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ABSTRACT

RELIABLE DECISION-MAKING WITH
IMPRECISE MODELS

FEBRUARY 2022

SANDHYA SAISUBRAMANIAN

B.Tech., PONDICHERRY UNIVERSITY

M.Comp., NATIONAL UNIVERSITY OF SINGAPORE

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Shlomo Zilberstein

The rapid growth in the deployment of autonomous systems across various sectors

has generated considerable interest in how these systems can operate reliably in large,

stochastic, and unstructured environments. Despite recent advances in artificial in-

telligence and machine learning, it is challenging to assure that autonomous systems

will operate reliably in the open world. One of the causes of unreliable behavior is the

impreciseness of the model used for decision-making. Due to the practical challenges

in data collection and precise model specification, autonomous systems often operate

based on models that do not represent all the details in the environment. Even if the

system has access to a comprehensive decision-making model that accounts for all the

details in the environment and all possible scenarios the agent may encounter, it may

be intractable to solve this complex model optimally. Consequently, this complex,

high fidelity model may be simplified to accelerate planning, introducing imprecision.

vi



Reasoning with such imprecise models affects the reliability of autonomous systems.

A system’s actions may sometimes produce unexpected, undesirable consequences,

which are often identified after deployment. How can we design autonomous systems

that can operate reliably in the presence of uncertainty and model imprecision?

This dissertation presents solutions to address three classes of model imprecision

in a Markov decision process, along with an analysis of the conditions under which

bounded-performance can be guaranteed. First, an adaptive outcome selection ap-

proach is introduced to devise risk-aware reduced models of the environment that

efficiently balance the trade-off between model simplicity and fidelity, to accelerate

planning in resource-constrained settings. Second, a framework that extends stochas-

tic shortest path framework to problems with imperfect information about the goal

state during planning is introduced, along with two solution approaches to solve this

problem. Finally, two complementary solution approaches are presented to minimize

the negative side effects of agent actions. The techniques presented in this dissertation

enable an autonomous system to detect and mitigate undesirable behavior, without

redesigning the model entirely.
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CHAPTER 1

INTRODUCTION

A world populated with autonomous systems that simplify our lives is gradually

becoming a reality. These systems, also referred to as agents, are autonomous in the

sense that they can devise and execute a sequence of actions to achieve some given

objectives or goals, without human intervention. Today, autonomous systems are

deeply integrated into our daily lives through various applications such as intelligent

tutoring [27], traffic patrolling [15], emergency response [94], self-driving cars [123],

and clinical decision making [8]. This rapid growth in the deployment of autonomous

systems has been made possible by the tremendous progress over the past two decades

in advancing state-of-the-art artificial intelligence (AI) techniques, primarily focusing

on standard metrics such as accuracy, run time, and scalability.

1.1 The Need for Reliable Autonomy

The increased deployment of autonomous systems and their broad societal im-

pacts bring along new challenges, particularly ensuring that these systems operate

reliably. The National Institute of Standards and Technology (NIST) defines relia-

bility as “the ability of a system or component to function under stated conditions

for a specified period of time, assuming the system specifications adequately capture

customer requirements” [85]. Building on this definition, a reliable autonomous sys-

tem can be defined as one that operates as intended, consistently in the real-world.

A system may be unreliable even when it is deemed safe for operation. For example,

Amazon Alexa heard the phrase “Can you get me a dollhouse” on television and or-
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dered a dollhouse for Echo owners who were watching the broadcast [63]. Ordering a

dollhouse based on television broadcast is unlikely to be considered as unsafe because

it is not physically harmful, but it affects the reliability. Despite recent advances in

AI and machine learning, assuring reliable operation of deployed autonomous systems

remains a challenge.

Systems that demonstrate promising results when evaluated in structured envi-

ronments or using well-known benchmarks struggle to produce a similar performance

in the open world [45, 67, 69, 106, 111]. This is because current evaluation approaches

focus typically on aggregate measures of accuracy, which often hide important short-

comings. In addition, many types of reliability concerns are inherently difficult to de-

tect a priori, since details about the deployment environment may not be fully known

during initial testing. As a result, many types of undesirable behavior are discovered

after the system is deployed. Improving reliability requires a deeper understanding of

the system’s behavior, its failures, and its model limitations. Addressing this practi-

cal problem has long-term implications for the future of AI and is critical in shaping

how users view, interact, collaborate, and trust AI systems.

There are many facets to reliability and many causes of unreliable behavior, which

have been addressed by multiple approaches to improve reliability. Approaches to

address four causes of unreliable behavior are discussed below. First, reliability is

affected when the system performance does not align with user expectations. This

mismatch can be addressed by improving the legibility of the system’s actions so

that the user has realistic expectations and accurate mental model of the system’s

abilities [25]. Second, reliability is affected if model or policy updates to the system

introduce new errors. This can be addressed by ensuring that the system’s model

updates are compatible with the user’s mental model [4], or by ensuring that the

policy is updated only if it is provably safer than its current baseline policy [17,

30]. Third, in complex semi-autonomous systems, reliability can be improved by
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operating in the right level of autonomy for a task in the given environment. By

optimizing its autonomy level using human feedback, the agent can complete its

task successfully, while avoiding undesirable behavior [6]. Finally, reliability can

also be improved using a metareasoning component that constantly monitors the

system performance and enables it to safely recover from failures [109]. In addition

to addressing different types of reliability concerns, formal verification methods have

been proposed to provide correctness guarantees about the system’s behavior [1, 102].

These verification approaches, however, require prior knowledge about what types

of undesirable behaviors may arise, and formalizing the requirements precisely for

complex systems in open-world environments can be challenging.

This dissertation focuses on designing reliable autonomous systems that devise

and execute a sequence of actions that result in desirable outcomes, and addresses

unreliable behavior arising from three classes of model imprecision (described in detail

in the following section), while minimizing the reliance on humans.

1.2 Model Imprecision

Problems that involve sequential decision-making under uncertainty are typically

modeled as Markov decision processes [7] and are solved using automated planning

or reinforcement learning techniques, depending on the information available to the

agent a priori. This dissertation focuses on automated planning techniques. In auto-

mated planning, the agent computes a sequence of actions that optimize its objective,

by reasoning about the effects of its actions and the events in the environment based

on its model parameters. Hence, model fidelity is a key factor affecting agent behavior.

Regardless of how much effort goes into the system design and how much data

is available for training and testing, it is infeasible to obtain a perfect description of

open-world environments. Even if a comprehensive decision-making model is avail-

able, solving it using exact methods may be infeasible. When the computational
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resources available for reasoning are limited, the model is simplified to accelerate

planning and therefore does not include all the details in the environment. Operating

based on such imprecise models can lead to unreliable behavior.

In the past, the AI community has focused on developing techniques that are scal-

able and optimal in solving complex real world problems, including problems with

uncertain reward function [83] and transition function [20, 115]. With increased de-

ployment of autonomous systems, it is critical to recognize and mitigate the undesir-

able consequences of operating based on imperfect models. Instead of redesigning the

model entirely, as additional information becomes available, it is beneficial to leverage

the fidelity of the existing model while learning to mitigate undesirable behavior. As

George Box noted “All models are wrong, but some are useful” [14].

This dissertation focuses on mitigating undesirable behavior when operating under

model imprecision that arises due to missing information. In general, there are three

broad classes of model imprecision, arising due to:

1. limited computational resources of the agent that require it to simplify the

model for planning;

2. limited information that may be available during the design phase, with aware-

ness of missing information; or

3. unawareness of missing information that may be discovered once the agent is

deployed.

These three classes of model imprecision represent challenges in decision-making

with ‘known knowns’, ‘known unknowns’, and ‘unknown unknowns’ [21]. The first

class of model imprecision listed above can be treated as ‘known knowns’ because

the agent can plan with the high fidelity model, if its resources are unconstrained.

The second class of model imprecision represents ‘known unknowns’ since the model

indicates what aspects of the environment are uncertain or not fully described in it.

4



(a) Sharp turn (b) Unsafe lane
change

(c) Driving fast
through puddles

Figure 1.1: Examples of unreliable behavior arising due to model incompleteness.

Finally, the third class of model imprecision represents ‘unknown unknowns’ since

the agent does not have knowledge about the unmodeled aspects of the environment

when planning with this model.

Different types of model imprecisions lead to different types of agent behaviors.

Simplifying the model for planning may result in sub-optimal action selection and

may compromise the safety in some states. For example, an autonomous vehicle may

perform unsafe actions such as making sharp turns or unsafe lane changes, when its

model does not include all the effects of its actions (Figure 1.1 (a-b)).

The effects of an agent’s action can be categorized into intended effects and side

effects. The intended effects of an action are directly related to the agent’s assigned

objective. The side effects affect other details in the environment that are typically

unrelated to the agent’s assigned objective. An agent’s action, which is optimal

for a given objective, may still be undesirable due to its negative side effects on the

environment. For example, an autonomous vehicle optimizing the travel time between

locations may drive fast through puddles, splashing water on nearby pedestrians as

a negative side effect (Figure 1.1 (c)). While driving fast through puddles may be

optimal with respect to its primary objective, the vehicle is expected to slow down so

as to avoid such side effects. Human drivers naturally slow down when driving through
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a puddle, even when we optimize the travel time. When details about negative side

effects are missing in the model, the agent does not have the ability to minimize them.

Identifying and mitigating all forms of undesirable behavior is critical for safe and

reliable operation.

1.3 Overview of Main Contributions

The deployment of autonomous systems in the open world hinges on the devel-

opment of risk-mitigating mechanisms to address the consequences of model incom-

pleteness. This dissertation presents frameworks to handle three classes of model im-

precision in a Markov decision process (MDP) with discrete, finite states and actions.

The solution approaches presented in this dissertation enable autonomous agents op-

erating in the open world to mitigate their undesirable behavior, by addressing the

full spectrum of model imprecision. Figure 1.2 presents a visual overview of the main

contributions, summarized below.

Figure 1.2: Overview of the main contributions.
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Adaptive outcome selection for risk-aware reduced models When the com-

putational resources available for reasoning are limited, the agent is required to sim-

plify a complex, high fidelity model of the environment in order to accelerate planning.

This problem arises often in field and service robots [108]. This setting, discussed in

Chapter 3, is an instance of ‘known knowns’ since the agent can plan with the high

fidelity model if its computational resources are not limited.

An adaptive outcome selection approach is introduced to devise simplified models

that efficiently balance the trade-off between model simplicity and fidelity to accel-

erate planning in resource-constrained settings. The model is simplified or reduced

for planning by considering fewer action outcomes, relative to the full model. Adap-

tive outcome selection approach facilitates selecting different number of outcomes

and a different mechanism for selecting the specific outcomes for each state-action

pair, using a portfolio of outcome selection techniques. The approach balances the

trade-off by improving the model fidelity only in critical states. Theoretical analysis

guaranteeing optimal action selection, under certain conditions, is presented.

Planning under goal uncertainty In many problems, model imprecision arises

due to the unavailability of precise information about the goal state during system

design. The agent is required to plan offline in the presence of goal uncertainty and the

true goal state is discovered during execution. An example of this problem is search

and rescue [107]. This class of imprecision, discussed in Chapter 4, is an instance of

‘known unknowns’ since the goal uncertainty is explicitly encoded in the model.

A goal uncertain stochastic shortest path framework is introduced to model prob-

lems with goal uncertainty. The imperfect goal information is modeled as a prob-

abilistic distribution over potential goals. The agent’s objective is to minimize the

expected cost of reaching the true goal, in the presence of goal uncertainty. Two

solution approaches are described in detail: (1) a heuristic-based approach, and (2)

a determinization-based approach. Theoretical analysis of the framework and the
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solution approaches are presented. Multiple tractable sub-classes of this problem are

identified.

Avoiding negative side effects In many real-world problems, the uncertainty

over unknown aspects of the environment are not modeled. Specifically, the focus

is on settings in which a deployed agent is expected to learn about the unmodeled

negative side effects of its actions and update its policy to mitigate the impact. This

setting, discussed in Chapters 5 and 6, commonly occurs in many deployed systems

and is an instance of ‘unknown unknowns’ since the agent has no prior knowledge

about the side effects of its actions.

A formal definition of negative side effects of AI systems is presented. In addition,

results from a user study conducted specifically to investigate how users respond to

negative side effects and whether these side effects affect user trust in the system’s

capabilities are discussed. Further, two complementary solution approaches are pre-

sented to minimize the negative side effects of agent actions via: (1) learning from

feedback, and (2) environment shaping. The solution approaches target settings with

different assumptions and agent responsibilities. Algorithms to effectively learn from

feedback and for environment shaping, along with a theoretical analysis of their prop-

erties are presented.

1.4 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 presents a general

background on Markov decision processes (MDPs), stochastic shortest path problems

(SSPs), and partially observable Markov decision processes (POMDPs). It also de-

scribes the popular solution methods for solving them. Related works specific to a

particular chapter are discussed in the respective chapters.

Chapter 3 introduces adaptive outcome selection approach for model simplifica-

tion. It also presents a sampling-based approach to estimate the reduction impact,
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which is then used to guide outcome selection. Theoretical analysis guaranteeing

optimal action selection, under certain conditions, is presented.

Chapter 4 presents the goal uncertain SSP framework to model settings with goal

uncertainty. It also includes a determinization approach and a heuristic approach to

solve the problem, along with a theoretical analysis of their properties.

Chapter 5 presents a formal definition of negative side effects, identifies key char-

acteristics of negative side effects, discusses results from a user study conducted to

understand how users respond to negative side effects of deployed systems, and high-

lights the challenges in mitigating negative side effects.

Chapter 6 introduces learning from feedback approach and an environment shap-

ing approach to mitigate negative side effects. It also includes theoretical analysis

guaranteeing bounded-performance of the agent, when its policy is updated to miti-

gate side effects.

Chapter 7 presents a summary of this work, along with a discussion of the con-

clusions drawn and directions for future research.
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CHAPTER 2

BACKGROUND

This chapter presents formal definitions of Markov decision processes and stochas-

tic shortest path problems, along with a discussion of their common variants and

popular solution approaches to solve them.

2.1 Frameworks for Sequential Decision Making

Sequential decision making problems are those in which the agent must optimize

a sequence of decisions it makes. Automated planning or AI planning research studies

how an agent can devise a plan of action to achieve its goals [88]. The agent plans

using a model of the environment. In the real-world, an agent’s actions typically have

probabilistic outcomes. To plan effectively, this uncertainty must be taken into effect.

Probabilistic planning or planning under uncertainty research studies how an agent

can maximize the expected reward or minimize the expected cost of reaching a goal,

under probabilistic action outcomes.

There are two popular frameworks to model such problems: Markov decision

processes (MDP) stochastic shortest path (SSP) problems. This dissertation focuses

on probabilistic planning settings and the environments of interest are modeled as an

MDP or an SSP.

2.1.1 Markov Decision Process (MDP)

Markov decision process is a popular framework used to model sequential decision-

making problems. MDPs are an extension of Markov chains. At each decision step,
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Figure 2.1: An illustration of agent interaction with the environment.

the decision-maker (an autonomous agent in this dissertation) chooses an action to

perform in the state. The agent then receives a reward and the process transitions to a

successor state (Figure 2.1). The transition dynamics in an MDP follows the Markov

assumption or the Markov property which states that the successor state depends

on the current state and the action, and is independent of the previous history of

states and actions. The probability of transitioning to a successor state, given a state

and an action, is determined by the transition function. The reward associated with

executing an action in a state is determined by the reward function. In a stationary

MDP, the transition and reward dynamics do not vary with time. MDPs assume

full observability—the agent knows its current state of the environment and has no

uncertainty about which state it is currently in. An MDP variant that extends to

settings with partial observability is discussed later in the chapter.

This dissertation focuses on a specific sub-class of MDP with discrete time, finite

states, finite actions, over an infinite horizon with a discount factor. A formal defi-

nition of an MDP is presented below. Other nuances and variants of MDPs that are

specific to a particular chapter are discussed in the respective chapters.

Definition 1. A Markov decision process [7] is defined by the tuple xS,A, T,Ry with

• S denoting the set of states;
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• A denoting the set of actions;

• T : S ˆ A ˆ S Ñ r0, 1s is a transition function denoting the probability of

transitioning to a state s1 P S, when executing action a P A in state s P S,

T ps, a, s1q “ Prps1|s, aq; and

• R : S ˆAÑ R is a reward function, denoted by Rps, aq, prescribing the reward

incurred when executing an action a P A in state s P S.

At each time step, the agent executes an action a in state s and receives a reward

according to Rps, aq. The process then transitions to a successor state probabilisti-

cally, according to T ps, a, s1q. This process continues until the horizon h is reached.

Figure 2.2 illustrates a dynamic Bayesian network description of an MDP.

Figure 2.2: A dynamic Bayesian network describing an MDP.

The action executed by the agent in each state is determined by its policy π. The

agent always executes the same action in a given state when following a deterministic

policy π : S Ñ A, which is a mapping from states to actions that satisfies the given

objective. When following a stochastic policy π : S Ñ ∆A, the agent selects an action

to execute by drawing from a probability distribution encoded by the policy. In an

infinite-horizon MDP, h “ 8, and the discount factor γ P r0, 1q. For any infinite

horizon discounted MDP, there exists a deterministic policy that is optimal [79].

An agent’s objective is to compute a policy that maximizes its expected reward

over the horizon:

E
“

8
ÿ

t“0

γtRpst, πpstqq|π
‰

,
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with st denoting the state at time t, πpstq denoting the action prescribed by the policy

for the current state and Rpst, πpstqq denotes the corresponding reward. A policy is

evaluated using the value function of the states and the Q-values of state-action pairs,

computed using the Bellman equation. The value function of states is computed as:

V π
psq “ Rps, πpsqq ` γ

ÿ

s1PS

T ps, πpsq, s1qV π
ps1q, @s P S. (2.1)

The Q-value of a given state-action pair ps, aq is computed as:

Qπ
ps, aq “ Rps, aq ` γ

ÿ

s1PS

T ps, a, s1qV π
psq. (2.2)

An optimal policy is denoted by π˚ and is calculated using the Bellman optimality

equation:

V ˚psq “ max
aPA

Rps, aq ` γ
ÿ

s1PS

T ps, a, s1qV ˚ps1q, @s P S. (2.3)

From Equations 2.2 and 2.3, V ˚psq “ maxaPAQ
˚ps, aq. Optimal policies are not

necessarily unique and all optimal policies have the same V ˚psq. Equation 2.3 is a

contraction operator on the Banach space of value functions with Lipschitz constant

γ and max norm metric. Using Banach’s fixed point theorem, a unique solution can

be computed. Therefore, in an infinite-horizon MDP, policies can be independent of

time and do not require infinite memory for storage. Policies with this property are

called stationary.

In a finite horizon MDP, h P N with time steps T “ t1, . . . , hu, and the policy

may be non-stationary. The policy π : S ˆ T Ñ A maximizes the expected reward

over the finite horizon:

E
“

h
ÿ

t“0

γtRpst, πpst, tqq|π
‰

.

For the MDP models considered in this dissertation, there exists a deterministic

policy π : S Ñ A with V π “ V ˚ [79]. In the later chapters, references to a pol-
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icy indicate a deterministic policy. The complexity of solving this class of MDP is

polynomial in the number of states, P -complete.

Important Terminology and Refinements

Initial state and absorbing state In this dissertation, unless otherwise specified,

we consider the case where the start state or the initial state is known and we denote

it as s0 P S. A state s P S is called an absorbing state if T ps, a, sq “ 1, @a P A. In

many problems, the terminal state is an absorbing state.

Trial A sequence (or history) of state-action pairs visited from the initial state up to

the end of horizon or to an absorbing goal state, or of a fixed length, ts0, a0, s1, a1, . . . , shu,

is called a trial in the planning literature.

Factored state representation In many problems, the state space S is described

by state factors F1, . . . , FK such that S “ F1ˆF2 . . .ˆFK . Factored state-representation

is a convenient form of describing the states and the transition functions. The non-

factored representation is called a flat state representation. The models described in

the following chapters frequently utilize the factored-state representation. While the

complexity of solving MDPs is polynomial in the number of states, the enumerated

state space of factored MDP may be exponential in the number of state factors.

Reward function notation The reward function in an MDP may depend only

on the state (R̂psq), the state and the action (Rps, aq), or state, action, and the

successor state (R̂ps, a, s1q). These representations are equivalent and can be rewritten

as: Rps, aq “ R̂psq, @a P A and Rps, aq “
ř

s1PS T ps, a, s
1qR̂ps, a, s1q. Unless otherwise

specified, the rest of this dissertation utilizes the standard Rps, aq form to denote the

reward function. The reward may also be described in terms of costs, which is often

negated rewards.
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2.1.2 Stochastic Shortest Path Problem (SSP)

The stochastic shortest path (SSP) problem is an MDP with no discounting, an

indefinite horizon, and a cost function for actions. In an indefinite horizon problem,

the horizon is finite but unknown a priori.

Definition 2. A stochastic shortest path problem [10] is defined by xS,A, T, C, s0, sGy

with

• S denoting a finite set of states;

• A denoting a finite set of actions;

• T : S ˆ A ˆ S Ñ r0, 1s is the transition function denoting the probability of

reaching a successor state s1 P S when action a P A is executed in state s P S,

T ps, a, s1q “ Prps1|s, aq;

• C : S ˆ A Ñ R` Y t0u is a non-negative cost function specifying the cost of

executing an action a P A in state s P S, denoted by Cps, aq;

• s0 P S is the initial state; and

• sG P S is an absorbing goal state with CpsG, ¨q “ 0 and T psG, ¨, sGq “ 1.

The policy in an SSP is deterministic, π : S Ñ A, provided it is stationary. A

stationary policy is said to be a proper policy if the policy is guaranteed to reach the

goal state, from all states, in a finite number of steps. Otherwise, the policy is called

improper. States from which the goal state is not reachable are called dead end states

or dead ends. In practice, SSPs are commonly assumed to have: (1) the existence of

a proper policy and (2) all improper policies have infinite cost of reaching the goal.
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The objective in an SSP is to minimize the expected cost of reaching a goal:

E
“

ÿ

t

Cpst, πpstqq|π, s0

‰

(2.4)

with st denoting the current state at time t. The values of the states are estimated

using the Bellman equation:

V π
psq “ Cps, πpsqq `

ÿ

s1PS

T ps, πpsq, s1qV π
ps1q. (2.5)

The Bellman optimality equation is:

V ˚psq “ min
aPA

Cps, aq `
ÿ

s1PS

T ps, a, s1qV ˚ps1q. (2.6)

This operator is also a contraction, similar to MDPs, but with a weighted max norm

metric [10]. SSPs generalize finite and infinite horizon MDPs with discrete time, finite

states and finite actions [53]. An overview of this mapping is now described. For any

MDP of this category, add an initial state and a goal state. The cost function is the

negation of the rewards. The transitions are re-computed as follows. First, zero-cost

uniform transitions are added from the initial state to all MDP states. Second, the

MDP state transitions are multiplied by γ for the remaining state transitions in the

original MDP. Finally, there is a zero-cost transition from these states to the goal

with probability γ; the transition probabilities are normalized so that the remaining

transitions sum to 1 ´ γ. Note that the converse mapping does not always exist.

Similar to MDPs, the complexity of solving discrete time SSPs with a flat state

representation, finite states, and finite actions is P´complete.

Important Terminology and Refinements

Solutions for the single initial and goal state can be generalized to problems with

multiple initial and goal states, using a zero-cost transitions [53]. In this case, the
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existence of a proper policy implies the existence of a policy that reaches some goal

state among the multiple goals.

Similar to factored-state representation in MDPs, the states in SSPs can also be

described using state factors, S “ F1ˆF2ˆ . . . FK . The complexity of solving discrete

time SSPs with finite states, finite actions, and a flat representation is polynomial in

the number of states. However, the enumerated state space in the case of a factored

representation may be exponential in the number of state factors.

2.1.3 Partially Observable Markov Decision Process

In some settings, the agent may not be able to accurately sense the current state

of the world. The agent is expected to operate under partial observability. Such prob-

lems are modeled by the Partially Observable Markov Decision Process (POMDP)

framework, which are an extension of MDP to partially observable settings. The

agent executes actions based on the observations about the state of the world and it

maintains a belief about its current state.

Definition 3. A partially observable Markov decision process [105] is defined by

xS,A, T,R,Ω, Oy where

• S is a finite set of states;

• A is a finite set of actions;

• T : S ˆ A ˆ S Ñ r0, 1s is a transition function denoting the probability of

transitioning to a state s1 P S, when executing action a P A in state s P S,

T ps, a, s1q “ Prps1|s, aq;

• R : S ˆAÑ R is a reward function, denoted by Rps, aq, prescribing the reward

incurred when executing an action a P A in state s P S;

• Ω is a finite set of observations; and
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• O : AˆSˆΩ Ñ r0, 1s is the observation function that determines the probability

of receiving an observation ω P Ω upon executing an action a and reaching state

s1, and denoted as Opa, s1, ωq.

Similar to the Markov property for transitions, the observation function is also

assumed to follow a Markov property. The observation received at time t depends

only on the state at t. The agent maintains a belief, denoted by b, about the true

current state, which is a probability distribution over the states with bpsq P r0, 1s and
ř

sPS bpsq “ 1. The set of all reachable beliefs forms the belief space B Ď ∆n, where

∆n is the standard pn´1q-simplex. The agent’s initial belief is denoted by b0. The

agent updates the belief b1PB, given the action a P A, an observation ω P Ω, and the

current belief b. The belief is updated as follows:

b1ps1|b, a, ωq “ ηOpa, s1, ωqbpsq (2.7)

where η “ Prpω|b, aq´1 is a normalization constant and bpsq is the current belief.

The belief state is a sufficient statistic for the history and therefore the belief update

follows the Markov property. The objective is to compute a policy that maximizes

the expected reward:

E
“

h
ÿ

t“0

γtRpbt, πpbtqq|π, b0
‰

.

Since the true state is unknown to the agent, it computes a policy based on its belief.

The optimal value can be calculated using the Bellman optimality equation as follows:

V ˚pbq “ max
aPA

Rpb, aq ` γ
ÿ

ωPΩ

Prpω|b, aqV ˚pb1aωq (2.8)

Solving a finite horizon POMDP is PSPACE-complete in the size of the beliefs

resulting from the states, actions, and observations [72], and the complexity of solv-

ing an infinite horizon POMDP optimally is undecidable [65]. Many approximate
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algorithms have been proposed to solve POMDPs, such as PBVI [75], SARSOP [58],

and finite state controller-based approaches [2]. Since the problems of interest in this

dissertation are modeled as an MDP or an SSP, the solution approaches for solving

POMDPs are not discussed in detail.

2.2 Methods for Solving MDPs and SSPs

This section discusses the fundamental algorithms and solution approaches for

solving discrete time, finite and infinite horizon MDPs, and discrete time SSPs with

finite states and finite actions. These algorithms compute stationary, deterministic

policies.

2.2.1 Exact Algorithms

Value Iteration Value iteration (VI) [7] is one of the fundamental algorithms to

solve MDPs and SSPs. Value iteration is a dynamic programming approach that

finds the optimal value of a state by repeatedly applying the Bellman equation (Equa-

tion 2.1), until the residual error is below a pre-specified threshold. The residual error

is the difference between the values of the states before and after the application of

Bellman equation, |V psq´V 1psq|. The algorithm computes the optimal value for each

state and then extracts a policy. Synchronous VI updates the values of all states in a

full sweep. Asynchronous VI performs the updates asynchronously and it converges

if no state is starved [9].

Policy Iteration Policy iteration [40] is another fundamental algorithm that forms

the basis of many approximate solution methods to solve large MDPs and SSPs. An

arbitrary policy is first initialized. The algorithm then iteratively evaluates and im-

proves the policy until convergence. In policy evaluation phase, the expected utility

obtained by executing a policy is computed based on the Bellman equation (Equa-

tion 2.1). In policy improvement phase, a new policy is computed by selecting the
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best action for each state, based on the utilities calculated in the policy evaluation

phase. The algorithm terminates when there is no improvement in the policy. Since

there are a finite number of policies in a discrete, finite MDP, the algorithm converges

in a finite number of iterations. In problems with a large state space, policy iteration

generally takes longer to converge in terms of the run time, relative to value iteration.

LAO* In many problems of interest, the state space may be large and not all states

may be reachable from the start state. LAO* [35] is a heuristic-search algorithm

that extends the A* algorithm [36] to MDPs with stochastic transitions and loops.

Broadly, LAO* algorithm alternates between node (state) expansion and policy com-

putation. The heuristic function helps accelerate the process by guiding the node

expansion. The policy computation involves selecting the best action for each node,

using the Bellman equation (Equation 2.1). LAO* converges to the optimal policy

and terminates when the residual error is zero or below a pre-defined threshold.

LRTDP Labeled real-time dynamic programming (LRTDP) [12] is an anytime al-

gorithm that generalizes the trial-based real-time dynamic programming (RTDP) [5]

with a labeling procedure that speeds up the convergence. A state s is labeled as

solved when the heuristic values, and the greedy policy defined by them, have con-

verged (zero or low residual error) over s and all states reachable from s. LRTDP

converges to an optimal policy, with fewer trials compared to RTDP.

Both LAO* and LRTDP are known to converge to the optimal policy, faster than

value iteration and policy iteration.

2.2.2 Approximate Solution Methods

To solve large MDPs and SSPs, several approximate solution methods have been

proposed. The literature on this topic can be classified into: (1) sparse sampling-based

approaches and (2) model reductions. The sparse sampling approaches sample trials

20



(a) Problem setting with stochastic actions (b) AND-OR graph

(c) State abstraction (d) Reduced model

Figure 2.3: An example of model simplification for planning. (a) describes the prob-
lem setting with the transition probabilities of move forward action. (b) shows the
AND-OR graph representation for the move forward action. (c) illustrates state ab-
straction where states with the same color are aggregated and have the same policy.
(d) illustrates a reduced model with the probabilistic outcomes replaced by a single
deterministic outcome for planning.

and rely on dynamic programming, typically using asynchronous value iteration, to

compute the policy. Popular examples of sparse sampling approaches are UCT [52],

PROST [47], THTS [48], and FLARES [77]. The sparse sampling approaches reduce

the search efforts by performing backups on the sampled states.

Another common approach to accelerate planning in large problems is to reduce

or simplify the model used for planning, thereby reducing the search space. Common

model simplification approaches include state aggregation or state abstraction [66, 61,

82] and reduced models that consider fewer action outcomes [78, 118, 119]. Figure 2.3

illustrates the two model simplification approaches for a simple robot navigation

setting. In planning with state abstraction, similar states are grouped together for

planning and are assigned the same best action. In planning with reduced models,

the policy is computed only for a subset of states. During execution, if a state is
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encountered for which the policy does not prescribe an action, then replanning is

performed. This dissertation focuses on reduced models that consider fewer action

outcomes for planning, relative to the original model.
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CHAPTER 3

PLANNING WITH RISK-AWARE REDUCED MODELS

Consider a resource-constrained agent with a high fidelity, complex model of the

environment. Since the computational resources of the agent are limited, it cannot

generate solutions in real-time with this model. One approach to address this issue is

to simplify or reduce this model for planning by considering fewer action outcomes,

relative to the original model. Planning with the resulting imprecise model may affect

the solution quality and may even result in unsafe agent behavior. While improving

the fidelity of the reduced model will help improve the solution quality, it may also

affect the planning time and defeat the purpose of using reduced models. To quickly

generate high quality solutions with a reduced model, the reduced model must be

risk-aware—account for risky outcomes of actions. The key question addressed in

this chapter is how to balance the trade-off between simplicity and fidelity of the

reduced model, such that the resulting reduced model is risk-aware.

This chapter presents 0{1 reduced model, a paradigm to selectively improve the

model fidelity in certain states, thereby improving the solution quality without sub-

stantially compromising on the run time gains of using a reduced model [96, 97, 100,

101]. The model fidelity is improved by using more informative action outcomes in

certain states and adjusting the costs of actions to account for the outcomes ignored

in the reduced model.

Chapter outline. The chapter begins by motivating the problem in Section 3.1.

This is followed by a formal definition of reduced models and a discussion of the

related works in Section 3.2. The 0{1 reduced model framework is introduced in
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Section 3.3. An approach to select outcomes in 0{1 reduced model and adjusting the

actions costs is described in Section 3.4. Finally, empirical results are presented in

Section 3.5.

3.1 Introduction

Autonomous agents are often faced with tasks that require generating policies

quickly and such problems can be modeled using the stochastic shortest path (SSP)

framework [10]. Uncertainty in action outcomes, which is a characteristic of many

real-world problems, increases the complexity of planning. Given the computational

complexity of solving large SSPs optimally [64], there has been considerable interest

in developing efficient approximations, such as reduced models, that trade solution

quality for computational gains. The model may be simplified in many ways, such

as aggregating states or actions [61, 82], or ignoring the uncertainty in transitions,

thereby reducing the set of reachable states for the planner [78].

This dissertation considers reduced models in which the number of outcomes per

state-action pair is reduced relative to the original model, for planning. The action

outcomes considered in the reduced model determine the model fidelity and hence

different outcome selection techniques result in reduced models with varying fidelity.

While reduced models accelerate planning by reducing the number of reachable

states, they also degrade the solution quality. Solution quality is affected particularly

when the “risky” states—states that significantly affect the expected cost of reaching

a goal—are ignored in the reduced model. There are many ways to characterize a

risky outcome. In this chapter, the notion of risk is associated with higher expected

cost, since the agent can recover from the effects of a risky outcome by incurring a

penalty in domains of our interest. A reduced model is said to be risk-aware if it fully

accounts for the risky outcomes of the complete model, thus resulting in improved

solution quality.
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Knowledge gaps Existing reduced model techniques have focused on the reduction

of planning time [118, 120, 46, 49, 119] in isolation and they do not address explic-

itly the risks associated with ignored outcomes. This has limited the applicability of

reduced models in spite of the substantial computational savings they offer, particu-

larly when avoiding risky outcomes is critical. Recently, reduced models that consider

k primary outcomes and l exceptions were introduced, which improved the solution

quality compared to traditional model reductions [78]. This shows that the solution

quality can be boosted by accounting for certain outcomes. However, no principled

approach to outcome selection that can balance the trade-off between model simplic-

ity and fidelity exists. While the risk-awareness and model fidelity can always be

improved by considering the full model, this defeats the purpose of using reduced

models. How to formulate reduced models that balance the trade-off between model

simplicity and risk awareness (Figure 3.1)?

Figure 3.1: An example illustrating the trade-off between model simplicity and risk
awareness. Risk awareness decreases as the model is simplified using uniform outcome
selection principles (indicated by the blue trend line). The points denote reduced
models formed with different outcome selection principles.

Overview of contributions Different outcome selection techniques produce re-

duced models of varying fidelity, but selectively improving the model fidelity in certain

states requires integrating various outcome selection techniques. As Marvin Minsky

noted “The power of intelligence stems from our vast diversity, not from any single,
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perfect principle” [68]. This chapter presents planning using 0{1 reduced models (0{1

RM), a novel planning paradigm that enables formulating reduced models with dif-

ferent levels of details by switching between using a deterministic model and the full

model. A factored state representation is considered and the risks are characterized

in terms of the state features. When the features representing risks in the problem are

not given, this information is gathered by querying an oracle (typically a human). To

identify states where model fidelity is to be improved, a reduction impact is estimated

automatically based on the features characterizing the risky states, by generating and

solving sample trajectories. Intuitively, the reduction impact measures how optimistic

the resulting reduced model would be, with respect to risks, thus offering a heuristic

for choosing the outcome selection principles. In states where the reduction impact

is high, more informative outcome selection principles are employed.

The reduction impact is also used to adjust the costs of actions in the reduced

model as a means to account for the effects of the ignored outcomes. The conditions

under which a cost adjusted reduced model produces optimal action selection are

presented. Finally, the approach is evaluated on three domains in simulation: an

electric vehicle charging problem using real world data, and two benchmark problems

from the planning literature. The results demonstrate the efficiency of the approach

in balancing the trade-off between risk awareness and model simplicity, without com-

promising the run time gains.

The primary contributions in this chapter are: (1) introducing 0{1 reduced models;

(2) estimating the reduction impact and using it as a heuristic for outcome selection;

(3) introducing cost adjusted reduced models and its key properties; and (4) evalu-

ating the approach on three domains in simulation.
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3.2 Planning with Reduced Models

The complexity of solving SSPs optimally [64] has led to the use of approximation

techniques such as reduced models. Reduced models simplify planning by considering

a subset of outcomes, which is especially useful in problems with a high branching

factor for action outcomes. Let θps, aq denote the set of all outcomes of ps, aq, θps, aq “

ts1|T ps, a, s1qą0u.

Definition 4. A reduced model of an SSP M is represented by the tuple M 1 “

xS,A, T 1, C, s0, SGy and characterized by an altered transition function T 1 such that

@ps, aq PSˆA, θ1ps, aq Ď θps, aq, where θ1ps, aq“ts1|T 1ps, a, s1qą0u denotes the set of

outcomes in the reduced model for action a P A in state s P S.

The probabilities of the outcomes included in the reduced model are normalized.

An outcome selection principle (OSP) determines (1) the number of outcomes and (2)

how the specific outcomes are selected. Depending on these two aspects, a spectrum

of reductions exist with varying levels of probabilistic complexity that ranges from the

single outcome determinization to the full model. The OSP can be a simple function

such as always choosing the most-likely outcome or a more complex function.

Uniform outcome selection Traditionally, a reduced model is characterized by

a single OSP—a single principle is used to determine the number of outcomes and

how the outcomes are selected across the entire model. Among the different existing

uniform outcome selection principles that have been explored, determinization has

attracted significant interest. Determinization ignores the stochastic transitions and

associates one deterministic outcome for each action, instead of multiple probabilis-

tic outcomes [118, 46]. The resulting deterministic model can be efficiently solved

using off-the-shelf classical planners such as A* [36]. It is complemented by online

replanning when an unexpected state is encountered.

Interest in determinization increased after the success of FF-Replan [118], which

won the 2004 International Probabilistic Planning Competition (IPPC). FF-Replan
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generates a deterministic version of the problem and computes a sequential plan for

solving it, using the Fast Forward (FF) technique [38]. FF performs forward search

using a heuristic function that is automatically extracted from the domain description

by ignoring the delete list. If an unexpected state—a state without an action plan—

is reached during plan execution, the process repeats with the unexpected state as

the initial state, until a goal state is reached. Following the success of FF-Replan,

researchers have proposed various methods to improve determinization, such as Ro-

bust FF (RFF) [110] and HMDPP [49], resulting in various determinization-based

planning algorithms [43, 46, 47, 54, 119, 120].

While determinization could be extremely effective, it is often hard to predict

when it will work particularly well as policies produced via existing determinization

techniques do not provide bounded-performance guarantees. Recently, Mk
l reductions

that account for a bounded number of exceptions (k) and primary outcomes (l) have

shown to significantly improve the solution quality [78]. This shows that the solution

quality can be boosted by accounting for certain outcomes. However, the values of k

and l are fixed for a problem and determining the best values a priori is non-trivial.

Due to the rigidity of the uniform outcome selection, the existing reduced models

are incapable of selectively adapting to risks. Figure 3.2 illustrates this with a robot

making a right turn in a narrow corridor (Figure 3.2(a)) and the corresponding full

model (Figure 3.2(b)). The robot can turn at two speeds: low and high, each suc-

ceeding with different probabilities. If the agent crashes (hits the wall), a penalty is

applied to reposition it back to the center of the corridor. While the optimal action

in the original model is to turn at a low speed, the optimal action in the most-likely

outcome determinization (Figure 3.2(c)) is turning at a high speed. Hence, using a

uniform outcome selection for this problem results in a sub-optimal solution, which

can be avoided using the portfolio approach (Figure 3.2(d)) described below.
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Figure 3.2: An example of reduced models with different fidelity for a robot making
a turn in a narrow corridor. The shaded area in (a) denotes “turn” state, and ‘S’ and
‘G’ denote the start and goal state respectively. The robot can turn at low speed (L)
or at high speed (H) with costs proportional to the time taken to turn. The robot
is alive if the action succeeds or may crash when the action is unsuccessful. Optimal
action in each model is circled.

3.3 0{1 Reduced Models

A portfolio of outcome selection principles (POSP) is a generalized approach

to formulate risk-aware reduced models by switching between different OSPs. The

approach is inspired by the benefits of using portfolios of algorithms to solve complex

computational problems [74]. A model selector selects an outcome selection principle

for each state-action pair.

Definition 5. Given a portfolio of finite outcome selection principles, Z“tρ1, ρ2, ..., ρku,

ką1, a model selector Φ generates T 1 for a reduced model by mapping every ps, aq

to an outcome selection principle, Φ : S ˆ A Ñ ρi, ρi P Z, such that T 1ps, a, s1q “

TΦps,aqps, a, s
1q, where TΦps,aqps, a, s

1q denotes the transition probability corresponding

to the outcome selection principle selected by the model selector.

The rest of this chapter focuses on a basic instantiation of POSP — 0{1 RM —

that switches between the extremes of outcome selection principles: determinization

and the full model.

Definition 6. A 0/1 reduced model (0/1 RM) is characterized by a model selector,

Φ0/1, that selects either one or all outcomes of a state-action pair to be included in

the reduced model.
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In a 0/1 RM, the model selector either ignores the stochasticity completely (0)

by considering only one outcome of ps, aq, or fully accounts for the stochasticity

(1) by considering all outcomes of the state-action pair in the reduced model. An

instantiation of 0/1 RM for the robot navigation in Figure 3.2 uses the full model for

the riskier action H and determinization for action L. A 0/1 RM that guarantees goal

reachability with probability 1.0 can be devised, if a proper policy exists in the SSP.

Existing reduced models, such as determinization, are a special case of POSP,

with a model selector that always selects the same OSP for every state-action pair.

In planning using a portfolio of OSPs, however, the model selector typically utilizes

the synergy of multiple OSPs. Each state-action pair may have a different number of

outcomes and a different mechanism to select the specific outcomes (Figure 3.3).

Figure 3.3: An example of reduced models formed with different techniques.

This flexibility in outcome selection can be leveraged to improve risk awareness

in reduced models by using more informative outcomes in the risky states and using

simple outcome selection principles otherwise. Though the model selector may use

multiple OSPs to generate T 1 in a POSP, note that the resulting model is still an SSP.

This framework offers both a unifying lens to view past work (existing OSPs), as well

as a recipe for seamless integration of future improvements in OSPs. Depending on

the model selector and the portfolio, a large spectrum of reduced models exists for

an SSP and selecting the right one is non-trivial.
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3.3.1 Model Selector (Φ)

The model selectors in existing reduced models have been devised typically to

reduce planning time. An efficient Φ in a POSP optimizes the trade-off between

solution quality and planning time. Devising an efficient model selector automatically

can be treated as a meta-level decision problem that is computationally more complex

than solving the reduced model, due to the numerous possible combinations of OSPs.

Even in a 0/1 RM, devising an efficient Φ is non-trivial as it involves deciding when

to use the full model and when to use determinization. This is illustrated by the

following example.

Consider the navigation example in Figure 3.2, with state representation as a

tuple xl, w, cy where l denotes the location, w is the width of the corridor indicating

whether it is wide or narrow, and c denotes if the agent has crashed or not. The

agent can move forward or backward or turn in two speeds (L and H), as in the

figure. The forward and backward actions are deterministic with unit cost and the

low speed and high speed turns are stochastic with costs `2 and `1 respectively.

Models with different fidelities are generated by altering when the full model is used.

As expected, the highest gains are observed when the full model is used in the turn

state. Specifically, using the full model at start state alone had an expected cost

of 21.147 ˘ 0.35 and using the full model in the shaded state, which represents the

narrow turn state (as in Figure 3.2(d)), had an expected cost of 8.188˘0.10, averaged

over 100 trials. Identifying the best 0/1 RM for this problem required testing all valid

formulations using most likely outcome determinization, resulting in a total run time

of 2651 milliseconds. Hence this exhaustive evaluation is infeasible for larger problems.

In the worst case, all OSPs in the portfolio, Z, may have to be evaluated for a

problem to determine the best reduced model formulation. Let τmax denote the max-

imum time taken for this evaluation across all states. When every action transitions

to all states, the outcome selection principles in Z may be redundant in terms of
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the specific outcomes set produced by them. For example, selecting the most-likely

outcome and greedily selecting based on heuristic could result in the same outcome

for certain ps, aq pair. Using this, we show that the worst case complexity for a model

selector is independent of the size of the portfolio, which may be very a large number

in the worst case.

Proposition 7. The worst case time complexity for a model selector to generate T 1

for a POSP is Op|A|2|S|τmaxq.

Proof. For each ps, aq, at most |Z| outcome selection principles are to be evaluated

and this takes at most τmax time. Since this process is repeated for every ps, aq, Φ

takes Op|S||A||Z|τmaxq to generate T 1. In the worst case, every action may transition

to all states and the outcome selection principles in Z may be redundant in terms of

the specific outcomes set produced by them. Hence, the evaluation is restricted to

the set of unique outcomes sets denoted by k, |k| ď |PpSq|, with PpSq “ 2|S|. Then,

it suffices to evaluate the |k| outcome sets instead of |Z|, reducing the complexity to

Op|A|2|S|τmaxq.

Proposition 8. The worst case time complexity for Φ0/1 to generate T 1 for a 0/1 RM is

Op|A||S|2τmaxq.

Proof. This proof is along the same lines as that of Proposition 7. To formulate a

0{1 RM of an SSP, it may be necessary to evaluate every outcome selection principle,

ρi P Z, that corresponds to a determinization or a full model. Hence, in the worst

case, Φ0{1 takes Op|S||A||Z|τmaxq to generate T 1. The set of unique outcomes, k, for

a 0{1 RM is composed of all unique deterministic outcomes, which is every state in

the SSP, and the full model, |k| ď |S| ` 1. Replacing |Z| with |k|, the complexity is

reduced to Op|A||S|2τmaxq.

Since τmax could significantly reduce the run time savings of using a reduced model,

these results underscore the need for faster evaluation techniques to identify relevant
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OSPs. The current best approach to evaluate an OSP is to solve the corresponding

reduced model and evaluate the policy in hindsight. The following section presents

an approximation for outcome selection.

3.4 Solution Approach

The proposed solution approach involves two components. First, given features

that characterize the risks in the setting, a reduction impact is calculated for each

state-action pair, which is used as a heuristic to guide the outcome selection. Second,

when using determinization, the costs of the actions can be adjusted using the reduc-

tion impact to reflect the ignored outcomes. The overall process flow is illustrated in

Figure 3.4.

Figure 3.4: Overview of the approach.

In problems where the agent does not have information about the risky states,

oracle (human) feedback is utilized. The agent may query an oracle who in turn

provides features characterizing risks, denoted by ~fR. In our running example (Fig-

ure 3.2), crashing is an unacceptable outcome, which can be denoted by the state

feature c=true. When the problem instances in a domain are similar or share a struc-

ture in terms of state features, actions, and goal conditions, querying once per domain

may suffice.
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3.4.1 Reduction Impact

One of the reasons for reduced model techniques producing poor solutions is that

some outcomes are completely ignored. The reduction impact δ is a measure of

the values of ignored outcomes and is calculated for each ps, aq. Following π˚, the

reduction impact is calculated as,

δps, aq “ Q˚ps, aq ´
ÿ

s1Pθ1ps,aq

T 1ps, a, s1qV ˚ps1q, @ps, aq (3.1)

where Q˚ps, aq denotes the Q-value in the original model. Therefore, the reduction

impact is higher if risky states are ignored in the reduced model, due to their signifi-

cantly higher expected cost of reaching a goal. Since the optimal values are unknown,

this value is estimated using samples. Sample trajectories generated by depth-limited

random walk on the target problem or smaller problem instances from the domain

may be used for this purpose. These samples are solved optimally and the reduction

impacts corresponding to ~fR are determined using these exact solutions. The reduc-

tion impact, given ~fR, are learned in hindsight by computing the mean values of the

samples. More complex methods for aggregating the values from the samples may be

considered.

Optimal Reduction Impact

For the class of problems described below, δ can be calculated optimally, without

using samples or having to solve the problem.

Consider an SSP in which an action can achieve a successful outcome with prob-

ability 1´p or fail with probability pą0 (Figure 3.5). When an action fails, the state

remains unchanged. Let s denote a state of the SSP for which a successful execution

of action a with cost Cps, aq results in outcome state s1.
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Figure 3.5: Problems with closed-form reduction impact.

For problems with this structure, it has been shown that the Q-values can be

calculated optimally [49]:

Q˚ps, aq “
Cps, aq

1´ p
` V ˚ps1q.

Substituting the above equation in Equation 3.1, we get

δps, aq “
Cps, aq

1´ p
.

Thus, for problems with this structure, the reduction impact can be calculated

optimally with a closed-form equation.

3.4.2 Outcome Selection Guided by Reduction Impact

The reduction impact can be used as a heuristic for model selection in a 0/1 RM, as

it reflects the criticality of the states being ignored. In a 0/1 RM, the full model may

be employed in states with approximate reduction impact above a certain threshold

and determinization in other states.

By altering the δ threshold at which the full model is employed, reduced models

with different levels of computational gains and sensitivity to risks can be produced,

due to the differences in fraction of full model usage. To demonstrate this, solution

qualities of reduced models formed with different reduction impact thresholds are

compared (Figure 3.7) on four instances of the racetrack domain [5]1. An example

1In racetrack domain, the objective is to move from start to goal states by applying acceleration
and controlling the car correctly. If the robot (car) hits a wall, it is repositioned back to start state.
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Figure 3.6: An example of the racetrack problem. Blue cell denotes start state and red
denotes goal, lighter cells denote the track and darker cells denote walls (obstacles).

(a) Effect on expected cost (b) Effect on run time (c) Effect on model fidelity

Figure 3.7: Comparison of effects of different reduction impact thresholds on four
instances of the racetrack domain.

racetrack problem is illustrated in Figure 3.6. The state of the car is determined by

its location and its two-dimensional velocity. The car can change its speed in each of

the two dimensions by at most one unit, resulting in a total of nine possible actions.

The problem instances in Figure 3.7 have the same actions, goal conditions, and state

representation, but differ in the size of their state space.

The threshold indicates the % difference between the estimated δ and the original

costs, at which the full model is employed. In all other states, most likely outcome

determinization is used. The cost increase is with respect to the lower bound (optimal

expected cost obtained by solving the full model) and the run time reduction is with
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respect to solving the full model. The full model usage increases as the threshold

lowers, resulting in improved solution quality (lower cost) and reduced time savings.

3.4.3 Cost Adjusted Actions

In a reduced model, traditionally only the transition function is altered. This

section presents a technique that accounts for the ignored outcomes by adjusting the

costs of actions in the reduced model. Since the reduction impact reflects the values

of the ignored outcomes, this value is used to adjust the costs of actions and the

resulting reduced model is called a cost adjusted reduced model (CARM). The cost

adjustments, in a way, reflect the long-term cost of an action in a reduced model since

it accounts for the ignored outcomes of the action that may be encountered during

plan execution. The cost adjustments for an optimal policy are defined below.

Definition 9. A cost adjusted reduced model (CARM), M 1
ca, of an SSP M is a

reduced model in which the reduction impact is used as the cost function. That is, the

cost of executing an action in a state is C 1ps, aq “ δps, aq, @ps, aq in a CARM.

The costs are adjusted for every ps, aq in the reduced model to account for the

ignored outcomes. Since the costs are adjusted based on the difference in values of

states, this may lead to negative cost cycles. A necessary and sufficient condition for

non-negative cost in CARM is that T 1 satisfies Q˚ps, aqě
ř

s1Pθ1ps,aq T
1ps, a, s1qV ˚ps1q.

This condition may be relaxed as long as there are no negative cost cycles in M 1
ca.

This can be handled in approximate estimation by using only non-negative values.

In principle, a CARM can result in optimal action selection when the optimal

values are known. While this is practically infeasible, it explains the potential benefits

of the technique. The optimal state values and action values in M 1
ca are denoted by

V ˚R psq and Q˚Rps, aq, and its optimal policy by π˚R. Let Xπ
R and Xπ denote the set of

states reachable by executing a policy π in M 1
ca and executing π in M , respectively.
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Since θ1ps, aq Ď θps, aq, we get Xπ
RĎX

π. The following lemma shows that a CARM

has optimal state values as the full model, when goal reachability is preserved.

Lemma 10. For a policy π, the optimal state values in a CARM that preserves goal

reachability and the full model are equal, @sPXπ
R : V π

R psq“V
πpsq.

Proof. We show this using proof by induction on t starting from the goal state and

following policy π (assuming proper policy). The base case holds as we start from

a goal. For readability, let θ1St,π “ θ1pSt, πpStqq, St“1 “ s and St´1 “ s1. When

t“ 1 : V πpsq “ Cps, πpsqq, @s P Xπ and V π
R psq “ C 1ps, πpsqq, @s P Xπ

R. Using π and

Definition 9, we get Qπps, aq“V πpsq and C 1ps, aq“V πpsq. Hence, V π
R psq“V

πpsq, @sP

Xπ
R. Thus, this holds true for t“1.

Inductive Step: Assume true for t´ 1 (induction hypothesis), must show that for

t, V π
R pStq“V

πpStq. Then,

V π
R pStq “ C 1pSt, πpStqq `

ÿ

s1Pθ1
St,π

T 1pSt, πpStq, s
1
qV π

R ps
1
q.

Using Definition 9 in the above equation,

V π
R pStq “ Qπ

pSt, πpStqq `
ÿ

s1Pθ1
St,π

T 1pSt, πpStq, s
1
qpV π

R ps
1
q ´ V π

ps1qq.

By induction hypothesis, V π
R ps

1q “ V πps1q, and for a fixed policy, QπpSt, πpStqq“

V πpStq. Substituting these in the above equation, we get V π
R pStq“ V πpStq. Thus, by

induction, this holds true for all t, V π
R psq“V

πpsq, @s P Xπ
R.

This result is used to show that a CARM that preserves goal reachability produces

optimal action selection for the SSP.

Proposition 11. A CARM that preserves goal reachability yields optimal action se-

lection for the SSP, if there exists a proper policy in the SSP.
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Proof. We prove this by showing that @ps, aq PM 1
ca, the optimal Q-values of the SSP

and its CARM are equal, Q˚Rps, aq “ Q˚ps, aq. However, if the reduced model does not

preserve goal reachability, then the Q-values will be different. Therefore, we restrict

the proof to a CARM that preserves goal reachability. By definition, @ps, aq P S ˆA:

Q˚Rps, aq “ C 1ps, aq `
ÿ

s1Pθ1ps,aq

T 1ps, a, s1qV ˚R ps
1
q.

Using Definition 4 in the above equation,

Q˚Rps, aq“Q
˚
ps, aq `

ÿ

s1Pθ1ps,aq

T 1ps, a, s1qV ˚R ps
1
q ´ V ˚ps1q.

Using Lemma 10 in the above equation, we get Q˚Rps, aq“Q
˚ps, aq.

While it is infeasible to estimate optimal cost adjustments in most problems, these

results indicate that the action selection may be near-optimal when the estimated

reduction impact is closer to the real value. A 0/1 RM with cost adjustments based

on reduction impact calculated using samples is referred to as approximately cost

adjusted 0/1 RM (ACARM-0/1 RM).

3.5 Evaluation

Experiments are conducted on three domains including an electric vehicle (EV)

charging problem using real world data from a university campus, and two benchmark

planning problems: the racetrack domain and the sailing domain. The expected cost

of reaching the goal and planning time are used as evaluation metrics.

Baselines The performances of 0/1 RM and ACARM-0/1 RM are compared with

the following reduced model techniques:

• Most-likely outcome determinization (MLOD);
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• Uniformly selecting two outcomes greedily (M02);

• Mk
l reduction characterized by l primary outcomes and k exceptions, with k“

1, l“1 [78]; and

• Reduced models, with Z “tMLOD,M02u, that alternate between MLOD and

M02 (0/M02 RM).

Given the features characterizing risky states, the reduction impact is estimated

using thirty samples for each domain. The samples are generated by depth-limited

random walk on the problem and the reduction impact is calculated with respect to

MLOD of the problem. For all states with reduction impact greater than the threshold

value in Table 3.1, the model selector uses a full model in a 0/1 RM, and uses M02

reduction in 0/M02 RM. In all other states, MLOD is used. The 0/1 RM and 0/M02

RM use the reduction impact for the model selector only, while an ACARM-0/1 RM

uses the reduction impact for the actions costs and model selection.

All results are averaged over 100 trials of planning and execution simulations and

the average times include re-planning time. The deterministic problems are solved

using the A* algorithm [36] and other problems using LAO* [35]. All algorithms

were implemented with ε“10´3 convergence and using hmin heuristic computed using

a labeled version of LRTA* [55], and tested on an Intel Xeon 3.10 GHz computer

with 16GB of RAM.

3.5.1 Domains

Racetrack In this domain, the task is to move from start to goal states by applying

acceleration correctly [5]. If the car hits a wall, it is repositioned back to start state.

The problem is modified to increase the difficulty such that, in addition to a 0.1

probability of slipping, there is a 0.2 probability of randomly changing the intended

acceleration by one unit. Six problem instances are considered. The reduction impact
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uses one-step lookahead with features such as whether the successor is a wall or

pothole or goal, and if the successor is moving away from the goal, estimated using

the heuristic.

Sailing In this domain, the objective is to find the shortest path between two points

of a grid under fluctuating wind conditions [52]. The boat cannot move in the direction

opposite to that of the wind and the changes in wind direction are stochastic. Six

problem instances are considered, with varying grid size (20, 40, 80) and the goal

position (opposite corner (C) or middle (M) of the grid). The reduction impact

is estimated using one-step lookahead and based on features such as the difference

between the action’s intended direction of movement and the wind’s direction, and if

the successor is moving away from goal, estimated using the heuristic value.

Electric Vehicle Charging In the electric vehicle (EV) charging domain, the EV

can charge and discharge energy from a smart grid [100]. The objective is to minimize

the long-term operational cost of the EV, given the owner’s charging preferences. The

problem is modified to allow for uncertainty regarding the parking duration of the

EV, which is specified by a probability that certain states may become terminal

states. The maximum parking duration is the horizon h. Each state is represented by

xl, t, d, p, ey, where l is the current charge level, tďh is the time step, d and p denote

the current demand and price distribution for electricity respectively, and 0ď eď h

denotes the time steps remaining for departure. If the owner has not provided this

information, the agent plans for h. The process terminates when t“h or if e“0.

Each t is equivalent to 30 minutes in real time. It is assumed that the owner

may depart between four to six hours of parking with a probability of 0.2 that they

announce their planned departure time. Outside that window, there is a lower proba-

bility of 0.05 that they announce their departure. We experimented with four reward

functions (RF). The rewards and the peak hours are based on real data [26]. The
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battery capacity and the charge speeds are based on Nissan Leaf configuration. We

assume the charge and discharge speeds to be equal. The battery inefficiency is

accounted for by adding a 15% penalty on the rewards. The reduction impact is

estimated using features: time remaining for departure, if the current time is peak

hour, and if there is sufficient charge for discharging, with one step-lookahead.

EV Dataset The data used in the experiments consist of charging schedules of

electric cars over a four month duration in 2017 from an American university campus.

The data is clustered based on the entry and exit charges, and 25 representative

problem instances were selected across clusters for the experiments. The data is from

a typical charging station, where the EV is unplugged once the desired charge level

is reached. Since an extended parking scenario is considered, as in a vehicle parked

at work, the parking duration (h) is set to eight hours in the experiments.

Problem Full Model (%) δ threshold

EV-RF-1 7.644 120%
EV-RF-2 9.956 120%
EV-RF-3 8.989 120%
EV-RF-4 9.852 120 %
Racetrack-Square-3 0.860 100%
Racetrack-Square-4 0.071 100 %
Racetrack-Square-5 0.034 100%
Racetrack-Ring-4 2.871 100%
Racetrack-Ring-5 1.859 100%
Racetrack-Ring-6 0.327 100%
Sailing-20(C) 37.414 120%
Sailing-40(C) 37.478 120 %
Sailing-80(C) 37.495 120 %
Sailing-20(M) 37.414 120%
Sailing-40(M) 37.478 120%
Sailing-80(M) 37.495 120%

Table 3.1: Percentage of full model usage in 0/1 RM using reduction impact as heuris-
tic for model selector. δ threshold denotes the percentage difference between esti-
mated reduction impact and the original costs at which full model is employed.
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3.5.2 Results and Discussion

Table 3.1 reports the full model usage (%) for 0/1 RM in our experiments, using

reduction impact as heuristic for model selector. The threshold values for the re-

duction impact used in the experiments are based on Figures 3.7, 3.8, and 3.9 that

compare the effect of different reduction impact thresholds on the performance.

(a) Expected cost (b) Run time (c) Full model usage

Figure 3.8: Effect of reduction impact thresholds on expected cost, run time, and full
model usage in sailing domain.

(a) Expected cost (b) Run time (c) Full model usage

Figure 3.9: Effect of reduction impact thresholds on expected cost, run time, and full
model usage in EV domain.

Figure 3.10 shows the average increase in cost (%) and the time savings (%), with

respect to solving the original problem optimally. For the EV domain, the results are

aggregated over 25 problem instances for each reward function. A low cost increase
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(a) Racetrack (b) Sailing (c) EV

Figure 3.10: Comparison of trade-offs by different reduced models on three domains.

indicates that the performance of the technique is closer to optimal. A high time

saving value indicates improved run time gains by using the model. Hence, the lower

right corner of each image represents the most desired results.

These results show that ACARM-0/1 RM with a good model selector and cost

estimation can achieve near-optimal performance without significantly affecting run

time. ACARM-0/1 RM is at least 60% faster than solving the full model. All the

reduced models are solved using an optimal algorithm, which allows us to assess the

direct impact of model reduction. In practice, however, any SSP solver (optimal or

not) may be used to further improve run time gains.

Results show that 0/1 RM can effectively minimize the expected costs without

significantly affecting run time and by sparingly using the full model. This indicates

that using δ as a heuristic works well in practice. In many problems, performance

is improved further by using δ to adjust the costs. Thus, the results demonstrate

the benefits of our approach in formulating reduced models that balance the trade-off

between model simplicity and risk awareness.
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3.6 Summary

When agents simplify a high-fidelity model to accelerate planning, reasoning with

the resulting imprecise model affects the overall performance. Two general methods

are introduced to devise risk-aware reduced models of large SSPs. First, planning

using a portfolio of outcome selection principles that provides flexibility in outcome

selection for each state-action pair is proposed. The reduction impact is measured

based on the ignored outcomes and it is used as a heuristic for model selector in a

0{1 reduced model. Second, cost adjusted reduced models is introduced to account

for ignored outcomes in the reduced model by modifying the actions costs. Our

empirical results demonstrate the promise of this framework as cost adjustments

in a basic instantiation of a POSP offer improvements—ACARM-0/1 RM improves

the performance without significantly affecting the run time gains. Our results also

contribute to a better understanding of how disparate reduced model techniques relate

to each other and could be used together to leverage their complementary benefits.
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CHAPTER 4

PLANNING UNDER GOAL UNCERTAINTY

This chapter addresses the model imprecision arising due to the availability of

limited information during system design. Specifically, it focuses on settings in which

it is impossible to accurately determine the goal states, ahead of plan execution. Ex-

isting standard frameworks to model goal-oriented problems require one or more goal

states to be prescribed, which can result in misspecification when precise information

is unavailable during system design. Misspecified goals affect agent behavior when

deployed. To model scenarios with goal uncertainty efficiently, this chapter presents

goal uncertain stochastic shortest path (GUSSP), a framework that extends the SSPs

to settings with goal uncertainty [109]. The agent is aware of the goal condition but

does not have knowledge of which states satisfy the goal conditions, ahead of plan

execution. Given a distribution over set of states describing the probability of being a

goal, the agent is expected to devise a plan that is optimal, given the goal uncertainty.

Chapter outline. The chapter begins with problem motivation in Section 4.1.

Goal uncertain SSP framework is introduced and formally defined in Section 4.2, and

its theoretical properties are described in Section 4.3. Approximate methods to solve

GUSSPs are discussed in Section 4.4. Finally, empirical evaluation of the approach

in simulation and on a real robot is presented in Section 4.5.

4.1 Introduction

Autonomous agents acting in the real world are often faced with goal-oriented

tasks, which are typically modeled as a Stochastic Shortest Path (SSP) problem.
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(a) Problem setting (b) Experimental setting

Figure 4.1: An illustrative example of a search and rescue problem with goal un-
certainty, showing a motivating problem setting with the initial belief (left) and the
corresponding experimental setting of the problem with a mobile robot and updated
beliefs (right). The question marks indicate potential victim locations and values
denote the robot’s belief. ‘S’ denotes the robot’s start location and ‘G’ is the actual
victim location (goal). The robot updates its belief about the victim locations based
on its observations.

The objective in an SSP is to devise a sequence of actions such that the expected cost

of reaching a known goal state from the start state is minimized [10].

Consider a search and rescue domain (Figure 4.1), a motivating example where

the agent has to devise a cost minimizing path to rescue immobile people from a

building [50, 76]. While the number of victims and the map of the building may be

provided to the agent, only potential victim locations may be known ahead of plan

execution. The unavailability of exact goal states (victim locations) during planning

time prevents the problem from being modeled as a standard SSP. While the exact

goal states may be hard to identify a priori, it is relatively easier to obtain a belief

distribution over possible victim locations, based on sensors or historical occupancy

data of the building. The search and rescue domain is an instance of the optimal

search for stationary targets [34, 107]—a class of problems in which the target’s exact

location is unknown to the agent, but it can observe its current location and determine

whether the target is in the current location. The agent is given well-defined goal

conditions, but has uncertainty about the states that satisfy these goal conditions.
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Knowledge gaps The existing approaches [70, 71] model such problems as a Par-

tially Observable MDP (POMDP) [44]. However, POMDPs are much harder to solve

optimally [72]. The partially observable SSPs (POSSPs) extend the SSP framework to

settings with partially observable states, offering a class of indefinite-horizon, undis-

counted POMDPs that rely on state-based termination [73]. Other relevant POMDP

variants are the mixed observable MDPs [71] that model problems with both fully

observable and partially observable state factors, and the goal POMDPs [13] that are

goal-oriented POMDPs with no discounting. These models are solved using POMDP

solvers and are difficult to solve optimally. They also suffer from limited scalabil-

ity due to their computational complexity [72]. Another related line of work is the

transition-uncertain MDPs [20] which can capture the uncertainty in transitioning

to the goal states. However, solving MDPs with imprecise transitions optimally is

non-trivial. The objective is to efficiently solve problems with goal uncertainty by

leveraging the fully observable components of the problem.

Overview of contributions This chapter presents goal uncertain SSP (GUSSP),

a framework specifically designed to model problems with imperfect goal information

by allowing for a probabilistic distribution over possible goals. GUSSPs fit well with

many real-world settings where it is easier and more realistic to have belief over goal

configurations, rather than exact knowledge about the goal states. The observation

function in a GUSSP facilitates the reduction to an SSP, enabling the computation

of tractable and optimal solutions. The focus is on settings where the goals do not

change over time. It is assumed that there exists a unique observation that allows

the agent to accurately identify a goal when it reaches one. Two solution approaches

are presented to solve GUSSP: a heuristic approach and a determinization approach.

The key contributions in this chapter are: (1) a formal definition of GUSSP and

its theoretical properties; (2) a domain-independent, admissible heuristic that can
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accelerate probabilistic planners; (3) a determinization approach for solving GUSSP;

and (4) empirical evaluation on three domains in simulation and on a mobile robot.

4.2 Goal Uncertain Stochastic Shortest Path (GUSSP)

A goal uncertain stochastic shortest path (GUSSP) problem is a generalized frame-

work to model problems with goal uncertainty. A GUSSP is an SSP in which the

agent may not know initially the exact set of goal states (which do not change over

time), and instead can obtain information about the goals via observations during

execution.

Definition 12. A goal uncertain stochastic shortest path problem is a tuple

xX,S,A, T, C, s0, SG, PG,Ω, Oy where

• S,A, T, C, s0, SG denote an underlying SSP with discrete states and actions, and

SG initially unknown to the agent;

• PG Ď S is the set of potential goals such that SG Ď PG;

• X“SˆG is the set of states in the GUSSP with G“2PGztHu denoting the set

of possible goal configurations;

• Ω is a finite set of observations corresponding to the goal configurations, Ω “ G;

and

• O :A ˆ X ˆ Ω Ñ r0, 1s is the observation function denoting the probability of

receiving an observation, ωPΩ, given action a P A led to state x1 with probability

Opa, x1, ωq ” Prpω|a, x1q.

Each state is represented by x “ xs, gy, with s P S and g P G. GUSSPs have

mixed observable state components as s is fully observable. Each g PG represents a

goal configuration (set of states), thus permitting multiple true goals in the model,

|SG| ě 1. Every action in each state produces an observation, ω PΩ, which is a goal
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Figure 4.2: A dynamic Bayesian network describing a GUSSP.

configuration and thus provides information about the true goals. The agent’s belief

about its current state is denoted by bpxq, with x“ xs, gy; that is, the belief about

g“SG. The initial belief is denoted by b0xs0, gyP r0, 1s, @g P G, where s0 is the start

state of the SSP.

The process terminates when the agent reaches a state x with bpxq“1 and sP g.

SSPs are therefore a special type of GUSSPs with a collapsed initial belief over the

goals. Figure 4.2 shows a part of the network representation for a GUSSP. As in

a (PO)SSP, the following assumptions are made in a GUSSP: (1) the existence of

a proper policy with finite cost, (2) all improper policies have infinite cost, and (3)

termination is perfectly recognized.

Observation Function In a GUSSP, an observation function is characterized by

two properties. First, to perfectly recognize termination, all potential goals are char-

acterized by a unique belief-collapsing (when the belief over a state is either 1 or 0)

observation. That is, at potential goal states, if s1 P g1, then @a P A:

Opa, x1, ωq “

$

’

’

&

’

’

%

1 if g1 “ ω

0 otherwise.

(4.1)

Second, the observation function is myopic, providing information only about

the current state or the potential goals in the immediate vicinity. This assumption
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is motivated by real-world settings with limited range sensors, and the exploration

and navigation approaches for robots that acknowledge the perceptual limitations

of robots [11]. The landmark states, Ls, provide accurate information about certain

potential goals. Each s PLs provides observations about a subset of potential goals

in the vicinity with Ωs denoting the corresponding set of observations. Each ω P

Ωs provides information about the maximal set of potential goals in the vicinity.

Other non-potential goal states, s1 R Ls, provide no information about the true goals.

Therefore, the observation at non-potential goal states is @a P A:

Opa, x1, ωq“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1 if s1 P Ls^ ω Ď g1 ^ ωPΩs1

0 if s1 P Ls^ ω Ę g1 ^ ωPΩs1

1
|Ω|

if s1 R Ls

,

with x“xs, gy and x1“xs1, g1y. The potential goals along with the landmark states are

called informative states, I“PG YLs, since they provide information about the true

goals through deterministic observations. Thus, the observation function discussed

above satisfies the minimum information required for state-based termination. The

next section discusses a more general setting where every state may have a noisy

observation regarding the true goals.

Belief Update A belief b is a probability distribution over X, bpxq P r0, 1s, @x P X

and
ř

xPX bpxq “ 1. The set of all reachable beliefs forms the belief space B Ď ∆n,

where ∆n is the standard pn 1́q-simplex. The agent updates the belief b1PB, given an

action a P A, an observation ω P Ω, and the current belief b. Using the multiplication

rule, the updated belief for x1“xs1, g1y is calculated as:

51



b1px1|b, a, ωq “ Prpg1|b, a, ω, s1qPrps1|b, a, ω, sq

“ Prpg1|b, a, ω, s1qT ps, a, s1q (4.2)

Prpg1|b, a, ω, s1q “ ηPrpω|b, a, s1, g1qPrpg1|b, a, s1q

“ ηOpa, x1, ωq
ÿ

gPG

Prpg1, g|b, a, s1q

“ ηOpa, x1, ωqPrpg|b, a, s1q

“ ηOpa, x1, ωqbpgq, (4.3)

where η “ Prpω|b, a, s1q´1 is a normalization constant. Substituting Equation 4.3 in

4.2:

b1px1|b, a, ωq “ ηOpa, x1, ωqbpgqT ps, a, s1q. (4.4)

Policy and Value The agent’s objective in a GUSSP is to minimize the expected

cost of reaching a goal, minπPΠ E
”

řh
t“0Cpxt, atq

ˇ

ˇ

ˇ
π
ı

, where xt and at denote the agent’s

state and action at time t respectively, and h P N denotes the horizon. A policy

π :BÑ A is a mapping from belief b P B to an action a P A. The value function for

a belief, V :B ÑR is the expected cost for a fixed policy π and a horizon h. The

Bellman optimality equation for GUSSPs follows from POMDPs:

V pbq “ min
aPA

“

Cpb, aq `
ÿ

ωPΩ

Prpω|b, aqV pb1aωq
‰

,

where b1aω is the updated belief following Equation (4.4), Cpb, aq “
ř

x bpxqCpx, aq,

x“ xs, gy, and x1“ xs1, g1y. A proper policy, π, in a GUSSP guarantees termination

in a finite expected number of steps, V πpb0q ă 8.

Order-k policy The number of potential goals with non-zero belief values indicate

the degree of uncertainty over goals. The problem setting and the optimal policy

determine when the belief values collapse to the true goals. When deploying systems

in real-world settings with goal uncertainty, it is useful to understand the problem
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complexity for policy execution. This is measured by the maximum number of unique

visits to informative states that may be required before a true goal is discovered by

the agent.

Definition 13. A GUSSP policy π is of order-k if there are at most k unique visits

to informative states before a true goal is reached following π.

For state-based termination, 1 ď k ď |PG|. Unique visits are considered since no

new information is obtained thereafter. For example, consider a search and rescue

domain in which the agent searches for victims in a corridor with the start state

on one end and followed by a series of potential goals. If the first potential goal

location is a true goal, then the agent visits only one potential goal before the true

goal is discovered, following the optimal policy. This property is beneficial especially

in environments with landmark states that reveal the true goals, thus minimizing the

need to visit the potential goals specifically to determine the true goals.

4.3 Theoretical Analysis

The observation function in a GUSSP determines the number of reachable beliefs.

This section begins with an analysis of how the number of beliefs may grow in the

more general (non-myopic observation) setting and then show that a GUSSP with

myopic observations has finite reachable beliefs.

In a GUSSP with non-myopic observations, the nonpotential goal states, @s R

Ls Y PG, provide stochastic observations about the true goals, resulting in infinitely

many reachable beliefs. While this is a trivial fact, it is useful to understand the

growth in complexity of the problem and it provides an important link to POMDPs

via the belief-MDP. The following proposition formally proves this complexity.

Proposition 14. For all horizon hą0, the belief-MDP of a GUSSP with non-myopic

observations may have Op|Ω|hq states.
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Proof. By construction, a GUSSP with non-myopic observations is mapped to a belief-

MDP xB,A, τ, ρy with a horizon h [44]. Let Rpb0q denote the set of reachable beliefs

in the GUSSP. The set of states in the MDP is the set of reachable beliefs from b0 in

the GUSSP, B “ Rpb0q. The set of actions in the GUSSP are retained in the MDP,

A“ A. The cost function ρpb, aq “
ř

xPX bpxqCpx, aq, where Cpx, aq corresponds to

cost function in GUSSP. The transition function for the belief-MDP is the probability

of executing action a P A in belief state b P B and reaching the reaching belief b1, and

denoted by τpb, a, b1q, is:

τpb, a, b1q “
ÿ

ωPΩ

Prpb1, ω|b, aq

“
ÿ

ωPΩ

Prpb1|b, a, ωqPrpω|b, aq

“
ÿ

ωPΩ

Prpω|b, aqrb1 “ b1aωs,

with Iversen bracket r¨s and b1aω denoting the updated belief calculated using Equa-

tion (4.4), after executing action a and receiving observation ω. The probability of

receiving ω is:

Prpω|b, aq “
ÿ

x1PX

Prpω, x1|b, aq

“
ÿ

x1PX

Opa, x1, ωq
ÿ

xPX

T ps, a, s1qbpg1q,

with x “ xs, gy and x1 “ xs1, g1y. Since |S| in the GUSSP is finite, a finite set of

reachable beliefs in the GUSSP results in a finite set of reachable states in the belief-

MDP. This is a tree of depth h with internal nodes for decisions and transitions, the

branching factor is Op|Ω|q for each horizon, h [72]. Therefore, the total number of

reachable beliefs in the GUSSP is Op|Ω|hq, and thus the resulting belief-MDP may

have Op|Ω|hq distinct reachable states.
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In the worst case, the observation function may be unconstrained and all the

beliefs may be unique. Since there is no discounting in a GUSSP and the horizon is

unknown a priori, GUSSPs may have infinitely many beliefs and their complexity class

may be undecidable in the worst case [65]. Hence, solving GUSSPs with non-myopic

observations optimally is computationally intractable.

The following proposition proves that a myopic observation function results in a

finite number of reachable beliefs in a GUSSP.

Proposition 15. A GUSSP with myopic observation function has a finite number of

reachable beliefs.

Proof. By definition, a myopic observation function produces either belief-collapsing

observations or no information at all. For each case, the updated belief for the

goal configurations is calculated using Equation (4.3). Therefore, @x1 P X with

x1 “ xs1, g1y:

b1pg1q“
Opa, x1, ωq bpgq

ř

x1 Opa, x1, ωqbpgq
.

Case 1: Belief-collapsing observation. When Opa, x1, ωq “ 0, the updated belief is

b1pg1q“0. When Opa, x1, ωq“1, the updated belief is b1pg1q“1.

Case 2: No information. When the observation provides no information, @a P A,

Opa, x1, ωq“1{|Ω|. Then,

b1pg1q “
bpgq{|Ω|

ř

x1 bpgq{|Ω|
“ bpgq.

Thus, @g PG, a myopic observation function produces collapsed belief or retains the

same belief, resulting in a finite number of reachable beliefs for a goal configuration.

Since |S| is finite, the belief update following Equation (4.4) would result in finite

number of reachable beliefs for a GUSSP.
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Hence, a myopic observation function weakly monotonically collapses beliefs, al-

lowing the problem to be simplified further. The following proposition shows that a

GUSSP reduces to an SSP, similar to the mapping from a POMDP to belief-MDP [44].

Proposition 16. A GUSSP reduces to an SSP.

Proof. A GUSSP is mapped to a belief-MDP xB,A, τ, ρy with a horizon h [44], as

in Proposition 14. By Proposition 15, a GUSSP with myopic observation function

has a finite number of reachable beliefs and therefore, finite states in the belief-MDP.

By construction, this belief-MDP is an SSP with the start state s̄0“ b
0 and the goal

states, S̄G, are the set of states with b̄pxq“1 such that b̄pgq“1 and sPg. Since there

exists a proper policy in a GUSSP, the policy in this SSP is proper by construction.

Thus, a GUSSP with myopic observation function reduces to an SSP.

The reduction to an SSP facilitates solving GUSSPs using the existing rich suite

of SSP algorithms. For ease of reference and clarity, the above-mentioned SSP is

referred to as compiled-SSP in the rest of this chapter. The order-k of π˚ for a

GUSSP (compiled-SSP) can be calculated using a directed graph constructed using

π˚. The following proposition shows that computing order-k is polynomial.

Proposition 17. The worst case complexity for computing order-k for π˚ is Op|PG|p|V |`

|E|qq, where V and E denote the vertices and edges of the corresponding directed

graph.

Proof Sketch. To calculate order-k for π˚, let us first construct a directed graph, Z,

using π˚ such that V “ I Y ts0u and the trajectories between them are the edges,

E. Let us set a potential goal to be the goal and introduce additional (artificial)

edges from it to the informative states. This is followed by computing the strongly

connected components, using depth first search that takes Op|V |` |E|q, which are

then condensed to form a directed acyclic graph Z 1 “ pV 1, E 1q. Starting from the

goal in Z 1 and traversing backwards, the k value of the goal state is initialized to 1
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and propagated to its (unvisited) neighbors. At each vertex, k is increased to be the

sum of informative states in the condensed vertex and the incoming value from the

neighbor. This continues until all vertices in Z 1 have been visited and the start state

is updated with the maximum k. This process may be repeated with every potential

goal as the goal and the overall maximum k is the order of the policy. Thus, the

worst case complexity is Op|PG|p|V | ` |E|qq.

Relation to Goal-POMDPs

The Goal-POMDP [13] models a class of goal-based and shortest-path POMDPs

with positive action costs and no discounting. The set of target (or goal) states, P̄

have unique belief-collapsing observations. Hence, a Goal-POMDP is a GUSSP when

the partial observability is restricted to goals, the observations set is 2P̄ ztHu, and

observation function is myopic.

Proposition 18. GUSSP Ă Goal-POMDP.

The observations in a Goal-POMDP are not constrained and may result in in-

finitely many reachable beliefs (Proposition 14). This makes it computationally chal-

lenging to compute optimal policies [72], unlike GUSSPs which are more tractable

can be solved optimally (Proposition 16).

GUSSP with Deterministic Transitions

A GUSSP with deterministic transitions presents an opportunity for further re-

duction in complexity.

Proposition 19. The optimal policy for a GUSSP with myopic observations and

deterministic transitions is the minimum arborescence of a weighted and directed graph

Z.

Proof. Consider a GUSSP with deterministic transitions and a dummy start state,

r, that transitions to the actual start state with probability 1 and zero cost. This
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can be represented as a directed and weighted graph, Z “ pV,E,wq, such that V “

tru Y tx P X|x“xs, gy ^ s PPGu; that is, the start state and the potential goals are

the vertices. Each edge e PE denotes a trajectory in the GUSSP between vertices.

The proper policy in a GUSSP ensures that there is at least one edge between each

pair of vertices. The weight of an edge connecting x, y PV is wpeq“dpx, yqp1´bpyqq,

with dpx, yq denoting the cost of the trajectory and bpyq is the belief over y being a

goal. The minimum arborescence (directed minimum spanning tree) of this graph,

A, contains trajectories such that the total weight is minimized, minAPAwpAq with

wpAq “
ř

ePAwpeq. By construction, this gives the optimal order of visiting the

potential goals and hence the optimal policy for the GUSSP with V ˚ps0q“wpAq.

4.4 Solving Compiled-SSPs

Two solution approaches are proposed to solve compiled-SSP: (1) an admissible

heuristic for SSP solvers that accounts for the goal uncertainty and (2) a determinization-

based approach for solving the compiled-SSP.

4.4.1 Admissible Heuristic

In heuristic search-based SSP solvers, the heuristic function helps avoid visiting

states that are provably irrelevant. An efficient heuristic for solving the compiled-SSP

guides the search by accounting for the goal uncertainty. A simple heuristic, hpg for

the compiled-SSP that accounts for goal uncertainty is presented below:

hpgpxq fi min
gPG

´

p1´ bpgqq min
iPg

dpx, iq
¯

where dpx, iq denotes the cost of the shortest trajectory to the potential goal i from

state x in the compiled-SSP and bpgq is the agent’s belief of g being a true goal.

Multiplying by the probability of a state not being a goal (1 ´ bpgq) breaks ties in
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favor of configurations with a higher probability of being a goal, with a lower heuristic

value. The following proposition shows that the proposed heuristic is admissible.

Proposition 20. hpg is an admissible heuristic.

Proof. To show that hpg is admissible, it is important to first show that miniPg dpx, iq

is an admissible estimate of the expected cost of reaching a goal configuration g

from state x. Let d˚px, gq be the expected cost of reaching g from state x. Since

dpx, gq is the cost of the shortest trajectory to g from x, dpx, gq ď d˚px, gq. If all

paths exist from x to all potential goal states i P g, then by definition, the shortest

trajectory to a goal configuration is the minimum distance to a potential goal in g.

That is, dpx, gq“miniPg dpx, iq and therefore miniPg dpx, iqďd
˚px, gq. Multiplying this

value by the belief and using the minimum value over all possible goal configurations

guarantees that hpg is an admissible estimate of the expected cost reaching a true

goal configuration.

4.4.2 Determinization

Determinization is a popular approach for solving large SSPs as it simplifies the

problem by replacing the probabilistic outcomes of an action with a single determin-

istic outcome [97, 118]. Determinization can be extended to a GUSSP by ignoring the

uncertainty over the goals. A potential goal state is determinized—the agent treats it

as the true goal and plans an optimal policy to reach it. Determinizing the potential

goal reduces the problem to a standard SSP. During execution, if the determinized

goal is not a true goal, the agent replans for another unvisited potential goal. This

approximation scheme offers considerable speedup over solving the compiled-SSP.

Two determinization approaches are considered: (1) most-likely goal determiniza-

tion (DET-MLG) and (2) closest-goal determinization (DET-CG). In the DET-MLG,

the most-likely goal is determinized, based on its current belief. In DET-CG, the
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agent determinizes the closest goal based on the heuristic distance to the potential

goal (with non-zero belief) from its current state. Ties are resolved randomly.

4.5 Experimental Results

In this section, different approximate solution techniques for solving the compiled-

SSP are compared on three domains in simulation. In addition, the model is tested

on a real robot with three different initial belief settings, which shows how the initial

belief distribution affects agent behavior.

4.5.1 Evaluation in Simulation

Experiments are conducted on three domains to evaluate the solution techniques

in handling (1) location-based goal uncertainty (planetary rover domain, search and

rescue domain) and (2) temporal goal uncertainty (electric vehicle (EV) charging

problem using real-world data). The expected cost of reaching the goal and run time

(in seconds) are used as evaluation metrics. A uniform initial belief is considered for

all the domains in these experiments. The compiled-SSPs are solved optimally using

LAO* [35], and approximately using FLARES, a domain-independent state-of-the-art

algorithm for solving large SSPs using horizon=1 [77], as well as the two determiniza-

tion methods. A residual error value of ε“10´3 is used as convergence criteria for the

algorithms. The hmin heuristic, which is a popular heuristic in planning literature is

computed using a labeled version of LRTA* [12], is used as a baseline for evaluating

hpg. All the results are averaged over 100 trials of planning and execution simula-

tions, and the average times include the time spent on re-planning. Standard errors

are reported for expected cost. The experiments were conducted for the following

domains on an Intel Xeon 3.10 GHz computer with 16GB of RAM.
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4.5.1.1 Domains

Planetary Rover This domain models the rover science exploration [124, 71] that

explores an environment described by a known map to collect a mineral sample. There

are n sample locations, |PG| “ n, and the samples at each of these locations may be

‘good’ or ‘bad’. The rover knows its own position (x, y) coordinates exactly, as well

as those of the samples but does not know which samples are ‘good’. The process

terminates upon collecting a ‘good’ sample. The actions include moving in all four

directions, which succeed with a probability of 0.8, and a ‘sample’ action which is

deterministic. The ‘sample’ action costs `2 if the mineral is good and `10 otherwise;

all other actions cost `1.

Search and Rescue In this domain, an agent explores an environment described

by a known map to find victims [76]. The problem is modified such that there are

m victims locations and n total victims. The agent is aware of the potential victim

locations and each location may or may not have victims. The exact locations of the

victims are unknown to the agent a priori. The objective is to minimize the expected

cost of saving all victims. The state factors include the agent’s current location and a

counter to indicate the number of victims saved so far. The observations indicate the

presence of victims in each state. The actions include moving in all four directions

and a ‘save’ action that saves all the victims in a state. The move actions cost `1

and are stochastic, succeeding with 0.8 probability. The ‘save’ action is deterministic

and costs `2.

Electric Vehicle Charging In this domain, an electric vehicle (EV), operating in

a vehicle-to-grid setting [97], can charge and discharge energy from a smart grid. The

objective is to devise a policy that is consistent with the owner’s preferences, while

minimizing the operational cost of the vehicle. The problem is modified such that

parking duration of the EV is uncertain with H denoting the horizon. The potential
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LAO* Flares-hmin Flares-hpg Det-MLG Det-CG

Problem Instance Cost Time Cost Time Cost Time Cost Time Cost Time

rover (20,6) 28.25 14.99 35.35 ˘ 2.67 1.08 30.34 ˘ 2.37 0.17 36.71 ˘ 2.62 0.07 45.51 ˘ 3.22 0.06

rover (20,7) 42.16 30.19 43.49 ˘ 1.62 1.17 45.07 ˘ 1.77 0.83 49.69 ˘ 1.91 0.02 48.36 ˘ 1.43 0.03

rover (30,8) 36.96 190.92 38.21 ˘ 1.83 2.27 41.31 ˘ 1.97 0.16 38.54 ˘ 1.54 0.02 40.34 ˘ 1.82 0.03

rover (30,9) 34.72 832.56 38.21 ˘ 2.54 7.56 43.32 ˘ 2.54 1.73 50.27 ˘ 2.58 0.88 49.49 ˘ 1.97 0.45

search (20,4) 87.63 15.78 94.32 ˘ 0.58 1.45 93.32 ˘ 0.58 0.98 91.22 ˘ 0.67 1.05 90.42 ˘ 0.61 0.86

search (20,5) 74.61 14.42 83.83 ˘ 0.56 2.99 81.91 ˘ 0.56 1.93 78.32 ˘ 0.56 1.98 79.74 ˘ 6.37 0.98

search (20,5) 86.72 63.71 94.21 ˘ 0.79 6.21 91.18 ˘ 1.46 1.93 87.74 ˘ 0.65 0.66 89.98 ˘ 0.59 1.68

search (30,6) 90.89 267.35 94.21 ˘ 1.35 117.63 103.77 ˘ 3.42 21.07 101.67 ˘ 1.61 12.68 92.94 ˘ 0.68 19.50

ev (-,5) 2.34 8.16 3.29 ˘ 1.55 2.21 4.89 ˘ 1.36 0.92 5.15 ˘ 1.46 0.52 7.17 ˘ 1.43 0.62

ev (-,6) 3.46 10.79 4.89 ˘ 1.96 2.25 5.96 ˘ 1.96 1.14 7.15 ˘ 2.46 0.88 8.17 ˘ 1.43 0.79

Table 4.1: Comparisons of average cost, along with standard error, and planning
time (seconds) of different solution approaches. Bold titles indicate our proposed
techniques.

goals in this problem are the possible departure times. The EV can fully observe its

current charge level and the time step. In our experiments, PG“tH,H ´ 1, .., H´nu

and |PG|“n. Each t is equivalent to 30 minutes in real time. If the EV’s exit charge

level does not meet the owner’s desired exit charge level, a penalty is incurred.

The battery capacity and the charge speeds for the EV are based on Nissan Leaf

configuration and the action costs and peak hours are based on real data [26]. The

charge levels and entry time data are based on charging schedules of electric cars over

a four month duration in 2017 from a university campus. The data is clustered based

on the entry and exit charges, and we selected 25 representative problem instances

across clusters for our experiments.

4.5.1.2 Results and Discussion

Table 4.1 shows the results of the five techniques on various problem instances, in

terms of cost and runtime(s) respectively. The grid size and the number of potential

goals for each problem are indicated in parenthesis in the table. The results are

averaged over 100 trials and standard errors are reported for the expected cost. The

results for the EV domain are averaged over 25 problem instances. Experiments were
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Figure 4.3: Demonstration of the path taken by the robot with three different initial
beliefs for the map in Figure 4.1. The start state and the true goal state are denoted
by ‘S’ and ‘G’, respectively. The other potential goals are denoted by the question
mark symbol. Green, blue, and red show the path taken by the robot with 0.1, 0.25,
and 0.9 as the initial belief for the true goal state and equal probability for other
potential goal states.

conducted with no landmark states to demonstrate the performance in the worst case

setting. In terms of expected costs, the performance of the approximate techniques

are comparable. The run times for solving the problems optimally, however, scales

rapidly as the number of potential goals increases. The advantage of using FLARES

with hpg and the determinization techniques are more evident in the runtime savings.

FLARES using our heuristic hpg is significantly faster than using the baseline hmin

heuristic. Both the determinization techniques are faster than solving the problem

using FLARES.

4.5.2 Evaluation on a mobile robot

The robot experiment aims to visually explain how the belief distribution alters

the robot’s trajectory, apart from the comparison using an abstract notion of cost.

Figure 4.3 shows the results in a ROS simulation and on a Kobuki robot for a simple

search and rescue problem with one agent and four potential victim locations for the

map shown in Figure 4.1. Three different initial beliefs are tested: uniform, optimistic,

and pessimistic. The corresponding belief of the true goal, G, in each belief setting

is: 0.25, 0.9, and 0.1, with the other potential goals having equal probability. For

each setting, the policy is computed offline and the robot updates its belief online.
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The order-k of the optimal policy with respect to the true goal in each belief setting

is 4, due to stochastic transitions. The order-k for the optimal policies of the GUSSP

with deterministic transitions for this problem are: 3, 1, and 4, corresponding to the

three initial beliefs.

4.6 Summary

The goal uncertain SSP (GUSSP) provides a natural model for representing the

known unknowns about goal states in problems where it is non-trivial to identify the

exact goals ahead of plan execution. While a general GUSSP could be intractable, sev-

eral tractable classes of GUSSPs are identified in Section 4.3 and effective approaches

for solving them are proposed. Specifically, a GUSSP with a myopic observation func-

tion reduces to an SSP, allowing us to efficiently solve it using existing SSP solvers.

To solve the compiled-SSP, an admissible heuristic that accounts for goal uncertainty

in its estimation is proposed. In addition, a determinization-based approach to solve

GUSSP is also presented in Section 4.4. The empirical results show that GUSSPs can

be solved efficiently using scalable algorithms that do not rely on POMDP solvers.
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CHAPTER 5

NEGATIVE SIDE EFFECTS

The previous chapters considered settings in which the agent is aware of the model

imprecision, either because it simplified the model to accelerate planning or because

the model included information to indicate uncertainty over missing details. In many

scenarios, however, the agent has no prior knowledge about which aspects of the

environment are unmodeled.

This chapter focuses on the potential undesirable impacts of planning with impre-

cise models in settings where the agent is unaware of the model imprecision. Specif-

ically, the agent’s model is assumed to include all the details in the environment

required to complete its assigned task (or goal) but other details in the environment

are ignored. As a result, the agent’s actions may have negative side effects, which are

undesirable, unmodeled effects of agent actions on the environment [93, 99]. Negative

side effects are inherently challenging to identify at design time, and may affect the

reliability, usability and safety of the system.

Chapter outline. The chapter begins by motivating the problem in Section 5.1.

Section 5.2 formally defines negative side effects of agent actions. Section 5.3 identifies

key characteristics of negative side effects. Section 5.4 presents results from our user

study to understand how users respond to negative side effects of AI systems. Finally,

Section 5.5 highlights the challenges in avoiding negative side effects.
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5.1 Introduction

Deploying AI systems requires complex design choices to support safe operation

in the open world. During the design and initial testing, the system designer typi-

cally ensures that the agent’s model includes all the necessary details relevant to its

assigned task. Inevitably, some details in the environment that are unrelated to the

agent’s primary objective may be ignored. The incompleteness of any given model—

handcrafted or machine acquired—is inevitable due to practical limitations in model

specification (the ramification and qualification problems) [21], and limited informa-

tion that may be available during the design phase [95], including unanticipated do-

main characteristics and cultural differences among the target user and development

team [99]. Due to the limited fidelity of its model, an agent’s actions may produce

negative side effects (NSE) [3, 37, 92, 98, 99]. Negative side effects are undesired,

unmodeled effects of an agent’s actions that occur in addition to the agent’s intended

effects when operating in the open world (Figure 5.1).

Figure 5.1: Negative side effects of an agent’s behavior.

For example, consider an autonomous vehicle (AV) that was carefully designed

and tested for safety aspects such as yielding to pedestrians and conforming to traffic

rules. When deployed, the AV may not slow down when driving through puddles and

splash water on nearby pedestrians. Another documented example of undesirable

behavior in AVs is the vehicle swerving left and right multiple times to localize itself
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for active lane-keeping. During this process, the vehicle rarely prompted the driver

to take control [42]. This behavior, especially on curvy and hilly roads, can startle

the driver or cause panic.

Undesirable behaviors may occur even when performing relatively simple tasks.

For example, robot vacuum cleaners are becoming increasingly popular and they have

a simple task—to remove dirt from the floor. A robot vacuum cleaner in Florida ran

over animal feces in the house and continued its cleaning cycle, smearing the mess

around the house [106]. In an extreme case in South Korea, a robot vacuum cleaner

locked into the hair of a woman who was sleeping on the floor, mistaking her hair for

dust [67].

In these examples, the agent was performing its task, perhaps optimally with

respect to the information provided to it, but there were serious negative side effects

to the agent’s actions. Design decisions that may be innocuous during initial testing

may have a significant impact when a system is widely deployed. For example, the

issue of a Roomba locking into the hair of a person lying on the floor emerged only

after the system was deployed in Asia. In practice, it is not feasible to anticipate

all possible negative side effects and accurately encode them in the model at design

time. As a result, side effects are often discovered after the system is deployed.

Negative side effects occur because the agent’s model and objective function focus

on some aspects of the environment but its operation could impact additional aspects

of the environment. The value alignment problem studies the unsafe behavior of an

agent when its objective does not align with human values [33, 86, 87]. Misaligned

systems are more likely to produce negative side effects. However, the occurrence

of negative side effects does not necessarily indicate that there is a value alignment

problem. Negative side effects can occur even in settings where the agent optimizes

legitimate objectives that align with the user’s goals, due to incomplete knowledge and

distributional shift. For example, while driving in Boston, AVs that are programmed
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to not run into obstacles were stopped by the local breed of unflappable seagulls

standing on the street [18]. Not running into obstacles is well-aligned with the users’

intentions and objectives, but there are side effects because the agent lacks knowledge

that it can edge to startle the birds and then continue driving. In fact, such knowledge

was later added to the system to resolve the problem. In addition, some systems may

cause unavoidable negative side effects that cannot be mitigated. While the side

effects may be undesirable, the user may accept the system as is, once they learn

about it and recognize that the side effects are unavoidable. In such cases, we cannot

say that there is a value alignment problem, even though the negative side effects

may occur.

Knowledge gaps Identifying and overcoming the negative side effects of agent

actions is a nascent, but fast emerging field that is attracting increased attention

within the AI community [3, 32, 37, 56, 86, 92, 104, 113, 122]. However, there exists

no formal definition of negative side effects of agent actions and its characteristics.

Further, there are no published reports on how users respond to NSE, their willingness

to tolerate NSE, and how side effects affect their trust in the AI system. These factors

are critical in evaluating existing solutions and developing new approaches that are

realistic and deployable in the real-world.

Overview of contributions The primary contributions in this chapter are: (1)

a formal definition of negative side effects of agent actions; (2) identifying the key

characteristics of negative side effects; (3) presenting results from our user study

conducted specifically to understand user attitudes towards negative side effects; and

(4) a discussion of the inherent challenges in avoiding negative side effects.
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5.2 Definition of Negative Side Effects

Consider an environment E in which an agent reasons using its acquired model—a

Markov decision process (MDP) M̃“xS̃, Ã, T̃ , R̃y. The agent’s state space is denoted

by S̃, its action space by Ã, transition function by T̃ , and its reward function by

R̃. The agent’s model M̃ includes a single objective, which is its primary task,

and all the components necessary to complete this primary task. A factored state

representation is considered. A primary policy is an optimal policy for M̃ , optimizing

the agent’s primary objective defined by R̃. Executing a primary policy may produce

negative side effects (NSE) in some states since it only optimizes the primary task.

It is assumed that there exists a function that determines the probability of NSE

occurrence associated with an agent trajectory in an environment.

Definition 21. Let ζ “ tps1, a1q, . . . , psn, anqu, n ě 1, be a finite trajectory of an

agent operating in an environment E P E, with E denoting a finite set of environment

configurations. Let Z denote the set of possible trajectories in E. A negative side

effect is an event that occurs when the agent executes certain trajectories in an envi-

ronment, with probability determined by a function N : Z ˆ E Ñ r0, 1s where Npζ, Eq

denotes the probability of negative side effects occurring when the agent follows a

trajectory ζ P Z in environment E P E.

When |ζ| “ 1, such as ζ “ tps1, a1qu, Npζ, Eq denotes the immediate, Markovian

negative side effects of an agent’s action. States in which an agent’s actions have

immediate NSE are called susceptible states. The severity of NSE may range from

tolerable events to severe impacts, depending on the agent’s primary task and the

environment in which it is situated. In general, a user can estimate N by observing the

agent behavior and its consequences. Tolerance to NSE and the associated penalty

are user-specific. Let θ P Θ denote user tolerance parameter for NSE in a given

environment, where Θ denotes the discrete set of values θ can take.
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Definition 22. The penalty for negative side effects is defined by RN,θ : Z ˆ E Ñ

R, with θ denoting user tolerance parameter and RN,θpζ, Eq denoting the penalty

associated with trajectory ζ P Z in environment E P E.

Since NSE occurrence depends on the environment and the penalty depends on

user tolerance, it is challenging to accurately specify details about NSE during system

design. Further, the designer may inadvertently omit details that are unrelated to

the primary task. As a result, the agent often does not have prior knowledge about

the side effects of its actions and therefore does not have the ability to minimize

NSE. When the agent learns the penalty for NSE from a single user and optimizes

its performance based on their preferences and tolerance, the parameter θ is dropped

and the penalty is denoted simply as RN . The side effects may be avoidable or

unavoidable by the agent, when it is performing its assigned task.

Definition 23. Negative side effects are avoidable in an environment E if there

exists a policy π̃ to complete agent’s assigned task such that Npζ, Eq “ 0, @ζ „ π̃, and

unavoidable otherwise.

5.3 Taxonomy of Negative Side Effects

This section introduces a taxonomy of negative side effects, outlined in Table 5.1.

Understanding the characteristics of negative side effects helps design better solution

approaches to detect and mitigate their impacts in deployed systems.

Severity The severity of negative side effects ranges from mild side effects that can

be largely ignored to severe impacts that require suspension of the system deployment.

Safety-critical side effects, such as an AV failing to detect a construction worker’s

hand gestures [19], are typically addressed by redesigning the model and hence require

extensive evaluation before redeployment. I conjecture that many negative side effects

lie in the middle with significant impacts that require attention, but not sufficiently
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Property Property Values

Severity Ranges from mild to safety-critical

Reversibility Reversible or irreversible

Avoidability Avoidable or unavoidable

Frequency Common or rare

Stochasticity Deterministic or probabilistic

Observability Full, partial, or unobserved

Exclusivity Prevent task completion or not

Table 5.1: Taxonomy of negative side effects.

critical to suspend the service. An autonomous vehicle that does not slow down

when going through shallow puddles can cause significant impacts, but those are

unlikely to be considered sufficiently critical to roll-back its deployment, particularly

if mechanisms are provided to mitigate the negative impacts.

Reversibility Side effects are reversible if the impact can be reversed or negated,

either by the agent causing it or via external intervention. For example, breaking a

vase is an irreversible side effect, regardless of the agent’s skills [3]. Side effects such

as leaving marks on a wall can be fixed by repainting it, but the agent may require

external assistance for it.

Avoidability In some problems, it may be impossible to avoid the negative side

effects during the course of the agent’s operation to complete its assigned task. This

introduces a trade-off between performing agent’s assigned task and avoiding the side

effects. For example, the side effects of driving through puddles are unavoidable

if all roads leading to the destination have puddles. Addressing unavoidable NSE

requires a principled approach to balance the trade-off between avoiding side effects

and optimizing the completion of the assigned task.
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Frequency The frequency of occurrence of negative side effects depends on the

environmental conditions and the action plan. Certain NSE may occur rarely, con-

sidering all use cases, but may occur frequently for a small subset of cases. A robot

pushing a box over a rug may dirty it as a negative side effect. This is an example of a

frequently occurring negative side effect when the domain of operation is largely cov-

ered with a rug. The frequency of occurrence impacts the choice of solution approach

to identify negative side effects and the corresponding mitigation approach.

Stochasticity The occurrence of negative side effects may be deterministic or

probabilistic. Deterministic NSE always occur when some action preconditions arise

in the open world. Side effects are probabilistic when their occurrence is not certain

even when the right preconditions arise. For example, there may be a small probability

that a robot may accidentally slide and scratch the wall while pushing a box, but

that undesired effect may happen only 10% of the times the robot slips. Solution

approaches designed to handle deterministic side effects can often be extended to

stochastic settings, and vice versa, with minor modifications.

Observability The agent’s observability of the actual NSE or the conditions that

trigger them are generally determined by the agent’s state representation and sensory

input. Side effects may be fully observable, partially observable, or even unobserved

by the agent. Observing a side effect is different from identifying or recognizing the

impact as a side effect. For example, the agent may observe the scratch it made on

the wall but may not be aware that it is undesirable, and as a result may not try

to avoid it. Observability is a critical factor when learning to avoid NSE. When an

external authority provides feedback to the agent, it may be sufficient for the agent to

observe the conditions that trigger the negative side effect. However, when an agent

may need to identify NSE on its own, it needs more complex general knowledge about

its environment.
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Exclusivity Negative side effects may prevent the agent from completing its as-

signed task. This category is relatively easier to identify. Often, however, the side

effects negatively impact the environment without preventing the agent from com-

pleting its assigned task. Such side effects are more common in the real-world and

are difficult to identify at design time.

5.4 Understanding User Attitudes Towards NSE

Despite the interest in addressing the negative side effects of AI systems [56, 57,

92, 98, 99, 113, 122], there has been no prior efforts to understand user attitudes

towards NSE.

Inconsistent and unpredictable system behavior, some of which may be unsafe,

affects user trust in the system’s capabilities and operation. In fact, studies show

that users may stop trusting a system after witnessing a mistake, even if the system

outperforms humans in the task [22]. Recently, researchers investigated the effect of

accuracy on user expectations and trust in machine learning models [51, 117]. These

results show that user trust in the system diminishes when the observed accuracy is

lower, regardless of its stated accuracy. User surveys conducted to understand how

users interact with specific systems, such as self-driving cars [41, 59] and autonomous

vacuum cleaners [28], highlight the concerns and promise of these technologies, and

how they are perceived by users from different backgrounds. While these studies

provide a broad overview of user expectations and trust in AI systems, they do not

provide specific insights about the side effects problem.

User tolerance of NSE depends on many factors such as their individual preferences

and the severity of the side effect. When the NSE are safety-critical, it is clear that

users will not tolerate them and system’s operation needs to be suspended to address

the NSE and reevaluate the system performance. In many deployed systems, however,

the impacts of NSE are significant but not catastrophic. How do users respond to
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such side effects? Since this is an emerging topic, a survey conducted specifically to

identify general user attitudes towards NSE is critical to develop effective solutions to

this practical problem. Our user study focused on answering the following questions.

1. To what extent are users willing to tolerate negative side effects that are not

safety-critical?

2. How do negative side effects affect the user’s trust in the system?

3. Are users willing to assist the system in mitigating the impacts of the side

effects—by providing feedback, applying minor changes to the environment, or

specifying regions where the system can operate?

4. Are users willing to tolerate a sub-optimal behavior of the AI system (such as

taking a longer route) in order to avoid negative side effects?

Answering these questions will deepen our understanding of the side effects problem,

and shape future research directions on this topic.

5.4.1 Survey Design

Domains Two IRB-approved surveys were conducted, focusing on NSE in two do-

mains: an autonomous vacuum cleaner (Roomba) and an autonomous vehicle (AV).

The survey considered NSE such as the Roomba spraying water on the wall when

cleaning the floor, the AV driving fast through potholes which results in a bumpy

ride for the users, and the AV slamming the brakes to halt at stop signs which results

in sudden jerks for the passengers.

The Roomba domain represents a setting where the NSE is relatively mild, the

users do not directly experience the NSE, and the system does not require constant

supervision when it is performing its task. The AV domain represents a setting

in which the NSE have moderate impact, the users experience the NSE directly
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(bumpiness or sudden jerk), and users generally supervise the AV performance and

can take control when issues related to safety arise.

Participants 500 participants were recruited on Amazon mechanical turk to com-

plete a pre-survey questionnaire to assess their familiarity with AI systems and fluency

in English. This questionnaire has six questions and takes less than 30 seconds to

complete. All participants were informed about the purpose of the study. Based on

the pre-survey responses, 300 participants aged above 30 were invited to complete

each survey (Roomba and AV). The age criteria was included for selection because

study shows that participants aged above 30 are less likely to game the survey con-

ducted on the Mturk platform [24]. The surveys generally take less than ten minutes

to complete. Responses that were incomplete or with a survey completion time of

less than one minute were discarded. A total of 204 valid responses were received

for the Roomba domain and 183 valid responses were received for the AV domain.

To facilitate a direct comparison between the responses in both the domains, 183

responses were randomly sampled for the Roomba domain.

5.4.1.1 Survey Questionnaire

The survey questionnaires contained similar questions for the two domains, with

ten questions for the Roomba domain and eleven questions for the AV domain. The

questions included a description of NSE and participants were required to select an

option that best describes their attitude. To understand the effect of severity of NSE

on user tolerance, two forms of NSE are studied in the AV domain: bumpiness and

sudden jerks. All other survey questions for the AV domain focused only on the

bumpy ride side effect. The survey questionnaires are included in Appendix A.

User Tolerance For each domain, our survey participants were required to indicate

their level of tolerance of NSE: low—indicating their unwillingness to use the AI
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system due to its NSE; medium—indicating the system will be used less frequently

due to its NSE; and high—indicating their willingness to continue using the system,

despite the occurrence of NSE.

Trust To determine if NSE affected user trust in the system’s capabilities, partici-

pants were required to select an option that best describes their trust level: low—do

not trust the system to be capable of completing its task; medium—trust is affected

if the system does not learn to avoid NSE over time; and high—trust is unaffected

by NSE. This simple categorization allows us to understand how NSE may affect the

system usability.

Slack Preferences In many instances, NSE can be avoided if the system is allowed

to act sub-optimally with respect to its assigned task. For example, the bumpy ride—

which occurs when the AV drives fast through potholes as a result of optimizing travel

time—may be avoidable if the AV takes a longer route or navigates at a lower speed.

A fixed slack of 25% for the AV domain allows the AV to drive slow or pick an

alternate route that takes up to 25% longer to reach the destination. Similarly, the

slack for the Roomba domain allows it to skip cleaning the area within five inches

from the wall. Slack for the Roomba domain can be considered as allowing the system

to not complete its task fully, while the slack for the AV allows it to take longer to

complete the task. Participants were required to select yes or no, to indicate their

willingness of allowing for a slack.

Willingness to Assist Humans can leverage their skills and knowledge about the

environment to assist the agent in avoiding negative side effects. For instance, AI

systems often operate in environments that are configurable, which can be leveraged to

mitigate NSE. Participants were surveyed to determine their willingness to reconfigure

the environment in order to mitigate the impacts of NSE. Reconfigurations for the

Roomba domain involved installing a protective sheet on the surface to overcome
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the NSE of spraying water on the walls. Reconfiguration in the AV domain involved

installing a pothole-detection sensor that detects potholes and limits the velocity of

the vehicle. Participants were required to select an option that best describes their

attitude: purchase and install the sheet or sensor, install the sheet or sensor if it is

provided by the manufacturer, and not willing to reconfigure.

In addition, the questionnaires focused on eliciting user preferences over providing

feedback and how often they are willing to provide feedback by pressing a button when

they notice NSE. This is to validate a common approach in AI research which indicates

that feedback, particularly from users, can be used to improve the performance of the

AI system [37, 80, 92].

Further, the survey gathered information about what type of tools will encourage

them to continue using the system. The participants were asked to select all the

tools they would be willing to utilize to mitigate NSE. They were presented with

three tools: providing feedback by pressing a button every time the system produces

NSE; tools to reconfigure the environment; and specifying areas where the system is

not allowed to operate due to NSE.

5.4.2 Results

This section presents the results of the user study. A detailed discussion of the

results is presented in the next section.

User Tolerance of Negative Side Effects Responses for the Roomba setting

show that 76.50% of the participants are willing to tolerate the negative side effects.

For the driving domain, 87.97% of the respondents are willing to tolerate milder NSE

such as bumpiness when the AV drives fast through potholes and 57.92% are willing

to tolerate relatively severe NSE such as hard braking at a stop sign. These results

are plotted in Figure 5.2.
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(a) Roomba (b) AV mild (bumpy) (c) AV moderate (jerks)

Figure 5.2: User tolerance of negative side effects.

Participants were also required to enter a tolerance score on a scale of 1 to 5, with

5 indicating the highest level of tolerance. Figure 5.3(a) shows the score distribution

and Figure 5.3(b) shows the average score in each NSE tolerance category, along with

the standard deviation.

(a) Score distribution (b) Average score and standard
deviation per tolerance level

Figure 5.3: Tolerance score.

For the Roomba domain, 65.02% voted a score of 3 or more. Similarly for the

AV (bumpy) domain, 74.86% voted a score of 3 or more. The mean tolerance score,

along with the 95% confidence interval, is 3.03 ˘ 0.20 for the Roomba domain and

3.18˘ 0.16 for the AV domain. The relation between tolerance level and score cross-

validates the responses on user tolerance, as users with a higher tolerance of NSE

consistently assigned a higher tolerance score.
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Effect on Trust For the Roomba domain, 51.91% respondents selected high trust

and 34.43% selected medium trust. Similarly for the AV domain, 34.43% selected

high trust and 60.10% selected medium trust. The remaining participants indicated

that they do not trust the system to be capable of completing its assigned task, when

it produces NSE. These results are shown in Figure 5.4.

(a) Roomba (b) AV

Figure 5.4: Effect of negative side effects on trust.

Domain NSE tolerance
Trust Level (% responses)
Low Medium High

Roomba
High 0% 21.25% 78.75%

Medium 3.33% 50.00% 46.67%
Low 53.49% 37.21% 9.30%

AV
High 0% 47.67% 52.32%

Medium 5.33% 76.00% 18.67%
Low 31.82% 54.54% 13.64%

Table 5.2: User trust in the system, corresponding to NSE tolerance level.

Table 5.2 shows the relationship between user trust and tolerance of NSE. The

correlation coefficient between user tolerance of NSE and their trust in the system’s

capabilities when it produces NSE is 0.65 for the Roomba domain and 0.47 for the

AV (bumpy) domain.

Slack Preferences Among the 183 responses, 66.12% are willing to allow for a

slack to avoid NSE of the AV. Similarly, 45.36% are willing to allow the Roomba to
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Figure 5.5: Slack preferences to mitigate
NSE

Figure 5.6: Willingness to reconfigure
the environment

skip cleaning areas near the wall so as to avoid the negative side effects. These results

are plotted in Figure 5.5.

Table 5.3 reports the relationship between user tolerance of NSE and their slack

preferences. The results suggest that participants with high NSE tolerance are gen-

erally willing to allow for a slack. The correlation coefficient between user tolerance

of NSE and their slack preferences is 0.4 for the Roomba domain and 0.07 for the AV

(bumpy) domain.

Domain NSE tolerance
Slack preference (% responses)
Acceptable Not Acceptable

Roomba
High 66.25% 38.33%

Medium 38.33% 61.66%
Low 16.28% 83.72%

AV
(bumpy)

High 66.28% 33.72%
Medium 70.67% 29.33%

Low 50.00% 50.00%

Table 5.3: Slack preferences of users, corresponding to NSE tolerance.

Willingness to Assist the System Results on the Roomba domain show that

73.22% respondents are willing to install the sheet to mitigate NSE. If the sheet is not

provided by the manufacturer, 64.18% are willing to purchase the sheet ($10). In the

AV domain, 91.80% are willing to install the sensor. If the sensor is not provided by
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the manufacturer, 57.38% are willing to purchase the sensor ($50). These results are

reported in Figure 5.6. Table 5.4 reports user willingness to apply minor modifications

to the environment, corresponding to their NSE tolerance. Users with low tolerance

of NSE are less willing to perform reconfigurations.

Domain NSE tolerance
User Preference (% responses)

Purchase & Install Install Neither

Roomba
High 71.25% 20.00% 8.75%

Medium 40.00% 40.00% 20.00%
Low 11.63% 18.60% 69.77%

AV
High 66.28% 30.23% 3.49%

Medium 52.00% 38.67% 9.33%
Low 40.91% 36.36% 22.73%

Table 5.4: Willingness to reconfigure the environment, corresponding to NSE toler-
ance

Figure 5.7: User willingness to provide feedback to the system

Figure 5.7 plots user willingness to provide feedback. In the Roomba domain,

43.71% participants are willing to provide feedback until the Roomba learns to over-

come its undesirable behavior, 53.00% are willing to provide feedback a few times

and when they are around the system to supervise it, and 3.29% are not interested in

providing feedback. The AV (bumpy) domain has a similar trend—60.11% are willing

to provide feedback until the AV learns to overcome the NSE, 36.61% are willing to

provide feedback a few times, and 3.29% are not willing to provide feedback. Table 5.5
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reports user interests in utilizing the available tools to mitigate the impacts of NSE.

As participants could select more than one tool, number of responses corresponding

to each tool are reported.

Tool AV (bumpy) Roomba
Feedback 30 154

Reconfigure environment 25 5
Specify operation regions 22 18

Feedback + Reconfigure environment 18 4
Feedback + Specify operation regions 45 0

Reconfigure environment + Specify operation regions 9 0
Feedback + Reconfigure environment

+ Specify operation regions 65 0

Table 5.5: Number of responses corresponding to tools that encourage users to con-
tinue using the system, when NSE occur.

5.4.3 Discussion

In both domains, higher NSE tolerance correlates with higher trust. Respondents

with lower NSE tolerance have low to medium trust in the system. These results

indicate that (1) individual preferences and tolerance of NSE varies and depends on

the severity of NSE; (2) users are generally willing to tolerate NSE that are not severe

or safety-critical, but prefer to reduce them as much as possible; and (3) users are

generally willing to give the AI systems some time to learn to avoid the side effects and

their trust is affected when the system does not adapt. The results also highlight the

importance of developing techniques to mitigate NSE in order to design trustworthy

AI systems. In addition, the results support the design of customizable systems to

improve user satisfaction.

The results on slack tolerance (Figure 5.5 and Table 5.3) indicate that respondents

are more willing to allow for a slack in the AV (bumpy) domain. In fact, at least

50% of the respondents are willing to allow for a slack, independent of their NSE

tolerance. This is likely because the behavior with a slack—selecting a longer route
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or driving slowly to avoid a bumpy ride—is similar to how human drivers try to

avoid the NSE. Since many respondents expressed willingness to allow for a slack in

the AV, independent of their tolerance of NSE, the correlation coefficient for the AV

domain has a lower value than the Roomba domain. Overall, the results indicate

that users are generally willing to accept sub-optimal behavior with respect to the

system’s assigned task in order to mitigate NSE, as long as the system completes its

assigned task.

Our results also show that respondents prefer the direct feedback method the most

(Table 5.5). This is likely due to the simplicity of the interaction with the system,

as they are required to only press a button every time they observe an undesirable

behavior. Furthermore, the results in Figure 5.7 show that a higher fraction of re-

spondents are willing to provide feedback to an AV until it learns to avoid the NSE.

This is likely because the users of an AV are usually in the vehicle when it operates,

making it is easier to provide feedback when they observe the NSE. The results sug-

gesting user willingness to provide feedback, often until the system learns to avoid

NSE, backs an important assumption in current AI research.

The results in Figure 5.6 and Table 5.4 indicate that users are generally willing to

engage in environment reconfiguration to mitigate the impacts of NSE. In fact, many

respondents expressed willingness to pay for procuring the items for reconfiguration.

Further, our respondents are more willing to utilize all the tools available to mitigate

the NSE in the AV domain, compared to the Roomba setting. This interest may be

due to the direct implications of the NSE on the user’s ride experience. These results

are in accordance with a recent study that shows that users are generally willing to

tolerate an imperfect AI system if they are able to make minor modifications to its

performance and outcomes [23]. Since people prefer different tools to mitigate NSE,

depending on the severity and their preferences, it is important to recognize that no

one solution approach will work well for all settings.
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Different trends in the results may be observed when the assumptions made in

our study are relaxed. Our study focused on a setting where the negative side effects

are (1) known to the user—we fully describe the side effects to the participants; (2)

deterministic—the same type of negative side effects always occur when the system

executes a certain action, such as the sudden jerk to the passengers when the AV

halts suddenly; and (3) transparent—the users can observe the occurrence of these

side effects. When a new user interacts with a system, they may not know what types

of NSE to anticipate and whether their occurrence is stochastic. The results of this

study and the trends observed may change when users are uncertain about when and

why the NSE occurs or what the NSE may be. This study focused on NSE that are

undesirable but not safety-critical. User tolerance, trust, slack preferences, and the

preferred tools will likely change when NSE are severe or safety-critical. Furthermore,

this survey considered participants aged above 30 since they are less likely to game the

Mturk platform. The results trend may be different with a younger population who

may be more willing to tolerate certain types of negative side effects in the interest

of adopting new technologies early.

Overall, this user study encourages the development of effective mechanisms to

identify and mitigate negative side effects of deployed AI systems as a way to increase

their usability, trustworthiness, and cost effectiveness. The following section discusses

some of the inherent challenges in identifying and avoiding negative side effects.

5.5 Challenges in Avoiding Negative Side Effects

The challenges in avoiding negative side effects broadly stem from the difficulty

in obtaining knowledge about NSE a priori, gathering user preferences to understand

their tolerance for side effects, and balancing the potential trade-off between com-

pleting the task and avoiding the side effects.
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Prior knowledge about NSE There are three key reasons why the agent may

not have prior knowledge about NSE. First, predicting or identifying NSE a priori is

inherently challenging, since it depends on the environmental conditions. As a result,

this information is often missing in the agent’s model. Second, many AI systems are

deployed in a variety of settings, which may be different from the environment used

for agent training and testing. This distributional shift may cause NSE and is difficult

to assess during the design process. Third, it is generally difficult to precisely learn

or encode individual user preferences about NSE, or account for cultural differences

between the target users and the development team.

Feedback collection An agent that is unaware of the side effects of its actions can

gather this information through various feedback mechanisms from users or through

autonomous exploration. Though learning from feedback produces good results in

many problems [60, 81, 92, 121, 122], there are three potential challenges in employing

this approach in real-world systems. First, the learning process may require feedback

in a certain format to be sample efficient, such as correcting the agent policy by pro-

viding alternate actions for execution. Feedback collection in general is an expensive

process, particularly when the feedback format requires constant human oversight

or imposes significant cognitive overload on the user. Second, the feedback may be

biased or delayed or both, which in turn affects the agent’s learning process. Finally,

it is generally assumed that the agent uses human-interpretable representations for

querying and feedback collection, but there may be mismatches between the models

of the agent and human. There are some recent efforts towards addressing the prob-

lem of sample efficiency in learning [16, 114] and investigating the impact of bias in

feedback for agent learning [80, 92]. Identifying and evaluating human-interpretable

state-action representations for querying humans is largely an open problem.
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Managing side-effect tradeoffs When negative side effects are unavoidable and

interfere with the performance of the agent’s assigned task, there is a trade-off be-

tween completing the task efficiently and avoiding the NSE. To what extent should

an agent deviate from its optimal policy in order to minimize the impacts of negative

side effects? Balancing this trade-off requires user feedback since it depends on their

tolerance for negative side effects. This can be challenging when the agent’s objective

and the side effects are measured in different units.

Due to the factors discussed above, avoiding NSE is a non-trivial problem. The

next chapter discusses two solution approaches to detect and mitigate negative side

effects, when the agent does not have any prior knowledge about them.
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CHAPTER 6

AVOIDING NEGATIVE SIDE EFFECTS

This chapter presents two complementary solution approaches to mitigate the im-

mediate negative side effects via: (1) learning from feedback [91, 92], and (2) environ-

ment shaping [98]. The solution approaches target settings with different assumptions

and agent responsibilities, focusing on negative side effects that are (1) undesirable,

but not safety-critical; (2) deterministic—always occur when the agent executes cer-

tain actions in some states; and (3) not preventing the agent from completing its

assigned task. In addition, the agent has no prior knowledge about the NSE of its

actions and the side effects are experienced immediately after action execution.

Chapter outline. The chapter begins by motivating the problem in Section 6.1

and a discussion of the related work, contrasting their benefits and limitations, in

Section 6.2. Section 6.3 formalizes the problem of mitigating negative side effects

as a multi-objective MDP with slack and presents results from empirical evaluation

of the approach on two domains. Section 6.4 discusses the challenges in learning

from feedback. Section 6.5 presents environment shaping as a method to mitigate

negative side effects and results from empirical evaluation of the approach on two

domains. Section 6.6 discusses the challenges and limitations in mitigating side effects

via shaping.

6.1 Introduction

When an agent operates based on an incomplete model of the world, its actions

may create negative side effects (NSE) [3, 37, 92, 98, 99]. Different types of model
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incompleteness lead to different types of negative side effects, whose severity ranges

from mild events that are tolerable to severe impacts. Mitigating NSE is critical to

improve the safety and reliability of deployed AI systems. However, it is practically

impossible to identify all the NSE at design time since agents are deployed in varied

settings. Deployed agents often do not have any prior knowledge about NSE, and

therefore they do not have the ability to minimize them.

Figure 6.1: Illustration of negative side effects in the boxpushing domain: a policy
based on the agent’s incomplete model, which overlooks the impact of pushing the
box over the rug, dirties the rug.

This chapter focuses on NSE that are undesirable, but not catastrophic or pro-

hibitive. That is, the NSE do not affect the agent’s ability to complete its assigned

task. For example, consider an agent that is required to push a box B as quickly

as possible from location L1 to location L2 (Figure 6.1). The agent’s model includes

all the details essential to optimize the time taken to push the box, including the

reward for pushing the box and the associated transition dynamics. However, details

such as the impact of pushing the box over a rug may not be included in the model

if the issue is overlooked during system design. Consequently, when operating based

on this model, the agent may push the box over the rug, dirtying the rug as a side

effect. How can we mitigate the negative side effects, when the agents are unaware of

the side effects and the associated penalties?

Knowledge gaps Prior works mitigate NSE by redesigning the reward function

for the agent’s primary objective [32], constraining the agent’s actions [122, 121],

minimizing deviations from a baseline state [56], or maximizing the attainable util-
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ity of auxiliary objectives and completion of future tasks [57, 112, 113]. All these

approaches target settings with avoidable NSE and assume that the agent has some

prior knowledge about the cause and occurrence of NSE. However, these assumptions

are often violated when deploying AI systems in the open world. While some nega-

tive side effects could be anticipated or detected during system development, many

types of negative side effects are discovered after the system is deployed. This is due

to a variety of factors such as unanticipated domain characteristics, unanticipated

consequences of system or software upgrade, or cultural differences among the target

user and development team. Furthermore, in situations where the primary objective

is prioritized, the user may be willing to trade off some NSE for solution quality. For

example, if the agent takes ten times longer to push the box so as to avoid the rug

area, the user may be willing to tolerate some dirt on the rug instead. Prior works,

however, do not offer a principled approach to balance this trade-off and do not pro-

vide bounded performance guarantees. Table 6.1 summarizes the characteristics of

the existing approaches.

Approach
Multi-objective

formulation

Bounded-
guarantees wrt.

agent’s task

Generalize
learned NSE
across states

Distinguish and
handle different
magnitudes of

NSE

[32] 7 7 3 7

[122] 7 7 7 7

[104] 3 7 7 7

[56] 3 7 7 3

[121] 7 7 7 7

[112] 7 7 7 7

[113] 7 7 7 7

Our approaches 3 3 3 3

Table 6.1: An overview of the characteristics of different approaches in mitigating
NSE.
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Overview of contributions To mitigate NSE in settings where the agent does

not have prior knowledge about the side effects of its actions, two complementary

approaches (Figure 6.2) that have different properties and underlying assumptions

are proposed: (1) learning from feedback [92], and (2) environment shaping [98]. Our

user study results [93] discussed in the previous chapter show that users are willing

to provide feedback and perform reconfigurations to mitigate NSE.

(a) Learning from user feedback (b) Environment shaping

Figure 6.2: An illustration of our proposed complementary solution approaches with
varying nature of autonomy to mitigate NSE.

In learning from feedback approach, the agent’s model is augmented with a sec-

ondary reward function that represents the penalty for NSE of its actions. Separating

the reward functions of the agent’s primary objective and NSE allows us to ensure

that the model aspects corresponding to agent’s assigned task are not corrupted

during model update. The efficiency of different feedback mechanisms, including hu-

man feedback and autonomous exploration, to learn about NSE are investigated. The

problem is formulated as a multi-objective Markov decision process with lexicographic

preferences over reward functions, such that optimizing the completion of the agent’s

assigned task is prioritized over mitigating NSE. Using multi-objective models makes

it easier for users to understand and control the trade-off between the agent’s ability

to mitigate NSE and optimize the completion of its assigned task. This proposed

approach exploits the reliability of the existing model with respect to the primary

objective, while allowing a deployed agent to learn to avoid NSE as much as possible.
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The second solution approach examines how a human can assist an agent, beyond

providing feedback, and exploits their broader scope of knowledge to mitigate the

impacts of NSE. Environment shaping is the process of applying simple modifica-

tions to the current environment to make it more agent-friendly and minimize the

occurrence of NSE. The problem is formulated as a human-agent collaboration with

decoupled objectives. The agent optimizes the completion of its assigned task and

may produce NSE during its operation. The human assists the agent by performing

modest reconfigurations of the environment so as to mitigate the impacts of NSE,

without affecting the agent’s ability to complete its assigned task. An algorithm is

presented for shaping and its properties are analyzed.

The proposed solution approaches are complementary, with different agent and

human responsibilities. In learning from feedback, the agent is directly involved in

mitigating NSE as it learns about them and updates its model, while the human

facilitates this by providing feedback. In environment shaping, the human has more

control over the environment, by definition, and the agent has an indirect involvement

in mitigating NSE since it only reacts to the reconfiguration by revising its policy.

Table 6.2 summarizes the characteristics and assumptions of the two approaches.

Empirical evaluations demonstrate the trade-offs in the performance of different ap-

proaches in mitigating NSE across settings.

Assumptions/ Requirements Learning from Feedback Environment Shaping

Agent state representation sufficiently rich to learn about NSE ´

Model update requirements augment with NSE penalty function no model update

Type of human assistance provide immediate feedback reconfigure environment

Factors affecting performance sampling biases in feedback collection
designer’s ability to accurately predict

actor policy from trajectories

Environment configuration ´ user-configurable & described by a fie

Unavoidable NSE cannot be eliminated can be eliminated

Table 6.2: Assumptions and requirements of the two proposed solution approaches.
“´” indicates that the approach is indifferent to the corresponding characteristic.
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The primary contributions in this chapter are: (1) formalizing the problem of mit-

igating NSE as a multi-objective MDP with slack; (2) presenting a solution approach

to update the agent’s policy by learning about NSE as a secondary reward function

and estimating the minimum slack required to avoid NSE; (3) studying various types

of feedback mechanisms to learn the penalty associated with NSE; (4) evaluating the

performance and analyzing the bias associated with each feedback mechanism; (5)

presenting environment shaping as a method to mitigate NSE and an algorithm for

shaping; and (6) empirical evaluation of environment shaping on two domains.

6.2 Overview of Existing Approaches to Mitigate NSE

This section reviews the emerging approaches to mitigate the impacts of negative

side effects. Table 6.3 summarizes the characteristics of side effects handled by each

one of the methods described below.

A natural approach to overcome NSE caused by reward misspecification is to

update the agent’s model by learning the intended reward function. In [32], the

specified reward is considered as a proxy for the intended reward function. By treating

the proxy reward as a set of demonstrations and using approximate solutions for

inference, the agent can learn the intended reward function. As acknowledged by the

authors, this algorithm is not scalable to large, complex settings. Further, modifying

the reward function of a deployed system entirely requires extensive evaluation before

redeployment to ensure no new risks are introduced by the update. This approach is

therefore better suited for handling safety-critical NSE that justify the suspension of

the deployed system.

Another form of NSE arises when an agent alters features in the environment that

the user does not expect or desire to be changed. This can be addressed by constrain-

ing the features that can be altered by the agent during its operation. In [122], the

authors consider a setting in which the uncertainty over the desirability of altering a
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feature is included in the agent’s model. The agent first computes a policy assum-

ing all the uncertain features are “locked” for alteration. If a policy exists, then the

agent executes it. If no policy exists, the agent queries the human to determine which

features can be altered and recomputes a policy. A regret minimization approach is

used to select the top-k features for querying. Recently, the authors extended this

approach to identify if the NSE are unavoidable by casting it as a set-cover prob-

lem [121]. If the side effects are unavoidable, the agent ceases operation. Therefore,

these approaches are not suitable for settings where the agent is expected to alleviate

(unavoidable) NSE to the extent possible, while completing its assigned task.

Another class of solution methods defines a penalty function for NSE as a measure

of deviation from a baseline state, based on the features altered. In [56], the authors

present a multi-objective formulation with scalarization, with the deviation from a

baseline state measured using reachability-based metrics. The agent’s sensitivity to

NSE can be adjusted by tuning the scalarization parameters. This approach may

penalize all side effects (even positive side effects) since it does not account for human

preferences. To overcome this drawback, [104] presents an approach to infer human

preferences from the initial state. They assume that an environment is typically

optimized for human preferences and the agent can mitigate NSE by inferring human

preferences before it starts acting.

Attainable utility [112, 113] measures the impact of side effects as the shift in the

agent’s ability to optimize auxiliary objectives, generalizing the relative reachability

measure presented earlier [56]. All these approaches employ impact regularizers to

mitigate NSE. Designing the right impact regularizer is challenging since the agent’s

behavior is sensitive to the choice of baseline state, the metric used to calculate

the deviation, and requires knowledge about the dynamics of the environment [62].

Certain NSE may also impact the agent’s ability to complete tasks in the future.
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In [57], the authors present an approach that provides the agent with an auxiliary

reward for preserving its ability to perform future tasks in the environment.

This chapter targets settings in which the agent is has no prior knowledge about

NSE, and presents two complementary solution approaches to mitigate NSE, without

entirely redesigning the model and while providing bounded-performance guarantees.

6.3 Mitigating NSE using Feedback

An agent that is unaware of the negative side effects of its actions can gather

this information through feedback signals from an oracle or through autonomous

exploration. This problem is formulated as a multi-objective planning problem with

lexicographic ordering over the reward functions. The agent learns a secondary reward

function corresponding to NSE penalty. A lexicographic approach is adopted because

(1) we target settings in which optimizing the reward associated with agent’s assigned

task is prioritized over mitigating NSE, (2) the reward for the primary objective and

the penalty for NSE may have different units, such as time taken to push a box and

the cost of cleaning a rug, and (3) alternative scalarization methods require non-trivial

parameter tuning and may not offer the performance guarantees with respect to the

primary objective [84].

6.3.1 Background on Lexicographic MDP

This section provides a brief background on lexicographic Markov decision pro-

cess (LMDP) [116], which is a multi-objective MDP with lexicographic preferences

over reward functions. LMDPs are particularly useful and convenient to model multi-

objective MDPs with competing objectives and with an inherent lexicographic order-

ing over them.

An LMDP is defined by the tuple M “ xS,A, T,R,∆, oR,∆, oR,∆, oy [116] with S denoting

the finite set of states; A denoting the finite set of actions; T :SˆAˆSÑr0, 1s is the
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transition function indicating the probability of reaching state s1 P S when executing

action a P A in state s P S; RRR“ rR1, ..., Rks
T is a vector of reward functions, with

Ri : SˆAÑR denoting the reward associated with executing action a P A in state

s P S corresponding to ith objective; ∆∆∆“ rδ1, ..., δk´1s
T is a vector of slack variables

with δiě0; ooo “ ro1, . . . , oks
T denotes the k objectives with strict preference ordering

over them such that o1 ą o2 ą . . . ok´1 ą ok. The lexicographic preference operator

ą denotes that the left term has a higher preference ordering and is always optimized

prior to the right term.

The slack δi is an additive value denoting the acceptable deviation from the op-

timal expected reward for objective oi so as to improve the lower priority objectives.

The set of value functions is denoted by VVV “ rV1, ..., Vks
T , with Vi denoting the value

function corresponding to oi, and calculated as

VVV π
psq“RRRps, πpsqq ` γ

ÿ

s1PS

T ps, πpsq, s1qVVV π
ps1q, @s P S.

LMDP sequentially processes each objective in the lexicographic order and therefore

the policy of the current objective oi and the slack δi determine the actions available

for optimizing the next objective oi`1. The set of restricted actions for oi`1 is:

Ai`1psq“taPA|max
a1PAi

Qips, a
1
q ´Qips, aq ď ηiu

where ηi “ p1 ´ γqδi, with a discount factor γ P r0, 1q. LMDPs are typically solved

using modified Value Iteration or LAO* [116]. We refer readers to [116] for a detailed

background on LMDP.

6.3.2 Problem Formulation

In this section, the problem of mitigating the immediate NSE of agent actions

is formulated using the LMDP framework. The agent’s model is augmented with a

secondary reward function that represents the penalty for NSE of its actions. The

96



efficiency of different forms of feedback to learn about NSE is investigated, including

oracle feedback and agent exploration. The agent may not be able to observe the NSE

except for the penalty, which is proportional to the severity of the NSE, provided by

the feedback mechanism. Given M̃ and feedback data regarding NSE, the agent is

expected to compute a policy that optimizes its assigned task, while avoiding NSE as

much as possible, subject to a slack.

Definition 24. The augmented MDP of a given model M̃ is a lexicographic MDP,

denoted M“xS,A, T,RRR, o, δy such that:

• S “ S̃ denotes the state space;

• A “ Ã denotes the set of actions;

• T “ T̃ denotes the transition function;

• RRR“rR1,R2s
T with R1“R̃ denotes the reward associated with primary objective

of the agent and R2“RN denotes the reward associated with NSE of the actions;

• ooo “ ro1, o2s
T denotes the objectives where o1 is the primary objective denoting

the agent’s assigned task and o2 is minimizing NSE with o1 ą o2; and

• δ ě 0 is the slack denoting the maximum deviation from optimal expected reward

for o1 in order to minimize NSE.

Since the agent cannot predict the NSE a priori, it must learn RN using feedback

mechanisms (discussed in Section 6.3.4). Our overall framework for minimizing the

NSE involves the following three steps (Figure 6.3):

1. The agent collects data about NSE through various types of oracle feedback or

by exploring the environment;

2. A predictive model of NSE is trained using the gathered data to generalize the

agent’s observations to unseen situations, represented as a reward function RN ;
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3. The agent computes a policy π by solving the augmented MDP optimally with

the given δ and learned RN .

Figure 6.3: Overview of our approach for mitigating NSE using feedback.

6.3.3 Slack Estimation

The slack δ denotes the maximum allowed loss in the expected reward of the

agent’s primary objective in order to minimize NSE. But why is slack necessary?

There may be limited opportunity for avoiding NSE when optimizing the agent’s

assigned task, denoted by o1. In many problems, the set of policies that are valid

(optimal) for o1 and the set of policies that avoid NSE may be distinct (Figure 6.4(a)).

Allowing for a slack on the primary objective indicates willingness to tolerate a certain

degree of sub-optimal behavior, with respect to o1. This expands the set of policies

that are valid for its primary objective, thereby enabling the agent to execute a NSE-

minimizing policy for the assigned task (Figure 6.4(b)).

A smaller slack value limits the scope for minimizing NSE. A very high slack

can allow the agent to not fulfill o1 in an attempt to minimize the NSE. Therefore,

the slack determines the overall performance of the agent with respect to both its

objectives. Typically the slack value is based on user preferences and the general

tolerance towards NSE. An approach to determine the minimum slack required to

avoid NSE altogether, when feasible (once knowledge about the NSE is obtained), is

discussed below.
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(a) Disjoint policy sets (b) Slack-induced availability of NSE-
minimizing policies for assigned task

Figure 6.4: An illustration of the benefits of slack.

Algorithm 1 Slack Estimation (M̃,N,E)

1: δ Ð 8

2: Ṽ ˚1 psoq Ð Solve M̃ optimally with respect to o1

3: Compute NSE-free transition (T̂ ) by disabling all actions with NSE, @ps̃, ã, s̃1q:

4: T̂ ps̃, ã, s̃1q Ð

#

T̃ ps̃, ã, s̃1q, if Npps̃, ãq, Eq “ 0

0, otherwise

5: if solution exists for xS̃, Ã, T̂ , R̃y with respect to o1 then
6: V̂ ˚1 psoq Ð Solve xS̃, Ã, T̂ , R̃y optimally for o1

7: δ Ð |Ṽ ˚1 psoq ´ V̂
˚

1 psoq|

8: return δ

Algorithm 1 determines the slack as the difference between the expected reward

of the model before and after disabling all the actions that lead to NSE. The optimal

expected reward for completing the task from the single start state s0 and using M̃

is denoted by Ṽ ˚1 ps0q. The optimal expected reward after disabling all the actions

with NSE, denoted by V̂ ˚1 ps0q, is the maximum reward that can be achieved without

causing any NSE, when possible. Thus the difference in values indicates the minimum

slack required to avoid NSE, when feasible, and ensures that the slack is in the same

unit as the primary objective. The absolute difference is calculated to allow for

negative rewards. A solution may no longer exist after the actions are disabled (Lines

3-4), in which case δ“8 is returned, indicating that it is impossible to completely

avoid NSE and still accomplish the task.
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Proposition 25. Given N , Algorithm 1 calculates the minimum slack required to

avoid NSE, while still accomplishing the agent’s primary objective, when NSE are

avoidable.

Proof. Proof by contradiction. Let δ denote the slack returned by Algorithm 1 and

δ˚ denote the minimum slack required to avoid NSE in a setting with avoidable NSE.

Assume δ˚ąδ. This indicates that Algorithm 1 produced a lower value of slack than

required, resulting in NSE during policy execution. This is possible when the model

is not solved optimally or if all the actions that lead to NSE have not been disabled.

By Lines 2-6 in Algorithm 1, all unacceptable actions are disabled based on Ω and the

model is solved optimally. Therefore, δ˚ďδ. Let δ˚ăδ. By Lines 2-6 in Algorithm 1,

all actions with NSE are disabled and the model is solved optimally. Hence, δ˚ć δ.

Therefore, δ˚“δ.

Algorithm 1 breaks ties in favor of the primary objective. That is, if there are

multiple policies, within the slack, that result in the same expected penalty for NSE,

the algorithm will output a policy that optimizes the primary objective. Note that

Algorithm 1 will fully utilize the slack value to minimize NSE, even if the improvement

in NSE is minimal. For example, consider an agent operating with δ “ 0.5Ṽ ˚1 ps0q to

avoid NSE. However, if the agent operates with δ “ 0.25Ṽ ˚1 ps0q, the expected penalty

for NSE is 3. For a 25% increase in the slack value, the resulting improvement in NSE

is three units. In many problems, such a trade-off may be undesirable. Algorithm 1

calculates the minimum slack required to avoid the NSE, and does not optimize this

trade-off in the expected rewards.

The slack is specified by the user when NSE are unavoidable or when δ estimated

using Algorithm 1 is beyond the user tolerance. Picking the “right” δ for the problem

can be challenging for the user if they do not have a deep understanding about

the trade-offs. If the models are solved approximately, without solution guarantees,
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Algorithm 1 is not guaranteed to return the minimum slack but our approach still

produces a policy that minimizes NSE, given the slack.

6.3.4 Learning from Feedback

To learn about immediate NSE, two forms of feedback that correlate with fea-

tures in S̃ are considered: feedback acquired from an oracle, and feedback the agent

acquires by exploring the environment. The oracle feedback typically represents hu-

man feedback and provides signals about undesirable actions, with respect to NSE.

Alternatively, the agent may explore the environment to gather reward signals with

respect to NSE.

6.3.4.1 Learning from Human Feedback

Four different forms of human feedback are discussed below, each providing infor-

mation about NSE directly or indirectly, along with their limitations.

Random Queries This feedback type represents an ideal setting in which the agent

randomly selects an ps, aq pair for querying an oracle, given a budget and without

replacement, and receives the exact, corresponding penalty for NSE.

Despite the benefits offered by this approach, it is often unrealistic to expect

exact penalty specification for randomly selected ps, aq pair. Hence other feedback

mechanisms where the human approves the agent’s actions, corrects the agent’s policy,

or demonstrates an acceptable trajectory are also considered. Since such feedback

types do not provide the exact penalty for NSE, feedback indicating acceptable actions

are mapped to a zero penalty and others are mapped to a fixed, non-zero penalty

denoted by k, which in turn contributes to RN . In our experiments, k is set to the

maximum penalty incurred for NSE in the problem.

Approval (HA) The agent randomly selects ps, aq pairs, without replacement, to

query the human, who in turn either approves or disapproves the action in that state.
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The agent learns by mapping the approved actions to zero penalty, RNps, aq“0, and

the disapproved actions are mapped to a non-zero penalty RNps, aq“ k. Two types

of human approval are considered: strict (HA-S) and lenient (HA-L). Strict feedback

disapproves all actions that result in NSE. Lenient approval only disapproves actions

with severe NSE. The severity threshold for HA-L is a tunable parameter that is

problem-specific. Thus with HA-L, the agent will not learn about NSE with low

severity and with HA-S, the agent cannot distinguish between actions with different

severities of NSE in a state. Despite the simplicity of this approach, it may be difficult

for the human to approve or disapprove actions in isolation, since they do not convey

the agent’s overall behavior.

Corrections (C) In this form of feedback, the agent performs a trajectory of its

primary policy, with human supervision. If the human observes an unacceptable

action at any state, they stop the agent and specify an acceptable action to execute

in that state. If all actions in a state lead to NSE, then the user specifies an action with

the least NSE. The agent proceeds until the goal is reached or until interrupted again.

When interrupted, the agent assumes that all actions, except the correction, are

unacceptable in that state. If not interrupted, actions are considered to be acceptable.

Acceptable actions are mapped to zero penalty, RNps, aq“0, and unacceptable actions

are mapped to a non-zero penalty, RNps, aq “ k. This approach requires constant

human oversight, which is practically infeasible in many settings.

Demo-action mismatch (D-AM) In demo-action mismatch, the human provides

limited number of demonstrations of how to perform the task safely. Each demon-

stration is a complete trajectory of performing the task, from start to the goal. The

agent collects these trajectories and compares them with its primary policy. For all

states in which there is an action mismatch, the agent assumes its policy leads to NSE

and assigns RNps, aq“ k, otherwise assigns RNps, aq“ 0. The agent does not mimic
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human behavior. Instead, it only uses the demonstrations to gather knowledge about

NSE. A limitation of this approach is that the agent does not receive any information

about NSE in states unvisited by the human.

6.3.4.2 Learning from Exploration

When human feedback is expensive to collect or unavailable, it may be easier to

allow the agent to identify susceptible states through limited exploration. Learning

from exploration uses ε-greedy action selection. That is, the agent exploits the action

prescribed by its primary policy or explores a random action to learn about NSE.

The agent executes an action and observes the corresponding NSE penalty, RNps, aq.

Note that the agent explores only to learn RN and the final policy is computed by

solving the augmented model.

Three exploration strategies are considered: conservative–where the agent ex-

plores an action with probability 0.1 or follows its primary policy, moderate–where

the agent either explores an action with probability 0.5 or follows its primary policy,

and radical–where the agent predominantly explores with probability 0.9, allowing the

agent to possibly identify more NSE than the other exploration strategies. Learning

by exploring the real-world may be risky in some contexts, such as autonomous vehi-

cles. In such settings, exploration may be performed in a simulator that is designed to

train the agent to avoid the negative side effects, or the agent can learn from human

feedback.

6.3.4.3 Model Learning

The agent’s observations are generalized to unseen situations by training a random

forest regression (RF) model to predict the penalty RN . The RF model is used to

handle the continuous nature of the penalty and any regression technique may be used

in practice. The hyperparameters for the training are determined by a randomized

search in the space of RF parameters. For each hyperparameter setting, a three-fold
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cross validation is performed and the mean squared error is calculated. Parameters

with the least mean squared error are selected for training, which is then used to

predict the penalty RN . The augmented MDP is then updated with this learned

RN and the agent computes an NSE-minimizing policy for execution by solving the

augmented MDP.

6.3.5 Experimental Setup

This section discusses the experimental setup to evaluate the different feedback

mechanisms for mitigating avoidable and unavoidable NSE.

Baselines The performance of our approach is compared with three baselines. First

is the simulated Oracle agent that avoids NSE while satisfying the primary objective.

The Oracle has a perfect NSE model and its policy is computed by solving the model

after avoiding all the actions with NSE. In problems with unavoidable NSE, it selects

the action with the least NSE since that is the best possible performance that can

be achieved while satisfying the primary objective. The performance of the Oracle

provides a lower bound on the penalty for NSE incurred by the agent. The second is

the No queries case in which the agent does not query or learn about NSE. Instead, it

naively executes its primary policy. This provides an upper bound on the penalty for

NSE incurred by the agent. Third is the relative reachability-based approach (RR),

which is a multi-objective approach with scalarization [56]. This approach optimizes

rpst, atq´βdpst, btq, where rpst, atq is the reward corresponding to o1 and dpst, btq

is the measure of deviation from the baseline state bt, denoting the NSE. A direct

comparison with this approach is not feasible since it is based on assumptions that do

not hold in our setting. Therefore, the RR approach is modified to make it applicable

in our setting, by calculating the deviation based on a model of NSE learned with

Random Query approach as it does not introduce any bias. The deviation is computed

from inaction baseline, which measures the NSE of the agent’s action with respect
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to no action execution in that state [56]. The side effects considered are irreversible

by an agent, once occurred, making the baseline state unreachable. We tested with

β P r0.1, 0.9s since o1 is prioritized in our formulation and report results with β “ 0.8

as it achieved the best trade-off in training.

Side Effects In the interest of clarity, two types of NSE severity are considered:

mild and severe. Each action can either result in a mild NSE, severe NSE, or no

NSE. The strict human approval (HA-S) feedback disapproves all actions that result

in NSE. The lenient human approval (HA-L) only disapproves actions with severe

NSE. For learning NSE by exploration, the agent is assumed to learn by exploring in

a simulator where the reward signals indicate NSE penalty.

Our experiments optimize costs, which are negations of the rewards. Random

forest regression from sklearn Python package is used for model learning. The aug-

mented MDP is solved using a lexicographic variant of LAO* [35]. The slack is

computed using Algorithm 1 and γ “ 0.95. Values averaged over 100 trials of plan-

ning and execution, along with their standard errors, are reported for the following

domains.

Boxpushing A modified boxpushing domain [103] is considered, in which the agent

is expected to minimize the expected time taken to push a box to the goal (Figure 6.1).

Each action takes `1 unit of time. Each state is represented as xx, y, b, cy where x, y

denote the agent’s location, b indicates if the agent is pushing the box, c indicates the

current cell’s surface type. Pushing the box on a surface type c“1 results in severe

NSE with a penalty of 10, pushing the box on a surface c“2 results in mild NSE and

a penalty of 5, and no NSE otherwise. The state features used for training are xb, cy.

Experiments are conducted on five instances with grid size 15ˆ15 and with varying

initial location of the box and NSE regions.
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Driving Our second domain is based on simulated autonomous driving [91, 116] in

which the agent’s primary objective is to minimize the expected cost of navigation

from start to a goal, during which it may encounter some puddles. The agent can

move in all four directions at low and high speeds. The cost of navigating at a

low speed is `2 and that of high speed is `1. When the agent navigates over a

puddle at high speed, it spatters water which is undesirable. Some puddles may have

pedestrians in the vicinity and splashing water on them results in severe NSE with a

penalty of 10 and a mild NSE otherwise with a penalty of 5. Each state is represented

by xx, y, l, p, hy where x, y denote the agent’s location, l is the speed, p, h indicate the

presence of a puddle and a pedestrian in the vicinity. Features used for training are

xl, p, hy. Five test instances are generated with grid size 15ˆ15 and by varying the

start, goal, puddle, and pedestrian locations.

6.3.6 Results and Discussion

This section discusses the effectiveness of learning from feedback, and the effect

of slack values on the performance.

Effectiveness of learning from feedback The effectiveness of various feedback

approaches in learning about NSE is first discussed in settings with avoidable NSE,

followed by results on problems with unavoidable NSE.

Figures 6.5 and 6.6 show the average penalty incurred for NSE in settings with

avoidable NSE, as the feedback budget is increased. The Corrections feedback is

efficient in terms of samples required since the human corrects the agent by prescribing

an acceptable action in each state. Random querying and HA-S, which rely on random

samples of states, achieve significant reduction in NSE with 500 samples. Although

HA-L also relies on random sampling of states, it does not provide information about

mild NSE, which affects its performance. Training with Demo-AM feedback does

not always minimize NSE even as the budget is increased, since the agent does not

106



(a) Boxpushing (b) Driving

Figure 6.5: Effect of learning from human feedback methods on problems with avoid-
able NSE.

receive sufficient negative samples and has no information about the NSE in states

unvisited in the demonstrations. Additionally, it is unable to distinguish between the

different levels of severity of the NSE of its actions. The performance with Demo-

AM is also affected when the acceptable actions demonstrated by the oracle violate

the local slack constraints for the agent and therefore, the agent may not be able to

minimize NSE. However, Demo-AM is still better than No queries. RR approach,

with the model of NSE learned using Random Query, performs poorly irrespective

of the budget. Apart from the reported results, RR with a perfect model of NSE

was also tested. With a perfect model of NSE, RR performance was significantly

better and sometimes comparable to Oracle’s performance. However, obtaining a

perfect model of NSE is non-trivial in practice. In Figure 6.6, Random querying

with the maximum budget (7000) and RR with this learned model are plotted in

to compare the performance of exploration strategies and to understand how the

correlated samples affect the performance. Irrespective of the exploration type, the

agent gathers knowledge about NSE with a reasonable number of trials.
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(a) Boxpushing (b) Driving

Figure 6.6: Effect of learning with exploration strategies on problems with avoidable
NSE.

When NSE are unavoidable, Algorithm 1 does not produce a finite slack. There-

fore, 15% of the expected cost of o1 is used as the slack value for experiments. This is

based on the observation that the slack values returned by the algorithm for problems

with avoidable NSE are typically within 15% of the expected cost for o1. Figure 6.7

plots the results for boxpushing problems with unavoidable NSE. Problem instances

with unavoidable NSE case were generated by making sure there is no path to the

goal over surface c “ 3. Results on the driving domain are not reported because there

are no unavoidable NSE in the problem setting we consider—the agent can avoid NSE

by navigating at a low speed.

The performance of human feedback techniques are similar to that of avoidable

NSE setting, except for HA-S and Demo-AM. Since HA-S cannot distinguish between

different severities, its performance is affected when NSE are unavoidable. Demo-AM

matches the performance of other techniques when NSE are unavoidable. Similar to

Figure 6.6, learning by exploration in settings with unavoidable NSE matches the
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(a) Learning from human feedback (b) Learning with exploration

Figure 6.7: Performance on the boxpushing problems with unavoidable NSE.

performance of Random query. Overall, the results indicate that our framework can

effectively learn and mitigate the impacts of both avoidable and unavoidable NSE.

Effect of slack The effect of slack is studied on the expected cost of o1 and on NSE

(o2), by varying the slack from 40% to 100% of the value returned by Algorithm 1 on

problems with avoidable NSE. Figures 6.8 and 6.9 show the results with 7000 queries

for human feedback and 100 exploration trials.

The values show the average cost in 100 trials of executing the updated policy

with each slack value. The baseline approaches which are unaffected by the variation

in slack are not reported. Results with no slack bound the performance of other

techniques. As the slack is increased, the average penalty incurred for NSE tends to

decrease. The minimal differences in the average costs for o1 shows that the slack

values returned by Algorithm 1 are reasonable and affect o1 only by a small margin.

The performance of some feedback approaches are unaffected by the variation in slack,

which shows their limitations in minimizing NSE.
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(a) Boxpushing (b) Driving

Figure 6.8: Effect of slack on o1.

6.4 Limitations of Learning from Feedback

While our results so far show that learning from feedback can successfully miti-

gate NSE, four key factors affect agent learning and its ability to mitigate NSE: (1)

challenges in collecting accurate feedback; (2) sampling biases in feedback; (3) limited

fidelity of agent state representation; and (4) unavoidability of certain NSE.

6.4.1 Challenges in Accurate Feedback Collection

This section discusses the challenges and drawbacks of collecting feedback using

the approaches presented in Section 6.3.4.1. In random query feedback, the human

is expected to provide exact penalty for NSE, which is non-trivial and can result

in misspecification in practice. While the approval (HA) approach overcomes this

drawback, the agent cannot differentiate between NSE with different severities, and

it is often infeasible for the human to provide feedback on randomly selected state-

action pairs. The corrections approach overcomes these limitations, but it requires

constant human oversight, similar to action approval or random query approach. The

Demo-AM approach alleviates the need for constant human supervision and it is rel-

atively easier for the human to provide demonstrations than correcting or supervising
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(a) Boxpushing (b) Driving

Figure 6.9: Effect of slack on NSE.

the agent. However, the agent does not receive information about NSE in the un-

visited states, and cannot differentiate between NSE with different severities. The

autonomous exploration approach avoids the need for human supervision altogether,

but it still requires the designer to specify the penalty for agent training in the sim-

ulator and may lead to misspecification. Further, autonomous exploration may be

unsafe in certain settings.

These approaches, except random query and approval, also introduce sampling

bias since the samples are not i.i.d., as the visited states are correlated. Further-

more, all actions other than the corrections or those demonstrated are assumed to

be unacceptable. Since there may be multiple acceptable actions in each state, this

introduces additional bias.

6.4.2 Bias in Various Feedback Mechanisms

The sampling biases in a feedback approach affects agent performance. Differ-

ent types of agent behaviors emerge when learning from different forms of feedback,

as shown in Figures 6.5 and 6.6, due to the sampling biases. Figure 6.10 plots the

frequency of querying in different regions of the state space with different feedback
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mechanisms. The x-axis denotes the state space and darker shades indicate regions

that were frequently queried. The results are plotted for driving domain with avoid-

able NSE and using 7000 queries for human feedback and 100 trials for exploration.

(a) Random Query (b) Strict HA (c) Lenient HA (d) Demo-AM

(e) Corrections (f) Conservative (g) Moderate (h) Radical

Figure 6.10: Frequency of querying across the state space with different feedback
approaches.

Feedback techniques that are based on random sampling of states have a higher

coverage of the state space, contributing to a better performance. The exploration

techniques are the most restricted, due to which their performances are largely similar.

Since an ε-greedy approach is followed for exploration, these techniques likely cover

only the region surrounding that of the primary policy. As states in this region are

often critical for satisfying the agent’s primary objective, learning about NSE in this

restricted region is often sufficient to effectively mitigate the penalty for NSE. These

results show that different feedback types focus on different regions of the state space,

which in turn affects the NSE model learning.

6.4.3 Fidelity of State Representation

Learning from feedback requires the agent state representation to have all the

necessary features in order to effectively learn about NSE. However, in many scenarios,

the agent’s state representation may include only the features related to the agent’s

task. Limited fidelity of the state representation may affect the agent’s learning
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and adaptation, since the NSE could potentially be non-Markovian and the feedback

signals received for a state-action pair may be conflicting.

(a) Boxpushing (b) Driving

Figure 6.11: Effect of learning from human feedback when the agent state represen-
tation has low fidelity.

(a) Boxpushing (b) Driving

Figure 6.12: Effect of learning with autonomous exploration when the agent state
representation has low fidelity.

Figures 6.11 and 6.12 plot the effect of learning from various feedback approaches

when the agent’s state representation has limited fidelity. For the boxpushing domain,

the agent’s state representation does not consider the surface type in the represen-

tation, since it is unrelated to its task. The state features used for training in this
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case are xby, where b indicates if the agent is currently pushing the box. However,

the occurrence of NSE correlates with surface type. Hence, the agent’s learning and

its ability to mitigate NSE are affected. Similarly for the driving domain, we do

not include the presence of puddles and nearby pedestrians in the state representa-

tion, since they are not relevant to o1. The state features used for training in this

case are xly, where l denotes the current speed. Since the presence of puddles and

nearby pedestrians are important features for learning a model of NSE, the agent’s

performance is affected when the state representation does not include these features.

6.4.4 Unavoidable NSE and Non-Immediate NSE

Updating the agent’s policy may not considerably mitigate the impacts of NSE

when they are unavoidable, with respect to the agent’s task, as shown in Figure 6.7.

For example, in the boxpushing domain, NSE are unavoidable if the entire floor is

covered with a rug. Alternate approaches that do not rely on agent learning and

adaptation are required to avoid NSE in such settings. It is also non-trivial to extend

the proposed learning from feedback approach to mitigate NSE associated with agent

trajectories that are not decomposable into additive penalties associated with state-

action pairs. For example, RN does not represent the penalties associated with a

sequence of actions. The following section presents an approach to avoid NSE in such

settings.

6.5 Mitigating NSE via Environment Shaping

This section presents another approach for mitigating NSE when agents operate

in environments that are configurable. In many settings, the human operating the

system has a broader scope of knowledge and more control over the environment in

which the agent is situated. These insights can be leveraged to mitigate the impacts of

NSE when the agent has no prior knowledge about the side effects of its actions. This
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problem is formulated as a human-agent team with decoupled objectives. The agent

optimizes its assigned task, during which its actions may produce NSE. The human

shapes the environment through minor reconfiguration actions so as to mitigate the

impacts of agent’s side effects, without affecting the agent’s ability to complete its

assigned task. This decoupled approach does not make any assumptions regarding

the agent’s model and its learning capabilities. Further, by controlling the space of

available modifications, the user can prioritize which side effects should be avoided.

6.5.1 Problem Formulation

The formulation consists of an actor agent and an environment designer agent.

The actor agent operates based on an MDP M̃ in an environment that is configurable

and described by a configuration file E, such as a map of the environment. Describing

the environment using configuration files, such as 2D maps, is a common practice in

robotics. A factored state representation is assumed. The actor optimizes the reward

for its assigned task, which is its primary objective oP , and its model includes the

necessary details relevant to oP . Executing the policy π computed using M̃ may lead

to NSE, unknown to the actor. The environment designer measures the impact of

NSE associated with the actor’s π and shapes the environment, if necessary. While

the environment designer can be any autonomous agent, the formulation is inspired

by having a human in the role. The actor and the environment designer share the

configuration file of the environment, which is updated by the environment designer

to reflect the modifications. Optimizing oP is prioritized over avoiding NSE. Hence,

shaping is performed in response to the actor’s policy. In the rest of this chapter, the

environment designer is simply referred to as designer—not to be confused with the

designer of the agent itself. The terms ‘actor’ and ‘agent’ are used interchangeably

to denote the actor agent.
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Each modification is a sequence of design actions. An example of a modification

is tmoveptable, l1, l2q, removeprugqu, which moves the table from location l1 to l2 and

removes the rug in the current setting, resulting in a new environment configuration.

The set of modifications is assumed to be finite since the environment is generally

optimized for the human and the agent’s primary task [104], and the human may

not be willing to drastically modify it. Additionally, the set of modifications for an

environment is included in the problem specification since it is typically controlled by

the user and is rooted in the NSE they want to mitigate.

The following assumptions are made about the nature of modifications: (1) the

start and goal conditions of the actor are fixed and cannot be altered, so that the

modifications do not alter the agent’s task or its capabilities; and (2) modifications

are applied tentatively for evaluation purposes and the environment is reset if the

reconfiguration affects the actor’s ability to complete its task or the actor’s policy in

the modified setting does not minimize the side effects.

Definition 26. An actor-designer framework to mitigate negative side effects ( AD-

NSE) is defined by xE0, E , M̃ ,Md, δA, δDy with:

• E0 denoting the initial environment configuration of the actor;

• E denoting a finite set of possible reconfigurations of E0;

• M̃ is the actor’s MDP;

• Md “ xΩ,Ψ, C,RNy is the model of the designer with

– Ω denoting a finite set of valid modifications that are available for E0,

including H to indicate that no changes are made;

– Ψ : E ˆ Ω Ñ E determines the resulting environment configuration after

applying a modification ω P Ω to the current configuration, E P E and is

denoted by ΨpE,ωq;
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– C : E ˆΩ Ñ R is a cost function that specifies the cost of applying a modi-

fication to an environment, denoted by CpE,ωq, with CpE,Hq“0, @E PE;

and

– RN is a model specifying the penalty for negative side effects in environment

E P E for the actor’s policy π.

• δA ě 0 is the actor’s slack, indicating the maximum allowed deviation from the

initial optimal policy for oP when recomputing its policy in a modified environ-

ment; and

• δD ě 0 indicates the designer’s tolerance threshold for NSE.

Decoupled Objectives The actor agent’s objective is to compute a policy π that

maximizes its expected reward from start state s̃0 in the current environment config-

uration E, with respect to oP :

max
πPΠ

V π
P ps̃0|Eq,

V π
P ps̃q “ Rps̃, πps̃qq `

ÿ

s̃1PS̃

T ps̃, πps̃q, s̃1qV π
P ps̃

1
q, @s̃ P S̃.

When the environment is modified, the actor agent recomputes its policy and may

end up with a longer path to its goal. The slack δA denotes the maximum allowed

deviation from the optimal expected reward in E0, V ˚P ps̃0|E0q, to facilitate minimizing

the NSE via shaping. A policy π1 in a modified environment E 1 satisfies the slack δA

if the following condition holds:

V ˚P ps̃0|E0q ´ V
π1

P ps̃0|E
1
q ď δA,

where V ˚P ps̃0|E0q denotes the optimal expected value of oP in the original, unmodified

environment E0 and V π1

P ps̃0|E
1q denotes the expected value in the modified environ-

ment E 1 with policy π1.
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The designer first estimates the penalty for NSE associated with agent behavior,

denoted by RNpπ,Eq. If the NSE exceeds the designer’s tolerance threshold, δD, then

the environment is reconfigured, assuming agent’s policy π is fixed. Given π and a

set of modifications Ω, the designer selects a modification that maximizes the utility:

max
ωPΩ

Uπpωq

Uπpωq “
`

RNpπ,Eq ´RNpπ,ΨpE,ωqq
˘

loooooooooooooooooomoooooooooooooooooon

reduction in NSE penalty

´CpE,ωq. (6.1)

Typically the environment designer is the user of the system and their preferences and

tolerance for NSE is captured by the utility of a modification. The designer’s objective

is to balance the trade-off between minimizing the NSE and the cost of applying the

modification. It is assumed that the cost of the modification is measured in the same

units as the NSE penalty. The cost of a modification may be amortized over episodes

of the actor performing the task in the environment.

The following properties are used to guarantee bounded-performance of the actor

when shaping the environment to minimize NSE.

Definition 27. Shaping is admissible if it results in an environment configuration

where (1) the actor can complete its assigned task, given δA, and (2) the NSE does

not increase, relative to E0.

Definition 28. Shaping is proper if (1) it is admissible, and (2) reduces the actor’s

NSE to be within δD.

Definition 29. Shaping is robust if it results in an environment configuration E

where all valid policies of the actor for oP , given δA, produce NSE within δD. That

is, RNpπ,Eq ď δD, @π : V ˚P ps̃0|E0q ´ V
π
P ps̃0|Eq ď δA.

Shared Knowledge The actor and the designer do not have details about each

other’s model. Since the objectives are decoupled, knowledge about the exact model
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parameters of the other agent is not required. Instead, the two key details that

are necessary to achieve collaboration are shared: (1) configuration file describing the

environment and (2) the actor’s policy. The shared configuration file, such as the map

of the environment, allows the designer to effectively communicate the modifications

to the actor. The actor’s policy is required for the designer to shape the environment.

However, compact representation of the actor’s policy is a practical challenge in large

problems [31]. Therefore, instead of sharing the complete policy, the actor provides

a finite number of demonstrations D “ tτ1, τ2, . . . , τnu of its optimal policy for oP in

the current environment configuration. Each demonstration τ is a trajectory from

start to goal, following π. Deterministic policies for the actor are considered.

Using D, the designer can extract the actor’s policy and measure its NSE. Policy

is extracted by associating the observed actions with states in the demonstrations.

The designer is aware of the general capabilities of the agent and its objectives as

they are assigning the task, which makes it easier for them to construe the agent’s

trajectories. Naturally, increasing the number and diversity of sample trajectories

that cover the actor’s reachable states helps the designer improve the accuracy of

estimating the actor’s NSE and select an appropriate modification. If D does not

starve any reachable state, following π, then the designer can extract the actor’s

complete policy.

6.5.2 Algorithm for Environment Shaping

Our solution approach for solving AD-NSE, described in Algorithm 2, proceeds in

two phases: a planning phase and a shaping phase. In the planning phase (Line 4),

the actor computes its policy π for oP in the current environment configuration and

generates a finite number of sample trajectories D, following π. The planning phase

ends with disclosing D to the designer. The shaping phase (Lines 7-14) begins with

the designer associating states with actions observed in D to extract a policy π̂, and
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estimating the corresponding NSE penalty, denoted by RNpπ̂, Eq. If RNpπ̂, Eq ą δD,

the designer applies a utility-maximizing modification and updates the configuration

file. The planning and shaping phases alternate until the NSE is within δD or until

all possible modifications have been tested.

Algorithm 2 Environment shaping to mitigate NSE

Require: xE0, E , M̃ ,Md, δA, δDy: AD-NSE
Require: d: Number of sample trajectories
Require: b: Budget for evaluating modifications

1: E˚ Ð E0 Ź Initialize best configuration
2: E Ð E0

3: nÐ 8

4: D Ð Solve M̃ for E0 and sample d trajectories
5: Ω̄ Ð Diverse modifications(b,Ω,Md, E0)
6: while |Ω̄| ą 0 do
7: π̂ Ð Extract policy from D
8: if RNpπ̂, Eq ă n then
9: nÐ RNpπ̂, Eq

10: E˚ Ð E
11: if RNpπ̂, Eq ď δD then break
12: ω˚ Ð argmaxωPΩ̄ Uπ̂pωq
13: if ω˚ “ H then break
14: Ω̄ Ð Ω̄zω˚

15: D1 Ð Solve M̃ for ΨpE0, ω
˚q and sample d trajectories

16: if D1 ‰ tu then
17: D Ð D1
18: E Ð ΨpE0, ω

˚q

19: return E˚

Shaping
phase

The actor returns D “ tu when the modification affects its ability to reach the goal,

given δA. Modifications are applied tentatively for evaluation and the environment

is reset if the actor returns D “ tu or if the reconfiguration does not minimize the

NSE. Therefore, all modifications are applied to E0 and it suffices to test each ω

without replacement as the actor always calculates the corresponding optimal policy.

When M̃ is solved approximately, without bounded-guarantees, it is non-trivial to

verify if δA is violated but the designer selects a utility-maximizing ω corresponding
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to this policy. Algorithm 2 terminates when at least one of the following conditions

is satisfied: (1) the NSE is within δD; (2) all ω P Ω have been tested; or (3) the

utility-maximizing option does not make any modification at all, ω˚“H. The first

condition is straightforward. The second criterion describes the worst case scenario

when no modification reduces the NSE to be within δD. In such cases, our algorithm

identifies the ω that results in an environment configuration with the least NSE

possible. When ω˚“H, it indicates that cost of modification exceeds the reduction

in NSE or no modification can reduce the NSE further.

Though the designer calculates the utility for all modifications, using RN , there is

an implicit pruning in the shaping phase since only utility-maximizing modifications

are evaluated (Line 15). However, when multiple modifications have the same cost

and produce similar environment configurations, the algorithm will alternate between

planning and shaping multiple times to evaluate all these modifications, which is |Ω|

in the worst case. To minimize the number of evaluations in settings with large

Ω, consisting of multiple similar modifications, a greedy approach to identify and

evaluate diverse modifications is presented below.

6.5.2.1 Selecting diverse modifications

Let b ą 0 denote the maximum number of modifications the designer is willing

to evaluate. When the budget bă|Ω|, it is beneficial to evaluate b diverse modifica-

tions. Algorithm 3 presents a greedy approach to select b diverse modifications. If

two modifications result in similar environment configurations, the algorithm prunes

the modification with the higher cost. The similarity threshold is controlled by ε.

This process is repeated until b modifications are identified. Measures such as the

Jaccard distance or embeddings may be used to estimate the similarity between two

configurations.
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Algorithm 3 Diverse modifications(b,Ω,Md, E0)

1: Ω̄ Ð Ω
2: if b ě |Ω| then return Ω
3: for all ω1, ω2 P Ω̄ do
4: if similarity(ω1, ω2q ď ε then
5: Ω̄ = Ω̄z argmaxω1,ω2

pCpE0, ω1q, CpE0, ω2qq

6: if |Ω̄| “ b then return Ω̄

Remark 30. Shaping with Algorithm 2 is guaranteed to be admissible but may not

be proper.

Algorithm 2 ensures that a modification does not negatively impact the actor’s

ability to complete its task, given δA (Lines 16-19), and stores the configuration with

least NSE (Line 10). Therefore, Algorithm 2 is guaranteed to return an E˚ with

NSE equal to or lower than that of the initial configuration E0, thereby guaranteeing

admissible shaping.

Shaping with Algorithm 2 is not guaranteed to be proper because (1) no modifi-

cations in Ω may be able to reduce the NSE penalty below δD; or (2) the cost of such

a modification may exceed the corresponding reduction in NSE.

6.5.3 Theoretical Properties

This section discusses the conditions under which the actor’s policy is unaffected

by shaping, and how the proposed approach for shaping can be viewed as an extensive

form game.

6.5.3.1 Policy-Preserving Modification

With each reconfiguration, the actor is required to recompute its policy. This

section describes a class of problems for which the actor’s policy is unaffected by

shaping.

Definition 31. A modification is policy-preserving if the actor’s initial policy is

unaltered by environment shaping.
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This property induces policy invariance before and after shaping and hence the

policy is backward-compatible. Additionally, the actor is guaranteed to complete its

task with δA “ 0. Figure 6.13 illustrates the dynamic Bayesian network for this class

of problems, where rP denotes the reward associated with oP and rN denotes the

penalty for NSE.

Figure 6.13: A dynamic Bayesian network description of a policy-preserving modifi-
cation.

Let F denote the set of features in the environment, with FP Ă F affecting the

actor’s policy and FD Ă F altered by the designer’s modifications. Let ~f and ~f 1

be the feature values before and after environment shaping. Given the actor’s π, a

policy-preserving ω follows FD “ F zFP , ensuring ~fP “ ~f 1P . When ~f “ ~fP Y ~fD,

a policy-preserving ω mitigates NSE by enforcing PrpFD “ ~fD| ~fP , πq “ 0, @~f . For

example in the boxpushing domain, regions in the agent’s shortest path to its goal

cannot be covered by a rug.

Proposition 32. Given an environment configuration E and actor’s policy π, a

modification ω P Ω is guaranteed to be policy-preserving if FD “ F zFP .

Proof. Proof by contradiction. Let ω P Ω be a modification consistent with FDXFP “

H and F “ FP YFD. Let π and π1 denote the actor’s policy before and after shaping

the environment with ω such that π ‰ π1. Since the actor always computes an

optimal policy for oP (assuming fixed strategy for tie-breaking), a difference in the

123



policy indicates that at least one feature in FP is affected by ω, ~fP ‰ ~f 1P . This is

a contradiction since FD X FP “H. Therefore ~fP “ ~f 1P and π “ π1. Thus, ω P Ω is

policy-preserving when FD “ F zFP .

Corollary 33. A policy-preserving modification identified by Algorithm 2 guarantees

admissible shaping.

Furthermore, a policy-preserving modification results in robust shaping when

PrpFD “ ~fDq “ 0, @~f “ ~fP Y ~fD with NSE greater than δD. The policy-preserving

property is sensitive to the actor’s state representation. However, many real-world

problems exhibit this feature independence. In the boxpushing example (Figure 6.1),

the actor’s state representation may not include details about the rug since it is not

relevant to the task. Moving the rug to a different part of the room that is not on the

actor’s path to the goal is an example of a policy-preserving and admissible shaping.

Modifications such as removing the rug or covering it with a protective sheet are

policy-preserving and robust shaping since there is no direct contact between the box

and the rug, for all policies of the actor.

6.5.3.2 Shaping as an Extensive Form Game

Our solution approach with decoupled objectives can be viewed as a game between

the actor and the designer, which is useful to understand the link between two often

distinct fields of decision theory and game theory. This also opens the possibility for

future work on game-theoretic approaches for mitigating NSE.

The action profile or the set of strategies for the actor is the policy space Π, with

respect to oP and E , with payoffs defined by its reward function R. The action profiles

for the designer is the set of all modifications Ω with payoffs defined by its utility

function U . In each round of the game, the designer selects a modification that is a

best response to the actor’s policy π:
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bDpπq “ tω P Ω|@ω1 P Ω, Uπpωq ě Uπpω
1
qu. (6.2)

The actor’s best response is its optimal policy for oP in the current environment

configuration, given δA:

bApEq “ tπ P Π|@π1 P Π, V π
P ps̃0q ě V π1

P ps̃0q ^ V
π0
P ps̃0q ´ V

π
P ps̃0q ď δAu, (6.3)

where π0 denotes the optimal policy in E0 before initiating environment shaping.

These best responses are pure strategies since there exists a deterministic optimal

policy for a discrete MDP with finite horizon or infinite horizon with discounting [79],

and a modification is selected deterministically.

The policy constraints induced by Equations 6.2 and 6.3 induce an equivalent

extensive form game with strategy profiles Ω for the designer and Π for the actor, given

start state s̃0. However, the agents have incomplete information: each agent selects

a best response based on the information available to it and its payoff matrix, and

is unaware of the strategies and payoffs of the other agent. The designer is unaware

of how its modifications may impact the actor’s policy until the actor recomputes its

policy and the actor is unaware of the NSE of its actions. Hence this is an extensive

form game with incomplete information.

6.5.4 Experimental Setup

The effectiveness of shaping is investigated in settings with avoidable and unavoid-

able NSE.

Baselines The performance of shaping with budget is compared with the following

baselines. First is the Initial approach in which the actor’s policy is naively executed

and does not involve shaping or any form of learning to mitigate NSE, similar to the

No queries approach considered in Section 6.3.5. Second is shaping with exhaustive
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search to select a modification, b “ |Ω|. Third is the Feedback approach in which

the agent performs a trajectory of its optimal policy for oP and the human approves

or disapproves the observed actions based on the NSE occurrence. The agent then

disables all the disapproved actions and recomputes a policy for execution. If the

updated policy violates the slack, the actor ignores the feedback and executes its

initial policy since oP is prioritized. Using human feedback as training data, the

agent learns a predictive model of NSE.

A random forest classifier from the sklearn Python package is used for learning a

predictive model. Jaccard distance is used to measure the similarity between environ-

ment configurations. The actor’s MDP is solved using value iteration. The algorithms

were implemented in Python and tested on a computer with 16GB of RAM. Action

costs are optimized, which are negation of rewards. Values averaged over 100 trials of

planning and execution, along with the standard errors, are reported for the following

domains.

Boxpushing In this domain, the actor is required to minimize the expected time

taken to push a box to the goal location. Each action takes `1 unit of time. The

actions succeed with probability 0.9 and may slide right with probability 0.1. Each

state is represented as xx, y, by where x, y denote the agent’s location and b is a

Boolean variable indicating if the agent is pushing the box. Pushing the box over

the rug or knocking over a vase on its way results in NSE, incurring a penalty of

`5. The designers are the system users. Experiments are conducted on problems

with grid size 15ˆ 15. Shaping in this domain considers 24 modifications, such as

adding a protective sheet over the rug, moving the vase to a corner of the room,

removing the rug, block access to the rug and vase area, among others. Removing

the rug costs 0.4/unit area covered by the rug, moving the vase costs `1, and all other

modifications cost 0.2/unit. Except for blocking access to the rug and vase area, all

the other modifications are policy-preserving for the representation considered.
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Driving Our second domain is based on simulated autonomous driving, in which

the actor’s objective is to minimize the expected cost of navigation from start to a

goal location, during which it may encounter some potholes. Each state is the agent’s

location represented by xx, yy. A grid of size 25 ˆ 15 is considered. The actor can

move in all four directions at low and high speeds, with costs `2 and `1 respectively.

Driving fast through shallow potholes results in a bumpy ride for the user, which is a

mild NSE with a penalty of `2. Driving fast through a deep pothole may damage the

car in addition to the unpleasant experience for the rider and therefore it is a severe

NSE with a penalty of `5. The cost of modifications are amortized over multiple

episodes of agent operation in the environment. The modifications considered are:

disabling ‘move fast’ action for the actor in zone i, 1 ď i ď 4, which denotes reduced

speed limit,; disabling ‘move fast’ action always; disabling ‘move fast’ action in zones

with shallow potholes; fill all potholes; fill deep potholes; and fill deep potholes in

zone i, 1 ď i ď 4. Disabling ‘move fast’ costs 0.5 units per pothole in that zone.

Filling a pothole costs `2 units, and it is a policy-preserving modification.

6.5.5 Results and Discussion

This section discusses the effectiveness of shaping and the effect of slack on the

performance.

Effectiveness of shaping The effectiveness of shaping is evaluated in terms of the

average NSE penalty incurred and the expected value of oP after shaping. Figure 6.14

plots the results for the boxpushing domain with δA “ 0, δD “ 0, and b “ 3, as the

number of observed actor trajectories is increased.

The results for oP are not reported since a slack value δA “ 0 is considered and

therefore the agent always optimizes oP . Feedback budget is 500. With at most

five trajectories, the designer is able to select a policy-preserving modification that

avoids NSE. Shaping w/ budget b “ 3 performs similar to shaping by evaluating all
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(a) Avoidable NSE (b) Unavoidable NSE

#Trajectories Shaping Shaping w/ budget

2 1 1
5 2 1
10 2 1
20 2 1
50 6 3
100 6 3

(c) Number of modifications evaluated when NSE are
avoidable.

Figure 6.14: Results on the boxpushing domain.

modifications, and reduces the number of shaping evaluations by 50%. The feedback

approach is not able to mitigate NSE since it violates the actor’s slack and the agent

state representation has limited fidelity, similar to the results in Section 6.4.

Figure 6.15 plots the results on the driving domain with avoidable NSE, δA “ 25%,

δD “ 0, and b “ 4. The driving domain does not have unavoidable NSE since the agent

can always avoid NSE by slowing down over potholes. Shaping with budget reduces

NSE as more trajectories are observed but is unable to avoid NSE. However, shaping

by evaluating all modifications avoids NSE by observing ten actor trajectories. The

feedback approach is unable to mitigate NSE due to the limited state representation

of the agent. In both domains, it is observed that shaping avoids NSE, after observing

few actor trajectories, and shaping w/ budget mitigates NSE considerably.
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(a) Average NSE penalty. (b) Expected cost of oP .

Figure 6.15: Results on driving domain with avoidable NSE.

Figure 6.16: Effect of δA and δD on the average NSE penalty.

Effect of slack The values of δA and δD are varied and the resulting NSE penalty are

plotted in Figure 6.16. Results on the driving domain are reported for shaping based

on 100 actor trajectories. The value of δA is varied between 0-25% of V ˚P ps̃0|E0q and

δD is varied between 0-25% of the NSE penalty of the actor’s policy in E0. Our results

show that increasing the slack helps reduce the NSE, as expected. In particular, when

δDě15%, the NSE penalty is considerably reduced with δA“15%. Overall, increasing

δA is most effective in reducing the NSE. The effect of slack was also tested on the

cost for oP . The results showed that the cost was predominantly affected by δA. A

similar performance was observed for all values of δD for a fixed δA and therefore

do not include that plot. This is an expected behavior since oP is prioritized over

minimizing NSE in our setting.
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6.6 Limitations of Environment Shaping

While our results show that environment shaping can successfully mitigate both

avoidable and unavoidable NSE, the following factors may affect the performance.

6.6.1 Challenges in Performing Shaping

Environment shaping requires the designer, typically the user, to supervise the

agent and have control over the environment to perform shaping. In general, certain

reconfigurations may require specific skills. Our approach, however, does not model

the designer’s competency and instead assumes that the set of available modifications

is optimized for the designer’s skills. Access to a model of the designer’s competency

is required to automatically identify useful modifications that the designer can imple-

ment. In addition, our formulation assumes that the designer can predict the actor’s

policy from trajectories to perform shaping effectively. In practice, the designer re-

quires knowledge about agent behavior to be able to predict the agent policy with

high confidence.

While our algorithm can guide the user in selecting an appropriate modification,

the designer may be required to evaluate multiple reconfigurations to effectively avoid

NSE when there is a large set of diverse modifications. This can be time-consuming for

the user. Though shaping w/ budget helps alleviate this concern, it introduces trade-

off between number of modifications to evaluate and the final NSE. A lower budget

reduces the number of modifications to evaluate, but it is not guaranteed to find an

optimal, utility-maximizing reconfiguration. Another approach to identify the right

modifications quickly is to generalize the observed performance across modifications.

However, it is non-trivial to generalize the effect of shaping on agent performance and

the resulting NSE, since we do not assume any knowledge about the agent’s model.

Our framework requires the agent to recompute its policy every time a modifica-

tion is being evaluated, which can be computationally expensive if the agent operates
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based on a large, complex model. Though policy-preserving modifications overcome

this limitation, it is challenging to determine a priori whether a given modification is

policy-preserving since it depends on the agent’s model.

6.6.2 Interference with Future Tasks and Other Agents

Reconfigurations can be temporary or permanent. Permanent modifications may

affect the agent’s ability to perform future tasks in the environment or even introduce

new NSE when the agent performs different types of tasks. This issue did not arise in

our settings because the focus was on scenarios where the agent repeatedly performs

the same task. It is not straightforward to extend our algorithm to handle situations

where an agent performs different types of task, since this requires knowledge about

the agent’s policies corresponding to different tasks and estimating slack for all the

tasks performed by the agent. Further, there may be multiple agents, with different

tasks and capabilities, operating simultaneously in an environment. In such settings,

even temporary modifications may affect the performance of other agents or introduce

NSE of their actions. However, our approach currently does not account for these

types of interferences when identifying an appropriate reconfiguration to mitigate

NSE.

6.7 Summary

This chapter formalizes the problem of NSE and presents two solution approaches

that are complementary in their assumptions and agent responsibilities. First, we

investigate the effectiveness of various forms of feedback in learning a model of NSE.

This problem is formulated as a multi-objective problem with slack and an algorithm

to determine the minimum slack required to avoid these side effects is proposed.

Second, an environment shaping approach is presented. This approach leverages

human assistance, beyond providing feedback, by reconfiguring the environment. The
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problem is formulated as a human-agent collaboration with decoupled objectives and

present an algorithm for shaping. Empirical evaluations show that our approaches

are effective in mitigating avoidable and unavoidable NSE.
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CHAPTER 7

CONCLUSION

Reliable decision-making is critical for long-term deployment of autonomous sys-

tems in the open world. Model imprecision can cause unreliable agent behavior. The

goal of this dissertation is to develop techniques to identify and mitigate the un-

desirable behavior of an agent operating under uncertainty and model imprecision.

Towards this goal, solutions are presented to address three classes of model impre-

cision, each with different assumptions on what information is known to the agent

a priori. This chapter summarizes the main contributions of this dissertation and

suggests directions for future research on reliable AI systems.

7.1 Summary of Contributions

This dissertation presents frameworks to avoid undesirable behavior arising due

to three classes of model imprecision in a Markov decision process.

Chapter 3 addresses the model imprecision arising from limited computational

resources that requires the agent to simplify its model for planning. The model is

simplified for planning by considering fewer action outcomes, relative to the origi-

nal model, which may lead to unsafe behavior. Building on the observation that

the solution quality can be boosted by accounting for certain outcomes, two general

methods are introduced to devise risk-aware reduced models that balance the trade-

off between model simplicity to fidelity. First, planning using a portfolio of outcome

selection principles is presented, to selectively improve the model fidelity and risk

awareness in certain states. The reduction impact is used as a heuristic to determine
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when all outcomes of an action should be considered. Second, a technique that ac-

counts for the ignored outcomes in the reduced model by modifying the actions costs

is introduced. The expected values of the ignored outcomes are added to the actions

costs, reflecting the long-term costs of actions in a reduced model. Our results con-

tribute to a better understanding of how disparate reduced model techniques relate

to each other and could be used together to achieve optimal action selection when

planning with a reduced model.

Chapter 4 relaxes the assumption that precise information about the agent’s tar-

get environment is available during system design. It targets scenarios in which it is

impossible to accurately determine the goal states for planning, ahead of execution,

but the uncertainty over the goal states can be modeled via a probability distribu-

tion. In such scenarios, using standard SSP models, which require specifying a goal

state, can lead to misspecified goal state. The chapter introduces goal uncertain SSP

(GUSSP) and presents two solution approaches: a heuristic-based approach and a

determinization-based approach. Our results show that by leveraging the fully ob-

servable components of the problem, it is possible to solve it optimally without relying

on POMDP solvers.

Chapters 5 and 6 relax the assumption that the agent’s model encodes uncertainty

over the missing details. The chapters target settings in which the agent has no

prior information about the missing details, which may lead to negative side effects.

Chapter 5 formally defines the negative side effects of agent actions and discusses the

key characteristics. Results of a user study show that negative side effects can affect

user trust, and that users are willing to assist the system in detecting and mitigating

the negative side effects. The user study results also highlight the need for developing

effective solution approaches to mitigate negative side effects, and support the design

of customizable systems to improve user satisfaction.
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Chapter 6 presents two solution methods to mitigate negative side effects: learning

from feedback approach, and environment shaping. The two approaches are comple-

mentary in their assumptions and agent responsibilities. In learning from feedback,

the agent gathers information about side effects and updates its policy, using feed-

back. In environment shaping, the user reconfigures the environment so as to mitigate

the negative side effects of the agent. The agent updates its policy in response to the

reconfiguration, and the approach does not involve agent learning. The problem of

learning from feedback is formulated as a multi-objective problem with lexicographic

reward preferences, and environment shaping as a human-agent collaboration ap-

proach. In both the approaches, the reward function for the agent’s primary assigned

task and the penalty for negative side effects are decoupled. This ensures that the

reliability of the agent’s model, with respect to its assigned task, is not affected when

updating agent policy to mitigate the impacts of negative side effects.

Throughout this dissertation, the proposed approaches are evaluated on simple

example problems that capture the real problem without other confounding factors,

which allows us to understand the potential benefits and limitations of the techniques.

There are many more problems that are yet to be studied and many promising avenues

exist for future research.

7.2 Future Work

This section identifies key research directions that can further deepen our under-

standing of what factors affect reliability and how to design autonomous systems that

are cognizant of their limitations, without excessively relying on human assistance.

Our solutions to mitigate negative side effects considered a single agent setting.

But agents rarely operate in isolation and their actions impact other agents in the

environment. Extending our approaches to avoid negative side effects in a multi-agent

setting is an interesting direction for future research. In addition, our approaches
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performed a single update of the agent’s policy, after gathering data about side effects.

But as the system operates for extended periods of time, additional side effects may

be discovered. It is therefore important to update the policy, as and when a certain

number of new instances of negative side effects are discovered.

There are many factors that affect the reliability of a deployed system, beyond

model fidelity. Reliability can be affected by components that inform the reasoning

module of the agent. For instance, an agent behavior can be unreliable due to sensor or

perception failure, despite using a perfect model for planning. Developing techniques

to autonomously recognize such failures and quickly recover from them is an important

step for improving the reliability of complex systems such as autonomous vehicles.

Further, perception of reliability by the user is affected when there is a mismatch

between user expectations and system performance. Interpretable models and solu-

tions help users understand the model limitations and identify errors in the system.

Sometimes, a sub-optimal solution may sometimes be more interpretable than an opti-

mal solution [25, 90]. Further, interpretability depends on the background knowledge

of the user. Approaches to improve interpretability must be able to quickly infer user

preferences and their background knowledge, customize solutions to maximize inter-

pretability and user satisfaction [89], and efficiently balance the trade-off between

solution quality and interpretability.

The approaches presented in this dissertation for identifying undesirable behavior

relied on some form of human assistance, and further assumed that the assistance

is readily available and accurate. However, human feedback is often noisy and de-

layed, when available. Designing solution approaches that are robust to errors in

human assistance is an important future research direction. No one form of human

assistance may work well for all settings or for all the tasks the agent is required to

perform. To leverage the broad background knowledge of humans, we should aim to

develop techniques to automatically switch between different forms of human assis-
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tance, depending on the type of undesirable behavior and the human’s preferred form

of assistance. To enable long-term autonomy, the system must be able to operate

reliably while minimizing the reliance on humans. Further investigations must be

conducted to determine how to design metareasoning approaches to monitor system

performance, learn to recognize new risks, and automatically identify error sources.

This dissertation focused on the consequences of operating based on an impre-

cise model, from a safety and control perspective. The system may produce other

forms of undesirable behavior as well. The system’s decisions may be considered

unfair in different ways to different groups, when optimizing an incompletely speci-

fied objective [29, 39]. A key challenge in fair sequential decision-making is precise

specification of the fairness metric. Developing general techniques for fair sequential

decision-making is an important direction for future research.

7.3 Final Thoughts

AI systems will continue to have broad societal impacts in the years to come.

Researchers today have a unique opportunity to shape this impact and a massive

responsibility to ensure these systems operate reliably and benefit society. This thesis

is merely a step towards enabling reliable operation of autonomous systems in the

open world. It is our hope that techniques introduced in this dissertation will inspire

others to propose solutions, improving upon our techniques, to enable widespread

deployment of autonomous systems that are reliable and which benefit society.

137



APPENDIX

NEGATIVE SIDE EFFECTS USER STUDY SURVEY
QUESTIONNAIRE

This chapter presents the survey questionnaires used for our human subjects study

to understand user attitudes towards negative side effects. The results of this study

are discussed in detail in Chapter 5.

Pre-Survey Questionnaire

The pre-survey questionnaire was used to assess participants’ familiarity with AI

systems and their fluency in English.

Unless otherwise specified, select an option that describes your attitude for the fol-

lowing questions.

1. Are you over 30 years of age?

• Yes

• No

2. Are you fluent in English?

• Yes

• No

3. “Autocorrect” is a common tool in smartphones that automatically corrects mis-

spelled words in our text. On most occasions, the autocorrect tool corrects the spelling
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of the word we misspell. Sometimes, it may guess the word incorrectly and modify the

intended word. From the following options, select a response that best summarizes

your experience.

• I rarely experience this problem, I continue to use autocorrect

• I often experience this problem but I continue to use autocorrect

• I experienced this problem and disabled autocorrect

• I have not experienced this issue

4. Imagine you are riding in a self-driving car. The car is trained to follow the

standard traffic rules but does not slow down when driving through low visibility

areas. Will you continue to use the car in self-driving mode?

• I will continue to use the car in the self-driving mode

• I will not use the self-driving mode in low visibility areas

• I will not use the self-driving mode; I do not trust it

5. How comfortable are you/would you be using products with Artificial Intelligence

algorithms? (Examples of such products: robotic vacuum cleaner, Google translate)

• Uncomfortable, I will not use such products

• Somewhat uncomfortable, I prefer not to use such products

• Neutral, I do not mind using such products

• Somewhat comfortable, I like to use products powered by Artificial Intelligence

algorithms

• Comfortable, I often use products powered by Artificial Intelligence algorithms
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6. Which of the following technologies have you used in the past year? Select all that

apply.

• Virtual assistants like Apple Siri, Amazon Alexa or Google Nest

• Tools for navigation such as Waze, Google maps, Apple maps, Uber, Lyft

• Check deposits using mobile banking applications

• None

Roomba Questionnaire

This section presents the questionnaire for the Roomba domain.

Scenario: Consider a robotic vacuum cleaner that is assigned the task of mopping the

wooden floor of your living room everyday. The robot takes 10 minutes to complete

this task. However, when cleaning the areas closer to the wall, it sprays some water

on the wall.

1. From the following options, select one that best describes your tolerance towards

this behavior.

• I am willing to tolerate the robot spraying water on the wall

• I am willing to tolerate the robot spraying water on the wall but will use the

robot less frequently

• I do not tolerate this behavior and I will not use this robot in its current

condition

2. On a scale of 1 to 5, how acceptable is it to spray water on walls? [1 is unacceptable,

5 is acceptable]
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3. You can personalize the robot and help it learn to avoid spraying water on the

wall by pressing a button every time the robot makes this mistake. This will help

the robot avoid spraying water on walls in any room in the house. How often are you

willing to provide feedback to the robot by pressing the button?

• Till the robot learns to avoid it

• A few times

• Whenever I have time to closely monitor it

• Never

4. By avoiding cleaning the area near the walls („5 inches from the wall), the robot

can prevent spraying water on the walls. Is this an acceptable behavior?

• Yes, I do not mind the robot skipping the areas closer to the wall

• No, I want the entire floor to be cleaned

5. You can add a protective sheet on areas of the wall closer to the floor when the

robot is cleaning. Assume this protective sheet costs $10. This will prevent the robot

from spraying water on the wall while cleaning the floor entirely. Are you willing to

purchase and install the protective sheet?

• I am willing to purchase the sheet and install it

• I am not willing to purchase the sheet but I am willing to install it, if it is

provided by the manufacturer for no additional cost

• I am neither willing to purchase nor install the sheet

6. You can either provide feedback to the robot by pressing a button every time it

makes mistakes or install the protective sheet (assuming the sheet is provided by the

manufacturer) once. Select the option that best describes your preference.
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• Providing feedback by pressing the button as many times till the robot learns

to avoid spraying water on the walls

• Install protective sheet right away

• Install protective sheet if the robot does not learn after providing feedback

50-100 times

• Neither, I can tolerate water spray on the walls

7. Imagine a setting where the dust only accumulates in the corners. There is no way

for the robot to remove the dust without spraying water on the wall. Which of the

following best describes your tolerance towards this situation?

• The robot can clean the floor; I can tolerate some water sprayed on the walls

• I want the robot to minimize spraying water on the walls as much as possible;

I can tolerate some water sprayed on some areas

• I do not tolerate spraying water on the walls, I prefer the robot to skip cleaning

the areas near the wall

• I do not tolerate this behavior and I don’t want to use this robot in its current

condition

8. Imagine a setting where the dust only accumulates in the corners. There is no way

for the robot to remove the dust without spraying water on the wall. But you can

help by adding a protective sheet on the wall when the robot is cleaning. Are you

willing to purchase and install the protective sheet?

• I am willing to purchase the sheet and install it

• I am not willing to purchase the sheet but I am willing to install it, if it is

provided by the manufacturer for no additional cost
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• I am neither willing to purchase nor install the sheet

9. How does the robot spraying water on the walls when mopping the floor affect

your trust on the product?

• The robot’s actions are sometimes inconvenient but I trust it to complete its

cleaning task

• I trust the robot less when it does not learn to avoid its mistakes over time

• I do not trust the robot to be capable of completing its task and I will not use

it

10. Which of the following features will encourage you to continue using the robotic

vacuum cleaner instead of returning it to the manufacturer? Select all that apply.

• Ability to press a button and provide feedback to the robot when its actions

are not desirable, so it can learn to avoid its mistakes

• Ability to select areas where the robot is not allowed to operate, such as areas

near the wall

• Tools such as protective sheet for sockets

AV Questionnaire

This section presents the questionnaire for the autonomous vehicle (AV) domain.

Scenario: Imagine you are riding in a self-driving car from home to work every day.

The car has been tested for conforming to standard traffic rules. The car takes 20

minutes to reach your destination from your start location. However, the ride is

bumpy since the car drives fast through potholes.

1. From the following options, select one that best describes your tolerance towards

this scenario.
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• It is sometimes inconvenient but I am willing to tolerate the bumpy ride

• I am willing to tolerate the bumpy ride but will use the car less frequently

• I do not tolerate bumpy rides

2. Imagine the car can recognize the stop signs only when it is closer to it and

therefore slams the brake every time a stop sign is encountered. From the following

options, select one that best describes your tolerance towards this consequence.

• It is sometimes inconvenient but I am willing to tolerate the jerk

• I am willing to tolerate the jerk but will use the car less frequently

• I do not tolerate this behavior

3. On a scale of 1 to 5, with 1 being the lowest and 5 being the highest, how acceptable

is it to you if the ride is bumpy? [1 is unacceptable and 5 is acceptable]

4. You can personalize the car and help it learn to avoid driving fast through potholes

by pressing a button every time the car makes this mistake. How often are you willing

to provide feedback to the car by pressing the button?

• Till the car learns to avoid it

• A few times

• Never

5. The bumpy ride can be avoided by taking a longer route with no potholes. This

takes 25 minutes to reach the destination, instead of 20 minutes. Is this an acceptable

behavior?

• Yes, I am willing to travel a longer route

• No, I want the car to drive slowly through potholes and travel in the current

route
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• No, I want to reach the destination in 20 minutes

6. You can add a pothole-detection sensor to the car. This sensor, costing $50, will

detect potholes and prevent the car from going fast through potholes. Are you willing

to purchase and install this sensor?

• Yes, I am willing to purchase the sensor and install it

• No, I am not willing to purchase the sensor but willing to install the sensor, if

it is provided by the manufacturer for no additional cost

• No, I am neither willing to purchase nor install the sensor

7. You can either provide feedback to the car by pressing a button every time it

drives fast through a pothole or install the pothole-detection sensor once (assuming

the sensor is provided by the manufacturer). Select the option that best describes

your preference.

• Providing feedback by pressing the button as many times till the car learns to

avoid driving fast through potholes

• Install pothole-detection sensor right away

• Install pothole-detection sensor if the car does not learn after providing feedback

50-100 times

• Neither, I can tolerate the bumpy ride

8. Imagine a setting where all the roads to your destination have equal number of

potholes. There is no way to avoid roads with potholes to reach your destination.

Which of the following best describes your tolerance towards this situation?

• I can tolerate the bumpy ride
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• I want the car to slow down on potholes as much as possible; I can tolerate

some bumpiness

• I do not tolerate bumpy rides

9. Imagine a setting where all the roads to your destination have equal number of

potholes. There is no way to avoid roads with potholes to reach your destination. You

can add a sensor, which costs $50, to the car that will detect potholes and prevent

the car from going fast through potholes. Are you willing to purchase and install this

sensor?

• Yes, I am willing to purchase the sensor and install it

• No, I am not willing to purchase the sensor but willing to install the sensor, if

it is provided by the manufacturer for no additional cost

• No, I am neither willing to purchase nor install the sensor

10. How does the car’s performance when driving on potholes affect your attitude

towards it?

• It is sometimes inconvenient but I can tolerate it

• I trust the car less when it does not learn to avoid its mistakes over time

• I will not use the self-driving mode on roads with potholes, I prefer to use the

manual driving mode on roads with potholes

• I do not trust the car to be capable of driving safely

11. Which of the following features will encourage you to continue using the self-

driving car instead of returning it to the manufacturer? Select all that apply.

• Ability to press a button and provide feedback to the car when its actions are

not desirable, so it can learn to avoid its mistakes
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• Ability to select areas where self-driving can be disabled and manual driving is

enabled

• Tools such as sensors to detect potholes and reduce speed automatically
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