poisson process with rate

Q(s, s′) and is regarded as a stream of arriving jobs to the system. Since τs,s′
is memoryless it holds that when the system is in state s and an arrival occurs
then the system performs a transition to s′. Therefore, the counting process
Yt :=

∑Nt

k=1 �{Xk−1=s,Xk=s′} is precisely the number of arrivals of At to the
system (up to time t) that find the system in state s. Further let Ut := �{Zt=s}
be the process that indicates whether the system is in state s at time t. It
holds that Yt can be represented as a stochastic Riemann-Stiltjes integral of the
process Ut with respect to the arrival process At, i.e. for all T ≥ 0 it holds

that YT =
∫ T

0 Ut dAt with probability 1. Note that for each t ≥ 0 the set of
future increments {At+s −As | s ≥ 0} and the history of the indicator process
{Us | 0 ≤ s ≤ t} are independent. Thus the “lack of anticipation assumption” as
needed for [41] is satisfied and it follows that

nT (s, s
′) = Es0 [YT] = Q(s, s′) · Es0

[∫ T

0

Ut dt

]
= Q(s, s′)

∫ T

0

Ps0(Zt = s) dt.

"#

Lemma A.3. Let T be a non-negative continuous random horizon length for a
CTMRMM = (S,Q, i, r) and independent of the state process Zt ofM. Further
let NT = max {n | Tn ≤ T } be the random number of transitions up to time T .
If the k-th moment of T exists, then it also exists for NT .

In order to prove this theorem we need the following definition.

Definition A.1. For two random variables X and Y with distributions FX and
FY we say that X is stochastically smaller then Y (denoted by X) Y) if
FX(x) ≥ FY (x) for all x ∈ R.

It follows that if X) Y then E [g(X)] ≤ E [g(Y)] for a monotonically increasing
function g.

232 A. Gouberman and M. Siegle

Proof. Let Xn, τn, Tn andNt be the stochastic processes as defined in Sect. 4.2.2.
Further choose μ := max {E(s) | s ∈ S} as a uniformization rate and X̃n, τ̃n, T̃n
and Ñt the uniformized processes as in Remark A.1. First we show thatNT) ÑT :
From μ ≥ E(s) for all s it follows that τ̃n) τn for all n and thus T̃n) Tn.
Therefore

NT = max{n | Tn ≤ T }) max{n | T̃n ≤ T } = ÑT

and thus E[Nk
T] ≤ E[Ñk

T]. In order to show that E[Nk
T] is finite we show E[Ñk

T] <

∞. It holds that P (ÑT = n) = P (T̃n ≤ T < T̃n+1) and therefore

E[Ñk
T] =

∞∑
n=0

nkP (T̃n ≤ T < T̃n+1).

We show that the sequence P (T̃n ≤ T < T̃n+1) is decreasing fast enough.

P (T̃n ≤ T < T̃n+1) =

∫ ∞

z=0

fT (z)

∫ z

v=0

fT̃n
(v)

∫ ∞

u=z−v

fτ̃n(u) du dv dz =∫ ∞

z=0

fT (z)

∫ z

v=0

fT̃n
(v)e−μ(z−v) dv dz =

∫ ∞

z=0

fT (z)e
−μz

∫ z

v=0

μnvn−1

(n− 1)!
dv dz =∫ ∞

z=0

fT (z)
e−μz(μz)n

n!
dz.

Therefore

E[Ñk
T] =

∞∑
n=0

nk
∫ ∞

z=0

fT (z)
e−μz(μz)n

n!
dz =

∫ ∞

z=0

fT (z)E[Ñ
k
z] dz,

where Ñz is the number of uniformized transitions up to time z which is Pois-
son distributed with parameter μz. Now the k-th moment g(z) := E[Ñk

z] is a
polynomial in z of degree k and therefore

E[Ñk
T] =

∫ ∞

z=0

g(z)fT (z) dz <∞,

as a polynomial of degree k in the moments of T . "#

Remark A.3. In the case k = 1 it holds that E[ÑT] = μE [T] represents exactly
Little’s law: If jobs enter a queue at rate μ and if their mean residence time in
the queue is E [T], then there are on average μE [T] jobs in the queue. For k ≥ 2

the theorem generalizes Little’s law and allows to compute E[ÑT] analytically
since the coefficients of g can be computed analytically.

A.2 Laurent Series Expansion for Continuous Time Models

Proposition A.1. Let Q ∈ Rn×n be the generator matrix of a CTMC over
a finite state space and P (t) = eQt the transient probability matrix. Then the

Markov Reward Models and Markov Decision Processes 233

CTMC is exponentially ergodic, i.e. there exists δ > 0 and L > 0, such that

||P (t)− P ∗|| ≤ Le−δt

for all t ≥ 0, where ||A|| := maxi
∑

j |Ai,j | is the matrix maximum norm.

In [18] an equivalent statement is described for finite state DTMCs. We transfer
and modify the proof to the continuous-time case.

Proof. Since Pi,j(t)→ P ∗
i,j for all i, j, it follows that for an arbitrary fixed ε > 0

there exists T > 0, such that for all i∑
j

|Pi,j(T)− P ∗
i,j | ≤ e−ε < 1

and therefore ||P (T) − P ∗|| ≤ e−ε. Now split t = ntT + st with nt ∈ N and
st ∈ [0, T).

||P (t)− P ∗|| = ||P (T)ntP (st)− P ∗|| P (s+ t) = P (s)P (t)

= || (P (T)nt − P ∗) (P (st)− P ∗) || P (t)P ∗ = P ∗, P ∗P ∗ = P ∗

≤ ||P (T)nt − P ∗|| · ||P (st)− P ∗|| subadditivity of norm

= || (P (T)− P ∗)nt || · ||P (st)− P ∗||
≤ ||P (T)− P ∗||nt · ||P (st)− P ∗||
≤ e−εnt ||P (st)− P ∗||
= e−εt/T eεst/T ||P (st)− P ∗||.

Defining

δ :=
ε

T
and L := sup

s∈[0,T)

(
eεs/T ||P (s)− P ∗||

)
<∞

gives ||P (t)− P ∗|| ≤ Le−δt. "#

Define the transient deviation matrix Δ(t) := P (t)−P ∗ and the total deviation
matrix H :=

∫∞
0
Δ(t) dt (componentwise integration). From Proposition A.1 it

follows that the integral defining H converges since ||Δ(t)|| ≤ Le−δt.

Theorem A.1. For α > 0 letW (α) :=
∫∞
0
e−αtP (t) dt be the Laplace transform

of P (t). Then there exists δ > 0, such that for all 0 < α < δ the Laurent series
of W (α) is given by

W (α) = α−1P ∗ +
∞∑

n=0

(−α)nHn+1.

234 A. Gouberman and M. Siegle

Proof. Since P (t)P ∗ = P ∗P (t) = P ∗P ∗ = P ∗ it follows thatΔ(t+s) = Δ(t)Δ(s)
for all s, t ≥ 0. Now

W (α) =

∫ ∞

0

e−αt(P (t)− P ∗ + P ∗) dt

= α−1P ∗ +
∫ ∞

0

e−αtΔ(t) dt

= α−1P ∗ +
∫ ∞

0

(∞∑
n=0

(−αt)n
n!

)
Δ(t) dt

= α−1P ∗ +
∞∑
n=0

(−α)n
∫ ∞

0

tn

n!
Δ(t) dt,

where the last equality follows from Lebesgue’s dominated convergence theorem,

since for all i, j the sequence
∑N

n=0
(−αt)n

n! Δi,j(t) can be dominated by the inte-

grable function Ce(α−δ)t (for δ > 0 from Proposition A.1 and some C > 0) for
all 0 < α < δ. We show by induction that∫ ∞

0

tn

n!
Δ(t) dt = Hn+1. (A.2)

For n = 0 this is true by definition of H . Let (A.2) be true for an arbitrary
n ∈ N. Then∫ ∞

0

tn+1

(n+ 1)!
Δ(t) dt =

∫ ∞

0

(∫ t

0

sn

n!
ds

)
Δ(t) dt =

∫ ∞

0

sn

n!

∫ ∞

s

Δ(t) dt ds

=

∫ ∞

0

sn

n!

∫ ∞

0

Δ(s+ t) dt ds =

∫ ∞

0

sn

n!
Δ(s)

∫ ∞

0

Δ(t) dt ds

=

(∫ ∞

0

sn

n!
Δ(s) ds

)
H = Hn+1

and the Laurent series follows. "#

A.3 Collection of Proofs

Proof (of Theorem 2.1). (i) For an arbitary s0 ∈ S it holds

VN (s0) = Es0

[
N∑
i=1

R(Xi−1, Xi)

]
=

∑
s1,...,sN

((
N∑
i=1

R(si−1, si)

)
N∏
i=1

P (si−1, si)

)

=
∑
s1

P (s0, s1)

(
R(s0, s1)

∑
s2,...,sN

N∏
i=2

P (si−1, si) +

∑
s2,...,sN

N∑
i=2

R(si−1, si)

N∏
i=2

P (si−1, si)

)
.

Markov Reward Models and Markov Decision Processes 235

Now since
∑

s1
R(s0, s1)P (s0, s1) = R(s0) and for each s1 ∈ S it holds that

∑
s2,...,sN

N∏
i=2

P (si−1, si) = 1 and

∑
s2,...,sN

(
N∑
i=2

R(si−1, si)

)
N∏
i=2

P (si−1, si) = Es1

[
N∑
i=2

R(Xi−1, Xi)

]
= VN−1(s1)

it follows that
VN (s0) = R(s0) +

∑
s1

P (s0, s1)VN−1(s1).

In case V∞ exists then V∞(s) = limN→∞ VN (s) for all s ∈ S and statement (ii)
follows from (i) by taking the limit on both sides. "#
Proof (of Proposition 2.1). We are going to sketch a proof for this fact in case
the Markov chain is aperiodic. Since V∞ exists for the model (S, P,R) if and
only if it exists for (S, P, |R|) we can assume without loss of generality that
R(s, s′) ≥ 0 for all s, s′ ∈ S. Note that here |R| has to be interpreted as the
transition-based reward function with |R|(s, s′) := |R(s, s′)|. The reason is that
the state-based view on the absolute reward values

∑
s′∈S P (s, s

′)|R(s, s′)| in
general differs from |

∑
s′∈S P (s, s

′)R(s, s′)| which is the absolute value of the
state-based view on the reward values!
“⇒”: Assume that V∞ exists and R(s̃, s̃′) > 0 for some states s̃, s̃′ ∈ Sr

i and thus
R(s̃) =

∑
s′∈S P (s̃, s

′)R(s̃, s′) > 0. For all k ∈ N it holds that Es [R(Xk−1, Xk)]
is the reward gained for the k-th transition when starting in s. Therefore

Es̃ [R(Xk−1, Xk)] =
∑
s′∈S

P k−1(s̃, s′)
∑
s′′∈S

P (s′, s′′)R(s′, s′′)

=
∑
s′∈S

P k−1(s̃, s′)R(s′) ≥ P k−1(s̃, s̃)R(s̃).

Since P is aperiodic and s̃ is recurrent it follows that P k−1(s̃, s̃) converges to
ρs̃(s̃) > 0, where ρs̃ is the limiting distribution from s̃ (see Sect. 2.1.2). Therefore

the sequence Es̃

[∑N
k=1 |R(Xk−1, Xk)|

]
≥

∑N
k=1 P

k−1(s̃, s̃)R(s̃) is unbounded,

which is a contradiction to the existence of V∞.
“⇐”: Assume that R(s, s′) = 0 for all s, s′ ∈ Sr

i and all i = 1, . . . , k. We
anticipate a result from Proposition 2.2 in Sect. 2.4, which states that the limiting
matrix P∞ := limn→∞ Pn exists since P is aperiodic. In [18] it is shown that P
is geometric ergodic, i.e. there exists n0 ∈ N, c > 0 and β < 1 such that

||Pn − P∞|| ≤ cβn

for all n ≥ n0, where ||.|| is the maximum norm. (This result as stated holds for
unichain models, but it can also be directly extended to the multichain case).
First of all, we want to show that P∞R = 0, i.e. for all s ∈ S it holds that

(P∞R)(s) =
∑
s′∈S

P∞(s, s′)
∑
s′′∈S

P (s′, s′′)R(s′, s′′) = 0.

236 A. Gouberman and M. Siegle

If s ∈ Sr
i is recurrent then we only have to consider those terms in the summation

for which s′ and s′′ are in the same closed recurrent class Sr
i . But since both

s′, s′′ ∈ Sr
i it follows that R(s′, s′′) = 0 and thus (P∞R)(s) = 0. On the other

hand if s ∈ St is transient then P∞(s, s′) = 0 for all s′ ∈ St and otherwise if s′ is
recurrent then again P (s′, s′′) = 0 or R(s′, s′′) = 0 dependent on whether s′ and
s′′ are in the same closed recurrent class. (Compare this also to the representation
of P∞ = P ∗ in (2.14).) Combining together it follows for all s ∈ S and k ≥ n0+1
that

Es [R(Xk−1, Xk)] =
∑
s′∈S

P k−1(s, s′)
∑
s′′∈S

P (s′, s′′)R(s′, s′′) =
∑
s′∈S

P k−1(s, s′)R(s′)

≤ max
s∈S

{∑
s′∈S

P k−1(s, s′)R(s′)

}
= ||P k−1R|| = ||P k−1R− P∞R|| ≤ cβk−1||R||.

Therefore

Es

[
N∑

k=1

R(Xk−1, Xk)

]
≤

N∑
k=1

cβk−1||R||

converges as N →∞ since β < 1. "#
Proof (of Theorem 3.2). The convergence of Vn to (V γ)

∗
has been already re-

marked in Remark 3.2. It further holds

||V πε − (V γ)
∗ || ≤ ||V πε − Vn+1||+ ||Vn+1 − (V γ)

∗ ||.

From (2.11) it follows that for every policy π the linear operator T π defined
by T πV := Rπ + γP πV is also a contraction with the same Lipschitz constant
q := γ < 1 as for T . Let V πε = T πεV πε be the fixed point of T πε . By definition of
πε in (3.7) (i.e. πε(s) is a maximizing action) it follows that T πεVn+1 = T Vn+1.
Thus, for the first term it holds

||V πε − Vn+1|| ≤ ||V πε − T Vn+1||+ ||T Vn+1 − Vn+1||
= ||T πεV πε − T πεVn+1||+ ||T Vn+1 − T Vn||
≤ q||V πε − Vn+1||+ q||Vn+1 − Vn||.

Therefore
||V πε − Vn+1|| ≤

q

1− q ||Vn+1 − Vn||.

In analogy it follows for the second term

||Vn+1 − (V γ)
∗ || ≤ q||Vn − (V γ)

∗ || ≤ q
(
||Vn − Vn+1||+ ||Vn+1 − (V γ)

∗ ||
)

and thus
||Vn+1 − (V γ)

∗ || ≤ q

1− q ||Vn+1 − Vn||.

By combining the inequalities together it follows that

||V πε − (V γ)∗ || ≤ 2q

1− q ||Vn+1 − Vn||.

Hence the conclusion follows from ||Vn+1 − Vn|| < 1−γ
2γ ε for q = γ. "#

Markov Reward Models and Markov Decision Processes 237

Proof (of Proposition 4.1). The proof is analogous to the proof of Proposition 2.1
in the discrete-time setting. By Definition 4.2 the value function V∞ is defined

if and only if it holds for all s ∈ S that both terms Es

[∑NT

k=1 |i(Xk−1, Xk)|
]
and

Es

[∫ T

0 |r(Zt)| dt
]
converge as T → ∞. For simplicity, we only sketch the proof

for the rate reward. Without loss of generality we assume that r(s) ≥ 0 for all
s ∈ S.
“⇒”: V∞ is defined if and only if

∫ T

0 Es [r(Zt)] dt converges with T → ∞ and
thus Es [r(Zt)] → 0 as t → ∞. But if s is recurrent then limt→∞ P (t)(s, s) =
P ∗(s, s) > 0 and from Es [r(Zt)] =

∑
s′∈S P (t)(s, s

′)r(s′) ≥ P (t)(s, s)r(s) it
follows that r(s) = 0.
“⇐”: Let r(s) = 0 for all recurrent states s. As in the discrete-time case, one can
show that the transient probability matrix P (t) of the finite-state CTMC (S,Q)
is exponentially ergodic, i.e. there exists L > 0 and δ > 0 such that ||P (t)−P ∗|| ≤
Le−δt for all t ≥ 0 where ||.|| is the maximum norm (see Proposition A.1). We
first show that

(P ∗r)(s) =
∑
s′∈S

P ∗(s, s′)r(s′) = 0

for all s ∈ S (see also the representation of P ∗ in (4.3)). If s ∈ Sr
i is recurrent

then P ∗(s, s′) = 0 if s′ ∈ S \ Sr
i and r(s′) = 0 if s′ ∈ Sr

i . Otherwise, if s ∈ St is
transient then P ∗(s, s′) = 0 for all transient states s′ ∈ St and r(s′) = 0 for all
recurrent states s′ ∈ S \ St. It follows for all s ∈ S that

Es

[∫ T

0

r(Zt) dt

]
=

∫ T

0

∑
s′∈S

P (t)(s, s′)r(s′) dt ≤
∫ T

0

||P (t)r|| dt

=

∫ T

0

||P (t)r − P ∗r|| dt ≤
∫ T

0

Le−δt||r|| dt

converges as T →∞. "#

Proof (of Lemma 4.1). We show the first equality by regarding the representa-
tion of V (s) in (4.13) as a total expectation. We can interchange both expecta-
tions in the middle term by the Fubini theorem (or law of total expectation),
i.e.

V (s) = E

[
Es

[∫ T

0

r(Zt) dt | T
]]

= Es

[
E

[∫ T

0

r(Zt) dt | Zt

]]
.

Here E

[∫ T

0 r(Zt) dt | Zt

]
is a conditional expectation given knowledge of all

the Zt for t ≥ 0, i.e. it is a random variable over Ω that takes the values

E

[∫ T

0
r(Zt(ω)) dt

]
for ω ∈ Ω. Since the state space is finite it holds that the

map t &→ r(Zt(ω)) is bounded for all ω ∈ Ω and it follows by Lemma A.1 that

V (s) = Es

[∫ ∞

0

r(Zt)PT (T ≥ t) dt
]
.

238 A. Gouberman and M. Siegle

For the second equality of V (s) in Lemma 4.1 note that Zt(ω) = XNt(ω)(ω) and
Nt(ω) piecewise constant in t for all ω ∈ Ω. Therefore r(Zt(ω)) = r(Xn(ω)) for
all t ∈ [Tn(ω), Tn+1(ω)) and it follows that

Es

[∫ ∞

0

r(Zt)PT (T ≥ t) dt
]
= Es

[∞∑
n=0

r(Xn)

∫ Tn+1

Tn

PT (T ≥ t) dt
]
. "#

Proof (of Theorem 4.3). Equation (4.16) can be established by multipliying
(4.15) with α + E(s) and using E(s) = −Q(s, s) when rearranging terms.
Thus we only have to show (4.15). If s is absorbing then Q(s, s′) = 0 for all
s′, E(s) = 0 and P (t)(s, s′) = δs,s′ . The conclusion follows from (4.14) since

V α(s) =
∫∞
0 r(s)e−αt dt = r(s)

α . Assume in the following that s is non-absorbing
and thus E(s) > 0. From Lemma 4.1 it holds that

V α(s) = Es

[∞∑
n=0

r(Xn)

∫ Tn+1

Tn

e−αt dt

]
= Es

[∞∑
n=0

e−αTnr(Xn)

∫ τn

0

e−αt dt

]
,

since Tn+1 = Tn + τn. Define R(Xn, τn) := r(Xn)
∫ τn
0 e−αt dt. Because τ0 given

X0 = s is exponentially distributed with rate E(s) > 0 it follows by Lemma A.1
that

Es [R(X0, τ0)] =
r(s)

α+ E(s)

and thus

V α(s) = Es

[∞∑
n=0

e−α
∑n−1

k=0 τkR(Xn, τn)

]

= Es [R(X0, τ0)] + Es

[
e−ατ0

∞∑
n=1

e−α
∑n−1

k=1 τkR(Xn, τn)

]

=
r(s)

α+ E(s)
+ Es

[
e−ατ0

∞∑
n=0

e−α
∑n−1

k=0
τk+1R(Xn+1, τn+1)

]

=
r(s)

α+ E(s)
+ E

[
e−ατ0V α(X1) | X0 = s

]
,

where V α(X1) is the random variable representing the discounted value when
the process starts in X1. Now since V α(X1) is independent of τ0 (given X0 = s)
it follows that

E
[
e−ατ0V α(X1) | X0 = s

]
= E

[
e−ατ0 | X0 = s

]
E [V α(X1) | X0 = s]

=

∫ ∞

0

e−αt · E(s)e−E(s)t dt ·
∑
s′ �=s

V α(s′)P (s, s′) =
E(s)

α+ E(s)

∑
s′ �=s

V α(s′)P (s, s′)

=
∑
s′ �=s

Q(s, s′)
α+ E(s)

V α(s′),

where the last equation follows from Q(s, s′) = P (s, s′)E(s). "#

Markov Reward Models and Markov Decision Processes 239

References

1. Altman, E.: Constrained Markov Decision Processes. Chapman & Hall (1999)

2. Altman, E.: Applications of Markov Decision Processes in Communication Net-
works. In: Feinberg, E.A., Shwartz, A. (eds.) Handbook of Markov Decision Pro-
cesses. International Series in Operations Research & Management Science, vol. 40,
pp. 489–536. Springer, US (2002)

3. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-Checking Algorithms
for Continuous-Time Markov Chains. IEEE Transactions on Software Engineer-
ing 29(6), 524–541 (2003)

4. Bäuerle, N., Rieder, U.: Markov Decision Processes with Applications to Finance.
Springer, Heidelberg (2011)

5. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)

6. Benini, L., Bogliolo, A., Paleologo, G.A., De Micheli, G.: Policy Optimization for
Dynamic Power Management. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 18, 813–833 (1998)

7. Bertsekas, D.: Dynamic Programming and Optimal Control, 3rd edn., vol. I.
Athena Scientific (1995) (revised in 2005)

8. Bertsekas, D.: Dynamic Programming and Optimal Control, 4th edn., vol. II.
Athena Scientific (1995) (revised in 2012)

9. Bertsekas, D., Tsitsiklis, J.: An analysis of stochastic shortest path problems. Math-
ematics of Operations Research 16(3), 580–595 (1991)

10. Bertsekas, D., Tsitsiklis, J.: Neuro-Dynamic Programming, 1st edn. Athena Scien-
tific (1996)

11. Beynier, A., Mouaddib, A.I.: Decentralized Markov decision processes for handling
temporal and resource constraints in a multiple robot system. In: Proceedings of
the 7th International Symposium on Distributed Autonomous Robotic System,
DARS (2004)

12. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing Networks and Markov
Chains - Modelling and Performance Evaluation with Computer Science Applica-
tions, 2nd edn. Wiley (2006)

13. Cassandra, A.R.: A survey of POMDP applications. In: Working Notes of AAAI
1998 Fall Symposium on Planning with Partially Observable Markov Decision Pro-
cesses, pp. 17–24 (1998)

14. Diz, F.J., Palacios, M.A., Arias, M.: MDPs in medicine: opportunities and chal-
lenges. In: Decision Making in Partially Observable, Uncertain Worlds: Exploring
Insights from Multiple Communities, IJCAI Workshop (2011)

15. Fox, B.L., Landi, D.M.: An algorithm for identifying the ergodic subchains and
transient states of a stochastic matrix. Communications of the ACM 11(9), 619–
621 (1968)

16. Gouberman, A., Siegle, M.: On Lifetime Optimization of Boolean Parallel Systems
with Erlang Repair Distributions. In: Operations Research Proceedings 2010 - Se-
lected Papers of the Annual International Conference of the German Operations
Research Society, pp. 187–192. Springer (January 2011)

17. Guo, X., Hernandez-Lerma, O.: Continuous-Time Markov Decision Processes -
Theory and Applications. Springer (2009)

18. Heidergott, B., Hordijk, A., Van Uitert, M.: Series Expansions For Finite-State
Markov Chains. Probability in the Engineering and Informational Sciences 21(3),
381–400 (2007)

240 A. Gouberman and M. Siegle

19. Hou, Z., Filar, J.A., Chen, A. (eds.): Markov Processes and Controlled Markov
Chains. Springer (2002)

20. Howard, R.A.: Dynamic Programming and Markov Processes. John Wiley & Sons,
New York (1960)

21. Hu, Q., Yue, W.: Markov Decision Processes with their Applications. Springer
(2008)

22. Janssen, J., Manca, R.: Markov and Semi-Markov Reward Processes. In: Applied
Semi-Markov Processes, pp. 247–293. Springer, US (2006)

23. Janssen, J., Manca, R.: Semi-Markov Risk Models for Finance, Insurance and Re-
liability. Springer (2007)

24. Jensen, A.: Markoff chains as an aid in the study of Markoff processes. Skandinavisk
Aktuarietidskrift 36, 87–91 (1953)

25. Stidham Jr., S., Weber, R.: A survey of Markov decision models for control of
networks of queues. Queueing Systems 13(1-3), 291–314 (1993)

26. Mahadevan, S.: Learning Representation and Control in Markov Decision Pro-
cesses: New Frontiers. Foundations and Trends in Machine Learning 1(4), 403–565
(2009)

27. Mahadevan, S., Maggioni, M.: Proto-value Functions: A Laplacian Framework for
Learning Representation and Control in Markov Decision Processes. Journal of
Machine Learning Research 8, 2169–2231 (2007)

28. Mausam, Kolobov, A.: Planning with Markov Decision Processes: An AI Perspec-
tive. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
& Claypool Publishers (2012)

29. Momtazi, S., Kafi, S., Beigy, H.: Solving Stochastic Path Problem: Particle Swarm
Optimization Approach. In: Nguyen, N.T., Borzemski, L., Grzech, A., Ali, M. (eds.)
IEA/AIE 2008. LNCS (LNAI), vol. 5027, pp. 590–600. Springer, Heidelberg (2008)

30. Obal, W.D., Sanders, W.H.: State-space support for path-based reward variables.
In: Proceedings of the Third IEEE International Performance and Dependability
Symposium on International Performance and Dependability Symposium, IPDS
1998, pp. 233–251. Elsevier Science Publishers B. V. (1999)

31. Ott, J.T.: A Markov Decision Model for a Surveillance Application and Risk-
Sensitive Markov Decision Processes. PhD thesis, Karlsruhe Institute of Technology
(2010)

32. Powell, W.B.: Approximate Dynamic Programming - Solving the Curses of Dimen-
sionality. Wiley (2007)

33. Puterman, M.L.: Markov Decision Processes - Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons INC. (1994)

34. Qiu, Q., Pedram, M.: Dynamic power management based on continuous-time
Markov decision processes. In: Proceedings of the 36th Annual ACM/IEEE De-
sign Automation Conference, DAC 1999, pp. 555–561. ACM (1999)

35. Sanders, W.H., Meyer, J.F.: A Unified Approach for Specifying Measures of Per-
formance, Dependability, and Performability. Dependable Computing for Critical
Applications 4, 215–238 (1991)

36. Schaefer, A.J., Bailey, M.D., Shechter, S.M., Roberts, M.S.: Modeling medical
treatment using Markov decision processes. In: Brandeau, M.L., Sainfort, F., Pier-
skalla, W.P. (eds.) Operations Research and Health Care. International Series in
Operations Research & Management Science, vol. 70, pp. 593–612. Kluwer Aca-
demic Publishers (2005)

37. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. A Bradford
Book. MIT Press (March 1998)

Markov Reward Models and Markov Decision Processes 241

38. Trivedi, K.S., Malhotra, M.: Reliability and Performability Techniques and Tools:
A Survey. In: Messung, Modellierung und Bewertung von Rechen- und Kommu-
nikationssystemen. Informatik aktuell, pp. 27–48. Springer, Heidelberg (1993)

39. Tsitsiklis, J.N.: NP-Hardness of checking the unichain condition in average cost
MDPs. Operations Research Letters 35(3), 319–323 (2007)

40. White, D.J.: A Survey of Applications of Markov Decision Processes. The Journal
of the Operational Research Society 44(11), 1073–1096 (1993)

41. Wolff, R.W.: Poisson Arrivals See Time Averages. Operations Research 30(2),
223–231 (1982)

Applying Mean-Field Approximation

to Continuous Time Markov Chains

Anna Kolesnichenko1, Valerio Senni3,
Alireza Pourranjabar2, and Anne Remke1

1 DACS, University of Twente, The Netherlands
{a.v.kolesnichenko,a.k.i.remke}@utwente.nl

2 LFCS, University of Edinburgh, UK
a.pourranjbar@sms.ed.ac.uk

3 IMT Institute for Advanced Studies, Lucca, Italy
valerio.senni@imtlucca.it

Abstract. The mean-field analysis technique is used to perform anal-
ysis of a system with a large number of components to determine the
emergent deterministic behaviour and how this behaviour modifies when
its parameters are perturbed. The computer science performance mod-
elling and analysis community has found the mean-field method useful for
modelling large-scale computer and communication networks. Applying
mean-field analysis from the computer science perspective requires the
following major steps: (1) describing how the agent populations evolve
by means of a system of differential equations, (2) finding the emergent
deterministic behaviour of the system by solving such differential equa-
tions, and (3) analysing properties of this behaviour. Depending on the
system under analysis, performing these steps may become challenging.
Often, modifications of the general idea are needed. In this tutorial we
consider illustrating examples to discuss how the mean-field method is
used in different application areas. Starting from the application of the
classical technique, moving to cases where additional steps have to be
used, such as systems with local communication. Finally, we illustrate
the application of existing model checking analysis techniques.

1 Introduction

Mean Field Approximation originated in statistical physics [1] and is a tech-
nique developed within the field of probability theory. This technique is useful
to study the behaviour of stochastic processes with a very large state space (e.g.
in the study of systems with a large number of particles), where Monte Carlo
simulations are impractical. In those systems, a first approximation of the be-
haviour is obtained by replacing the effect of the other particles over a given
particle by a single averaged effect and studying this two-body problem [23,31].
Beyond physics, this approximation technique is applied in studies of epidemics
models [24], queueing theory [6,1], and network performance [30,11].

In this tutorial, the stochastic systems we are interested in typically consist of
a relatively small number of particle types. The particles of each type often have

A. Remke and M. Stoelinga (Eds.): ROCKS Autumn School 2012, LNCS 8453, pp. 242–280, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Applying Mean-Field Approximation 243

a simple behaviour and are replicated many times to form large populations.
Their interaction may give rise to a complex behaviour and patterns that can
not be found considering the single particle, but emerge by their interaction.
Mean-field approximation is used to model and analyse efficiently the so-called
emergent behaviour of such large-scale systems. Classical applications of this
technique generally require two abstractions. The first is that when studying the
system, one abstracts away from the particles’ identities, and instead of captur-
ing the behaviour of each instance, the system’s behaviour is observed at the
level of populations [22]. The second abstraction suggests that the spatial distri-
bution of the agents across the system locations is ignored, and the particles are
assumed to be uniformly spread across the system space (in chemistry this idea is
embodied in the notion of well-stirred chemical reaction [17,37]). In this tutorial
we illustrate both a classical application (Section 3) and a more sophisticated
modelling where space inhomogeneity has a significant impact on the system’s
emergent behaviour (Section 4).

The core idea of the mean-field method is to approximate the dynamics of a
Markov population process through a system of differential equations [27]. The
result is a reliable approximation when the population size is sufficiently large,
since under specific conditions the behaviour of the system tends to the determin-
istic dynamics captured by the differential equations. In this case, one additional
important property is the decoupling assumption; that is the joint probability
distribution associated with the system can be expressed as the product of the
marginals. This property allows to study the behaviour of individual particles
within the whole system in an efficient way.

A closely related approximation technique is known as moment closure [16].
This technique allows to estimate the first few moments of a stochastic process
by a closed system of equations. Mean-field approximation can be seen as a form
of moment closure where the second moment (variance) and the higher moments
have been set to zero. The first-order approximation is often very coarse and can
potentially lead to misleading results [33]. In practice, however, it can be used
to gain some insights about the average or the global behaviour of the system
at a relatively low cost.

When first-order or mean-field approximation is applied, the resulting model
can be described in terms of a deterministic system, as mentioned previously. In
the literature this is often referred to as deterministic approximation [4,9].

Another related technique is called linear noise approximation, which is fre-
quently used to find approximate solutions of the Chemical Master Equation by
giving an estimate of the second moment of this equation [37].

Continuous Time Markov Chains are often used to provide a stochastic seman-
tics to process algebra used in performance modelling of computer systems [20].
However, stochastic process algebramodels of realistic size can easily result in very
large and intractable state spaces. In that context a technique called fluid-flow ap-
proximation [21] has been used to construct a continuous state-space representa-
tion of the underlying discrete state-space, and ordinary differential equations are
used to describe their dynamics. This technique is justified by results onmean-field

244 A. Kolesnichenko et al.

approximation of Continuous Time Markov Chains [36,22,19]. Indeed, the notion
of fluid approximation has been used in various contexts such as Petri Nets, and
relies on the idea that a discrete variable can be approximated using a continuous
variable [34].

In our tutorial we focus on CTMC models and their continuous-time ap-
proximation using ordinary differential equations. The goal of this paper is to
provide an example-guided tutorial to the application of fluid approximation,
including fluid model checking [8]. The interested reader can find very complete
and detailed tutorials in [9], treating both Continuous Time Markov Chains and
Discrete Time Markov Chains. A more technical survey of the topic and related
mathematical results can be found in [13].

2 Preliminaries

In this paper we consider systems consisting of large populations of interacting
objects. Such systems are common in biology and chemistry, as well as in telecom-
munications and queueing theory [3,12,22,35]. Due to the problem of state space
explosion, the models of such systems are often unmanageable for the purpose of
analysis and are not suitable for direct application of classic analysis techniques
such as simulation and model checking. In this tutorial we address the modelling
and analysis of such models using mean-field method.

The main idea of the mean-field analysis is to describe the evolution of a pop-
ulation that is composed of many similar objects via a deterministic behaviour.
It states that under certain assumptions on the dynamics of the system and
when the size of the population grows, the ratio of the system’s variance to the
size of the state space tends to zero. Therefore, when the population is large, the
stochastic behaviour of the system can be studied through the unique solution
of a system of Ordinary Differential Equations (ODE) defined by using the limit
dynamics of the whole system.

Since the purpose of this tutorial is to provide the guided examples of the
application of the mean-field method, we will not be discussing the detailed the-
oretical background of the mean-field method (see, e.g. [9]). Instead, we present
the modelling procedure from the practical point of view. We build the model of
the whole population based on the behaviour of the random individual object.

2.1 Model Definition

Let us start with a random individual object in the large population. We assume
that the size of the population N is constant and do not distinguish between the
classes of the individual objects for the simplicity of the notation. However, this
assumptions can be relaxed, see, e.g., Section 4 of the current tutorial.

The behaviour of such an object can be described by defining the states or
“modes” this object experiences during its lifetime, and the transitions between
these states. Formally, the individual or local model (the model of the random
object in the population) is defined as follows:

Applying Mean-Field Approximation 245

Definition 1 (Local model). A local model X describing the behaviour of
one object is constructed as a tuple (S,Q, L) that consists of a finite set of K
local states S = {s1, s2, ..., sK}; the infinitesimal generator matrix Q which may
depend on the overall system state; and the labelling function L : S → 2LAP

that assigns local atomic propositions from a fixed finite set of Local Atomic
Properties (LAP) to each state. �

Self-loops are assumed to be eliminated. The generator matrix Q is a matrix
S × S, whose entries describe the rate at which an individual object changes
states. The Q may potentially depend on the system’s overall state. We discuss
the transitions rates of the individual objects later in this section.

Given the large number N of objects, we build the overall model of the whole
population. Instead of modelling each object individually, which would lead to
the state-space explosion problem, we (i) lump the state space; (ii) normalize
the population, and (iii) check whether the convergence of the behaviour to the
deterministic limit holds and build the overall mean-field model X , using the
local model X . Let us first provide the explanations on the way this model is
built, which will be followed by the definition of the overall (or global) model.

Fig. 1. The model describing computer
virus spread

If the identity of each object is pre-
served, the state space of the model
of the whole population X (N) will po-
tentially consists of KN states, where
K is the number of states of the lo-
cal model. However, due to the iden-
tical and unsynchronized behaviour
of the individual objects the count-
ing abstraction is applied to find the
stochastic process X , whose states
capture the distribution of the indi-
vidual objects across the states of the
local model X . In general, the transi-
tion rates may depend on the state
of the overall model, X(t). There-
fore, using the counting abstraction
the generator matrix Q(X(t)) is con-
structed as in [6]:

Qi,j(X(t)) =

⎧⎪⎨⎪⎩
limΔ→0

1
ΔProb(X (t+Δ)) = j|X (t) = i,X(t)), if Xi(t) > 0,

0, if Xi(t) = 0,
−
∑

h∈S,j �=iQi,h(X(t)), for i = j,

where X (t) is a state of the local model at time t.
The first step for the construction of the mean field model is to normalize

the state vector. The normalized state space is as follows: x(t) = X(t)/N , where

0 ≤ xi(t) ≤ 1; and the related transition rates are Q
(N)
i,j (x(t)) = Qi,j(N · x(t)).

246 A. Kolesnichenko et al.

In this tutorial we only consider models which satisfy a condition known as
density dependence. This condition requires that there exists a matrix of rate
functions that is constant for all the normalised models in a sequence of models
with increasing sizes. This means that transition rates scale together with the
model population, so that in the normalized models they are independent of
the population. Formally, in the limit of N → ∞, the matrix of rate functions

(generator matrix Qi,j(x(t))) satisfies Qi,j(x(t)) = Q
(N)
i,j (x(t)) for all N > 1.

The existence and properties of Qi,j(x(t)) play a crucial role in the applicabil-
ity of the mean-field theory to the given sequence of local models and building
the overall model. In the context of the models which satisfy density dependence,
the rate functions are required to be Lipschitz-continuous. Secondly, the model
should satisfy convergence of the initial occupancy vector. The limit theorem
which relies on these assumptions will be covered later. First, let us state the
construction of the mean-field model.

Definition 2 (Overall mean-field model). An overall mean-field model X
describes the limit behaviour of N → ∞ identical objects, each modelled by X ,
and is defined as a tuple (X,Q), that consists of an infinite set of states

X = {x = (x1, x2, . . . , xK)|(∀j ∈ {1, . . . ,K}, xj ∈ [0, 1] ∧
K∑
i=1

xi = 1)},

where x is called occupancy vector, and x(t) is the value of the occupancy vector at
time t; xj denotes the fraction of the individual objects that are in state sj of the
local model X . The transition rate matrix Q(x(t)) consists of entries Qs,s′(x(t))
that describe the transition of the system from state s to state s′. �

Example 1. In the following we describe a simple model of the virus spread in the
population of interacting computers of size N . We start with the local model (see
Figure 1). The states of X represent the modes of an individual computer, which
can be not-infected, infected and active or infected and inactive. An infected
computer is active when it is spreading the virus and inactive when it is not. This
results in the finite local state space S = {s1, s2, s3} with |S| = K = 3 states.
They are labelled as infected, not infected, active and inactive, as indicated in
Figure 1.

Given a system of N such computers, we can model the limiting behaviour
of the whole system through the overall mean-field model, which has the same
underlying structure as the individual model (see Figure 1), however, with state
space x = {x1, x2, x3}, where x1 denotes the fraction of not-infected computers,
and x2 and x3 denote the fraction of active and inactive infected computers,
respectively. For example, a system without infected computers is in state x =
(1, 0, 0); a system with 50% not infected computers and 40% and 10% of inactive
and active infected computers, respectively, is in state x = (0.5, 0.4, 0.1).

The transition rates k∗1 , k2, k3, k4, k5 represent the following: the infection
rate k∗1 , the recovery rate for an inactive infected computer k2, the recovery rate
for an active infected computer k5, and the rates with which computers become

Applying Mean-Field Approximation 247

active k3 and return to the inactive state k4. Rates k2, k3, k4, and k5 are specified
by the individual computer and computer virus properties and do not depend
on the overall system state. The infection rate k∗1 does depend on the fraction of
computers that is infected and active and the fraction of not-infected computers.
We discuss the generator matrix in the next example.

2.2 Mean-Field Analysis

We stated X represents the behaviour of each object and X represents the limit-
ing behaviour of N identical objects. The model respects the density dependence
condition. Here we express a reformulation of the Kurtz’s theorem which relates
the behaviour of the sequence of models with increasing sizes to the limit be-
haviour. Assuming that functions in Qi,j(x(t)) are Lipschitz-continuous and for
increasing values of the system size, the initial occupancy vectors converge to
x(0), then when N →∞, the sequence of local models converges almost surely [5]
to the occupancy vector x.

Theorem 1 (Mean-field convergence theorem). The normalized occupancy
vector x(t) at time t <∞ tends to be deterministic in distribution and satisfies
the following differential equations when N tends to infinity:

dx(t)

dt
= x(t) ·Q(x(t)), given x(0). (1)

�

The ODE (1) is called limit ODE. It provides the results for N →∞, which is
not the case for a real-life models. When the number of objects in the population
is finite, but sufficiently large the limit ODE provides an accurate approximation
of the mean of the occupancy vector x(t) over time.

The transient analysis of the overall system behaviour can be performed using
the above system of differential equations (1), i.e., the fraction of the objects in
each state of X at every time t is calculated, starting from some given initial
occupancy vector x(0).

For models considered in practice, however, the assumption of density depen-
dence may be too restrictive [13]. Furthermore, also the assumption of (global)
Lipschitz continuity of transition rates can be unrealistic [7]. Therefore, this
assumptions can be relaxed and a more general version of the mean-field ap-
proximation theorem, having less strict requirements and applied to prefixes of
trajectories rather than to full model trajectories, can be obtained. We will not
be focusing on the reformulation of the convergence theorem here, instead we
refer to [9], and provide the following example.

Example 2. In the following we provide an example of applying the mean-field
method to the virus spread model, as in Example 1. We explain how to obtain
the ODEs, describing the behaviour of the system and produce performance
evaluation measures.

248 A. Kolesnichenko et al.

As was discussed in the previous example, all transition rates of a single com-
puter model are constant, but k∗1 . This rate depends on how often a not infected
computer gets attacked. In this example we assume that the virus is “smart
enough” to attack not infected computers only. The infection rate then might be
seen as the number of attacks performed by all active infected computers, which
is distributed over all not-infected computes in a chosen group:

k∗1(x(t)) = k1 ·
x3(t)

x1(t)
,

where x(t) = (x1(t), x2(t), x3(t)) represents the fraction of computers in each
state at time t, and k1 is the attack rate of a single active infected computer.

The transition rates are collected to the generator matrix:

Q(X(t)) =

⎛⎝−k∗1(x(t)) k∗1(x(t)) 0
k2 −(k2 + k3) k3
k5 k4 −(k4 + k5)

⎞⎠ (2)

Then Theorem 1 is used to derive the system of ODEs (1), that describes the
mean-field model: ⎧⎨⎩ ẋ1(t) = −k1x3(t) + k2x2(t) + k5x3(t),

ẋ2(t) = (k1 + k4)x3(t)− (k2 + k3)x2(t),
ẋ3(t) = k3x2(t)− (k4 + k5)x3(t).

(3)

To obtain the distribution of the objects between the states of the model over
time the above ODEs have to be solved.

The convergence theorem does not explicitly cover the asymptotic behaviour
(i.e. limit in time). However, when certain assumptions hold, the mean-field
equations allow to perform various studies including steady state analysis of the
population models as well as model checking [8]. We will not cover the details
here and the interested reader is referred to [3]. We will use mean-field for steady
state analysis in Section 4.

3 Mean-Field Analysis of a Botnet

In this section we discuss the applicability of the mean-field method to modelling
peer-to-peer botnet, as in [26] . In Section 3.1 we discuss the characteristics of the
botnet, which are important for modelling. Section 3.2 describes the mean-field
model of the botnet spread. The performance evaluation results are presented in
Section 3.3, together with an example of wider usability of the mean-field model.

3.1 Description of the System

Let us describe the steps each computer goes through during the botnet spread.
These are similar to the examples in the previous section, however, the current

Applying Mean-Field Approximation 249

1.ni 3.cb2.ii

4.iwb

6.ipb

5.awb

7.apb

k∗
1

k2

k3

k6

k4

k5

k11

k7

k13

k9

k12

k8

k14

k10

Fig. 2. Possible states of a computer in the network. The shorthand names
are defined as follows: ni=NotInfected, ii=InitialInfection, cb=ConnectedBot,
iwb=InactiveWorkingBot, awb=ActiveWorkingBot, ipb=InactivePropagationBot, and
apb=ActivePropagationBot.

Botnet model is more detailed (see Figure 2) and comply the realistic botnet
behaviour.

The computer which is in the NotInfected state (S1) enters the InitialInfec-
tion (S2) state with rate k∗1 . Then, it attempts to connect to the other bots in
the botnet; if the connection is successful the computer goes tot he Connected-
Bot state (S3) with rate k2. The initially infected computer recovers and returns
to the state S1 with rate k3. After connecting to the botnet, computer down-
loads a malware and joins the botnet either as InactiveWorkingBot (S4) or as
InactivePropagationBot (S6) with rates k4 and k5, respectively; otherwise, the
computer recovers from the connected state with the rate k6.

Once the bot becomes either an InactiveWorkingBot or an InactivePropaga-
tionBot it never switches between the Working- or Propagation- classes. In order
not to be detected, the bot is inactive most of the time and it only becomes active
for a very short period of time. Transitions from InactivePropagationBot to Ac-
tivePropagationBot (S7) and back occur with rates k9 and k10, respectively. The
transition rates for moving from InactiveWorkingBot to ActiveWorkingBot (S5)
and back are denoted k7 and k8, respectively.

The computer can recover from its infection, e.g., if an anti-malware soft-
ware discovers the virus, or if the computer is physically disconnected from
the network. In these cases, it leaves the InactivePropagationBot or the Active-
PropagationBot state and moves to the NotInfected state with rates k13, k14,
respectively. The same holds for the working bots: the recovery rates from Inac-
tiveWorkingBot and ActiveWorkingBot are k11, k12, respectively.

The model we construct considers several computers in a network, each of
them being in one of the above mentioned states S1, .., S7, depicted also in Fig-
ure 2. The rates of transitions between states may depend on several factors, e.g.,
probability of a successful connection between initially infected computer and

250 A. Kolesnichenko et al.

Table 1. Transition rates for a single computer

k1 RateOfAttack · ProbInstallInitialInfection
k∗
1 Rate depends on k1 and the environment

k2 RateConnectBotToPeers · ProbConnectToPeers
k3 RateConnectBotToPeers · (1− ProbConnectToPeers)

k4 RateSecondaryInjection · ProbSecondaryInjectionSuccess · (1− ProbPropagationBot)

k5 RateSecondaryInjection · ProbSecondaryInjectionSuccess · ProbPropagationBot
k6 RateSecondaryInjection · (1− ProbSecondaryInjectionSuccess)

k7 RateWorkingBotWakens

k8 RateWorkingBotSleeps

k9 RatePropagationBotWakens

k10 RatePropagationBotSleeps

k11 RateInactiveWorkingBotRemoved

k12 RateActiveWorkingBotRemoved

k13 RateInactivePropagationBotRemoved

k14 RateActivePropagationBotRemoved

another infected computer, while moving from the state InitialInfection to the
ConnectedBot state; or the probability of ConnectedBot to become Working or
Propagation bot, respectively. Table 1 provides the description of the transition
rates for one computer model, while numerical values are given in Table 2. Rates
k2 . . . k14 are constant for each computer, while rate k∗1 to move from the Not-
Infected state (S1) to the InitialInfection state (S2) is not constant. This rate
depends on k1 and on the number of computers in the ActivePropagationBot
state, which are responsible of spreading the malware.

3.2 Mean-Field Model

We study the spread of the botnet in a network of N computers by using the
mean-field approximation method for finding the (average) deterministic dy-
namics of the system. The mean-field model captures the number of objects in
a particular state, rather than considering the state of each single object. The
mean-field state vector X = 〈X1, X2, . . .X7〉 counts how many computers are in
states S1, ..., S7. The occupancy measure is found by normalizing X into x.

We first construct the rate matrix, which collects the rates with which possible
transitions take place. Transition rates may depend on time as well as on the
state x(t) of the system. The rate matrix R(x(t)) of the model is given as:

R(x(t)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 k∗1 0 0 0 0 0
k3 0 k2 0 0 0 0
k6 0 0 k4 0 k5 0
k11 0 0 0 k7 0 0
k12 0 0 k8 0 0 0
k13 0 0 0 0 0 k9
k14 0 0 0 0 k10 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4)

Applying Mean-Field Approximation 251

The |S|× |S| infinitesimal generator matrix Q(x(t)) is given as follows: Qs1,s2

is equal to the transition rate Rs1,s2 to move from the state s1 to the state s2
and Qs,s is equal to the negative the sum of all the rates in row s. In a given
example the only rate which depends on a state of the system is the infection rate
k∗1(x(t)), which depends on the number of computers (bots) actively spreading
infection. The total rate of infections produced by all bots that are in the active
propagation state is k1 · x7(t). These infections are spread out randomly over
all not-yet infected computers1, whose number is denoted by x1(t). Hence, the
infection rate k∗1 perceived by each individual computer is given by the ratio:

k∗1(x(t)) =
k1 · x7(t)
x1(t)

. (5)

Once we have constructed the infinitesimal generator matrix Q, we can use it
to construct the set of Ordinary Differential Equations whose solution represents
the average dynamics of the system. Therefore, the initial value problem we study
is defined as follows:

d x(t)

dt
= x(t)Q(x(t)), with initial condition x(0). (6)

The system of equations we obtain is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = k3x2(t) + k6x3(t) + k11x4(t)

+k12x5(t) + k13x6(t) + (k14 − k1)x7(t)
ẋ2(t) = −(k2 + k3)x2(t) + k1x7(t)

ẋ3(t) = k2x2(t)− (k4 + k5 + k6)x3(t)

ẋ4(t) = k4x3(t)− (k7 + k11)x4(t) + k8x5(t)

ẋ5(t) = k7x4(t)− (k8 + k12)x5(t)

ẋ6(t) = k5x3(t)− (k9 + k13)x6(t) + k10x7(t)

ẋ7(t) = k9x6(t)− (k10 + k14)x7(t)

(7)

The equations can be solved analytically, however the closed forms are impracti-
cally large. We used Wolfram Mathematica [39] to obtain the analytical solution.

3.3 Results

In this section we discuss the mean-field results in detail and compare them to
the simulation results, the chosen parameters for all these experiments are given
in Table 2. We essentially experimented considering different infection rates,
denoting possible user behaviours, and their impact on the system behaviour.

The simulation of the model was done using the Möbius tool [14] as in [38].
Each experiment covered one week of simulated time; it was replicated 1000

1 In the considered example the propagation bots are “smart” enough to spread
infection via not infected computers only.

252 A. Kolesnichenko et al.

Table 2. Setup for the three experiments. Bold indicates differences w.r.t. baseline.

Experiments
Parameter Baseline Exper 1 Exper 2

ProbInstallInitialInfection 0.1 0.06 0.04

ProbConnectToPeers 1 1 1

ProbSecondaryInjectionSuccess 1 1 1

ProbPropagationBot 0.1 0.1 0.1

RateOfAttack 10.0 10.0 10.0

RateConnectBotToPeers 12.0 12.0 12.0

RateSecondaryInjection 14.0 14.0 14.0

RateWorkingBotWakens 0.001 0.001 0.001

RateWorkingBotSleeps 0.1 0.1 0.1

RatePropagationBotWakens 0.001 0.001 0.001

RatePropagationBotSleeps 0.1 0.1 0.1

RateInactiveWorkingBotRemoved 0.0001 0.0001 0.0001

RateActiveWorkingBotRemoved 0.01 0.01 0.01

RateInactivePropagationBotRemoved 0.0001 0.0001 0.0001

RateActivePropagationBotRemoved 0.01 0.01 0.01

times; the mean values and 95% confidence intervals of the measures of inter-
est are obtained. The initial conditions for each experiment are as follows: 200
computers are located in the place ActivePropagationBots.

We use Wolfram Mathematica [39] to obtain solutions for the set of differ-
ential equations (7) coupled with the transition rates from Table 2. Given an
overall population of N = 107, the fraction of computers in the state NotIn-
fected is initialized as x1(0) = (N − 200)/N , the fraction of computers in the
state ActivePropagationBot is initialized as x7(0) = 200/N , and the fractions of
computers in all other states are initialized as zero.

We first consider Baseline experiment. Figure 3 shows the number of the prop-
agation bots along time. The number of propagation bots (both active and inac-
tive) has been taken as measure of interest since they actively infect “healthy”
computers. A logarithmic scale has been chosen for the number of propagation
bots, in order to better visualize the exponential growth. The figure depicts the
mean-field results of the Baseline experiment together with the 95% confidence
intervals of the Möbius simulation. As can be seen, the mean-field results are
very accurate in this case, since they lie mostly within the confidence intervals,
even though the confidence intervals are very narrow.

To investigate how a reduced infection spread would influence the growth of
botnets, Experiments 1 and 2 were done in [38]. The “user factor” (ProbInstal-
Infection) is reduced to 60% and 40%, respectively, as compared to the Base-
line experiment to represent a lower probability of, e.g., opening infected files.
The results are, together with those from the Baseline experiment, presented in

Applying Mean-Field Approximation 253

Baseline experiment

Experiment 1

Experiment 2

0 50 100 150

1000

104

105

Time �hours�

�
Pr
op
ag
at
io
n
B
ot
s

Fig. 3. Number of propagation bots over time in the Baseline experiment and exper-
iments 1 ad 2 obtained from mean-field approximation together with the confidence
intervals (black bars) obtained from the simulation

Table 3. Time spent on simulation and mean-field approximation

Experiment Simulation Mean-field

Baseline 5 d 3 h 25 min 1 sec

Exp. 1 9 h 51 min 1 sec

Exp. 2 5 h 37 min 1 sec

Figure 3. For both experiments, the results obtained with the mean-field model
are very accurate and lie well within the confidence intervals most of the time.

One of the advantages of the mean-field method is that the time, needed for
obtaining the means of the model is much smaller than the time, needed for the
simulation, as shown in Table 3. The timings were obtained on a i7 processor with
3 GB RAM and 4 hyper-threading cores. The baseline experiment took 5 days 3
hours and 25 minutes, while the mean-field analysis was completed in one second.
The difference between the simulation time for the different experiments is due to
the dependency of the rates on a number of computers in ActivePropagationBots
state. In the Baseline experiment the number of these computers is large, hence,
the rate of infection becomes very large and more time is needed to simulate
the resulting large number of events. The time spent on the simulation of the
experiments with a lower number of computers involved is reasonably smaller;
however the mean-field approximation is still much faster in all cases.

We do not provide all the experiments from [38] and [26] since they lie out
of the scope of interest of this tutorial. Note, however, that the accuracy of the

254 A. Kolesnichenko et al.

results and the speed of calculation hold for all the experiments, provided in the
papers, mentioned above.

The speed of the mean-field results calculation allows us to use the mean-
field method to address problems which are not feasible using simulation: (i)
we study the dependence of the botnet spread on two parameters, while the
previous results are only functions of time for a given set of parameter values,
(ii) and we study the behaviour of the botnet in the presence of cost constraints.
The purpose of the following is to show the difference between the simulation
and the mean-field capabilities, and, at the same time, to show the advantages
of the fast analysis.

We calculate the number of propagation bots as a function of k13 and k14
(see Figure 4). As one can see, there is no considerable difference in a relative
increase of one or the other parameter. It is known that inactive computers
are much harder to detect (increasing k13 is more difficult), therefore the above
results might be helpful for the anti-virus software developers to find the better
strategy for botnet removal.

Next, we introduce a cost concept to analyse the economical side of an infec-
tion. Two types of costs are considered: (i) the cost of a computer being infected,
for example, due to the loss of information or productivity, and (ii) the cost of
more frequent checking with anti-virus software. On one hand the number of
infected computers, and hence their cost grows if computers are not frequently
checked. On the other hand, if computers are checked too often the botnet is not
growing, but running the anti-virus software becomes very expensive. We anal-
yse this trade-off in more detail in the following. We calculate the cumulative
cost between t0 and t1 as follows:

C(t0, t1, RR,D1, D2) =
∫ t1
t0

(D1 · IC(t, RR) +D2 ·RR ·AC) dt (8)

where RR is the change in removal rates k11, ..., k14 with respect to the rates in
the baseline experiment, i.e. k11 = RR·k11,baseline (similarly for k12, k13, k14); D1

is the cost of infection; IC(t, RR) is the number of infected computers for a given
RR, at time t, including active and inactive working and propagation bots; D2 is
the cost of one computer being checked, which probably is much lower than the
cost of infection (D1); AC is the number of the computers in the network. We
calculate the cumulative cost of the system performance for three days. For RR
from the interval [0.001, 10] we calculate the cost as a function of time for given
D1 and D2. Results are depicted in Figure 5. The cost grows exponentially with
time and almost linearly with decreasing RR if the computers are not checked
frequently (for the RR between 0 and 1). However, if anti-malware software is
used too often (RR above 2), the cost grows linearly with RR.

We see that the mean-field method can be easily used for finding the removal
rates which minimize the cost at a given moment of time. It can help network
managers with careful decision-making, based on the situation at hand. Even
though not all parameters might be known in reality, such analysis can help to
obtain a better understanding of the characteristics of botnet spread.

Applying Mean-Field Approximation 255

Fig. 4. Number of propagation bots for
(k13, k14) ∈ [8 ·10−5 ; 10−3]× [8 ·10−3 ; 10−1]
at time T = 3days, all other parameters
are the same as for baseline experiment
(see Table 2)

Fig. 5. Cost of the system performance for
D1 = 0.01, D2 = 4 · 10−5

In this section the basic mean-field example was described together with the
possible extensive use of the mean-field model. An example of using mean-field
approximation for more sophisticated systems is given in the next sections.

4 Spatial Mean-Field Models

The mean-field analysis was firstly used in the fields of physics (when studying
gas dynamics) and systems biology (studying how concentrations of reactants
behave in a solution). In those domains, the assumption is made that the spa-
tial distribution of particles/molecules across the system is homogeneous and
the interacting entities are spread across the space uniformly. Such systems are
often referred to as spatially homogeneous, in physics, and well-stirred, in chem-
istry. When analysing them, regardless of their spatial structure a single rate
is assigned for each type of particle-to-particle interaction and these interac-
tions respectively have the same probability to take place at different locations.
Therefore, the effect the locations may potentially have on the overall dynamics
is abstracted away.

In this section we focus on the appropriateness of the abstraction with respect
to the spacial aspects in the context of modelling computer and communication
networks. Indeed, depending on the system under study abstracting from the
space might be a suitable simplifying step. For example, in the previous section
the state vector only counted how many computers are in different local states,
regardless of their locations across the geographical space (as a result, the tran-
sition rate functions did not depend on the computers’ locations). Although this
abstraction is reasonable in certain systems, but there exist those whose dynam-
ics and emergent behaviours are significantly dependent on the locations of the
constituent interacting objects. For those systems, the model should take into
account the spatial aspects (the location of the entities, their distance, etc.) or
else, the system’s behaviour may not be captured effectively.

In this section, we consider an example of a large-scale peer-to-peer gossip
network [11] where the emergent behaviour of the system significantly depends

256 A. Kolesnichenko et al.

on locations of the objects involved. We describe how the mean-field equations
are constructed in a way that the effect the locations have on the system’s
behaviour is also captured.

An additional feature of the example we review in this section is that it
shows a case where the mean-field method is applied to a uncountable space.
In Section 3, the method was applied to a finite-domain CTMC. Nevertheless,
Kurtz’s Theorem [27] has the potential to be applied also to Markov chains
defined over uncountable domains [32]. As we will express, in the model we
consider some of the state variables range over positive real numbers and this
complicates the process of applying the method as the mean-field equations
consists of partial differential equations. Here, we will review how the mean-field
equations are practically constructed and avoid the proof of convergence. The
more interested reader can refer to [11] for that purpose.

4.1 The Age of Gossip

We consider the example in [11], a model proposed for a peer-to-peer opportunis-
tic communication network. Two types of entities are present in this network:
some are mobile agents and can move through different locations, and some oth-
ers are the stationary base stations. The base stations transmit fresh updates
on a piece of data by the wireless medium and these updates are received by
the mobile agents when they are close to one of the base stations. The data the
base stations send is time-stamped. The age of a piece of data an agent holds
is defined to be the time elapsed since it was transmitted by one of the base
stations. Therefore, the age of data just received is zero. The age of an agent
is defined to be the age of the data it holds. In addition to the data exchanges
with the base stations, the mobile agents are capable of radio communication
between themselves. If two such agents are close enough, the one who has the
most recent version transmits its data to the other. This mechanism helps the
agents receive updated data even if they have not directly visited a base station.

The system consists of a number of locations through which the mobile agents
move. We assume that the base stations in each location can establish radio com-
munication only with agents who are in the same location. The data exchange
between two mobile agents can take place either when they both belong to the
same location or when they are in two different locations. The latter captures
the situation when agents are close to the borders of their location and can
potentially exchange data with agents of the other locations.

Formal Model Description. Let L = {1, 2, . . . , C} be the set of locations
and N denote the number of mobile agents. For the ith agent, we define Xi ∈ R+

to denote its age and ci ∈ L to represent its location. Hence, the state vector
is ξ = 〈X1, X2, . . . XN , c1, c2 . . . cN 〉. Now we define the transitions which affect
the system’s state and the rate functions associated with these transitions.

1. Mobility. An agent moves from location c to c′ with rate ρc,c′ , c �= c′. If
there are Nc agents in c, the total rate at which agents from c move to c′ is
Nc × ρc,c′ .

Applying Mean-Field Approximation 257

2. Contact with Base Station. An agent i with ageXi in c∈L may contact a
base station in c and get fresh data. As the result, Xi = 0. For each location c
a parameter μc describes the rate at which an agent in c receive data directly
from base stations in c. If no base stations are in c, then μc = 0.

3. Opportunistic Contact within Locations. An agent i in a location c
opportunistically communicates with any of the other N−1 agents with rate
2ηc/(N − 1). The total rate of communications observed between mobile
agents in c is determined by two factors: the number of agents the location
contains and its topological structure. The larger the number of agents is,
the higher the frequency of the communication. However, when two locations
have exactly the same number of agents, the respective rates of the meetings
may not be the same, as the structural properties of one might encourage
agent-to-agent interaction more than the other. Hence, for each c ∈ L, a pa-
rameter ηc is defined, which captures how effectively the location’s structure
encourages the such interactions. If there are Nc agents in location c, the
total rate at which agents communicate between themselves is:(

Nc

2

)
× 2ηc

(N − 1)
=

(Nc)× (Nc − 1)

N − 1
ηc. (9)

4. Opportunistic Contact across Locations. A mobile agent in a location
c may communicate with a mobile agent from a different location c′. This
interaction happens with rate 2βc,c′/(N−1). For each c and c′, (c �= c′), βc,c′
is a constant which affects the rate at which the agents in c communicate
with the agents in c′.

The ages of the agents continuously grow unless they communicate with one
of the base stations or receive fresher data from other mobile agents. At any
point of time and for each location, one can derive the age distribution for the
agents in that location. The aim is to construct the network in a way that an
acceptable distribution of ages is maintained across all locations.

State Space Representation. The state vector used for capturing the state
of a system depends on the system under study and the modelling goals. In the
peer-to-peer network we consider, the age of the agents is one of their key prop-
erties. Therefore, let the configuration of the system at any time t be captured
by a continuous distribution ξ′′(z, t), z ∈ R

+, where ξ′′(j, t) denotes how many
agents have age j at time t. Using this state representation, a partial differen-
tial equations over the dimensions z and t is formed to effectively study how
the age distribution of the agents evolves. However, the modelling suffers from
the fact that the mobility of the agents is abstracted away and the effect their
locations potentially have on the system’s emergent behaviour is not realised.
The dynamics of the system is faithfully captured if the state vector takes into
account both properties of the agents, i.e. their age and their locations.

Consider c ∈ L. For the ith agent with age Xi, we define the distribution δXi ,
a Dirac mass at Xi. At a time t, the age distribution of agents in c across R+ is
denoted by distribution MN

c (t)=
∑N

i=1 1{ci=c}δXN
i (t), which is a continuous dis-

tribution denoting the number of agents who have any age z at location c at time

258 A. Kolesnichenko et al.

t. The vector of such distributions MN (t)=〈MN
1 (·, t),MN

2 (·, t), . . . ,MN
C (·, t) 〉

is capable of capturing both the locations and ages of the agents, and is used in
the rest of this section for state state representation of the mean-field analysis.

4.2 Mean-Field Limit Behaviour

In order to derive the deterministic limit behaviour, first we focus on the mobility
of the agents across locations and then we consider message propagation.

Mobility of Agents. Let UN (t) = 〈UN
1 (t), UN

2 (t), . . . , UN
C (t) 〉 capture the

number of agents in different locations at time t, assuming that there are N

agents in the system. Thus, the location occupancy measure is defined as: Ū
N
(t) =

UN (t)
N = 〈ŪN

0 (t), Ū
N
1 (t), . . . , Ū

N
C (t)〉 where each UN

c (t)c∈L represents the fraction
of the agents which are in location c at time t. Assume that, when N →∞, the

sequence Ū
N
c (0) converges to a unique limit:

lim
N→∞

Ū
N
(0)= lim

N→∞
U(0)

N
=

〈
U1(0)

N
,
U2(0)

N
, . . . ,

UC(0)

N

〉
=
〈
ū01, ū

0
2, . . . ū

0
C

〉
= ū0

Since the convergence of initial occupancy measure holds and the system satisfies
density dependence (rate functions in the normalised system is independent ofN),
we use Kurtz’s Theorem [28] to prove that, at any time point t>0, if N→∞, then

process Ū
N
(t) converges to a deterministic limit ū(t) = 〈ū1(t), ū2(t), . . . ūC(t)〉,

where ūc(t) is the solution of the following initial value problem:

∀c ∈ L, ∂ ūc(t)

∂t
=

⎛⎝∑
c′ �=c

ρc′,cūc′

⎞⎠−
⎛⎝∑

c′ �=c

ρc,c′

⎞⎠ ūc , ūc(0) = ū0c (10)

The first term on the right hand side indicates the increase of ūc due to the
agents coming from adjacent locations to c, and the second term indicates the
decrease of ūc due to c agents leaving for the adjacent locations.

By the Cauchy-Lipschitz theorem, for any initial condition ū0 = 〈ū0c〉c∈L,
Equation 10 admits a unique solution [11]. Let ūc(t | ū0) denotes the determin-
istic value of ūc at time t given the initial condition ū0. The stationary location
occupancy measure can be derived using the fixed point method:

∀c∈L, ∂ ūc(t)

∂t
= 0 =⇒ ∀c ∈ L, ũc

⎛⎝∑
c′ �=c

ρc′,cuc′

⎞⎠=

⎛⎝∑
c′ �=c

ρc,c′

⎞⎠ũc , ∑
c∈C

ũc = 1.

Evolution of Age Distributions. Consider MN , the state vector stated
above. Assume that there are N agents in the network. The system’s occupancy

measure is defined as M̄
N
(t) = MN (t)

N = 〈 M̄1(·, t), M̄2(·, t), . . . , M̄C(·, t) 〉, where

Applying Mean-Field Approximation 259

∀c ∈ L, M̄N
c (z, t) denotes the density of agents in c with age z at time t. We also

define FN
c (z, t), the cumulative distribution function over M̄N

c (t):

∀c ∈ L, FN
c (z, t) =MN

c (t)[0 : t] =

∫ z

0

M̄
N
c (s, t) ds.

∀c ∈ L, ∀z, t ∈ R+, FN
c (z, t) shows the proportion of N in c with age less than

or equal to z. We assume that when N → ∞, the initial occupancy measures

M̄
N
(0) converge to a unique limit m̄0: limN→∞ M̄

N
(0) = m̄0. This implies that

∀c ∈ L , limN→∞ M̄
N
c (0) = m̄0

c .
The rate functions related to the data propagation satisfy the density depen-

dence condition. Therefore, for any t > 0 and for all c ∈ L, when N → ∞,

M̄
N
c (t) converges to m̄c(t), where m̄c(t) is the solution of the following partial

differential equation [11]. Here, ūc(t) is derived by solving Equation (10) for t.

m̄c(0, t) = μc × ūc(t) (11)

∂m̄c(z, t)

∂t
=−∂m̄c(z, t)

∂z
−μcm̄c(z, t)+

∑
c′ �=c

ρc′,cm̄c′(z, t)−

⎛⎝∑
c′ �=c

ρc,c′

⎞⎠m̄c(z, t) (12)

+2ηc [(+1)× (uc(t)− Fc(z, t)) · m̄c(z, t) + (−1)× m̄c(z, t) · Fc(z, t)]

+
∑
c′ �=c

2βc,c′
[
(+1)× (uc(t)− Fc(z, t)) · m̄c′(z, t) + (−1)× m̄c(z, t) · Fc′(z,t)

]
We propose an intuitive explanation for forming Equation 12 by considering how
much each m̄c(z, t)c∈C changes in an small time interval ∂t (the left hand side).
Consider c ∈ L. During ∂t, agents with age z (accounted for by m̄c(z, t)) grow
older and need to be removed from m̄c(z, t). Additionally, agents with age z−+z
become older and the density m̄c(z−+z, t) need to be added to m̄c(z, t). Hence,
the rate of change of mc(z, t) caused only by aging is (first term on the right
hand side of Eq. 12):

lim
�z→0

| m̄c(z −+z, t)− m̄c(z, t) |
+z =

∂m̄c(z, t)

∂z
.

The second term reflects the communication of agents, accounted by m̄c(z, t),
with one of the base stations. If, there are m̄c(z, t) agents in c, given that the
rate of communication with base stations in c is μc, then in ∂t, μc× m̄c(z, t)×∂t
communications take place and the agents involved leave m̄c(z, t). Therefore, the
rate of the change is μc × m̄c(z, t).

The third expression shows the increase of m̄c(z, t) as a result of agents with
age z moving from other locations c′ into c. The rate of the increase due to the
flow from any c′ �= c is ρc,c′m̄c′(z, t). Conversely, the fourth term reflects the
movement of agents contained in m̄c(z, t) out of c into the adjacent locations.
The decrease in m̄c(z, t) due to this flow happens at rate

∑
c′ �=cρc,c′.

The fifth term has two parts. The first shows the rate of the flow into m̄c(z, t)
due to agents with age z in c communicating with agents of higher age in c.

260 A. Kolesnichenko et al.

The total density of agents in c at time t is ūc(t)and of those with age less than
z is Fc(z, t). Therefore, (uc(t)−Fc(z, t)) is the density of agents older than z. In
the normalised system, by Equation 9, the rate of communication between the
fraction with age z and those with higher ages is: 2ηc(uc(t) − Fc(z, t))m̄c(z, t).
The second part, −2ηc(m̄c(z, t))Fc(z, t), reflects the drift out of m̄c(z, t) as a
result of agents with age z in c communicating with agents of lower age in c.

The sixth term is similar to fifth, with the difference that it shows the change
of m̄c(z, t) due to the agents from c communicating with agents from c′ �= c.

We simplify Equation 12 by integrating over z to obtain:

∀c∈L: ∂ Fc(z, t)

∂t
=−∂ Fc(z, t)

∂z
+

⎛⎝∑
c′ �=c

ρc′,c Fc′(z, t)

⎞⎠−
⎛⎝∑
c′ �=c

ρc,c′

⎞⎠Fc(z, t) (13)

+
(
uc(t|d)− Fc(z, t)

)(
2ηcFc(z, t) + μc

)
+
(
uc(t|d)− Fc(z, t)

)∑
c′ �=c

2 βc,c′Fc′(z, t)

∀c ∈ L, ∀t ≥ 0 : Fc(0, t) = 0 , ∀c ∈ L, ∀z ≥ 0 : Fc(z, 0) = Fc(z)

In this modelling, the set of ODEs (10) are constructed and solved independently,
as the agents’ mobility is not assumed to be dependent on the data propagation.

4.3 Solution of the Equations

Here we consider how Equation 13 is solved, for the case where there is only one
location in the system and at t = 0, every agent has age zero.

The solution is obtained by introducing a change of variables. Let the space
A={(x, y) ∈R×R|x ≥ 0, x+y ≥ 0} and G(x, y) :A→ [0, 1], G(x, y)=F (x, x+y).
In order to find F (z, t) it is enough to derive G(z, t−z). For function G we have:

∂G(x, y)

∂x
=
∂F (z, t)

∂z

∣∣∣∣
(x,x+y)

+
∂F (z, t)

∂t

∣∣∣∣
(x,x+y)

.

Rearranging the terms in Equation (13), we obtain:

∂G(x, y)

∂x
= (1−G(x, y))(2η G(x, y) + μ) G(0, y) = 0 (14)

The assumption that at time t = 0, no gossip exists, implies that ∀t z < t and
y = t− z > 0. For anu y ∈ R+, let us define gy : x &→ G(x, y). Therefore:

∂gy(x)

∂x
= (1− gy(x))(2ηgy(x) + μ) gy(0) = 0

By Cauchy-Lipschitz Theorem, this equation has a solution. The value obtained
for gy(x) leads to the corresponding F (z, t).

Applying Mean-Field Approximation 261

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

age

d
e
n
si

ty
f(

z
,t

)

μ=1, η=0
μ=0.67, η=0.165
μ=0.5, η=0.25
μ=0.34, η=0.33
μ=0.1, η=0.45
μ=0.01, η=0.49

Fig. 6. The density at age z for different values of η and μ when z ≤ t

Single Location - Analytical Solution. In this case, Equation 14 can be
analytically solved to obtain the following solution:

F (z, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1− 2η + μ

2η + μe(μ+2η)z
if z ≤ t

1− 2η + μ

2η + 2ηF (z−t,0)+μ
1−F (z−t,0) e

(μ+2η)t
if z > t

(15)

We illustrated the reasoning behind the first case of the solution (when z ≤ t).
The second case (z > t), concerns the situation where in the initial configuration
some agents have age greater than zero. Therefore, at any time t, it is possible to
have agents with ages higher than t. The proportion of the agents who at time t
have age z > t depends on the proportion whose age was at least (z − t) in the
system’s initial configuration. We skip the solution explanation for this case.

The solution allows us to study important aspects of the peer to peer network.
In terms of performance, the network is well designed if with a high probability,
the majority of agents remain within relatively low ranges of age. One way to
satisfy this performance requirement is to deploy a relatively large number of
base stations in each location; the agents frequently communicate with the base
stations and receive fresh copies of the data. We introduce the term infrastruc-
ture dominant here. A location where the associated age distribution is mainly
formed by the agent-to-base-station communication is said to be infrastructure
dominant. In such a location, the agent-to-agent communication has less impact.

A location that does not enjoy strong infrastructure may still exhibit a satis-
factory age distribution. In this case, the frequent and improved agent-to-agent
communication is the main contributing factor in information dissemination. A
location where the opportunistic contact determines the shape of the age distri-
bution is referred to as opportunistic dominant.

Figure 6 shows the results of the analysis of the model when the system con-
sists of only one location. Different values for the parameters μ, η capture differ-
ent degrees of dominance of the infrastructure or of the opportunistic contacts.

262 A. Kolesnichenko et al.

We conclude [11] that when μ ≥ 2η, m(z, t) decreases as the age increases. The
maximum density is at age z = 0 with m(0, t) = μ. Here, the opportunistic con-
tacts happen at a lower rate than with the base stations. Hence, the latter type
of communication determines the shape of the distribution. The extreme case is
when η = 0; the opportunistic contact does not occur at all. In this case, improv-
ing the age distribution entails improving the rate of communications with base
stations by increasing the number of base stations.

We also conclude that when μ < 2η, the opportunistic contact rate becomes
large enough to influence the age distribution. Consequently, there emerges a
large mass around a typical age, maintained by the contacts between the mobile
agents. In the extreme case, μ is small and η is large. The mass around age
z = 0 becomes negligible and depending on the frequency of the agent meetings,
the dominant age is centred at some age z > 0. In order to improve the age
distribution in such a network without changing μ, one needs to improve η.

Multiple Locations. We explain the steps in the solution phase when the
network contains multiple locations. Let us assume that the system has reached

its equilibrium; ∀c ∈ L, ∂Fc(z,t)
∂t = 0, uc(t)→ ũc. Using Equation (13), we obtain:

∀c ∈ L, d Fc(z)

dz
= +ũcμc +

⎛⎝ũc2ηc − μc −∑
c′ �=c

ρc,c′

⎞⎠Fc(z) (16)

+
∑
c′ �=c

(ρc′,c + ũc2βc,c′)Fc′(z) −
∑
c′ �=c

2βc,c′Fc(z).Fc′(z) − 2ηc(Fc(z))
2

with the initial condition ∀c ∈ L, Fc(0) = 0. In contrast with the previous case,
this system of ODEs is multi-dimensional and non-linear, and has no simple
analytical solution. Nevertheless, when z → 0 or z is very large, it can be ap-
proximately solved. If z → 0, then Fc(z) → 0 and the factors Fc(z)Fc′(z) and
(Fc(z))

2 become negligible compared to the rest of the expression and can be
ignored to find the following system shown in the matrix form:

F ′ = FA+B (17)

Ac,c= ũc2ηc − μc −
∑
c′ �=c

ρc,c′ , Ac,c′ =ρc,c′+ũc′2βc,c′ , B = (μ0ũ0, . . . , μC ũC)

For c ∈ L and z → 0, mc(z) ≈ μcũc. The derivative of mc(z) is:

d m̄c(z)

dz
= μcũc(ũc2ηc − μc −

∑
c′ �=c

ρc,c′) +
∑
c′ �=c

μc′ ũc′(ρc′,c + ũc2βc′,c)

If ∀ c, c′ ∈ L : βc,c′=0, then:

d m̄c(z)

dz
= μcũc(ũc2ηc − μc) +

∑
c′ �=c

(μc′ − μc)ũc′ρc′,c (18)

Applying Mean-Field Approximation 263

Equation (18) is used to determine for each c, whether its is an infrastructure
dominant or opportunistic contact dominant. If ∀c, μc = μ (μc is the same in all
locations), c has a dominant infrastructure (respectively, dominant opportunis-
tic contact) if 2ηc < μc (respectively, 2ηc > μc). For the case when the base
stations are installed in non-neighbouring locations, then c with a base station
has a dominant opportunistic contact if 2ηcũc > μc+

∑
c′ �=c ρc,c′. In any location

with no base stations, the age distribution will be dominated by the opportunis-
tic contacts. The most general case happens when each location has its own
specific μc and the base stations are distributed arbitrarily across the locations.
In this case, the nature of each location can be decided only after plugging the
parameters into Equation (18) and observing the sign of the derivative at z = 0.

For the case when the modeller is interested in high values of age (z →∞), a
similar technique can be used to simplify the equations [11].

4.4 Model Validation

We reviewed how the model was developed and analysed [11]. Now we focus
on model validation. This task has three steps. First, by using the data on the
executions of the real system (eg. time series) the model’s parameters are found.
Then, a version of the model with concrete values for the parameters is con-
structed. Second, using a classical approach such as the stochastic simulation,
the model is analysed and the observations are compared (qualitatively/quan-
titatively) against the real executions to check whether the model effectively
captures the age distributions. Finally, the mean-field solution is obtained to
check whether this particular method is suitable for the analysis of the model.

Validation Platform. CabSpotting [10] is a project where the San Francisco
taxi company traces the location of its yellow cabs as they operate in the Bay
Area (SFBA). Using GPS, each cab reports its location every minute and the
data is stored in a database. By using the cabs’ movement traces and introducing
some realistic networking assumptions, one can construct a realistic opportunis-
tic peer-to-peer network, similar to the model considered in Section 4.1, where
the cabs and base stations are responsible for propagating data in the network.
The realistic scenario, built in this manner, is used in the model validation.

Assume that SFBA is divided into 16 locations. There are a number of base
stations which frequently transmit fresh copies of a piece of data. Each base sta-
tion has a specific transmission range. The network consists also of a relatively
larger number of taxi cabs. Each cab is equipped with a radio device to com-
municate with base stations or other cabs. Each cab scans its surrounding once
per minute and when another entity is detected (another cab or one of the base
stations), it tries to initiate a data exchange. The radio devices are assumed to
have the range of 200m. A meeting or successful data exchange happens if the
communicating entities remain in 200-meter proximity for at least 10 seconds
(10 sec guarantees a data exchange). The goal of the meetings is to propagate
updated copies of the data throughout the network. The age of a cab is equal to
the time elapsed since the data it holds was sent by one of the base stations.

264 A. Kolesnichenko et al.

The CabSpotting database stores the cabs’ movement traces. By using these
traces and making the networking assumptions stated above, we can generate
the contact traces. The latter not only captures the occurrence of the meetings,
but also how the age of the cabs change as the result of such meetings. Therefore,
the contact traces record how the cabs’ ages change and can be used to observe
how the age distributions evolve in different locations. In [11], contact traces
were generated for dates between May, the 17th and June, the 15th, 2008 and
for the time period between 8:00am till midnight, each day. They were then used
for validation steps.

Extracting Model Parameters. The following quantities were measured us-
ing the contact traces generated. N(t): total number of cabs in time slot t (time
unit = one minute); Nc(t)c∈{1,2,3,...16}: number of cabs in location c during time
slot t; Nc,ub(t): number of contacts between a mobile agent and a base station
in c during time slot t; Nc,uu(t): number of contacts between any two mobile
agents in c during t; Nc,c′,uu(t)c �=c′ : number of contacts between an agent from
c and another from c′ during t.

Given the contact traces, one can calculate μ̄c(t) =
Nc,ub(t)
Nc(t)

as the rate at

which an agent in c communicates with one of the base stations in that location
during t. If, at t there are Nc(t) agents in c, then on average μ̄c(t) × Nc(t)
meetings are expected in the following time unit. The average μc for an hour
is calculated by averaging μ̄c(t)t∈[0,59]: μc =

1
60

∑t0+59
t=t0

μ̄c(t). This parameter is
used in the model. Let us now focus on how other parameters are calculated.

In the model, for c ∈ L the rate at which an agent in c meets another agent
in c is 2ηc

N−1 . Consequently, the rate at which meetings occur in c is:

(
Nc

2

)
× 2ηc

(N − 1)
=

(Nc)× (Nc − 1)

N − 1
× ηc. (19)

During the time unit t, the traces capture Nc,uu(t) meetings which can be ex-
pressed using Equation 19. We assume that that at t, η̄c(t) affects the rate of

the meetings. Therefore, in time unit t we expect to observe Nc(t)×(Nc(t)−1)
(N(t)−1) η̄c(t)

meetings. Thus:

Nc,uu(t)=
(Nc(t))(Nc(t)−1)

N(t)− 1
η̄c(t)⇒ η̄c(t)=

Nc,uu(t)
Nc(t)
N(t)−1(Nc(t)− 1)

≈ Nc,uu(t)

uc(t)(Nc(t)−1)
.

The model’s ηc is obtained by averaging η̄c(t) for one hour; ηc =
1
60

∑t0+59
t=t0

η̄c(t).

In the model, the rate at which an agent in c meets an agent in c′ is 2×βc,c′
N−1 .

Therefore, in one time unit, on average
2βc,c′
N−1 NcN

′
c meetings occur between

agents in c and c′. For each time unit t, the traces show Nc,c′,uu(t) meetings

Applying Mean-Field Approximation 265

having occurred. Therefore:

2β̄c,c′(t)

N(t)− 1
Nc(t)Nc′(t)=Nc,c′,uu(t)⇒ β̄c,c′(t)=

Nc,c′,uu(t)

2N(t)uc(t)N(t)uc′(t)× 1
N(t)−1

⇒

β̄c,c′(t) ≈
Nc,c′,uu(t)

2×N(t)× uc(t)× uc′(t)

For each c and c′, βc,c′ can is obtained by averaging β̄c,c′(t) over an hour.
Finally, in the model, the rate at which agents move from location c to c′ is

defined to be ρc,c′ × Nc. In the traces, one observes Nc,c′,trans(t) movements.

Therefore: ρ̄c,c′(t)Nc(t) = Nc,c′,trans(t) ⇒ ρ̄c,c′(t) =
Nc,c′,trans(t)

Nc(t)
. The same

averaging is applied to ρ̄c,c′(t) to find ρc,c′ .
The parameters obtained from the contact traces were used to build a fully

parametrized model. The model was then simulated and the stochastic behaviour
obtained was compared against the traces. The authors show that the model is
sufficiently detailed to capture the stochastic behaviour of the real system.

The last step of the validation is checking whether the mean-field method is
an appropriate method for the analysis of this model. The authors show that for
the locations which usually have reasonably large populations of agents (having
at least tens of taxi cabs), there exists a close correspondence between the age
distributions obtained from the mean-field analysis and the distributions derived
from the contact traces. For the locations at the edges of the network, where the
population of the cabs were too small, the mean-field solution has more error.
Due to space limitation we skip reviewing the last sections of the validation
process and the interested reader is referred to [11].

5 Model Checking Mean-Field Models

In this section we discuss model-checking approach for mean-field models. The
kind of analysis we can perform through model checking is rather different from
the performance studies we illustrated in previous sections. Indeed, we are able
to formally prove temporal properties of the execution of these systems and have
an estimate of the probability of their validity at a certain time point.

There are two possible ways of describing the properties of a large popula-
tion: via studying a random individual within the whole population and via
considering the whole population.

The first approach is known as a fluid model checking [8] and it employs
a bounded fragment of the Continuous Stochastic Logic (CSL) for describing
properties of interest. Later in this section we recall the logic CSL, and explain
how these properties can be checked for an individual object.

While fluid model checking is applicable to the local model only, the second
approach allows us to derive the properties of the overall mean-field model. This
is done usingMean-Field Continuous Stochastic Logic (MF-CSL) [25], which lifts
the properties of the local model to the level of the overall model via expectation
operators. MF-CSL logics relays on the local model properties when constructing

266 A. Kolesnichenko et al.

the properties of the overall model, and the timed properties can be described
only on the local level (for an individual object).

Note that yet another approach to model-checking mean-field models is possi-
ble, that only makes use of the deterministic limit (occupancy vector) to reason
about the timed properties on the level of the overall model.

In the following we first return our attention to the single agent and its prop-
erties in Sections 5.1-5.5. Then the model-checking procedure for the whole pop-
ulation is addressed in Section 5.6.

5.1 Single Agent Model

An interesting consequence of the mean-field approximation theorem is the so-
called decoupling of joint probability (for details, please refer to [3,30]), which
allows us to obtain the model of the single object within the overall model, by
using fast simulation [13,15]. The central idea of this process is to abstract the
system to its fluid approximation (to obtain mean-field model of the system)
and to study the evolution of a single agent as executed in parallel with the
approximation of the rest of the system. The advantage is that, rather than
considering/simulating the entire system, it is sufficient to consider the abstract
average behaviour of the system and observe a single agent interacting with it,
by decoupling its evolution from the evolution of the remaining agents. This is a
faithful approximation since the dynamics of a single agent depend on the other
agents only through the overall average system state. This allows us to reason
about the local model within the overall model as of a time-inhomogeneous
continuous time Markov chain (ICTMC).

Due to the time-inhomogeneity of the local model, the existing model checking
algorithms for CTMCs can not be reused. Therefore, in [8] the authors develop
novel CSL model checking algorithms for ICTMC models. We denote the single
object model coupled with the deterministic limit (the local ICTMC) as Z(t) for
ease of notation. The labelling of the states of ICTMC is done on the same way
as for a time-homogeneous CTMC.

5.2 Continuous Stochastic Logic

As a single agent model is described by an ICTMC, a standard CSL logic can
be used to express the properties of such model. In the following we recall the
definition of bounded CSL as in [2]:

Definition 3. CSL Syntax. Let p ∈ [0, 1] be a real number, ��∈{≤, <,>,≥}
a comparison operator, I ⊆ R≥0 a non-empty bounded time interval, and AP a
set of atomic propositions with a ∈ AP . CSL state formulas Φ are defined by:

Φ ::= tt | a | ¬Φ | Φ1 ∧ Φ2 | P
�p(φ),

where φ is a path formula defined as:

φ ::= X IΦ | Φ1 U
I Φ2.

Applying Mean-Field Approximation 267

To define the semantics of CSL formulas we first recall the notion of a path
as it was defined for the CTMCs in [2]; this notion is reused for ICTMCs. An

infinite path σ is a sequence s0
t0→ s1

t1→ s2
t2→ ..., for i ∈ N; si ∈ S and

ti ∈ R>0 such that the probability that starting in state si we reach state si+1

at time tσ[i] =
∑i

j=0 tj is greater than zero. A finite path σ is a sequence

s0
t0→ s1

t1→ ...sl−1
tl−1→ sl such that sl is absorbing, and, similarly, a probability

of going from si to si+1 is greater than zero for all i < l.
For a given path σ, σ[i] = si denotes for i ∈ N the (i+1)st state of path σ. The

time spent in state si is denoted by δ(σ; i). Moreover, with i the smallest index,

and with t ≤
∑i

j=0 tj , let σ@t = σ[i] be the state occupied at time t. For finite
paths σ with length l+1, σ[i] and δ(σ; i) are defined in the way described above

for i < l only and δ(σ; l) = ∞ and δ@t = sl for t >
∑l−1

j=0 tj . Path
Z(t)(si, t0) is

the set of all finite and infinite paths of the ICTMC that start in state si and
PathZ(t)(t0) includes all (finite and infinite) paths of the ICTMC. A probability
measure Pr(t0) on paths can be defined as in [2].

Since the local model changes with time, the satisfaction relation for a local
state or path depends on time as well, and it is defined as follows:

Definition 4. Semantics of CSL. Satisfaction of state and path CSL formu-
las for ICTMCs is given as follows:

s, t0 |= tt ∀s ∈ S,
s, t0 |= a iff a ∈ L(s),
s, t0 |= ¬Φ iff s, t0 � Φ,
s, t0 |= Φ1 ∧ Φ2 iff s, t0 |= Φ1 and s, t0 |= Φ2,

s, t0 |= P
�p(φ) iff ProbZ(t)(s, t0, φ) �� p,
σ, t0 |= X IΦ iff σ[1] is defined, and δ(σ, 0) ∈ I, and

σ[1], (t0 + δ(σ, 0)) |= Φ,
σ, t0 |= Φ1 U

I Φ2 iff ∃t′ ∈ I : (σ@t′ |= Φ2)
∧(∀t′′ ∈ [t0, t

′)(σ@t′′ |= Φ1)),

I ⊆ R≥0 is a non-empty time interval and ProbZ(t)(s, t0, φ) is the probability
measure of all paths σ ∈ PathZ(t)(s, t0) that satisfy φ and starting in state s,
that is ProbZ(t)(s, t0, φ) = Pr{σ ∈ PathZ(t)(s, t0) | σ, t0 |= φ}.

Only bounded time intervals are used in path formulas. This is motivated by
the nature of convergence theorem, which is valid only for finite-time horizons.
The relaxation of this restriction is possible, but we will not discuss it this
tutorial, see [8], and [25] for details.

The CSL operators can be nested according to Definition 3. Model-checking of
the CSL formula is done by building the parse tree and computing the satisfaction
set of the individual operators recursively (in a bottom-up fashion), as described
in [2].

Model-checking CSL formulas for ICTMCs is similar to model-checking these
formulas for CTMCs. All time-independent CSL operators can be checked us-
ing standard methods (see [2]) due to the independence of the results on time.

268 A. Kolesnichenko et al.

Therefore, model-checking these operators is not included in the following dis-
cussion.

The main challenge is in model-checking time-dependent operators: let us first
recall how these formulas are checked for time-homogeneous models. Given an
arbitrary time-homogeneous CTMC A, the probability formula containing the
interval next operator P
�pX [t1,t2]Φ is usually checked by computing the next-
state probability and by comparing it with the threshold p (see [2]). This is
calculated as the probability that the next jump starts within the time interval
[t1; t2] and ends in a state that satisfies Φ.

The probability formula including interval until formula P
�pΦ1U
[t1,t2]Φ2 for

an arbitrary time-homogeneous CTMC A is checked by computing the proba-
bility of taking a path satisfying the until formula and by comparing it to the
threshold p [2]. The way to calculate this probability will be presented below.
Let us denote the states satisfying Φ2 as goal states, and the set of such a states
as G = �Φ2�, a set of states satisfying Φ1 as safe states S = �Φ1�, and, similarly,
a set of the unsafe states U = �¬Φ1� for the ease of notation. For model-checking
CSL until formula, we need to consider all possible paths, starting in a safe state
s1 ∈ S at the current time and reaching a goal state s2 ∈ G during the time
interval [t1, t2] by only visiting safe states on the way. We can split such paths
in two parts: the first part models the path from the starting state s to a state
s1 ∈ S and the second part models the path from s1 to a state s2 ∈ G only via
safe states. In the first part of the path, we only proceed along safe states thus
all unsafe states s ∈ U do not need to be considered and can be made absorbing.
As we want to reach a G state via S states in the second part, we can make all
unsafe and goal states absorbing, because we are done as soon as we reach such
a state. We, therefore, need two transformed CTMCs: A[U] and A[U∪G], where
A[U] is used in the first part of the path and A[U ∪G] is used in the second.

In order to calculate the probability for such a path, we accumulate the multi-
plied transition probabilities for all triples (s, s1, s2), where s1 ∈ S and is reached
before time t1 and s2 ∈ G and is reached within time t2 − t1.

ProbA(s, Φ1U
[t1,t2]Φ2) =

∑
s1|=Φ1

∑
s2|=Φ2

πA[U]
s,s1 (t1) · πA[U∪G]

s1,s2 (t2 − t1). (20)

Hence, CSL until formulas can be solved as a combination of two reachability

problems, as shown in Equation (20), namely π
A[U]
s,s1 (t1) and π

A[U∪G]
s1,s2 (t2− t1) that

can be computed by performing transient analysis on the transformed CTMCs.
In the following we discuss the model-checking procedures that allow us to

solve the interval path formulas (until and next) for the random agent, i.e.
ICTMC. The procedure for checking these operators for ICTMCs is similar
to that for CTMCs discussed above. However, the probabilities to take a cer-
tain path have to be calculated differently, because the Markov chain is time-
inhomogeneous.

Applying Mean-Field Approximation 269

5.3 Next State Probability

Since the local mean-field model is a ICTMC the standard model-checking proce-
dure is not applicable, therefore in the following we explain how to calculate the
next state probability of an individual agent. This probability is also changing
with time, therefore not only the next state probability at a given time t0 is of
interest, but also the dependency of such probability measure on time. Another
important difference between checking CSL formulas for CTMC and ICTMC is
in the fact that the set of goal states (states, which satisfy Φ) can change with
time. In the following we address these differences and explain how a bounded
CSL Next formula can be checked for the local mean-field model.

We first describe how to calculate the next state probability for a given time
t0, i.e., the probability to jump from the state s to the state, satisfying Φ, or
goal state, within time interval [t1, t2]. This probability can be found as follows:

ProbZ(t)(s,X [t1,t2]Φ2, t0) =

∫ t0+t2

t0+t1

qs,G(t) · e−Λ(s,t0,t)dt, (21)

where qs,G(t) =
∑

s′∈G
Qs,s′(t) is the rate of jumping from the current state s

to the goal state s′ at time t; and Λ(s, t0, t) =
∫ t

t0
−Qs,s(τ)dτ is the cumulative

exit rate of state s between t0 and t. The proof is straight forward and can be
found in [8].

The next state probability can now be computed numerically in two ways:
using Equation (21) or by transformation the above formula to the differential
equations and solving them. The differential equations are more convenient and
simplify the calculations, they can be obtained as in [8], and are as follows:{

Ṗ (t) = qs,G(t) · e−L(t),
L̇(t) = −qs,s(t),

(22)

where P (t0 + t1) = 0 and L(t0 + t1) = Λ(t0, t0 + t1). The above ODEs have to
be integrated from time t0 + t1 to time t0 + t2.

As we discussed above, for checking CSL formulas the dependency of the next
state probability on time ProbZ(t)(s,X [t1,t2]Φ2, t0, t) is needed to be accessed.
To find this dependency one has to either calculate integral (21) for all possible
t0, or use the differential equations (22) to define another system of the differ-
ential equations with t0 as a independent variable. The obtained new system of
differential equations is as follows:

⎧⎪⎨⎪⎩
Ṗ s(t) = qs,G(t+ t2) · e−L2(t)− qs,G(t+ t1) · e−L1(t)− qs,s(t)P s(t),

L̇1(t) = −qs,s(t) + qs,s(t+ t1),

L̇2(t) = −qs,s(t) + qs,s(t+ t2),

(23)

where L1(t) = Λ(t, t+ t1) and L2(t) = Λ(t, t+ t2). Initial conditions at time t0
are computed by solving Equation (22).

And finally, the set of goal states can be time-dependent G(t), which has to
be taken into account while calculating the next state probability. It is done by

270 A. Kolesnichenko et al.

solving the above equation piecewise. All the time points T1, T2, ...Tk when the
goal set is changing are found first, where T0 = t0 + t1 and Tk+1 = t0 + t2.
Equation (23) is solved for each time interval [Ti, Ti+1].

For checking next formula one has to compare next state probability with
the given threshold p ∈ [0, 1], hence, equation ProbZ(t)(s,X [t1,t2]Φ2, t0, t) = p
has to have a finite number of solutions. In general, this doesn’t always hold,
therefore, the restrictions on the rate functions of the mean-field model have to
be introduced in order to insure the finite number of such solutions. In particular,
the rate functions must be piecewise real analytical functions, as described and
proved in [8].

5.4 Until Formulas. Reachability Probability

The core idea of CSL model-checking of until formulas as explained in Sec-
tion 5.2 remains unchanged for time-inhomogeneous CTMCs. However, due to
time-inhomogeneity it is not enough to only consider the time duration, but the
exact time at which the system is observed must be taken into account. Hence,
we add time t′ to the notation of a time-inhomogeneous reachability problem

π
Z(t)
s,s1 (t

′, T) to denote that we start in state s at time t′.
A probability for an arbitrary until formula Φ1U

[t1,t2]Φ2 to hold is then again
calculated by computing two reachability problems on the transformed ICTMCs
Z(t)[U] and Z(t)[U ∧G], respectively:

ProbZ(t)(s, Φ1U
[t1,t2]Φ2, t

′) =∑
s1,t′|=Φ1

∑
s2,t1|=Φ2

πZ(t)[U]
s,s1 (t′, t1 − t′) · πZ(t)[U∧G]

s1,s2 (t1, t2 − t1). (24)

Equation (24) is valid for t1 > t′, t2 > t′. If t1 = t′ the first reachability problem
can be omitted.

In the following we explain here how an arbitrary reachability probability

Π ′(t′, t′+T) can be calculated. This method is applied to both π
Z(t)[U]
s,s1 (t′, t1−t′)

and π
Z(t)[U∧G]
s1,s2 (t1, t2− t1); and the results are combined as in (24). The standard

transient analysis on the modified ICTMS is used in order to calculate the reach-
ability probability Π ′(t′, t′ + T). In order to find the transient probability the
forward Kolmogorov equation is solved with an identity matrix as initial condi-
tion:

dΠ ′(t′, t′ + T)

d(T)
= Π ′(t′, t′ + T) ·Q′(t′ + T), (25)

where Q′(t′ + T) is the rate matrix of the modified ICTMC.
In order to check a nested CSL formula for ICTMC the dependency of tran-

sient probability on the starting time has to be found. The later is done by
combining the forward and backward Kolmogorov equations:

dΠ ′(t, t+ T)

dt
= −Q′(t)Π ′(t, t+ T) +Π ′(t, t+ T)Q′(t+ T). (26)

Applying Mean-Field Approximation 271

The time-dependent probability matrix Π ′(t, t+ T) can be obtained by solving
Equation (26) with initial condition Π ′(t′, t′ + T). Using Kolmogorov equations
for solving reachability problems on the local models Z(t) is efficient due to the
fact that the state space is usually quite small (see [8]).

The goal and unsafe sets in ICTMC can vary with time (e.g., in nested formu-
las), which has to be taken into account while calculating reachability probability.
This is done by solving Equation (26) piecewise, i.e., for each time interval, where
the above mentioned sets remain unchanged. At first we find the so-called discon-
tinuity points, i.e., the time points T0 = t′ ≤ T1 ≤ T2 ≤ · · · ≤ Tk ≤ Tk+1 = T+t′,
where at least one of the sets changes. Then we do the integration separately on
each time interval [Ti, Ti+1] for i = 0, ..., k.

The procedure has to be slightly adjusted to ensure that only safe states are
visited before a goal state is reached. We need to modify the ICTMC Z(t) for
each time interval (Ti;Ti+1) as follows:

1. introduce a new goal state s∗, which remains the same for all time intervals;
2. all unsafe and goal states are made absorbing;
3. all transitions leading to goal states are readdressed to the new state s∗.

Given this modified ICTMC Z(t), the transient probability matrix Π ′(Ti, Ti+1)
is found for each time interval using the forward Kolmogorov equation, according
to Equation (25).

Upon “jumps” between time intervals [Ti−1, Ti] and [Ti, Ti+1] it is possible
that a state that was safe in the previous time interval becomes unsafe in the
next. In this case the probability mass in this state is lost, since this path does
not satisfy the reachability problem any-more. In the case that a state remains
safe or a safe state is turned into a goal state the probability mass has to be
carried over to the next time interval. This is described by the matrix ζ(Ti) of
size (|S| + 1) × (|S| + 1) constructed in the following way: for each state s ∈ S
which is safe before and after Ti it follows ζ(Ti)s,s = 1. For each state s ∈ S
which was safe before Ti and becomes goal after Ti we have ζ(Ti)s,s∗ = 1. For
the new goal state s∗ the entry always equals one (ζ(Ti)s∗,s∗ = 1), and all other
elements of ζ(Ti) are 0.

The probability to reach a goal state before time T has passed when starting
in a safe state at time t′ is given then by the matrix Υ (t′, t′ + T):

Υ (t′, t′ + T) =Π ′(t′, T1) · ζ(T1) ·Π ′(T1, T2)·
ζ(T2) . . . ζ(Tk) ·Π ′(Tk, t′ + T).

(27)

The probability to reach the goal state s∗ is unconditioned on the starting
state by adding 1 for all goal states:

π
[U∨G]
s,s∗ (t′, t′ + T) =Υs,s∗(t

′, t′ + T)+

1{s ∈ Sat(G, t′)}.
(28)

Similarly to the dependency on time of the reachability probability while the
goal and unsafe sets are fixed (see Equation (26)), the time-dependent reachabil-
ity probability for varying goal and unsafe sets can be found by again combining

272 A. Kolesnichenko et al.

forward and backward Kolmogorov equations using chain rule (see [8] for more
details).

The method for checking state and path CSL formulas for ICTMC was pre-
sented above in this section. The convergence of the results and decidability of
the algorithms are addressed in [8]. This method is applicable for the continuous
time models, as the main interest of this tutorial lies in a continuous time mean-
filed models. For the similar results on the on-the-fly fast model-checking of the
PCTL properties of the individual objects in a discrete time mean-field model
we refer to [29]. As a next step we provide the example, where this method is
applied to a single agent of mean-field model.

5.5 Examples

In this section couple of examples of checking CSL formulas are described. We
reuse the virus spread model, described in the Examples 1 and 2 (see Figure 1).
As descibed in Section 2, the system of the limit ODEs (6) for the population
behaviour is as follows:⎧⎨⎩ ẋ1(t) = −k1x3(t) + k2x2(t) + k5x3(t),

ẋ2(t) = (k1 + k4)x3(t)− (k2 + k3)x2(t),
ẋ3(t) = k3x2(t)− (k4 + k5)x3(t).

(29)

The coefficients that are used in the following example are given in Setting 1 in
Table 4.

Let us consider the following formula

Φ = P<0.3(not infected U
[0,1] infected)

and a predefined initial occupancy vector x = (0.8, 0.15, 0.05) at time t′ = 0.

The only time-dependent rate of the local model is k∗1(t) = k1 · x3(t)
x1(t)

, where

x1(t) and x3(t) are the solution of the ODEs (29) with x(0) as initial condition.
Therefore the transition rate matrix Q(x(t)) is as follows:

Q(x(t)) =

⎛⎝−k1 · x3(t)
x1(t)

k1 · x3(t)
x1(t)

0

k2 −k2 − k3 k3
k5 k4 −k5 − k4

⎞⎠ .

To find ProbZ(t)(s, not infected U [0,1] infected, t′) only one reachability prob-

lem π
Z(t)[¬not infected∨infected]
s,s1 (0, 1) = π

Z(t)[infected]
s,s1 (0, 1) has to be solved accord-

ing to the algorithm described earlier in Section 5.4. The local model Z(t) is
modified and all infected states are made absorbing. The Kolmogorov equation
is used to calculate the transient probability matrix of the modified model, which
consists of the reachability probabilities:

Π ′(0, 1) =

⎛⎝0.91 0.09 0
0 1 0
0 0 1

⎞⎠ .

Applying Mean-Field Approximation 273

Table 4. Parameter settings

Parameter Setting 1 Setting 2

Attack k1 0.9 5

Inactive computer recovery k2 0.1 0.02

Inactive computers getting active k3 0.01 0.01

Active computer returns to inactive k4 0.3 0.5

Active computer recovery k5 0.3 0.5

The probability of the until formula

φ = not infected U [0,1] infected

to hold for each starting state is as follows:

ProbZ(t)(s1, φ, t
′) = π

Z(t)[infected]
s1,s2 (0, 1) + π

Z(t)[infected]
s1,s3 (0, 1) = 0.09;

ProbZ(t)(s2, φ, t
′)) = 0;

ProbZ(t)(s3, φ, t
′)) = 0.

The found above probabilities are compared with 0.3, and as one can see the
formula P<0.3(not infected U

[0,1] infected) holds for all states s1, s2, and s3.
As was discussed earlier, the satisfaction on the CSL formula may change with

time. Let us consider the same formula P<0.3(not infected U
[0,1] infected) and

initial occupancy vector x = (0.8, 0.15, 0.05). In the following we calculate the
time-dependent probability on the predefined time interval [0, 20].

The calculation of the time-dependent probabilities ProbZ(t)(s, not infected
U [0,1]infected, t′, t) is done as described earlier in this section:

1. the model Z(t) is modified so the infected states are made absorbing;
2. the transient probability Π ′(0, 1) is calculated as described in the example

above;
3. forward and backward Kolmogorov equations are used in order to construct

the ODEs, describing the time-dependent transient probability of the mod-
ified model (see Equation (26)).

4. These ODEs are solved using Π ′(0, 1) as initial condition. The solution of
the ODEs defines the required reachability probabilities.

The time-dependent probability ProbZ(t)(s1, not infected U
[0,1] infected, t′, t)

is depicted in Figure 7. Starting at states s2 and s3 this probability equals zero
at all times, since these states do not satisfy not infected. In order to find the
satisfaction set of this formula the following equation ProbZ(t)(s1, not infected
U [0,1] infected, t′, t) = 0.3 is solved and t = 13.42 is found. The satisfaction set
depends on time and includes all three states s1, s2, and s3 for t ∈ [0, 13.42);
and only two states s2 and s3 for t ∈ [13.42, 20].

In the following we discuss a more involved example, which includes a nested
until formula. The parameters of the model used in this example are given in the
column Setting 2 in Table 4, the initial conditions at t = 0 is x = (0.85; 0.1; 0.05).

274 A. Kolesnichenko et al.

We check the following satisfaction relation:

P>0.9(infected U
[0,15](P>0.8 tt U

[0,0.5] infected)).

probability

time

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

Fig. 7. The green solid line shows
ProbZ(t)(s1,not infected U [0,1] infected,
t′, t). The time-dependent probability
ProbZ(t)(s1, tt U [0,0.5] infected, t′, t) is
presented by the blue dotted line.

The formula is split into sub-
formulas and the time-dependent
satisfaction set of the sub-formula
Φ1 = (P>0.8tt U

[0,0.5] infected) is
calculated first. Similarly to the
previous example, the probability
ProbZ(t)(s, tt U [0,0.5] infected, t′, t) is
calculated for all states s ∈ So. In
Figure 7 this probability at state s1
is depicted; the probabilities at states
s2 and s3 equal to one, since these
states are already infected. Similarly
to the previous example, the time de-
pendent satisfaction set is found and
equals to Sat(Φ1, t

′, t) = {s2, s3} for
all t ∈ [0, 10.443] and Sat(Φ1, t

′, t) =
{s1, s2, s3} for all t ∈ (10.443, 15].

The next task is calculating the
probability

ProbZ(t)(s, infected U [0,15]Φ1, t
′, t).

The reachability probability for the time-varying satisfaction set of Φ1 is calcu-
lated following the algorithm described above in this section. We first calculate all
discontinuity points T0 = 0, T1 = 10.443 and T2 = 15. An extra state s∗ is added
and an indicator matrix ζ(T1) is constructed: ζ(T1)s∗,s∗ = 1, ζ(T1)s1,s2 = 0 for
all s1 �= s∗,s2 �= s∗. The transient probabilities on time intervals [0, 10.443) and
(10.443, 15] are calculated using the forward Kolmogorov equation:

Π ′(0, 10.443) =

⎛⎜⎜⎝
0.53 0 0 0.47
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ ,

Π ′(10.443, 15− 10.443) =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ .

Equation (27) is used to calculate Υ (0, 15):

Υ (0, 15) =

⎛⎜⎜⎝
0 0 0 0.47
0 0 0 0
0 0 0 0
0 0 0 1

⎞⎟⎟⎠ .

Applying Mean-Field Approximation 275

Equation (28) is used in order to calculate the reachability probability for each

state s ∈ So: π
Z(t)[¬infected∨Φ1]
s1,s∗ (0, 15) = 0.47; π

Z(t)[¬infected∨Φ1]
s2,s∗ (0, 15) = 1;

π
Z(t)[¬infected∨Φ1]
s3,s∗ (0, 15) = 1. The probability ProbZ(t)(s, infected U [0,15]Φ1, t

′) is
calculated according to Equation (24), and equals to 0, 1, and 1 for states s1, s2,
and s3 respectively. Therefore only states s2 and s3 satisfying the formula

P>0.9(infected U
[0,15](P>0.8 tt U

[0,0.5] infected)).

In this section we have illustrated how the properties of a single agent in a
large communication network (system of interacting objects) can be checked.
Next to the fluid model checking reader might be interested in the techniques
for calculation fluid passage time, as discussed in [18]. In the following model-
checking the overall mean-field model is discussed.

5.6 On Model-Checking Overall Mean-Field Models. MF-CSL.

The properties of interest of the overall mean-field model differ from the prop-
erties which can be described by CSL. Therefore, in order to reason at the level
of the overall model in terms of fractions of objects an extra layer “on top of
CSL” that defines the logic MF-CSL was introduced in [25]. The latter is able to
describe the behaviour of the overall system in terms of the behaviour of random
local objects.

Definition 5. Syntax of MF-CSL. Let p ∈ [0, 1] be a real number, and ��∈
{≤, <,>,≥} a comparison operator. MF-CSL formulas Ψ are defined as follows:

Ψ ::= tt | ¬Ψ | Ψ1 ∧ Ψ2 | E
�p(Φ) | ES
�p(Φ) | EP
�p(φ),

where Φ is a CSL state formula and φ is a CSL path formula.
�

In this definition three expectation operators were introduced: E
�p(Φ), ES
�p(Φ)
and EP
�p(φ), with the following interpretation:

– E
�p(Φ) denotes whether the fraction of objects that are in a (local) state
satisfying a general CSL state formula Φ fulfills �� p;

– ES
�p(Φ) denotes whether the fraction of objects that satisfy Φ in steady
state, fulfills �� p;

– EP
�p(φ) denotes whether the probability of a random object to satisfy path-
formula φ fulfills �� p.

The formal definition of the MF-CSL semantics is as follows:

Definition 6. Semantics of MF-CSL. The satisfaction relation |= for MF-
CSL formulas and states x = (x1, x2, . . . , xK) at time t0 of the overall mean-field
model is defined by:

276 A. Kolesnichenko et al.

x |= tt ∀ x ∈ X,
x |= ¬Ψ iff x �|= Ψ ,
x |= Ψ1 ∧ Ψ2 iff x |= Ψ1 ∧ x |= Ψ2,

x |= E
�p(Φ) iff

(
K∑
j=1

xj · Ind(sj ,t0|=Φ)

)
�� p,

x |= ES
�p(Φ) iff

(
K∑
j=1

xj · πZ(t)(sj , Sat(Φ, t0))

)
�� p,

x |= EP
�p(φ) iff

(
K∑
j=1

xj · ProbZ(t)(sj , φ, t0)

)
�� p,

where Sat(Φ, t0) is a satisfaction set of the CSL formulaΦ at t0, π
Z(t)(s, Sat(Φ, t0))

is a steady-state probability, ProbZ(t)(s, φ, t0) is defined as in Definition 4; and
Ind(sj ,t0|=Φ) is an indicator function, which shows whether a local state sj ∈ S
satisfies formula Φ for a given overall state x at time t0:

Ind(sj ,t0|=Φ) =

{
1, if sj , t0 |= Φ,
0, if sj , t0 �|= Φ.

�

To check an MF-CSL formula at the global level (overall model), the local
CSL formula has to be checked first, and the results are then used at the global
level. The first step, namely CSL model-checking was explained in the previous
sections, and for the algorithms for MF-CSL model-checking we refer to [25].
In the following we provide the example, which first shows the expressivity of
the MF-CSL logic, and then provides the intuition behind the model-checking
procedure.

Example 3. Let us consider the virus spread example to illustrate the expressive
power of MF-CSL for mean-field models. In order to express the property that
not more than 5% of the computers in the system are infected the following
formula is used:

E≤0,05 infected.

The property ”The percentage of all computers, which happen to have a proba-
bility lower than 10% of going from not infected to active infected state within
3 hours, is greater than 40%“ is expressed as

E>0,4(P<0.1(not infected U
[0,3] active)).

If one wants to ensure that the probability of a computer to be infected within
two hours from now is less than 50%, the following property has to hold:

EP<0.5(tt U
[0,2] infected).

Note that in the formula above the current state of the individual is not taken
into account. If the percentage of not infected computers which will become

Applying Mean-Field Approximation 277

infected within next two hours is of interest the formula has to be changed
accordingly:

Ψ = EP<0.5(not infected U
[0,2] infected).

If in a long run the system has to have a low probability (less then 2%) for a
random computer to be infected the formula:

ES<0.02 infected,

has to hold.
Let us consider the following MF-CSL formula:

Ψ = EP<0.3(not infected U
[0,1] infected).

To check this formula against the occupancy vector x(0) = (0.8, 0.15, 0.05) we
first have to check the CSL formula φ = (not infected U [0,1] infected), then we
have to find the expected probability for the whole formula Ψ to hold according
to the semantics of the MF-CSL, and, finally, compare it with the treashhold
p = 0.3.

The probabilities ProbZ(t)(s, not infected U [0,1] infected, 0) that the underly-
ing CSL formula holds for initial condition x(0) = (0.8, 0.15, 0.05) was found
earlier in Section 5.5. It equals to 0.09, 0, and 0 for states s1, s2, and s3, respec-
tively.

According to Definition 6, the weighted sum of the entries of the occupancy
vector x(0) and the respective probabilities in the local model define the expected
probability EP(φ):
K∑
j=1

xj · ProbZ(t)(sj , φ, 0) = 0.8 · 0.09 + 0.15 · 0 + 0.05 · 0 = 0.072 < 0.3.

As one can see, the occupancy vector x(0) = (0.8, 0.15, 0.05) satisfies the MF-
CSL formula EP<0.3(not infected U

[0,1] infected).
In this section we provided the insides for both fluid model-checking and MF-

CSL model-checking on the overall model. We showed how these two approaches
are related and what kind of properties can be expressed and checked using both
CSL and MF-CSL logics.

6 Conclusions

This paper illustrates several aspects of applying mean-field approximations for
efficient analysis of large scale stochastic models. The purpose is to provide a
self-contained, example-guided and accessible tutorial for researches that are
interested in the area of mean-field.

The main idea of mean-field is to provide an approximation for a large number
of interacting similar objects. In contrast to existing tutorials [9] this presentation
starts from the single agent model and than abstracts to a large number of these
objects using the mean-field, in addition, the single agent model within the whole
population an inhomogeneous CTMC.

278 A. Kolesnichenko et al.

This paper features two case study, one on the analysis of Botnets, where
indeed the distribution of objects is assumed to be uniform, and one on the
analysis of gossip to show how the location of objects can be taken into account
using spatial mean-field models.

The performance measures that are traditionally derived from such model are
mainly steady-state and transient state distributions. However, exploiting the
difference between the local object and the overall mean-field model allows to
apply model checking techniques to derive more complex measures of interest.
Section 5 repeats the main idea of fluid model checking, that can be used to
check the single agent model and hints at a new logic, called MF-CSL that can
be used to specify properties on the overall model. Note that we do not focus
on all the details of these techniques, but aim to show how they can be used to
analyse different aspects of the system.

Mean-field approximation cannot be considered as a ready solution to the
state-space explosion problem. Indeed, it is an approximation technique that
must be applied carefully [33] and it provides a satisfactory first approximation
of a system dynamics which requires, then, to be studied in further details to
obtain a more precise analysis, as discussed in Section 1. To support the user in
the correct application of these techniques, there are frameworks that allow for
systematic application of mean-field techniques [9,21,36].

While the use of mean-field models in computer science already started in
1980 [28], still several open problems remain. For example, mean-field results
are only reliable if the population is large enough, however it is still unclear
whether and if so how this can be judged from the model at hand. Another
interesting research topic would be to analyse the mean-field of models that
include non-determinism.

References

1. Baccelli, F., Karpelevich, F.I., Kelbert, M.Y., Puhalskii, A.A., Rybko, A.N., Suhov,
Y.M.: A mean-field limit for a class of queueing networks. Journal of Statistical
Physics 66, 803–825 (1992)

2. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Model-checking algorithms
for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(7), 524–541 (2003)

3. Benäım, M., Le Boudec, J.Y.: A class of mean field interaction models for computer
and communication systems. Perform. Eval. 65(11-12), 823–838 (2008)

4. Benäım, M., Weibull, J.W.: Deterministic approximation of stochastic evolution in
games. Econometrica 71(3), 873–903 (2003)

5. Billingsley, P.: Probability and Measure, 3rd edn. Wiley-Interscience (1995)
6. Bobbio, A., Gribaudo, M., Telek, M.: Analysis of large scale interacting systems

by mean field method. In: QEST, pp. 215–224 (2008)
7. Bortolussi, L.: Hybrid limits of continuous time Markov chains. In: QEST, pp.

3–12. IEEE Computer Society (2011)
8. Bortolussi, L., Hillston, J.: Fluid model checking. In: Koutny, M., Ulidowski, I.

(eds.) CONCUR 2012. LNCS, vol. 7454, pp. 333–347. Springer, Heidelberg (2012)
9. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of

collective systems behaviour: A tutorial. Performance Evaluation 70(5), 317–349
(2013)

Applying Mean-Field Approximation 279

10. Cabspotting, http://stamen.com/clients/cabspotting
11. Chaintreau, A., Le Boudec, J.Y., Ristanovic, N.: The age of gossip: spatial mean

field regime. In: SIGMETRICS/Performance, pp. 109–120. ACM (2009)
12. Ciocchetta, F., Hillston, J.: Bio-pepa: A framework for the modelling and analysis

of biological systems. Theoretical Computer Science 410(33-34), 3065–3084 (2009)
13. Darling, R.W.R., Norris, J.R.: Differential equation approximations for Markov

chains. Probability Surveys 5, 37–79 (2008)
14. Deavours, D.D., Clark, G., Courtney, T., Daly, D., Derisavi, S., Doyle, J.M.,

Sanders, W.H., Webster, P.G.: The Mobius framework and its implementation.
IEEE Transactions on Software Engineering 28(10), 956–969 (2002)

15. Gast, N., Gaujal, B.: A mean field model of work stealing in large-scale systems.
In: SIGMETRICS, pp. 13–24. ACM (2010)

16. Gillespie, C.S.: Moment closure approximations for mass-action models. IET Sys-
tems Biology 3, 52–58 (2009)

17. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81(25), 2340–2361 (1977)

18. Hayden, R., Stefanek, A., Bradley, J.T.: Fluid computation of passage time dis-
tributions in large Markov models. Theoretical Computer Science 413(1), 106–141
(2012)

19. Hayden, R.A., Bradley, J.T.: A fluid analysis framework for a markovian process
algebra. Theoretical Computer Science 411(22-24), 2260–2297 (2010)

20. Hillston, J.: A compositional approach to performance modelling. Cambridge Uni-
versity Press (1996)

21. Hillston, J.: Fluid flow approximation of pepa models. In: QEST, pp. 33–43. IEEE
Computer Society (2005)

22. Hillston, J., Tribastone, M., Gilmore, S.: Stochastic process algebras: From indi-
viduals to populations. The Computer Journal (2011)

23. Kadanoff, L.P.: More is the Same; Phase Transitions and Mean Field Theories.
Journal of Statistical Physics 137, 777–797 (2009)

24. Kleczkowski, A., Grenfell, B.T.: Mean-field-type equations for spread of epi-
demics: the small world model. Physica A: Statistical Mechanics and its Appli-
cations 274(12), 355–360 (1999)

25. Kolesnichenko, A., de Boer, P.T., Remke, A.K.I., Haverkort, B.R.: A logic for
model-checking mean-field models. In: DSN/PDF, pp. 1–12. IEEE Computer So-
ciety (2013)

26. Kolesnichenko, A., Remke, A., de Boer, P.-T., Haverkort, B.R.: Comparison of
the mean-field approach and simulation in a peer-to-peer botnet case study. In:
Thomas, N. (ed.) EPEW 2011. LNCS, vol. 6977, pp. 133–147. Springer, Heidelberg
(2011)

27. Kurtz, T.G.: Solutions of ordinary differential equations as limits of pure jump
Markov processes. Journal of Applied Probability 7(1), 49–58 (1970)

28. Kurtz, T.G.: Approximation of population processes, vol. 36. Society for Industrial
Mathematics (1981)

29. Latella, D., Loreti, M., Massink, M.: On-the-fly Fast Mean-Field Model-Checking:
Extended Version. Technical report (2013)

30. Le Boudec, J.Y., McDonald, D., Mundinger, J.: A generic mean field convergence
result for systems of interacting objects. In: QEST, pp. 3–18. IEEE Computer
Society (2007)

31. McComb, W.D.: Renormalization Methods: A Guide For Beginners. OUP, Oxford
(2004)

http://stamen.com/clients/cabspotting

280 A. Kolesnichenko et al.

32. Mitzenmacher, M.: The power of two choices in randomized load balancing. IEEE
Trans. Parallel Distrib. Syst. 12(10), 1094–1104 (2001)

33. Pourranjbar, A., Hillston, J., Bortolussi, L.: Dont Just Go with the Flow: Cau-
tionary Tales of Fluid Flow Approximation. In: Tribastone, M., Gilmore, S. (eds.)
EPEW/UKPEW 2012. LNCS, vol. 7587, pp. 156–171. Springer, Heidelberg (2013)

34. Silva, M., Recalde, L.: On fluidification of petri nets: from discrete to hybrid and
continuous models. Annual Reviews in Control 28(2), 253–266 (2004)

35. Tribastone, M.: Relating layered queueing networks and process algebra models.
In: WOSP/SIPEW, pp. 183–194 (2010)

36. Tribastone, M., Gilmore, S., Hillston, J.: Scalable differential analysis of process
algebra models. IEEE Trans. Software Eng. 38(1), 205–219 (2012)

37. Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland
Personal Library. Elsevier Science (2011)

38. van Ruitenbeek, E., Sanders, W.H.: Modeling peer-to-peer botnets. In: QEST, pp.
307–316. IEEE CS Press (2008)

39. Wolfram Research, Inc. Mathematica tutorial (2010), http://reference.wolfram.
com/mathematica/tutorial/IntroductionToManipulate.html

http://reference.wolfram.com/mathematica/tutorial/IntroductionToManipulate.html
http://reference.wolfram.com/mathematica/tutorial/IntroductionToManipulate.html

Author Index

Andreychenko, Alexander 1
Arnold, Florian 26

Budde, Carlos E. 67

D’Argenio, Pedro R. 67
Dehnert, Christian 87

Gebler, Daniel 26, 87, 117
Gouberman, Alexander 156
Guck, Dennis 26

Hashemi, Vahid 117
Hatefi, Hassan 26

Jansen, David N. 87

Kolesnichenko, Anna 242
Krüger, Thilo 1

Pourranjabar, Alireza 242

Remke, Anne 242

Sánchez Terraf, Pedro 67
Senni, Valerio 242
Siegle, Markus 156
Spieler, David 1

Turrini, Andrea 117

Volpato, Michele 87

Wolovick, Nicolás 67

	Preface
	Organization
	Table of Contents
	Analyzing Oscillatory Behavior
with Formal Methods

	1 Introduction
	2 Modeling of Oscillatory Systems
	2.1 Population Structure and Chemical Reaction Networks
	2.2 Deterministic Semantics
	2.3 Stochastic Semantics
	2.4 Hybrid Semantics
	2.5 Other Model Semantics

	3 Defining and Analyzing Oscillatory Behavior
	3.1 General and Mathematical Notions of Oscillatory Behavior
	3.2 Oscillatory Behavior in the Deterministic Setting
	3.3 Oscillatory Behavior in the Stochastic Setting
	3.4 Oscillatory Behavior in the Hybrid Setting

	4 Applications
	4.1 The Predator-Prey Model
	4.2 The 3-Way Oscillator Model
	4.3 Circadian Clocks
	4.4 Calcium Oscillations
	4.5 Other Applications

	5 Conclusion
	References

	A Tutorial on Interactive Markov Chains
	1 Introduction
	2 Preliminaries
	2.1 Interactive Markov Chains
	2.2 Behavioural and Measurability Concepts
	2.3 Schedulers
	2.4 Probability Measures
	2.5 Composition
	2.6 IMCs versus CTMDPs

	3 Model Checking
	3.1 Continuous Stochastic Logic
	3.2 Probability Bounds
	3.3 Time-Bounded Reachability
	3.4 Time-Bounded Reachability in Open IMCs
	3.5 Expected Time
	3.6 Long-Run Average

	4 Abstraction
	4.1 Behavioural Equivalences
	4.2 Algorithmic Computation of the Strong Bisimulation Quotient
	4.3 Algorithmic Computation of the Weak Bisimulation Quotient
	4.4 Bisimulation Quotient of Acyclic IMCs

	5 Extensions
	5.1 Inhomogeneous IMCs
	5.2 Markov Automata

	6 Case Studies
	6.1 Dynamic Fault Trees with Input/Output IMCs
	6.2 Compositional Performability Evaluation for Statemate

	6.3 Tool Support

	7 Conclusion
	References

	A Theory for the Semantics of Stochastic and Non-deterministic Continuous Systems
	1 Introduction
	2 Preliminaries on Measure Theory
	3 Labeled Markov Processes
	4 Non-deterministic Labeled Markov Processes
	5 Structured Non-deterministic Labeled Markov Processes
	6 Concluding Remarks
	References

	On Abstraction of Probabilistic Systems
	1 Introduction
	2 Related Work
	2.1 Literature
	2.2 Tools

	3 Preliminaries
	3.1 Markov Models
	3.2 Probabilistic Two-Player Games
	3.3 Probabilistic Programs
	3.4 MDP Quotienting

	4 Multi-valued Abstraction
	4.1 Three-Valued Abstraction
	4.2 Reachability Analysis and Model Checking

	5 Counterexample-Guided Abstraction Refinement
	5.1 Counterexamples for Safety Properties in MDPs
	5.2 Realizability of a Counterexample
	5.3 Predicate Synthesis

	6 Game-Based Abstraction
	6.1 Idea
	6.2 Simple Game-Based Abstraction
	6.3 Menu-Based Abstraction

	7 Conclusion
	References

	Computing Behavioral Relations
for Probabilistic Concurrent Systems

	1 Introduction
	1.1 Probabilistic Systems
	1.2 Comparing System Behaviors
	1.3 Optimization Problems
	1.4 Probabilistic Systems vs. Optimization

	2 Mathematical Preliminaries
	2.1 Functions and Relations
	2.2 Probability Distributions

	3 The Models
	3.1 Discrete Time Models
	3.2 Continuous-Time Models
	3.3 Mixed Discrete and Continuous-Time Models
	3.4 Terminology and Notation

	4 Simulations and Bisimulations
	4.1 Strong Simulation and Bisimulation
	4.2 Strong Probabilistic Simulation and Bisimulation
	4.3 Weak Simulation and Bisimulation
	4.4 Markov Automata

	5 Networks and Maximum Flow Problem
	5.1 Computing the Maximum Flow
	5.2 Relation between Lifting and Maximum Flow

	6 The Algorithms
	6.1 The General Algorithms for Simulations and Bisimulations
	6.2 The Specialized Algorithms
	6.3 The Algorithms for Mixed Time Models Relations

	7 Conclusion
	References

	Markov Reward Models and Markov Decision
Processes in Discrete and Continuous Time:
Performance Evaluation and Optimization

	1 Introduction
	2 Discrete Time Markov Reward Models
	2.1 Preliminaries
	2.2 Total Reward Measure
	2.3 Horizon-Expected and Discounted Reward Measure
	2.4 Average Reward Measure

	3 Markov Decision Processes
	3.1 Preliminaries
	3.2 Discounted Reward Measure
	3.3 Stochastic Shortest Paths
	3.4 Average Reward Measure

	4 Continuous Time Markov Reward Models
	4.1 Preliminaries
	4.2 Probability Space for CTMCs
	4.3 Model Transformations
	4.4 Total Reward Measure
	4.5 Horizon-Expected and Discounted Reward Measure
	4.6 Average Reward Measure
	4.7 Big Picture – Model Transformations

	5 Continuous Time Markov Decision Processes
	5.1 Preliminaries and Retrospection
	5.2 Average Reward Measure

	6 Conclusion and Outlook
	A Appendix
	References

	Applying Mean-Field Approximation
to Continuous Time Markov Chains

	1 Introduction
	2 Preliminaries
	2.1 Model Definition
	2.2 Mean-Field Analysis

	3 Mean-Field Analysis of a Botnet
	3.1 Description of the System
	3.2 Mean-Field Model
	3.3 Results

	4 Spatial Mean-Field Models
	4.1 The Age of Gossip
	4.2 Mean-Field Limit Behaviour
	4.3 Solution of the Equations
	4.4 Model Validation

	5 Model Checking Mean-Field Models
	5.1 Single Agent Model
	5.2 Continuous Stochastic Logic
	5.3 Next State Probability
	5.4 Until Formulas. Reachability Probability
	5.5 Examples
	5.6 On Model-Checking Overall Mean-Field Models. MF-CSL.

	6 Conclusions
	References

	Author Index

