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Abstract

Many combinatorial computation problems in computer science can be cast as a reachability problem in
an implicitly described, potentially huge, graph – the state space. State-space search is a versatile and
widespread method to solve such reachability problems, but it requires some form of guidance to prevent
exploring that combinatorial space exhaustively. Conflict-driven learning is an indispensable search in-
gredient for solving constraint satisfaction problems (most prominently, Boolean satisfiability). It guides
search towards solutions by identifying conflicts during the search, i.e., search branches not leading to any
solution, learning from them knowledge to avoid similar conflicts in the remainder of the search.

This thesis adapts the conflict-driven learning methodology to more general classes of reachability prob-
lems. Specifically, our work is placed in AI planning. We consider goal-reachability objectives in classical
planning and in planning under uncertainty. The canonical form of “conflicts” in this context are dead-end
states, i.e., states from which the desired goal property cannot be reached. We pioneer methods for learn-
ing sound and generalizable dead-end knowledge from conflicts encountered during forward state-space
search. This embraces the following core contributions:

(i) When acting under uncertainty, the presence of dead-end states may make it impossible to satisfy
the goal property with absolute certainty. The natural planning objective then is MaxProb, maximiz-
ing the probability of reaching the goal. However, algorithms for MaxProb probabilistic planning
are severely underexplored. We close this gap by developing a large design space of probabilistic
state-space search methods, contributing new (a) search algorithms, (b) admissible state-space re-
duction techniques, and (c) goal-probability bounds suitable for heuristic state-space search. We
systematically explore this design space through an extensive empirical evaluation.

(ii) The key to our conflict-driven learning algorithm adaptation are unsolvability detectors, i.e., goal-
reachability overapproximations. We design three complementary families of such unsolvability de-
tectors, building upon known techniques: (a) critical-path heuristics, (b) linear-programming-based
heuristics, and (c) dead-end traps. We develop search methods to identify conflicts in deterministic
and probabilistic state spaces, and we develop suitable refinement methods for the different un-
solvability detectors so to recognize these states. Arranged in a depth-first search, our techniques
approach the elegance of conflict-driven learning in constraint satisfaction, featuring the ability to
learn to refute search subtrees, and intelligent backjumping to the root cause of a conflict.

(iii) We provide a comprehensive experimental evaluation, demonstrating that the proposed techniques
yield state-of-the-art performance for (a) finding plans for solvable classical planning tasks, (b) prov-
ing classical planning tasks unsolvable, and (c) solving MaxProb in probabilistic planning, on bench-
marks where dead-end states abound.
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Zusammenfassung

Viele kombinatorisch komplexe Berechnungsprobleme in der Informatik lassen sich als Erreichbarkeit-
sprobleme in einem implizit dargestellten, potenziell riesigen, Graphen – dem Zustandsraum – verstehen.
Die Zustandsraumsuche ist eine weit verbreitete Methode, um solche Erreichbarkeitsprobleme zu lösen.
Die Effizienz dieser Methode hängt aber maßgeblich von der Verwendung strikter Suchkontrollmechanis-
men ab. Das konfliktgesteuerte Lernen ist eine essenzielle Suchkomponente für das Lösen von Constraint-
Satisfaction-Problemen (wie dem Erfüllbarkeitsproblem der Aussagenlogik), welches von Konflikten, also
Fehlern in der Suche, neue Kontrollregeln lernt, die ähnliche Konflikte zukünftig vermeiden.

In dieser Arbeit erweitern wir die zugrundeliegende Methodik auf Zielerreichbarkeitsfragen, wie sie im
klassischen und probabilistischen Planen, einem Teilbereich der Künstlichen Intelligenz, auftauchen. Die
kanonische Form von “Konflikten” in diesem Kontext sind sog. Sackgassen, Zustände, von denen aus die
Zielbedingung nicht erreicht werden kann. Wir präsentieren Methoden, die es ermöglichen, während der
Zustandsraumsuche von solchen Konflikten korrektes und verallgemeinerbares Wissen über Sackgassen
zu erlernen. Unsere Arbeit umfasst folgende Beiträge:

(i) Wenn der Effekt des Handelns mit Unsicherheiten behaftet ist, dann kann die Existenz von Sack-
gassen dazu führen, dass die Zielbedingung nicht unter allen Umständen erfüllt werden kann. Die
naheliegendste Planungsbedingung in diesem Fall ist MaxProb, das Maximieren der Wahrschein-
lichkeit, dass die Zielbedingung erreicht wird. Planungsalgorithmen für MaxProb sind jedoch wenig
erforscht. Um diese Lücke zu schließen, erstellen wir einen umfangreichen Bausatz für Suchmetho-
den in probabilistischen Zustandsräumen, und entwickeln dabei neue (a) Suchalgorithmen, (b) Zus-
tandsraumreduktionsmethoden, (c) und Abschätzungen der Zielerreichbarkeitswahrscheinlichkeit,
wie sie für heuristische Suchalgorithmen gebraucht werden. Wir explorieren den resultierenden
Gestaltungsraum systematisch in einer breit angelegten empirischen Studie.

(ii) Die Grundlage unserer Adaption des konfliktgesteuerten Lernens bilden Unerreichbarkeitsdetek-
toren. Wir konzipieren drei Familien solcher Detektoren basierend auf bereits bekannten Techniken:
(a) Kritische-Pfad Heuristiken, (b) Heuristiken basierend auf linearer Optimierung, und (c) Sack-
gassen-Fallen. Wir entwickeln Suchmethoden, um Konflikte in deterministischen und probabilistis-
chen Zustandsräumen zu erkennen, sowie Methoden, um die verschiedenen Unerreichbarkeitsde-
tektoren basierend auf den erkannten Konflikten zu verfeinern. Instanziiert als Tiefensuche weisen
unsere Techniken ähnliche Eigenschaften auf wie das konfliktgesteuerte Lernen für Constraint-
Satisfaction-Problemen.

(iii) Wir evaluieren die entwickelten Methoden empirisch, und zeigen dabei, dass das konfliktgesteuerte
Lernen unter gewissen Voraussetzungen zu signifikanten Suchreduktionen beim Finden von Plä-
nen in lösbaren klassischen Planungsproblemen, Beweisen der Unlösbarkeit von klassischen Pla-
nungsproblemen, und Lösen von MaxProb im probabilistischen Planen, führen kann.
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1. Introduction

Planning is the process of us humans to think ahead of acting by reasoning over knowledge gained in the
past. Fundamental to this process is our ability to learn, i.e., to constantly improve our decision-making by
acquiring new knowledge. As per these definitions, planning and learning constitute cornerstones in our
common understanding of human-alike intelligence. Hence not surprisingly, planning and learning have
ever since been two central strands of research in the field of Artificial Intelligence (AI). The aim of this
thesis is the development of AI planning methods that continuously improve their performance along the
solution process by learning from experience gained through that process.

1.1. Planning, State-Space Search, and Conflict-Driven Learning

The endeavor to obtainmachines with human-alike planning capabilities has its origin in the early works on
general problem solvers (Newell et al., 1959; Ernst and Newell, 1971). The core idea – the development of
computer programs with the ability to reason in a general, application unspecific, manner – has prevailed
until today in the quest for domain-independent planning systems. From an algorithmic point of view,
automated planning (henceforth simply planning) (Ghallab et al., 2004) formulates the problem of, given
some formulation of the goal that is to be achieved and the actions at disposal to accomplish this task,
synthesizing a strategy that decides when to execute which action in order to satisfy the stated goal.
Solving general classes of planning tasks is made possible by having access to a formal model of the
world in which one is acting, i.e., a mathematical characterization of the world’s states and its dynamics
in terms of how the world states change as one is acting. The model serves as basis to predict and to
anticipate the possible outcomes of the actions, which when put in relation to the goal specification, allows
reasoning about the course of actions achieving the objective without any prior knowledge of the particular
application. By making different assumptions and restrictions on the world models, one arrives at different
variants of the planning problem.

Amongst the simplest and well-studied variants is classical planning (Fikes and Nilsson, 1971), which
assumes finite and discrete dynamics, perfect sensing (the world state is unambiguously known at all
time), that the outcome of every action in any world state is deterministic, and that the world is not
influenced by exogenous sources (the world states only change as an effect of our actions). Despite this
simplicity, classical planning has become a popular approach for many applications as diverse as single-
player puzzle games like Sokoban and the sliding tile puzzle, the dynamic configuration of complex printer
systems (Ruml et al., 2011), greenhouse logistics (Helmert and Lasinger, 2010), robotics (Beetz, 2002;
Hofmann et al., 2016), or even space mission planning (Pell et al., 1998; Backes et al., 1999).

Classical planning is well suited if the environment is controllable and predictable. However, in many real-
world scenarios this is not the case: sensing may not be perfect, actions may fail (e.g., a planetary rover
may get stuck), exogenous sources may affect the world’s state (e.g., surrounding traffic), and the result
of some actions may simply not be deterministic (e.g., rolling a dice). In all cases where such stochastic
behavior could have fatal consequences (e.g., leaving the planetary rover in a cave with no energy left), one

1
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should take into account the uncertainty during planning already. Probabilistic planning deals with models
that exhibit such random phenomena. One of the most widely-used modeling frameworks to this end are
Markov Decision Processes (MDPs) (Howard, 1960; Puterman, 1994). MDPs extend the classical planning
view on the world by the support of action-outcome uncertainty. MDPs have been utilized extensively in
applications like unmanned aerial vehicle mission planning (Jeong et al., 2014; Feng et al., 2015), search-
and-rescue missions (Teichteil-Königsbuch and Fabiani, 2006; Pineda et al., 2015), military operation
planning (Aberdeen et al., 2004), controlling satellites (Povéda et al., 2019), and for modeling particular
tasks in autonomous driving (Abbeel et al., 2008; Brechtel et al., 2011; Wei et al., 2011).

The curse of generality is complexity. Domain-independent planning is an exemplary demonstration of
this principle. Despite the restrictive assumptions, common classical-planning modeling formalisms still
give rise to PSPACE-COMPLETE decision problems (Bylander, 1994; Bäckström and Nebel, 1995). Extend-
ing these formalisms just by the ability to specify action-outcome uncertainty pushes the complexity of
planning even further to the class of EXPTIME-COMPLETE problems (Littman, 1997). Dealing with such
challenging problems effectively requires to design algorithms capable of automatically identifying and
utilizing as much of a task’s structure as possible.

A generic algorithmic paradigm that has proved particularly successful is forward state-space search guided
by a heuristic function (Bonet and Geffner, 2001; Hoffmann and Nebel, 2001; Bonet and Geffner, 2005;
Richter and Westphal, 2010; Kolobov et al., 2012b; Trevizan et al., 2016). The state space explicates the
behavior implicitly encoded by a planning task’s model, a step that however comes with an exponential
blow-up commonly known as the state explosion problem. Searching the state space exhaustively is not
possible for any but the simplest planning tasks. Heuristic functions help to narrow down the search to
states that appear particularly likely to be part of the desired solution. The automatic construction of
heuristic functions from the planning task description has been subject of decades of research, during
which many sophisticated approaches have been introduced (e.g., Haslum and Geffner, 2000; Hoffmann
and Nebel, 2001; Edelkamp, 2002; Bonet and Geffner, 2005; van den Briel et al., 2007; Helmert and
Domshlak, 2009; Teichteil-Königsbuch et al., 2011; Helmert et al., 2014; Trevizan et al., 2017b).

Heuristic search approaches typically follow a static procedure. The heuristic function is constructed offline,
before search is started, and remains fixed until the end of the search. This has the risk that if the chosen
heuristic function happens to not be informative for the particular planning task one is facing, heuristic
search will not be effective, in the worst case doing no better than an exhaustive state-space exploration.

An alternative technique to steering search known from the area of constraint satisfaction problems (par-
ticularly Boolean satisfiability) is conflict-driven learning (Stallman and Sussman, 1977; Davis, 1984; Gene-
sereth, 1984; Bruynooghe and Pereira, 1984; Dechter, 1986; Bayardo and Schrag, 1996; Silva and Sakallah,
1996). In contrast to heuristic search, conflict-driven learning aims at acquiring control knowledge online,
during the search, by identifying and analyzing conflicts of that very search, and thereby tailors search
dynamically to the particular task at hand. In a nutshell, this works as follows. A search conflict is a partial
variable assignment (e.g., a truth assignment to a subset of the Boolean variables) that has been consid-
ered by search, but all whose completion attempts resulted in violating some constraint. By generating
an explanation of why it is not possible to complete that assignment to a solution, one learns knowledge
(e.g., clauses) refuting that conflict. This explanation has the potential to generalize, refuting also yet un-
seen parts, and therewith reduces the work in the remainder of the search. Additionally, the explanation
allows for non-chronological backtracking by spotting the specific decision in the search responsible for
the conflict; the part between the conflict and the decision point need not be further explored.

Conflict-driven learning stands for the performance breakthrough in constraint-satisfaction-problem solv-
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ing, and builds the core of most solvers in that area today. But despite this success, conflict-driven learning
approaches for more general state-space search problems have received only little attention in research
so far, and existing efforts pertain almost exclusively to constraint-satisfaction-problem equivalent search
problems. Here, we start to close this gap.

We consider goal-reachability objectives in classical and probabilistic planning. The canonical form of
“conflicts” in this setting are dead-end states, i.e., states starting from which the goal condition cannot
be satisfied. Over the course of this thesis, we will develop methods to learn sound and generalizable
dead-end knowledge from conflicts encountered during forward state-space search. Part II establishes the
foundation, focusing on classical planning. We introduce suitable concepts capturing the currently known
conflicts in search, and present different methods to represent and to use this information for learning
to prune dead-end states during search. When acting under uncertainty, the presence of dead-end states
may make it impossible to reach the goal with absolute certainty. The natural objective for probabilistic
planning then is MaxProb, determining the maximal probability with which the goal condition can be
satisfied. Unfortunately, algorithms for MaxProb probabilistic planning are severely underexplored, to the
extent that there is scant evidence of what the empirical state of the art actually is. Part III addresses this
deficiency before we then extend our conflict-driven learning techniques to probabilistic planning in Part IV.
We show empirically that conflict-driven learning can lead to substantial performance improvements for
(a) finding plans for solvable classical planning, (b) proving a classical planning task unsolvable, and (c)
for goal-probability analysis in probabilistic planning, in situations where reasoning over dead ends is key.

1.2. Example Walk Through

Base

1

Area 1

2

Area 2

2

Figure 1.1.: Illustrative example.

We insert a simple example to illustrate to the reader the princi-
ple ideas behind the proposed methods. Adapted variants of this
example will reappear throughout the thesis. We assume classi-
cal planning for simplicity. Consider the primitive space-mission-
planning task depicted in Figure 1.1. The task in this example
consists in collecting rock samples from two designated locations
and carrying the results to the base station. There is a single rover
at disposal to accomplish this mission, which can𝑚𝑜𝑣𝑒 freely be-
tween the locations, and can 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 and 𝑑𝑟𝑜𝑝 samples at its cur-
rent location. The movements consume energy. We want to find
a sequence of control actions, a plan, so to complete all tasks before the rover runs out of energy.

The world states are represented via four state variables: the rover’s current position and remaining battery
level, and variables keeping track of the status of the samples. For our demonstration purposes, it suffices to
distinguish only whether or not a sample has been collected (i.e., abstracting away their precise positions).
The possible battery level values are discretized up to a sufficient granularity. For this simple example, it
suffices to distinguish between three different battery levels: 2 (“full”); 1 (“half-full”); and 0 (“empty”).
We assume that every𝑚𝑜𝑣𝑒 depletes the battery by one unit, and that the samples can only be collected
at the locations as shown in the figure. Figure 1.1 shows the initial situation: the rover is located at “area
1” (abbreviated as𝐴1), has full battery, and no rock sample has been collected yet. The goal characterizes
the states of the model at which we want to arrive: the rover should be at the “base” (abbreviated as 𝐵)
while having collected both samples. Further details regarding how the task is modeled exactly are not
needed to understand the example.
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Obviously, a solution to the task is given by the action sequence: 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 the sample at 𝐴1;𝑚𝑜𝑣𝑒 to 𝐴2;
𝑐𝑜𝑙𝑙𝑒𝑐𝑡 the sample at 𝐴2; 𝑚𝑜𝑣𝑒 to 𝐵. With merely 3 · 3 · 22 = 36 different states (3 battery values, 3
possible positions of the rover, and a Boolean flag for each sample), this sequence can of course be found
by even the most simplest techniques. The situation however changes quickly as the number of different
locations increases. Consider the extension of the example task to a chain of𝑛 areas, each of which contains
a rock sample that needs to be collected, and, accordingly, a maximal battery capacity limit of 𝑛 units. This
variant has (𝑛 + 1) · (𝑛 + 1) · 2𝑛 different states – the number of states of the model scales exponentially in
the size of the description: the state explosion problem. Naively approaching the task is clearly infeasible
as 𝑛 is increasing.

Computer science’s Swiss knife when it comes to solving all sorts of computational problems is search, and
indeed (explicit) state-space search has become one of predominant approaches to solve planning tasks. The
state space relates states of the model by explicating the effects of actions. It essentially forms a directed
graph over the states, with edges 𝑠 𝑎−→ 𝑡 where, according to the model, the action application of 𝑎 in state
𝑠 results in the state 𝑡 . The solution to the planning task is given by any path from the state representing
the initial situation to a state satisfying the desired goal conditions, and can be found via any standard
graph-search algorithm. Importantly, the state space does not need to be fully constructed for this process;
the parts actually visited by search can be computed on-the-fly from the model description.

Now, notice that of all the exponentially many states in the example, there are only 2𝑛 + 1 states that do
actually matter. Namely, exactly those states that are traversed by the solution. Every diversion of this path
introduces the need of additional rover movements in order to accomplish the goal, which is not possible
with the battery level initially provided. In other words, every diversion leads to a dead-end state, one from
which the goal can no longer be reached. If we managed to identify the dead-end states, we would be able
to constrain search to the solution path, thereby alleviating the state explosion problem. Unfortunately,
deciding whether a state is a dead end is in general no easier than the complexity of planning itself. Hence,
obtaining a perfect dead-end detector, recognizing all dead-end states, is in general intractable, and we
have to expect to wastefully explore in search at least some dead-end parts. We next illustrate how to use
these wasteful explorations for learning knowledge that (i) refutes completed parts of the search, (ii) leads
to backjumping as in constraint satisfaction, and (iii) generalizes to other similar search branches.

Figure 1.2 depicts the search space of a depth-first search ran on the example task, assuming no prior
knowledge about the dead-end states. The search starts at the initial state, marked 0 . We expand this
state, determining which actions of the model are applicable, and generating the corresponding edges and
successor states. There are three possibilities to follow up on next: 𝑚𝑜𝑣𝑒 to 𝐵, 𝑚𝑜𝑣𝑒 to 𝐴2, or 𝑐𝑜𝑙𝑙𝑒𝑐𝑡
the sample at 𝐴1. Suppose we decided on the first option, proceeding to state 1 . 1 does not satisfy the
goal, so we continue with its expansion. There are two symmetric options:𝑚𝑜𝑣𝑒 back to 𝐴1, or𝑚𝑜𝑣𝑒 to
𝐴2. Suppose we chose the former option, proceeding to 2 . Back at 𝐴1, the rover now has no energy left
for further movements, but we can still 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 the sample at 𝐴1. In the resulting state, 3 , the battery
remains empty. The sample has been collected, so cannot be collected again. The only applicable action is
dropping the collected sample, which however leads to a state that we have already seen. By inspecting
the search space, we see that in fact all states reachable from 3 were already processed, while none of
them satisfied the goal condition. At this moment, 3 has become a known dead end. In other words, search
has encountered a conflict.

We initiate the learning procedure, explaining the conflict to obtain generalizable criteria recognizing sim-
ilar dead-end states in the remainder of the search. The details are technically involved, so we omit them
here. For this example, we use the well-known delete relaxation ℎ+ to generate a clause 𝜓 , a disjunction
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Explanation “𝜓1” at 3 Explanation “𝜓2” at 1 Explanation “𝜓3” at 5

↦→ 𝐵 ∨ ↦→ 1 ∨ ↦→ 2 ↦→ 𝐴1 ∨ ↦→ 2 ∨ 1 ↦→ ⊤ ↦→ 𝐴2 ∨ ↦→ 2 ∨ 2 ↦→ ⊤

Figure 1.2.: Search space illustration of a depth-first search on the example task from Figure 1.1. Location names
have been abbreviated. Each node is associated with a state in the model, as depicted. The edges correspond to action
applications. The numbers attached to the nodes indicate the order in which the nodes are considered by search.
The  labels indicate conflicts encountered during search. The colored regions represent dead-end states refuted by
the generated explanations. The explanations in this example constitute clauses, disjunctions of variable-value pairs,
that necessarily need to be satisfied in every non-dead-end state.

over variable-value pairs, such that, for all states 𝑠, 𝑠 |̸= 𝜓 implies that 𝑠 is a dead end. Intuitively, the delete
relaxation overapproximates reachability by ignoring negative effects of actions. In our case, it basically
ignores energy consumption. As the state 3 however has no energy left, it is recognized as dead end even
in this relaxation: “ℎ+( 3 ) = ∞”. We initialize 𝜓1 := F \ 3 to be the disjunction over all variable-value
pairs not true 3 , and then iteratively remove elements from 𝜓1 until we arrived at a minimal reason for
ℎ+(𝑠) = ∞. In the specific case, we obtain 𝜓1 = ↦→ 𝐵 ∨ ↦→ 1 ∨ ↦→ 2. To understand that clause,
observe that every state in which the rover is not at the base requires at least one move action, which is
possible only if the battery is not empty, even under delete-relaxed semantics.

Notice that the generated explanation (i) refutes 3 and 2 , i.e., the part of the search space rooted at the
identified conflict, and that (ii) search can backjump directly to the shallowest non-refuted ancestor state,
1 . (The latter would happen here anyway, because 2 has no more open successor states to explore. For
an example with non-trivial backjumping, suppose there were 𝑛 samples that have been collected, so can
be discarded, but which can only be recollected at some location different from 𝐴1. Exploring from 2 a
single trace of 𝑑𝑟𝑜𝑝 actions suffices to learn the same clause𝜓1, backjumping all the way back to 1 .)

Back at 1 , there is still the option to instead move to 𝐴2. The resulting state does however violate 𝜓1. In
other words, (iii) the knowledge learned on the previous search branch generalized to the present one.
We prune the expansion of the state, and continue with the remaining options in search. Until finding the
desired plan, search learns two more clauses. These 3 explanations are enough to cover the 15 dead-end
states that would have otherwise been considered by the search.

1.3. Contributions

Our contributions pertain to three subjects.
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Conflict-Driven Learning in Classical-Planning State-Space Search

We develop methods learning sound and generalizable knowledge from dead-end states encountered dur-
ing state-space search in classical planning. This relies on two components: (1) conflict identification, i.e.,
the identification of dead-end states visited by search that are not yet refuted by the learned knowledge;
and (2) conflict explanation & learning, i.e., refining the knowledge so to refute identified conflicts, in
hopes that this generalizes to dead-end states not yet seen in search. The basic principles were already
introduced in prior work (Steinmetz, 2015), upon which we build (see next).

Regarding (1), we introduce the concept of known dead ends, capturing the explicit knowledge that search
creates through its state-space exploration. We use a method presented in prior work (Steinmetz, 2015)
to identify the known dead ends in a generic open- & closed-list based search algorithm (which can be
instantiated to well-known search algorithms like A∗ or greedy best-first search). We show that this method
ensures completeness, i.e., that before every state expansion all dead ends known at that moment were
identified, and hence used for learning. Moreover, we design a depth-first search variant that is particularly
effective in making dead ends quickly become known.

For learning (2), we consider three families of unsolvability detectors, i.e., sound yet incomplete dead-
end characterizations: based on critical-path heuristics ℎC (Haslum and Geffner, 2000; Haslum, 2012;
Hoffmann and Fickert, 2015); based on the state-equation (Bonet, 2013) and potential heuristics (Pom-
merening et al., 2015); and based on dead-end traps (Lipovetzky et al., 2016).

Critical-path heuristicsℎC approximate the reachability of a fact (variable-value pair) conjunction, e.g., the
goal, by the reachability of the induced atomic conjunctions as defined by the parameter C. The choice of C
allows to trade between computational cost and the accuracy of the approximations.We use this for conflict-
driven learning by refining the conjunction set C to recognize previously unrecognized dead-end states, as
identified by search. The refinement methods were already introduced in prior work (Steinmetz, 2015). To
alleviate the ℎC computation overhead as C keeps growing, we consider critical-path NoGood learning, i.e.,
learning formulas𝜑 such that 𝑠 |= 𝜑 implies that 𝑠 is a dead end even underℎC ’s reachability approximation.
We show that, in theory, the dead ends recognized by ℎC can be represented exactly through a (worst-case
exponentially large) NoGood formula ΦC∗. We devise two practical variants that dynamically generate
such NoGoods during search, via a form of clause learning, and one that leverages the ΦC∗ construction.
We provide a comprehensive evaluation of ℎC dead-end learning with respect to the state of the art, for
finding plans in solvable benchmarks with dead ends, for proving unsolvability in unsolvable benchmarks,
and we evaluate the usefulness of the learned conjunction sets C as unsolvability certificates.

The state-equation heuristic approximates goal reachability by formulating a linear program (LP) that en-
codes certain relations between action-execution counts satisfied in every plan. Prior work has studied the
use of partial variable merges to enhance the LP via additional constraints, improving the approximations.
We show that, under reasonable assumptions, partial variable merges are strictly dominated by applying
the state equation to the compilation ΠC , explicating a given fact conjunction set C. Potential heuristics ap-
proximate the cost-to-goal via a linear combination of real-valued fact conjunction weights. We show that
admissible potential heuristics over arbitrary sets of fact conjunctions can be constructed via a variant of
ΠC . Moreover, we provide convergence results, showing that the approximations of both types of heuristics
can be made perfectly accurate via suitable sets C. We use this property for conflict-driven learning, de-
signing a C refinement method to recognize previously unrecognized dead-end states. Our experimental
evaluation on unsolvable benchmarks shows considerable performance improvements on several domains.

The learning variants mentioned so far suffer from the transitivity property provided by the respective un-
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solvability detectors: if a state 𝑠 is recognized as dead end, then all descendant states of 𝑠 must necessarily
be recognized as dead end as well. Transitivity can become a bottleneck when combining conflict-driven
learning with other sources of dead-end information; to learn to recognize a dead end 𝑠, transitivity forces
one to also learn to recognize the descendant states of 𝑠, possibly redundantly to the other technique. We
introduce U-traps as a remedy, generalizing the previous dead-end trap idea to allow for synergy with a
complementary unsolvability detector U. We furthermore provide a U-trap refinement method to learn to
recognize a dead-end state that is neither covered by U nor by the current trap, and we provide a static
offline analysis method, constructing the trap before search starts. We empirically evaluate the approach
for proving unsolvability, showing benefits on several domains.

State-Space Search Methods for Goal-Probability Analysis in Probabilistic Planning

Goal-probability analysis has been neglected in probabilistic-planning literature. We close this gap by (1)
designing and exploring a large space of probabilistic state-space search methods, systematizing known
algorithms and contributing several new algorithm variants; (2) introducing relevant special cases and
weaker goal-probability objectives, alongside suitable algorithm adaptions exploiting these structures; and
(3) providing an extensive empirical analysis that clarifies the state of the art, characterizes the behavior
of a wide range of MDP algorithms, and demonstrates significant benefits of our new algorithm variants.

To detail on (1), we provide a comprehensive survey of the foundation of state-space-based algorithms
addressing MaxProb. We revisit MDP heuristic state-space search, which has so far been used almost ex-
clusively for expected-cost minimization objectives. We make contributions along the following algorithm
dimensions:

(a) Search algorithm. We design variants of AO∗ (Nilsson, 1971) and LRTDP (Bonet and Geffner, 2003b),
and introduce the family of depth-first MDP heuristic search algorithms systematizing known algo-
rithms like LILAO∗ (Hansen and Zilberstein, 2001) and HDP (Bonet and Geffner, 2003a). We de-
velop early-termination criteria addressing the weaker objectives, and prove the resulting algorithms
to be correct. To solve goal-probability objectives, MDP heuristic search must in general be iterated
multiple times, interleaved with additional processing steps, a procedure known as FRET (Kolobov
et al., 2012b). We introduce a new FRET variant, show its correctness, and demonstrate its benefits
and downsides with respect to the original FRET design. We observe that this new FRET variant
tightly integrates into MDP heuristic search. Based on this observation, we develop novel heuristic
search algorithms natively supporting goal-probability analysis, without the need of any FRET outer
loop. Finally, we design a comprehensive arsenal of simple strategies, biasing tie-breaking in action
and state selection in manners targeted at fostering early termination.

(b) State-space reduction. We design sound probabilistic-state-space reduction methods, via bisimulation
relative to the all-outcomes determinization (Bonet and Geffner, 2005; Jimenez et al., 2006), and
via dead-end pruning. Regarding the latter, we employ classical-planning heuristic functions for
dead-end detection in probabilistic planning, again utilizing the all-outcomes determinization, as
previously done by Teichteil-Königsbuch et al. (2011). This is especially promising in limited-budget
planning, where we can prune a state 𝑠 if an admissible classical-planning estimate exceeds the
remaining budget in 𝑠. On the side, we discover that the landmarks compilation as per Domshlak
and Mirkis (2015), employed for dead-end pruning in their oversubscription planning setting, is
actually, on its own, equivalent to pruning against the remaining budget with a standard admissible
landmark heuristic. This is relevant to our work because, otherwise, that compilation would be a
canonical candidate also for dead-end pruning in our setting.
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(c) Goal-probability heuristic function. We develop two families of goal-probability estimators, starting
from Trevizan et al.’s (2017b) linear programming (LP) based expected-cost estimators.

First, we introduce goal-probability projection occupation-measure heuristics that, besides the adap-
tion to the goal-probability objective, generalize Trevizan et al.’s (2017b) expected-cost variant
by the support of syntactic projections of the planning task onto arbitrary state-variable sets. We
show that the resulting heuristic functions constitute monotone upper bounds on the maximal goal-
probability function, as needed for the correctness of the MDP heuristic search algorithms.

Second, we design the probabilistic operator-counting heuristic framework, generalizing its classical-
planning counterpart (Pommerening et al., 2014). We provide a suitable definition of probabilistic
operator-counting constraints, a characterization of the constraints of the heuristic’s LP sufficient
to obtain monotone upper-bounding goal-probability estimates. We instantiate the general frame-
work by showing how to generate such constraints based on: goal-probability projection occupation-
measure heuristics; a generalization of the state equation (Bonet, 2013) to the probabilistic setting;
and via action landmarks (e.g., Karpas and Domshlak, 2009).

We implemented all these techniques within FAST DOWNWARD (FD) (Helmert, 2006), thus contributing, as
a side effect of our work, an ideal implementation basis for exploiting classical-planning heuristic search
techniques inMDP heuristic search. To explore the behavior of our algorithm design space, we created large
benchmark suite comprising domains from the planning competitions, resource-constrained planning, and
network penetration testing.

Conflict-Driven Learning in Probabilistic-Planning State-Space Search

Lastly, we lift the classical-panning techniques to the probabilistic setting – learning to recognize dead-end
states during MDP state-space search. Thanks to the all-outcomes determinization (Bonet and Geffner,
2005; Jimenez et al., 2006), the conflict explanation & learning methods from Part II can be plugged in
directly. We provide a suitable adaption of the known dead end concept. We show how to identify the known
dead ends in the different algorithms inspected in Part III, and prove a completeness property similar to
the classical case. Our empirical study on MaxProb analysis demonstrates that the conflict-driven learning
approach can be an effective means for goal-probability analysis.

1.4. Outline

The structure of the thesis roughly follows the outline of our contributions.

Part I starts with introducing some general background. Chapter 2 concerns classical planning. It sets
up the basic notions used throughout the thesis, including the definition of classical planning tasks, the
definition of state space in this context, and it briefly discusses heuristic state-space search. Chapter 3
provides a definition of the state space’s strongly connected components (SCCs), and revisits Tarjan’s
(1972) algorithm for computing all maximal SCCs. Chapter 4 provides an overview of linear programming.
Tarjan’s algorithm and linear programming are central to many parts of this thesis.

In Part II, we introduce our conflict-driven learning techniques for classical planning. Chapter 5 provides
the basics, explaining how to exactly identify dead-end states during search. Chapters 6, 7, and 8 then
provide the means for learning from the identified dead ends, via critical-path heuristics ℎC , the LP-based
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state-equation and potential heuristics, respectively via dead-end traps, in this order. Chapter 9 briefly
summarizes and discusses the material presented in this part.

Part III is concernedwith heuristic search techniques for goal-probability analysis inMDP probabilistic plan-
ning. Chapter 10 introduces formally probabilistic planning tasks, MDPs, and the different goal-probability
objectives. Chapter 11 revisits two fundamental algorithms for solving MDPs optimally: via linear pro-
gramming, and value iteration. Chapter 12 adapts MDP heuristic search algorithms towards solving the
goal-probability objectives. Chapter 13 discusses our strategies to break ties left by the design of those
algorithms. Goal-probability heuristic functions are the subject of Chapter 14, the MDP state-space reduc-
tion methods are discussed in Chapter 15. Chapter 16 shows our empirical study, and we conclude this
part by a brief summary and discussion in Chapter 17.

The last content part, Part IV, applies the conflict-driven learning schema to MDP state-space search.

We conclude the thesis in Part V.

1.5. Publications

We provide a brief overview and summary of the publications that appeared during the course of work
on this thesis, and point out the thesis author’s contributions. In general, the thesis author helped in the
writing of all listed publications (if not stated otherwise). We hence focus on contributions pertaining to
the development of concepts, algorithms, implementation, or experiments. We group the publications by
subject, treating separately the core publications which underlay this thesis. We also discuss in more depth
the relation of this thesis to our preceding work.

1.5.1. Core Publications and Relation to Prior Work

Most parts of this thesis have been published in proceedings of AI and planning conferences and journals.
The principal work underlying all these publications, i.e., development of the theory, proofs, algorithms,
implementation, and experiments, is due to the author of this thesis.

Conflict-Driven Learning in Classical-Planning State-Space Search

The following two publications establish general framework of conflict-driven learning in classical-planning
state-space search (presented in Chapter 5), and instantiate the framework via critical-path heuristic ℎC
refinements (Chapter 6). The journal version expands on the conference version by introducing a depth-first
search variant designed for conflict-driven learning, a second ℎC refinement algorithm, a clause learning
method to generate ℎC-NoGoods, and a comprehensive experimental evaluation.

• Marcel Steinmetz and Jörg Hoffmann. “Towards Clause-Learning State Space Search: Learning to
Recognize Dead-Ends.” In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI
2016. AAAI Press, pp. 760–768

• Marcel Steinmetz and Jörg Hoffmann. “State space search nogood learning: Online refinement of
critical-path dead-end detectors in planning.” In: Artificial Intelligence 245, pp. 1–37
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Relation to our prior work These two publications were partly based on our prior work (Steinmetz, 2015),
preceding this thesis, so we insert at this point the discussion of the relation of this thesis with respect to
that prior work. We extended that work by formalizing the idea of what it means for a dead-end state to
become known during search; by a thorough discussion of properties of different search algorithms with
respect to the conflict-learning context; by a depth-first search variant geared at conflict identification;
by minor improvements to the ℎC neighbors refinement algorithm, specifically, a minimization procedure
to find set-inclusion-minimal conjunctions to include into C; by the clause learning method; and by an
extensive experimental evaluation. We reused from that work the conflict identification method for the
general open- & closed-list based search algorithm; some of the arguments proving its correctness; and
the two ℎC refinement algorithms, alongside their correctness proofs. The presentation of the material,
the implementation, and the experiments were redone completely.

In the next publication, we further explored the idea of critical-path NoGood learning (Section 6.3). We
showed that one can construct a NoGood formula ΦC∗ that captures the ℎC-recognized dead ends exactly,
and we leveraged that construction for our second critical-path NoGood learning variant.

• Marcel Steinmetz and Jörg Hoffmann. “Critical-Path Dead-End Detection versus NoGoods: Offline
Equivalence and Online Learning.” In: Proceedings of the Twenty-Seventh International Conference on
Automated Planning and Scheduling, ICAPS 2017. AAAI Press, pp. 283–287

The following publication analyzes the convergence behavior of LP-based heuristics, when combined with
the ΠC compilation (Chapter 7). We adapted the ΠC compilation to the FDR planning-task framework
underlying those heuristics, proved that there always exists a suitable conjunction set C so to render those
heuristics perfect, and exploited this property through a conflict-based conjunction-set refinement method.

• Marcel Steinmetz and Jörg Hoffmann. “LP Heuristics over Conjunctions: Compilation, Convergence,
Nogood Learning.” In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI 2018, pp. 4837–4843

Our exposition of the potential heuristics (Section 7.3) follows the technical report that accompanied this
publication.

The following publication introduces the concept of U-traps (Chapter 8), presents a conflict-based refine-
ment method for dead-end learning, as well as an alternative static offline construction method.

• Marcel Steinmetz and Jörg Hoffmann. “Search and Learn: On Dead-End Detectors, the Traps they
Set, and Trap Learning.” In: Proceedings of the Twenty-Sixth International Joint Conference on Artifi-
cial Intelligence, IJCAI 2017, pp. 4398–4404

As typical in planning, there is no single technique that works equally well in all situations. This is no
different for the presented learning approaches. Going beyond the mentioned publications, we provide
examples (in Sections 6.2.3, 7.5, and 8.5) demonstrating the benefits and downsides of each of the con-
sidered dead-end representation methods.

State-Space Search Methods for Goal-Probability Analysis in Probabilistic Planning

The following two publications build the basis of Part III of this thesis. Specifically, we adapted several
known MDP (heuristic) state-space search algorithms for goal-probability analysis and developed our
FRET variant (jointly discussed in Chapter 12), designed tie-breaking strategies fostering early termination
(Chapter 13), and introduced bisimulation respectively dead-end-pruning-based MDP state-space reduc-
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tion methods via the all-outcomes determinization (Chapter 15). We systematically explored this large
algorithm design space through an extensive experimental evaluation (Chapter 16). The journal version
additionally introduced the depth-first heuristic search algorithm family, and extended the empirical study
accordingly.

• Marcel Steinmetz, Jörg Hoffmann, and Olivier Buffet. “Revisiting Goal Probability Analysis in Proba-
bilistic Planning.” In: Proceedings of the Twenty-Sixth International Conference on Automated Planning
and Scheduling, ICAPS 2016. AAAI Press, pp. 299–307

• Marcel Steinmetz, Jörg Hoffmann, and Olivier Buffet. “Goal Probability Analysis in Probabilistic
Planning: Exploring and Enhancing the State of the Art.” In: Journal of Artificial Intelligence Research
57, pp. 229–271

This thesis extends these works by providing additional details on the theory and correctness of the algo-
rithms (in Chapters 11 and 12), by significantly expanding the description and correctness proofs of both
FRET variants (Section 12.3.4), by introducing MDP heuristic search variants that support goal-probability
analysis in the general (cyclic) case without FRET outer loop (Section 12.4), and by introducing goal-
probability occupation-measure heuristics (Chapter 14 and Section 16.4).

1.5.2. Further Publications

The following publications are not covered by this thesis.

Beyond the listed core publications, we worked on diverse other aspects of planning, spanning over differ-
ent formalisms, algorithms, and applications. While some of the works directly build on or make use of
the presented results, others more tangentially touch the topics of this thesis.

Classical & Probabilistic Planning Algorithms

Partial Delete Relaxation The delete relaxation is a popular technique to derive classical-planning heuristic
functions, but in some cases can harshly oversimplify a planning task’s semantics. Partial delete
relaxation approaches allow to interpolate between the delete-relaxed and the actual semantics at
the expense of an increased computational overhead.

• Maximilian Fickert, Jörg Hoffmann, and Marcel Steinmetz. “Combining the Delete Relaxation
with Critical-Path Heuristics: A Direct Characterization.” In: Journal of Artificial Intelligence
Research 56, pp. 269–327

One approach to make the delete relaxation more informative is by explicitly taking into ac-
count selected fact (variable-value pair) conjunctions. Previous works have done so via com-
pilations, augmenting the planning task description by explicating the conjunctions. In this
work, we married the delete relaxation with the critical-path heuristic ℎC , getting rid of that
intermediate compilation step.

The contributions of the thesis author pertain to the evaluation and presentation of the exper-
imental results. The theoretical analysis and the implementation are due to the co-authors of
this publication, and were partly already published in prior work.
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• Patrick Speicher, Marcel Steinmetz, Daniel Gnad, Jörg Hoffmann, and Alfonso Gerevini. “Be-
yond Red-Black Planning: Limited-Memory State Variables.” In: Proceedings of the Twenty-
Seventh International Conference on Automated Planning and Scheduling, ICAPS 2017, pp. 269–
273

Red-black planning partitions the planning task’s state-variable set into red and black vari-
ables. The red variables are interpreted in delete-relaxed semantics (memorizing all variable
values ever achieved), while the black variables follow the standard semantics (are assigned
a single value at all time). It is well known that for certain variable-set partitionings planning
becomes tractable, i.e., can be solved in polynomial time, a property that has been exploited
for heuristic construction. In this work, we introduced a third category “gray variables” with a
limited memory. These variables allow enlarging the tractable fragment, giving rise to more
informative heuristic functions.

This publication was the result of Patrick Speicher’s Bachelor’s thesis, co-supervised by Daniel
Gnad and the thesis author. The general approach and ideas on the proofs and implementation
were developed in joint discussions.

• Daniel Gnad, Marcel Steinmetz, Mathäus Jany, Jörg Hoffmann, Ivan Serina, and Alfonso
Gerevini. “Partial Delete Relaxation, Unchained: On Intractable Red-Black Planning and Its
Applications.” In: Proceedings of the Ninth Annual Symposium on Combinatorial Search, SOCS
2016. AAAI Press, pp. 45–53

In this work, we considered applications of red-black planning beyond the computation of
heuristic functions. We introduced red-black search, a method solving arbitrary red-black plan-
ning tasks. We used this procedure as basis for computing plans for the original, non-relaxed,
planning task by using the computed relaxed plans as starting point for an off-the-shelf plan-
repair algorithm; and for proving the original planning task unsolvable.

The original idea and implementation of red-black search is due to Daniel Gnad. The thesis
author contributed to the design, presentation, and correctness proof of red-black search, as
well as to the experimental evaluation. The results on relaxed-plan repair are party due to
Mathäus Jany’s Bachelor’s thesis, co-supervised by Daniel Gnad and the thesis author.

Partial-Order Reduction in Planning with Resources Stubborn sets are a well-known technique for pruning
the state space during forward state-space search by exploiting the permutability of actions. In the
following publication, we studied stubborn sets in the context of planning with resources.

• Anna Wilhelm, Marcel Steinmetz, and Jörg Hoffmann. “On Stubborn Sets and Planning with
Resources.” In: Proceedings of the Twenty-Eighth International Conference on Automated Plan-
ning and Scheduling, ICAPS 2018, pp. 288–297

We introduced stubborn set variants, exploiting that, thanks to the commutativity of addition and
subtraction, the actions’ effects on the resources do not affect permutability on a concrete state-space
path. Moreover, we developed a method for automatically classifying state variables in a planning
task description as resource variables, which allows us to apply our pruning techniques even in
absence of explicit knowledge about the resources.

This publication was based on Anna Wilhelm’s Bachelor’s thesis, supervised by the author of this
thesis. Ideas on the stubborn set definitions and proofs were developed in joint discussions. The
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resource-variable detection method and implementation is due to the author of this thesis. The
experimental evaluation was a collaborative result.

Hyperabstraction Heuristics Abstraction and critical-path heuristics belong to the most important families
of admissible heuristics in classical planning. In the following publication, we married their under-
lying ideas, forming the class of hyperabstraction heuristics.

• Marcel Steinmetz and Álvaro Torralba. “Bridging the Gap between Abstractions and Critical-
Path Heuristics via Hypergraphs.” In: Proceedings of the Twenty-Ninth International Conference
on Automated Planning and Scheduling, ICAPS 2019. AAAI Press, pp. 473–481

We analyzed various aspects of this new formalism. We showed that abstraction and critical-path
heuristics can naturally be expressed as members of this family. On the side, we answered a long-
standing question, showing that optimal cost partitioning (the best possible admissible additive
combination) for critical-path heuristics, hence hyperabstraction heuristics, is computionally hard.

The publication was a joint effort of both co-authors. The formalisms, theoretical results, and imple-
mentation were principally developed by the thesis author, supported by Álvaro Torralba with his
expertise on abstraction heuristics.

Pattern Database Heuristics for Probabilistic Planning Pattern databases (PDBs), i.e., collections of projec-
tions, are a well-known technique in classical planning to derive admissible (lower-bounding) cost-
to-goal bounds. The following two publications lifted them to probabilistic planning.

• Thorsten Klößner, Jörg Hoffmann, Marcel Steinmetz, and Álvaro Torralba. “Pattern Databases
for Goal-Probability Maximization in Probabilistic Planning.” In: Proceedings of the Thirty-
First International Conference on Automated Planning and Scheduling, ICAPS 2021. AAAI Press,
pp. 201–209

• Thorsten Klößner, Marcel Steinmetz, Álvaro Torralba, and Jörg Hoffmann. “Pattern Selec-
tion Strategies for Pattern Databases in Probabilistic Planning.” In: Proceedings of the Thirty-
Second International Conference on Automated Planning and Scheduling, ICAPS 2022. AAAI
Press, pp. 184–192

The first publication introduced probabilistic PDB heuristics admissibly estimating (upper bounding)
the maximal probability of reaching the goal. We showed that the goal-probability estimates of
multiple projections can be combined admissibly by taking their minimum, and identified criteria
under which this is guaranteed even by taking their product. The second publication investigated
pattern generation algorithms, i.e., deciding what projections to actually use.

The first publication was the result of Thorsten Klößners Master’s thesis, co-supervised by Álvaro
Torralba and the author of this thesis. The implementation of goal-probability projections, and
of the goal-probability occupation-measure heuristics used for comparison, is due to the author
of this thesis. Ideas on the criteria when taking the product remains admissible, on the pattern-
generation methods, and the experimental evaluation were developed in joint discussions between
the co-authors. All proofs and the implementation of the advanced features, being multiplicative
goal-probability PDBs and the pattern-generation methods, are due to Thorsten Klößner, who also
took care of conducting the experiments.
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Classical Planning with Description Logics

Classical planning typically makes closed-world and closed-domain assumptions: facts not present in a state
are false, and the universe of objects is fixed and known a priori. Description logics (DL) formulate knowl-
edge over facts true in the world over an infinite domain. The following two publications are placed in the
context of eKABs, a known formalism for combining classical planning with DL ontologies, where states
are interpreted under open-world and open-domain semantics.

• Stefan Borgwardt, Jörg Hoffmann, Alisa Kovtunova, and Marcel Steinmetz. “Making DL-Lite Plan-
ning Practical.” In: Proceedings of the 18th International Conference on Principles of Knowledge Repre-
sentation and Reasoning, KR 2021, pp. 641–645

• Stefan Borgwardt, Jörg Hoffmann, Alisa Kovtunova, Markus Krötzsch, Bernhard Nebel, and Marcel
Steinmetz. “Expressivity of Planning with Horn Description Logic Ontologies.” In: Thirty-Sixth AAAI
Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications
of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial
Intelligence, EAAI 2022. AAAI Press, pp. 5503–5511

Prior work has studied eKABs in the context of the description logic DL-lite, and showed that these can be
solved via a translation into standard classical planning formalisms. In the first publication, we identified
bottlenecks in this translation, and designed transformations to the translated eKABs tasks that make the
tasks easier to handle for an off-the-shelf classical planner. The second publication dealt with the translation
of eKABs using more powerful description logics into classical planning, by leveraging enhanced features
of the planning task description language. This translation was found to be superior to the previous one,
even equipped with our transformations, on the previous DL-lite eKABs benchmark set.

Both publications were the result of many joint discussions between the co-authors. The thesis author con-
tributed in the first publication to the development of the transformation steps, to the benchmarks, and to
the evaluation and presentation of the experimental results. The implementation is due to Alisa Kovtunova,
who also conducted the experiments. In the second publication, the thesis author was responsible for the
implementation, and contributed to the design of the translation and to the experimental evaluation. The
theoretical exposition is primarily due to Stefan Borgwardt. Alisa Kovtunova conducted the experiments.

Explainable Planning

Why has the automated planner chosen that particular plan 𝜋? In the following publications, we attempted
to provide answers to this question by generating explanations with respect to the space of all plans.

• Rebecca Eifler, Michael Cashmore, Jörg Hoffmann, Daniele Magazzeni, and Marcel Steinmetz. “A
New Approach to Plan-Space Explanation: Analyzing Plan-Property Dependencies in Oversubscrip-
tion Planning.” In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-
Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Sympo-
sium on Educational Advances in Artificial Intelligence, EAAI 2020. AAAI Press, pp. 9818–9826

• Rebecca Eifler, Marcel Steinmetz, Álvaro Torralba, and Jörg Hoffmann. “Plan-Space Explanation via
Plan-Property Dependencies: Faster Algorithms & More Powerful Properties.” In: Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020. ijcai.org, pp. 4091–
4097

The basis are plan-property dependencies, i.e., relations between formulae𝜙 and𝜓 where all plans satisfying
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𝜙 necessarily violate 𝜓 . Such plan-property dependencies allow to explain why the found plan does not
provide a desired property 𝜓 , using the relationships to the properties 𝜙 it satisfies: “to satisfy 𝜓 would
have to forgo 𝜙”. On an algorithmic level, finding plan-property dependencies boils down to computing all
minimal unsolvable goal subsets (MUGS). In the first publication, we considered propositional and action-
set (simple temporal) plan properties. We showed how to leverage conflict-driven learning for computing
all MUGS, via multiple searches and transferring learned knowledge from one to the other search. In the
second publication, we lifted the framework to the full range of (finite-path) temporal plan properties, and
introduced additional algorithms for computing all MUGS based on BDD symbolic search and a conflict-
driven learning approach requiring just a single search.

The contributions of the thesis author to both publications pertain to adaptions of the conflict-driven learn-
ing techniques and their implementation.

Planning in Safety-Critical Applications

• Rasha Faqeh, Christof Fetzer, Holger Hermanns, Jörg Hoffmann, Michaela Klauck, Maximilian A.
Köhl, Marcel Steinmetz, and ChristophWeidenbach. “Towards Dynamic Dependable Systems Through
Evidence-Based Continuous Certification.” In: Leveraging Applications of Formal Methods, Verification
and Validation: Engineering Principles - 9th International Symposium on Leveraging Applications of For-
mal Methods, ISoLA 2020, Proceedings, Part II, pp. 416–439

This publication has laid down a methodology for the continuous certification of dynamically evolv-
ing cyber-physical systems. System updates are first run in shadow mode in parallel to the current
system, monitoring their behavior, and putting them into operation only when sufficient evidence of
their correct behavior has been collected. Planning is used for generating test instructions to obtain
this evidence.

The author of this thesis contributed to the countless discussions on the design of the general certi-
fication framework, and to the formalization of the planning component.

• Frederik Wiehr, Anke Hirsch, Lukas Schmitz, Nina Knieriemen, Antonio Krüger, Alisa Kovtunova,
Stefan Borgwardt, Ernie Chang, Vera Demberg, Marcel Steinmetz, and Jörg Hoffmann. “Why Do I
Have to Take Over Control? Evaluating Safe Handovers with Advance Notice and Explanations in
HAD.” In: ICMI ’21: International Conference on Multimodal Interaction. ACM, pp. 308–317

In highly automated driving, safety-critical situations may necessitate to handover control from the
machine back to a human. Making this handover successful is however a challenging task, involving
decisions on, e.g., when to initiate the handover, what information to provide to make the human
aware of the situation, and how to present that information. In this publication, we approached
this task from a model-based perspective. We predict safety-critical situations by simulating the
autonomous system in a suitably precise world model. The result serves as basis for the explanation.
A user study has explored various options how to use this information for designing the handover.

The author of this thesis contributed to the development of the autonomous car driving simula-
tor used for the user study, has constructed the world model, and implemented the model-based
simulation procedure.

• Marcel Steinmetz, Jörg Hoffmann, Alisa Kovtunova, and Stefan Borgwardt. “Classical Planning with
Avoid Conditions.” In: Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-
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Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Sympo-
sium on Educational Advances in Artificial Intelligence, EAAI 2022, pp. 9944–9952

Given a formal characterization of safety, i.e., a formula 𝜙 that must remain satisfied at all time.
In this publication, we considered the question of how to effectively find a plan that avoids unsafe
states, i.e., states that violate𝜙 . We designed approaches handling𝜙 indirectly, by compiling it into a
new planning task. We furthermore developed state-space search approaches that handle 𝜙 directly,
based on an adaptation of Cartesian abstraction heuristics, and by a conflict-driven learning variant
that learns to predict when ¬𝜙 becomes unavoidable on the way to the goal.

The principal work underlying this publication is due to the thesis author.

Stackelberg Planning and Applications to Network- and Web-Security Analysis

Stackelberg planning extends classical planning to a two-player setting, where one player – the leader
– aims at finding a minimal-cost action sequence that maximizes the plan cost of the other player – the
follower. Such planning questions naturally appear in security-based applications, the follower taking the
role of an attacker (e.g., a hacker attempting to gain access to a computer network), and the role of the
leader (e.g., a network administrator) is to take precautions preventing successful attacks. The solutions to
such Stackelberg planning tasks provide information on how to cost-effectively mitigate security threats.

The first of the following publications introduced the general Stackelberg planning framework, as well
as a leader-follower search algorithm, with various enhancements, that computes all Pareto optimal solu-
tions of such a task. Leader-follower search solves one classical planning task, “the follower sub-task”, for
each move of the leader. The second publication develops further optimizations to this algorithm, by iden-
tifying and reusing common structures in these sub-tasks. The third publication investigates the use of
Stackelberg planning for the network-security scenario as just sketched. The last publication in this series
considers a related application, e-mail infrastructure analysis, analyzing the security (privacy, authenticity,
and confidentiality) of e-mail traffic as it is routed through the internet.

• Patrick Speicher, Marcel Steinmetz, Michael Backes, Jörg Hoffmann, and Robert Künnemann. “Stack-
elberg Planning: Towards Effective Leader-Follower State Space Search.” In: Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications
of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial
Intelligence (EAAI-18). AAAI Press, pp. 6286–6293

• Álvaro Torralba, Patrick Speicher, Robert Künnemann,Marcel Steinmetz, and Jörg Hoffmann. “Faster
Stackelberg Planning via Symbolic Search and Information Sharing.” In: Thirty-Fifth AAAI Confer-
ence on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artifi-
cial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence,
EAAI 2021. AAAI Press, pp. 11998–12006

• Patrick Speicher, Marcel Steinmetz, Jörg Hoffmann, Michael Backes, and Robert Künnemann. “To-
wards automated network mitigation analysis.” In: Proceedings of the 34th ACM/SIGAPP Symposium
on Applied Computing, SAC 2019, pp. 1971–1978

• Patrick Speicher, Marcel Steinmetz, Robert Künnemann, Milivoj Simeonovski, Giancarlo Pellegrino,
Jörg Hoffmann, and Michael Backes. “Formally Reasoning about the Cost and Efficacy of Securing
the Email Infrastructure.” In: 2018 IEEE European Symposium on Security and Privacy, EuroS&P 2018,
pp. 77–91
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Regarding the thesis author’s contributions, the Stackelberg planning formalism and leader-follower search
with all its enhancements were jointly developed by Patrick Speicher and the author of this thesis. The im-
plementation used in the first publication is due to Patrick Speicher, who also took care of conducting the
experiments. The thesis author further contributed to the design of the benchmarks, and to the experimen-
tal evaluation. The thesis author’s contributions to the second publication primarily pertain to the writing
and to assisting with the benchmark generation. In the last two publications, the thesis author developed
the implementations, tailored to the applications, and was responsible for the experiments. The Stackel-
berg planning task models in both publications were the collaborative result of all co-authors involved.

The following publication considers planning for network-security analysis in a non-Stackelberg-planning
context. Planning has been used successfully for automating network penetration testing (pentesting), i.e.,
to generate possible attacks to a network. Yet, prior approaches considered either classical planning (highly
abstract model, good scalability) or partially-observable MDPs (exact model, but impossible to solve for
realistic networks). Here, we explored a middle ground – contingent planning – which considers partial
observability in a qualitative form. We developed suitable pentesting contingent planning models, adapted
solvers, and demonstrated the feasibility of our techniques based on experiments on real networks.

• Dorin Shmaryahu, Guy Shani, Jörg Hoffmann, and Marcel Steinmetz. “Simulated Penetration Test-
ing as Contingent Planning.” In: Proceedings of the Twenty-Eighth International Conference on Auto-
mated Planning and Scheduling, ICAPS 2018, pp. 241–249

The thesis author only contributed to the benchmark generator used for the systematic evaluation of the
proposed methods. The thesis author was neither involved in the writing, nor in the development of the
models and methods.

On the Connection of Planning & Model Checking

The relation between classical planning and model-checking safety properties in deterministic models has
been explored extensively in the past. Works on the intersection between probabilistic planning and prob-
abilistic model checking are however scarce. In the following series of publications, we started to close this
gap. We developed compilations between two commonly used modeling languages, PPDDL (probabilistic
planning) and Jani (probabilistic model checking). We used the compilations to generate an overarching
benchmark collection encompassing standard benchmarks from both communities. Based on this collec-
tion, we ran an extensive experimental evaluation comparing goal-probability planning techniques, as will
be presented in this thesis, and techniques from probabilistic model checking.

• Michaela Klauck, Marcel Steinmetz, Jörg Hoffmann, and Holger Hermanns. “Compiling Probabilis-
tic Model Checking into Probabilistic Planning.” In: Proceedings of the Twenty-Eighth International
Conference on Automated Planning and Scheduling, ICAPS 2018. AAAI Press, pp. 150–154

• Michaela Klauck, Marcel Steinmetz, Jörg Hoffmann, and Holger Hermanns. “Bridging the Gap Be-
tween Probabilistic Model Checking and Probabilistic Planning: Survey, Compilations, and Empiri-
cal Comparison.” In: Journal of Artificial Intelligence Research 68, pp. 247–310

• Ernst Moritz Hahn, Arnd Hartmanns, Christian Hensel, Michaela Klauck, Joachim Klein, Jan Kretıń-
ský, David Parker, Tim Quatmann, Enno Ruijters, and Marcel Steinmetz. “The 2019 Comparison
of Tools for the Analysis of Quantitative Formal Models - (QComp 2019 Competition Report).” In:
Tools and Algorithms for the Construction and Analysis of Systems - 25 Years of TACAS: TOOLympics,
Held as Part of ETAPS 2019, Proceedings, Part III. Vol. 11429. Lecture Notes in Computer Science.
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Springer, pp. 69–92

The first publication introduced the compilation from Jani to PPDDL, and presented a preliminary exper-
imental comparison. The compilation and its implementation were developed by Michaela Klauck. The
thesis author contributed to the experimental evaluation. The second publication introduced the reverse
compilation, from PPDDL to Jani, and significantly extended the experiments. The thesis author developed
and implemented that compilation, and took care of collecting all tools, and conducting the experiments.
The benchmark collection, and the experimental evaluation were jointly developed by Michaela Klauck
and the author of this thesis. The last publication in this sequence is the quantitative model-checking com-
petition report, for which our benchmark collection served as basis, and in which we participated with our
probabilistic FAST DOWNWARD variant.

In the following publication, we advocated the use of model-checking modeling languages – instead of
planning modeling formalisms – to avoid modeling difficulties arising from certain model characteristics.

• Jörg Hoffmann, Holger Hermanns, Michaela Klauck, Marcel Steinmetz, Erez Karpas, and Daniele
Magazzeni. “Let’s Learn Their Language? A Case for Planning with Automata-Network Languages
from Model Checking.” In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020,
The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020. AAAI Press, pp. 13569–
13575

The paper was inspired by modeling hassles that we ourselves ran into during attempts to apply planning
tools on actual applications. Besides the writing, the contributions of the thesis author mostly pertain to
discussions and the motivating examples.

Gaining Trust in Neural-Network Action Policies

Motivated by the increased popularity of using machine learning for decision-making in safety-critical
applications, like autonomous driving, in the following publications, we embarked on the quest for tech-
niques that help to gain trust in these decisions. We adapted three approaches known from other contexts
towards analyzing the behavior of machine-learned policies, i.e., functions that take the action decisions,
with respect to a formal model and a given property.

In the first publication, we considered quantitative properties in stochastic environments, asking, e.g.,
for the probability that executing the policy results in an unsafe state. We leveraged tools from statistical
model checking (SMC) to compute high precision approximations of the property value, and demonstrated
the feasibility of the approach through a series of case studies on Racetrack (as known from AI literature).
The second publication developed an interactive tool that allows to visually explore the SMC results for
Racetrack at various granularity levels, ranging from a high-level overview down to an in-depth exami-
nation of the generated policy execution runs. The third publication developed a predicate-abstraction-
based machinery for verifying qualitative safety properties on learned policies. Predicate abstraction is a
well-established model-checking method. Yet, the integration of a policy raises non-trivial problems, like
deciding whether an abstract transition is chosen by the considered policy, which we tackled via a whole
toolbox of techniques. The last publication took up a method commonly used in software engineering –
testing – to find “bugs”, i.e., states on which executing the policy does not comply with the desired prop-
erty. We introduced a generic testing framework, formally analyzed the use of bounds on the property
values for bug confirmation, and provided a implementation framework and experimental evaluation in
classical planning.



1.5. Publications 19

• Timo P. Gros, Holger Hermanns, Jörg Hoffmann, Michaela Klauck, and Marcel Steinmetz. “Deep
Statistical Model Checking.” In: Formal Techniques for Distributed Objects, Components, and Systems
- 40th IFIP WG 6.1 International Conference, FORTE 2020, Held as Part of the 15th International
Federated Conference on Distributed Computing Techniques, DisCoTec 2020. Vol. 12136. Lecture Notes
in Computer Science. Springer, pp. 96–114

• Timo P. Gros, David Groß, Stefan Gumhold, Jörg Hoffmann, Michaela Klauck, andMarcel Steinmetz.
“TraceVis: Towards Visualization for Deep Statistical Model Checking.” In: Leveraging Applications
of Formal Methods, Verification and Validation: Tools and Trends - 9th International Symposium on
Leveraging Applications of Formal Methods, ISoLA 2020, Proceedings, Part IV. Vol. 12479. Lecture
Notes in Computer Science. Springer, pp. 27–46

• Marcel Vinzent, Marcel Steinmetz, and Jörg Hoffmann. “Neural Network Action Policy Verification
via Predicate Abstraction.” In: Proceedings of the Thirty-Second International Conference on Automated
Planning and Scheduling, ICAPS 2022. AAAI Press, pp. 371–379

• Marcel Steinmetz, Daniel Fiser, Hasan Ferit Eniser, Patrick Ferber, Timo P. Gros, Philippe Heim,
Daniel Höller, Xandra Schuler, Valentin Wüstholz, Maria Christakis, and Jörg Hoffmann. “Debug-
ging a Policy: Automatic Action-Policy Testing in AI Planning.” In: Proceedings of the Thirty-Second
International Conference on Automated Planning and Scheduling, ICAPS 2022. AAAI Press, pp. 353–
361

The first publication was the result of many paper refinements and many discussions involving all co-
authors. The bulk of the work was carried out by Timo P. Gros and Michaela Klauck, who took care of
learning the policies, integrating the policies in the statistical model checker Modes, and conducting the
actual experiments. The author of this thesis contributed the formal Racetrack model, encoded in Jani,
and a Racetrack instance generator. The thesis author’s contributions to the second publication pertain
primarily to the discussions during which the visualization tool was developed. The contributions to the
third publication pertain to the writing (of an earlier version of this publication), to the design of the bench-
marks, and to regular discussions. In the last publication, the author of this thesis developed the theoretical
analysis, the implementation (starting from the code developed by Phillippe Heim), and contributed to
the experimental evaluation.
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2. Classical Planning

We lay down the mathematical foundation for the upcoming chapters. Classical planning will be a constant
companion throughout the thesis. This chapter starts with introducing the two definitions of classical
planning tasks most commonly used in literature. We introduce labeled transition systems, and explain
how the behavior induced by a classical planning task is represented in terms of such a system. Finally, we
briefly discuss heuristic search as an algorithmic approach to solve classical planning tasks.

2.1. Planning Task Formalisms

Classical planning deals with the question of finding a sequence of actions that, when applied to the initial
world state, results in some goal world state. States and actions are specified symbolically by means of
an abstract world model, assuming closed-world semantics, finite, discrete and deterministic dynamics,
and full observability. In the following, we adapt two well-known frameworks to describe such models
formally. Both formalisms are equally expressive in theory, yet certain classical planning techniques are
more naturally expressed in one than the other. We briefly discuss common algorithmic problems arising
from these formalisms at the end of the section.

2.1.1. STRIPS Planning

The STRIPS formalism (Fikes and Nilsson, 1971) describes the world through the lenses of propositions,
also called facts. A world state in this formalism is represented by the list of facts known to be true in that
state. Every fact that is not listed is assumed to be false. Actions modify states by making true “adding”
new facts, respectively making false “deleting” facts, which were true previously. The goal world states are
characterized through facts whose simultaneous satisfaction is sought. The complete definition is:

Definition 2.1 (STRIPS Planning Task). A STRIPS planning task is a tuple

Π = ⟨F ,A,I,G⟩

with components

• F is a finite set of facts.

• A is a finite set of actions. Each action𝑎 ∈ A has a precondition pre(𝑎) ⊆ F , add effect add(𝑎) ⊆ F ,
delete effect del(𝑎) ⊆ F , and non-negative cost 𝔠(𝑎) ∈ ℝ+0.

• I ⊆ F is the initial state.

• G ⊆ F is the goal.

The states SΠ = 2F of Π are all sets of facts (2𝑋 denoting the powerset of a set 𝑋 ). An action 𝑎 is called
applicable in a state 𝑠 if pre(𝑎) ⊆ 𝑠. The result of this application is the state 𝑠⟦𝑎⟧ = (𝑠 \ del(𝑎)) ∪ add(𝑎).

23



24 2. Classical Planning

We refer to the individual components of Π by F Π, AΠ, IΠ, and GΠ. We refer by A(𝑠) ⊆ A to the
set of all actions applicable in state 𝑠. The application of actions is extended to sequences of actions in an
iterative manner. The empty action sequence 𝜀 is applicable in all states 𝑠, and 𝑠⟦𝜀⟧ = 𝑠. A non-empty
action sequence ⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩ is applicable in 𝑠 if 𝑎1 ∈ A(𝑠) and ⟨𝑎2, . . . , 𝑎𝑛⟩ is applicable in 𝑠⟦𝑎1⟧. The
resulting state is denoted 𝑠⟦⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩⟧. The cost of an action sequence is the sum of the cost of the
individual actions:

𝔠(⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩) =
𝑛∑
𝑖=1

𝔠(𝑎𝑖)

Solutions of Π are action sequences of the following kind:

Definition 2.2 (Plan). Let 𝑠 be a state of Π. An action sequence 𝜋 is a plan for 𝑠 if 𝜋 is applicable in 𝑠 and
G ⊆ 𝑠⟦𝜋⟧. 𝜋 is an optimal plan for 𝑠 if its cost is minimal among all plans for 𝑠. A (optimal) plan for I is a
(optimal) plan for Π.

Example 2.1. The following STRIPS planning task Π = ⟨F ,A,I,G⟩ models the rover example sketched in
Section 1.2:

• F = { 𝑟𝑜𝑣 (𝐵), 𝑟𝑜𝑣 (𝐴1), 𝑟𝑜𝑣 (𝐴2) } (the rover’s position)
∪ {𝑏𝑎𝑡 (0), 𝑏𝑎𝑡 (1), 𝑏𝑎𝑡 (2) } (the battery level)
∪ { 𝑠𝑎𝑚𝑝𝑖 (𝑥) | 𝑖 ∈ { 1, 2 }, 𝑥 ∈ { 𝐵,𝐴1, 𝐴2, 𝑅 } } (location of the samples)

• A = {𝑚𝑜𝑣𝑒 (𝑥,𝑦, 𝑘) | 𝑥,𝑦 ∈ { 𝐵,𝐴1, 𝐴2 }, 𝑘 ∈ { 1, 2 }, 𝑥 ≠ 𝑦 }
∪ { 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 (𝑠𝑎𝑚𝑝𝑖 , 𝑥) | 𝑖 ∈ { 1, 2 }, 𝑥 ∈ { 𝐵,𝐴1, 𝐴2 } }
∪ {𝑑𝑟𝑜𝑝 (𝑠𝑎𝑚𝑝𝑖 , 𝑥) | 𝑖 ∈ { 1, 2 }, 𝑥 ∈ { 𝐵,𝐴1, 𝐴2 } }

with preconditions, add and delete effects as shown in the table below; all actions have cost 1,

pre add del
𝑚𝑜𝑣𝑒 (𝑥,𝑦, 𝑘) { 𝑟𝑜𝑣 (𝑥), 𝑏𝑎𝑡 (𝑘) } { 𝑟𝑜𝑣 (𝑦), 𝑏𝑎𝑡 (𝑘 − 1) } { 𝑟𝑜𝑣 (𝑥), 𝑏𝑎𝑡 (𝑘) }
𝑐𝑜𝑙𝑙𝑒𝑐𝑡 (𝑠𝑎𝑚𝑝𝑖 , 𝑥) { 𝑟𝑜𝑣 (𝑥), 𝑠𝑎𝑚𝑝𝑖 (𝑥) } { 𝑠𝑎𝑚𝑝𝑖 (𝑅) } { 𝑠𝑎𝑚𝑝𝑖 (𝑥) }
𝑑𝑟𝑜𝑝 (𝑠𝑎𝑚𝑝𝑖 , 𝑥) { 𝑟𝑜𝑣 (𝑥), 𝑠𝑎𝑚𝑝𝑖 (𝑅) } { 𝑠𝑎𝑚𝑝𝑖 (𝑥) } { 𝑠𝑎𝑚𝑝𝑖 (𝑅) }

• Initial state I = { 𝑟𝑜𝑣 (𝐴1), 𝑏𝑎𝑡 (2), 𝑠𝑎𝑚𝑝1(𝐴1), 𝑠𝑎𝑚𝑝2(𝐴2) }

• Goal G = { 𝑠𝑎𝑚𝑝1(𝐵), 𝑠𝑎𝑚𝑝2(𝐵) }

A plan for Π is given by the action sequence ⟨𝑐𝑜𝑙𝑙𝑒𝑐𝑡 (𝑠𝑎𝑚𝑝1, 𝐴1),𝑚𝑜𝑣𝑒 (𝐴1, 𝐴2, 2), 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 (𝑠𝑎𝑚𝑝2, 𝐴2),
𝑚𝑜𝑣𝑒 (𝐴2, 𝐵, 1), 𝑑𝑟𝑜𝑝 (𝑠𝑎𝑚𝑝1, 𝐵), 𝑑𝑟𝑜𝑝 (𝑠𝑎𝑚𝑝2, 𝐵)⟩. This plan is an optimal plan.

All actions in Example 2.1 have cost 1. In this case, plan cost and plan length become the same. In general,
we will use the term unit cost to refer to planning tasks that exhibit this property.

A planmay not always exist. For instance, consider the state 𝑠 = {𝑟𝑜𝑣 (𝐵), 𝑏𝑎𝑡 (0), 𝑠𝑎𝑚𝑝1(𝐴1), 𝑠𝑎𝑚𝑝2(𝐴2)}
in the task from Example 2.1. This state does not satisfy the goal, and there is no action applicable in 𝑠.
But this means that there is no possibility to ever accomplish the goal.

Definition 2.3 (Dead End). A state 𝑠 is called a dead end if there is no plan for 𝑠. If IΠ is a dead end, we
say that Π is unsolvable. Otherwise Π is called solvable.
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2.1.2. FDR Planning

The finite domain representation (FDR) formalism (Bäckström and Nebel, 1995; Helmert, 2009), also
known under the term SAS+, lifts the propositional STRIPS syntax to multi-valued state variables:

Definition 2.4 (FDR Planning Task). An FDR planning task is a tuple
Π = ⟨V,A,I,G⟩

with components

• V is a finite set of variables. Each 𝑣 ∈ V is associated with a finite domainD𝑣 . A variable assignment
is a function 𝑃 that maps a subset of variables vars(𝑃) ⊆ V to values of the respective domain.We denote
by 𝑃 [𝑣] ∈ D𝑣 the value assigned to variable 𝑣 ∈ vars(𝑃) by 𝑃 . 𝑃 is called complete if vars(𝑃) = V.

• A is a finite set of actions. Each action 𝑎 ∈ A has a precondition pre(𝑎) and an effect eff(𝑎), both
are variable assignments, and a non-negative cost 𝔠(𝑎) ∈ ℝ+0.

• I is the initial state, a complete variable assignment.

• G is the goal, a variable assignment.

The states SΠ of Π are the complete variable assignments. An action 𝑎 is applicable in a state 𝑠 if 𝑠 [𝑣] =
pre(𝑎) [𝑣] holds for all 𝑣 ∈ vars(pre(𝑎)). The application results in the state 𝑠⟦𝑎⟧ with values

𝑠⟦𝑎⟧[𝑣] =
{
eff(𝑎) [𝑣] if 𝑣 ∈ vars(eff(𝑎))
𝑠 [𝑣] otherwise

The facts F Π of an FDR planning task Π are the variable-value pairs ⟨𝑣, 𝑑⟩, also written 𝑣 ↦→ 𝑑 , for
𝑣 ∈ V and 𝑑 ∈ D𝑣 . We treat variable assignments and sets of facts interchangably. For two variable
assignments 𝑃1 and 𝑃2, we denote by 𝑃1 ◦ 𝑃2 the update of 𝑃1 by 𝑃2, i.e., the variable assignment with
vars(𝑃1 ◦ 𝑃2) = vars(𝑃1) ∪ vars(𝑃2), (𝑃1 ◦ 𝑃2) [𝑣] = 𝑃2 [𝑣] for all 𝑣 ∈ vars(𝑃2) and (𝑃1 ◦ 𝑃2) [𝑣] = 𝑃1 [𝑣]
for 𝑣 ∈ vars(𝑃1) \ vars(𝑃2). We say that 𝑃1 and 𝑃2 are consistent, written 𝑃1 ∥ 𝑃2, if it holds for all
variables 𝑣 ∈ vars(𝑃1) ∩ vars(𝑃2) that 𝑃1 [𝑣] = 𝑃2 [𝑣]. Otherwise, 𝑃1 and 𝑃2 are inconsistent, and we
write 𝑃1 ∦ 𝑃2.

We share symbols and notations across STRIPS and FDR planning tasks. We frequently use planning task,
or simply task, to refer to either STRIPS or FDR planning tasks. If important for the discussion, it will be
clear from the context to which formalism we refer to exactly. The application of action sequences, plans,
and dead ends for FDR planning tasks can be defined just as for STRIPS (cf. Definitions 2.2 and 2.3). We
omit restating the definitions here.

Example 2.2. Example 2.1 can be translated into the FDR planning task Π = ⟨V,A,I,G⟩ where:

• VariablesV = { 𝑟𝑜𝑣, 𝑏𝑎𝑡, 𝑠𝑎𝑚𝑝1, 𝑠𝑎𝑚𝑝2 } with domains

D𝑟𝑜𝑣 = { 𝐵,𝐴1, 𝐴2 } D𝑏𝑎𝑡 = { 0, 1, 2 } D𝑠𝑎𝑚𝑝1 = D𝑠𝑎𝑚𝑝2 = { 𝐵,𝐴1, 𝐴2, 𝑅 }

• The actions A are defined as follows:

pre eff
𝑚𝑜𝑣𝑒 (𝑥,𝑦, 𝑘) { 𝑟𝑜𝑣 ↦→ 𝑥, 𝑏𝑎𝑡 ↦→ 𝑘 } { 𝑟𝑜𝑣 ↦→ 𝑦,𝑏𝑎𝑡 ↦→ 𝑘 − 1 }
𝑐𝑜𝑙𝑙𝑒𝑐𝑡 (𝑠𝑎𝑚𝑝𝑖 , 𝑥) { 𝑟𝑜𝑣 ↦→ 𝑥, 𝑠𝑎𝑚𝑝𝑖 ↦→ 𝑥 } { 𝑠𝑎𝑚𝑝𝑖 ↦→ 𝑅 }
𝑑𝑟𝑜𝑝 (𝑠𝑎𝑚𝑝𝑖 , 𝑥) { 𝑟𝑜𝑣 ↦→ 𝑥, 𝑠𝑎𝑚𝑝𝑖 ↦→ 𝑅 } { 𝑠𝑎𝑚𝑝𝑖 ↦→ 𝑥 }
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• Initial state I = { 𝑟𝑜𝑣 ↦→ 𝐴1, 𝑏𝑎𝑡 ↦→ 2, 𝑠𝑎𝑚𝑝1 ↦→ 𝐴1, 𝑠𝑎𝑚𝑝2 ↦→ 𝐴2 }

• Goal G = { 𝑠𝑎𝑚𝑝1 ↦→ 𝐵, 𝑠𝑎𝑚𝑝2 ↦→ 𝐵 }

The plans of Π are identical to the plans of the STRIPS task from Example 2.1.

2.1.3. Planning Objectives & Complexity

The two algorithmic problems most frequently considered in the classical planning literature are those of
optimal and satisficing planning. Satisficing planning deals with the problem of finding some plan, ideally
of good quality, while optimal planning imposes the additional requirement that the found plans must
be optimal. With the first international planning competition on proving unsolvability in 2016, a third
category has recently started to gain momentum: proving that no plan exists. The three planning variants
give rise to the following decision theoretic questions:

Plan Existence Given a planning task Π, does there exist any plan for Π?

Cost-Bounded Plan Existence Given a planning task Π and a cost bound 𝑏 ∈ ℝ+0, does there exist a plan
for Π whose cost does not exceed 𝑏?

As has been shown by Bylander (1994) and by Bäckström and Nebel (1995), both questions fall into the
class of PSPACE-complete decision problems. This result holds, regardless of whether the planning task is
described in STRIPS or in FDR notation.

2.2. Transition Systems & State Spaces

Planning tasks specify implicitly how states change as function of the chosen action. Labeled transition
systems make these dynamics explicit:

Definition 2.5 (Labeled Transition System). A labeled transition system (LTS) is a tuple

Θ = ⟨S,L,T , 𝑠I,S∗, 𝔠⟩

with components

• S is a finite set of states.

• L is a finite set of transition labels.

• T ⊆ S × L × S are the transitions.

• 𝑠I is the initial state.

• S∗ ⊆ S are the goal states.

• 𝔠 : L → ℝ+0 is the label cost function.

We additionally use the following notation. A state 𝑠′ ∈ S is called a successor of a state 𝑠 ∈ S in
Θ if there is a transition ⟨𝑠, 𝑙, 𝑠′⟩ ∈ T . In this case, 𝑠 is also called a predecessor or parent of 𝑠′. We
denote the set of all successors of a state 𝑠 in Θ by Succ[Θ] (𝑠). The set of all predecessors is denoted
Pred[Θ] (𝑠). By Succ+ [Θ] and Pred+ [Θ] we denote the transitive closure of Succ[Θ] and Pred[Θ], i.e.,
Succ+ [Θ] (𝑠) ⊆ S is the smallest set that satisfies Succ[Θ] (𝑠) ⊆ Succ+ [Θ] (𝑠) and 𝑠′′ ∈ Succ+ [Θ] (𝑠) if
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there exists 𝑠′ ∈ Succ+ [Θ] (𝑠) and ⟨𝑠′, 𝑙, 𝑠′′⟩ ∈ T . Pred+ [Θ] is defined similarly. A state 𝑠′ is an ancestor of 𝑠
inΘ if 𝑠′ ∈ Pred+ [Θ] (𝑠). 𝑠′ is a descendant of 𝑠 inΘ if 𝑠′ ∈ Succ+ [Θ] (𝑠). 𝑠′ is reachable from 𝑠 inΘ if 𝑠′ = 𝑠
or 𝑠′ ∈ Succ+ [Θ] (𝑠). The set of all states reachable from 𝑠 is denoted asR[Θ] (𝑠) (= Succ+ [Θ] (𝑠)∪{ 𝑠 }). A
state 𝑠 is a dead end inΘ ifR[Θ] (𝑠)∩S∗ = ∅. For sets of states 𝑆 ⊆ S, we define Succ[Θ] (𝑆), Pred[Θ] (𝑆),
Succ+ [Θ] (𝑆), Pred+ [Θ] (𝑆), and R[Θ] (𝑆) as the union over the respective sets of the individual states. We
omit [Θ] if Θ is clear from the context.

An alternating sequence of states and labels𝜎 = ⟨𝑠1, 𝑙1, 𝑠2, 𝑙2, . . . , 𝑠𝑛⟩ is called a path inΘ if ⟨𝑠𝑖 , 𝑙𝑖 , 𝑠𝑖+1⟩ ∈ T
for all 1 ≤ 𝑖 < 𝑛. 𝜎 is called a cycle if 𝑛 > 1 and 𝑠𝑛 = 𝑠1. The cost of 𝜎 is given by 𝔠(𝜎) = ∑𝑛−1

𝑖=1 𝔠(𝑙𝑖). By
labels(𝜎) = ⟨𝑙1, 𝑙2, . . . , 𝑙𝑛−1⟩ we denote the sequence of labels that appear along 𝜎 .

An LTS Θ′ = ⟨S′,L′,T ′, 𝑠′I,S′∗, 𝔠′⟩ is called subgraph of Θ if (i) S′ ⊆ S, and (ii) S′∗ ⊆ S∗, and
(iii) T ′ ⊆ T . Let ∅ ⊂ 𝑆 ⊆ S be a non-empty subset of states. The subgraph of Θ induced by 𝑆 is
the LTS Θ|𝑆 = ⟨𝑆,L,T |𝑆 , 𝑠′I,S∗ |𝑆 , 𝔠⟩, where T |𝑆 = { ⟨𝑠, 𝑎, 𝑠′⟩ ∈ T | 𝑠, 𝑠′ ∈ 𝑆 }, and S∗ |𝑆 = S∗ ∩ 𝑆 . Initial
state may be defined arbitrarily. Let 𝑠 ∈ S be a state. The subgraph of Θ reachable from 𝑠 is the subgraph
of Θ induced by the states reachable from 𝑠, i.e., Θ|R(𝑠) .

The LTS induced by a planning task Π explicates the result of action applications. The initial state of the
LTS is that of Π, the goal states are all states of Π that satisfy the goal condition. The plans of Π correspond
exactly to the paths from the initial state to the goal states in the LTS.

Definition 2.6 (State Space). Let Π be a planning task. The state space induced by Π is the LTS

ΘΠ = ⟨SΠ,LΠ,T Π, 𝑠ΠI ,SΠ
∗ , 𝔠

Π⟩

where

• SΠ are the states of Π.

• The labels are the actions of Π, LΠ = AΠ.

• The set of transitions is given by T Π = { ⟨𝑠, 𝑎, 𝑠⟦𝑎⟧⟩ | 𝑠 ∈ SΠ, 𝑎 ∈ AΠ (𝑠) }.

• Same initial state 𝑠ΠI = IΠ.

• The goal states are SΠ
∗ = { 𝑠 ∈ SΠ | GΠ ⊆ 𝑠 }.

• 𝔠Π is the action cost function of Π.

The number of states of a planning task Π is exponential in the size of Π, and hence the size of ΘΠ

is exponential in the size of Π. The discrepancy between compact syntactic (Π) versus semantic (ΘΠ)
representation is commonly known as the state explosion problem.

2.3. Heuristic Search

Given that the semantics of planning tasks can be conceived as a weighted directed graph, the state space,
graph search hence becomes an obvious approach to compute plans. However, blindly exploring this graph
via algorithms such as breadth-first search (Moore, 1959) or Dijkstra’s search (Dijkstra, 1959) is generally
not feasible due to the state explosion problem. Heuristic search exploits additional task-specific informa-
tion to stringently guide the exploration towards goal states: heuristic functions (Pearl, 1984).
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Definition 2.7 (Heuristic). Let Π be a planning task. A heuristic function, in short heuristic, for Π is a
function ℎ : SΠ → ℝ+0 ∪ {∞ }. The perfect heuristic ℎ∗ for Π assigns every state 𝑠 ∈ SΠ the cost of an
optimal plan for 𝑠, or ∞ if 𝑠 is a dead end. A heuristic ℎ is admissible if ℎ(𝑠) ≤ ℎ∗(𝑠) for all 𝑠 ∈ SΠ. ℎ is
consistent if ℎ(𝑠) ≤ ℎ(𝑠⟦𝑎⟧) + 𝔠Π (𝑎) for all 𝑠 ∈ SΠ and actions 𝑎 ∈ AΠ (𝑠). ℎ is goal-aware if ℎ(𝑠) = 0
for all 𝑠 ∈ SΠ

∗ .

Heuristic functions provide estimations of the cost-to-go to reach the goal for a given state. Heuristic
search algorithms use this information for guidance by prioritizing states with smaller heuristic value.
The exact degree to which the heuristic values influence the exploration order differs between heuristic
search algorithms. For example, A∗ search (Hart et al., 1968) prioritizes states not just by that estimate,
but also takes into account the cost of reaching states from the initial state. The additional bias makes
the search more exhaustive, yet guarantees to find an optimal solution, if provided with an admissible
heuristic. Greedy best-first search (GBFS) (Doran and Michie, 1966) orders states purely based on their
heuristic values, which usually makes the search more effective, but loses the optimality property.

Note that some of the listed heuristic properties are correlated. In particular, a heuristic is admissible if
it is consistent and goal-aware (Russell and Norvig, 2010). A heuristic is goal-aware if it is admissible.
The heuristic value∞ serves the purpose of identifying dead ends. In principle, one can ignore dead ends
during search completely, as it is not possible to reach the goal from them by definition. But as we have seen
in Section 2.1.3, identifying all dead ends is in general not tractable. So, one falls back to the detection
capabilities of the heuristic, pruning states 𝑠 during search if ℎ(𝑠) = ∞.



3. Strongly Connected Components

In the previous chapter, we have seen that graphs yield a very natural interpretation of (classical) planning
tasks. Throughout the thesis, we will frequently run into the need of identifying strongly connected compo-
nents. In this chapter, we provide the formal definition, and present a variant of Tarjan’s (1972) famous
algorithm to compute the strongly connected components of a graph. This algorithm builds the foundation
of many algorithms that will follow.

Definition 3.1 (Strongly Connected Component). Let Succ be the successor relation underlying some graph
structure over statesS, and let Succ+ be its transitive closure. A set 𝑆 ⊆ S is a strongly connected component
(SCC) under Succ if for each distinct pair of states 𝑠, 𝑠′ ∈ 𝑆 , it holds that 𝑠 ∈ Succ+(𝑠′). An SCC 𝑆 is maximal
if there is no SCC 𝑆′ ⊆ S under Succ such that 𝑆 ⊂ 𝑆′.

The maximal SCCs can be computed along a single depth-first exploration (Tarjan, 1972). Algorithm 3.1
sketches the main function. To compute all maximal SCCs, DepthFirstTraversal has to be called
iteratively on every non-visited state until all states have been visited. The order of the calls is not important.
SCCs are identified by tracking the visited, but not yet fully explored states in a stack like data structure.
Due to the depth-first traversal, the order of the elements on the stack is consistent with the reachability
relation. More precisely, every state 𝑠′ above 𝑠 in the stack was visited during the traversal of 𝑠, and hence
each such 𝑠′ is reachable from 𝑠. Finding the SCCs then boils down to maintaining reachability information
also in the other direction, i.e., remembering which states below 𝑠 on the stack are reachable from 𝑠. Say
that some 𝑠′ beneath 𝑠 is reachable from 𝑠. Due to the stack order property, every state between 𝑠′ and 𝑠 is
reachable from 𝑠′, and hence also reachable from 𝑠 via transitivity of reachability. Since every state below
𝑠 can reach 𝑠, the sequence of states on the stack from 𝑠′ up to 𝑠 therefore forms an SCC. A maximal SCC is
found, when the traversal backtracks out of a state that cannot reach any state beneath itself on the stack.

Theorem 3.1 (Tarjan, 1972). Algorithm 3.1 computes the set of all maximal SCCs under Succ.
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Algorithm 3.1: Depth-first traversal, storing the maximal SCCs.
Input: Some graph structure over states S with associated successor relation Succ
Output: sccs: maximal SCCs under Succ

1 globals
2 sccs← ∅ ; /* computed SCCs */
3 visited← ∅ ; /* states that were processed */
4 stack← empty stack ; /* current exploration stack */

/* lowest index of state in stack reachable from 𝑠: */
5 minReach[𝑠] ← ∞ for all 𝑠 ∈ S;
6 procedure DepthFirstTraversal(𝑠)
7 visited← visited ∪ { 𝑠 };
8 stackIdx← |stack|;
9 minReach[𝑠] ← stackIdx ; /* initialize to own index */

10 push 𝑠 onto stack;
11 foreach 𝑠′ ∈ Succ(𝑠) do
12 if 𝑠′ ∉ visited then /* need to explore 𝑠′ */
13 DepthFirstTraversal(𝑠′);

/* update index of reachable stack states */
14 minReach[𝑠] ← min(minReach[𝑠],minReach[𝑠′]);
15 if minReach[𝑠] = stackIdx then

/* no state on stack below 𝑠 is reachable */
16 𝑆 ← ∅;
17 while 𝑠 ∉ 𝑆 do /* collect states down to 𝑠 */
18 𝑠′← pop from stack;
19 minReach[𝑠′] ← ∞;
20 𝑆 ← 𝑆 ∪ { 𝑠′ };
21 sccs← sccs ∪ { 𝑆 };



4. Linear Programming

The linear programming problem is a well-studied problem in AI and operations research literature. Due
to its flexibility paired with very efficient solution approaches, linear programs have become a popular
method for solving a wide range of combinatorial problems. And so, various techniques in the context of
planning rely on linear programming as a sub-procedure. Linear programs will also appear in different
parts of the thesis. This chapter introduces the relevant background and notions. For an in-depth elabo-
ration of this topic, we refer the reader to classical textbooks (Chvátal, 1983; Dantzig and Thapa, 1997;
Korte and Vygen, 2000).

The linear programming problem is the maximization or minimization of a linear objective function over a
finite set of real-valued variables subject to a finite set of linear constraints. A linear programming problem
instance is called linear program:

Definition 4.1 (Linear Program). A linear program (LP) with 𝑛 variables and𝑚 constraints has the follow-
ing components

• Constraint coefficients: 𝑎𝑖 𝑗 ∈ ℝ for 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛.

• Bounds: 𝑏𝑖 ∈ ℝ for 1 ≤ 𝑖 ≤ 𝑚.

• Objective coefficients: 𝑐𝑗 ∈ ℝ for 1 ≤ 𝑗 ≤ 𝑛.

The reals 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ ℝ are called a feasible solution to the LP if they satisfy the constraint
𝑛∑
𝑗=1

𝑎𝑖 𝑗𝑥𝑗 ≤ 𝑏𝑖

for each 1 ≤ 𝑖 ≤ 𝑚. An optimal solution is a feasible solution with maximal objective value ∑𝑛
𝑗=1 𝑐𝑗𝑥𝑗 . The

LP is called infeasible if there is no feasible solution. The LP is called unbounded if it has some feasible solution,
but no optimal one. The objective value of the LP is the objective value of its optimal solutions, or∞ if no such
solution exists.

Linear programs are often written compactly using matrix notation. The constraint coefficients are formu-
lated as an𝑚-by-𝑛 matrix A ∈ ℝ𝑚×𝑛, the bounds and objective coefficients as column vectors b ∈ ℝ𝑚

and c ∈ ℝ𝑛. A feasible solution is then a column vector x ∈ ℝ𝑛 such that Ax ≤ b, where the in-
equality is applied per vector-component. An optimal solution maximizes cTx, where cT is the trans-
pose of c. The product cTx is commonly denoted as the objective function. The whole LP is also written
argmaxx∈ℝ𝑛 { cTx | Ax ≤ b }.

LPs as per Definition 4.1 are in standard form. Minimization objectives, and equality and ≥ constraints
are supported, in principle, as all these can be represented directly in standard form. The minimization
of cTx is equivalent to maximizing −cTx. Equality constraints can be split into two inequality constraints.
A ≥ constraint with bound 𝑏𝑖 and coefficients 𝑎𝑖 𝑗 is equivalent to the ≤ constraint with bound −𝑏𝑖 and
coefficients −𝑎𝑖 𝑗 .
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The dual LP offers an alternative view on LPs in standard form by exchanging the role of variables and
constraints:

Definition 4.2 (Dual LP). Let
argmaxx∈ℝ𝑛 { cTx | Ax ≤ b }

be an LP in standard form, called the primal. The dual LP is

argminy∈ℝ𝑚 { bTy | ATy = c, y ≥ 0 }

In words, the dual LP contains one variable for every constraint in the primal, and one constraint for every
variable in the primal. The 𝑗 -th constraint in the dual aggregates the constraint coefficients referring to 𝑗 -th
variable in the primal: ∑𝑚

𝑖=0 𝑎𝑖 𝑗𝑦𝑖 . The objective coefficients of the primal become bounds in the dual, and
vice versa the objective coefficients in the dual are the bounds of the primal. The constraints in the dual
enforce equality because the variables in the primal are unbounded. Conversely, the variables in the dual
must be non-negative because of the upper-bounding constraints in the primal. The dual transformation
is symmetric (Korte and Vygen, 2000), i.e., the dual of the dual gives again the primal (assuming that the
LPs are brought back into standard form after each transformation).

The dual view offers many important properties that can be exploited to compute optimal solutions for
the primal, or to prove that no such solution exists. In particular, one of the most fundamental results in
the theory of linear programming is the Duality Theorem:

Theorem 4.1 (The Duality Theorem (Gale et al., 1951)). If the primal has an optimal solution, then the
dual has an optimal solution with the same objective value.

This theorem has several important consequences. As the notion of primal and dual is symmetric, the
primal hence has an optimal solution if and only if the dual has one. And if this is the case, then both LPs
have the same objective value. Moreover, it can be shown that the objective value of the primal is bounded
by the objective values of the feasible solutions of the dual. In other words, if the primal is unbounded,
then the dual cannot have any feasible solution. Symmetrically, if the dual is unbounded, then the primal
must be infeasible.

Linear programs can be solved optimally in time polynomial in the size of the LP (Khachiyan, 1979).
These algorithms however perform poorly in practice. Current LP solvers instead implement variants of
the Simplex Method (Dantzig, 1951), which in pathological cases can actually require exponentially many
steps in the size of the LP to find an optimal solution (Klee and Minty, 1972).



Part II.

Conflict-Driven Learning in Classical-Planning
State-Space Search

In the realm of state-space search problems, research of conflict-driven learning methods is
limited almost exclusively to length-bounded reachability, where reachability analysis degen-
erates to a constraint satisfaction problem, and via appropriate encodings (e.g., into SAT),
standard learning techniques in principle apply unmodified. From the perspective of solving
general reachability problems, length-bounded reachability is a limitation, as one needs to it-
erate over different length bounds until some termination criterion applies. In this part of the
thesis, we show how to apply the principles of conflict-driven learning to state-space search
without length bound, considering goal-reachability objectives in classical planning.
The canonical form of “conflicts” in this setting are dead-end states. We adapt common search
algorithms to identify conflicts as search is unveiling new parts of the state space. We show
how to explain the identified conflicts so to learn recognizing similar dead-end states that
search may encounter in the future. The core component are unsolvability detectors, parame-
terized goal-reachability approximations U [𝜌] that (i) are sound, i.e., where U [𝜌] does not
misclassify any state as being a dead end, and (ii) are complete in the limit, i.e., where, for
some 𝜌∗, U [𝜌∗] recognizes all dead-end states. We use U [𝜌] as a dead-end detection mech-
anism, disregarding recognized dead-end states during search. Property (i) ensures that this
is safe, i.e., that we do not prune any solution. When search encounters a dead-end state 𝑠
that is not recognized by the current U [𝜌], we explain the situation at 𝑠, finding a refinement
𝜌 so that (1) U [𝜌] recognizes 𝑠, while (2) U [𝜌] preserves the knowledge learned so far, i.e.,
still covers all dead-end states recognized by U [𝜌]. Property (ii) ensures that this is always
possible. The refinement has the potential to generalize to unseen dead-end states, and if so,
may allow to prune future search branches.
We instantiate this general framework by three different families of unsolvability detectors,
adapting well-known techniques from classical planning that offer (i) out of the box: critical-
path heuristics ℎC; LP-based heuristics centered around the state equation; and dead-end
traps. We will be showing that they also satisfy (ii), designing alongside suitable conflict
refinement methods.
We conduct comprehensive empirical evaluations demonstrating that the proposed methods
can, under certain conditions, yield substantial search reductions for finding plans for solvable
classical planning tasks, as well as for proving classical planning tasks unsolvable.
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5. Conflict Identification in Forward State-Space
Search

The foundation to our techniques is formed by unsolvability detectors (Hoffmann et al., 2014). Suppose Π
is a classical planning task, and ΘΠ = ⟨S,L,T , 𝑠I,S∗, 𝔠⟩ is its state space. Then formally

Definition 5.1 (Unsolvability Detector). A function U : S → { 0,∞ } is an unsolvability detector (also
called dead-end detector) if U(𝑠) = ∞ implies that 𝑠 is a dead end. We say that a dead end 𝑠 is recognized
by U if U(𝑠) = ∞, and it is unrecognized otherwise. We say that U is transitive if, for every transition
⟨𝑠, 𝑎, 𝑡⟩ ∈ T , U(𝑠) = ∞ implies U(𝑡) = ∞. U is called perfect if it recognizes all dead ends. The perfect
unsolvability detector is also denoted by U∗.

Assume we use such a U to recognize and subsequently skip the exploration of dead-end states in search.
Notice that, trivially, this kind of pruning can neither impede the completeness nor the optimality property
of the search algorithm. It may however substantially reduce the number of states needed to be touched
by search – in the extreme case, where Π is unsolvable, it may even remove the need for search altogether.
Ideally, we would want to use the perfect unsolvability detector U∗, as this would allow to ignore all dead-
end states in search. However, the computation of U∗ is in general intractable, as it subsumes solving
the input planning task in the first place. So, we need to expect that at least some dead-end states are,
wastefully, considered. We will henceforth refer to such states by conflicts, and we attempt to learn from
them, refining U during search, so to recognize similar dead-end states in the future. But how to know
whether a state considered by search is a conflict? And how to identify these states efficiently? We spell
out these details in what follows.

In Section 5.1, we design a generic extension to search algorithms using open & closed lists, like A∗, greedy
best-first search, etc., preserving their optimality and completeness guarantees. In Section 5.2, we design
a dedicated depth-first search variant, which has turned out to be most useful in our experiments as it
identifies conflicts muchmore quickly, facilitating the learning process. This chapter is based on (Steinmetz
and Hoffmann, 2017c). The algorithm modifications and the arguments underlying our soundness and
completeness results in Section 5.1 are due to prior work (Steinmetz, 2015). Section 5.1 extends that
work by the formalization of known dead ends, and the discussion of additional properties beyond the
fundamental correctness guarantees.

Throughout this chapter, we consider an arbitrary unsolvability detector U, the only assumption being that
there exists a refinement method which, given a conflict state 𝑠, refines U to recognize 𝑠.

5.1. Generic Search Algorithm

Algorithm 5.1 shows the pseudo-code for our procedure. Consider first only the main loop, a generic search
that can be instantiated into standard search algorithms in the obvious manner by suitable handling of the
open and closed lists. The only difference to the standard algorithms then lies in (a) dead-end pruning via
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Algorithm 5.1: Generic open & closed list based forward search algorithm, with conflict identification
and learning.
Input: Classical planning task Π with initial state I, actions A, and goal G,

Unsolvability detector U
Output: Plan 𝜋 for Π, or “unsolvable”.

1 initialize empty search graph Θ̂;
2 insert I into Θ̂, i.e., insert I into Ŝ, and if G ⊆ I, insert I into Ŝ∗;
3 open← {I }; closed← ∅; conflicts← ∅;
4 while open ≠ ∅ do
5 select 𝑠 ∈ open;
6 if 𝑠 ∈ Ŝ∗ then
7 return path in Θ̂ from I to 𝑠;
8 closed← closed ∪ { 𝑠 };
9 if U(𝑠) ≠ ∞ then /* expand if not recognized as dead end */

10 forall applicable actions 𝑎 ∈ A(𝑠) do
11 𝑠′← 𝑠⟦𝑎⟧; insert 𝑠′ into Θ̂ if not present;
12 T̂ ← T̂ ∪ { ⟨𝑠, 𝑎, 𝑠′⟩ };
13 if 𝑠′ ∈ closed ∪ open then
14 continue;
15 if U(𝑠′) = ∞ then /* immediately close recognized dead ends */
16 closed← closed ∪ { 𝑠′ };
17 else
18 open← open ∪ {𝑠′};

19 CheckAndLearn(𝑠);
20 return unsolvable;
21 procedure CheckAndLearn(𝑠)

/* loop detection */
22 if 𝑠 ∈ conflicts then
23 return;
24 𝑆 ← R[Θ̂] (𝑠) ; /* lookahead in search graph Θ̂ */
25 if 𝑆 ⊆ closed then

/* refinement (conflict analysis) */
26 refine U s.t. U(𝑠′) = ∞ for every 𝑠′ ∈ 𝑆 \ conflicts;

/* backward propagation */
27 conflicts← conflicts ∪ 𝑆;
28 forall predecessors 𝑡 ∈ Pred[Θ̂] (𝑆) do
29 CheckAndLearn(𝑡);

U(𝑠) at node expansion time (line 9), (b) pruning via U(𝑠′) at node generation time (line 15), and (c) via
a call to the CheckAndLearn procedure after state expansion. Of these, (a) and (b) are straightforward.
A state is pruned, and considered closed, if it is detected to be a dead end. Note that (a) makes sense
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despite the fact that 𝑠 was already tested by (b) when it was first generated. This is because U may have
been refined in the meantime, and may now recognize 𝑠 to be a dead end.

The conflict identification and learning process is organized by (c), the CheckAndLearn procedure. Con-
sider any time point during search using Algorithm 5.1. The states in the open- & closed lists are exactly
those states for which the search has found a path from the initial state. The closed-list contains those states
that have been expanded, i.e., whose successors have already been added to the open- & closed-list, and
those whose expansion has been pruned due U. Vice versa, the open-list contains those states that have
not been expanded. The “knowledge” gathered by the search is captured in terms of state-space subgraph
Θ̂, the search graph. We call a state 𝑠 a known dead end if, given Θ̂, 𝑠 must be a dead end, no matter of
the result of future state expansions. To capture this formally, let Θ1 = ⟨S1,L1,T 1, 𝑠1I ,S1

∗ ⟩ and Θ2 =
⟨S2,L2,T 2, 𝑠2I ,S2

∗ ⟩ be two transitions systems that agree on their goal states, i.e., S1
∗ ∩ S2 = S2

∗ ∩ S1,
and let 𝑆 ⊆ S1 ∩ S2 be a set of states joint among them. We say that Θ2 coincides with Θ1 on 𝑆 if for
every 𝑠 ∈ 𝑆 , ⟨𝑠, 𝑎, 𝑠′⟩ ∈ T 1 if and only if ⟨𝑠, 𝑎, 𝑠′⟩ ∈ T 2. Then

Definition 5.2 (Known Dead End). Let 𝑠 ∈ Ŝ be any state visited by search so far. 𝑠 is a known dead end if
𝑠 is a dead end in every LTS Θ that coincides with Θ̂ on closed.

In other words, search knows 𝑠 to be a dead end if that is so in all state spaces indistinguishable from the
present one given the state-space structure unveiled by search so far.

It is easy to see that the known dead ends are exactly the states all of whose descendants in the search
graph are already closed:

Proposition 5.1. At any time point during the execution of Algorithm 5.1, the known dead ends are exactly
those states 𝑠 where R[Θ̂] (𝑠) ⊆ closed.

Proof. First, say that R[Θ̂] (𝑠) ⊆ closed. Consider any descendant state 𝑠′ of 𝑠 in the current search graph.
Then, 𝑠′ is closed, either because it has been expanded, or because it has been detected as a dead end. In
the former case, all outgoing transitions of 𝑠′ lead to states in closed; in the latter case, 𝑠′ does not have
any outgoing transitions. Let now Θ be a transition system that coincides with Θ̂ on closed. Then all states
reachable from 𝑠 in Θ are necessarily contained in closed. As closed ∩ S∗ = ∅, 𝑠 must be a dead end in Θ,
which is what we needed to prove.

Vice versa, if R[Θ̂] (𝑠) ⊈ closed, then some descendant 𝑠′ of 𝑠 in the current search graph is still open. We
can construct a counter-example Θ simply by extending Θ̂ with a direct transition from 𝑠′ to some goal
state. □

Given this, a naive means to identify all known conflicts is to evaluate, after every state expansion and for
every 𝑠 ∈ closed, whether R[Θ̂] (𝑠) ⊆ closed. But one can do much better than this, by a dead-end labeling
procedure.

One might, at first sight, expect such a labeling procedure to be trivial, doing a simple bottom-up labeling
following the reasoning that, if all direct successors of 𝑠 are already known dead ends, then 𝑠 is a known
dead end as well. Such a simple procedure would, however, be incomplete, i.e., would in general not
label all known dead ends, due to cycles. If states 𝑠1 and 𝑠2 are dead ends but have outgoing transitions
to each other, then neither of the two will ever be labeled. Our labeling method, conducted as part of
CheckAndLearn, thus involves complete lookaheads on the current search graph, but on only those states
that might actually have become a known dead end given the last state expansion. Namely, a state 𝑡 can
only become a known dead end after the expansion of a descendant 𝑠 of 𝑡 where R[Θ̂] (𝑠) ⊆ closed after
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the expansion: otherwise, either the descendants of 𝑡 have not changed at all, or 𝑡 still has at least one
descendant in open.

Consider now the bottom part of Algorithm 5.1. In the top-level call of CheckAndLearn(𝑠), 𝑠 cannot yet
be labeled; the label check at the start of CheckAndLearn is needed only for loop detection in recursive
invocations, cf. below. The test on 𝑆 ⊆ closed corresponds to Proposition 5.1. Consider any 𝑡 ∈ 𝑆 . As 𝑡 is
reachable from 𝑠, we have R[Θ̂] (𝑡) ⊆ R[Θ̂] (𝑠) = 𝑆 , and thus R[Θ̂] (𝑡) ⊆ closed. So, 𝑡 is a known dead
end as well. Some 𝑡 may however be recognized already, U(𝑡) = ∞, due to previous U refinements, and
thus may be dead ends, but not conflicts. If that is so for all 𝑡 ∈ R[Θ̂] (𝑠), then the refinement step is void
and can be skipped.

Backward propagation on the parents of 𝑆 is needed to identify all dead ends known at this time. Observe
that the recursion will eventually reach all ancestors 𝑡 of 𝑠, and thus all states 𝑡 that might have become
a known dead end. Given the label check at the start of CheckAndLearn, every state is labeled at most
once, and hence |closed| is an obvious upper bound on the number of recursive invocations, even if the state
space contains cycles. Note that, in each recursive call, we need to backpropagate from the predecessors
of all states from 𝑆 = R[Θ̂] (𝑠), because R[Θ̂] (𝑠) could itself contain ancestors 𝑡 of 𝑠, while some other
ancestor 𝑡 ′ of 𝑠 may be connected to 𝑠 only via such a 𝑡 . Due to the labeling in line 27, 𝑡 ′ would otherwise
not be reached by the recursion.

In short, we label known dead-end states bottom-up along forward search transition paths, conducting a
full lookahead of the current search graph in each. With the arguments outlined above, this is sound and
complete relative to the search knowledge:

Theorem 5.1. At the start of the while loop in Algorithm 5.1, the labeled states are exactly the known dead
ends.

Proof sketch. Soundness, i.e., 𝑡 is labeled⇒ 𝑡 is a known dead end, holds because R[Θ̂] (𝑡) ⊆ closed at
the time of labeling. Completeness, i.e., 𝑡 is a known dead end⇒ 𝑡 is labeled, holds because the recursive
invocations of CheckAndLearn(𝑡) will reach all relevant states. □

The full proof is available in Appendix B.1.1.

Example 5.1. To illustrate the conflict identification and propagation process, consider the variant of the
running example depicted in Figure 5.1a. The goal is collecting all samples and disposing them at the base. Fig-
ure 5.1b draws a possible search space. Suppose that the unsolvability detector U recognizes initially 𝑠5 and 𝑠6
as dead ends, and that the states are expanded by search in the order 𝑠0, 𝑠1, 𝑠4, 𝑠2, 𝑠3. During the expansion of 𝑠4,
sinceU(𝑠6) = ∞, 𝑠6 is immediately inserted into closed. After that expansion, the call to CheckAndLearn(𝑠4)
constructs R[Θ̂] (𝑠4) = { 𝑠4, 𝑠6, 𝑠1, 𝑠5 }, and finds that R[Θ̂] (𝑠4) ⊆ closed. Thus, U is refined to recognize 𝑠4
and 𝑠1, the refinement for 𝑠5 and 𝑠6 can be skipped, which are already recognized by U. Backward propaga-
tion then calls CheckAndLearn(𝑠1), CheckAndLearn(𝑠4), as well as CheckAndLearn(𝑠0). Since 𝑠1 and
𝑠4 have just been labeled, the former calls terminate immediately. The latter call finds that R[Θ̂] (𝑠0) ⊈ closed,
so the procedure terminates here. Note that 𝑠0 would not have been reached during backward propagation if
line 27 looped just over the parents of 𝑠4. Search resumes with the expansion of 𝑠2 and 𝑠3. We come back to
this example in the next chapter.

It is worth noting that the search “knowledge” considered in the above is only the explicit knowledge,
about states the search has already expanded or pruned. This disregards the implicit knowledge poten-
tially present due to generalization: refining U on R[Θ̂] (𝑠) might recognize dead ends 𝑡 ′ ∉ R[Θ̂] (𝑠). In
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Figure 5.1.: (a) depicts a variant of the rover example from Section 1.2, in which samples from𝐴1 and𝐴2 need to be
collected, and subsequently dropped at the base. (b) shows an example search space. The states’ number annotations
give the order in which states are expanded.

particular, the search might have already visited some 𝑡 ′ ∈ open∪ closed, and then, via U, the search might
actually already know that 𝑡 ′ (and potentially some of its ancestors) are dead ends.

One can capture this formally by denoting with Ŝ∞ = {𝑠 ∈ Ŝ | U(𝑠) = ∞} the currently recognized dead-
end states; defining Θ̂[Ŝ∞] to be like Θ̂ except that all 𝑠 ∈ Ŝ∞ have no outgoing transitions; and defining
a state to be a U-known dead end if it is a dead end in all Θ that coincide with Θ[Ŝ∞] on closed∪ Ŝ∞. The
U-known dead ends then are exactly those 𝑠 where R[Θ̂] (𝑠) ⊆ closed ∪ Ŝ∞. To find all these 𝑠 during
search – and thus immediately learn from all already identified dead-end states – after every refinement,
we would have to reevaluate U on the entire open and closed lists (plus backward propagation whenever
a new dead end is found). This would cause prohibitive overhead. Hence, we stick to learning only on the
known dead ends, explicitly captured by the search.

Algorithm 5.1 has several desirable properties regardless of its concrete instantiation:

(P1) Preserving guarantees: Instantiating the main loop to reflect any standard search algorithm, the
optimality and/or completeness guarantees of that algorithm are preserved, as the only change is
the pruning of dead-end states.

(P2) Unsolvability certificate: When search terminates with “unsolvable”, we have U(I) = ∞, due to
the final call to CheckAndLearn, doing backward propagation when all nodes are closed.

In case an unsolvability certificate is not required, the final call to CheckAndLearn is redundant
work. In our implementation, we provide an early stopping option, which skips that step when the
open list is already empty.

(P3) Bail-out: Provided that the unsolvability heuristic is transitive, search terminates without any fur-
ther state expansion, as soon as an unsolvability certificate is found. Namely, for a transitive U,
when U(I) = ∞, then U(𝑠) = ∞ necessarily holds for all reachable 𝑠, and thus no more states will
be expanded.

We remark that the problem of labeling the known dead-end states relates closely to cost-revision steps,
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and the solved-labeling procedures available in cyclic AND/OR graph search algorithms (e.g., Jiménez
and Torras, 2000; Bonet and Geffner, 2003a). It remains an open question whether such methods can be
beneficial for our purposes. Yet, as we shall see next, in depth-first search – which turns out to be most
useful in practice – the issue of forward lookaheads disappears.

5.2. Depth-First Search

Depth-first search (DFS) is particularly well suited for our purposes, because it fully explores the de-
scendants of a state before proceeding with anything else. In other words, DFS is geared at obtaining
R[Θ̂] (𝑠) ⊆ closed as quickly as possible. This is key to identifying conflicts quickly.

But what exactly does DFS look like in our context? The issue is that state spaces are, in general, cyclic,
and nodes may have solutions via their parents. A simple way to tackle this is what we will refer to as depth-
oriented search (DOS), instantiating Algorithm 5.1 with a depth-first search order, ordering the open list
by decreasing distance from the initial state.

It turns out that one can do better though.We next design an elegant DFS variant of our approach, similar to
backtracking in constraint satisfaction problems. Consider first, to get some intuitions, the acyclic case. This
is restricted yet not entirely unrealistic: acyclic state spaces naturally occur, e.g., if every action consumes
a non-0 amount of budget or resource. In DFS on an acyclic state space, state 𝑠 becomes a known dead
end exactly the moment its subtree has been completed, i.e., when we backtrack out of 𝑠. Hence we can
simply refine U at this point. As the same has previously been done on the children 𝑠′ of 𝑠, we will have
U(𝑠′) = ∞ for every such 𝑠′, so the conflict component R[Θ̂] (𝑠) simplifies to just 𝑠. Overall, the complex
CheckAndLearn procedure can be replaced by refining U on 𝑠 at backtracking time. But then, we do not
need the open and closed lists anymore, and can instead fallback to a classical DFS.

In the cyclic case, matters are not that easy. But it turns out that one can obtain a valid DFS algorithm
(which defaults to classical DFS in the acyclic case) from Tarjan’s algorithm to compute maximal strongly
connected components (Tarjan, 1972), cf. Chapter 3.

Algorithm 5.2 shows the pseudo-code. The key observation is that 𝑠 becomes a known dead end exactly at
the moment when we have identified the maximal SCC 𝑆 ⊆ S that contains 𝑠, i.e., once DFS backtracks out
of the last state in 𝑆 . This is simply because, with R[Θ̂] (𝑠) ⊆ closed, we must also have R[Θ̂] (𝑡) ⊆ closed
for any ancestor state 𝑡 of 𝑠 reachable from 𝑠. Thus, to get rid of the expensive CheckAndLearn procedure,
DFS can use Tarjan’s algorithm to identify the maximal SCCs, and refine U whenever a maximal SCC has
been found. Henceforth, whenever we say “DFS”, we mean DFS as per Algorithm 5.2.

Regarding the properties of DFS, obviously property (P1) (preserving guarantees) from above is not mean-
ingful here; DFS is complete but not optimal. DFS inherits properties (P2) (unsolvability certificate) and
(P3) (bail-out). Like for Algorithm 5.1, we implemented a simple early stopping option in case an un-
solvability certificate is not desired. DFS furthermore has several desirable properties beyond (P2) and
(P3):

(P4) Backjumping: Due to the pruning test on U(𝑠) = ∞ inside the state-expansion loop, DFS will
backjump across predecessor states 𝑠 that are now recognized dead ends. For transitive unsolvability
heuristics, the backjump will be across all recognized dead ends on the current search path, as
U(𝑠) = ∞ implies U(𝑡) = ∞ for all 𝑡 below 𝑠.

(P5) Immediate U-known learning: DFS guarantees to learn, before the next state expansion, on all
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Algorithm 5.2: Depth-first search (DFS), with conflict identification and learning following Tarjan’s
algorithm.
Input: Classical planning task Π with initial state I, actions A, and goal G,

Unsolvability detector U
Output: Plan 𝜋 for Π, or “unsolvable”.

1 initialize empty search graph Θ̂;
2 insert I into Θ̂, i.e., insert I into Ŝ, and if G ⊆ I, insert I into Ŝ∗;
3 stack← empty stack;
4 minReach← empty map;
/* conflicts← ∅; (to illustrate the relation to Algorithm 5.1) */

5 if DFS(I) then return path in Θ̂ from I to the corresponding goal state 𝑠∗;
6 else return unsolvable;
7 procedure DFS(𝑠)
8 if G ⊆ 𝑠 then
9 return ⊤;

10 if U(𝑠) = ∞ then
11 return ⊥;
12 stackIdx← |stack|; minReach[𝑠] ← stackIdx; push 𝑠 onto stack;
13 forall applicable actions 𝑎 ∈ A(𝑠) do
14 𝑠′← 𝑠⟦𝑎⟧; insert 𝑠′ into Θ̂ if not present; T̂ ← T̂ ∪ { ⟨𝑠, 𝑎, 𝑠′⟩ };
15 if 𝑠′ ∈ stack then
16 minReach[𝑠] = min(minReach[𝑠],minReach[𝑠′]);
17 else
18 if DFS(𝑠′) then
19 return ⊤;
20 if 𝑠′ ∈ stack then
21 minReach[𝑠] = min(minReach[𝑠],minReach[𝑠′]);
22 if U(𝑠) = ∞ then /* re-evaluate U due to possible refinement */
23 break;

24 if minReach[𝑠] = stackIdx then /* backtrack from SCC; found conflict */
25 𝑆 ← ∅;
26 while 𝑠 ∉ 𝑆 do
27 𝑡 ← pop from stack; delete minReach[𝑡];
28 𝑆 ← 𝑆 ∪ { 𝑡 };

/* it holds that 𝑆 = R[Θ̂] (𝑠) \ conflicts */
29 refine U s.t. U(𝑡) = ∞ for every 𝑡 ∈ 𝑆;

/* conflicts← conflicts ∪ 𝑆; */
30 return ⊥;

dead ends 𝑡 ′ that are U-known but not known, and where U(𝑡 ′) ≠ ∞ (there is still something to
learn on 𝑡 ′). To see this, let 𝑡 ′ be such a state. As 𝑡 ′ is not a known dead end, there must be an open
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leaf node reachable from 𝑡 ′, i.e., 𝑡 ′ must still be on the stack. Yet, as U(𝑡 ′) ≠ ∞ but 𝑡 ′ is a U-known
dead end, every leaf node 𝑠 reachable from 𝑡 ′ must satisfy U(𝑠) = ∞. Before search can make the
next state expansion, it must evaluate all those leaf nodes, and backtrack out of the SCC containing
𝑡 ′ – which is exactly what we need to show.

(P6) Duplicate pruning for free: As U learns to refute the subtree below 𝑠, it subsumes the duplicate
pruning that would be afforded by a closed list. Due to generalization, if will often surpass that
pruning by far.

Compared to this, in the generic search of Algorithm 5.1, towards (P4) one can test, at the start of the
CheckAndLearn procedure, whether U(𝑠) = ∞. This leads to backjumping in depth-oriented search, and
leads to aggressive pruning of search paths in other open list based searches like greedy best-first search.
For (P5), as discussed this does not hold for Algorithm 5.1 in general, as the new U-known states may
lie on arbitrary search paths; it does hold for depth-oriented search though. Finally, (P6) is specific to
DFS, and cannot be exploited by Algorithm 5.1 regardless of the search order, as that algorithm needs to
maintain a closed list anyway. Intuitively, depth-first search is closer to the structure of dead-end detection,
and combines more gracefully with it than other search algorithms.



6. Critical-Path Heuristics: Conflict Refinement &
NoGood Learning

The family of critical-path heuristic functions ℎ𝑚, introduced in its general form by Haslum and Geffner
(2000), has a long tradition of use as effective sufficient criteria for unsolvability. If ℎ𝑚 (𝑠) = ∞, then the
goal cannot be reached from 𝑠 even when allowing to break up conjunctive subgoals into their atomic
subgoals, namely the fact conjunctions of size ≤ 𝑚. This idea has its roots in the use of ℎ2 as encoded by
the planning graph, GRAPHPLAN’s mechanism for early termination on unsolvable tasks (Blum and Furst,
1997). The idea persisted in delete-relaxation heuristics (Bonet and Geffner, 2001; Hoffmann and Nebel,
2001), as well as some partial delete-relaxation heuristics (Domshlak et al., 2015), which identify a state
to be a dead end if and only if ℎ1 does. In practical regards, the computation of ℎ𝑚 remains feasible only
for small 𝑚, typically restricting 𝑚 ≤ 2, as the number of atomic subgoals grows exponentially in 𝑚.
Dealing efficiently with larger atomic subgoals has been the subject of a series of works (Haslum, 2006;
Haslum, 2012; Keyder et al., 2014). Most recently, Hoffmann and Fickert (2015) introduced the heuristic
ℎC , whose parameter C allows one to choose the atomic conjunctions to reason about completely freely.

Denote the unsolvability-detector variant of ℎC , that returns ∞ iff ℎC does, by UC . It is well known that,
for sufficiently large𝑚, ℎ𝑚 delivers perfect goal distance estimates: simply set𝑚 to the number of state
variables, reasoning over all relevant conjunctions. As a corollary, for the corresponding set C, UC detects
all dead ends. This choice of conjunctions is impracticable, of course. Yet, for the purpose of recognizing all
dead ends, it is reasonable to belief that much smaller sets C suffice. Namely, first, this requires accuracy
not on all states, but only on dead ends. Secondly, it is quite natural for G to be unsolvable because some
small 𝑐 ⊆ G is. But then, how to find C? One possibility is to use known conjunction-learning methods
from the literature (Haslum, 2012; Keyder et al., 2014), which iteratively remove flaws in delete-relaxed
plans for a given state 𝑠. These methods do guarantee to eventually recognize 𝑠 if it is a dead end. But
they are not geared to this purpose, and as we shall see, are not effective in practice for that purpose. In
this chapter, we introduce two refinement methods specifically designed for dead-end detection.

Like ℎC , the computation of UC requires low-order polynomial time in the number of atomic conjunctions
|C|. Nevertheless, as C becomes larger, computing UC on every state in search may cause substantial
runtime overhead. We alleviate this overhead through NoGoods, formulae 𝜑 where 𝑠 |̸= 𝜑 implies that
UC (𝑠) = ∞. These NoGoods act as a filter in front of the UC computation, skipping the computation if
𝑠 |̸= 𝜑 for some learned 𝜑 . Here, we observe that it is actually possible to construct a perfect NoGood
formula ΦC∗, where 𝑠 |̸= ΦC∗ if and only if UC (𝑠) = ∞. This is mostly of theoretical interest though,
because ΦC∗ has size worst-case exponential in the size of the input planning task. We obtain practical
variants by instead learning weaker NoGood formulae “online”, i.e., 𝜑 such that ¬𝜑 ⇒ ¬ΦC∗, refining
𝜑 whenever encountering in search a state 𝑠 where 𝑠 |= 𝜑 but UC (𝑠) = ∞. We introduce and compare
two such approaches: clause learning, inspired by prior work (Kolobov et al., 2012b), and CART learning,
leveraging the perfect NoGood formula construction.

The remainder of this chapter is structured as follows. In Section 6.1, we provide the formal definition of the
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critical-path heuristic ℎC , as per Hoffmann and Fickert (2015). In Section 6.2, we discuss the refinement
methods. Section 6.3 investigates critical-path NoGoods. Finally, Section 6.4 provides a comprehensive
experimental evaluation of search using conflict-driven learning viaUC for the purposes of finding plans on
solvable tasks with dead ends; proving unsolvability on unsolvable tasks; as well as generating unsolvability
certificates for the latter tasks.

This chapter is based on (Steinmetz and Hoffmann, 2017c; Steinmetz and Hoffmann, 2017a). The refine-
ment procedures, Sections 6.2.1 and 6.2.2, are due to prior work (Steinmetz, 2015). We simplified the
procedures for the purpose of unsolvability detection, and applied minor optimizations to the conjunction
selection resolving a conflict. The correctness arguments given by Steinmetz (2015) are not affected, and
we restate them only for the sake of comprehensibility and completeness.

6.1. Preliminaries

In the following, we assume planning tasks in STRIPS notation (cf. Definition 2.1). Let Π = ⟨F ,A,I,G⟩
be such a task. To formalize critical-path heuristics, we need the notion of regression:

Definition 6.1 (STRIPS Regression). Let 𝑃 ⊆ F be a set of facts, and let 𝑎 ∈ A be an action. If add(𝑎)∩𝑃 ≠
∅ and del(𝑎) ∩ 𝑃 = ∅, then the regression of 𝑃 over 𝑎 is

regress(𝑃, 𝑎) = (𝑃 \ add(𝑎)) ∪ pre(𝑎)

Otherwise, the regression is undefined, and we write regress(𝑃, 𝑎) = ⊥.

In words, the regression of 𝑃 over some 𝑎 lists all facts that need to be satisfied in a state 𝑠 such that the
application of 𝑎 results in 𝑃 ⊆ 𝑠⟦𝑎⟧. We denote by A[𝑃] ⊆ A the set of actions, whose 𝑃 -regression is
defined.

We identify fact conjunctions with fact sets; let C ⊆ 2F be any set of conjunctions. The generalized
critical-path heuristic ℎC is defined as follows

Definition 6.2 (Critical-Path Heuristic ℎC). The critical-path heuristic over C is the element-wise maximal
function ℎC : SΠ × 2F → ℝ+0 ∪ {∞ } that satisfies the equation:

ℎC (𝑠, 𝑃) =

0, if 𝑃 ⊆ 𝑠

min𝑎∈A[𝑃 ]
(
𝔠(𝑎) + ℎC (𝑠, regress(𝑃, 𝑎))

)
, if 𝑃 ∈ C

max𝑐∈C : 𝑐⊆𝑃 ℎC (𝑠, 𝑐) otherwise
(6.1)

for all 𝑠 ∈ SΠ, and 𝑃 ⊆ 2F . We assume that min∅ = ∞, and max∅ = 0. Let 𝑠 be any state. For convenience,
we write ℎC (𝑠) to denote ℎC (𝑠,G).

Note here that we overload ℎC to denote both, a function of state 𝑠 in which case the estimated distance
from 𝑠 to the global goal G is returned, and a function of state 𝑠 and subgoal 𝑃 in which case the estimated
distance from 𝑠 to 𝑃 is returned. Similarly, we will occasionally use ℎ∗(𝑠, 𝑃) to denote the cost of the
cheapest path from 𝑠 to any state that satisfies 𝑃 ; ℎ∗(𝑠, 𝑃) = ∞ if 𝑃 is unreachable from 𝑠.

The definition of ℎC distinguishes between three cases. If the subgoal is already true in the considered
state 𝑠 (top case), then its value is 0. If the subgoal 𝑃 is not an atomic conjunction (bottom case), then
its ℎC value is estimated by the most expensive atomic subgoal that is a subset of 𝑃 . Otherwise (middle
case), 𝑃 is an atomic subgoal that is not already true in the considered state. Then the ℎC value is set to
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the cheapest possible way of achieving 𝑃 , by minimizing over the actions that can be used to achieve 𝑃 ,
and computing the resulting costs recursively for each.

If ℎC (𝑠, 𝑐) = ∞ for some atomic conjunction 𝑐 ∈ C, then the overall outcome might be ℎC (𝑠) = ∞.
ℎC (𝑠, 𝑐) = ∞ holds trivially, if 𝑐 is not satisfied in 𝑠, and there exists no action that can be used to achieve
𝑐, i.e., the minimization in the middle case of (6.1) evaluates to∞. ℎC (𝑠, 𝑐) = ∞ may furthermore hold if
the regression of 𝑐 over every action 𝑎 ∈ A[𝑐] contains some other 𝑐′ ∈ C with ℎC (𝑠, 𝑐′) = ∞. Note that
this might be the case, even if all atomic conjunctions have a non-empty set of achievers, and thus even if
none of them falls into the trivial base case. For example, consider the singleton conjunctions, i.e., ℎ1, and
suppose there are just two actions with pre(𝑎1) = { 𝑝 } and add(𝑎1) = {𝑞 }, respectively pre(𝑎2) = {𝑞 }
and add(𝑎2) = { 𝑝 }. If neither 𝑝 nor 𝑞 is satisfied in 𝑠, then ℎ1(𝑠, { 𝑝 }) = ℎ1(𝑠, {𝑞 }) = ∞ as per the
element-wise maximality requirement. As we are interested only in dead-end detection, not goal distance
estimation, ℎC (𝑠) = ∞ is the main ability of ℎC we are interested in. Consequently, most of the time we
will consider not ℎC but the critical-path unsolvability detector, defined by UC (𝑠) = ∞ if ℎC (𝑠) = ∞, and
UC (𝑠) = 0 otherwise. We will sometimes use U𝑚 to denote the unsolvability detector variant of ℎ𝑚.

Example 6.1. Reconsider Example 5.1. The task can be represented in STRIPS as shown Example 2.1. The
initial state is I = { 𝑟𝑜𝑣 (𝐴3), 𝑏𝑎𝑡 (2), 𝑠𝑎𝑚𝑝1(𝐴1), 𝑠𝑎𝑚𝑝2(𝐴2) }. The goal is G = { 𝑠𝑎𝑚𝑝1(𝐵), 𝑠𝑎𝑚𝑝2(𝐵) }.
We assume unit cost (where relevant).

Consider the states 𝑠4 and 𝑠6 depicted in Figure 5.1b: 𝑠4 = { 𝑟𝑜𝑣 (𝐴1), 𝑏𝑎𝑡 (1), 𝑠𝑎𝑚𝑝1(𝑅), 𝑠𝑎𝑚𝑝2(𝐴2) }, 𝑠6 =
{ 𝑟𝑜𝑣 (𝐴3), 𝑏𝑎𝑡 (0), 𝑠𝑎𝑚𝑝1(𝑅), 𝑠𝑎𝑚𝑝2(𝐴2) }.

Note that U1(𝑠6) = U1(𝑠6,G) ≥ U1(𝑠6, { 𝑠𝑎𝑚𝑝1(𝐵) }) = ∞. This is true because even when allowed to
split subgoals into facts, it remains impossible to move the rover to 𝐵 with no energy left, which is needed for
dropping 𝑠𝑎𝑚𝑝1 at 𝐵.

In contrast, U1(𝑠4) < ∞, because under U1’s relaxing assumptions, one loses the information that a single
battery unit is not sufficient to move the rover to all locations. It holds that U1(𝑠4, { 𝑟𝑜𝑣 (𝐴3) }) < ∞, because
𝑚𝑜𝑣𝑒 (𝐴1, 𝐴3, 1) achieves 𝑟𝑜𝑣 (𝐴3), and all its preconditions are contained in 𝑠4. Then, U1(𝑠4, { 𝑟𝑜𝑣 (𝐴2) }) <
∞ because 𝑚𝑜𝑣𝑒 (𝐴3, 𝐴2, 1) ∈ A[{ 𝑟𝑜𝑣 (𝐴2) }] and U1(𝑠4, {𝑏𝑎𝑡 (1) }) < ∞ and U1(𝑠4, { 𝑟𝑜𝑣 (𝐴3) }) <
∞ yield U1(𝑠4, pre(𝑚𝑜𝑣𝑒 (𝐴3, 𝐴2, 1))) < ∞. U1(𝑠4, { 𝑟𝑜𝑣 (𝐵) }) < ∞ follows similarly. Since none of the
positions are detected unreachable, all samples can be collected from their initial positions, and dropped at 𝐵.

Consider the set of conjunctions C, which contains 𝑐 = { 𝑟𝑜𝑣 (𝐴3), 𝑏𝑎𝑡 (1) } in addition to the singletons.
Observe that the only actions whose add effects intersect with 𝑐 are𝑚𝑜𝑣𝑒 (𝑥,𝑦, 𝑘) where 𝑦 = 𝐴3 or 𝑘 = 2. If
𝑦 ≠ 𝐴3, then 𝑥 = 𝐴3 as per the connections in the example, and the corresponding action deletes some parts of
𝑐. Similarly for 𝑘 = 1. In conclusion, the achieversA[𝑐] are exactly the move actions with 𝑦 = 𝐴3 and 𝑘 = 2.
However, the preconditions of all those actions is unreachable from 𝑠4 even under U1, and thus UC (𝑠4, 𝑐) = ∞.
Since 𝑐 ⊆ pre(𝑚𝑜𝑣𝑒 (𝐴3, 𝐵, 1)), it follows that UC (𝑠4, { 𝑟𝑜𝑣 (𝐵) }) = ∞, and consequently UC (𝑠4) = ∞.

For all sets C, ℎC is goal-aware and consistent, and thus admissible. In other words, whenever UC (𝑠) = ∞
then 𝑠 is a dead end, i.e., UC indeed is an unsolvability detector as per Definition 5.1. Furthermore, as an
implication of consistency, UC is transitive, i.e., as ℎC (𝑠) ≤ ℎC (𝑠⟦𝑎⟧) +𝔠(𝑎), for all 𝑠 ∈ SΠ and 𝑎 ∈ A(𝑠),
if ℎC (𝑠) = ∞ then so is ℎC (𝑠⟦𝑎⟧) = ∞.

One can compute UC , solving Equation 6.1, in time polynomial in |C| and the size of Π, using simple
dynamic programming algorithms similar to those for ℎ𝑚 (Haslum and Geffner, 2000).
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6.2. Conflict Analysis & Refinement

We now tackle the refinement step in Algorithms 5.1 and 5.2 for the unsolvability detector UC . Given a
set of dead ends 𝑆 ⊆ SΠ, how to refine UC to recognize the states from 𝑆? Naturally, the refinement will
extend C by new atomic conjunctions X ⊆ 2F so that UC∪X (𝑠) = ∞ for all 𝑠 ∈ 𝑆 . But which conjunctions
X are actually necessary to this end, and how to find these?

In Section 6.2.1 and Section 6.2.2, we introduce two refinement approaches, specifically designed for
dead-end detection: path-cut refinement and neighbors refinement. The major difference between the two
methods lies in their applicability. Neighbors refinement applies only to 𝑆 that satisfy what we call the UC
recognized-neighbors property, i.e., where UC (𝑡) = ∞ holds for every 𝑡 ∉ 𝑆 that is a successor of some
𝑠 ∈ 𝑆 . It turns out that this can be exploited for an especially effective refinement method, neighbors
refinement.

The recognized-neighbors property necessarily holds ifUC is the only unsolvability detector used in search.
But if UC is combined with some other U, then some of 𝑆 ’s successor states 𝑡 may be recognized only by U.
For the general case, we design the alternative path-cut refinement method. It computes conjunctionsX by
cutting off the critical paths in a ℎC computation reaching the goal. One such refinement step guarantees
to strictly increase the value of ℎC . To render ℎC infinite as desired, we need to iterate these refinement
steps, recomputing ℎC in between iterations. Neighbors refinement, in contrast, is a constructive method,
identifying the new conjunctions X directly from those for the neighbor states, without necessitating any
intermediate recomputations of UC .

Section 6.2.3 closes the discussion with a worst-case analysis, shedding light on the question how expen-
sive a single UC refinement can be. At first glance, this seems obvious, as given the complexity of the plan
existence problem versus the computational cost of UC , letting UC recognize an arbitrary dead end gen-
erally requires exponentially many conjunctions. However, how is the situation if we consider particularly
a refinement step on a conflict 𝑆 = R[Θ̂] (𝑠) that is identified by search? As we shall see, there are in
fact pathological cases where expanding the dead-end detection capabilities of UC even by just a single
transition step requires an exponentially large refinement X.

6.2.1. Path-Cut Refinement

Path-cut refinement assumes some arbitrary dead-end state 𝑠 as input, and augments C to recognize 𝑠. To
recognize all dead ends within the search-conflict component R[Θ̂] (𝑠), we run the method on 𝑠 only. Due
to the aforementioned transitivity property of UC , this suffices to recognize all states in R[Θ̂] (𝑠).

The refinement is based on cutting off critical paths, i.e., the recursion paths in the definition of ℎC (Equa-
tion 6.1). The refinement is iterative, where each iteration identifies a setX of conjunctions, adding which
into C guarantees to strictly increase ℎC (𝑠). Given this, the method really pertains to ℎC rather than the
simplified UC , and it applies not only to dead-end states, but to any state 𝑠 where ℎC (𝑠) < ℎ∗(𝑠). There-
fore, for the remainder of this subsection, we will talk about ℎC , not UC . At the end of the refinement on
a dead-end state 𝑠, we will have ℎC (𝑠) = UC (𝑠) = ∞. For simplicity, we assume uniform action cost, i.e.,
𝔠(𝑎) = 1 for all 𝑎 ∈ A. This comes without loss of generality in our context, as for ℎC (𝑠) = ∞ action
costs are irrelevant. As shown by Steinmetz (2015), the refinement method can be extended to general
cost functions, so to compute C with ℎC (𝑠) = ℎ∗(𝑠), for arbitrary states 𝑠.

We consider now in detail a single refinement step (one iteration of the overall refinement). The ℎC re-
cursion path on a current subgoal 𝑃 is cut off by identifying a small conjunction 𝑥 ⊆ 𝑃 that cannot be
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Algorithm 6.1: A single step of the path-cut refinement.
Input: Set of conjunctions C,

State 𝑠 for which ℎC (𝑠) < ℎ∗(𝑠)
Output: Set of conjunctions X such that ℎC∪X (𝑠) > ℎC (𝑠)

1 X ← ∅;
2 PathCutRefine(G, ℎC (𝑠));
3 return X;
4 procedure PathCutRefine(𝑃, 𝑁 )
5 if 𝑁 = 0 then

/* We know here that 𝑃 ⊈ 𝑠 */
6 let 𝑝 ∈ (𝑃 \ 𝑠);
7 𝑥 ← { 𝑝 };
8 else

/* Select an atomic conjunction (invariant: ℎC (𝑠, 𝑃) ≥ 𝑁) */
9 let 𝑐 ∈ C be s.t. 𝑐 ⊆ 𝑃 and ℎC (𝑠, 𝑐) ≥ 𝑁 ;

10 𝑥 ← 𝑐;
11 if ℎC (𝑠, 𝑐) = 𝑁 then

/* Cut each path that achieves 𝑐 */
12 for every action 𝑎 ∈ A[𝑐] do
13 if del(𝑎) ∩ 𝑃 ≠ ∅ then
14 let 𝑝 ∈ del(𝑎) ∩ 𝑃 ;
15 𝑥 ← 𝑐 ∪ {𝑝};

/* ⇒ 𝑎 is no longer an achiever of 𝑥 */
16 else
17 𝑥′← PathCutRefine(regress(𝑃, 𝑎), 𝑁 − 1);
18 𝑥 ← 𝑥 ∪ (𝑥′ \ pre(𝑎));

/* ⇒ regress(𝑥, 𝑎) contains 𝑥′ */

19 X ← X ∪ {𝑥};
20 return 𝑥 ;

achieved with action sequences of length at most ℎC (𝑠, 𝑃) (recall that we assume unit action cost, under
which cost and length become the same). The union of these 𝑥 over all recursion paths yields the desired
set X. Algorithm 6.1 shows the pseudo-code.

To understand Algorithm 6.1, consider the initializing call on 𝑃 = G and 𝑁 = ℎC (𝑠). Our aim is to
identify a (small) conjunction 𝑥 ⊆ G that cannot be achieved from 𝑠 by any action sequence of length
at most ℎC (𝑠,G). Towards finding such 𝑥 , we start by selecting an arbitrary atomic conjunction 𝑐 ∈ C,
𝑐 ⊆ G, with maximal ℎC (𝑠, 𝑐) value. We initialize 𝑥 = 𝑐. As, by selection, ℎC (𝑠, 𝑐) = 𝑁 , 𝑐 is achieved
under the ℎC approximation by an action sequence with length 𝑁 . However, as 𝑁 = ℎC (𝑠,G) < ℎ∗(𝑠,G),
we know that we can extend 𝑥 with additional facts 𝑝 ∈ G \ 𝑐 in a way excluding that case, i.e., making
𝑥 achievable under ℎC only by action sequences with length strictly larger than 𝑁 .

To find suitable facts 𝑝 for extending 𝑥 , we recursively consider the actions 𝑎 ∈ A[𝑐], i.e., the actions that
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can achieve 𝑐 (that add part of 𝑐 and delete none of it). For each of these, we augment 𝑥 so that there is a
conjunction 𝑥′ ⊆ regress(𝑥, 𝑎) that cannot be achieved by action sequences with length < 𝑁 . If 𝑎 deletes
part of 𝑃 , we can tackle 𝑎 simply by adding one such deleted fact 𝑝 into 𝑥 , effectively removing 𝑎 from
the set of achievers of 𝑥 . For the remaining actions 𝑎, we recursively identify a suitable 𝑥′ ⊆ regress(𝑃, 𝑎).
The latter is necessarily possible as we will always have ℎC (𝑠, 𝑃) < ℎ∗(𝑠, 𝑃) (in particular, 𝑃 ⊈ 𝑠 at the
recursion termination 𝑁 = 0). We then extend 𝑥 in a way ensuring that 𝑥′ is contained in the regression
regress(𝑥, 𝑎), implying that 𝑥 cannot be reached at time 𝑁 .

Note that it suffices to consider only the achievers of 𝑐, despite that adding new facts into 𝑥 may make
other actions 𝑎 ∉ A[𝑐] become achievers of 𝑥 . Yet, for these it necessarily holds that 𝑐 ⊆ regress(𝑥, 𝑎),
and thus they already satisfy ℎC (𝑠, regress(𝑥, 𝑎)) ≥ 𝑁 as per the selection of 𝑐.

Spelling out these arguments, one obtains that PathCutRefine is correct:

Theorem 6.1. Suppose 𝔠(𝑎) = 1 for all 𝑎 ∈ A. Let C be any set of atomic conjunctions. Let 𝑠 be a state with
ℎC (𝑠) < ℎ∗(𝑠). Then:

(i) The execution of PathCutRefine(G, ℎC (𝑠)) terminates eventually, and is well defined, i.e., (a) in any
call PathCutRefine(𝑃, 𝑁 ) there exists 𝑐 ∈ C so that 𝑐 ⊆ 𝑃 and ℎC (𝑠, 𝑐) ≥ 𝑁 ; and (b) if 𝑁 = 0,
then 𝑃 ⊈ 𝑠.

(ii) If X is the set of conjunctions resulting from PathCutRefine(G, ℎC (𝑠)), then ℎC∪X (𝑠) > ℎC (𝑠).

Appendix B.2.1 spells out the detailed proof arguments.

As a single call to PathCutRefine only guarantees to increaseℎC (𝑠) by at least 1, for dead-end refinement
we need to iterate these calls, setting C = C∪X after each call, until ℎC (𝑠) = ∞ holds. This is guaranteed
to eventually happen, simply because every iteration adds at least one new conjunction to C (otherwise,
the value of ℎC could not have increased), and the number of conjunctions is finite. In the worst case, C
eventually contains all conjunctions, and ℎC (𝑠) = ∞ holds trivially.

Example 6.2. Reconsider Example 5.1. Recall from Example 6.1 that U1 recognizes 𝑠6 as a dead end. For
the same reasons, it holds that U1(𝑠5) = ∞, i.e., U1 prunes exactly those states that were pruned by the
hypothetical unsolvability detector U used in the search from Example 5.1. Consider the first conflict identified
in that search: 𝑠4. Say that we conduct path-cut refinement on 𝑠 = 𝑠4 to find a suitable extension X to the
singleton conjunctions.

In the first call to PathCutRefine, we have

𝑃4 := G = { 𝑠𝑎𝑚𝑝1(𝐵), 𝑠𝑎𝑚𝑝2(𝐵) }

and 𝑁 = ℎ1(𝑠) = 4. There is only one option for the selection of 𝑐, because ℎ1(𝑠, { 𝑠𝑎𝑚𝑝1(𝐵) }) = 3 <
4 = ℎ1(𝑠, { 𝑠𝑎𝑚𝑝2(𝐵) }). So we choose 𝑐4 = { 𝑠𝑎𝑚𝑝2(𝐵) } and initialize the conflict to 𝑥4 := 𝑐4. To see
whether 𝑠𝑎𝑚𝑝2(𝐵) can be reached with an action sequence of length no longer than 4, and thus to determine
whether we have to augment 𝑥4 by 𝑠𝑎𝑚𝑝1(𝐵), we continue with the recursion on the only achiever of 𝑐4,
𝑑𝑟𝑜𝑝 (𝑠𝑎𝑚𝑝2, 𝐵). This yields a recursive call on

𝑃3 := regress(𝑃4, 𝑑𝑟𝑜𝑝 (𝑠𝑎𝑚𝑝2, 𝐵)) = { 𝑠𝑎𝑚𝑝1(𝐵), 𝑟𝑜𝑣 (𝐵), 𝑠𝑎𝑚𝑝2(𝑅) }

In the call to PathCutRefine(𝑃3, 3), there are two options for choosing the conjunction 𝑐3: {𝑠𝑎𝑚𝑝1(𝐵)} and
{𝑠𝑎𝑚𝑝2(𝑅)}. Say that we proceed along the top-level goal 𝑠𝑎𝑚𝑝2(𝐵), i.e., we choose 𝑐3 = { 𝑠𝑎𝑚𝑝2(𝑅) }, and
we set 𝑥3 := 𝑐3. The actions 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 (𝑠𝑎𝑚𝑝2, 𝑥) with 𝑥 ≠ 𝐴2 readily satisfy ℎ1(𝑠, pre(𝑐𝑜𝑙𝑙𝑒𝑐𝑡 (𝑠𝑎𝑚𝑝2, 𝑥))) ≥
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3, i.e., the respective recursive calls can terminate immediately by selecting an according fact from their pre-
conditions. 𝑥3 is not extended. Consider 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 (𝑠𝑎𝑚𝑝2, 𝐴2). This yields a recursive call on

𝑃2 := regress(𝑃3, 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 (𝑠𝑎𝑚𝑝2, 𝐴2)) = { 𝑠𝑎𝑚𝑝1(𝐵), 𝑟𝑜𝑣 (𝐵), 𝑟𝑜𝑣 (𝐴2), 𝑠𝑎𝑚𝑝2(𝐵) }

From the options in that recursive call, say we consider 𝑐2 = { 𝑟𝑜𝑣 (𝐴2) } and 𝑥2 := 𝑐2. 𝑐2 has two achiev-
ers: 𝑚𝑜𝑣𝑒 (𝐴3, 𝐴2, 1) and 𝑚𝑜𝑣𝑒 (𝐴3, 𝐴2, 2). The latter can be trivially handled via its precondition 𝑏𝑎𝑡 (2),
ℎ1(𝑠, {𝑏𝑎𝑡 (2) }) = ∞. The former yields a recursive call on

𝑃1 := regress(𝑃2,𝑚𝑜𝑣𝑒 (𝐴3, 𝐴2, 1)) = { 𝑠𝑎𝑚𝑝1(𝐵), 𝑟𝑜𝑣 (𝐵), 𝑠𝑎𝑚𝑝2(𝐵), 𝑟𝑜𝑣 (𝐴3), 𝑏𝑎𝑡 (1) }

Say that we finally select 𝑐1 = { 𝑟𝑜𝑣 (𝐴3) } and set 𝑥1 := 𝑐1. Again, the only supporting action, whose precon-
dition does not already contain unreachable facts under ℎ1, is𝑚𝑜𝑣𝑒 (𝐴1, 𝐴3, 1). PathCut can stop here, as
𝑚𝑜𝑣𝑒 (𝐴1, 𝐴3, 1) deletes𝑏𝑎𝑡 (1) ∈ 𝑃1. Say we extend 𝑥1 with the deleted fact𝑏𝑎𝑡 (1), 𝑥1 = {𝑟𝑜𝑣 (𝐴3), 𝑏𝑎𝑡 (1)}.

The recursion now goes back up the recursion path over the levels 𝑖 ∈ { 2, 3, 4 }, corresponding to the actions
𝑚𝑜𝑣𝑒 (𝐴3, 𝐴2, 1), 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 (𝑠𝑎𝑚𝑝2, 𝐴2), 𝑑𝑟𝑜𝑝 (𝑠𝑎𝑚𝑝2, 𝐵), with the current conjunctions 𝑥2 = { 𝑟𝑜𝑣 (𝐴2) },
𝑥3 = { 𝑠𝑎𝑚𝑝2(𝑅) }, 𝑥4 = { 𝑠𝑎𝑚𝑝2(𝐵) }. At each step, we extend 𝑥𝑖 with 𝑥𝑖−1 minus the respective action’s
precondition. At 𝑖 = 2, both facts of 𝑥1 are contained in the precondition of𝑚𝑜𝑣𝑒 (𝐴3, 𝐴2, 1), so 𝑥2 remains
the same. But then, 𝑥3 and 𝑥4 also remain the same in the remaining steps. Upon termination the only non-
singleton conjunction in X is { 𝑟𝑜𝑣 (𝐴3), 𝑏𝑎𝑡 (1) }. Recall from Example 6.1 that this is exactly the single
conjunction needed to obtain UC (𝑠4) = ∞.

6.2.2. Neighbors Refinement

As already indicated, neighbors refinement assumes as input a set 𝑆 of dead-end states that satisfies the
UC recognized-neighbors property:

Definition 6.3 (Recognized-Neighbors Property). Suppose U is an unsolvability detector, and 𝑆 ⊆ SΠ is
a set of states. Denote by 𝑇 = Succ(𝑆) \ 𝑆 the successors of the states from 𝑆 that are not contained in 𝑆
themselves. Then, 𝑆 satisfies the U recognized-neighbors property if it holds U(𝑡) = ∞ for all 𝑡 ∈ 𝑇 .

Say that Algorithms 5.1 or 5.2 requests a refinement on R[Θ̂] (𝑠) \ conflicts. Let 𝑆 = { 𝑠′ ∈ R[Θ̂] (𝑠) \
conflicts | U(𝑠′) = 0 }. Provided thatU is the only unsolvability detector used, it is easy to see that 𝑆 satisfies
the U recognized-neighbors property. Namely, by construction, R[Θ̂] (𝑠) contains only closed states. Every
closed state was either expanded or is recognized as dead end by U. Since the states from 𝑆 are closed and
not recognized by U, they must have been expanded, so by construction, R[Θ̂] (𝑠) contains all successors
of 𝑆 . But then, for all 𝑡 ∈ Succ(𝑆), it holds that either 𝑡 ∈ 𝑆; or if 𝑡 ∉ 𝑆 but 𝑡 ∈ R[Θ̂] (𝑠) \ conflicts, then
U(𝑡) = ∞, as per the selection of 𝑆; or if 𝑡 ∈ conflicts, then U(𝑡) = ∞ must be satisfied due to some prior
refinement. In conclusion:

Proposition 6.1. For every refinement call in Algorithm 5.1 (line 26) and Algorithm 5.2 (line 29) onR[Θ̂] (𝑠),
using U as the only unsolvability detector, 𝑆 = { 𝑠′ ∈ R[Θ̂] (𝑠) | U(𝑠′) = 0 } satisfies the U recognized-
neighbors property.

For illustration, consider again the example search space from Figure 5.1b. At the refinement step on 𝑠4,
we have 𝑆 = { 𝑠′ | 𝑠′ ∈ R[Θ̂] (𝑠4),UC (𝑠′) = 0 } = { 𝑠4, 𝑠1 }. The neighbor states are 𝑇 = { 𝑠6, 𝑠5 }. The UC
recognized-neighbors property is satisfied: each of the neighbor states is already recognized by UC , using
the singleton conjunctions only, as there is no energy left.
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Given a set of dead ends 𝑆 that satisfy the UC recognized-neighbors property, to refine C, we make use of
what we refer to as the UC neighbors information: the values UC (𝑡, 𝑐) for all recognized neighbors 𝑡 ∈ 𝑇
and 𝑐 ∈ C. We compute this information once, at the start of the refinement procedure. Thanks to that
information, in contrast to path-cut refinement, as well as all previous conjunction learning methods, we do
not require any intermediate re-computation of UC during the refinement. Instead, neighbors refinement
uses the UC neighbors information to directly pick suitable conjunctions 𝑥 for the desired set X. One
can, in principle, even avoid the UC computations prior to the refinement by caching the UC neighbors
information during search, whenever recognizing a dead end UC (𝑠) = ∞. But this turned out to be
detrimental. Intuitively, as new conjunctions are continuously added to C, the cached UC information is
“outdated”. Using up-to-date C yields more effective learning. The construction of X is inspired by the
following simple characterizing condition for UC dead-end recognition:

Lemma 6.1. Let C be any set of atomic conjunctions, let 𝑠 be a state, and let 𝑃 ⊆ F . Then, UC (𝑠, 𝑃) = ∞ if
and only if there exists 𝑐 ∈ C such that:

(i) 𝑐 ⊆ 𝑃 and 𝑐 ⊈ 𝑠; and

(ii) for every 𝑎 ∈ A[𝑐], UC (𝑠, regress(𝑐, 𝑎)) = ∞.

Proof. “⇒”: By definition of UC , there must be a conjunction 𝑐 ∈ C so that 𝑐 ⊆ 𝑃 and UC (𝑠, 𝑐) = ∞. The
latter directly implies that 𝑐 ⊈ 𝑠, and that UC (𝑠, regress(𝑐, 𝑎)) = ∞ for every 𝑎 ∈ A[𝑐].

“⇐”: As 𝑐 ⊆ 𝑃 , we have UC (𝑠, 𝑃) ≥ UC (𝑠, 𝑐). As 𝑐 ⊈ 𝑠, we have

UC (𝑠, 𝑐) = min
𝑎∈A[𝑐]

UC (𝑠, regress(𝑐, 𝑎))

For every 𝑎 ∈ A[𝑐], UC (𝑠, regress(𝑐, 𝑎)) = ∞, so we have UC (𝑠, 𝑐) = ∞ as desired. □

Suppose 𝑠 is any state in 𝑆 . We need to find X so that UC∪X (𝑠) = UC∪X (𝑠,G) = ∞. Given Lemma 6.1,
we can do so by (i) picking some conjunction 𝑐 with 𝑐 ⊆ G and 𝑐 ⊈ 𝑠, and then, recursively in the same
manner, (ii) picking for every possible supporter 𝑎 ∈ A[𝑐] an unreachable conjunction 𝑐′ for regress(𝑐, 𝑎).
As 𝑠 is a dead end, and as UC recognizes all dead ends in the limit, Lemma 6.1 tells us that a suitable
conjunction 𝑐 exists at every recursion level. But the lemma does not tell us what that conjunction is. In
particular, 𝑐 must actually be unreachable, i.e., it must hold that ℎ∗(𝑠, 𝑐) = ∞. But, given 𝑠 and any one
conjunction 𝑐, this is the same as asking whether a plan for 𝑐 exists, which is PSPACE-COMPLETE to decide.

Now, we already know that the states 𝑠 ∈ 𝑆 are dead ends. Therefore, we can in principle use the full
subgoals as our conjunctions, i.e., in (i) we can use 𝑐 = G because we know that ℎ∗(𝑠,G) = ∞, and in
(ii) we can use 𝑐′ = regress(𝑐, 𝑎) because we know that ℎ∗(𝑠, regress(𝑐, 𝑎)) = ∞. However, this naive
solution is pointless. It effectively constructs a full regression search tree from G, selecting conjunctions
corresponding to the regressed search states. For the method to be practically useful, what we need to find
are small unreachable subgoals. It turns out that one can exploit the UC recognized-neighbors property to
this end.

Algorithm 6.2 shows the pseudo-code of the neighbors refinement procedure. The purpose of a call to
NeighborsRefine(𝑃), invoking the refinement on a target subgoal 𝑃 , is to include conjunctions into X
making 𝑃 unreachable from 𝑆 under UC∪X , i.e., so that UC∪X (𝑠, 𝑃) = ∞ for all 𝑠 ∈ 𝑆 . For this to be possible,
of course, 𝑃 must be unreachable from 𝑆 , i.e., ℎ∗(𝑠, 𝑃) = ∞ for every 𝑠 ∈ 𝑆 . That prerequisite is obviously
true at the top-level call, where 𝑃 = G, because the states 𝑠 ∈ 𝑆 are dead ends. As we shall see below, the
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Algorithm 6.2: Neighbors refinement.
Input: Set of conjunctions C,

Set of dead-end states 𝑆 , with neighbors 𝑇 = Succ(𝑆) \ 𝑆 , satisfying the UC
recognized-neighbors property,
UC neighbors information (the values of UC (𝑡, 𝑐) for all 𝑡 ∈ 𝑇 and 𝑐 ∈ C)

Output: Set of conjunctions X such that UC∪X (𝑠) = ∞ for all 𝑠 ∈ 𝑆
1 X ← ∅;
2 NeighborsRefine(G);
3 return X;
4 procedure NeighborsRefine(𝑃)
5 𝑥 ← Extract(𝑃);
6 X ← X ∪ {𝑥};
7 for 𝑎 ∈ A[𝑥] where ∃𝑠 ∈ 𝑆 s.t. UC (𝑠, regress(𝑥, 𝑎)) = 0 do
8 if there is no 𝑥′ ∈ X s.t. 𝑥′ ⊆ regress(𝑥, 𝑎) then
9 NeighborsRefine(regress(𝑥, 𝑎));

10 procedure Extract(𝑃)
11 𝑥 ← 𝑃 ;
12 while 𝑃 ≠ ∅ do
13 let 𝑝 ∈ 𝑃 ;
14 𝑃 ← 𝑃 \ { 𝑝 }; 𝑥 ← 𝑥 \ { 𝑝 };

/* Lemma 6.2 (i) */
15 if ∃𝑡 ∈ 𝑇 .∀𝑐𝑡 ∈ C, 𝑐𝑡 ⊆ 𝑥 : UC (𝑡, 𝑐𝑡 ) = 0 then
16 𝑥 ← 𝑥 ∪ { 𝑝 };

/* Lemma 6.2 (ii) */
17 else if ∃𝑠 ∈ 𝑆: 𝑥 ⊆ 𝑠 then
18 𝑥 ← 𝑥 ∪ { 𝑝 };

19 return 𝑥 ;

prerequisite is invariant over calls to Extract(𝑃), i.e., the returned 𝑥 also is unreachable from 𝑆 . As, for
an unreachable subgoal, all regressed subgoals also are unreachable, the prerequisite thus holds at every
invocation of NeighborsRefine(𝑃).

But how to identify the conjunctions X? To this end, NeighborsRefine(𝑃) closely resembles the struc-
ture of Lemma 6.1. Following Lemma 6.1 (i), it starts by calling Extract(𝑃), which identifies a subgoal
𝑥 ⊆ 𝑃 unreachable from 𝑆 . Following Lemma 6.1 (ii), the procedure then finds conjunctions making 𝑥 , and
thus the target subgoal 𝑃 which contains 𝑥 , unreachable from 𝑆 under UC∪X . To this end, the refinement
is called recursively on the regressed subgoals regress(𝑥, 𝑎) for the actions 𝑎 supporting 𝑥 .

More precisely, a recursive call is needed only for those supporters 𝑎 not dealt with by the previous conjunc-
tions C, i.e., those where, on some state 𝑠 ∈ 𝑆 , the regressed subgoal regress(𝑥, 𝑎) is actually reachable
under UC . Furthermore, such a supporting action has already been dealt with by the new conjunctions X
in case there is some 𝑥′ ∈ X s.t. 𝑥′ ⊆ regress(𝑥, 𝑎). That is so because the conjunctions X are constructed
so that, upon termination, they are unreachable from 𝑆 under UC∪X .
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Consider now the Extract(𝑃) sub-procedure, called on a target subgoal 𝑃 . The procedure assumes that
(a) 𝑃 is unreachable from 𝑆 . It attempts to find a small subgoal 𝑥 ⊆ 𝑃 , giving the guarantees that (b) 𝑥
is still unreachable from 𝑆 , and (c) 𝑥 is unreachable from the neighbor states𝑇 under UC . To be precise,
(c) means that, for every 𝑡 ∈ 𝑇 , there exists 𝑐𝑡 ∈ C such that 𝑐𝑡 ⊆ 𝑥 and UC (𝑡, 𝑐𝑡 ) = ∞. To guarantee this
property, the sub-procedure relies on the UC neighbors information.

Ideally, we would like Extract(𝑃) to compute the smallest possible such 𝑥 ⊆ 𝑃 , as smaller conjunctions
tend to cause less work in the remainder of the refinement, andmore importantly, have higher chances to be
useful for recognizing dead ends other than the states in 𝑆 . Unfortunately, computing the size-minimal 𝑥 is
in general infeasible, which one can show straightforwardly via a reduction from the minimal vertex cover
problem, a well-known NP-COMPLETE decision problem (cf. Appendix B.2.2). Hence, Extract instead
follows a simple greedy procedure, which starting from the entire subgoal 𝑥 = 𝑃 , iteratively removes facts
from 𝑥 , while guaranteeing that (b) and (c) remain satisfied. The resulting 𝑥 is guaranteed to be minimal
in the sense that no further facts can be removed without violating at least one of the two conditions.

To show that the 𝑥 constructed by a call Extract(𝑃) indeed satisfies (c), note that in each such call, there
must exist a conjunction 𝑐𝑡 ∈ C, 𝑐𝑡 ⊆ 𝑃 , such that UC (𝑡, 𝑐𝑡 ) = ∞, for every neighbor 𝑡 ∈ 𝑇 . Namely, for
the top-level goal 𝑃 = G, as per the recognized-neighbors property, we have that UC (𝑡,G) = ∞, so by the
definition of UC there exists 𝑐𝑡 ⊆ G with UC (𝑡, 𝑐𝑡 ) = ∞. For later invocations of Extract(𝑃), we have
that 𝑃 = regress(𝑥, 𝑎), where 𝑥 was constructed by a previous invocation of Extract(𝑃). By property
(c) of that previous invocation, there exists 𝑐′𝑡 ∈ C such that 𝑐′𝑡 ⊆ 𝑥 and UC (𝑡, 𝑐′𝑡 ) = ∞. But then, in
particular, we have that UC (𝑡, 𝑥) = ∞. Given this, we must also have that UC (𝑡, regress(𝑥, 𝑎)) = ∞, i.e.,
UC (𝑡, 𝑃) = ∞. Hence, at the entry of Extract(𝑃), 𝑥 = 𝑃 , (c) is satisfied. It remains satisfied throughout
as per the first if statement of the minimization loop.

In order to show property (b), note that 𝑥 is not contained in any state 𝑠 ∈ 𝑆 . Again, this holds at the
beginning, 𝑥 = 𝑃 , because by assumption (a), 𝑃 is not reachable from any of these 𝑠. So, in particular,
𝑃 ⊈ 𝑠. 𝑥 ⊈ 𝑠 remains satisfied as per the second if check of the minimization loop. Property (b) follows
via the follow lemma:

Lemma 6.2. Let C be any set of atomic conjunctions. Let 𝑆 be a set of dead-end states, and let𝑇 = Succ(𝑆) \𝑆
be its neighbors. Let 𝑥 ⊆ F . If

(i) for every 𝑡 ∈ 𝑇 , there exists 𝑐𝑡 ∈ C such that 𝑐𝑡 ⊆ 𝑥 and UC (𝑡, 𝑐𝑡 ) = ∞; and

(ii) for every 𝑠 ∈ 𝑆 , 𝑥 ⊈ 𝑠;

then ℎ∗(𝑠, 𝑥) = ∞ for every 𝑠 ∈ 𝑆 .

Proof. Assume for contradiction that there is a state 𝑠 ∈ 𝑆 where ℎ∗(𝑠, 𝑥) < ∞. Then, there exists a path
𝑠 = 𝑠0, 𝑠1, . . . , 𝑠𝑛 from 𝑠 to some state 𝑠𝑛 with 𝑥 ⊆ 𝑠𝑛. Let 𝑖 be the largest index such that 𝑠𝑖 ∈ 𝑆 . Such 𝑖
exists because 𝑠0 = 𝑠 ∈ 𝑆 , and 𝑖 < 𝑛 because otherwise we get a contradiction to (ii). But then, 𝑠𝑖+1 ∉ 𝑆 ,
and thus 𝑠𝑖+1 ∈ 𝑇 by definition. By (i), there exists 𝑐𝑠𝑖+1 ⊆ 𝑥 such that UC (𝑠𝑖+1, 𝑐𝑠𝑖+1) = ∞. This implies
that ℎ∗(𝑠𝑖+1, 𝑐𝑠𝑖+1) = ∞, which implies that ℎ∗(𝑠𝑖+1, 𝑥) = ∞. The latter is in contradiction to the selection
of the path. The claim follows. □

Altogether, Algorithm 6.2 is correct in the following sense:

Theorem 6.2. Let C be any set of atomic conjunctions. Let 𝑆 be a set of dead-end states, and let𝑇 = Succ(𝑆)\𝑆
be its neighbors with the UC recognized-neighbors property. Then:
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(i) The execution of NeighborsRefine(G) terminates.

(ii) Upon termination of NeighborsRefine(G), UC∪X (𝑠) = ∞ for every 𝑠 ∈ 𝑆 .

Proof. (i) holds because every recursive call adds a new conjunction 𝑥 ∉ X: before the recursive call to
NeighborsRefine(regress(𝑥, 𝑎)) in the top-level procedure, there is no 𝑥′ ∈ X s.t. 𝑥′ ⊆ regress(𝑥, 𝑎);
but that condition holds for the 𝑥′ constructed in that recursive call. The number of possible conjunctions
is finite, so the recursion must eventually terminate.

Finally, (ii) is a corollary of the aforementioned property that, upon termination, every 𝑥 ∈ X is unreach-
able from 𝑆 underUC∪X . Without loss of generality assume unit action costs. To see that the latter property
holds, assume to the contrary that UC∪X (𝑠, 𝑥) = 0. Then ℎC∪X (𝑠, 𝑥) = 𝑁 for some finite 𝑁 . Let 𝑎 be a
best achiever of 𝑥 under ℎC∪X , i.e., ℎC∪X (𝑠, regress(𝑥, 𝑎)) = 𝑁 − 1. By construction, in the recursive call
that included 𝑥 into X, either an 𝑥′ ⊆ regress(𝑥, 𝑎) was already present in X, or such an 𝑥′ was included
in the recursive call on regress(𝑥, 𝑎). But then, ℎC∪X (𝑠, 𝑥′) ≤ 𝑁 − 1. Iterating this argument, we obtain a
conjunction 𝑥0 ∈ X whereℎC∪X (𝑠, 𝑥0) = 0, i.e., 𝑥0 ⊆ 𝑠. Such 𝑥0 are never included intoX by construction,
in contradiction, concluding the argument.

□

Example 6.3. Consider once again Example 5.1. Recall that U1(𝑠5) = U1(𝑠6) = ∞, i.e., given the search
conflict R[Θ̂] (𝑠4) = { 𝑠4, 𝑠6, 𝑠1, 𝑠5 }, the set 𝑆 = { 𝑠 ∈ R[Θ̂] (𝑠4) | U1(𝑠) = 0 } = { 𝑠4, 𝑠1 } satisfies the U1

recognized-neighbors property, with neighbors𝑇 = { 𝑠5, 𝑠6 }. Consider the neighbors refinement for 𝑆 and UC ,
starting with the set of singleton conjunctions C.

We initialize X = ∅ and call NeighborsRefine({ 𝑠𝑎𝑚𝑝1(𝐵), 𝑠𝑎𝑚𝑝2(𝐵) }). Consider the corresponding
call Extract({ 𝑠𝑎𝑚𝑝1(𝐵), 𝑠𝑎𝑚𝑝2(𝐵) }). Here, we find that 𝑥 = { 𝑠𝑎𝑚𝑝1(𝐵) } is suitable for each of 𝑠5 and
𝑠6: it is unreachable under U1 because in both states there is no energy left. Furthermore, 𝑥 = { 𝑠𝑎𝑚𝑝1(𝐵) } is
neither contained in 𝑠4 nor in 𝑠1. So we return 𝑥 . Note that this is not a new conjunction; it is already contained
in the current C. The 𝑥 extracted is guaranteed to not already be inX, but it may be an element of C. In other
words, as the 𝑥 in each recursive call, we may use a conjunction that was already atomic beforehand.

Back in the NeighborsRefine call, we see that 𝑥 can be achieved (only) by dropping 𝑠𝑎𝑚𝑝1 at 𝐵. We
handle the regressed subgoal via the call NeighborsRefine({ 𝑟𝑜𝑣 (𝐵), 𝑠𝑎𝑚𝑝1(𝑅) }). Here, the extraction
sub-procedure may choose 𝑥 = { 𝑟𝑜𝑣 (𝐵) }, which is suitable for the same reasons as above. 𝑥 has two achievers
𝑚𝑜𝑣𝑒 (𝐴3, 𝐵, 2) and𝑚𝑜𝑣𝑒 (𝐴3, 𝐵, 1). The regression of 𝑥 over the former contains 𝑏𝑎𝑡 (2), which is already de-
tected unreachable from 𝑠4 and 𝑠1 by U1. The latter is handled via NeighborsRefine({ 𝑟𝑜𝑣 (𝐴3), 𝑏𝑎𝑡 (1) }).

Consider finally the extraction sub-procedure in that recursive call. For the neighbor states 𝑠5 and 𝑠6, where the
rover is at 𝐴3 but the battery is empty, 𝑏𝑎𝑡 (1) needs to stay in 𝑥 . However, 𝑏𝑎𝑡 (1) is contained in the states
𝑠4 and 𝑠1, i.e., 𝑟𝑜𝑣 (𝐴3) also needs to stay in 𝑥 . So we end up with 𝑥 = 𝑃 = { 𝑟𝑜𝑣 (𝐴3), 𝑏𝑎𝑡 (1) }. Observe that
this last 𝑥 is the first “new” conjunction extracted.

The refinement process stops here, because the actions achieving 𝑥 , 𝑚𝑜𝑣𝑒 (𝑧,𝐴3, 2), all contain 𝑏𝑎𝑡 (2) as
precondition, for which U1(𝑠4, {𝑏𝑎𝑡 (2) }) = U1(𝑠1, {𝑏𝑎𝑡 (2) }) = ∞ is already satisfied. Hence the set X
returned contains, like for path-cut refinement above, just the one new conjunction { 𝑟𝑜𝑣 (𝐴3), 𝑏𝑎𝑡 (1) }, which
is exactly what is needed for UC∪X (𝑠4) = UC∪X (𝑠1) = ∞.
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6.2.3. Learning Effectiveness: Worst-Case Analysis

Unsurprisingly, there are tasks Π and dead ends 𝑠 where C has to contain exponentially many conjunctions
in the size of Π so that UC (𝑠) = ∞. In other words, UC refinement (no matter of the exact algorithm) on
an arbitrary dead-end state must in the worst case generate an exponential, in |Π |, number of conjunctions.
This worst-case result directly applies to search-conflict refinements, if search uses an additionalU for dead-
end detection; one can then simply chooseU in a way such that the first requestedUC refinement will have
to be on such a worst-case state 𝑠. But what ifUC is the only dead-end detector used? Refinements can then
no longer be requested by search on arbitrary dead ends. In particular, the conflicts identified by search
necessarily satisfy the UC recognized-neighbors property. This intuitively makes the refinements of UC
become more incremental; when search identifies a conflict R[Θ̂] (𝑠), the corresponding UC refinement
must only close the gap between R[Θ̂] (𝑠) and R[Θ̂] (𝑠)’s recognized neighbors. Moreover, the conflict
component R[Θ̂] (𝑠) may itself contain exponentially many states, relativizing the need of an exponential
C.

This raises the question of how many conjunctions need to be generated in the worst case, if one assumes
dead-end sets 𝑆 as input where (1) 𝑆 satisfies the recognized-neighbors property, and (2) the input size
|𝑆 | is polynomially bounded in the task’s size. Unfortunately, as the following example shows, there are
indeed pathological cases, where exponentially many conjunctions are necessary in order to expand the
dead-end detection capabilities of UC even by just a single transition step:

Proposition 6.2. There are planning tasks Π, and dead-end states 𝑠 ∈ SΠ such that UC (𝑠) = ∞ entails that
C contains exponentially many conjunctions in |Π |, even if restricting the states 𝑠 to ones that satisfy the UC′

recognized-neighbor property for some polynomially bounded C′.

Proof sketch. Such an example is given by a task with initial state I = { 𝑝1, . . . , 𝑝𝑛 } and goal G =
{𝑞1, . . . , 𝑞𝑛 }. The action achieving 𝑞𝑖 requires 𝑝𝑖 and an additional fact 𝑟 as precondition, and deletes
𝑝𝑖 . 𝑟 can only be achieved by deleting one of the 𝑝𝑖 facts. The task is unsolvable because one cannot
achieve all 𝑞𝑖 facts simultaneously. The initial state satisfies the U1 recognized-neighbors property, be-
cause initially it is only possible to trade in some 𝑝𝑖 for 𝑟 , preventing to reach 𝑞𝑖 afterwards even under
U1’s relaxing assumptions. However, in order that UC (I) = ∞, C needs to enumerate all combinations
{𝑋𝑖 | 1 ≤ 𝑖 ≤ 𝑛,𝑋𝑖 ∈ { 𝑝𝑖 , 𝑞𝑖 } }. Note that each strict subset is reachable from I. If a single one of
these combinations was missing in C, then one can construct a goal regression trace that splits in UC into
individually reachable parts. □

The detailed example is provided in Appendix B.2.3.

6.3. Critical-Path NoGoods

As previously discussed, the computation of UC is low-order polynomial time in the number |C| of atomic
conjunctions. Yet, in practice, it may incur a substantial runtime overhead as C is growing. In the following,
we show how to alleviate this overhead through critical-path NoGoods, i.e., sufficient conditions toUC (𝑠) =
∞ that are easier to evaluate than UC itself.

In Section 6.3.1, we first observe that it is actually possible to characterize the dead ends recognized by
UC exactly through a NoGood formula, specifically ΦC∗ s.t. 𝑠 |̸= ΦC∗ if and only if UC (𝑠) = ∞. In principle,
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once constructed, ΦC∗ can thus substitute UC entirely. This is however mainly of theoretical interest as
ΦC∗ has size worst-case exponential in |C|, a blow-up which tends to happen as our experiments show.

In Section 6.3.2, we introduce practical variants, learning weaker formulae 𝜑 , ΦC∗ ⇒ 𝜑 , during search.
Given that 𝑠 |̸= 𝜑 then implies that 𝑠 |̸= ΦC∗, and therewith UC (𝑠) = ∞, these formulae still allow to
avoid some – yet not all – UC evaluations. Whenever UC is evaluated on a state 𝑠 such that 𝑠 |= 𝜑 but
UC (𝑠) = ∞, we refine 𝜑 so that 𝑠 |̸= 𝜑 holds afterwards. Future states 𝑠′ other than 𝑠 with 𝑠′ |̸= 𝜑 then no
longer need to be evaluated. We consider two approaches to generate such 𝜑: clause learning, inspired by
prior work, and CART learning, leveraging the perfect NoGood formula construction.

In order to separate concerns, in Section 6.3.3, we provide a brief experimental evaluation, studying the
feasibility of the ΦC∗ construction, and comparing the two NoGood learning variants. Our main experi-
ments, evaluating search with conflict-driven learning via UC , are given in Section 6.4.

6.3.1. Equivalent UC NoGood Characterization

We have identified two alternative ways of constructing such a ΦC∗, which differ in terms of formula
structure and size. We detail in what follows the simpler formula, which turns out to be more useful in
practice; we discuss the alternative at the end of this section.

Our construction is based on what we call atomic regression traces. These are sets of atomic conjunctions,
gleaned from the recursion in Equation (6.1) by selecting a single 𝑐 in the maximization (bottom case)
and following all 𝑎 in the minimization (middle case). This yields a disjunction of atomic conjunctions. We
observe that every state along a path to the goal must satisfy every such disjunction, and that the states
not satisfying at least one such a disjunction are exactly the dead-end states recognized by UC .

Definition 6.4 (C-Atomic Regression Trace). Let C be a set of conjunctions. A C-atomic regression trace,
short CART, is a subset 𝜎 ⊆ C so that

(i) there exists 𝑐 ∈ 𝜎 with 𝑐 ⊆ G, and

(ii) for every 𝑐 ∈ 𝜎 and for every 𝑎 ∈ A[𝑐], there exists 𝑐′ ∈ 𝜎 with 𝑐′ ⊆ regress(𝑐, 𝑎).

We identify a CART 𝜎 with the disjunction ∨
𝑐∈𝜎 𝑐 of its element conjunctions. Note that each CART is,

hence, a DNF formula.

To see how conditions (i) and (ii) capture why UC evaluates to ∞, consider a state 𝑠 and an atomic
conjunction 𝑐 ∈ C. In the simplest case, UC (𝑠, 𝑐) is ∞ because 𝑐 is not true in 𝑠, and there is no action
that achieves 𝑐, i.e., if 𝑐 ⊈ 𝑠 and A[𝑐] = ∅. If 𝑐 ⊆ G, then { 𝑐 } is a CART on its own: if a state does not
satisfy 𝑐, there is no way in which 𝑐 (and hence the goal) can be made true from that state. In contrast,
for an atomic conjunction 𝑐 with non-empty set of achievers, UC (𝑠, 𝑐) = ∞ depends on the reachability
of other atomic conjunctions. For UC (𝑠, 𝑐) = ∞ to be true, the regression of 𝑐 over each of its achievers
must contain an atomic conjunction 𝑐′ with UC (𝑠, 𝑐′) = ∞. Condition (ii) ensures that a CART 𝜎 covers
all achievers. But then, as UC (𝑠, 𝑐) < ∞ only if 𝑠 supports at least one achiever, UC (𝑠, 𝑐) < ∞ entails that
𝑠 satisfies 𝜎:

Lemma 6.3. Let C ⊆ 2F be a set of conjunctions, and let 𝜎 be a C-atomic regression trace. For every state 𝑠,
if 𝑠 |̸= 𝜎 , then UC (𝑠, 𝑐) = ∞ for every 𝑐 ∈ 𝜎 .

Proof. Assume that UC (𝑠, 𝑐) < ∞ for some 𝑐 ∈ 𝜎 . Assume, w.l.o.g., unit cost (action costs are irrelevant for
UC). Let 𝑐0 ∈ 𝜎 be an element of 𝜎 with minimal ℎC (𝑠, 𝑐0) value. In particular, ℎC (𝑠, 𝑐0) < ∞. If 𝑐0 ⊆ 𝑠,
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then 𝑠 |= 𝜎 and there is nothing to prove. Assume for contradiction that 𝑐0 ⊈ 𝑠. Consider the action 𝑎
from the second case of Equation (6.1), in the computation of ℎC (𝑠, 𝑐0). By the definition of 𝜎 , there exists
𝑐′ ∈ 𝜎 with 𝑐′ ⊆ regress(𝑐0, 𝑎). But then, ∞ > ℎC (𝑠, 𝑐0) ≥ ℎC (𝑠, regress(𝑐0, 𝑎)) + 1 ≥ ℎC (𝑠, 𝑐′) + 1, i.e.,
ℎC (𝑠, 𝑐0) > ℎC (𝑠, 𝑐′), which contradicts the selection of 𝑐0. □

By Definition 6.4 (i), each CART contains at least one goal conjunction. Hence, by Lemma 6.3, the existence
of an unsatisfied CART implies that UC (𝑠) = ∞. We next show that the opposite direction also holds:

Lemma 6.4. For every state 𝑠, if UC (𝑠) = ∞, then there exists a C-atomic regression trace 𝜎 so that 𝑠 |̸= 𝜎 .

Proof. We construct 𝜎 through a simple recursive procedure. Initially, let 𝜎 = ∅. Starting with G, there
must exist 𝑐 ∈ C so that UC (𝑠, 𝑐) = ∞ and 𝑐 ⊆ G. Since UC (𝑠, 𝑐) = ∞, we must have 𝑐 ⊈ 𝑠, and for every
𝑎 ∈ A[𝑐], we must have UC (𝑠, regress(𝑐, 𝑎)) = ∞. We add 𝑐 to 𝜎 , and we repeat on regress(𝑐, 𝑎) for all
𝑎 ∈ A[𝑐]. We terminate the recursion when the selected 𝑐 is already contained in 𝜎 (which happens at
the latest when 𝜎 = C). The resulting 𝜎 satisfies Definition 6.4, and 𝑠 |̸= 𝜎 by construction. □

Example 6.4. Reconsider the state 𝑠6 from Example 6.1 and recall that U1(𝑠6) = ∞. We construct a CART
which is violated by 𝑠6. Starting with the goal, we have the choice between { 𝑠𝑎𝑚𝑝1(𝐵) } and { 𝑠𝑎𝑚𝑝2(𝐵) },
both being unreachable from 𝑠6 under U1. Suppose with choose

𝜎 := { { 𝑠𝑎𝑚𝑝1(𝐵) } }

The only achiever of the selected atomic conjunction is 𝑑𝑟𝑜𝑝 (𝑠𝑎𝑚𝑝1, 𝐵), which has precondition 𝑟𝑜𝑣 (𝐵) and
𝑠𝑎𝑚𝑝1(𝑅). The latter fact is contained in 𝑠6, forcing us to continue with the former

𝜎 := { { 𝑠𝑎𝑚𝑝1(𝐵) }, { 𝑟𝑜𝑣 (𝐵) } }

This conjunction now has two achievers:𝑚𝑜𝑣𝑒 (𝐴3, 𝐵, 2) and𝑚𝑜𝑣𝑒 (𝐴3, 𝐵, 1). Since the rover is at 𝐴3 in 𝑠6,
the only possibility to cover their preconditions is to include both 𝑏𝑎𝑡 (1) and 𝑏𝑎𝑡 (2), yielding:

𝜎 := { { 𝑠𝑎𝑚𝑝1(𝐵) }, { 𝑟𝑜𝑣 (𝐵) }, {𝑏𝑎𝑡 (1) }, {𝑏𝑎𝑡 (2) } }

At this point, we can terminate, because 𝑏𝑎𝑡 (2) has no achievers, and every achiever of 𝑏𝑎𝑡 (1) requires 𝑏𝑎𝑡 (2)
in its precondition. The constructed CART is equivalent to the following fact disjunction

𝑠𝑎𝑚𝑝1(𝐵) ∨ 𝑟𝑜𝑣 (𝐵) ∨ 𝑏𝑎𝑡 (1) ∨ 𝑏𝑎𝑡 (2)

covering all states with no energy left, and where neither rover nor sample 𝑠𝑎𝑚𝑝1 is at 𝐵.

Lemma 6.3 and Lemma 6.4 together give the desired exact characterization of UC dead-end detection:

Theorem 6.3. Let ΣC be the set of all C-atomic regression traces. Define ΦC∗ = ∧
𝜎∈ΣC 𝜎 . Then, for every

state 𝑠, 𝑠 |̸= ΦC∗ if and only if UC (𝑠) = ∞.

The construction of ΦC∗ requires the enumeration of all CARTs. Obviously, the number of CARTs is worst-
case exponential in the number of atomic conjunctions |C|. This blow-up can be alleviated to some extent
by identifying and avoiding redundancies, during the enumeration of ΣC , and by leveraging mutex infor-
mation to reduce the size of ΦC∗ post generation:
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Subsumption Pruning Consider two CARTs 𝜎 ≠ 𝜎′ s.t. 𝜎′ subsumes 𝜎 , i.e., 𝜎′ ⊂ 𝜎 . Notice that removing 𝜎
from ΦC∗ results in an equisatisfiable formula. Namely, denote by ΦC∗ \ { 𝜎 } the reduced formula.
Clearly, if ΦC∗ is satisfied, then so is ΦC∗ \ { 𝜎 }. On the other hand, if 𝑠 |= ΦC∗ \ { 𝜎 }, then it holds
in particular that 𝑠 |= 𝜎′, which as per the subsumption relation implies that 𝑠 |= 𝜎 , so 𝑠 |= ΦC∗.

Instead of naively removing subsumed CARTs after ΦC∗ was already fully generated, one can iden-
tify, during the generation process, CARTs thatwill be subsumed. Organizing the generation process
as a tree search where tree leaves are CARTs, we do so via checking, prior to expanding an atomic
subgoal 𝑐, whether 𝑐 was explored on a previous search path already. If so, and if the prefix before
𝑐 on that previous search path subsumes our current prefix, then the re-expansion of 𝑐 is pruned.
This discards many CARTs long before they are generated.

Mutex Reasoning For the purpose of dead-end detection in forward search it is enough if 𝑠 |= ΦC∗ ⇔
UC (𝑠) = ∞ for those 𝑠 that are actually reachable from the initial state. In particular, we may
disregard states that violate mutex constraints: we say that two atomic conjunctions 𝑐1 and 𝑐2 are
mutually exclusive if it holds for all reachable states 𝑠 ∈ R(𝑠I) that 𝑐1 ⊈ 𝑠 or 𝑐2 ⊈ 𝑠. Now, consider
two elements 𝜎1 and 𝜎2 of ΦC∗. Let 𝑐 ∈ 𝜎1 \𝜎2. Notice that we can remove 𝑐 from 𝜎1 if 𝑐 is mutually
exclusive with all 𝑐′ ∈ 𝜎2. To see this, let 𝑠 be any reachable state. If 𝑠 satisfies (𝜎1 \ { 𝑐 }) ∧𝜎2, then
𝑠 clearly also satisfies 𝜎1 ∧ 𝜎2. Say that 𝑠 satisfies 𝜎1 ∧ 𝜎2. Since 𝑠 |= 𝜎2, there exists some 𝑐′ ∈ 𝜎2
s.t. 𝑐′ ⊆ 𝑠. Since 𝑐 is mutually exclusive with 𝑐′, 𝑐 ⊈ 𝑠. But 𝑠 |= 𝜎1, so there must exist some 𝑐′′ ∈ 𝜎1,
𝑐′′ ≠ 𝑐 s.t. 𝑐′′ ⊆ 𝑠. Hence, 𝑠 |= (𝜎1 \ { 𝑐 }) ∧ 𝜎2.

As advertised, we have also explored an alternative way to build an exact offline NoGood formula. So
far, when gleaning our regression traces from the recursion in Equation (6.1), we chose to select only a
single 𝑐 in the bottom-case maximization. The alternative is to select all these 𝑐, recursively constructing
an AND/OR tree, and therewith a corresponding formula, over the atomic conjunctions. That formula is
equivalent to ΦC∗ as defined above, and it may be exponentially smaller. However, this alternative suffers
from its complex formula structure, with arbitrarily deep nesting of conjunction and disjunction. This has
two major practical implications. First, the AND/OR tree construction is not amenable to our subsumption
pruning, and in our experiments was much less feasible than constructing ΦC∗. Secondly, the simple struc-
ture of ΦC∗ lends itself to constructing that formula incrementally, enabling online NoGood learning, as
we discuss next.

6.3.2. NoGood Learning

We first discuss the clause learning approach, and then show how to leverage the ΦC∗ construction for an
effective online NoGood learning variant.

Clause Learning

The clause learning method is technically quite simple. It follows earlier proposals (Kolobov et al., 2012b;
Muise et al., 2012a). Consider any state 𝑠 where UC (𝑠) = ∞. Denote by

𝜓 (𝑠) =
∨

𝑝∈F \𝑠
𝑝

the disjunction of facts false in 𝑠. Then, 𝜓 (𝑠) is a valid clause: for any state 𝑠′, if 𝑠′ does not satisfy 𝜓 (𝑠),
written 𝑠′ |̸= 𝜓 (𝑠), then UC (𝑠′) = ∞; in particular, if 𝑠′ does not satisfy𝜓 (𝑠) then it is a dead end. To see
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this, just note that, as UC (𝑠) = ∞, the goal is unreachable from 𝑠 under UC . To make the goal reachable
under UC , we need to make true at least one of the facts that are false in 𝑠.

The clause 𝜓 (𝑠) just defined is, per se, not useful as it generalizes to only those states subsumed by 𝑠,
i.e., whose true facts are contained in those of 𝑠. This changes when minimizing 𝜓 (𝑠), testing whether
individual facts 𝑝 can be removed while preserving validity. In other words, we aim at obtaining aminimal
reason for UC (𝑠) = ∞. Our minimization method is straightforward, testing the facts 𝑝 ∈ F \ 𝑠 one by
one.

We start with 𝑠′ := 𝑠. We then loop over all 𝑝 ∈ F \𝑠. In each loop iteration, we test whetherUC (𝑠′∪{ 𝑝 }) =
∞; if so, we set 𝑠′ := 𝑠′ ∪ { 𝑝 }. Upon termination of the loop, 𝑠′ is a set-inclusion maximal superset of 𝑠
that preserves goal unreachability under UC , i.e., where UC (𝑠′) = ∞. We then obtain our clause as the
disjunction of the remaining facts,𝜓 (𝑠′).

Example 6.5. Consider one final time 𝑠6 from Example 6.1. Suppose we execute clause learning on U1.

The minimization loop starts with

𝑠′ := 𝑠6 = { 𝑟𝑜𝑣 (𝐴3), 𝑏𝑎𝑡 (0), 𝑠𝑎𝑚𝑝1(𝑅), 𝑠𝑎𝑚𝑝2(𝐴2) }

Adding the other possible locations of 𝑠𝑎𝑚𝑝2, i.e., the facts 𝑠𝑎𝑚𝑝2(𝑥) for all 𝑥 ∈ {𝐴1, 𝐴3, 𝐵, 𝑅 }, the goal is
still unreachable under U1 because we cannot achieve the goal 𝑠𝑎𝑚𝑝1(𝐵). So we set

𝑠′ := 𝑠′ ∪ { 𝑠𝑎𝑚𝑝2(𝐵), 𝑠𝑎𝑚𝑝2(𝐴1), 𝑠𝑎𝑚𝑝2(𝐴3), 𝑠𝑎𝑚𝑝2(𝑅) }

Considering now the other possible locations of 𝑠𝑎𝑚𝑝1, i.e., the facts 𝑠𝑎𝑚𝑝1(𝑥) for 𝑥 ∈ { 𝐵,𝐴1, 𝐴2, 𝐴3 }, the
𝑠𝑎𝑚𝑝1(𝐴𝑖) facts can be added, as we still cannot reach 𝑠𝑎𝑚𝑝1(𝐵). But 𝑠𝑎𝑚𝑝1(𝐵) cannot be added as we
would then have G ⊆ 𝑠′. So, we set

𝑠′ := 𝑠′ ∪ { 𝑠𝑎𝑚𝑝1(𝐴1), 𝑠𝑎𝑚𝑝1(𝐴2), 𝑠𝑎𝑚𝑝1(𝐴3) }

We cannot add any amount of energy, 𝑏𝑎𝑡 (1) or 𝑏𝑎𝑡 (2), which would make the goal become reachable under
U1. Finally, considering the other possible locations of the rover, i.e., the facts 𝑟𝑜𝑣 (𝑥) for 𝑥 ∈ { 𝐵,𝐴1, 𝐴2 } ,
we can add 𝑟𝑜𝑣 (𝐴1) and 𝑟𝑜𝑣 (𝐴2), as 𝑟𝑜𝑣 (𝐵) then still remains unreachable. But we cannot add 𝑟𝑜𝑣 (𝐵) as,
then, 𝑠𝑎𝑚𝑝1 could be dropped at 𝐵 without any energy consumption.

We end up with

𝑠′ ={ 𝑟𝑜𝑣 (𝑥) | 𝑥 ∈ {𝐴1, 𝐴2, 𝐴3 } }
∪ {𝑏𝑎𝑡 (0) }
∪ { 𝑠𝑎𝑚𝑝1(𝑥) | 𝑥 ∈ {𝐴1, 𝐴2, 𝐴3, 𝑅 } }
∪ { 𝑠𝑎𝑚𝑝2(𝑥) | 𝑥 ∈ { 𝐵,𝐴1, 𝐴2, 𝐴3, 𝑅 } }

This yields the clause:
𝜓 (𝑠′) = 𝑟𝑜𝑣 (𝐵) ∨ 𝑏𝑎𝑡 (1) ∨ 𝑏𝑎𝑡 (2) ∨ 𝑠𝑎𝑚𝑝1(𝐵)

Note that the clause we end up with depends on the ordering of facts in the minimization loop. If, for example,
we test 𝑟𝑜𝑣 (𝐵) at the very beginning of the loop, then it can be added: with 𝑠𝑎𝑚𝑝2 being only at𝐴2, the rover
still needs to move to𝐴2 to collect 𝑠𝑎𝑚𝑝2, which requires energy. On the other hand, if we do add 𝑟𝑜𝑣 (𝐵) into
𝑠′, then later on we cannot add 𝑠𝑎𝑚𝑝2(𝐴3). We use an arbitrary fact ordering in our implementation, i.e., we
do not attempt to find clever orderings.
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The re-computation ofUC (𝑠′∪{ 𝑝 }) for each fact 𝑝 in theminimization loop can be optimized by doing it in
an incremental manner. Omitting implementation details, we essentially store the dynamic programming
table (an index from atomic conjunctions into { 0,∞ }) of the previous iteration, identify the table cells
changing from∞ to 0 due to the inclusion of 𝑝, and propagate these changes. Nevertheless, the minimiza-
tion sometimes incurs a significant computational overhead. To reduce that overhead, in our implemen-
tation we slightly diverge from the above. Our implementation being based on Fast Downward (Helmert,
2006), we leverage the internal FDR planning task representation by processing in one minimization step
entire variables 𝑣 at once, replacing 𝑝 in the above by the set of all facts { 𝑣 ↦→ 𝑑 | 𝑑 ∈ D𝑣 }. This yields
weaker clauses, but takes less runtime.

During search, we maintain a conjunction ΨCL of clauses, starting with the empty ΨCL := ⊤. We consult
ΨCL prior to every UC (𝑠) evaluation, skipping the computation if 𝑠 |̸= ΨCL. When we encounter during
search a state 𝑠 |= ΨCL, where UC (𝑠) = ∞, we compute a clause 𝜓 (𝑠′) as just sketched, and update
ΨCL := ΨCL ∧𝜓 (𝑠′).

CART NoGood Learning

Turning the approach from Section 6.3.1 into an incremental NoGood learning approach is straightforward.
We initialize ΦART = ⊤. When we encounter a state 𝑠 |= ΦART where UC (𝑠) = ∞, we extend ΦART by a
new CART 𝜎 , setting ΦART := ΦART ∧ 𝜎 , guaranteeing that 𝑠 |̸= ΦART holds afterwards. As per Lemma 6.4,
this is always possible. Moreover, its proof is constructive showing how to find the desired 𝜎 .

Observe that, at any point in time, ΦART is a sub-conjunction of ΦC∗, consisting of CARTs representing the
UC dead ends encountered so far. Observe, furthermore, that CART learning is inspective, based on an
analysis of the reasons for UC (𝑠) = ∞, in contrast to clause learning which treats UC like a blackbox. One
advantage of this is that CART learning does not involve any intermediate reevaluation ofUC . On the other
hand, ΦART has a more complex structure, a conjunction of DNF formulae, versus the CNF structure of ΨCL.
So, ΦART can be more expensive to evaluate. In our implementation, we simplify the evaluation of ΦART

by representing the atomic conjunctions in ΦART via auxiliary propositions. Before evaluating ΦART, we
compute the satisfied atomic conjunctions once, collecting the corresponding propositions. The evaluation
of ΦART itself then boils down to checking a much simpler CNF formula.

6.3.3. Experimental Evaluation

We implemented the different UC NoGood variants in FAST DOWNWARD (Helmert, 2006).1 Given that by
design, they primarily affect UC computations on recognized dead ends, we focus on proving unsolvability
where such states naturally abound. We use the benchmarks from the unsolvability planning competition
(UIPC’16). In addition, we consider resource-constrained planning (RCP) (e.g., Haslum and Geffner, 2001;
Nakhost et al., 2012), where the goal must be achieved subject to a limited resource budget. We use the
benchmarks by Nakhost et al. (2012), which are controlled in that the minimum required budget 𝔟min is
known, and the actual budget is set to ℭ ∗𝔟min, where the constrainedness level ℭ is a benchmark instance
parameter. We follow Hoffmann et al. (2014), and use ℭ ∈ { 0.5, 0.6, 0.7, 0.8, 0.9 }, so that the tasks
are unsolvable. All experiments were run on a cluster of Intel Xeon E5-2650v3 machines, with runtime
(memory) limits of 30 minutes (4 GB).

1https://doi.org/10.5281/zenodo.6992688

https://doi.org/10.5281/zenodo.6992688
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U1 U2 ΦC∗ built

Domain # – Clause ART ΦC∗ – Clause ART ΦC∗ U1 U2

Unsolvability IPC (UIPC) 2016 Benchmarks
BagBarman 20 8 8 8 0 0 0 0 0 0 0
BagGripper 25 3 3 3 1 0 0 0 0 1 0
BagTransport 29 6 6 6 1 16 16 16 0 1 0
Bottleneck 25 20 20 20 13 19 21 21 0 13 0
CaveDiving 25 7 7 7 3 6 6 6 0 3 0
ChessBoard 23 5 5 5 4 4 4 4 0 4 0
Diagnosis 20 5 5 5 1 4 5 5 0 6 0
DocTransfer 20 7 6 7 1 8 7 8 0 2 0
NoMystery 20 2 2 2 2 2 2 2 0 12 0
PegSol 24 24 24 24 0 24 22 22 0 0 0
PegSolRow5 15 5 5 5 3 4 4 4 1 3 1
Rovers 20 7 7 7 7 7 7 7 0 20 0
SlidingTiles 20 10 10 10 10 10 10 10 0 20 0
Tetris 20 5 5 5 0 5 5 5 0 0 0
TPP 30 16 16 16 16 14 15 15 0 25 0∑ UIPC 336 130 129 130 62 123 124 125 1 110 1

Unsolvable Resource-Constrained Planning (RCP) Benchmarks (Nakhost et al., 2012)
NoMystery 150 45 45 45 43 74 81 81 0 129 0
Rovers 150 5 5 5 5 66 67 67 0 150 0
TPP 25 6 6 6 0 4 7 7 0 0 0∑ RCP 325 56 56 56 48 144 155 155 0 279 0∑ Total 661 186 185 186 110 267 279 280 1 389 1

Table 6.1.: Coverage results (number of benchmark instances proved unsolvable), comparing the different UC No-
Good techniques. Best results are highlighted in bold. “U1” and “U2” forward state space search usingU1 respectively
U2 for dead-end pruning; “–” not using any NoGood; “Clause” clause learning; “ART” CART learning; “ΦC∗” search
using the offline constructed perfect NoGood formula; “ΦC∗ built” shows the number of benchmark instances on
which ΦC∗ was successfully constructed.

The main purposes of this experiment are to (1) evaluate the feasibility of the perfect NoGood ΦC∗ con-
struction, and to compare the overhead of the UC computation to the evaluation of ΦC∗ when ΦC∗ can be
constructed; and to (2) evaluate the effectiveness of the two NoGood learning techniques in reducing the
UC computation overhead. As basis for this evaluation, we consider forward search, pruning dead ends
recognized by U1 respectively U2, the two canonical critical-path unsolvability detector baselines. We run
four variants of those base configurations: “–” not using any NoGood technique; “Clause” online clause
learning; “ART” online CART learning; and “ΦC∗” constructing the perfect NoGood formula ΦC∗ for the
respective critical-path heuristic before search, and substituting the heuristic by ΦC∗ during search. The
mutex constraints used for the ΦC∗ construction were obtained from FAST DOWNWARD’s FDR planning task
representation, i.e., using that every state variable can have only one value at any time.
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Figure 6.1.: Per-instance comparisons of (a) – (e) time spent on dead-end detection (in seconds), and (f) NoGood
generalization factor: (a) compares the total time spent on the evaluation of U1/U2 without NoGoods (𝑥 -axis) to
the time spent on the construction and evaluation of ΦC∗ (𝑦-axis); (b) same as (a) but without the construction; (c)
compares the evaluation of U1/U2 without NoGoods (𝑥 -axis) to the evaluation of U1/U2 with CART learning (𝑦-
axis), counting in the latter the time spent on evaluating and refining the NoGood formula plus evaluating U1/U2;
(d) like (c) but restricted to the dead ends recognized by U1/U2; (e) compares the evaluation of U1/U2 with clause
learning (𝑥 -axis) to the evaluation of U1/U2 with CART learning (𝑦-axis), again restricted to the recognized dead
ends; (f) compares the NoGood generalization factor between clause learning and CART learning.

Table 6.1 provides the coverage results. On the right, we see that constructing ΦC∗ is feasible about 59%
of the time for U1, and is hardly ever feasible for U2, exhibiting the mentioned blow-up. On the left, we
see that none of the NoGood methods improves coverage for U1. This is expected as computing U1 is
comparatively cheap to evaluate, so there is only little to be gained by avoiding U1 computations.

Matters are different for U2, computing which is much more costly (on average in our experiments, 3
orders of magnitude slower). Observe first that, somewhat surprisingly perhaps – a common perception
being that U2 is way too costly to be recomputed on every state in a forward search – U2 outperforms U1

clearly here, mostly but not exclusively due to the resource-constrained benchmarks. In BagBarman and
BagGripper, computing U2 is prohibitively costly, and the U2 configurations run out of time or memory
during the construction of the U2 data structures already. More importantly for our work here, in contrast
to U1, online NoGood learning does have a considerable beneficial effect on coverage for U2.

We now analyze the data in more detail, beyond the coarse measurement afforded by coverage. Figure 6.1
shows the effect of NoGood learning on the time spent in dead-end detection. In (a) and (b), we see that,
despite its size blow-up, on those instances where ΦC∗ can be constructed, dead-end detection using ΦC∗ is
typically much more effective than with the equivalent critical-path heuristic. (a) shows that this is often so
even when taking into account the time spent constructing ΦC∗; (b) shows that this is almost consistently
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so when disregarding that time, i.e., when considering the effort spent during search only.

Figure 6.1c and 6.1d examine the runtime impact of online NoGood learning via CARTs. We see in Fig-
ure 6.1c that CART learning improves performance almost consistently, and especially for U2. We see in
Figure 6.1d that the improvement is quite strong – up to 4 orders of magnitude – when considering only
those states recognized as dead ends by U1/U2, i.e., those states where NoGood learning may actually
help (on all other states, it merely incurs an additional overhead).

Figure 6.1f examines the power of generalization, in terms of the impact of online NoGood learning on
the number of U1/U2 evaluations. We consider only those states where NoGood learning actually makes a
difference – those recognized as dead-ends by U1/U2 – and we show the improvement factor, i.e., the ratio
between the number of U1/U2 evaluations with vs. without NoGood learning. We see that both learning
variants generalize quite well, yielding large improvement factors. Yet, CART learning is clearly superior,
with improvement factors up to 3 orders of magnitude larger than those of clause learning. It reduces the
number of evaluations by factors in the thousands for U2, and up to millions for U1.

Figure 6.1e compares the evaluation time of U1/U2 between clause and CART learning, disregarding the
U1/U2 evaluation time on states not recognized as dead ends, which is identical on both sides. We see that
the generalization advantage of CART learning carries over to runtime, with CART learning dominating
clause learning almost consistently, and outperforming it especially for U2. We remark though that the
identical runtime share on both sides is often so large as to overshadow this advantage.

6.4. Experimental Evaluation

We evaluate search with dead-end learning via UC for three different objectives: finding plans in the
presence of dead ends; proving a planning task unsolvable; and generating unsolvability certificates. We
next detail the general experiment setup, and then proceed over the different subjects in the given order.

6.4.1. Algorithm Configurations, Competing Approaches, and Benchmarks

We implemented the search algorithms from Chapter 5 and UC conflict refinement in FAST DOWNWARD
(FD) (Helmert, 2006). The source code is publicly available2. The experiments were run on a cluster of
Intel Xeon E5-2660 machines running at 2.20 GHz, with runtime (memory) limits of 30 minutes (4 GB).

We next describe our parameter choices for instantiating our techniques. Afterwards, we discuss the ap-
proaches to which we compare. Finally, we describe our benchmark selection.

Variants of Our Techniques

In preliminary experiments, we found that search algorithms other than depth-first search hardly ever
benefited from conflict-driven learning, as they did not identify enough conflicts. This pertains especially
to A∗, which explores the search space in a breadth-oriented fashion, considering many options. In con-
trast, for the identification of conflicts, it is beneficial to search deeply not broadly, pushing the state at
hand to either the goal or a dead-end situation. Given this, we focus primarily on depth-first searches. In
particular, for solvable planning tasks, we consider satisficing planning, not providing plan quality guaran-
tees. We focus on the DFS variant from Section 5.2, our most elegant and effective search algorithm. For
2https://doi.org/10.5281/zenodo.6992688

https://doi.org/10.5281/zenodo.6992688
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ordering children nodes in DFS, we focus on an ordering by smaller value of the delete-relaxation heuristic
ℎFF (Hoffmann and Nebel, 2001), which turns out to be beneficial for both, finding plans and (to a lesser
degree) proving unsolvability.

We always start with UC = U1, i.e., initializing C to the set of all singleton conjunctions. We experi-
ment with three different conjunction learning methods, namely path-cut refinement and neighbors re-
finement as introduced in Section 6.2, as well as Keyder et al.’s (2014) method as a representative of prior
conjunction-learningmethods. Keyder et al.’s (2014)method, like Haslum’s (2012) preceding one, is based
on iteratively removing conflicts in delete-relaxed plans, and we will refer to it as relaxed-plan refinement.
We also run DFS without any refinement, as a direct comparison pointing out the impact of learning vs. an
identical search without learning. For finding plans and for proving unsolvability, we run DFS with early
stopping, stopping search, and thus skipping the remaining conflict refinements, when there are no more
open nodes. For generating unsolvability certificates, we run DFS without early stopping, refining UC until
it refutes the initial state.

We also run offline learning variants, refining the conjunction set only prior to search, for proving unsolv-
ability and for dead-end detection. In either case, we use path-cut refinement and relaxed-plan refinement,
as neighbors refinement is not applicable in the offline context. For proving unsolvability, we simply refine
UC on the initial state until UC (I) = ∞. For dead-end detection, we refine UC on the initial state until
a size bound 𝛼 is reached. Then, we use the same set C for UC dead-end detection throughout the search.
Like in previous work on partial delete-relaxation heuristics (Keyder et al., 2012; Keyder et al., 2014), the
size bound 𝛼 is multiplicative, enforcing the ratio:∑

𝑐∈C
|A[𝑐] | ≤ 𝛼

∑
𝑝∈F
|A[{ 𝑝 }] |

which attempts to more directly control the computational overhead of UC over U1.

To evaluate the complementarity of our method vs. strong competing methods, we design simple combi-
nations with the two strongest alternate dead-end detection techniques, namely unsolvability heuristics
U obtained from merge-and-shrink abstractions respectively a potential heuristic variant (see below). The
combinations additionally use U to test whether a state is a dead end at state generation time. The only
subtlety here is that, during refinement of UC , because of the additional unsolvability detector U, the UC
recognized-neighbors property may no longer be satisfied. Distinguishing the two possible cases, (a) if
the identified search conflict satisfies the UC recognized-neighbors property, then we use neighbors re-
finement which generally works best if applicable; (b) if the property is not satisfied, then we fall back
to path-cut refinement. Observe though that the latter will force UC to recognize also all the dead ends
below the conflict component that were recognized by U. Therefore, we experiment with two combination
variants, one using both (a) and (b), and one refining UC only via (a).

We experimented with combinations of UC dead-end learning and both NoGood learning variants. Yet
similar to the results in Section 6.3.3, the difference in terms of the overall performance between the two
NoGood learning variants was negligible. Clause learning yielded slightly better results on the solvable
part, CART learning had a slight lead on the unsolvability part. In the following, we report results for
clause learning only. All observations apply equally to CART NoGood learning. By default, clause learning
is switched on in all our algorithm configurations.

For ablation study purposes, we also run variants of our strongest configuration, DFS with neighbors re-
finement, replacing DFS by depth-oriented search (open-list based search, preferring deepest states), re-
spectively disabling NoGood learning.
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Competing Approaches

Apart from the search algorithms and heuristic functions, the relevant techniques in our context are dead-
end detection, admissible pruning techniques, and other methods for proving unsolvability.

For all of these, the state of the art at the time of writing is represented by the participants of the 2016
inaugural Unsolvability International Planning Competition (UIPC’16). To provide a comprehensive picture,
we include all UIPC’16 participants, except those vastly dominated in that competition. However, our in-
terest is in understanding algorithm behavior, as opposed to running a systems competition. For systems
composed of several distinct algorithm components, we therefore consider, not the systems, but their com-
ponents. This pertains primarily to the winning system AIDOS (Seipp et al., 2016), an algorithm portfolio;
for the other UIPC’16 participants, our modifications are minor. Throughout, we use the original planning
task representation produced by FD’s translator component (Helmert, 2009).

Dead-End Detectors We runmerge-and-shrink (M&S) abstractions, in the two most competitive configura-
tions of Hoffmann et al. (2014). One of the two M&S variants computes the perfect unsolvability detector
U∗, the other imposes an abstraction size limit and yields an approximate unsolvability detector. Very
similar M&S heuristics were used in UIPC’16 (Torralba et al., 2016), in combination with additional irrel-
evance pruning (Torralba and Kissmann, 2015) and dominance pruning (Torralba and Hoffmann, 2015);
we separate out the latter components to keep things clean. We furthermore run the pattern database
unsolvability heuristic (Pommerening and Seipp, 2016), which participated in UIPC’16 on its own and
as one component of AIDOS. Finally, we run AIDOS’s dead-end potential heuristic (Seipp et al., 2016), an
enhancement of the state-equation LP heuristic (Bonet, 2013) by additional constraints over fact pairs.

Pruning Techniques We run simulation-based dominance pruning (Torralba and Hoffmann, 2015) used
in the UIPC’16 M&S system (Torralba et al., 2016), which finds a simulation relation over states and
prunes dominated states during search. We run strong stubborn sets (SSS) pruning, used in two UIPC’16
entries (Gnad et al., 2016a; Seipp et al., 2016), a long-standing partial-order reduction method (e.g.,
Valmari, 1989; Wehrle and Helmert, 2014) exploiting permutability of actions. We run irrelevance prun-
ing (Torralba and Kissmann, 2015), also used in two UIPC’16 entries (Torralba, 2016; Torralba et al.,
2016), which detects irrelevant operators (that cannot be part of an optimal solution) based on domi-
nance analysis in a merge-and-shrink abstraction.

Other Methods We run BDD-based symbolic search (e.g., Bryant, 1986; McMillan, 1993; Edelkamp et al.,
2015), specifically the SYMPA system (Torralba, 2016), separating out the irrelevance pruning, as for M&S
above. We run property-directed reachability (PDR) (Bradley, 2011; Suda, 2014) as in UIPC’16 (Balyo and
Suda, 2016). We run resource-variable detection, another component of AIDOS, which performs domain
analysis to identify a state variable encoding a consumed resource-budget, and which during search uses
a Cartesian abstraction (Seipp and Helmert, 2018) lower bound to prune against the remaining budget.
We run star-topology decoupled state-space search (Gnad et al., 2015), a decomposition technique exploit-
ing possible factorizations into star topologies. We separate the standard state-space search and strong
stubborn sets pruning components used as alternatives to star-topology decoupled state-space search in
the UIPC’16 system. We run partial delete-relaxation via red-black planning (Domshlak et al., 2015; Gnad
et al., 2016b) in its most competitive configuration established after UIPC’16 (Gnad et al., 2016c). This
approach searches in a relaxation where “red” state variables (but not “black” ones) are delete relaxed.
If there is no relaxed plan, there cannot be a real plan either, so unsolvability of the input task can be
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proved this way. The relaxation is iteratively strengthened by painting one more variable black. The only
difference between our version and the UIPC’16 one is the variable order in which that is done.

We do not run the UIPC’16 theorem proving approach (Korovin and Suda, 2016) as this was vastly out-
performed by the other competition entries. We do not run Haslum’s (2016) UIPC’16 entry, which also
performed badly, and is very similar to our configuration doing offline learning with relaxed-plan refine-
ment. The main difference is that it uses a less effective representation, where relaxed plans are computed
in a compiled planning task ΠC , whose size is worst-case exponential in |C|.

Benchmarks

In terms of unsolvability benchmarks, we consider the same ones as in our previous experiment (Sec-
tion 6.3.3), i.e., the benchmarks of the unsolvability planning competition UIPC’16, as well as the unsolv-
able resource-constrained planning (RCP) benchmarks, rescaling the resource-constrainedness factors in
Nakhost et al.’s (2012) solvable benchmark instances.

As solvable benchmarks, naturally we use the benchmark suites of the International Planning Competition
(IPC). We consider IPC editions 1998 – 2014, specifically the STRIPS benchmarks for satisficing planning
(where these distinctions are made). Our learning techniques are interesting only in domains that actually
contain conflicts, i.e., dead ends unrecognized under U1. Therefore, from IPC’98 – IPC’08 we use the
subset of domains, where Hoffmann’s analysis (Hoffmann, 2005; Hoffmann, 2011) showed this to be the
case. From IPC’11 and IPC’14, where a formal analysis has not yet been carried out, we use those domains
where DFS with U1 dead-end detection identifies at least one conflict, i.e., where DFS backtracks out of a
strongly connected component at least once, for at least one instance. Similarly to the unsolvability part,
in addition to the competition benchmarks, we also consider RCP benchmarks. For the solvable case, we
use the exact benchmark suites provided by Nakhost et al. (2012).

6.4.2. Dead-End Detection in Solvable Planning Tasks

We consider first the solvable case. We run the eight variants of our technique described above: DFS without
learning; DFS with learning using one of the three refinement methods; and four DFS learning combina-
tions with the M&S, respectively potential heuristics. In all these algorithms, we order the children in DFS
for expansion by smaller ℎFF (Hoffmann and Nebel, 2001) value. We include results for DFS with arbitrary
children ordering (expanding states in the order in which they were generated) for comparison.

We also compare to more traditional heuristic search approaches, specifically to greedy best-first search
(GBFS) with ℎFF and a dual open queue for preferred operators (Helmert, 2006). This is a canonical
baseline algorithm for satisficing heuristic search planning, and yields competitive performance while
being reasonably simple. We use the M&S respectively potential heuristic for dead-end detection in that
baseline search. Moreover, we use simulation-based dominance, strong stubborn sets (SSS), respectively
irrelevance pruning to prune the state space in that baseline search.

We run offline learning with a size bound 𝛼 to generate static UC unsolvability detectors. We use these in
both, DFS without learning for direct comparison to our techniques, and in the GBFS baseline search for
direct comparison to the other static unsolvability detectors. We experiment with 𝛼 = 2 as that was the
best size bound in prior work on partial delete relaxation heuristics, and we experiment with 𝛼 = 32 as a
larger yet still reasonable setting.
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GBFS ℎFF DFS ℎFF DFS ℎFF w/o Backtracking

Domain # Coverage Coverage Coverage Average runtime

IPC Benchmarks
Airport 50 30 34 14 0.33
Childsnack 20 1 0 0
Floortile 40 10 8 0
Freecell 80 77 78 63 2.65
Mprime 35 35 27 26 2.14
Mystery 30 20 16 11 0.37
NoMystery 20 13 5 1 0.18
Openstacks 100 100 100 100 98.28
ParcPrinter 50 50 50 50 0.04
Pathways 30 23 23 22 1.0
PegSol 50 50 50 3 0.01
Pipesworld-Tankage 50 40 37 35 78.15
Sokoban 50 32 40 2 0.11
Thoughtful 20 13 9 9 1.65
Tidybot 20 13 13 13 60.05
TPP 30 30 30 30 2.88
Trucks 30 18 17 5 0.01
Woodworking 50 8 40 40 257.94∑ IPC 755 563 577 424 56.38

Solvable Resource-Constrained Planning (RCP) Benchmarks (Nakhost et al., 2012)
NoMystery 210 63 27 7 0.17
Rovers 210 1 8 2 0.38
TPP 30 5 13 3 2.71∑ RCP 450 69 48 12 0.84∑ Total 1205 632 625 436 54.86

Table 6.2.: Solvable benchmarks. Coverage results (number of instances solved within the time/memory limits) for
the two base algorithms. We additionally include results for DFS without backtracking, counting as solved only those
tasks, where the first DFS search branch finds a goal state. Best results are highlighted in bold. Abbreviations: “#”
total number of instances; “GBFSℎFF” greedy best-first search withℎFF and preferred operators; “DFSℎFF” depth-first
search as per Algorithm 5.2, ordering children nodes via ℎFF.

Baseline Comparison: DFS ℎFF versus GBFS ℎFF

The base algorithm our learning methods start from, DFS withℎFF children ordering, is quite different from
the GBFS ℎFF baseline. So, we start with a brief experiment comparing the two, without learning. Consider
the coverage results from Table 6.2. We see that the two base algorithms have complementary strengths in
different domains. Sometimes the differences are drastic, most notably in Sokoban, Woodworking, as well
as resource-constrained Rovers and TPP where DFS is much stronger; and Mprime, Mystery, NoMystery,
and Thoughtful where GBFS is much stronger. In total, these differences cancel each other out though,
and the two algorithms are on a similar level. This is remarkable in itself, seeing as GBFS is widely used
in heuristic search planning while, to the authors’ knowledge, DFS has not been used at all in this context
yet. For our purposes here though, the main conclusion is that, overall, performance is comparable so we
are not a priori much disadvantaging either side.
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Table 6.2 also includes a variant of DFS disallowing backtracking. This serves to point out the cases where,
with ℎFF tie breaking, despite the presence of conflicts in principle, no learning will happen simply because
a goal state is found without ever encountering a conflict. As the table shows, this happens to a surpris-
ing extent. In particular, this simplistic search procedure is an extremely effective solver for ParcPrinter,
Pathways, and TPP, where it solves all instances solved by the common baseline (almost all, in case of
Pathways), but within split seconds or a few seconds at most.

Refinement Algorithms & Baseline Comparison

Table 6.3 shows the coverage results (number of instances solved). We will consider offline learning sep-
arately below. For the resource-constrained domains, as the constrainedness level has a large impact on
performance for most algorithms, we show data for each level separately. Note here that IPC Mprime, Mys-
tery, and NoMystery also are resource-constrained domains. However, their constrainedness levels are not
known or only partially known, so we do not separate these.

Consider first the different refinement variants within DFS ℎFF, i.e., our neighbors refinement (“Nei”) and
path-cut refinement (“Pat”) methods vs. the relaxed-plan refinement (“RP”) from prior work. There are
large performance differences in many domains, showing that the way we learn conjunctions is important.
In particular, relaxed-plan refinement has the lead, and a marginal one at that, in only one case (IPC
Trucks), showing that it is important to target the conjunction learning to dead-end detection. Path-cut
refinement is best overall on the IPC, but neighbors refinement has a huge advantage in the resource-
constrained benchmarks so has best overall coverage.

Consider now the effect of learning vs. no learning (“No”). On the resource-constrained domains, the
improvement is consistently dramatic, with some minor exceptions in TPP. On the IPC benchmarks, the
picture is much more mixed. On Airport, Freecell, PegSol, Pipesworld-Tankage, Sokoban, and Trucks, the
learning has a detrimental effect. We will analyze in some detail below why that is so. On Tidybot and
Woodworking, as well as ParcPrinter, Pathways, and TPP for the DFS ℎFF variants, the learning has no
impact at all. That is mostly because DFS does not identify many conflicts here, so the learning is seldom,
or never, invoked (we also get back to this in more detail below). On the other domains, improvements
are possible. These are most pronounced in Floortile for path-cut and relaxed-plan refinement; in Mystery,
and NoMystery for neighbors refinement; and in ParcPrinter and Pathways for neighbors refinement in
DFS without ℎFF children ordering.

Overall, compared to the baselines without learning (including also GBFS), on the IPC the learning is
detrimental, as the size of its losses outweighs that of its gains. On the resource-constrained domains,
the picture is very different, with a substantial and consistent win over the baselines. The only exception
is NoMystery with ℭ = 2.0, where fuel is relatively plentiful and the baseline does not struggle with
unrecognized dead ends as much as it does with constrainedness levels closer to 1.0.

Ordering children nodes in DFS byℎFF (“DFSℎFF”) outperforms arbitrary children ordering (“DFS”) dramat-
ically overall, and almost consistently across domains. Therefore, from now on, we consider ℎFF children
ordering exclusively. We will do so not only for the solvable case, but also for unsolvable benchmarks,
where ℎFF children ordering does not have as large an impact, but is never worse and sometimes helps (in-
tuitively because DFS is drawn towards more relevant dead-end situations, learning more relevant knowl-
edge). Henceforth, whenever we say “DFS” we mean “DFS with ℎFF children ordering”.
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GBFS DFS DFS ℎFF DFS ℎFF comb. GBFS ℎFF +
ℎFF MSa Pot Detection Pruning

Domain # No Nei No Nei Pat RP N NP N NP Msa Pot Sim SSS Irr

IPC Benchmarks
Airport 50 30 35 30 34 24 21 21 17 17 24 23 18 38 12 35 34
Childsnack 20 1 0 0 0 1 1 1 1 1 0 0 0 0 3 0 4
Floortile 40 10 6 0 8 4 37 27 4 4 4 4 15 15 8 12 13
Freecell 80 77 78 72 78 71 72 69 50 50 71 71 51 76 51 77 80
Mprime 35 35 18 19 27 28 27 27 17 17 27 30 18 30 25 30 34
Mystery 30 20 14 20 16 26 23 23 20 20 24 26 19 28 15 25 18
NoMystery 20 13 6 9 5 13 10 8 8 12 5 8 10 5 20 8 14
Openstacks 100 100 100 100 100 98 100 100 32 29 66 49 30 66 50 90 58
ParcPrinter 50 50 25 38 50 50 50 50 50 10 50 10 50 50 50 50 50
Pathways 30 23 4 5 23 23 23 23 23 23 23 23 23 23 24 22 22
PegSol 50 50 50 41 50 41 30 12 41 41 48 23 50 50 50 50 50
Pipesworld-Tankage 50 40 17 14 37 35 35 34 8 8 17 17 8 16 16 40 30
Sokoban 50 32 42 11 40 9 6 3 10 8 9 9 42 35 5 42 48
Thoughtful 20 13 5 1 9 9 9 9 5 5 10 7 5 7 8 7 8
Tidybot 20 13 8 8 13 13 13 13 0 0 13 13 0 12 0 12 0
TPP 30 30 24 23 30 30 30 30 30 30 30 30 30 30 20 30 25
Trucks 30 18 11 6 17 9 16 17 10 10 9 9 18 16 18 16 18
Woodworking 50 8 6 6 40 40 40 40 13 13 28 28 8 7 49 22 50∑ IPC 755 563 449 403 577 524 543 507 339 298 458 380 395 504 424 568 556

Solvable Resource-Constrained Planning (RCP) Benchmarks (Nakhost et al., 2012)
NoMystery (1.0) 30 2 0 10 1 12 7 4 19 7 3 7 20 0 26 1 8
NoMystery (1.1) 30 3 0 10 0 12 8 5 17 8 3 8 20 1 20 2 9
NoMystery (1.2) 30 5 0 7 4 14 13 9 18 10 7 10 21 1 26 2 16
NoMystery (1.3) 30 6 0 7 5 13 9 7 15 11 5 7 23 3 27 3 25
NoMystery (1.4) 30 12 0 5 3 17 13 9 11 16 8 10 24 5 29 10 25
NoMystery (1.5) 30 12 0 6 5 17 13 9 10 15 6 10 24 5 29 9 29
NoMystery (2.0) 30 23 0 8 9 19 18 14 12 17 11 15 28 7 30 16 30∑ NoMystery 210 63 0 53 27 104 81 57 102 84 43 67 160 22 187 43 142
Rovers (1.0) 30 0 0 19 0 23 9 8 7 17 23 23 6 0 15 0 0
Rovers (1.1) 30 0 0 16 0 23 12 13 7 19 22 21 5 0 15 0 2
Rovers (1.2) 30 0 0 19 0 18 7 9 5 19 18 18 1 0 14 0 2
Rovers (1.3) 30 0 0 17 0 20 7 6 8 17 20 20 2 0 16 0 1
Rovers (1.4) 30 0 0 19 1 19 8 7 8 18 19 19 4 0 16 0 3
Rovers (1.5) 30 0 0 19 1 21 12 8 10 19 21 21 5 0 15 0 6
Rovers (2.0) 30 1 0 17 6 21 16 15 12 18 21 21 11 0 23 0 10∑ Rovers 210 1 0 126 8 145 71 66 57 127 144 143 34 0 114 0 24
TPP (1.0) 5 0 0 0 1 1 0 0 1 1 1 0 0 0 2 0 1
TPP (1.1) 5 0 0 0 0 2 0 0 1 2 0 0 1 0 3 0 3
TPP (1.2) 5 0 0 0 2 3 3 3 3 3 0 0 2 0 3 0 3
TPP (1.3) 5 2 0 0 2 5 3 3 4 4 0 0 4 0 4 2 4
TPP (1.4) 5 3 0 0 3 5 4 5 5 5 0 0 4 0 4 2 4
TPP (1.5) 5 0 0 0 5 5 5 5 5 5 0 0 5 0 5 0 2∑ TPP 30 5 0 0 13 21 15 16 19 20 1 0 16 0 21 4 17∑ RCP 450 69 0 179 48 270 167 139 178 231 188 210 210 22 322 47 183∑ Total 1205 632 449 582 625 794 710 646 517 529 646 590 605 526 746 615 739

Table 6.3.: Solvable benchmarks. Coverage results, comparing to the state of the art. Best results are highlighted in
bold. Abbreviations: “GBFSℎFF” greedy best-first search with preferred operators usingℎFF; “DFS” DFS with arbitrary
children ordering; “DFS ℎFF” DFS ordering children via ℎFF; “DFS ℎFF comb.” combination with another unsolvability
detector (N/NP, see below); “No” no learning; “Nei” neighbors refinement; “Pat” path-cut refinement; “RP” relaxed-
plan refinement; “N” combination using neighbors refinement only; “NP” combination using neighbors refinement
if applicable, else path-cut refinement; “MSa” approximate merge-and-shrink abstraction; “Pot” potential heuristic;
“Sim” simulation dominance pruning; “SSS” strong stubborn sets pruning; “Irr” irrelevance pruning.
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Competing Approaches

Consider next the competing dead-end detection and pruning techniques in Table 6.3. On the IPC bench-
marks, compared to their GBFS baseline, only strong stubborn sets pruning (“SSS”) improves overall cover-
age, and only SSS and irrelevance pruning (“Irr”) have higher overall coverage than our methods (DFS ℎFF

with neighbors refinement respectively path-cut refinement). The strengths of these two methods lie in not
deteriorating the baseline as much, and in the improvements they yield in Airport, Sokoban, and Wood-
working. The strong cases for our methods are Floortile where DFS with path-cut refinement, and also with
relaxed-plan refinement, vastly outperforms all competitors; Openstacks, Tidybot, TPP, and Woodworking
where the DFS baseline is much better than the GBFS baseline, and there is (almost) no learning overhead.
The coverage decrease in Openstacks when using neighbors refinement is an artifact of how we track the
recognized neighbors during search.

On the resource-constrained benchmarks, the picture is again much clearer. Potential heuristics (“Pot”) and
SSS are basically useless. Irrelevance pruning, merge-and-shrink (“MSa”), and especially simulation-based
dominance pruning (“Sim”) excel in NoMystery. In the other two domains, our learning methods tend to
be superior. In Rovers, DFS with neighbors refinement (“Nei”) vastly outperforms all UIPC’16 competitors.
Similarly in TPP, except for simulation-based dominance which does equally well in coverage (though
typically a lot worse in runtime, on commonly solved instances). In terms of overall coverage, DFS with
neighbors refinement is the clear winner. Other algorithms perform better in one part (IPC vs. RCP) of the
benchmark set, but DFS with neighbors refinement is most consistently good overall.

Combination with Other Unsolvability Detectors

Consider finally the combinations of neighbors-refinement DFS with merge-and-shrink respectively po-
tential heuristics. For merge-and-shrink, this basically does not work well here. The DFS ℎFF component
dominates the combined methods almost consistently on the IPC benchmark set. On the RCP part, the
combinations vastly improve over the DFS ℎFF baseline, yet the configurations using learning and merge-
and-shrink alone do even better. So, so this is not a valuable result. In particular, there is no case where a
combination outperforms both its components.

For the combination with potential heuristics, the picture is similar, though not quite as bleak. The “N”
combination outperforms the DFS ℎFF component on PegSol, where the potential heuristic prevents most
(but not all) of the loss compared to the DFS baseline. The “N” combination does better than both of its
components on Thoughtful (though by only 1 instance relative to the DFS component).

Offline versus Online Conjunction Learning

Table 6.5 shows the coverage results of the offline versus conflict-driven online conjunction learning vari-
ants. On the IPC part, with 𝛼 = 2, though not with 𝛼 = 32, the offline methods are, generally, superior on
these benchmarks compared to the same refinement methods when used online. This is, however, simply
because having a small size bound means to be less risky in the sense that the additional overhead is lim-
ited even when the dead-end detection accuracy is not increased. In particular, the offline methods with
𝛼 = 2 avoid the dramatic performance losses in Airport, PegSol, and Sokoban. However, this advantage
diminishes the larger we choose the size bound 𝛼 . Moreover, the risk reduction also comes with a benefits
reduction on those domains where the online variants excel, most notably Floortile and NoMystery. Indeed,
the offline-learning DFS variants can beat the coverage of the DFS no-learning baseline (“DFS No”) in just
NoMystery, doing so by only 1 instance, whereas the online learning variants beat it in 6 domains.
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GBFS DFS (No / Online) DFS (Offline) GBFS (Offline)

𝛼 = 2 𝛼 = 32 𝛼 = 2 𝛼 = 32

Domain # No Nei Pat RP Pat RP Pat RP Pat RP Pat RP

IPC Benchmarks
Airport 50 30 34 24 21 21 33 34 27 33 29 35 27 33
Childsnack 20 1 0 1 1 1 0 0 0 0 1 0 1 0
Floortile 40 10 8 4 37 27 8 8 7 8 10 15 10 15
Freecell 80 77 78 71 72 69 78 78 74 78 77 78 75 77
Mprime 35 35 27 28 27 27 22 27 11 27 29 30 19 30
Mystery 30 20 16 26 23 23 15 16 13 15 17 21 14 21
NoMystery 20 13 5 13 10 8 5 5 6 5 13 8 12 8
Openstacks 100 100 100 98 100 100 99 68 93 53 100 68 92 53
ParcPrinter 50 50 50 50 50 50 48 50 45 50 47 50 46 50
Pathways 30 23 23 23 23 23 23 23 5 23 22 23 4 23
PegSol 50 50 50 41 30 12 50 50 50 50 49 50 49 50
Pipesworld-Tankage 50 40 37 35 35 34 36 37 30 37 39 40 32 39
Sokoban 50 32 40 9 6 3 38 40 22 40 30 42 26 42
Thoughtful 20 13 9 9 9 9 9 9 9 9 13 8 13 8
Tidybot 20 13 13 13 13 13 12 13 3 12 12 13 5 12
TPP 30 30 30 30 30 30 30 30 30 28 30 30 29 28
Trucks 30 18 17 9 16 17 17 17 14 16 18 18 16 15
Woodworking 50 8 40 40 40 40 38 40 31 40 8 8 4 8∑ IPC 755 563 577 524 543 507 561 545 470 524 544 537 474 512

Solvable Resource-Constrained Planning (RCP) Benchmarks (Nakhost et al., 2012)
NoMystery (1.0) 30 2 1 12 7 4 1 1 1 1 3 2 3 2
NoMystery (1.1) 30 3 0 12 8 5 0 0 0 0 7 3 6 3
NoMystery (1.2) 30 5 4 14 13 9 4 4 3 4 12 5 11 5
NoMystery (1.3) 30 6 5 13 9 7 5 5 5 5 19 6 17 6
NoMystery (1.4) 30 12 3 17 13 9 3 3 3 3 23 12 21 12
NoMystery (1.5) 30 12 5 17 13 9 5 5 5 5 23 12 20 12
NoMystery (2.0) 30 23 9 19 18 14 9 9 8 9 29 23 29 20∑ NoMystery 210 63 27 104 81 57 27 27 25 27 116 63 107 60
Rovers (1.0) 30 0 0 23 9 8 0 0 0 0 1 0 1 0
Rovers (1.1) 30 0 0 23 12 13 0 0 0 0 2 0 2 0
Rovers (1.2) 30 0 0 18 7 9 0 0 0 0 1 0 1 0
Rovers (1.3) 30 0 0 20 7 6 0 0 0 0 2 0 1 0
Rovers (1.4) 30 0 1 19 8 7 1 1 1 1 1 0 1 0
Rovers (1.5) 30 0 1 21 12 8 1 1 1 1 2 0 1 0
Rovers (2.0) 30 1 6 21 16 15 6 6 3 6 9 1 8 1∑ Rovers 210 1 8 145 71 66 8 8 5 8 18 1 15 1
TPP (1.0) 5 0 1 1 0 0 1 1 0 0 0 0 0 0
TPP (1.1) 5 0 0 2 0 0 0 0 0 0 0 0 0 0
TPP (1.2) 5 0 2 3 3 3 2 2 1 0 2 0 2 0
TPP (1.3) 5 2 2 5 3 3 2 2 0 0 4 2 3 0
TPP (1.4) 5 3 3 5 4 5 3 3 2 0 4 3 3 0
TPP (1.5) 5 0 5 5 5 5 5 5 5 0 5 0 3 0∑ TPP 30 5 13 21 15 16 13 13 8 0 15 5 11 0∑ RCP 450 69 48 270 167 139 48 48 38 35 149 69 133 61∑ Total 1205 632 625 794 710 646 609 593 508 559 693 606 607 573

Table 6.4.: Solvable benchmarks. Coverage results, comparing offline versus online conjunction learning methods.
Best results are highlighted in bold. Abbreviations: GBFS: the GBFS ℎFF baseline; DFS: DFS ordering children by ℎFF;
𝛼 = 2 and 𝛼 = 32 offline C-learning with size bound 2 and 32, respectively. Other abbreviations as before.
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Figure 6.2.: Solvable benchmarks. Per-instance DFS search space size (number of visited states) comparison between
different learning techniques. We compare neighbors refinement on the 𝑦-axis to (a) no learning, (b) path-cut re-
finement, respectively (c) relaxed-plan refinement on the 𝑥 -axis. “to”: time limit and “oom” memory limit exceeded.

On the resource-constrained benchmarks, matters are very clear-cut. The baselines are weak, and online
learning improves them vastly. The same is not true for offline-learning DFS, which never improves over
the baseline at all. Offline-learning GBFS is more successful, improving over the GBFS baseline in almost
all cases with path-cut refinement. But it becomes competitive with online-learning DFS only in NoMystery
for large values of ℭ.

Search Reduction

Figure 6.2 provides a view on the search space sizes (number of states visited by search) under our different
DFS learning techniques, i.e., no learning vs. the three different refinement methods. We use neighbors
refinement as the comparison baseline.

Consider first the comparison between neighbors refinement and no learning, Figure 6.2a. On the IPC
benchmarks, in line with the above, we see that the learning is risky, reducing search effort in some cases,
while not in many others; but causing a substantial overhead. On the resource-constrained benchmarks,
on the other hand, the benefits of learning are dramatic. Most benchmark instances are not solved at all
without learning. On those that are solved, we get search space reductions of several orders of magnitude.
Observe that the only reason for this is generalization, i.e., refinements of UC on conflict states 𝑠 leading
to pruning states other than 𝑠. Without generalization, the search spaces would be identical, including tie-
breaking. Generalization is what lifts a hopeless planner (DFS with U1 dead-end detection) to a planner
competitive with the state of the art in resource-constrained planning.

In the comparison between neighbors refinement and path-cut refinement, Figure 6.2b, we see that the
methods either perform very similarly, or are highly complementary (with one of the two methods failing
to solve the task).

The comparison in Figure 6.2c between neighbors refinement and relaxed-plan refinement provides fur-
ther evidence that tailoring the refinement method to dead-end detection is typically beneficial. In the
vast majority of cases where learning takes place (where conflicts are identified by search), neighbors re-
finement leads to better generalization, and thus to smaller search spaces, than relaxed-plan refinement.
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(A) Analysis (B) Ablation Study

Confl. Id., Common DFS DOS

Domain # # Confl. Id. Slow. Redu. Cl NoCl Cl NoCl

IPC Benchmarks
Airport 50 10 12.7 1.2 24 24 24 24
Childsnack 20 1 1 0 1 1
Floortile 40 4 78.2 6.2 4 4 4 4
Freecell 80 8 2.9 1 71 71 72 72
Mprime 35 2 20.2 1.8 28 28 28 28
Mystery 30 13 5.1 316.1 26 26 25 25
NoMystery 20 12 4.7 100 13 12 11 12
Openstacks 100 0 98 100 99 99
ParcPrinter 50 0 50 50 50 50
Pathways 30 1 2.1 1.2 23 23 23 23
PegSol 50 38 29.7 1.7 41 42 37 40
Pipesworld-Tankage 50 1 24.6 1 35 36 38 39
Sokoban 50 7 59.8 2.8 9 9 12 12
Thoughtful 20 0 9 9 9 9
Tidybot 20 0 13 13 13 13
TPP 30 0 30 30 30 30
Trucks 30 4 63.1 2.6 9 9 9 9
Woodworking 50 0 40 40 33 33∑ IPC 755 101 524 526 518 523

Solvable Resource-Constrained Planning (RCP) Benchmarks (Nakhost et al., 2012)
NoMystery (1.0) 30 12 1.2 114 12 10 10 7
NoMystery (1.1) 30 12 12 11 12 11
NoMystery (1.2) 30 14 1.4 16.2 14 14 14 12
NoMystery (1.3) 30 12 3.3 79.5 13 11 12 11
NoMystery (1.4) 30 17 1.4 19.2 17 14 16 14
NoMystery (1.5) 30 16 1.5 17.8 17 15 16 14
NoMystery (2.0) 30 14 1.6 31.1 19 19 19 19∑ NoMystery 210 97 104 94 99 88
Rovers (1.0) 30 23 23 20 22 20
Rovers (1.1) 30 23 23 18 20 16
Rovers (1.2) 30 18 18 16 17 14
Rovers (1.3) 30 20 20 17 18 16
Rovers (1.4) 30 19 2.3 12.8 19 17 18 16
Rovers (1.5) 30 21 3.8 29.8 21 17 20 16
Rovers (2.0) 30 19 3.4 96.8 21 19 20 17∑ Rovers 210 143 145 124 135 115
TPP (1.0) 5 1 54.8 115.1 1 0 0 0
TPP (1.1) 5 2 2 1 1 0
TPP (1.2) 5 3 1.5 111.4 3 3 3 3
TPP (1.3) 5 5 2 326.1 5 3 4 3
TPP (1.4) 5 4 7.1 31.1 5 5 5 5
TPP (1.5) 5 3 1.7 5.7 5 5 5 5∑ TPP 30 18 21 17 18 16∑ RCP 450 258 270 235 252 219∑ Total 1205 359 794 761 770 742

Table 6.5.: Solvable benchmarks. Results for DFS with neighbors refinement. (A) performance analysis: “# Confl. Id.”
number of solved instances in which at least one conflict was identified; “Confl. Id., Common” results over instances
solved with and without learning, in which at least one conflict was identified; “Slow.” UC slowdown with respect to
U1, measured in terms of the geometric mean size increase factor𝛼 ofUC upon termination; “Redu.” geometric mean
search space size (number of visited states) reduction factor with learning relative to without. (B) ablation study:
coverage results for “DOS” depth-oriented search; “Cl” UC clause learning enabled, respectively “NoCl” disabled.
Best results are highlighted in bold.
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Figure 6.3.: Solvable benchmarks. Per-instance runtime (in seconds) comparisons between (a) DOS (𝑥 -axis) vs. DFS
(𝑦-axis); (a) DFS without clause learning (𝑥 -axis) vs. with clause learning (𝑦-axis); (a) DOS without clause learning
(𝑥 -axis) vs. with clause learning (𝑦-axis). All configurations use neighbors refinement. “to”: time limit exceeded;
respectively “oom” memory limit exceeded.

Performance Analysis

Part (A) of Table 6.5 shows additional data supporting a performance analysis with respect to the three
prerequisites for online learning to work well: (1) conflict identification, i.e., the ability of forward search
to find conflicts and thus enable the learning in the first place; (2) learning effectiveness, i.e., the ability
of recognizing dead-ends with small conjunction sets C; (3) strong generalization, i.e., the ability of UC
to detect states 𝑠′ it was not trained on. (1) is captured in terms of the “# Confl. Id.” data, the number of
instances on which at least one conflict was identified, and hence some learning was done. (2) is captured
in terms of “Slow.”, the slowdown relative to U1, i.e., the size of the representation underlying the UC
computation as a multiple of that for singleton conjunctions. Finally, (3) is captured in terms of the “Redu.”
data, the search space size reduction factor relative to using only U1 for dead-end detection.

On commonly solved instances, the slowdown and search reduction factors are directly comparable, and
a performance advantage should be expected, roughly, when the former exceeds the latter. Indeed, this is
a good indicator in our data here. The domains with large reduction yet small slowdown are IPC Mystery
and NoMystery, as well as all resource-constrained domains, where indeed neighbors refinement vastly
improves the coverage of DFS. Conversely, small reductions yet large slowdowns occur in Airport, Floortile,
Mprime, PegSol, Pipesworld-Tankage, Sokoban, and Trucks. Except for Mprime, these are precisely the
cases where neighbors refinement is detrimental. In Mprime, neighbors refinement actually (slightly) im-
proves coverage, yet there are only few commonly solved instances where at least one conflict is identified,
which may contribute to the unclear picture. Similarly in Childsnack, where coverage is improved from 0
to 1 so there is no common instance basis to use for comparison. In all other domains – Openstacks, Par-
cPrinter, Pathways, Thoughtful, Tidybot, TPP, andWoodworking– the lack of advantages through learning
are due to a lack of ability (1), with no or hardly any conflicts being identified by forward search.

Ablation Studies

Let us finally consider the ablation study, Table 6.5 part (B), fixing neighbors refinement but varying the
search algorithm – DFS vs. DOS (depth-oriented search, cf. Chapter 5) – as well as switching NoGood
clause learning on and off. On the IPC benchmarks, both DFS and clause learning, as opposed to DOS and
no clause learning, have little impact on coverage. On the resource-constrained benchmarks though, both
clearly and significantly improve coverage. Overall, they are useful algorithm improvements. Figure 6.3
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provides further evidence towards this through a per-instance runtime comparison.

6.4.3. Proving Unsolvability

Wenow consider the unsolvable case.We run the same eight variants of DFSwith conflict-driven learning as
before. In all variants, we stop learning new conjunctions once nomore states are left for expansion, i.e., not
guaranteeing to generate unsolvability certificates. We run offline learning without a size bound to prove
unsolvability directly on the initial state; and we run offline learning with size bound 𝛼 to generate static
UC unsolvability detectors. We use 𝛼 ∈ { 2, 32 } like above, and we use the resulting static unsolvability
detectors in DFS without learning.

We run blind forward search as a simple reference baseline, exhaustively exploring the reachable part
of the state space. We run search with U1 as a canonical unsolvability detector. We run all the compet-
ing algorithms described above, i.e., search with alternate unsolvability detectors, search with admissible
pruning techniques, as well as the other UIPC’16 techniques including BDD-based symbolic search etc. The
admissible pruning techniques are run along with U1, which is more competitive than blind search.

Table 6.6 shows the main coverage results. As before, we will consider offline learning separately below.
We again distinguish different constrainedness levels for resource-constrained domains. In difference to
the IPC, in the UIPC the latter is possible for the resource-constrained domains, so we separate these from
the remaining UIPC benchmarks.

Refinement Algorithms & Baseline Comparison

Compared to DFS without learning, all refinement methods result in a performance boost on resource-
constrained domains, where conflict learning is key, especially with constrainedness levels close to 1where
conflicts abound. On the non-resource UIPC’16 benchmarks though, this kind of learning simply does not
work well. It helps only, for some configurations, in Diagnosis and DocTransfer. We will analyze the reasons
below.

Compared to the baselines, DFS without learning has basically the same coverage as search with U1, which
makes sense as both use the same dead-end detector throughout. Blind search is consistently outclassed
except in BagBarman where it is state of the art (the pattern database heuristic does not detect any dead-
ends in this domain, so defaults to blind search).

Comparing the different refinement variants within our DFS framework, they behave similarly overall,
though there are remarkable differences in individual domains, namely Bottleneck, Diagnosis, DocTransfer,
and PegSol. On resource-constrained domains, neighbors refinement is clearly superior, followed by path-
cut refinement and the relaxed-plan refinement from prior work.

Competing Approaches

Consider next the UIPC’16 algorithms in Table 6.6. Potential heuristics clearly dominate on the non-
resource UIPC’16 benchmarks, outclassing the competition (including our techniques), beat only on Bag-
Barman, Diagnosis, and DocTransfer. On resource-constrained domains, on the other hand, potential
heuristics are very weak. The next-best techniques from UIPC’16 are approximate merge-and-shrink, PDBs,
and red-black state space search, with reasonable results on non-resource domains, and with strong results
on resource-constrained ones. Strong stubborn sets pruning does not yield any benefits here. Dominance
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Base DFS DFS comb. UIPC’16 Algorithms

MSa Pot Detection Prun.+U1 Other

Domain # Bli U1 No Nei Pat RP N NP N NP MSp MSa PDB Pot Sim SSS Irr BDD PDR Res Sta RB

Unsolvability IPC (UIPC) 2016 Benchmarks
BagBarman 20 12 4 4 0 0 0 0 0 0 0 0 1 12 4 2 4 12 8 0 0 0 0
BagGripper 25 5 3 3 0 0 0 2 3 2 0 2 3 3 3 0 3 0 7 0 0 0 1
BagTransport 29 6 6 6 5 5 6 5 5 24 12 1 6 7 24 7 5 7 7 0 0 10 1
Bottleneck 25 9 20 21 9 13 14 9 9 25 18 5 20 19 25 0 20 0 0 21 0 0 25
CaveDiving 25 7 7 7 5 4 4 5 6 5 5 3 7 8 7 7 7 7 7 5 0 0 5
ChessBoard 23 5 5 5 2 1 1 2 2 23 5 2 5 5 23 5 6 5 9 1 0 0 4
Diagnosis 20 6 7 7 9 5 12 6 7 9 9 5 4 4 4 0 7 0 0 7 0 0 10
DocTransfer 20 5 7 6 4 5 8 8 9 4 3 5 10 12 7 15 6 12 10 0 0 0 3
PegSol 24 24 24 24 14 12 4 14 14 20 14 24 24 24 22 24 24 24 24 0 0 0 22
PegSolRow5 15 5 5 5 4 3 2 4 4 15 9 3 4 5 15 5 5 5 4 3 0 0 6
SlidingTiles 20 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 0 0 0 10
Tetris 20 5 5 5 5 5 5 5 5 20 0 5 5 10 20 0 5 10 5 0 0 0 0∑ 266 99 103 103 67 63 66 70 74 157 85 65 99 119 164 75 102 92 91 37 0 10 87

NoMystery (0.4) 5 2 2 2 3 4 3 5 5 5 5 5 5 5 5 5 2 5 5 3 5 4 4
NoMystery (0.85) 5 0 0 0 2 2 2 2 2 0 2 2 2 2 0 2 0 2 2 1 2 2 2
NoMystery (0.99) 5 0 0 0 2 1 0 1 2 0 2 2 1 2 0 2 0 2 2 0 1 2 2
NoMystery (0.999) 5 0 0 0 2 0 0 1 2 0 2 2 1 2 0 2 0 2 2 0 1 2 2
Rovers (0.99) 20 4 7 7 12 11 8 10 12 12 12 15 9 12 6 11 7 7 13 10 14 8 19
TPP (0.5) 15 9 10 9 14 12 9 15 15 14 13 14 14 15 14 11 9 11 15 4 15 0 9
TPP (0.99) 15 6 6 6 5 3 3 9 6 5 5 10 9 10 4 6 5 6 9 1 14 0 6∑ 70 21 25 24 40 33 25 43 44 36 41 50 41 48 29 39 23 35 48 19 52 18 44∑ UIPC 336 120 128 127 107 96 91 113 118 193 126 115 140 167 193 114 125 127 139 56 52 28 131

Unsolvable Resource-Constrained Planning (RCP) Benchmarks (Nakhost et al., 2012)
NoMystery (0.5) 30 14 25 25 30 30 30 30 30 30 30 30 30 30 29 30 25 29 30 29 30 30 27
NoMystery (0.6) 30 2 15 15 30 28 27 30 30 20 29 30 30 30 12 30 15 25 30 28 30 30 27
NoMystery (0.7) 30 0 5 7 29 23 21 29 30 5 26 30 29 30 2 28 6 20 30 22 28 30 29
NoMystery (0.8) 30 0 0 0 26 18 11 26 28 2 18 30 26 30 0 21 0 15 30 17 25 30 30
NoMystery (0.9) 30 0 0 0 14 10 7 24 25 1 14 29 24 30 0 13 0 10 25 8 18 29 29∑ NoMystery 150 16 45 47 129 109 96 139 143 58 117 149 139 150 43 122 46 99 145 104 131 149 142
Rovers (0.5) 30 1 3 5 30 30 29 30 30 30 30 30 29 30 1 24 4 14 29 26 20 6 30
Rovers (0.6) 30 0 2 2 30 26 27 25 30 30 30 29 25 28 0 19 2 10 26 26 16 4 30
Rovers (0.7) 30 0 0 0 30 25 26 23 30 30 30 29 23 19 0 9 0 3 21 26 12 0 30
Rovers (0.8) 30 0 0 0 29 24 24 21 30 29 29 24 21 13 0 5 0 2 13 21 8 0 30
Rovers (0.9) 30 0 0 0 24 17 20 13 26 24 24 16 13 6 0 1 0 0 9 16 7 0 30∑ Rovers 150 1 5 7 143 122 126 112 146 143 143 128 111 96 1 58 6 29 98 115 63 10 150
TPP (0.5) 5 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 2 5 5 0 5 0 1
TPP (0.6) 5 0 1 1 5 3 3 5 5 4 2 5 5 5 4 5 0 1 5 0 5 0 0
TPP (0.7) 5 0 0 0 2 2 0 3 5 1 1 5 3 5 1 4 0 0 3 0 5 0 0
TPP (0.8) 5 0 0 0 1 0 0 0 0 1 1 1 1 4 1 2 0 0 1 0 5 0 0
TPP (0.9) 5 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 5 0 0∑ TPP 25 2 5 5 13 10 8 13 15 11 9 16 14 20 11 16 2 6 14 0 25 0 1∑ RCP 325 19 55 59 285 241 230 264 304 212 269 293 264 266 55 196 54 134 257 219 219 159 293∑ Total 661 139 183 186 392 337 321 377 422 405 395 408 404 433 248 310 179 261 396 275 271 187 424

Table 6.6.: Unsolvability benchmarks. Coverage results (number of instances proved unsolvable), comparing to the
state of the art. Best results are highlighted in bold. Abbreviations: “Bli” blind search; “U1” search with U1 dead-
end detection; “MSp” perfect merge-and-shrink abstraction; “PDB” AIDOS’ dead-end PDB heuristic; “BDD” BDD-
based search in SYMPA; ‘’PDR” property-directed reachability; “Res” resource-variable detection; “Star” star-topology
decoupled search; “RB” red-black state space search. Other abbreviations as before.
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pruning and property-directed reachability work well on resource-constrained domains, yet still worse
than the other competitors. The latter applies also to resource-variable detection. Irrelevance pruning is
typically detrimental here, with benefits mainly in Diagnosis, DocTransfer, and NoMystery.

Comparing the UIPC’16 algorithms to our techniques, there is only a single strong case for conflict learning
on the non-resource domains, DFS with relaxed-plan refinement in Diagnosis. On the resource-constrained
domains though, our techniques, especially neighbors refinement, are competitive. On Nakhost et al.’s
(2012) RCP benchmarks, DFS with neighbors refinement is second in overall coverage only to approxi-
mate merge-and-shrink and red-black state space search, both completely unrelated algorithms. It beats
approximate merge-and-shrink in Rovers, and it beats red-black state space search in TPP.

Combination with Other Unsolvability Detectors

In difference to the solvable benchmarks discussed above, on the unsolvability benchmarks, combinations
of our learning methods with other dead-end detectors exhibit considerable synergy. This is most pro-
nounced for the “NP” combination with merge-and-shrink, using neighbors refinement or path-cut refine-
ment depending on the situation. This combination outperforms its components in each of the Nakhost
et al. domains, and it has the best overall coverage on these domains, of all the algorithms tested here.

For the other combinations, the synergy is weaker. The only case where the combination outperforms its
components is “N” with merge-and-shrink in UIPC’16 TPP with ℭ = 0.5. Across domains, though, almost
all combinations exhibit more consistent strength than their components. Indeed, all combinations except
“N” with merge-and-shrink dominate their components in overall coverage.

Offline versus Online Conjunction Learning

Table 6.7 shows the coverage results of online versus offline conjunction learning. Regarding unbounded
offline learning, where unsolvability is proved without search on the initial state, the data shows that this
has very little merit compared to online learning. Each of path-cut refinement and relaxed-plan refinement
is almost consistently dominated by the respective online learning method, the only noteworthy exceptions
being BagTransport, PegSol, and NoMystery. Comparing to neighbors refinement which is not available
in the offline context, the only strong cases for offline refinement are BagTransport for offline path-cut
refinement, and Diagnosis for offline relaxed-plan refinement. In all cases, the online learning approaches
are superior in overall coverage.

For bounded offline learning, i.e., static UC dead-end detectors, the picture changes dramatically on the
non-resource UIPC’16 benchmarks. This is, however, simply due to the size bound, which avoids the slow-
down incurred by learning too many conjunctions – all the bounded offline learning configurations are
dominated consistently here by DFS without any learning at all. Furthermore, on the resource-constrained
benchmarks, the bounded offline learning configurations are dominated, typically outperformed, by their
online learning counterparts. The single exception to the latter is the UIPC TPP domain with ℭ = 0.99,
where the static dead-end detectors do better. Overall, the picture is quite clearly in favor of search with
online learning.

Search Reduction

Similarly to our discussion of solvable benchmarks above, we next provide a view of search space sizes
under our different DFS learning techniques, with neighbors refinement as the comparison baseline. Fig-
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Base DFS (No / Online) DFS (Offline) Init
𝛼 = 2 𝛼 = 32 𝛼 = ∞

Domain # Bli U1 No Nei Pat RP Pat RP Pat RP Pat RP

Unsolvability IPC (UIPC) 2016 Benchmarks
BagBarman 20 12 4 4 0 0 0 4 4 0 4 0 0
BagGripper 25 5 3 3 0 0 0 2 2 0 0 0 0
BagTransport 29 6 6 6 5 5 6 5 6 3 6 9 4
Bottleneck 25 9 20 21 9 13 14 20 21 18 21 13 14
CaveDiving 25 7 7 7 5 4 4 7 7 6 7 3 1
ChessBoard 23 5 5 5 2 1 1 5 5 4 5 1 1
Diagnosis 20 6 7 7 9 5 12 5 7 5 7 4 12
DocTransfer 20 5 7 6 4 5 8 6 6 6 6 5 5
PegSol 24 24 24 24 14 12 4 24 24 24 24 14 4
PegSolRow5 15 5 5 5 4 3 2 5 5 4 5 4 3
SlidingTiles 20 10 10 10 10 10 10 10 10 10 10 0 0
Tetris 20 5 5 5 5 5 5 5 5 5 5 0 0∑ 266 99 103 103 67 63 66 98 102 85 100 53 44

NoMystery (0.4) 5 2 2 2 3 4 3 2 2 2 2 5 4
NoMystery (0.85) 5 0 0 0 2 2 2 0 0 0 0 2 2
NoMystery (0.99) 5 0 0 0 2 1 0 0 0 0 0 0 1
NoMystery (0.999) 5 0 0 0 2 0 0 0 0 0 0 0 1
Rovers (0.99) 20 4 7 7 12 11 8 7 7 6 7 3 7
TPP (0.5) 15 9 10 9 14 12 9 10 9 10 9 12 9
TPP (0.99) 15 6 6 6 5 3 3 5 6 5 6 3 2∑ 70 21 25 24 40 33 25 24 24 23 24 25 26∑ UIPC 336 120 128 127 107 96 91 122 126 108 124 78 70

Unsolvable Resource-Constrained Planning (RCP) Benchmarks (Nakhost et al., 2012)
NoMystery (0.5) 30 14 25 25 30 30 30 25 25 30 25 30 30
NoMystery (0.6) 30 2 15 15 30 28 27 17 15 23 15 30 28
NoMystery (0.7) 30 0 5 7 29 23 21 10 7 14 7 25 22
NoMystery (0.8) 30 0 0 0 26 18 11 0 0 7 0 21 10
NoMystery (0.9) 30 0 0 0 14 10 7 0 0 2 0 12 6∑ NoMystery 150 16 45 47 129 109 96 52 47 76 47 118 96
Rovers (0.5) 30 1 3 5 30 30 29 20 5 25 5 27 28
Rovers (0.6) 30 0 2 2 30 26 27 16 2 23 2 25 26
Rovers (0.7) 30 0 0 0 30 25 26 10 0 14 0 22 26
Rovers (0.8) 30 0 0 0 29 24 24 4 0 10 0 13 17
Rovers (0.9) 30 0 0 0 24 17 20 1 0 6 0 8 9∑ Rovers 150 1 5 7 143 122 126 51 7 78 7 95 106
TPP (0.5) 5 2 4 4 5 5 5 3 4 4 4 5 5
TPP (0.6) 5 0 1 1 5 3 3 1 1 2 1 3 2
TPP (0.7) 5 0 0 0 2 2 0 0 0 1 0 2 0
TPP (0.8) 5 0 0 0 1 0 0 0 0 0 0 1 0
TPP (0.9) 5 0 0 0 0 0 0 0 0 0 0 0 0∑ TPP 25 2 5 5 13 10 8 4 5 7 5 11 7∑ RCP 325 19 55 59 285 241 230 107 59 161 59 224 209∑ Total 661 139 183 186 392 337 321 229 185 269 183 302 279

Table 6.7.: Unsolvability benchmarks. Coverage results, comparing offline versus online conjunction learning meth-
ods. Best results are highlighted in bold. Abbreviations: “Init 𝛼 = ∞”: offline C-learning without size bound, proving
unsolvability on the initial state. Other abbreviations as before.
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Figure 6.4.: Unsolvability benchmarks. Per-instance DFS search space size (number of visited states) comparison
between different learning techniques. We compare neighbors refinement on the 𝑦-axis to (a) no learning, (b) path-
cut refinement, respectively (c) relaxed-plan refinement on the 𝑥 -axis. “to”: time limit and “oom” memory limit
exceeded.

ure 6.4 gives the data.

The main conclusions are very similar to those we made for solvable planning tasks (cf. Figure 6.2). The
comparison to no learning in Figure 6.4a shows that learning is often detrimental on the non-resource
UIPC’16 benchmarks, yet has dramatic benefits on the resource-constrained ones. Remember that the
only reason for this is generalization. Search space size reduction factors provide an impressive view
on how dramatic the improvements are. Over those instances commonly solved by DFS without learn-
ing and DFS with neighbors refinement, the minimum/geometric mean/maximum reduction factors on
the Nakhost et al. domains are 6.7/436.5/37561.5 for NoMystery; 65.0/1286.6/69668.1 for Rovers; and
190.0/711.9/1900.5 for TPP. That is, we get reductions of 2-3 orders of magnitude on average, and even
the minimum reductions are of 1-2 orders of magnitude.

The comparison between refinement methods in Figures 6.4b and 6.4c yields, like on the solvable bench-
marks, the conclusion that neighbors refinement and path-cut refinement either perform very similarly or
are highly complementary, and that tailoring the refinement method to dead-end detection is typically
beneficial.

Performance Analysis

Table 6.8, part (A), shows data assessing the dependency of the conflict-driven learning approach on (1)
conflict identification, (2) learning effectiveness, and (3) strong generalization. Regarding (1), on the
resource-constrained benchmarks, unsurprisingly, the “# Confl. Id.” data shows that conflicts are identified
on (almost) every instance. From the other benchmarks though, on half of the domains ability (1) is not
given, i.e., no or not enough learning can take place. Namely, in all Bag-domains, in SlidingTiles, and in
Tetris, no conflicts are identified at all; in PegSolRow5 it is almost that bad. In SlidingTiles and Tetris, this
is simply because all actions are invertible, so the state space is strongly connected, and the first conflict is
identified only after the entire state space is already explored. In the Bag* domains, in the rare cases where
a conflict is identified, the learning is ineffective and prevents the search from terminating successfully.

Regarding (2) and (3), consider the slowdown “Slow.” and search space reduction “Redu.” columns. We
should expect good performance if the value for “Redu.” is larger than that for “Slow”, on commonly solved
instances. On the resource-constrained benchmarks, this is consistently the case. On the non-resource UIPC,
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(A) Analysis (B) Ablation Study

Confl. Id., Common DFS DOS

Domain # # Confl. Id. Slow. Redu. Cl NoCl Cl NoCl

Unsolvability IPC (UIPC) 2016 Benchmarks
BagBarman 20 0 0 0 0 0
BagGripper 25 0 0 0 3 3
BagTransport 29 0 5 5 5 5
Bottleneck 25 7 29.6 1.9 9 9 9 9
CaveDiving 25 5 23.5 8.3 5 6 6 7
ChessBoard 23 2 169.7 2.1 2 2 2 2
Diagnosis 20 9 2.9 10.4 9 9 9 9
DocTransfer 20 4 17.3 5.7 4 4 5 5
PegSol 24 14 123.7 1.8 14 14 14 14
PegSolRow5 15 3 2.5 4 4 4 4
SlidingTiles 20 0 10 10 10 10
Tetris 20 0 5 5 5 5∑ 266 44 3.2 67 68 72 73

NoMystery (0.4) 5 3 1.6 76 3 3 3 3
NoMystery (0.85) 5 2 2 2 2 2
NoMystery (0.99) 5 2 2 2 2 2
NoMystery (0.999) 5 2 2 2 2 2
Rovers (0.99) 20 12 4 690.9 12 12 12 12
TPP (0.5) 15 14 4.6 24.4 14 14 14 14
TPP (0.99) 15 5 60.6 43.6 5 5 5 5∑ 70 40 7.2 89.4 40 40 40 40∑ UIPC 336 84 10.4 107 108 112 113

Unsolvable Resource-Constrained Planning (RCP) Benchmarks (Nakhost et al., 2012)
NoMystery (0.5) 30 29 2.6 433.5 30 30 30 30
NoMystery (0.6) 30 30 3 355.6 30 30 30 30
NoMystery (0.7) 30 29 9.9 724.5 29 29 29 29
NoMystery (0.8) 30 26 26 24 25 25
NoMystery (0.9) 30 14 14 14 14 13∑ NoMystery 150 128 3.3 439.4 129 127 128 127
Rovers (0.5) 30 29 1.3 2460.2 30 30 30 30
Rovers (0.6) 30 29 1.2 254.5 30 30 30 30
Rovers (0.7) 30 30 30 30 30 30
Rovers (0.8) 30 29 29 27 28 27
Rovers (0.9) 30 24 24 24 24 24∑ Rovers 150 141 1.3 1286.6 143 141 142 141
TPP (0.5) 5 5 6.6 710.3 5 5 5 5
TPP (0.6) 5 5 29.5 718.6 5 5 5 5
TPP (0.7) 5 2 2 2 2 2
TPP (0.8) 5 1 1 1 1 1
TPP (0.9) 5 0 0 0 0 0∑ TPP 25 13 8.9 711.9 13 13 13 13∑ RCP 325 282 3.2 521.5 285 281 283 281∑ Total 661 366 69 392 389 395 394

Table 6.8.: Unsolvability benchmarks. Results for DFS with neighbors refinement. (A) performance analysis and (B)
ablation study. Abbreviations as in Table 6.5.
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Figure 6.5.: Unsolvability benchmarks. Per-instance runtime (in seconds) comparisons between (a) DOS (𝑥 -axis)
vs. DFS (𝑦-axis); (a) DFS without clause learning (𝑥 -axis) vs. with clause learning (𝑦-axis); (a) DOS without clause
learning (𝑥 -axis) vs. with clause learning (𝑦-axis). All configurations use neighbors refinement. “to”: time limit
exceeded; respectively “oom” memory limit exceeded.

the only domain where the reduction exceeds the slowdown is Diagnosis, precisely the only domain where
neighbors refinement improves coverage relative to the baseline. In all other domains where ability (1)
is given, the slowdown is much larger than the reduction, to a particularly striking extent in Bottleneck,
ChessBoard, and PegSol, precisely the domains where neighbors refinement is most detrimental.

Ablation Studies

Let us finally consider the ablation study, Table 6.8, part (B). We again fix neighbors refinement, and vary
the search algorithm, DFS vs. DOS, as well as switchingUC NoGoods on and off. The different configuration
settings have little impact on coverage here. DFS does a little worse than DOS on the non-resource UIPC,
but a little better on the resource-constrained benchmarks; similarly for clause learning vs. no clause
learning. As Figure 6.5 shows, however, both DFS and clause learning are useful algorithm improvements,
that rarely hurt runtime performance, while improving it in the most challenging cases.

6.4.4. Generating Unsolvability Certificates

Let us finally consider the generation of unsolvability certificates. An unsolvability certificate must (1) be
verifiable in its size; must (2) be feasible to compute; and (3) is useful only if it is compact, i.e., loosely
speaking, it is much smaller than the state space itself. Conjunction sets ̧ where UC (I) = ∞ qualify for
(1). But how feasible is it to compute them, and how compact are they?

All our online learning variants guarantee to terminate with UC (I) = ∞, provided the early stopping op-
tion is switched off. In difference to the previous section, we now consider this setting here. For comparison,
we run the two unbounded offline learning variants. Table 6.9 shows the data.

We consider DFS with neighbors refinement, the overall most effective refinement method. Our main inter-
est lies in comparing this online learning method to offline learning. We include both refinement methods
applicable to the latter purpose. We include a comparison to DFS with (neighbors refinement and) early
stopping, not producing an unsolvability certificate, to assess the overhead incurred by the final refinement
step when the search space is already empty. We include the baselines only for reference.

Consider first coverage, part (A) of Table 6.9, measuring how effective the three different strategies are at
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(A) Coverage (B) Geomean |C| (C) Geomean ratio |C|/|S|

Base DFS Nei Offline DFS Offline DFS Offline

w/o w/ 𝛼 = ∞ 𝛼 = ∞ 𝛼 = ∞

Domain # Bli U1 Cer Cer Pat RP Nei Pat RP Nei Pat RP

Unsolvability IPC (UIPC) 2016 Benchmarks
BagBarman 20 12 4 0 0 0 0
BagGripper 25 5 3 0 0 0 0
BagTransport 29 6 6 5 2 9 4 509.0 13156.0 3152.0 1 : 12.6 2.1 : 1 1 : 2.0
Bottleneck 25 9 20 9 9 13 14 829.7 144.5 19.8 1 : 24.0 1 : 137.6 1 : 1003.2
CaveDiving 25 7 7 5 6 3 1 66.0 15.0 85.0 1 : 1.5 1 : 6.4 1 : 1.1
ChessBoard 23 5 5 2 2 1 1 1463.0 9220.0 691.0 2.8 : 1 17.4 : 1 1.3 : 1
Diagnosis 20 6 7 9 8 4 12 26.8 392.5 1274.0 1 : 11006.4 1 : 751.3 1 : 231.5
DocTransfer 20 5 7 4 5 5 5 7417.0 515.0 17.0 1 : 1121.7 1 : 16154.9 1 : 489398.2
PegSol 24 24 24 14 14 14 4 386.0 901.5 747.9 1.2 : 1 2.8 : 1 2.3 : 1
PegSolRow5 15 5 5 4 4 4 3 1 : 5.7 1 : 5.1 1 : 5.1
SlidingTiles 20 10 10 10 0 0 0
Tetris 20 5 5 5 0 0 0∑ 266 99 103 67 50 53 44 1 : 29.4 1 : 27.7 1 : 61.7

NoMystery (0.4) 5 2 2 3 3 5 4 509.2 737.7 598.8 1 : 23218.1 1 : 16176.2 1 : 13587.5
NoMystery (0.85) 5 0 0 2 2 2 2 3534.4 103531.7 9378.2
NoMystery (0.99) 5 0 0 2 2 0 1
NoMystery (0.999) 5 0 0 2 2 0 1
Rovers (0.99) 20 4 7 12 12 3 7 85.7 3888.6 184.3 1 : 9107.5 1 : 211.6 1 : 4914.1
TPP (0.5) 15 9 10 14 14 12 9 416.3 413.7 819.9 1 : 79.9 1 : 77.1 1 : 40.7
TPP (0.99) 15 6 6 5 5 3 2 2399.4 4993.0 3411.4 1 : 11.6 1 : 5.6 1 : 8.2∑ 70 21 25 40 40 25 26 504.3 1500.8 925.6 1 : 268.4 1 : 131.4 1 : 147.2∑ UIPC 336 120 128 107 90 78 70 1 : 69.5 1 : 50.7 1 : 86.5

Unsolvable Resource-Constrained Planning (RCP) Benchmarks (Nakhost et al., 2012)
NoMystery (0.5) 30 14 25 30 30 30 30 216.1 390.8 379.8 1 : 25760.1 1 : 22387.8 1 : 23410.2
NoMystery (0.6) 30 2 15 30 30 30 28 516.9 1304.3 939.8 1 : 86197.9 1 : 25389.3 1 : 53497.6
NoMystery (0.7) 30 0 5 29 29 25 22 1180.6 2957.6 2804.8
NoMystery (0.8) 30 0 0 26 26 21 10 2694.1 5648.3 4260.0
NoMystery (0.9) 30 0 0 14 14 12 6 3262.3 12782.0 10929.4∑ NoMystery 150 16 45 129 129 118 96 600.2 1362.9 1163.9 1 : 29958.2 1 : 22742.6 1 : 25958.0
Rovers (0.5) 30 1 3 30 30 27 28 105.1 121.7 90.9 1 : 596322.0 1 : 67191.2 1 : 280622.1
Rovers (0.6) 30 0 2 30 30 25 26 211.3 181.3 166.7
Rovers (0.7) 30 0 0 30 30 22 26 406.1 800.3 427.4
Rovers (0.8) 30 0 0 29 29 13 17 588.4 460.9 265.5
Rovers (0.9) 30 0 0 24 24 8 9 963.1 502.9 755.5∑ Rovers 150 1 5 143 143 95 106 257.0 281.6 207.2 1 : 596322.0 1 : 67191.2 1 : 280622.1
TPP (0.5) 5 2 4 5 5 5 5 1914.8 4023.9 2490.9 1 : 1855.8 1 : 249.8 1 : 680.2
TPP (0.6) 5 0 1 5 5 3 2 2742.0 3214.1 3270.9
TPP (0.7) 5 0 0 2 3 2 0
TPP (0.8) 5 0 0 1 1 1 0
TPP (0.9) 5 0 0 0 0 0 0∑ TPP 25 2 5 13 14 11 7 2121.7 3773.6 2692.5 1 : 1855.8 1 : 249.8 1 : 680.2∑ RCP 325 19 55 285 286 224 209 419.2 665.4 525.6 1 : 26165.4 1 : 14975.2 1 : 20053.9∑ Total 661 139 183 392 376 302 279 1 : 539.2 1 : 362.0 1 : 567.8

Table 6.9.: Unsolvability benchmarks. Results for generating unsolvability certificates C, comparing online learning
with DFS and neighbors refinement to offline learning with path-cut respectively relaxed-plan refinement. Best
results among these three strategies are highlighted in bold. (A) coverage, i.e., number of instances for which a
certificate was generated. (B) Geometric mean of certificate size |C|. (C) Compactness relative to the (reachable)
state space size |S|; an entry “1 : 𝑥” means that, in the geometric mean, |C| is 𝑥 times smaller than |S|, an entry
“𝑥 : 1” means that, in the geometric mean, |C| is 𝑥 times larger than |S|. Abbreviations: “w/o Cer” early stopping
option enabled, i.e., not generating certificates; “w/ Cer” early stopping option disabled. Other abbreviations as
before.
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producing unsolvability certificates. Neighbors refinement is clearly best overall, and it consistently domi-
nates on the resource-constrained benchmarks. On the non-resource benchmarks though, the offline meth-
ods are competitive, path-cut refinement even better overall, with substantial advantages in BagTransport,
Bottleneck, and Diagnosis.

Observe that, with early stopping, neighbors refinement “beats” the offline methods on the non-resource
UIPC, while without early stopping it does not. The advantage of neighbors refinement without early
stopping here mainly stems from the SlidingTiles and Tetris domains, which is simply due to the afore-
mentioned fact that no learning takes place here (cf. Table 6.8). So, the superiority of DFS with early
stopping here is one of search, not of learning. On the resource-constrained benchmarks, switching early
stopping off does not have any adverse impact on coverage.

Consider now part (B) of Table 6.9, giving a view of absolute certificate size (while (C) is relative to state
space size). In PegSolRow5 there is no data as, on the commonly covered instances, U1(I) = ∞ so noth-
ing needs to be done. Online learning with neighbors refinement is superior on the resource-constrained
benchmarks, except for Nakhost et al. Rovers (and one case of UIPC TPP), where the picture is more
mixed. On the non-resource UIPC benchmarks, the methods are complementary, with differing strengths
depending on the domain. The small certificate sizes here, in the order of 100s or 1000s of conjunctions,
are merely due to the size of the commonly solved instances. On the largest instances solved by DFS with
neighbors refinement, the certificates have 10000s of conjunctions.

By definition, the relative performance of learning methods is the same in parts (C) and (B). What’s re-
markable in (C) is that the certificates found often are extremely compact, several orders of magnitude
smaller than the state space itself. This is especially pronounced in the resource-constrained benchmarks,
but also happens in some of the other domains, most notably in Bottleneck, Diagnosis, and DocTransfer.



7. LP Heuristics Over Conjunctions: Compilation,
Convergence & Conflict Refinement

Linear programming is a popular method to derive admissible cost-to-goal bounds in classical and prob-
abilistic planning (e.g., van den Briel et al., 2007; Bonet, 2013; Bonet and van den Briel, 2014; Pom-
merening et al., 2014; Trevizan et al., 2017b). Underlying many LP-based heuristics is the so called state
equation (Bonet, 2013), a system of linear inequalities over action execution counts necessarily satisfied by
every plan. Another successful variant are potential heuristics (Pommerening et al., 2015), which estimate
the cost-to-goal via a linear combination of real-valued state-feature weights. The computation of weights
defining admissible potential heuristics can be cast as an LP. Proved by the success in the latest Unsolvabil-
ity International Planning Competition (UIPC’16), LP heuristics also often constitute strong unsolvability
detectors (Seipp et al., 2016). In the following, we explore the use of LP heuristics over fact conjunction as
an alternative to the critical-path dead-end detector UC in our conflict-driven learning procedure.

Fact conjunctions are a popular method to improve heuristic approximations. In the previous chapter, we
have shown that fact conjunctions constitute an effective means for refining the critical-path heuristic
towards recognizing dead ends. Haslum (2012) and Keyder et al. (2014) have considered conjunctions
to improve delete relaxation heuristics (Hoffmann and Nebel, 2001). They showed that the compilation
ΠC , rendering a given set of conjunctions C explicit, forces delete relaxed plans to converge to real plans in
the limit, i.e., for suitable C, the perfect delete-relaxation heuristic ℎ+ applied to ΠC renders equal to the
perfect heuristic ℎ∗. This leads to powerful heuristics that allow interpolate freely between computational
cost and accuracy of the estimates.

Fact conjunctions have also been considered for enhancing LP heuristics. van den Briel et al. (2007) and
Bonet and van den Briel (2014) considered (partial) variable merges to enhance the state-equation heuris-
tic via constraints over conjunctions. Seipp et al. (2016) examined the size of conjunctions needed for a
potential heuristic to find a plan without search. Pommerening et al. (2017) designed potential heuris-
tics over arbitrary sets of conjunctions. In particular, they provided an efficient construction method for
potential heuristics over fact pairs, but they also showed that the construction over fact triples is already
computationally hard.

This chapter explores further the combination of LP heuristics and conjunctions, contributing new results
pertaining to the use of the ΠC compilation, to convergence properties, and to the exploitation of conver-
gence for conflict-driven learning. We show that for tasks in transition normal form (Pommerening and
Helmert, 2015), partial variable merges are strictly dominated by the compilation ΠC , and that both ren-
der the state-equation heuristic equal to ℎ∗ for suitable C. We show that the dual state-equation LP on ΠC

yields admissible conjunction potential heuristics. Note that this does not contradict Pommerening et al.’s
(2017) hardness result, due to ΠC ’s exponential worst-case growth in |C|. We show that, together with a
(trivial to compute) upper bound 𝑈 ∗ on ℎ∗(𝑠) for solvable 𝑠, one can choose C so that the ΠC potential
heuristic equals ℎ∗. Finally, we exploit these properties for designing a conflict refinement method, choos-
ing new conjunctions suitable for the state equation, and hence also the potential heuristic, to recognize

83



84 7. LP Heuristics Over Conjunctions: Compilation, Convergence & Conflict Refinement

a previously unrecognized dead end.

This chapter is based on (Steinmetz and Hoffmann, 2018). Section 7.1 presents some basic notions, and
introduces the ΠC compilation for FDR tasks. In Section 7.2, we begin our analysis with the state-equation
heuristic, recall its definition from literature, compare its extensions to conjunctions via partial variable
merges and via ΠC , as well as prove convergence of both to ℎ∗. In Section 7.3, we consider potential
heuristics. We show how to leverage the ΠC compilation to generate admissible potential heuristics over
arbitrary conjunctions, how to use potential heuristics for unsolvability detection, and we provide the
obligatory convergence result. Section 7.4 spells out the conflict analysis and refinement algorithm. In
Section 7.5, we compare the LP heuristics applied to ΠC and the critical-path unsolvability detector UC
in terms of their learning effectiveness, i.e., comparing how much additional information they require to
recognize the same dead-end state. Section 7.6 concludes this chapter with a brief experimental evaluation.

7.1. Preliminaries

Throughout this chapter, we assume classical planning tasks in FDR notation (cf. Definition 2.4). Let Π =
⟨V,A,I,G⟩ be such a task. We need the notion of FDR regression, defined in the standard way:

Definition 7.1 (FDRRegression). Let 𝑃 be a variable assignment, and let𝑎 ∈ A be an action. If eff(𝑎)∩𝑃 ≠ ∅,
and eff(𝑎) ∥ 𝑃 , and (𝑃 \ eff(𝑎)) ∥ pre(𝑎), then the regression of 𝑃 over 𝑎 is defined as follows:

regress(𝑃, 𝑎) = (𝑃 \ eff(𝑎)) ∪ pre(𝑎)

Otherwise, the regression is undefined, and we write regress(𝑃, 𝑎) = ⊥.

Note that the main difference between this and Definition 6.1 is the additional condition (𝑃 \ eff(𝑎)) ∥
pre(𝑎), which is needed for regress(𝑃, 𝑎) to be a proper variable assignment. The set of actions for which
the regression is defined is denoted again by A[𝑃] = { 𝑎 ∈ A | regress(𝑃, 𝑎) ≠ ⊥ }.

Sometimes, we will require Π to be in transition normal form (Pommerening and Helmert, 2015):

Definition 7.2 (Transition Normal Form). An FDR task Π = ⟨V,A,I,G⟩ is in transition normal form,
short TNF, if Π satisfies

(TNF1) vars(eff(𝑎)) ⊆ vars(pre(𝑎)), for all actions 𝑎 ∈ A, and

(TNF2) vars(G) = V.

The condition (TNF1) differs slightly from the requirement vars(pre(𝑎)) = vars(eff(𝑎)) of the original
definition (Pommerening and Helmert, 2015). We do so for simplicity only. All our results apply directly
to the original version as well. Given any FDR task Π, it is possible to construct an “equivalent” TNF
task ΠTNF in time polynomial in the size of Π, specifically ΠTNF such that the plans of Π and ΠTNF are
polynomially transformable into one another.

We next introduce the ΠC compilation. We follow Haslum (2012), with small modifications suiting our
context. As in Section 6.1, a conjunction 𝑐 is a variable assignment (set of facts). To represent a set C of
conjunctions explicitly in a given task Π, the ΠC compilation introduces a new Boolean variable 𝜋𝑐 for
each 𝑐 ∈ C; abusing notation, we identify 𝜋𝑐 with the fact 𝜋𝑐 ↦→ ⊤. For a variable assignment 𝑃 ,

𝑃C = 𝑃 ∪ { 𝜋𝑐 ↦→ ⊤ | 𝑐 ∈ C, 𝑐 ⊆ 𝑃 } ∪ { 𝜋𝑐 ↦→ ⊥ | 𝑐 ∈ C, 𝑐 ∦ 𝑃 }



7.1. Preliminaries 85

augments 𝑃 with the conjunctions it contains as well as the negation of the conjunctions it conflicts with.
We say that a set of conjunctions 𝐶 ⊆ C is consistent if all 𝑐, 𝑐′ ∈ 𝐶 are pairwise consistent. With these
notations in hand, we can define the compiled task:

Definition 7.3 (FDR ΠC Compilation). Let C be a set of conjunctions. The ΠC compilation is given by the
FDR task ΠC = ⟨VC,AC,IC,GC⟩, where

• VC = V ∪ { 𝜋𝑐 | 𝑐 ∈ C } with D𝜋𝑐 = { ⊤,⊥ },

• AC contains an action 𝑎𝐶 for every pair of 𝑎 ∈ A and consistent 𝐶 ⊆ C such that

(i) 𝑎 ∈ A[𝑐], for all 𝑐 ∈ 𝐶, and

(ii) for every 𝑐′ ∈ C \𝐶, either 𝑎 ∉ A[𝑐′] or regress(𝑐′, 𝑎) ⊈ ⋃
𝑐∈𝐶 regress(𝑐, 𝑎).

Overloading notation, denote by regress(𝐶, 𝑎) = ⋃
𝑐∈𝐶 regress(𝑐, 𝑎) the union of the regressions over

the individual conjunctions. The action 𝑎𝐶 is given by

(1) pre(𝑎𝐶 ) = [regress(𝐶, 𝑎)]C

(2) eff(𝑎𝐶 ) = eff(𝑎) ∪ { 𝜋𝑐 ↦→ ⊤ | 𝑐 ∈ 𝐶 } ∪ { 𝜋𝑐′ ↦→ ⊥ | 𝑐′ ∈ C, 𝑐′ ∥ regress(𝐶, 𝑎), 𝑐′ ∦ eff(𝑎) }

(3) 𝔠(𝑎𝐶 ) = 𝔠(𝑎)

Intuitively, 𝑎𝐶 represents an occurrence of 𝑎 that makes all 𝑐 ∈ 𝐶 true. For this to happen, the regression
of each 𝑐 over 𝑎 must be true beforehand, as per (1), a conjunction 𝑐′ potentially invalidated by 𝑎 is false
afterwards. Condition (ii) assures consistency: if an occurrence 𝑎𝐶 always makes true a conjunction 𝑐, then
𝜋𝑐 must be set to true necessarily.

With the possible𝐶 being subsets of C,
��AC �� may grow exponentially in |C|. This can be ameliorated (but

not overcome entirely) withmutex information (Keyder et al., 2014). Compatibility of𝐶 as postulated here
is a special case thereof.

Note that the singleton conjunction from C do not need to be represented explicitly, as ΠC takes over
all variables from Π, i.e., denoting by C>1 ⊆ C the subset of non-singleton conjunctions, it suffices to
construct ΠC>1 instead of ΠC . For the sake of simplicity, whenever we write ΠC in the following, we refer
to ΠC>1.

Following previous works on the ΠC-compilation, we interpret heuristics for ΠC , written ℎ[ΠC], as heuris-
tics for Π by mapping every state 𝑠 of Π to the state in ΠC obtained by augmenting 𝑠 with the 𝜋𝑐 -variable
assignments according to whether or not 𝑐 is satisfied in 𝑠, i.e., we define ℎ[ΠC] (𝑠) = ℎ[ΠC] (𝑠C).

Plan equivalence betweenΠ and ΠC can be easily shown by adapting Haslum’s (2012) proof to our slightly
modified ΠC definition. An extension of this equivalence result to individual transitions will become handy
later on:

Lemma 7.1. Let ℎ be a heuristic for ΠC . If ℎ is consistent in ΠC , then ℎ is consistent in Π.

Proof. Let 𝑠 be any state of Π, and 𝑎 ∈ A(𝑠) be any action applicable in 𝑠. Define 𝐶 = {𝑐 ∈ C |
𝑐 ⊆ 𝑠⟦𝑎⟧, 𝑐 ∩ eff(𝑎) ≠ ∅}. Obviously, 𝐶 is consistent; for every 𝑐 ∈ 𝐶, it holds that regress(𝑐, 𝑎) ≠ ⊥;
and for every 𝑐′ ∈ (C \ 𝐶), either regress(𝑐′, 𝑎) = ⊥ or regress(𝑐′, 𝑎) ⊈ 𝑠 and thus regress(𝑐′, 𝑎) ⊈⋃

𝑐∈𝐶 regress(𝑐, 𝑎). Hence, 𝑎𝐶 ∈ AC . Moreover, the selection of 𝐶 ensures that 𝑎𝐶 is applicable in 𝑠C

and that for every 𝑐 ⊆ 𝑠⟦𝑎⟧, 𝑠C⟦𝑎𝐶⟧[𝜋𝑐] = ⊤. For every 𝑐 ⊈ 𝑠⟦𝑎⟧, it holds that 𝑐 ∉ 𝐶 and either
𝑠C [𝜋𝑐] = ⊥; or 𝑐 ⊆ 𝑠 and 𝑐 ∦ eff(𝑎), i.e., eff(𝑎𝐶 ) [𝜋𝑐] = ⊥. In both cases, 𝑠C⟦𝑎𝐶⟧[𝜋𝑐] = ⊥ follows.
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We get ℎ(𝑠) = ℎ(𝑠C) ≤ ℎ(𝑠C⟦𝑎𝐶⟧) + 𝔠(𝑎𝐶 ) = ℎ((𝑠⟦𝑎⟧)C) + 𝔠(𝑎𝐶 ) = ℎ(𝑠⟦𝑎⟧) + 𝔠(𝑎), what shows the
claim. □

7.2. The State-Equation Heuristic

We begin our analysis with the state-equation heuristic. Section 7.2.1 provides the formal definition. In
Section 7.2.2, we then compare partial variable merges and the ΠC compilation. We show that the state-
equation heuristic applied to ΠC dominates its extension by the corresponding partial variable merges, for
tasks in TNF; and that the state-equation heuristic converges to ℎ∗ via appropriate partial variable merges,
hence so via ΠC .

7.2.1. Definition

The state equation (SEQ) (Bonet, 2013) describes a relation between variable-value changes, the net-
changes, that every plan must satisfy. A fact 𝑝 = 𝑣 ↦→ 𝑑 is produced by an action 𝑎 if eff(𝑎) [𝑣] = 𝑑;
𝑝 is consumed by 𝑎 if pre(𝑎) [𝑣] = 𝑑 and 𝑣 ∈ vars(eff(𝑎)). We denote by PROD(𝑝) and CONS(𝑝) the
set of all actions that produce, respectively consume, 𝑝. Let 𝑠 be any state, 𝜋 be any plan for 𝑠, and 𝑝 be
any fact. Every consumption of 𝑝 along 𝜋 requires its production beforehand. If 𝑝 is true in 𝑠, then 𝑝 can
be consumed once more than it is produced. If 𝑝 must be true after the application of 𝜋 , then 𝑝 must be
produced more often than it is consumed. Denote by COUNT𝜋𝑎 the number of occurrences of 𝑎 in 𝜋 . Writing
down this relation formally, one obtains

Definition 7.4 (State Equation). Let 𝑠 be a state, 𝜋 be a plan for 𝑠, and 𝑝 be a fact. The state equation,
short SEQ, for 𝑝 is ∑

𝑎∈PROD(𝑝)
COUNT𝜋𝑎 −

∑
𝑎∈CONS(𝑝)

COUNT𝜋𝑎 ≥ Δ𝑝 (𝑠) (7.1)

where

Δ𝑝 (𝑠) =

1, if 𝑝 ∉ 𝑠 and 𝑝 ∈ G
−1, if 𝑝 ∈ 𝑠 and 𝑝 ∉ G
0, otherwise

The state-equation heuristic ℎseq is defined via an LP. The LP contains one variable COUNT𝑎 ∈ ℝ+0 for
every action 𝑎. For every fact 𝑝, the LP contains the constraint given by Equation (7.1) for 𝑝, choosing the
right hand side Δ𝑝 (𝑠) according to the state 𝑠 for which ℎseq(𝑠) is being computed. The objective function
is to minimize ∑

𝑎∈A COUNT𝑎 · 𝔠(𝑎). We denote this LP as SEQ(𝑠). If SEQ(𝑠) has an optimal solution,
then ℎseq(𝑠) gives the respective the objective value. Otherwise, ℎseq(𝑠) = ∞. As every plan must satisfy
Equation (7.1) for every 𝑝, ℎseq is admissible. In fact, it is straightforward to show that ℎseq is goal-aware
and consistent. ℎseq is goal-aware, because Δ𝑝 (𝑠∗) ≤ 0 for all facts 𝑝 and goal states 𝑠∗, so setting every
variable COUNT𝑎 to 0 trivially satisfies the state-equation constraints, resulting in ℎseq(𝑠∗) = 0 as desired.
To show consistency, suppose 𝑠 is an arbitrary state, and 𝑎 ∈ A(𝑠) is an arbitrary action applicable in 𝑠.
Observe that one can obtain from every optimal solution to SEQ(𝑠⟦𝑎⟧), a solution to SEQ(𝑠) with objective
value ℎseq(𝑠⟦𝑎⟧) + 𝔠(𝑎) by simply incrementing COUNT𝑎 by one. This solution upper bounds the optimal
objective value of SEQ(𝑠), hence ℎseq(𝑠) ≤ ℎseq(𝑠⟦𝑎⟧) + 𝔠(𝑎).

We denote the unsolvability detector variant of ℎseq by Useq, i.e., Useq(𝑠) = ∞ if SEQ(𝑠) is infeasible, and
Useq(𝑠) = 0 otherwise. Given that ℎseq is admissible, Useq(𝑠) = ∞ implies that 𝑠 is a dead end, i.e., Useq
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Figure 7.1.: Simple variants of our rovers running example. (a) the rover needs to move from 𝐴2 to 𝐵, but there is
only one energy unit left. (b) the rover needs to collect the sample at 𝐴2 and bring it to 𝐵, without constraints on
the energy consumption.

indeed is an unsolvability detector. Since ℎseq is consistent, Useq furthermore satisfies the transitivity prop-
erty. As the main concern in the remainder of this section is the comparison of approaches for improving
heuristic estimates in general, we will be referring to ℎseq rather than Useq most of the time.

Example 7.1. Consider the variant of our rovers running example depicted in Figure 7.1a. The FDR plan-
ning task encoding is similar to Example 2.2. The initial state is I = { 𝑟𝑜𝑣 ↦→ 𝐴2, 𝑏𝑎𝑡 ↦→ 1 }. The
goal is G = { 𝑟𝑜𝑣 ↦→ 𝐵 }. Consider SEQ(I). To satisfy the state equation of the goal fact, it must be
COUNT𝑚𝑜𝑣𝑒 (𝐴1,𝐵,1) ≥ 1. Since 𝑚𝑜𝑣𝑒 (𝐴1, 𝐵, 1) consumes the fact 𝑟𝑜𝑣 ↦→ 𝐴1, but Δ𝑟𝑜𝑣 ↦→𝐴1 (I) = 0, this
entails that COUNT𝑚𝑜𝑣𝑒 (𝐴2,𝐴1,1) ≥ 1. However, both𝑚𝑜𝑣𝑒 actions also consume 𝑏𝑎𝑡 ↦→ 1, which has no pro-
ducer, and is available initially only once, i.e., −COUNT𝑚𝑜𝑣𝑒 (𝐴1,𝐵,1) − COUNT𝑚𝑜𝑣𝑒 (𝐴2,𝐴1,1) < −1 = Δ𝑏𝑎𝑡 ↦→1(I).
Hence, SEQ(I) is infeasible, and Useq(I) = ∞. Note that, this is in contrast to the critical-path unsolvability
detector U1, which without additional conjunctions is not able recognize I as dead end.

An important weakness of the state-equation heuristic is that prevail conditions of actions, i.e., precondi-
tions pre(𝑎) [𝑣] where 𝑣 ∉ vars(eff(𝑎)), are disregarded completely.

Example 7.2. Consider now the rover example from Figure 7.1b. The corresponding FDR task consists of
just two variables: the rover position 𝑟𝑜𝑣 , with D𝑟𝑜𝑣 = { 𝐵,𝐴1, 𝐴2 }, and the sample position 𝑠𝑎𝑚𝑝 with
D𝑠𝑎𝑚𝑝 = { 𝐵,𝐴1, 𝐴2, 𝑅 }. As before, the rover can 𝑚𝑜𝑣𝑒 between the locations according to the depicted
connections (yet, now, without conditions or effects on the remaining energy); it can 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 the sample at the
rover’s current location; and it can 𝑑𝑟𝑜𝑝 the sample at the rover’s current location. Suppose that all actions
have cost 1. The initial state is given by I = { 𝑟𝑜𝑣 ↦→ 𝐴1, 𝑠𝑎𝑚𝑝 ↦→ 𝐴2 }. The goal is G = { 𝑠𝑎𝑚𝑝 ↦→ 𝐵 }.
The ℎseq value for this state is 2, accounting only for collecting and disposing the sample. Rover movements are
not counted since collecting and disposing the sample prevail the rover’s position.

7.2.2. The State Equation over Conjunctions

The weakness just discussed can be addressed by considering net-changes over conjunctions instead of
single facts.

Example 7.3. Reconsider Example 7.2. Consider the set of conjunctions C = { 𝑐1, 𝑐2 } for 𝑐1 = { 𝑟𝑜𝑣 ↦→
𝐴2, 𝑠𝑎𝑚𝑝 ↦→ 𝐴2 }, and 𝑐2 = { 𝑟𝑜𝑣 ↦→ 𝐵, 𝑠𝑎𝑚𝑝 ↦→ 𝑅 }. Collecting the sample at 𝐴2 now requires and
consumes 𝜋𝑐1 ↦→ ⊤, and dropping the sample at 𝐵 consumes 𝜋𝑐2 ↦→ ⊤. To produce 𝜋𝑐1 ↦→ ⊤, the rover has
to move to location 𝐴2. To produce 𝜋𝑐2 ↦→ ⊤, the rover has to move to 𝐵. Further, to satisfy Equation (7.1)
for 𝑝 = 𝑟𝑜𝑣 ↦→ 𝐴1, the rover needs to move back from 𝐴2 to 𝐵. This results in the perfect heuristic value 5;
indeed, ℎseq [ΠC] (I) = 5.

Bonet and van den Briel (2014) designed partial variable merges to augment ℎseq by conjunctions. We now
compare this technique to the computation of ℎseq in ΠC , and we show convergence of both to the perfect
heuristicℎ∗ for tasks Π in TNF. For the sake of readability, within this section, we only provide the principle
ideas underlying the proofs of our results. The detailed proofs are available in Appendix B.3.
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Like the ΠC-compilation, partial variable merges consider a set of conjunctions C. But conjunctions 𝑐, 𝑐′ ∈
C are put into relation only when they instantiate the same variables, vars(𝑐) = vars(𝑐′). Hence the
name “partial variable merges”: Bonet and van den Briel start from the simpler idea of pre-merging entire
variable subsets 𝑋 ⊆ V, extending Π by a new variable representing this product; they improve over that
idea by considering only particular value tuples within the product. As a result, their LP encoding grows
polynomially in |C|, but might lose information relative to ΠC , because no constraints are included across
(conjunctions over) different variable subsets 𝑋 ≠ 𝑋 ′.

Specifically, partial variable merges are based on notions of potential producers and consumers, i.e., actions
whose applications can achieve respectively invalidate 𝑐:

PPROD(𝑐) = { 𝑎 ∈ A | regress(𝑐, 𝑎) ≠ ⊥ }
PCONS(𝑐) = { 𝑎 ∈ A | 𝑐 ∦ eff(𝑎), 𝑐 ∥ pre(𝑎) }

This complication arises, because the impact of an action 𝑎 on a conjunction 𝑐 depends on the context in
which 𝑎 is applied: on the action occurrence.

While ΠC enumerates possible action occurrences, variable merges handle each subset of C, sharing the
same variables 𝑋 separately. Denote by Π |𝑋 the projection of Π onto 𝑋 . To represent those product states
𝑃 of Π |𝑋 , where 𝑃 ∉ C, an abstract state 𝔰𝑋 is introduced. The transitions within Π |𝑋 are abstracted
by inserting 𝔰𝑋 whenever the start or end state of a transition is not contained in C. Denote by ΘC𝑋 the
corresponding abstract transition system. Equation (7.1) for a conjunction 𝑐 is then defined by summing
over the in- and out-transitions of 𝑐, with a separate occurrence-counter variable COUNT𝑥→𝑥′

𝑎 for every
state-changing transition ⟨𝑥, 𝑎, 𝑥′⟩ ∈ T Cvars(𝑐) , i.e.,∑

⟨𝑥,𝑎,𝑐⟩∈T Cvars(𝑐),𝑥≠𝑐
COUNT𝑥→𝑐

𝑎 −
∑

⟨𝑐,𝑎,𝑥⟩∈T Cvars(𝑐),𝑐≠𝑥
COUNT𝑐→𝑥

𝑎 ≥ Δ𝑐 (𝑠) (7.2)

Δ𝑐 (𝑠) is defined similarly to single facts:

Δ𝑐 (𝑠) =

1, if 𝑐 ⊈ 𝑠 and 𝑐 ⊆ G
−1, if 𝑐 ⊆ 𝑠 and 𝑐 ⊈ G
0, otherwise

For tasks in TNF, Equation (7.2) can be characterized exactly via the potential producers and consumers
of 𝑐. Namely, notice that if (TNF1) is satisfied, then for every 𝑐 ∈ C and 𝑎 ∈ A, 𝑎 labels at most one
transition in ΘCvars(𝑐) going into 𝑐, and the set PPROD(𝑐) lists exactly those actions for which a transition
exists. Moreover, as usual for projections, for each 𝑐 and 𝑎, 𝑎 can also label at most one transition inΘCvars(𝑐)
leaving 𝑐; and those leaving transitions are exactly identified by PCONS(𝑐). Hence, (7.2) can be written
equivalently as ∑

𝑎∈PPROD(𝑐)
COUNT∗→𝑐

𝑎 −
∑

𝑎∈PCONS(𝑐)
COUNT𝑐→∗𝑎 ≥ Δ𝑐 (𝑠) (7.3)

where ∗ is a placeholder for the corresponding transitions.

The separate transition counters are related back to the main action counters by introducing, for every
action 𝑎 and every variable set 𝑋 glanced by C, the following link constraint:∑

⟨𝑥,𝑎,𝑥′⟩∈T C𝑋 ,𝑥≠𝑥′
COUNT𝑥→𝑥′

𝑎 ≤ COUNT𝑎 (7.4)
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For every 𝑋 and 𝑎 ∈ A, for which the effect of 𝑎 on the conjunctions vars(𝑐) = 𝑋 is determined uniquely,
without additional context information, i.e., for 𝑎 that label just a single transition in ΘC𝑋 , the “≤” can be
replaced by “=” forcing that transition to be taken on every application of 𝑎.

We denote by ℎC𝑠𝑒𝑞 the heuristic extending ℎseq by Equation (7.2) and Equation (7.4) for the conjunctions
C.

Theorem 7.1. For every Π in TNF, every set of conjunctions C, and every state 𝑠, it holds that

ℎseq [ΠC] (𝑠) ≥ ℎC𝑠𝑒𝑞 (𝑠)

Proof sketch. Let SEQ[ΠC] be the LP underlying ℎseq [ΠC] (𝑠), and CSEQ that underlying ℎC𝑠𝑒𝑞 (𝑠). Every
solution to SEQ[ΠC] can be transformed into a solution to CSEQ, with equal objective value. The proof is
technical but straightforward. □

Theorem 7.2. There exists families of Π and C s.t., to obtain ℎC
′𝑠𝑒𝑞 (𝑠) ≥ ℎseq [ΠC] (𝑠) for all states 𝑠, C′

must be exponentially larger than C.

Proof sketch. This happens, e.g., in a transportation example where 𝑛 packages must be transported from
𝐵 to𝐴, and truck-load capacity is 1. In ℎseq [ΠC], considering all conjunctions of size up to 3makes visible
that no two packages can be in the truck at the same time, yielding ℎseq [ΠC] = ℎ∗. The partial variable
merges in ℎC𝑠𝑒𝑞 , however, cannot account perfectly for the interactions across packages unless all of them
are considered jointly in the same Π |𝑋 . □

The proof of Theorem 7.2 exploits the fact that ΠC ’s action occurrences relate conjunctions over arbitrary
variable sets. Yet, recall that exactly this property is what is also causing the size of ΠC to be exponential
in |C|, and therewith the computation of ℎseq [ΠC]. As this is in contrast to ℎC𝑠𝑒𝑞 , which can always be
computed in time polynomial in |C|, Theorems 7.1 and 7.2 may hence be not so surprising. We utilize the
flexibility offered by ΠC in our conjunction-set refinement method below.

For general tasks Π, the relation between ℎseq [ΠC] and ℎC𝑠𝑒𝑞 is not so clear anymore. Complications
stem from actions 𝑎 affecting variables 𝑣 without precondition on 𝑣 . ΠC cannot relate the consumption
of 𝜋𝑐 of any conjunction 𝑐 where 𝑣 ∈ vars(𝑐) with 𝑎’s action occurrences. In contrast, ℎC𝑠𝑒𝑞 can do so by
enumerating the missing preconditions through different transitions.

Example 7.4. Consider the task with variables 𝑣1 and 𝑣2 and domains D𝑣1 = D𝑣2 = {0, 1, 2}; actions: 𝑎1
requires 𝑣2 ↦→ 1 and sets 𝑣1 ↦→ 1; 𝑎2 requires that 𝑣1 ↦→ 1 and sets 𝑣2 ↦→ 1, and 𝑎3 with empty precondition
and effect 𝑣1 ↦→ 2; initial state I = { 𝑣1 ↦→ 0, 𝑣2 ↦→ 0 }; and goal G = { 𝑣1 ↦→ 1, 𝑣2 ↦→ 1 }. Assume that C
contains all conjunctions.

Since the abstract states corresponding to the conjunctions I and G are not connected, it is not possible to
satisfy Equation (7.2) for G without violating the state-equation constraint of any other conjunction. Hence,
ℎC𝑠𝑒𝑞 (I) = ∞.

However, ℎseq [ΠC] (I) < ∞: let COUNT
𝑎{G}1

= 1, COUNT
𝑎{G}2

= 1, COUNT𝑎∅3 = 1. It is straightforward to verify
that COUNT satisfies Equation (7.1) for all facts 𝑣 ↦→ 𝑑 and 𝜋𝑐 value-assignments. The action occurrence 𝑎∅3 is
required to satisfy the constraint for 𝜋I ↦→ ⊥.
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Combining the task from Example 7.4 with the one from the proof of Theorem 7.2 shows the existence of
non-TNF Π and C for which ℎseq [ΠC] and ℎC𝑠𝑒𝑞 are incomparable.

We now turn to convergence properties. It is easy to show that partial variable merges can force ℎC𝑠𝑒𝑞 to
converge.

Theorem 7.3. For every planning task Π with vars(G) = V, there exists a set of conjunctions C s.t. ℎC𝑠𝑒𝑞 =
ℎ∗.

Proof. A suitable C is C = SΠ, i.e., the set of all states in the given task Π. The LP underlying ℎC𝑠𝑒𝑞

then boils down to an LP encoding of shortest paths in the state space graph, essentially a special case
of the min-cost flow problem. The variables encode state-transition weights. The constraints ensure that
the difference between the incoming and outgoing flow at every state is ≥ 0, respectively ≥ −1 (≥ 1)
at initial (goal) state. The objective to minimize action (and thus state-transition) weights entails that, in
any optimal solution, equality will hold in all these three cases. The condition vars(G) = V is required
because Δ𝑐 (𝑠) = 1 may only hold if 𝑐 ⊆ G. Thus, in order for the state space graph, encoded as the
variable merge over variablesV, to actually contain a sink state, it must hold vars(G) = V. □

From Theorem 7.3 and Theorem 7.1 together, we immediately get convergence of ℎseq [ΠC]:

Corollary 7.1. For every planning task Π in TNF, there exists a set of conjunctions C s.t. ℎseq [ΠC] = ℎ∗.

7.3. Potential Heuristics

Notice that Equation (7.1) depends on the state considered. Therefore, heuristics based on that equation
need to solve the LP anew for every state encountered during search. Potential heuristics require solving
just a single LP. The LP solution is used to compute weights (potentials) that, when combined in a linear
fashion, define an admissible heuristic. Following Pommerening et al. (2017), formally:

Definition 7.5 (Potential Heuristic). Let C be a set of conjunctions. Let 𝑤 : C ↦→ ℝ be a weight function.
The potential heuristic induced by C and𝑤 is the function

ℎpot
C,𝑤 (𝑠) =

∑
𝑐∈C,𝑐⊆𝑠

𝑤 (𝑐)

Given that ℎpot
C,𝑤 (𝑠) < ∞ holds for all states by definition, potential heuristics at first glance do not seem

suitable for unsolvability detection. We come back to this issue in our convergence analysis below.

Note that the weights can take the full range of reals. Assigning negative weights to some conjunctions
can yield larger admissible heuristic values for some states, by compensating for the assignment of larger
weights to other conjunctions. However, this also means the heuristic values of some states might be neg-
ative. To obtain non-negative estimates while preserving admissibility, one can simply take the maximum
of the heuristic and 0.

Clearly, not every weight function𝑤 yields an admissible potential heuristic ℎpot
C,𝑤 . This raises the question

of how to find suitable𝑤 for a given C. This has been addressed by Pommerening et al. (2015) for single-
ton conjunctions, through an LP encoding of 𝑤 , guaranteeing goal-awareness and consistency, and thus
admissibility. Pommerening et al. (2017) extended this LP to general conjunctions. For pairs of facts, the
size of their LP encoding is still polynomially bounded in the size of Π. For arbitrary conjunctions, however,
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the LP representation may require an exponential number of variables. In fact, Pommerening et al. (2017)
have shown that for conjunctions of size larger than two, the construction of desired potential heuristics
is computationally hard. Here, we explore this direction further.

In Section 7.3.1, we revisit Pommerening et al.’s (2015) weight computation for singleton conjunctions.
In Section 7.3.2, we show that this computation applied to ΠC yields 𝑤 suitable for defining admissible
potential heuristics over arbitrary C. In Section 7.3.3, we analyze the convergence properties of this ap-
proach. In Section 7.3.4, we briefly discuss the relation to the state-equation heuristic. That relation will
serve as basis for our conjunction refinement method, presented in Section 7.4.

7.3.1. Admissible Fact Potential Heuristics

Plugged into the definition of consistency (Definition 2.7), ℎpot
C,𝑤 is consistent if and only if it holds for all

states 𝑠 ∈ SΠ and actions 𝑎 ∈ A(𝑠) applicable in 𝑠 that∑
𝑐∈C,𝑐⊆𝑠

𝑤 (𝑐) ≤
∑

𝑐∈C,𝑐⊆𝑠⟦𝑎⟧
𝑤 (𝑐) + 𝔠(𝑎)

When subtracting the𝑤 (𝑐) terms from the right-hand side, this becomes∑
𝑐∈C,𝑐⊆𝑠,𝑐⊈𝑠⟦𝑎⟧

𝑤 (𝑐) −
∑

𝑐∈C,𝑐⊈𝑠,𝑐⊆𝑠⟦𝑎⟧
𝑤 (𝑐) ≤ 𝔠(𝑎) (7.5)

Suppose that Π is in TNF, and let F be its set of facts. To simplify notation, in the following, we treat facts
and singleton conjunctions interchangably. Notice that, given (TNF1), the action descriptions alone fully
determine the change of every fact 𝑝 ∈ F from 𝑠 to 𝑠⟦𝑎⟧, i.e., 𝑝 ∈ 𝑠 and 𝑝 ∉ 𝑠⟦𝑎⟧ hold iff 𝑎 ∈ CONS(𝑝),
respectively 𝑝 ∉ 𝑠 and 𝑝 ∈ 𝑠⟦𝑎⟧ hold iff 𝑎 ∈ PROD(𝑝). Therefore, for C = F , one can drop the state 𝑠
from Equation (7.5), obtaining an inequation that solely depends on the action 𝑎:∑

𝑝∈F : 𝑎∈CONS(𝑝)
𝑤 (𝑝) −

∑
𝑝∈F : 𝑎∈PROD(𝑝)

𝑤 (𝑝) ≤ 𝔠(𝑎) (7.6)

Moreover, by (TNF2), there is only a single goal state 𝑠∗ = G. So, the weights𝑤 ensure goal-awareness if∑
𝑝∈G

𝑤 (𝑝) ≤ 0 (7.7)

Equations (7.6) and (7.7) together define an LP, denoted POT[Π], with |A| + 1 constraints, and |F |
variables representing the weights𝑤 , i.e., an LP whose size is linear in the size of Π. Every feasible solution
to this LP yields an admissible potential heuristic. The objective function in POT[Π] can be freely chosen.
Seipp et al. (2015) have explored various alternatives. We specify our choices below.

Example 7.5. Reconsider Example 7.2. Consider the weight function𝑤 (𝑠𝑎𝑚𝑝 ↦→ 𝑥) = 2 for 𝑥 ∈ {𝐴1, 𝐴2 },
𝑤 (𝑠𝑎𝑚𝑝 ↦→ 𝑅) = 1, and 𝑤 (𝑝) = 0 for the remaining facts. Equation (7.7) is trivially satisfied. Further
notice that 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 and 𝑑𝑟𝑜𝑝 are the only actions with non-0 terms on the left-hand side of Equation (7.6).
𝑐𝑜𝑙𝑙𝑒𝑐𝑡 (𝑥) consumes 𝑠𝑎𝑚𝑝 ↦→ 𝑥 and produces 𝑠𝑎𝑚𝑝 ↦→ 𝑅, hence𝑤 (𝑠𝑎𝑚𝑝 ↦→ 𝑥) −𝑤 (𝑠𝑎𝑚𝑝 ↦→ 𝑅) ≤ 1, i.e.,
Equation (7.6) is satisfied. Vice versa, 𝑑𝑟𝑜𝑝 (𝑥) consumes 𝑠𝑎𝑚𝑝 ↦→ 𝑅 and produces 𝑠𝑎𝑚𝑝 ↦→ 𝑥 , hence again
𝑤 (𝑠𝑎𝑚𝑝 ↦→ 𝑅) −𝑤 (𝑠𝑎𝑚𝑝 ↦→ 𝑥) ≤ 1. In conclusion, ℎpot

C,𝑤 is consistent and goal-aware. It achieves an initial
state value ℎpot

C,𝑤 (I) = 𝑤 (𝑠𝑎𝑚𝑝 ↦→ 𝐴2) = 2 = ℎseq(I).
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7.3.2. Potential Heuristics Over Arbitrary Conjunctions

Let C now be an arbitrary set of conjunctions. We next show that the approach from Section 7.3.1, applied
to ΠC , yields 𝑤 defining an admissible potential heuristic ℎpot

C,𝑤 . This is straightforward, in principle, but
subtleties arise from the ΠC construction.

TNF Transformation

First, as discussed, the POT-based weight computation requires tasks in TNF. However, even under the
assumption that the base task Π is in TNF, this still does not necessarily hold for ΠC . For instance, assume
that Π contains an action 𝑎 that changes the value of a single variable 𝑣 from 𝑑 to 𝑑′, with no other
preconditions. Then, the action’s occurrence 𝑎∅ in ΠC sets 𝜋𝑐 ↦→ ⊥ for all conjunctions 𝑐 ∈ C with
𝑣 ↦→ 𝑑 ∈ 𝑐, but 𝑎∅ has no precondition on 𝜋𝑐 unless 𝑐 = { 𝑣 ↦→ 𝑑 }. Therefore, ΠC violates (TNF1).

Before we can apply POT to ΠC , we hence must first bring it into TNF. To this end, we can simply leverage
the standard transformation method (Pommerening and Helmert, 2015). When starting from Π already
in TNF, this boils down to the following steps

1. add an auxiliary value ∗ to the domain of every 𝜋𝑐 variable;

2. for each 𝜋𝑐 , create 0-cost actions 𝑢𝑛𝑠𝑒𝑡𝑐,𝑑 for 𝑑 ∈ { ⊤,⊥ } with precondition { 𝜋𝑐 ↦→ 𝑑 } and effect
{ 𝜋𝑐 ↦→ ∗ };

3. for every action 𝑎𝐶 ∈ AC and effect 𝜋𝑐 ↦→ ⊥ ∈ eff(𝑎𝐶 ) where 𝜋𝑐 ∉ vars(pre(𝑎𝐶 )), add 𝜋𝑐 ↦→ ∗ to
the precondition.

Provided that the base action 𝑎 satisfies (TNF1), for all effects 𝜋𝑐 ↦→ ⊤ ∈ eff(𝑎𝐶 ), it holds that vars(𝑐) ⊆
vars(regress(𝑐, 𝑎)), and thus 𝑐 ∦ regress(𝑐, 𝑎). So, by definition, 𝜋𝑐 ↦→ ⊥ ∈ pre(𝑎𝐶 ), and there is no
need for adding the auxiliary precondition 𝜋𝑐 ↦→ ∗. Moreover, given that the original goal G is defined
for all variables, it holds for all 𝑐 ∈ C that one of 𝑐 ⊆ G or 𝑐 ∦ G is satisfied, i.e., GC already satisfies
(TNF2). In conclusion, the task ΠCTNF resulting after the above steps is in TNF. Pommerening and Helmert
(2015) have shown that this TNF transformation does not affect consistent and goal-aware fact potential
heuristics, i.e., a fact potential heuristic is consistent and goal-aware for ΠC if and only if it is for ΠCTNF.

From POT[ΠCTNF] to Conjunction Potentials

Denote by F C the set of facts from ΠCTNF. Let𝑤 : F C → ℝ be any weight function satisfying POT[ΠCTNF],
and let ℎpot

F C,�̂� [Π
C
TNF] be the corresponding potential heuristic over the ΠCTNF compilation. We want to find

conjunction weights 𝑤 : C → ℝ such that ℎpot
C,𝑤 (𝑠) = ℎpot

F C,�̂� [Π
C
TNF] (𝑠C) holds for all states 𝑠 ∈ SΠ. The

𝜋𝑐 ↦→ ⊥ facts however cause complications.

We assume that C contains all singleton conjunctions. Let 𝑣 ∈ V be any variable of the original task Π,
and let

𝑊 =
∑

𝑐∈C,|𝑐 |>1
𝑤 (𝜋𝑐 ↦→ ⊥)

be the sum of all 𝜋𝑐 ↦→ ⊥ fact weights (recall that singleton conjunctions are not represented explicitly in
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ΠCTNF). Consider the following𝑤 :

𝑤 (𝑐) =

𝑤 (𝑣 ↦→ 𝑑) +𝑊, if 𝑐 = { 𝑣 ↦→ 𝑑 }
𝑤 (𝑣 ↦→ 𝑑), if 𝑐 = { 𝑣 ↦→ 𝑑 } and 𝑣 ≠ 𝑣

𝑤 (𝜋𝑐 ↦→ ⊤) −𝑤 (𝜋𝑐 ↦→ ⊥), otherwise

In words,𝑊 is added to the weights of all 𝑣-facts, and the weight of a conjunction is set to the difference
between its 𝜋𝑐 ↦→ ⊤ and 𝜋𝑐 ↦→ ⊥ fact weights. The former ensures that𝑊 is included in ℎpot

C,𝑤 (𝑠) for
every state 𝑠. The latter removes from𝑊 the 𝜋𝑐 ↦→ ⊥ fact weights of the conjunctions satisfied in 𝑠. In
conclusion

Lemma 7.2. Let C be an arbitrary set of conjunctions that contains at least all singleton conjunctions, and
𝑤 be a feasible solution to POT[ΠCTNF]. Then,𝑤 as defined above satisfies

ℎpot
C,𝑤 (𝑠) = ℎpot

F C,�̂� [Π
C
TNF] (𝑠C)

for all states 𝑠 ∈ SΠ.

Proof.

ℎpot
C,𝑤 (𝑠) =

∑
𝑣∈V

𝑤 (𝑣 ↦→ 𝑠 [𝑣]) +
∑

𝑐∈C,|𝑐 |>1,𝑐⊆𝑠
𝑤 (𝑐)

=𝑊 +
∑
𝑣∈V

𝑤 (𝑣 ↦→ 𝑠 [𝑣]) +
∑

𝑐∈C,|𝑐 |>1,𝑐⊆𝑠
(𝑤 (𝜋𝑐 ↦→ ⊤) −𝑤 (𝜋𝑐 ↦→ ⊥))

=
∑
𝑣∈V

𝑤 (𝑣 ↦→ 𝑠 [𝑣]) +
∑

𝑐∈C,|𝑐 |>1,𝑐⊆𝑠
𝑤 (𝜋𝑐 ↦→ ⊤) +

∑
𝑐∈C,|𝑐 |>1,𝑐⊈𝑠

𝑤 (𝜋𝑐 ↦→ ⊥)

= ℎpot
F C,�̂� [Π

C
TNF] (𝑠C)

□

Lemma 7.1 leads to the desired result:

Theorem 7.4. LetΠ be any task, and C be any set of conjunctions containing at least all singleton conjunctions.
Let𝑤 be any solution to POT[ΠCTNF], and𝑤 be the corresponding conjunction weight function, as defined above.
Then, ℎpot

C,𝑤 is consistent and goal-aware in Π.

POT Objective Function

It now only remains to specify POT’s objective function. We employ the following two variants presented
by Seipp et al. (2015). We specify them in terms of the fact weights 𝑤 in ΠCTNF, along the lines of the
previous discussion.

(O1) Maximizing the heuristic value of an individual state 𝑠:

max
∑
𝑣∈V

𝑤 (𝑣 ↦→ 𝑠 [𝑣]) +
∑

𝑐∈C,|𝑐 |>1,𝑐⊆𝑠
𝑤 (𝜋𝑐 ↦→ ⊤) +

∑
𝑐∈C,|𝑐 |>1,𝑐⊈𝑠

𝑤 (𝜋𝑐 ↦→ ⊥)
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(O2) Maximizing the average heuristic value over all states SΠ. This requires to normalize the weight
associated with a conjunction 𝑐 by the frequency of 𝑐, i.e., by the fraction of states in which 𝑐 is
satisfied. The frequency of 𝑐 is syntactically defined by

𝜆(𝑐) = (
∏

𝑣 ↦→𝑑∈𝑐
|D𝑣 |)−1

The optimization objective becomes

max
∑

𝑣∈V,𝑑∈D𝑣

𝜆(𝑣 ↦→ 𝑑) ·𝑤 (𝑣 ↦→ 𝑑)

+
∑

𝑐∈C,|𝑐 |>1
𝜆(𝑐) ·𝑤 (𝜋𝑐 ↦→ ⊤)

+
∑

𝑐∈C,|𝑐 |>1
(1 − 𝜆(𝑐)) ·𝑤 (𝜋𝑐 ↦→ ⊥)

We use the first objective function, (O1), to establish the connection to state-equation heuristics. We use
(O2) to encode the perfect heuristic as a potential heuristic. Note that, in general, both functions necessitate
a weight upper-bound in the presence of dead ends to prevent divergence. We will discuss this as part of
our convergence study in Section 7.3.3.

Summary

In summary, one can compute admissible potential heuristics for any conjunction set C via a detour to
ΠC . Pommerening et al.’s (2017) hardness result is reflected in the worst-case growth of ΠC . But, for
cases where ΠC grows polynomially in |C|, Theorem 7.4 shows that a desired potential heuristic can be
computed in polynomial time. In this sense, Theorem 7.4 identifies a sufficient criterion for the efficient
construction of potential heuristics.

It should be noted though that not every admissible potential heuristic over conjunctions C can be con-
structed from POT[ΠCTNF]. This is the case because Equation (7.6) in POT[ΠCTNF] does no longer form a
necessary condition for the consistency in Π: POT[ΠCTNF] enforces consistency over occurrences 𝑎𝐶 where
𝐶 does not fully specify the action application context, while this context is always completely defined
when considering Π’s transitions.

Example 7.6. Consider a task with binary variables 𝑣1 and 𝑣2 and the following components

• initial state I = { 𝑣1 ↦→ 0, 𝑣2 ↦→ 0 },

• goal G = { 𝑣1 ↦→ 1, 𝑣2 ↦→ 1 },

• two unit-cost actions: 𝑎1 changing the value of 𝑣1 from 0 to 1; and 𝑎2 changing the value of 𝑣2 from 0
to 1.

Suppose that C contains all singleton conjunctions, together with

• 𝑐1 = { 𝑣1 ↦→ 0, 𝑣2 ↦→ 0 }, and

• 𝑐2 = { 𝑣1 ↦→ 0, 𝑣2 ↦→ 1 }, and

• 𝑐3 = { 𝑣1 ↦→ 1, 𝑣2 ↦→ 0 }.
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Consider the potential heuristic with weights𝑤 (𝑣1 ↦→ 0) = 𝑤 (𝑣2 ↦→ 0) = 2,𝑤 (𝑐1) = −2,𝑤 (𝑐2) = 𝑤 (𝑐3) =
−1, and 𝑤 (𝑣1 ↦→ 1) = 𝑤 (𝑣2 ↦→ 1) = 0. Note that ℎpot

C,𝑤 = ℎ∗, and thus it is consistent and goal-aware.
However, there is no𝑤 that agrees with𝑤 on the singletons, while satisfying the constraints (7.6) in POT[ΠC>1TNF].
To see this, just consider the occurrence 𝑎∅1. Equation (7.6) becomes

𝑤 (𝜋𝑐1 ↦→ ∗) +𝑤 (𝜋𝑐2 ↦→ ∗) +𝑤 (𝑣1 ↦→ 0)
−𝑤 (𝜋𝑐1 ↦→ ⊥) −𝑤 (𝜋𝑐2 ↦→ ⊥) −𝑤 (𝑣1 ↦→ 1) ≤ 1

(7.8)

As per the 0-cost 𝑢𝑛𝑠𝑒𝑡𝑐,⊥ actions, it must be

𝑤 (𝜋𝑐 ↦→ ⊥) ≤ 𝑤 (𝜋𝑐 ↦→ ∗)

for all conjunctions 𝑐. This together with (7.8) yields

𝑤 (𝑣1 ↦→ 0) −𝑤 (𝑣1 ↦→ 1) ≤ 1

which is clearly violated if𝑤 (𝑣1 ↦→ 0) = 2 and𝑤 (𝑣1 ↦→ 1) = 0.

7.3.3. Convergence

We next turn our attention to the convergence property, i.e., does there always exist C for which ℎpot
C,𝑤

obtained from POT[ΠCTNF] is perfect? The answer is “yes”, under objective (O2) maximizing the average
heuristic value. However, the presence of dead-end states causes complications.

Obviously, the value ℎ∗(𝑠) = ∞ for a dead end 𝑠 cannot be produced as part of the solution to an LP.
Instead, the weights in the LP may diverge: POT[Π] is not guaranteed to have an optimal solution. To see
this, consider that no transition path starting from a dead end ever reaches the goal; so, for conjunctions 𝑐
true only in dead ends, the weight can be made arbitrarily high while still satisfying consistency. Intuitively,
the LP encoding imposes constraints on solution paths over conjunctions, and diverges where such a path
does not exist. For that reason, Seipp et al. (2015) introduce a modified LP with the additional constraints

𝑤 (𝑝) ≤ 𝑈 (7.9)

for all 𝑝 ∈ F , where𝑈 ∈ ℝ is a user-defined parameter. We denote the modified LP by POT[Π,𝑈 ].

Intuitively,𝑈 is a cut-off value on the cost of solutions considered in the LP. Convergence is achieved below
𝑈 :

Theorem 7.5. Let Π be any task in TNF, and 𝑈 ∈ ℝ+0. Then there exists a set C of conjunctions s.t., with 𝑤
obtained from any solution to POT[ΠCTNF,𝑈 ] optimal for (O2),ℎpot

C,𝑤 (𝑠) = ℎ∗(𝑠) for all states 𝑠 withℎ∗(𝑠) ≤ 𝑈 .

Proof sketch. A set of conjunctions satisfying the claim is again C = SΠ, the set of all states in the task.
POT[ΠCTNF,𝑈 ] then boils down to an LP encoding of paths in the state space of Π, with Equation (7.6)
bounding the value of a state by its successor states. Objective (O2) makes sure that, up to 𝑈 , the exact
shortest path length is returned. □

Appendix B.3.3 contains the full proof.

A simple trick now suffices to obtain ℎ∗ globally. We pessimistically interpret the cut-off 𝑈 as a dead-end
indicator, defining ℎpot

C,𝑤,𝑈 (𝑠) = ℎpot
C,𝑤 (𝑠) if ℎ

pot
C,𝑤 (𝑠) < 𝑈 and ℎpot

C,𝑤,𝑈 (𝑠) = ∞ otherwise. We then need to
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choose a cut-off that will never apply on solvable states, 𝑈 > ℎ∗(𝑠) for all 𝑠 with ℎ∗(𝑠) < ∞. This is the
case for

𝑈 ∗ =

(∏
𝑣∈V
|D𝑣 | ·max

𝑎∈A
𝔠(𝑎)

)
+ 1

Corollary 7.2. Let Π be any task in TNF. Then there exists a set C of conjunctions s.t., with𝑤 obtained from
a solution to POT[ΠCTNF,𝑈 ∗] optimal for (O2), ℎpot

C,𝑤,𝑈 ∗ = ℎ∗.

For the simpler purpose of detecting all dead-end states, it is not necessary to use the exceedingly large
constant 𝑈 ∗. We instead consider the task Π0 identical to Π except that all actions are assigned cost 0.
Clearly, ℎ∗ [Π0] (𝑠) = ∞ iff ℎ∗(𝑠) = ∞, i.e., ℎ∗ [Π0] detects all dead ends in Π. But, all solvable states 𝑠
have ℎ∗ [Π0] (𝑠) = 0, so setting 𝑈 ∗ = 𝜖 to any 𝜖 > 0 results in ℎpot

C,𝑤,𝑈 ∗ that converges to ℎ
∗ [Π0] as per

Corollary 7.2. We will denote the unsolvability potential heuristics constructed in this way as Upot
C,𝑤 . As per

the admissibility and consistency of ℎpot
C,𝑤,𝑈 , Upot

C,𝑤 is a valid, transitive, unsolvability detector.

Example 7.7. Reconsider Example 7.1. To match the (TNF2) requirement, suppose for simplicity that G =
{ 𝑟𝑜𝑣 ↦→ 𝐵,𝑏𝑎𝑡 ↦→ 0 }; (TNF1) is already satisfied by all actions. Assume that all actions have cost 0. Consider
the singleton conjunctions, and weights 𝑤 (𝑏𝑎𝑡 ↦→ 0) = 1, 𝑤 (𝑟𝑜𝑣 ↦→ 𝐴2) = 1, 𝑤 (𝑟𝑜𝑣 ↦→ 𝐵) = −1, and
𝑤 (𝑝) = 0 for the remaining facts. ℎpot

C,𝑤 is goal-aware since ℎpot
C,𝑤 (G) = −1 + 1 = 0.𝑚𝑜𝑣𝑒 (𝐴2, 𝐴1, 1) and

𝑚𝑜𝑣𝑒 (𝐴1, 𝐵, 1) are the only actions whose left-hand side of Equation (7.6) could be positive;𝑚𝑜𝑣𝑒 (𝐴2, 𝐴1, 1)
because it consumes 𝑟𝑜𝑣 ↦→ 𝐴2, and𝑚𝑜𝑣𝑒 (𝐴1, 𝐵, 1) because it produces 𝑟𝑜𝑣 ↦→ 𝐵. Since both actions produce
𝑏𝑎𝑡 ↦→ 0, the weights cancel out, showing that ℎpot

C,𝑤 is consistent. Since ℎpot
C,𝑤 (I) = 1, Upot

C,𝑤 (I) = ∞; and
indeed I is a dead end.

7.3.4. Relation to the State Equation

Pommerening et al. (2015) have shown that, for TNF tasks Π, POT[Π] under objective (O1) for a state
𝑠 is the dual of the state-equation LP for 𝑠. By the strong duality theorem for linear programs, the two
heuristics therefore have identical values on 𝑠.

However, beyond individual states, the heuristics differ: on states 𝑠′ other than 𝑠, the potential heuristic
merely gives a lower bound on ℎseq(𝑠′). In fact, there exist tasks and conjunction sets where no potential
heuristic ℎpot

C,𝑤 equals ℎseq [ΠC] on all states.

Example 7.8. Consider a task with variables 𝑣1 and 𝑣2, domains D𝑣1 = D𝑣2 = {0, 1, 2}, and the following
components

• goal G = { 𝑣1 ↦→ 2, 𝑣2 ↦→ 2 }

• two 0-cost actions: 𝑎1 changing the values of both 𝑣1 and 𝑣2 from 0 to 2; and 𝑎2 changing the values
of 𝑣1 and 𝑣2 from 1 to 2.

The initial state is not important. Every state which does not assign both 𝑣1 and 𝑣2 to the same value is a
dead end. Consider the set of all singleton conjunctions C. In order to satisfy the state equation constraints for
𝑣1 ↦→ 2 and 𝑣2 ↦→ 2 in a non-goal state, one of 𝑎1 and 𝑎2 must be executed at least once. However, since 𝑎1
consumes 𝑣𝑖 ↦→ 0 for 𝑖 ∈ { 1, 2 }; and 𝑎2 consumes 𝑣𝑖 ↦→ 1 for 𝑖 ∈ { 1, 2 }; and none of them is produced by
any action, there exists a feasible solution only for the solvable states, i.e., ℎseq recognizes all dead ends.

Consider the dead ends 𝑠1 = { 𝑣1 ↦→ 0, 𝑣2 ↦→ 1 } and 𝑠2 = { 𝑣1 ↦→ 1, 𝑣2 ↦→ 0 }. Observe that there is no
consistent and goal-aware unsolvability potential heuristic Upot

C,𝑤 which recognizes both 𝑠1 and 𝑠2. Consistency
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requires that 𝑤 (𝑣1 ↦→ 0) + 𝑤 (𝑣2 ↦→ 0) ≤ 0, as per action 𝑎1, and 𝑤 (𝑣1 ↦→ 1) + 𝑤 (𝑣2 ↦→ 1) ≤ 0, as per
𝑎2. In order that Upot

C,𝑤 recognizes both 𝑠1 and 𝑠2, it must hold that 𝑤 (𝑣1 ↦→ 0) + 𝑤 (𝑣2 ↦→ 1) > 0 and
𝑤 (𝑣1 ↦→ 1) +𝑤 (𝑣2 ↦→ 0) > 0. There obviously does not exist𝑤 that satisfies all 4 inequations. The example
can be easily extended to potential heuristics ℎpot

C,𝑤 in general.

7.4. Conflict Analysis: Refining the State Equation

We have shown that the state-equation heuristic and potential heuristics converge to ℎ∗ for suitable con-
junctions C. Thus, both are capable of representing arbitrary sets of dead ends, and therewith fulfill a
necessary prerequisite of the conflict-driven learning search framework. What is missing is a concrete re-
finement procedure, i.e., given a conflict identified by Algorithm 5.1 or Algorithm 5.2, a set of dead-end
states 𝑆 , how to compute the conjunctions C to recognize all those states? The set of conjunctions used to
proof Corollaries 7.1 and 7.2 could be used in principle, but are impractical.

In the following, we introduce a counterexample-guided refinement procedure selecting conjunctions X
suitable to make Useq [ΠC∪X] (𝑠) = ∞ for any dead end 𝑠. To recognize all dead ends of the conflict
component 𝑆 , it suffices to apply this method to the root state 𝑠 of 𝑆 , as per the transitivity property of
Useq. To refine potential heuristics, we exploit the relation to the state-equation heuristic, and use the
exact same procedure for updating C. More precisely, given that a single potential heuristic is in general
insufficient to cover the same dead ends as Useq, we keep an entire collection of such heuristics. To test
whether a state 𝑠 is a dead end, we consult every potential heuristic in the collection, returning ∞ if
Upot
C,𝑤 (𝑠) = ∞ holds for at least one of them. To refine the collection on a conflicts 𝑆 , we first compute
X so that Useq [ΠC∪X] (𝑠) = ∞ for all 𝑠 ∈ 𝑆 . Afterwards, we add a new unsolvability potential heuristic
Upot
C∪X,𝑤 to the collection, so that Upot

C∪X,𝑤 (𝑠) = ∞ for the conflict root state 𝑠. The weights 𝑤 suiting
these needs can be obtained from any solution to POT[ΠC∪XTNF , 𝜖] optimal for (O1) and that state, as per
Useq [ΠC∪X] (𝑠) = ∞ and the duality relation. Due to transitivity, this is enough to recognize all conflict
states 𝑠 ∈ 𝑆 .

We next spell out the details of the state-equation refinement method, computing the desired X. We
assume Π to be in TNF. Suppose C is a set of conjunctions, and 𝑠 is dead end where Useq [ΠC] (𝑠) ≠ ∞. We
need to compute X such that Useq [ΠC∪X] (𝑠) = ∞. We do so by iteratively finding a conjunction 𝑥 ∉ C
whose SEQ constraint is not satisfied by some solution to the LP SEQ[ΠC] (𝑠) underlying Useq [ΠC] (𝑠). We
replace C by C ∪ { 𝑥 }, and repeat the process until Useq [ΠC] (𝑠) = ∞ is satisfied. Since C is extended in
every iteration, Corollary 7.1 guarantees that the termination condition holds eventually.

It remains to show how to choose 𝑥 . The refinement is based on a concrete solution COUNT to SEQ[ΠC] (𝑠).
Consider (1) the ΠC actions selected by COUNT, i.e., those 𝑎𝐶 ∈ AC where COUNT𝑎𝐶 > 0. Additionally con-
sider (2) two auxiliary actions 𝑎𝐶𝑠

𝑠 and 𝑎𝐶GG , representing the current state and the goal, i.e., pre(𝑎𝑠) = ∅,
eff(𝑎𝑠) = 𝑠; pre(𝑎G) = G, and eff(𝑎G) = ∅. Denote by ACCOUNT the actions from (1) and (2). Our key
observation is that we can find an action 𝑎

𝐶  ∈ ACCOUNT whose precondition is not supported by ACCOUNT,
i.e., 𝑎𝐶  such that

(†) for all 𝑎𝐶 ∈ ACCOUNT, regress(regress(𝐶 , 𝑎 ), 𝑎) ⊈ regress(𝐶, 𝑎)

Recall that the actions 𝑎𝐶 in ΠC enumerate action occurrences, and that the precondition pre(𝑎𝐶 ) carries
the context regress(𝐶, 𝑎) so to satisfy the conjunctions from 𝐶.
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To show the existence of an action (†), consider the digraph with nodesACCOUNT, and edges 𝑎𝐶1
1 → 𝑎𝐶2

2 , for
every 𝑎𝐶1

1 , 𝑎𝐶2
2 ∈ A

C
COUNT such that regress(regress(𝐶2, 𝑎2), 𝑎1) ⊆ regress(𝐶1, 𝑎1), i.e., where the action

occurrence 𝑎𝐶1
1 makes true the preconditions of 𝑎𝐶2

2 . Abusing notion, and using regress(𝐶G, 𝑎G) = G,
observe that every path in this graph from 𝑎𝐶𝑠

𝑠 to 𝑎
𝐶G
G corresponds to a plan for 𝑠. Since 𝑠 is a dead

end, such a path cannot exist. Therefore, there exists at least one node which is not connected to 𝑎𝐶𝑠
𝑠 .

If (†) is not satisfied for any 𝑎
𝐶  ∈ ACCOUNT, then every node must have an incoming edge. But then,

those actions inACCOUNT that are disconnected from 𝑎𝐶𝑠
𝑠 must form at least one cycle. We construct a cycle

𝑎𝐶1
1 → 𝑎𝐶2

2 . . . 𝑎𝐶𝑛−1
𝑛−1 → 𝑎𝐶𝑛

𝑛 → 𝑎𝐶1
1 such that

vars(regress(𝐶𝑖 , 𝑎𝑖)) = V (7.10)

for all 1 ≤ 𝑖 ≤ 𝑛. Recall that, by the construction of the graph,

regress(regress(𝐶𝑗 , 𝑎 𝑗 ), 𝑎𝑖) ⊆ regress(𝐶𝑖 , 𝑎𝑖) (7.11)

for all 1 ≤ 𝑖 < 𝑛 and 𝑗 = 𝑖 + 1, and for 𝑖 = 𝑛 and 𝑗 = 1.

Such a cycle exists because of the TNF assumption. To see this, note that by (TNF1), it holds that vars(𝑃) ⊆
vars(regress(𝑃, 𝑎)) for all variable assignments 𝑃 and actions 𝑎 ∈ A[𝑃]. For the auxiliary node 𝑎𝐶GG , we
have regress(𝐶G, 𝑎G) = G, so by (TNF2), vars(regress(𝐶G, 𝑎G)) = V. Let 𝑎𝐶 be a node with an edge going
into 𝑎𝐶GG . Then, 𝑎𝐶 ≠ 𝑎𝐶𝑠

𝑠 , by assumption, and regress(G, 𝑎) ⊆ regress(𝐶, 𝑎), by the definition of the graph,
i.e., vars(regress(𝐶, 𝑎)) = V. Iterating this procedure will exhaust the nodes from ACCOUNT \ { 𝑎

𝐶𝑠
𝑠 }, and

thus we must find the desired cycle eventually.

Having found such a cycle, notice that as per Equations (7.10) and (7.11), every fact of ΠC (including
the 𝜋𝑐 facts) is produced along 𝑎𝐶1

1 , . . . , 𝑎𝐶𝑛
𝑛 as often as it is consumed, and vice versa. Therefore, we can

obtain another feasible solution COUNT′ to SEQ[ΠC] such that 𝑎𝐶𝑖
𝑖 ∉ ACCOUNT′, for at least one 1 ≤ 𝑖 ≤ 𝑛,

by reducing all COUNT
𝑎
𝐶𝑗
𝑗

values by COUNT
𝑎
𝐶𝑖
𝑖
, for the 𝑖 with minimal count. Repeatedly applying this step

will eventually remove all cycles, leaving us with the desired action 𝑎𝐶  .

Finally, let
𝑃 = regress(𝐶 , 𝑎 )

denote the context-augmented precondition of 𝑎 . Consider ΠC′ for C′ = C ∪ { 𝑃 }, and the 𝜋𝑃 -variable
corresponding to 𝑃 . Since Π is in TNF, 𝜋𝑃 ↦→ ⊤ is consumed by 𝑎𝐶  . However, by (†), COUNT does not in-
clude any action that produces 𝜋𝑃 ↦→ ⊤. In other words, COUNT violates the SEQ constraint corresponding
to 𝜋𝑃 ↦→ ⊤ in SEQ[ΠC′]. Hence, 𝑃 ∉ C, and we can set 𝑥 = 𝑃 .

We employ two optimizations:

(R1) We minimize 𝑃 : starting with 𝑥 := 𝑃 , we iteratively remove facts 𝑝 from 𝑥 so long as the necessary
properties are preserved.

(R2) We consider not a single 𝑎𝐶  , but all actions with that profile, and add a conjunction 𝑥 for each. This
results in fewer refinement iterations.
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7.5. Learning Effectiveness: State Equation vs. Critical-Path Heuristics

We have established LP-based heuristics as an alternative to the critical-path unsolvability detector UC
for the conflict-driven learning search framework. Both kinds of heuristics share the principal ability to
represent any dead end via appropriate sets of conjunctions C. Yet, they may differ substantially in the
concrete sets C suitable for this purpose. For the same set of conjunctions, the heuristics are generally
incomparable, i.e., either one may recognize dead ends the other one does not. Examples 7.1 and 7.7
have already shown instances in favor of the LP heuristics, and it is straightforward to construct examples
showing the opposite direction. However, this still leaves the question regarding the relation of the amount
of additional information needed by either approach to recognize the same dead ends. Besides of theoret-
ical interest, such comparison may give hints for the automatic selection of the unsolvability detector best
suited for the particular planning task at hand. In the following, we provide two examples, showing that
if UC (𝑠) = ∞ = Useq [ΠC′] (𝑠), for some dead end 𝑠, then

• |C| must be exponential in
��ΠC′ �� (Proposition 7.1), and

•
��ΠC′ �� must be exponential in |C| (Proposition 7.2).

We relate |C| and
��ΠC′ �� (instead of |C| and |C′ |) to account for the fact UC (𝑠) = ∞ can be tested in

time polynomial in |C|, while computing Useq [ΠC′] (𝑠) is only polynomial in
��ΠC′ ��, which in turn might

be exponential in |C′ |. The exploitation of these results remains a topic for future work. We next spell out
the intuitions behind our constructions. The detailed proofs are available in Appendix B.3.2.

Proposition 7.1. There exist planning tasks Π, dead-end states 𝑠, and sets of conjunctions C such that
Useq [ΠC] (𝑠) = ∞, but in order that UC′ (𝑠) = ∞, |C′ | must be exponential in

��ΠC ��.
Proof sketch. This happens for example in a task with 𝑛 binary variables 𝑣𝑖 whose values must be flipped
from 0 to 1. Each 𝑣𝑖 is flipped individually, but each flip decrements a counter variable 𝑢 by one. Assigning
this counter variable 𝑢 to 𝑛 − 1 makes the task unsolvable. The state-equation heuristic recognizes this,
because every flip consumes some 𝑢 ↦→ 𝑘 fact, but each one of those can be produced just a single time,
what limits the production of the 𝑣𝑖 ↦→ 1 facts to at most 𝑛 − 1 different 𝑣𝑖 variables. However, UC needs
to enumerate in C, for each 1 ≤ 𝑘 < 𝑛, all possible combinations of 𝑘 𝑣𝑖 ↦→ 1 assignments and 𝑢 ↦→ 𝑛−𝑘 .
Omitting just a single such combination allows to construct a regression trace from the goal that can be
split into individually solvable parts. □

Proposition 7.2. There exist planning tasks Π, sets of conjunctions C, and dead-end states 𝑠, where UC (𝑠) =
∞, but in order that Useq [ΠC′] (𝑠) = ∞,

��ΠC′ �� must be exponential in |C|.

Proof sketch. Such a planning task can be constructed from𝑛 ternary variables 𝑣𝑖 . The task is designed such
that none of them can be assigned to 1when starting from the initial state. The goal is to have 𝑣𝑖 ↦→ 1 for all
𝑖. The 𝑣𝑖 variables can freely change their values between 0 and 2, creating exponentially many reachable
states. But setting any 𝑣𝑖 to 1 is possible only via an unreachable prevail condition, requiring 𝑣𝑗 ↦→ 1 for
some other 𝑗 . U1 recognizes the initial state as dead end, as due to the cyclic dependency between the
𝑣𝑖 ↦→ 1 and 𝑣𝑗 ↦→ 1 facts, none of them is reachable even under U1’s relaxing assumptions. On the other
hand, in order that Useq [ΠC] (I) = ∞, C must contain for each reachable state and 𝑖 ≠ 𝑗 a conjunction 𝑐
where either (i) { 𝑣𝑖 ↦→ 1, 𝑣𝑗 ↦→ 0 } ⊆ 𝑐, or (ii) { 𝑣𝑖 ↦→ 𝑠 [𝑣𝑖], 𝑣𝑗 ↦→ 0 } ⊆ 𝑐 to cover the prevail conditions.
ΠC then contains an action occurrence of the action setting 𝑣𝑗 to 0, for all subset-combinations of those
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conjunctions. Hence,
��AC �� is exponential. Note though that |C| itself does not need to be exponential, as

it suffices that C contains just the aforementioned pairs. □

7.6. Experimental Evaluation

We first describe the general experiment setup (Section 7.6.1). Section 7.6.2 addresses a particularity
in our conjunction-set refinement method that turned out to have a crucial impact on performance. Sec-
tion 7.6.3 discusses our main empirical findings.

7.6.1. Experiment Setup

The implementation is based on our conflict-driven learning extension of FAST DOWNWARD (FD) (Helmert,
2006). The source code is publicly available.1 We consider a similar setup as in Chapter 6. We focus on
proving unsolvability, where dead-end detection has (naturally) the largest impact. We use the UIPC’16
benchmarks, as well as the unsolvable resource-constrained (RCP) benchmarks (Nakhost et al., 2012;
Hoffmann et al., 2014). All experiments were run on machines equipped with Intel Xeon E5-2660 CPUs,
using runtime (memory) limits of 30 minutes (4 GB).

In all our configurations, we initialize C to the singleton conjunctions, yet explicitly represent in ΠC only
the non-singletons. We experiment with the following three variants:

CISEQ: We apply refinement, offline, before search, adding new conjunctions into C until either hitting
a size limit (see below) or proving the task unsolvable, Useq [ΠC] (I) = ∞. The subsequent search
uses Useq [ΠC] for dead-end pruning, without generating new conjunctions.

CSSEQ: Conjunctions are learned online, during search, running DFS as per Algorithm 5.2 equipped with
Useq [ΠC] for unsolvability detection and conflict refinement.

CSPOT: Similar to CSSEQ, but using potential heuristics. Wemaintain and refine a collection of such heuris-
tics, as described in Section 7.4.

Similar to earlier works on theΠC-compilation (Keyder et al., 2014), to cope with the worst-case explosion,
we impose a size limit 𝛼 on the ratio

��AC ��/|A|. Once ΠC reaches the limit 𝛼 , we disable the generation
of new conjunctions. We experimented with 𝛼 ∈ { 2, 4, 8, . . . , 1024,∞ }, where for 𝛼 = ∞ the size of ΠC
is not limited.

We compare these variants to the state-equation heuristic SEQ over just the singleton conjunctions; to
an unsolvability potential heuristic POT over singleton conjunctions, whose weights are obtained from a
solution to the POT LP optimal for (O1) and the initial state; to the dead-end PDB heuristic component
of UIPC’16 winning AIDOS planning system (Pommerening and Seipp, 2016; Seipp et al., 2016); and to
dead-end learning DFS via UC using neighbors refinement.

Given the issue of floating point precision errors, to experimentally verify that the unsolvability potential
heuristics do not wrongly flag states as dead ends, we executed separate test runs, checking whether
Useq [ΠC] (𝑠) = ∞ whenever Upot

C,𝑤 (𝑠) = ∞ for some state 𝑠. In all our runs, this was always the case. In
the actual experiments below, this test has been disabled.

1https://doi.org/10.5281/zenodo.6992688

https://doi.org/10.5281/zenodo.6992688
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Figure 7.2.: Coverage (number of instances proved unsolvable), in %, as a function of time in seconds for different
variable orders in conjunction generation, see text.

7.6.2. Conjunction Set Refinement: On the Order In Which To Remove Facts

Figure 7.2 sheds light on an implementation detail that turns out to be important. The optimization (R1)
in our refinement method (Section 7.4) leaves open the order in which to remove facts 𝑝 from 𝑥 . We make
this choice by fixing a variable order a priori. That order has a large impact on performance. Figure 7.2
compares the results for CISEQ and 𝛼 = ∞, for five randomly generated orders, picking the per-instance
best, median, and worst variable order. The variance in coverage is large.

To counteract this brittleness, all our configurations in what follows combine the five variable orders, main-
taining for each a separate conjunction set. Refinement works on all these sets, interleaving the individual
refinement steps and stopping as soon as any of them succeeds. As can be seen in Figure 7.2 (“seeds
combined”), this performs almost as well as the hypothetical per-instance best configuration. Considering
fewer orders negatively affects coverage. Coverage remains stable for up to 10 orders, but starts to drop
off eventually due to the additional overhead introduced with every order.

7.6.3. Discussion

Table 7.1 shows our main coverage results. Consider first the comparison of our algorithms to the baselines,
SEQ and POT, that use the same heuristics but over the singleton conjunctions only, without any refinement.
On the UIPC benchmarks, SEQ and POT dominate in the overall, but are outperformed by our techniques
in DocTransfer, NoMystery, and Rovers. On the RCP benchmarks, our techniques are vastly better. These
observations hold regardless of our configuration, with the single exception of CISEQ in UIPC Rovers. We
remark that the bad performance of our methods in the BagGripper and BagTransport domains is only
due to the overhead of maintaining five different conjunction sets (cf. above); when maintaining a single
set C, we get the same coverage here as SEQ respectively POT.

Considering Useq on the initial state only, without vs. with learning (the rightmost two columns), shows
that the learned larger conjunctions yield a dramatic increase in unsolvability-detection power, despite the
quick-or-not-at-all performance profile observed in Figure 7.2. Indeed, the number of conjunctions needed
to prove I unsolvable here is typically small. The maximal conjunction-fact ratio |C|/

��F Π
�� required is
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CSSEQ CSPOT CISEQ
Domain # Blind U1 PDB SEQ POT UC 128 256 ∞ 128 256 ∞ 128 256 ∞ ISEQ

Unsolvability IPC (UIPC) 2016 Benchmarks
BagBarman 20 12 8 12 4 12 0 0 0 0 0 0 0 0 0 0 0
BagGripper 25 4 3 3 14 8 2 2 2 2 2 2 2 2 2 2 14
BagTransport 29 7 6 7 22 22 6 19 19 19 19 19 19 19 19 19 22
Bottleneck 25 10 21 19 25 25 9 25 25 25 25 25 25 25 25 25 25
CaveDiving 25 7 7 7 8 8 8 7 7 2 4 3 2 7 7 5 1
ChessBoard 23 5 5 5 23 23 2 23 23 23 23 23 23 23 23 23 23
Diagnosis 11 4 5 5 4 4 9 4 4 2 3 3 2 4 4 2 0
DocTransfer 20 5 7 12 6 5 5 9 9 7 9 9 7 9 9 7 0
NoMystery 20 2 2 11 1 2 11 12 12 12 11 11 11 11 11 11 0
PegSol 24 24 24 24 24 24 14 20 20 4 16 14 4 22 22 4 0
PegSolRow5 15 5 5 5 15 15 4 15 15 15 15 15 15 15 15 15 15
Rovers 20 7 7 12 6 7 12 10 8 8 10 10 10 4 4 4 0
SlidingTiles 20 10 10 10 10 10 10 10 10 10 10 10 10 10 10 0 0
Tetris 20 10 5 10 20 20 5 20 20 20 20 20 20 20 20 20 20
TPP 30 17 16 24 11 17 19 17 17 17 17 16 16 16 16 16 2∑ UIPC 327 129 131 166 193 202 116 193 191 166 184 180 166 187 187 153 122

Unsolvable Resource-Constrained Planning (RCP) Benchmarks
NoMystery 150 27 53 149 15 27 130 137 131 131 140 132 131 135 137 137 0
Rovers 150 3 7 93 1 3 142 117 118 117 120 121 121 102 108 110 0
TPP 25 6 5 20 0 5 13 9 9 9 8 8 8 9 9 9 0∑ RCP 325 36 65 262 16 35 285 263 258 257 268 261 260 246 254 256 0∑ Total 652 165 196 428 209 237 401 456 449 423 452 441 426 433 441 409 122

Table 7.1.: Coverage results, i.e., number of instances proved unsolvable. Best results in bold. “blind”: exhaustive
search without dead-end pruning; “U1”: DFS with dead-end pruning via U1; “UC: DFS with conflict-driven learn-
ing using UC; “PDB”: dead-end PDBs of AIDOS; “SEQ” and “POT” the state-equation unsolvability detector Useq,
respectively the potential heuristic of AIDOS, both using the singleton conjunctions only. “CSSEQ” and “CSPOT”: DFS
conflict-driven learning using the state-equation and potential-heuristic unsolvability detectors, for different ΠC
size limits 𝛼 . “Cert.”: state-equation unsolvability certificates, i.e., number of instances proved unsolvable by “SEQ”:
Useq (I) = ∞, for Useq over the singleton conjunctions; and “CISEQ” where Useq [ΠC] (I) = ∞ after the CISEQ
refinement.

1.66.

Comparing to the state of the art, UIPC NoMystery is the only domain where the coverage of (the best
of) our new methods is strictly higher (by the smallest margin, +1) than that of any competitor. The
main advantage of our methods is that they combine both, the strength of LP heuristics on the UIPC
benchmarks, and that of conjunction-learning on RCP benchmarks: they are the only configurations with
near-top performance in both benchmark categories. The “∑ Total” row of Table 7.1 illustrates this (but
should be taken with a grain of salt given the different numbers of instances per domain).

Comparing our configurations against each other, the targeted conjunction computations, based on con-
flicts identified during search, is more effective than offline refinement. This is in line with our observations
from Section 6.4. Proofing the initial state unsolvable without search (CISEQ with 𝛼 = ∞) is competitive
in RCP NoMystery, but otherwise lacks considerably behind the search variants. This is because, on the



7.6. Experimental Evaluation 103

10−4 10−3 10−2 10−1 100 101
10−4

10−3

10−2

10−1

100

101

CSSEQ

C S
PO

T

(a)

100 101 102 103 104 105 106
100

101

102

103

104

105

106

CSSEQ

C S
PO

T

(b)

Figure 7.3.: Per-instance comparison between CSSEQ (x-axes) vs. CSPOT (y-axes) of (a) runtime (in seconds) and
(b) search space size, i.e., the number of visited states.

one hand, the combination of state-space exploration with conjunction learning makes the search variants
less affected in situations where conjunction learning is not effective (e.g., PegSol and SlidingTiles). On
the other hand, when conjunction learning is effective, the online learning variants tend to be superior.
The larger limits 𝛼 = 256 and 𝛼 = ∞ (the same applies to 𝛼 = 512 and 𝛼 = 1024) are almost consistently
worse than 𝛼 = 128. It is almost always the case that either the refinements add only few conjunctions,
or that conjunction learning does not work at all. The size limits 𝛼 = 64 and smaller start to become too
restrictive, cutting off the refinements before generalization happens at sufficient scale. This holds espe-
cially for the RCP domains, where coverage of CSSEQ drops to 253 for 𝛼 = 64 and to 242 for 𝛼 = 32;
CISEQ is even more affected, dropping in coverage to 232 and 207, respectively. Somewhat surprisingly,
potential heuristics hardly ever improve over the state equation. Figure 7.3 elucidates the latter. CSSEQ
has the edge in search space size, due to its higher pruning power; while potential heuristics are faster.
Yet, the former effect tends to be larger than the latter one.





8. On Unsolvability Detectors, the Traps They Set, and
Trap Learning

A dead-end trap (Lipovetzky et al., 2016) is a set𝑇 of non-goal states that is invariant under transitions, i.e.,
where from any state 𝑠 ∈ 𝑇 , all states 𝑠′ reachable from 𝑠 are also contained in 𝑇 . Represented compactly,
dead-end traps become effective unsolvability detectors, but how to find suitable representations? Lipovet-
zky et al. (2016) considered state sets𝑇 Γ represented as disjunctions of fact (variable-value) conjunctions
Γ. They presented a method that applied once offline, before search, yields Γ suitable for dead-end detec-
tion and pruning during search. Here, we extend Lipovetzky et al.’s (2016) concepts in two ways:

(i) We observe that dead-end traps can be combined for synergistic effect with arbitrary other unsolv-
ability detectors U.

We define the generalized concept of U-traps. This captures dead-end traps relative to a given un-
solvability detector U, where 𝑇 can be escaped, but only into dead-end states recognized by U.

(ii) We observe that U-traps can be incrementally constructed online, during search, via the conflicts
identified in that search.

We start with Γ representing the empty state set𝑇 Γ = ∅. Every time search identifies a conflict, i.e.,
a set of dead ends 𝑆 such that 𝑆 ⊈ 𝑇 Γ and U(𝑠) ≠ ∞ for some 𝑠 ∈ 𝑆 , we refine Γ to Γ′, adding new
conjunctions, so that the represented state set𝑇 Γ′ now includes 𝑆 (and potentially other states that
are dead ends for similar reasons), while preserving the U-trap properties.

By (i), the trap Γ extends the reach of U, avoiding “the traps set for the search by U”. By (ii), this is done
dynamically from information that becomes available during search. Notably, our technique can also be
run without any other unsolvability detector U. In this case, (i) is mute, and (ii) turns our technique into
an online-learning variant of the original dead-end traps proposal.

In the ability to exploit synergy with another unsolvability detector U, our technique differs from the
unsolvability detectors seen so far in that: if 𝑠 is a state all of whose successor states 𝑠′ are recognized as dead
ends by U, then we can learn to recognize 𝑠 without having to recognize also the states 𝑠′. This is in contrast to
the previous unsolvability detectors, which, when learning to recognize 𝑠, necessarily – and redundantly
with the given U – also learn to recognize all 𝑠′. This has in particular been an issue in Chapter 6, where
we found that the combination of UC dead-end learning with other unsolvability detectors U suffers from
having to subsume U in the refinement of UC . The issue goes back to the transitivity property of the
unsolvability detectors. Intuitively, our notion of U-traps gets around this by enforcing transitivity only
relative to U.

This chapter is based on (Steinmetz and Hoffmann, 2017b). In Section 8.1, we revisit Lipovetzky et al.’s
(2016) dead-end trap definition, and their characterization of dead-end traps via sets of fact conjunctions.
In Section 8.2, we introduce our notion of U-traps. Section 8.3 presents our variant of Lipovetzky et al.’s
(2016) offline construction procedure, followed by our online conflict-based U-trap refinement method in
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Section 8.4. In Section 8.5, we compare U-traps to the previously considered unsolvability detectors UC
and Useq [ΠC]. Section 8.6 concludes the chapter with an experimental evaluation.

8.1. Preliminaries

We assume FDR planning. Let Π = ⟨V,A,I,G⟩ be an FDR planning task.

We denote the naive unsolvability detector as U0, where U0(𝑠) = 0 for all states 𝑠 ∈ SΠ, i.e., U0 does
not recognize any dead end. To consider combinations of two or more unsolvability detectors U𝑖 , we use
addition, which dominates each individual U𝑖 , returning∞ whenever U𝑖 does.

Dead-end traps (Lipovetzky et al., 2016) are formally defined as follows:

Definition 8.1 (Dead-End Trap). Let 𝑇 ⊆ SΠ be a set of states. Then, 𝑇 is a dead-end trap if

(i) for every state 𝑠 ∈ 𝑇 , G ⊈ 𝑠, and

(ii) for every state 𝑠 ∈ 𝑇 , and action 𝑎 ∈ A(𝑠) applicable in 𝑠, 𝑠⟦𝑎⟧ ∈ 𝑇 .

Intuitively, a dead-end trap is a set 𝑇 of non-goal states that is invariant, i.e., once we are in 𝑇 we can
never leave it again. In other words, a dead-end trap𝑇 forms a proof in its own that every 𝑠 ∈ 𝑇 is a dead
end. The idea is to identify a compact representation Γ of such a 𝑇 Γ offline, prior to search, and to use Γ
to detect and prune dead ends during search. Such a compact representation can be determined from fact
conjunctions of size up to 𝑘 , where 𝑘 is a parameter. The states induced by such Γ are given by

𝑇 Γ = { 𝑠 ∈ S | ∃𝑐 ∈ Γ : 𝑐 ⊆ 𝑠 }

Verifying whether𝑇 Γ is a dead-end trap can be done equivalently on Γ through the progression over variable
assignments:

Definition 8.2 (FDR Progression). Let 𝑃 be a variable assignment, and let 𝑎 ∈ A be an action. If 𝑃 ∥ pre(𝑎),
then the progression of 𝑃 over 𝑎 is

progress(𝑃, 𝑎) = (𝑃 ∪ pre(𝑎)) ◦ eff(𝑎)

Otherwise, the progression is undefined, and we write progress(𝑃, 𝑎) = ⊥. We overload the applicable actions
operator, and denote as A(𝑃) ⊆ A the set of all actions 𝑎 where progress(𝑃, 𝑎) ≠ ⊥.

In words, the progression of 𝑃 over 𝑎 extends 𝑃 by the precondition pre(𝑎), and the resulting variable
assignment is overwritten by eff(𝑎). Note that, by definition, progress(𝑃, 𝑎) ⊆ 𝑠⟦𝑎⟧ for the application of
𝑎 in any state 𝑠 where 𝑎 is applicable and 𝑃 ⊆ 𝑠. It is hence straightforward to show that:

Lemma 8.1. Let Γ be any set of conjunctions. Then, 𝑇 Γ constitutes a dead-end trap if

(i) for every 𝑐 ∈ Γ, 𝑐 ∦ G, and

(ii) for every 𝑐 ∈ Γ, and action 𝑎 ∈ A(𝑐), there exists some 𝑐′ ∈ Γ such that 𝑐′ ⊆ progress(𝑐, 𝑎).

In words, Γ induces a dead-end trap 𝑇 Γ if (i) every 𝑐 ∈ Γ disagrees with the goal on some variable, and
(ii) Γ is closed under progression. We denote the unsolvability detector associated with Γ as UΓ , where
UΓ (𝑠) = ∞ if ∃𝑐 ∈ Γ such that 𝑐 ⊆ 𝑠, and UΓ (𝑠) = 0 otherwise.
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Example 8.1. Reconsider the rover running example from Example 5.1. As a reminder, there are actions
𝑚𝑜𝑣𝑒 (𝑥,𝑦, 𝑘) for moving the rover between 𝐴3 and the other three locations (𝐴1, 𝐴2, 𝐵). Each 𝑚𝑜𝑣𝑒 con-
sumes one battery unit. Moreover, there are actions for collecting 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 (𝑠𝑎𝑚𝑝𝑖 , 𝑥) from, respectively drop-
ping 𝑑𝑟𝑜𝑝 (𝑠𝑎𝑚𝑝𝑖 , 𝑥) samples at the rover’s current location. The initial state is I = { 𝑟𝑜𝑣 ↦→ 𝐴3, 𝑏𝑎𝑡 ↦→
2, 𝑠𝑎𝑚𝑝1 ↦→ 𝐴1, 𝑠𝑎𝑚𝑝2 ↦→ 𝐴2 }, the goal is G = { 𝑠𝑎𝑚𝑝1 ↦→ 𝐵, 𝑠𝑎𝑚𝑝2 ↦→ 𝐵 }.

Consider Γ = { 𝑐1, 𝑐2, 𝑐3, 𝑐4 }, for the conjunctions 𝑐1 = {𝑏𝑎𝑡 ↦→ 0, 𝑠𝑎𝑚𝑝1 ↦→ 𝐴1 }; 𝑐2 = { 𝑟𝑜𝑣 ↦→
𝐴1, 𝑏𝑎𝑡 ↦→ 0, 𝑠𝑎𝑚𝑝1 ↦→ 𝑅 }; and, symmetrically, 𝑐3 = {𝑏𝑎𝑡 ↦→ 0, 𝑠𝑎𝑚𝑝2 ↦→ 𝐴2 }; and 𝑐4 = { 𝑟𝑜𝑣 ↦→
𝐴2, 𝑏𝑎𝑡 ↦→ 0, 𝑠𝑎𝑚𝑝2 ↦→ 𝑅 }. Γ satisfies (i) of Lemma 8.1 because all four conjunctions assign a value to either
one of the 𝑠𝑎𝑚𝑝𝑖 variables different from the goal.

To see that Γ also satisfies (ii) of Lemma 8.1, consider first 𝑐1. 𝑏𝑎𝑡 ↦→ 0 makes the precondition of every
𝑚𝑜𝑣𝑒 action inconsistent with 𝑐1; and 𝑠𝑎𝑚𝑝1 ↦→ 𝐴1 makes the preconditions of all 𝑑𝑟𝑜𝑝 (𝑠𝑎𝑚𝑝1, 𝑥) actions
and that of all 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 (𝑠𝑎𝑚𝑝1, 𝑦) actions where 𝑦 ≠ 𝐴1 inconsistent with 𝑐1. Of the remaining actions,
those 𝑎 affecting the sample 𝑠𝑎𝑚𝑝2 have no effect on 𝑐1, i.e., 𝑐1 ⊆ progress(𝑐1, 𝑎). Finally, the progression
of 𝑐1 over 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 (𝑠𝑎𝑚𝑝1, 𝐴1) makes true 𝑐2, concluding that 𝑐1 satisfies (ii). Similarly, 𝑐2 satisfies (ii), the
only action 𝑎 ∈ A(𝑐2) where 𝑐2 is not invariant being 𝑎 = 𝑑𝑟𝑜𝑝 (𝑠𝑎𝑚𝑝1, 𝐴1), for which it holds that
𝑐1 ⊆ progress(𝑐2, 𝑑𝑟𝑜𝑝 (𝑠𝑎𝑚𝑝1, 𝐴1)). For symmetric reasons, (ii) is also satisfied for 𝑐3 and 𝑐4. Therefore,𝑇 Γ

is a dead-end trap, and in particular 𝑠5, 𝑠6 ∈ 𝑇 Γ for the states 𝑠5 and 𝑠6 from Figure 5.1, where the rover is at
𝐴3 with no energy left, and either of the samples is still at its initial location.

8.2. Unsolvability Detectors and the Traps they Set

We show that dead-end traps can be combined with arbitrary unsolvability detectors.

Definition 8.3 (U-Trap). Let U be an unsolvability detector, and 𝑇 ⊆ SΠ be a set of states. Then, 𝑇 is a
U-trap if

(i) for every state 𝑠 ∈ 𝑇 , G ⊈ 𝑠, and

(ii) for every state 𝑠 ∈ 𝑇 , and action 𝑎 ∈ A(𝑠) applicable in 𝑠, either 𝑠⟦𝑎⟧ ∈ 𝑇 , or U(𝑠⟦𝑎⟧) = ∞.

In other words, aU-trap is a set of non-goal states whose only escape routes lead into dead ends recognized
by U. Intuitively, such𝑇 is a “trap set for the search by U”, in that, starting from𝑇 , U will eventually prune
every search path; yet U does not explicitly indicate this, so we will have to search through the entirety of
𝑇 before finding out.

For the naive unsolvability detector U = U0, the additional condition U0(𝑠⟦𝑎⟧) = ∞ is never satisfied.
Thus,U-traps generalize the original dead-end traps (the special case ofU0-traps). An important difference
between U-traps and original dead-end traps, as we move away from U0 and use more informed U, is
transitivity. While U0-traps 𝑇 , by definition, have the property that for every 𝑠 ∈ 𝑇 and every transition
⟨𝑠, 𝑎, 𝑠′⟩, it must be 𝑠′ ∈ 𝑇 , this is no longer so for U-traps in general: those 𝑠′ where U(𝑠′) = ∞ no longer
need to be contained in𝑇 . As previously discussed, this is key to synergy, as it allows𝑇 to be complementary
to U, instead of forcing 𝑇 to subsume U.

To make use of U-traps in search, the idea is to identify compact representations Γ, whose computation
does not require the enumeration of 𝑇 Γ . For the characterization of such Γ, we require the unsolvability
detector U to be partial-state compatible. This is, it must be possible to evaluate U on partial variable
assignments 𝑃 efficiently, where U(𝑃) = ∞ if and only if U(𝑃) = ∞ for all states 𝑠 ∈ S so that 𝑃 ⊆ 𝑠. Note
that, in principle, every dead-end detector can be evaluated on partial variable assignments, since U(𝑃)
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can be computed trivially by enumerating the states 𝑠 that satisfy 𝑃 , and evaluating U for every one of
them. But this is not in general efficient as the number of states 𝑠 is exponential in the number of variables
where 𝑃 is undefined. Fortunately, many unsolvability detectors natively support the evaluation on partial
variable assignments, and for those that do not, there usually exist sufficient conditions for U(𝑃) = ∞ that
can be tested efficiently. We give more details on that in the experiments section.

The original dead-end trap conditions are easily generalized:

Theorem 8.1. Let U be an unsolvability detector, and 𝑇 Γ be any set of conjunctions. Then, 𝑇 Γ is a U-trap if

(T1) for every 𝑐 ∈ Γ, 𝑐 ∦ G, and

(T2) for every 𝑐 ∈ Γ, and every action 𝑎 ∈ A(𝑐), there either exists some 𝑐′ ∈ Γ such that 𝑐′ ⊆
progress(𝑐, 𝑎), or U(progress(𝑐, 𝑎)) = ∞.

Proof. Assume the contrary. It follows immediately from (T1) that 𝑇 Γ cannot contain a goal state. Hence,
there must be a state 𝑠 ∈ 𝑇 Γ and an action 𝑎 ∈ A(𝑠) that is applicable in 𝑠 so that 𝑠⟦𝑎⟧ ∉ 𝑇 Γ and
U(𝑠⟦𝑎⟧) < ∞. Let 𝑐 ∈ Γ be so that 𝑐 ⊆ 𝑠. Note that because pre(𝑎) ⊆ 𝑠, it immediately follows that
𝑐 ∥ pre(𝑎), and thus the progression progress(𝑐, 𝑎) is defined. Now, due to (T2), either there exists 𝑐′ ∈ Γ
with 𝑐′ ⊆ progress(𝑐, 𝑎), or U(progress(𝑐, 𝑎)) = ∞. Since progress(𝑐, 𝑎) ⊆ 𝑠⟦𝑎⟧, both cases yield a
contradiction. □

Example 8.2. Consider the example from before. Notice that the set of conjunctions Γ = { 𝑐1, 𝑐2 }, where
𝑐1 = {𝑏𝑎𝑡 ↦→ 1, 𝑠𝑎𝑚𝑝1 ↦→ 𝐴1 } and 𝑐2 = { 𝑟𝑜𝑣 ↦→ 𝐴1, 𝑏𝑎𝑡 ↦→ 1, 𝑠𝑎𝑚𝑝1 ↦→ 𝑅 }, yields a U1-trap. Clearly,
(T1) is satisfied, as both conjunctions assign 𝑠𝑎𝑚𝑝1 to a value different from the goal (which is 𝐵). It remains
to show that both conjunctions satisfy (T2).

Consider 𝑐1. Notice that 𝑐1 is invariant under 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 (𝑠𝑎𝑚𝑝2, 𝑥) and 𝑑𝑟𝑜𝑝 (𝑠𝑎𝑚𝑝2, 𝑥) (no matter of 𝑥), be-
cause neither action affects any of 𝑐1’s variables. Moreover, notice that 𝑐2 ⊆ progress(𝑐1, 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 (𝑠𝑎𝑚𝑝1, 𝐴1)).
The remaining actions in A(𝑐1) are𝑚𝑜𝑣𝑒 (𝑥,𝑦, 1), for all possible values 𝑥 and 𝑦. The progression of 𝑐1 over
any of these yields progress(𝑐1,𝑚𝑜𝑣𝑒 (𝑥,𝑦, 1)) = { 𝑠𝑎𝑚𝑝1 ↦→ 𝐴1, 𝑏𝑎𝑡 ↦→ 0, 𝑟𝑜𝑣 ↦→ 𝑦 } =: 𝑃 , which due to
the 𝑏𝑎𝑡 ↦→ 0 assignment, is not covered by Γ. However, note that U1(𝑃) = ∞, because no matter of the value
of 𝑠𝑎𝑚𝑝2, and regardless of the rover location 𝑦, there is at least one𝑚𝑜𝑣𝑒 necessary in order to get the rover
to both𝐴1 (needed to collect 𝑠𝑎𝑚𝑝1) and to 𝐵 (needed to achieve the goal of 𝑠𝑎𝑚𝑝1). With no energy left, this
not possible even under U1’s relaxing assumptions. Therefore, 𝑐1 satisfies (T2) for U1.

Consider 𝑐2. Again 𝑐2 is invariant under actions affecting the sample 𝑠𝑎𝑚𝑝2, and symmetrically to above, the
progression of 𝑐2 over 𝑑𝑟𝑜𝑝 (𝑠𝑎𝑚𝑝1, 𝐴1) is covered by 𝑐1. There is only one other action whose precondition is
consistent with 𝑐2: progress(𝑐2,𝑚𝑜𝑣𝑒 (𝐴1, 𝐴3, 1)) = { 𝑠𝑎𝑚𝑝1 ↦→ 𝑅,𝑏𝑎𝑡 ↦→ 0, 𝑟𝑜𝑣 ↦→ 𝐴3 } := 𝑃 ′. As before,
it holds that U1(𝑃 ′) = ∞, as there is no energy left for the rover to move to 𝐵, which is needed to achieve the
goal for 𝑠𝑎𝑚𝑝1.

Hence, 𝑇 Γ constitutes a U1-trap. Finally, reconsider the states 𝑠1, 𝑠2, 𝑠3 from Example 5.1, where the rover is
at 𝐴1, 𝐴2, respectively 𝐵, with 1 battery unit left, and the samples being at their initial locations. Notice that
all three satisfy 𝑐1, i.e., are recognized by UΓ as dead ends while neither of them is recognized by U1. Further
notice that𝑇 Γ does not constitute a dead-end trap as per the original definition, since, e.g., the successor state
𝑠5 of 𝑠1, where the rover is at 𝐴3 with no energy left, does not satisfy any of the conjunctions.



8.3. Offline Construction 109

Algorithm 8.1: Offline U-trap construction.
Input: Set of conjunctions C,

Partial-state compatible unsolvability detector U
Output: Maximal subset Γ ⊆ C such that Γ satisfies (T1) and (T2) of Theorem 8.1.
/* Construct AND/OR graph ⟨𝑁and, 𝑁or, 𝐸⟩: */

1 𝑁and ← { 𝑎𝑐 | 𝑐 ∈ C, 𝑎 ∈ A(𝑐),U(progress(𝑐, 𝑎)) ≠ ∞ };
2 𝑁or ← C;
3 𝐸 ←{ ⟨𝑐, 𝑎𝑐⟩ | 𝑐 ∈ 𝑁or, 𝑎 ∈ A(𝑐) }

{ ⟨𝑎𝑐 , 𝑐′⟩ | 𝑎𝑐 ∈ 𝑁and, 𝑐′ ⊆ progress(𝑐, 𝑎) };
/* Propagate markings */

4 marked← { 𝑐 ∈ 𝑁or | 𝑐 ∥ G };
5 while marked changes do
6 foreach 𝑎𝑐 ∈ 𝑁and \ marked do
7 if 𝑐′ ∈ marked for all ⟨𝑎𝑐 , 𝑐′⟩ ∈ 𝐸 then
8 marked← marked ∪ { 𝑎𝑐 };

9 foreach 𝑐 ∈ 𝑁or \ marked do
10 if 𝑎𝑐′ ∈ marked for some ⟨𝑐, 𝑎𝑐′⟩ ∈ 𝐸 then
11 marked← marked ∪ { 𝑐 };

/* Return conjunctions that have not been marked */
12 return 𝑁or \ marked;

8.3. Offline Construction

The algorithm for computing U0-traps proposed by Lipovetzky et al. (2016) can be easily adapted to
support the generation of U-traps for arbitrary partial-state compatible unsolvability detectors U. Algo-
rithm 8.1 shows the general procedure. It identifies a subset of the given conjunction candidates C, guar-
anteeing that the result satisfies the conditions of Theorem 8.1. In Lipovetzky et al.’s (2016) original
proposal, all conjunctions of size up to 𝑘 were considered in C, where 𝑘 was a parameter. However, this
is not required for the correctness of the algorithm; C may be chosen arbitrarily.

Finding the desired subset of conjunctions corresponds to propagating markings through an AND/OR
graph whose AND-nodes correspond to actions, whose OR-nodes correspond to the selection of conjunc-
tions in consideration, and whose edges correspond to progression over those conjunctions. The conjunc-
tions not marked during this procedure give the resulting Γ. The propagation starts with the OR-nodes, so
conjunctions, that do not disagree with the goal on any variable, i.e., those violating (T1). An AND-node is
marked when all its successors are marked, and thus the corresponding progression would not be covered
by the resulting trap. An OR-node is marked when at least one of its successors is marked, i.e., when there
is an action whose progression would lead out of the trap, violating (T2).

The main difference to Lipovetzky et al.’s (2016) algorithm is that an action 𝑎 ∈ A(𝑐) is ignored, if
the progression of 𝑐 over 𝑎 is already recognized by U as dead end. The resulting AND/OR-graph may
hence contain fewer edges, so fewer conjunctions may be touched during marking propagation, and hence
removed from C, resulting in larger traps 𝑇 Γ .

The procedure guarantees to find a maximal trap:
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Theorem 8.2. Let Γ be the result of Algorithm 8.1. It holds

(i) Γ satisfies (T1) and (T2) of Theorem 8.1, and

(ii) for every Γ′ ⊆ C satisfying (T1) and (T2), it holds that Γ′ ⊆ Γ.

Proof. Claim (i) is a simple extension of the argument by Lipovetzky et al. (2016). Claim (ii) holds because
the procedure does not unnecessarily remove any conjunction. □

8.4. Trap Learning: Conflict Analysis & Refinement

One major drawback of the algorithm from the previous section is that the computation of Γ requires up-
front a choice of conjunctions candidates C. The only knownmethod is the enumeration of all conjunctions
of size up to 𝑘 . This is feasible only for small 𝑘 . On the other hand, many of those conjunctions might
actually not be relevant for the resulting U-trap representation, and by imposing a size bound on the
conjunctions, we might be missing the ones that actually matter.

We next show how to integrate U-traps into the conflict-driven learning search framework, Algorithms 5.1
and 5.2, by providing the necessary trap-refinement procedure. In effect, we obtain a U-trap construction
method that chooses the conjunctions dynamically, during search, making use of the knowledge that be-
comes available because of the search. However, instead of choosing for this refinement the candidate
conjunctions C to feed into Algorithm 8.1, we update the U-trap representation Γ directly.

8.4.1. Overall Refinement Procedure

The general idea is to run search with the combined unsolvability detector U + UΓ , pruning all dead-end
states 𝑠 recognized by any of U or UΓ , i.e., U(𝑠) = ∞ or UΓ (𝑠) = ∞. We start with the trivial U-trap
initialization Γ := ∅. When search identifies a conflict 𝑆 ⊆ S, i.e., a set of dead-end states 𝑆 such that
U(𝑠) ≠ ∞ and UΓ (𝑠) ≠ ∞ for some 𝑠 ∈ 𝑆 , we compute a generalization Γ′ of Γ, guaranteeing that Γ′ still
satisfies (T1) and (T2) of Theorem 8.1, and, additionally,

(T3) Γ′ is weaker than Γ, i.e., every state represented by Γ is also represented by Γ′, 𝑇 Γ ⊆ 𝑇 Γ′, and

(T4) the states in 𝑆 are all covered by Γ′, i.e., 𝑆 ⊆ 𝑇 Γ′.

Conditions (T1) and (T2) ensure that𝑇 Γ′ still constitutes a U-trap; (T3) and (T4) ensure progress in that
Γ′ recognizes strictly more dead ends than Γ.

Note that such a refinement is always possible, as setting Γ′ = { 𝑠 ∈ SΠ | 𝑠 is a dead end,U(𝑠) ≠ ∞ }
trivially satisfies (T1) to (T4). Yet, this refinement would obviously not be very useful. We instead attempt
to extend Γ by small conjunctionsX, setting Γ′ = Γ∪X. The conjunctionsX have the potential to generalize
to states outside of 𝑆 , and in particular to states not visited by the search so far.

For the computation of X, we leverage once again the recognized-neighbors property (Definition 6.3), i.e.,
that upon the refinement call on 𝑆 , all neighbor states 𝑡 ∈ Succ(𝑆) \ 𝑆 are already recognized by U + UΓ ,
(U +UΓ) (𝑡) = ∞. Recall from Proposition 6.1 that this property is necessarily guaranteed if search prunes
only dead ends recognized by U + UΓ .

With the recognized-neighbors property at hand, a trivial refinement satisfying (T1) – (T4) is given by
X = 𝑆 . Let Γ′ := Γ∪𝑆 . That every conjunction in Γ′ disagrees with the goal on some variable follows from
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the invariant that Γ satisfies (T1), and the assumption that 𝑆 does not contain a goal state. Γ′ satisfies
(T2), due to the invariant that Γ satisfies (T2), and, given the recognized-neighbors property, since every
transition going out of the states in 𝑆 ends in a dead end recognized by U, or a state that is represented
by Γ. (T3) and (T4) are satisfied by construction. However, in this computation of Γ′,𝑇 Γ′ would merely be
an extension of the previous trap 𝑇 Γ to the states in 𝑆 . In particular, Γ′ does not generalize to states that
have not yet been visited by search so far.

8.4.2. Generalizing U-Traps

Algorithm 8.2: Online U-trap refinement.
Input: Partial-state compatible unsolvability detector U,

Current U-trap representation Γ,
Set of dead-end states 𝑆 , satisfying the U + UΓ recognized-neighbors property

Output: Set of conjunctions X such that Γ′ = Γ ∪ X satisfies (T1) – (T4).
1 𝑐𝑠 ← ∅, for each 𝑠 ∈ 𝑆;
/* (T1) */

2 foreach 𝑠 ∈ 𝑆 do
3 let 𝑣 ∈ vars(G) be such that 𝑠 [𝑣] ≠ G[𝑣];
4 𝑐𝑠 ← { 𝑣 ↦→ 𝑠 [𝑣] };
/* (T2) */

5 while there is some 𝑠 ∈ 𝑆 such that 𝑐𝑠 violates (T2) do
6 let 𝑣 ∈ V \ vars(𝑐𝑠);
7 𝑐𝑠 ← 𝑐𝑠 ∪ { 𝑣 ↦→ 𝑠 [𝑣] };
8 return { 𝑐𝑠 | 𝑠 ∈ 𝑆 };

Let 𝑆 ⊆ SΠ be a set of states satisfying the U + UΓ recognized-neighbors property. Towards obtaining a
refined U-trap representation Γ′ that potentially generalizes to other states than 𝑆 , the idea is compute
conjunctions from 𝑆 by removing variable assignments from the states not relevant w.r.t. (T1) and (T2). The
pseudocode of this generalization procedure is shown in Algorithm 8.2. For each state 𝑠 ∈ 𝑆 , a conjunction
𝑐𝑠 ⊆ 𝑠 is computed so that the extension of Γ by all those 𝑐𝑠 still satisfies (T1) and (T2). The smaller the
subsets are, the more states are represented by the resulting set of conjunctions.

To ensure that Γ′ satisfies condition (T1), for every state 𝑠 ∈ 𝑆 , the corresponding 𝑐𝑠 is initialized to one
of state’s facts disagreeing with the goal. Such a fact must exist because 𝑆 does not contain a goal state by
assumption. Condition (T2) is ensured by iteratively re-adding facts from the states to their conjunctions.
As argued above, Γ ∪ 𝑆 satisfies (T2), and hence this happens when 𝑐𝑠 = 𝑠 for all 𝑠 ∈ 𝑆 at the latest. Note
that regardless which state 𝑠 is selected inside the while loop, there must be always a variable 𝑣 ∈ V that
is not assigned by the corresponding conjunction, 𝑣 ∉ vars(𝑐𝑠). Namely, for every state 𝑠 ∈ 𝑆 where 𝑐𝑠 = 𝑠,
and for every action 𝑎 ∈ A(𝑠) = A(𝑐𝑠), it holds that 𝑠⟦𝑎⟧ = progress(𝑐𝑠 , 𝑎), and one of 𝑠⟦𝑎⟧ ∈ 𝑆 or
(U + UΓ) (𝑠⟦𝑎⟧) = ∞ is true as per the recognized-neighbors requirement. Given that 𝑐𝑠′ ⊆ 𝑠′, for every
state 𝑠′ ∈ 𝑆 , by construction, this however means that 𝑠 cannot be the state violating (T2), i.e., such states
𝑠 cannot be chosen. Hence, the execution of Algorithm 8.2 is well-defined, and terminates with X such
that Γ′ = Γ∪X satisfies (T1) and (T2). Moreover, Γ′ satisfies (T3), because it is a superset of Γ. Γ′ satisfies
(T4), because it contains a conjunction 𝑐𝑠 ⊆ 𝑠, for every state 𝑠 ∈ 𝑆 . Finally, Γ′ may generalize to states
outside of 𝑆 as soon as at least some 𝑐𝑠 is a strict subset of 𝑠.
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Theorem 8.3. Let 𝑆 be a set of dead ends satisfying the U +UΓ recognized-neighbors property. The execution
of Algorithm 8.2 is well-defined, and terminates with X such that Γ ∪ X satisfies (T1) – (T4).

Note that when extending Γ by new conjunctions, it may become possible to also minimize the existing
conjunctions in Γ. Thus, it could makes sense to apply Algorithm 8.2 to all elements in Γ ∪ 𝑆 , instead of
just 𝑆 . Yet in our experiments this turned out to be detrimental, causing always a prohibitive overhead
while improving generalization only in rare cases.

Example 8.3. Consider once more the conflict-driven learning example, Example 5.1. Suppose we combine U1

dead-end pruning with U1-trap learning. As argued in Chapter 6, U1 recognizes exactly the dead-end states
pruned in the search from Example 5.1. Let Γ := ∅. Consider the first conflict refinement requested by that
search, i.e., 𝑆 = { 𝑠4, 𝑠1 }, where 𝑠4 = { 𝑟𝑜𝑣 ↦→ 𝐴1, 𝑏𝑎𝑡 ↦→ 1, 𝑠𝑎𝑚𝑝1 ↦→ 𝑅, 𝑠𝑎𝑚𝑝2 ↦→ 𝐴2 } and 𝑠1 is the same
but with 𝑠𝑎𝑚𝑝1 ↦→ 𝐴1. Their successor states 𝑠5 and 𝑠6 are recognized as dead ends by U1, i.e., 𝑆 satisfies the
U1 + UΓ recognized-neighbors property. Suppose we use Algorithm 8.2 to compute a refinement of Γ.

We initialize 𝑐𝑠4 := ∅ and 𝑐𝑠1 := ∅. To satisfy (T1), suppose we choose for both states 𝑠𝑎𝑚𝑝1, updating the
conjunctions to 𝑐𝑠1 := { 𝑠𝑎𝑚𝑝1 ↦→ 𝐴1 } and 𝑐𝑠4 := { 𝑠𝑎𝑚𝑝1 ↦→ 𝑅 }.

Afterwards, we find that 𝑐𝑠4 violates (T2) due to progress(𝑐𝑠4, 𝑑𝑟𝑜𝑝 (𝑠𝑎𝑚𝑝1, 𝐵)) = { 𝑟𝑜𝑣 ↦→ 𝐵, 𝑠𝑎𝑚𝑝1 ↦→ 𝐵 }
which is neither covered by the chosen conjunctions, nor by U1. Suppose we extend 𝑐𝑠4 by the position of the
rover, i.e., 𝑐𝑠4 = { 𝑟𝑜𝑣 ↦→ 𝐴1, 𝑠𝑎𝑚𝑝1 ↦→ 𝑅 }.

𝑐𝑠4 still violates (T2), because of progress(𝑐𝑠4,𝑚𝑜𝑣𝑒 (𝐴1, 𝐴3, 2)) = { 𝑟𝑜𝑣 ↦→ 𝐴3, 𝑏𝑎𝑡 ↦→ 1, 𝑠𝑎𝑚𝑝1 ↦→ 𝑅 } =:
𝑃 . 𝑃 is not covered by the chosen conjunctions, and with the state 𝑡 = 𝑃 ∪ { 𝑠𝑎𝑚𝑝2 ↦→ 𝐵 } being solvable, 𝑃
cannot possibly be recognized as dead end by U1. Suppose we include 𝑏𝑎𝑡 into 𝑐𝑠4 , resulting in 𝑐𝑠4 := { 𝑟𝑜𝑣 ↦→
𝐴1, 𝑏𝑎𝑡 ↦→ 1, 𝑠𝑎𝑚𝑝1 ↦→ 𝑅 }.

There remains only a single move action whose precondition is consistent with 𝑐𝑠4 ,𝑚𝑜𝑣𝑒 (𝐴1, 𝐴3, 1), for which
U1(progress(𝑐𝑠4,𝑚𝑜𝑣𝑒 (𝐴1, 𝐴3, 1))) = ∞ (the progression sets 𝑏𝑎𝑡 ↦→ 0, making the goal 𝑠𝑎𝑚𝑝1 ↦→ 𝐵
unreachable even under U1). Moreover, with 𝑐𝑠1 ⊆ progress(𝑐𝑠4, 𝑑𝑟𝑜𝑝 (𝑠𝑎𝑚𝑝1, 𝐴1)), 𝑐𝑠4 satisfies (T2).

Γ ∪ X does still not satisfy (T2), 𝑐𝑠1 violating that condition via, e.g.,𝑚𝑜𝑣𝑒 (𝐴1, 𝐴3, 2). Extending 𝑐𝑠1 by the
battery value, {𝑏𝑎𝑡 ↦→ 1, 𝑠𝑎𝑚𝑝1 ↦→ 𝐴1 }, resolves this last issue, and the refinement terminates.

Consider Γ′ = { 𝑐𝑠1, 𝑐𝑠4 }. With Γ = ∅ ⊆ Γ′, the requirement (T3) is trivially satisfied. It holds that 𝑠1, 𝑠4 ∈
𝑇 Γ , by construction, fulfilling (T4). Finally, notice that Γ′ generalizes beyond the input conflict component,
recognizing, e.g., the dead ends 𝑠2, 𝑠3, where the rover is at 𝐴2 respectively 𝐵 with one battery unit left and
𝑠𝑎𝑚𝑝1 being at its initial location.

8.5. Learning Effectiveness: Comparison to the State-Equation and Critical-Path
Heuristics

As already mentioned, a distinguishing feature of U-traps compared to the unsolvability detectors from
Chapters 6 and 7 is the ability to incorporate information of arbitrary other (partial-state compatible)
unsolvability detectors, without the need of duplicating that information. Yet, even leaving this feature
aside, the structure of dead-end traps can be advantageous in representing dead-end states more compactly
than possible by the other approaches. Continuing our previous discussions, here we attempt to shed light
on the individual strengths of the different techniques.
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Figure 8.1.: Comparison between the families of unsolvability detectors considered so far in terms of their learning
effectiveness. An edge 𝐴 → 𝐵 refers to the example showing that 𝐴 can be more effective than 𝐵. The relations
represented by the dotted edges were already given in Section 7.5.

In Section 7.5, we have compared the critical-path and the conjunctions-augmented state-equation unsolv-
ability detectors, showing for both directions cases where UC (𝑠) = ∞ = Useq [ΠC′] (𝑠) entails that |C| and��ΠC′ �� relate to each other by an exponential factor. In the following, we extend the analysis to U0-traps Γ,
i.e., dead-end traps not taking into account any other source of unsolvability information.

Next, we provide examples, similar to the previous ones, comparingUC and Γ in either direction. Moreover,
we show that there are cases where Useq [ΠC] (𝑠) = ∞ = UΓ (𝑠) implies |Γ | being exponential in

��ΠC ��. The
opposite direction we have to leave open. We could neither find an affirmative example, nor prove that
Useq [ΠC] can simulate any U0-trap Γ with only polynomial overhead. We conjecture that instantiating
C = Γ is generally sufficient for Useq [ΠC] recognizing the dead ends as represented by Γ. Yet, considering
the ΠC construction, there are likely cases where

��ΠC �� grows exponentially, but where the cross-context
information encoded in ΠC ’s actions is not necessary to represent a dead end, yielding the advantage for
the dead-end traps Γ. Figure 8.1 provides an overview of our known results.

Proposition 8.1. There exist planning tasks Π, dead-end states 𝑠, and sets of conjunctions Γ satisfying (i) and
(ii) of Lemma 8.1, where 𝑠 ∈ 𝑇 Γ but in order that UC (𝑠) = ∞, |C| must be exponential in |Γ |.

Proof sketch. Such an example is given by task from our worst-case UC refinement result, Proposition 6.2.
The task consisted in flipping the values of 𝑛 variables 𝑝𝑖 from 0 (initial value) to 1 (goal). Each flip action
requires an additional precondition 𝑟 ↦→ 1, which to achieve, necessitates changing the value of any one
of the 𝑝𝑖 variables to 2 (i.e., deleting 𝑝𝑖 ↦→ 0), preventing that variable from ever reaching its goal value
afterwards. UC requires exponentially (in 𝑛) many conjunctions to prove this task unsolvable, whereas the
set Γ = { { 𝑝𝑖 ↦→ 2 } | 1 ≤ 𝑖 ≤ 𝑛 } ∪ { 𝑟 ↦→ 0 } satisfies the dead-end trap conditions, and with I[𝑟 ] = 0,
represents the initial state. □

Proposition 8.2. There exist planning tasks Π, dead-end states 𝑠, and sets of conjunctions C, where UC (𝑠) =
∞, but for every Γ satisfying (i) and (ii) of Lemma 8.1 with 𝑠 ∈ 𝑇 Γ , |Γ | is exponential in |C|.

Proof sketch. Such an example is given by the task from Proposition 7.2. The task consisted in changing
the values of 𝑛 variables 𝑣𝑖 from 0 (initial state) to 1 (goal). The variables can change their values freely
between 0 and 2, but changing from 0 to 1 necessitates some other variable 𝑣𝑗 to already have the value
of 1. U1 recognizes the initial state as dead end, as due the cyclic dependencies between the facts 𝑣𝑖 ↦→ 1
and 𝑣𝑗 ↦→ 1, none of them are reachable even under U1’s relaxing assumptions. In contrast, in order that
I ∈ 𝑇 Γ , Γ must enumerate all reachable states. Leaving only a single variable unassigned in any 𝑐 ∈ Γ
yields a 𝑇 Γ containing solvable states. □
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Proposition 8.3. There exist planning tasks Π, dead-end states 𝑠, and sets of conjunctions C such that
Useq [ΠC] (𝑠) = ∞, but for every Γ satisfying (i) and (ii) of Lemma 8.1 with 𝑠 ∈ 𝑇 Γ , |Γ | is exponential
in

��ΠC ��.
Proof sketch. Such an example is given by the task from Proposition 7.1. The task again consisted in
changing the value of 𝑛 variables 𝑣𝑖 from 0 to 1, while now each such change decrements a counter
variable 𝑢. With I[𝑢] = 𝑛 − 1, the task is unsolvable. The linear program underlying Useq (i.e., using
the singleton conjunctions only) sees that the counter’s facts need to be “consumed” 𝑛 times to achieve
all goal facts, while it is possible to “produce” those facts only 𝑛 − 1 times. Hence, Useq recognizes I as
dead end. In order that I ∈ 𝑇 Γ , Γ must contain a conjunction 𝑐𝑠 for every reachable state of the form
𝑠 = { 𝑣1 ↦→ 0, . . . , 𝑣𝑘 ↦→ 0, 𝑣𝑘+1 ↦→ 1, . . . , 𝑣𝑛 ↦→ 1, 𝑢 ↦→ 𝑘 − 1 } such that { 𝑣1, . . . , 𝑣𝑘 , 𝑢 } ⊆ vars(𝑐𝑠).
Leaving only a single of these variables unassigned results in 𝑇 Γ containing solvable states. □

Detailed proofs are available in Appendix B.4.1.

8.6. Experimental Evaluation

Section 8.6.1 lays down the general experiment setup. In Section 8.6.2, we list the unsolvability detectors
that we consider for generatingU-traps. For each of them, we provide a brief description on how to compute
or approximateU(𝑃) for a (partial) variable assignment 𝑃 . Section 8.6.3 presents and discusses the results.

8.6.1. Experiment Setup

We implemented the described techniques on top of our conflict-driven learning extension of FAST DOWN-
WARD (FD) (Helmert, 2006). The source code is publicly available.1 We consider a similar setup as in
Chapters 6 and 7. We focus on proving unsolvability, where dead-end detection has (naturally) the largest
impact. We use the UIPC’16 benchmarks, as well as the unsolvable resource-constrained (RCP) bench-
marks (Nakhost et al., 2012; Hoffmann et al., 2014). All experiments were run on machines equipped
with Intel Xeon E5-2650v3 CPUs, with runtime (memory) limits of 30 minutes (4 GB).

We experiment with U-traps for seven unsolvability detectors U, mostly taken from the UIPC’16 partici-
pants. The details are given below. We evaluate the benefits of each U for two different purposes:

(1) Offline generation of U-traps Γ, as per Algorithm 8.1, executed once before search. The conjunction
candidates C are chosen to all conjunctions of size up to 𝑘 = 1, respectively 𝑘 = 2. We use the
generated Γ in two ways. First, we use in the subsequent search only UΓ for dead-end detection. This
serves the purpose of analyzing the impact on the additional U information on the traps themselves.
Secondly, we combine UΓ with U, to see the impact of UΓ on top of the search with U.

(2) Online learning of a U-trap Γ, during search. We compare search with dead-end detection by U
alone, versus by the combination U + UΓ , enabling U-trap learning.

Furthermore, we experiment with a variant of the UIPC’16 winning AIDOS portfolio (Seipp et al., 2016),
in which we added U-trap online learning to each of its components. In this context, we disable two of
AIDOS’ techniques, partial-order reduction and resource variable detection, neither of which is compatible
with the U-trap learning algorithm. We consider UC with neighbors refinement as a baseline representing
1https://doi.org/10.5281/zenodo.6992688

https://doi.org/10.5281/zenodo.6992688
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our other conflict-driven learning variants. In all configurations, apart from the original AIDOS version, we
run DFS as per Algorithm 5.2.

8.6.2. Unsolvability Detectors

We adapted seven unsolvability detectors U towards supporting the U-trap construction:

Baseline We include results for the naive unsolvability detector U0 as a baseline, showing the impact of
unsolvability detection by traps alone.

Critical-Path Heuristics We experiment with the critical-path unsolvability detectors U𝑚 for 𝑚 = 1 and
𝑚 = 2 (Haslum and Geffner, 2000). For partial variable assignments 𝑃 , we approximate the value
of U𝑚 (𝑃) through U𝑚 (𝑃+), where

𝑃+ = 𝑃 ∪ { 𝑣 ↦→ 𝑑 | 𝑣 ∉ vars(𝑃), 𝑑 ∈ D𝑣 }

augments 𝑃 by all facts corresponding to the state variables unspecified in 𝑃 . Obviously, U𝑚 (𝑃+) =
∞ implies U𝑚 (𝑠) = ∞ for every 𝑠 ⊇ 𝑃 , so this can be used as a sufficient condition.

Merge-and-Shrink We experiment with the two most competitive unsolvability merge-and-shrink (M&S)
abstractions (Hoffmann et al., 2014; Torralba et al., 2016):MSp which computes the perfect unsolv-
ability detector U∗, recognizing all dead ends; and MSa which imposes a bound on the abstraction
size, and hence approximates U∗. We include MSp for reference only, and do not use it for com-
puting U-traps (which would be pointless). For a variable assignment 𝑃 , UMSa(𝑃) is computed by
finding all abstract states of the states represented by 𝑃 (this can be done effectively given the cas-
cading tables representation of MSa). Then, UMSa(𝑃) = ∞ iff every such abstract state is a dead
end in the abstract state space.

PDB The dead-end PDB heuristic from AIDOS (Pommerening and Seipp, 2016; Seipp et al., 2016). We
approximate UPDB(𝑃) by checking whether the PDB contains a pattern 𝑉 so that 𝑉 ⊆ vars(𝑃) and
𝑃 projected onto 𝑉 is recognized as dead end in the respective abstraction.

State Equation The state-equation heuristic SEQ (Bonet, 2013). Recall from Chapter 7 that for a state
𝑠, Useq(𝑠) = ∞ if the corresponding LP has not optimal solution. To approximate Useq(𝑃), we
set the lower- and upper-bounds of the state-equation constraints so that these constitute lower-,
respectively upper-bounds for every state that is represented by 𝑃 . Hence, if this LP does not have
a solution, the LP corresponding to every 𝑠 with 𝑃 ⊆ 𝑠 cannot have one either, i.e., Useq(𝑃) = ∞.

Potential Heuristic The unsolvability potential heuristic POT from AIDOS (Seipp et al., 2016). This heuristic
is implemented as an extension of the state-equation heuristic, refining that by additional constraints.
We approximate Upot(𝑃) following the same idea as for Useq(𝑃).

8.6.3. Discussion

Table 8.2 provides the main coverage results. The modified AIDOS configuration is indicated by “†”. The
version that participated in UIPC’16 is shown on the right-hand side of the table, together with MSp and
dead-end learning via UC . The results for U-trap online learning are shown in the middle part of the table
(“–” shows the results forU alone, “Γ” forU+UΓ). The left part shows the results for dead-end detection by
UΓ , for offline computed U0-traps Γ. Remember that U0-traps correspond exactly to the traps as originally
proposed by Lipovetzky et al. (2016), and that offline U0-traps are computed according to exactly that
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U0 U1 U2 MSa PDB SEQ POT ∑ UIPC ∑ RCP

U0 – 2 9 10 0 3 5 138 37
U1 2 – 8 10 2 4 6 135 54
U2 2 1 – 7 2 2 2 99 48
MSa 6 6 9 – 6 7 7 69 228
PDB 2 3 9 10 – 5 5 139 39
SEQ 1 1 9 10 1 – 5 134 36
POT 2 1 7 8 2 2 – 133 36

(a)

+ − Δ UIPC Δ RCP

U0 4 1 +7 +3
U1 4 2 -1 +3
U2 1 7 -28 -28
MSa 0 15 -65 -30
PDB 0 2 -3 0
SEQ 4 3 -36 +3
POT 1 10 -34 -23

(b)

Table 8.1.: (a) Comparison of different U for U-trap offline construction with 𝑘=2. U is used only for the trap
construction; not for pruning dead ends during search. The entry in the table at row “U1” and column “U2” shows
the number of domains on which search with the offline U1-trap achieves higher coverage than with the U2-trap.
“∑ UIPC” and “∑ RCP” provide the total coverage results for the two benchmark sets. (b) Comparison of search
using U alone versus the combination U + UΓ , for offline constructed UΓ , 𝑘 = 2. “+” counts the number of domains
on which U + UΓ achieves higher coverage than U; vice versa “−” counts the number domains on which U + UΓ

performs worse than U; “Δ UIPC” and “Δ RCP” shows the difference between the total number of instances solved
by U + UΓ and that by U, over the two benchmark sets.

proposal. Table 8.1 provides additional data for the offline trap configurations, using 𝑘 = 2. The results
for 𝑘 = 1 look similar. More detailed coverage results are available in Appendix A.1.

Consider first offline construction. As reflected by the results in Table 8.2, the conjunctions of size 𝑘 = 1
are not enough to compute a non-empty U0-trap in any domain but DocTransfer, effectively turning the
respective configuration into blind search. The computed U0-traps for 𝑘 = 2 mainly help in Bottleneck,
DocTransfer, and RCP TPP. As indicated by the results in Table 8.1a, the different unsolvability detectors
U have complementary effects on trap generation. Every U helps in some domains (cf. the “U0” column),
yet is also detrimental in other domains (cf. the “U0” row). The latter is due to the additional overhead
resulting from the evaluation of U during trap construction. An extreme example for that is MSa, which
vastly increases coverage in the resource-constrained domains, but worsens the results on all other domains
considerably. Overall, dead-end detection through an offline computed U-trap alone cannot compete with
current state-of-the-art methods. Considering the combination ofU andUΓ for dead-end detection, overall,
the additional overhead associatedwith the Γ construction outweighs the gains in terms of search reduction.
As shown in Table 8.1b, while the combination can improve coverage overU alone in at least some domains,
for every U but MSa and PDB, coverage decreases in many others. With respect to the total number of
instances solved, the U-traps turn out to be more detrimental than helpful.

The potential of U-traps really becomes alive, however, in the online conflict-driven learning setting. State-
of-the-art performance is achieved in many domains even for Γ using U0, i.e., without any additional
unsolvability detector. This vanilla configuration outperforms, in particular, conflict-driven learning viaUC
in its prime discipline, the resource-constrained domains. Coverage in the latter domains can be increased
even further through combination with the dead-end PDB heuristic, pushing the respectiveU-trap learning
configuration to perfect coverage in NoMystery and Rovers. In TPP,U-trap learning is inferior only to AIDOS’
resource-variable identification component.

U-trap learning improves overall coverage on the resource-constrained domains for every tested U except
for MSa. On the other domains, the overall picture is not as consistently good. The number of domains
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Offline Online
U0 U0 U1 U2 MSa PDB SEQ POT AIDOS†

Domain # 𝑘=1 𝑘=2 – Γ – Γ – Γ – Γ – Γ – Γ – Γ – Γ AIDOS MSp UC

Unsolvability IPC (UIPC) 2016 Benchmarks
BagBarman 20 12 12 12 0 8 0 0 0 4 0 12 0 4 0 4 0 12 0 12 0 0
BagGripper 25 5 1 6 5 3 3 0 0 3 3 3 3 23 23 3 3 25 23 5 3 3
BagTransport 29 7 7 7 7 6 7 16 16 6 6 7 7 29 29 24 24 29 29 22 1 7
Bottleneck 25 10 15 10 8 20 16 21 19 10 4 19 18 25 25 25 25 25 25 25 5 9
CaveDiving 25 7 7 7 5 7 5 6 5 7 4 7 5 8 6 8 7 9 7 8 3 8
ChessBoard 23 5 5 5 3 5 3 4 3 5 2 5 3 23 23 23 23 23 23 23 2 2
Diagnosis 11 4 5 4 6 6 9 5 6 4 4 5 9 4 9 4 8 5 9 5 5 8
DocTransfer 20 6 11 5 5 7 11 7 7 10 6 12 16 6 10 7 7 15 16 13 5 5
NoMystery 20 2 2 2 11 2 11 2 8 8 9 11 13 2 11 5 6 11 13 11 11 11
PegSol 24 24 24 24 18 24 18 21 16 24 16 24 16 24 18 22 20 24 16 24 24 14
PegSolRow5 15 5 5 5 4 5 4 4 4 5 4 5 4 15 15 15 15 15 15 15 3 4
Rovers 20 7 7 7 13 7 13 7 12 9 10 12 17 6 12 6 12 12 16 14 15 12
SlidingTiles 20 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Tetris 20 10 10 10 10 5 5 5 5 5 5 10 10 20 20 20 20 20 20 20 5 5
TPP 30 17 17 17 24 17 23 15 20 24 23 24 24 14 14 19 19 24 24 29 24 20∑ UIPC 327 131 138 131 129 132 138 123 131 134 106 166 155 213 225 195 199 259 246 236 116 118

Unsolvable Resource-Constrained Planning (RCP) Benchmarks
NoMystery 150 26 26 26 143 52 142 83 125 130 134 149 150 16 136 68 79 149 150 149 150 130
Rovers 150 3 3 3 142 7 139 67 120 111 111 93 150 1 125 1 125 93 150 109 129 144
TPP 25 5 8 5 19 7 21 8 9 17 12 20 21 1 1 11 11 19 21 25 16 14∑ RCP 325 34 37 34 304 66 302 158 254 258 257 262 321 18 262 80 215 261 321 283 295 288∑ Total 652 165 175 165 433 198 440 281 385 392 363 428 476 231 487 275 414 520 567 519 411 406

Table 8.2.: Coverage results (number of instances proved unsolvable). Best results in bold. “Offline” shows the results
for search with an offline generated U0-trap, choosing the conjunctions candidates C to all conjunctions of size
𝑘 = 1, respectively 𝑘 = 2. “Online” shows the results for “–”: DFS using only U for dead-end pruning (no learning);
versus “+Γ”: using U + UΓ , and enabling U-trap learning, for different U; “U0” naive unsolvability detector; “U1”
and “U2”: critical-path unsolvability detectors; “MSa”: unsolvability merge-and-shrink abstraction with size bound;
“PDB”: dead-end PDBs of AIDOS; “SEQ” unsolvability detection via the state equation; “POT”: potential heuristic of
AIDOS; “AIDOS†”: variant of AIDOS as described in the text, without “–” versus with “+Γ” U-trap learning enabled
in all components; “AIDOS”: AIDOS as in UIPC’16; “MSp” perfect merge-and-shrink unsolvability detector; and “UC”
DFS with conflict-driven learning using UC .

where U-trap learning positively (negatively) affects coverage are 9 (6) for U1; 7 (4) for U2; 3 (9) for
MSa; 7 (6) for PDB; 6 (3) for SEQ; 5 (3) for POT; and 7 (4) for AIDOS†. Synergistic effects, where the
combination of U with U-trap learning solves instances not solved by either of the component techniques
alone, occur for PDBs in the resource-constrained domains, as well as for U1, SEQ, and POT in Diagnosis
and DocTransfer.

Figure 8.2 provides additional per-benchmark-instance statistics on the impact of trap-based dead-end
learning on the U0-baseline: Figure 8.2a compares search space sizes, measured in terms of states visited
in search; Figure 8.2b compares the search-space and runtime reduction factors that result from enabling
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Figure 8.2.: (a) Per-instance based comparison of the search space sizes (number of visited states) between the
U0-baseline on the 𝑥 -axis versus U0-trap learning on the 𝑦-axis. (b) Per-instance based comparison of performance-
impact measures of U-trap online learning on the U0-baseline: search-space reduction factors on the 𝑥 -axis vs. run-
time reduction factors on the 𝑦-axis.

trap online learning in the U0-baseline. The results for other U are qualitatively similar. The difference
between search and runtime reduction corresponds exactly to the overhead induced by trap evaluation
and refinement. In the instances where runtime could not be reduced (points below 100), trap refinement
does not generalize at sufficient scale, and thus the overhead outweighs the benefits of trap learning.
Extreme examples are the two PegSol domains, for which generalization does not happen at all. In contrast,
search effort is reduced by several orders of magnitude in, e.g., DocTransfer, Diagnosis, and the resource-
constrained domains.

Regarding AIDOS, our modified variant performs better on the UIPC domains because partial-order re-
duction and resource variable detection have small positive effects, yet have a large negative impact in
BagGripper. Extending AIDOS† by U-trap online learning increases overall coverage, turning it into the
overall best configuration in this comparison. The difference emerges from the synergies of U-trap learn-
ing with AIDOS’ components as already pointed out. Over the UIPC domains, U-trap learning is slightly
worse overall, but its overall disadvantage is due primarily to BagBarman, where the U-trap generalization
algorithm struggles due to the prohibitive number of (ground) actions in the tasks, and often runs out of
time.



9. Discussion

We close this part with a brief summary of the presented material. Moreover, we discuss related and
possible future work.

9.1. Summary

Our work pioneers conflict-driven learning, of sound generalizable knowledge, from conflicts – dead-end
states – in forward state-space search. This is founded upon refineable goal-reachability approximations
U that can be rendered perfect in the limit. We presented search methods for identifying conflicts, and we
have shown how to refine different unsolvability detectors to recognize those states, doing so in hopes to
avoiding similar conflicts in the remainder of the search. Wrapped in a depth-first search, this reaches the
elegance of the conflict-driven learning approach for constraint satisfaction problems, including the ability
to refute explored search subtrees, and to immediately backjump, across levels, to the latest decision point
responsible for a conflict.

We considered three complementary families of unsolvability detectors: critical-path heuristics UC , LP-
based state-equation Useq and potential Upot heuristics, and U-traps. We showed how to, given a set of
conflict states, refine C so that UC recognizes these states. Towards curbing UC ’s computation overhead
as C keeps growing, we investigated alternative characterizations of UC ’s recognized dead-end states,
NoGood formulae. We showed that one can actually represent UC dead-end detection exactly through
a, worst-case exponentially large, NoGood formula, and presented two practical approaches generating
NoGoods dynamically during search, reducing evaluation calls to UC while not getting rid of them entirely.

While the state-equation and potential heuristics do not natively support the necessary refinement opera-
tion, we showed that both can be enhanced via fact conjunctions, leveraging well-known ΠC compilation.
We showed that these heuristics applied to ΠC converge to the perfect heuristic for suitable C. Moreover,
we developed a refinement algorithm for computing C suitable for Useq and Upot to recognize previously
unrecognized dead-end states.

The setups so far share the limitation that, when taking into account additional sources of goal-reachability
information, the learning will eventually, and redundantly, have to re-represent that information. To ad-
dress this shortcoming, we introduced U-traps, an extension of the dead-end trap formalism wrapping
around and generalizing an arbitrary other unsolvability detector U. We presented an U-trap refinement
procedure that synergistically combines learning with U’s embedded dead-end information.

Our experiments showcased that the learning can lead to tremendous savings in search, provided that
three requirements are in place: (1) conflicts are identified quickly, (2) the learned knowledge generalizes,
(3) the learning is effective, i.e., the scale of generalization outweighs the learning-related overhead. Such
a problem structure is typical for resource-constrained planning, as far as represented by the current
benchmarks, but unfortunately, it exists only rarely in other domains, as far as reflected by the competition
benchmarks. Thus, beauty contests aside, from a pragmatical point of view our techniques certainly do
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not, as they stand, deliver an empirical breakthrough. However, we consider our work to be merely a first
foray into forward search conflict-learning techniques, and lots more remains to be explored. We hope and
expect our work to be the beginning of the story, not its end.

9.2. Related Work

We group the related work into two categories: learning control knowledge during search, and dead-end
detection respectively proving unsolvability in classical planning.

9.2.1. Learning Search Control Knowledge

Learning search control knowledge from experience has long history in planning. The approaches can be
distinguished along two broad types of learning: inductive versus deductive. Inductive learning uses sta-
tistical methods to generalize from a large set of training examples, whereas deductive learning obtains
generalizing knowledge by explaining individual training examples according to some domain theory. Zim-
merman and Kambhampati (2003) and Celorrio et al. (2012) provide a, not exactly up-to-date, overview.
Inductive learning typically comes without formal guarantees. We focus on the deductive approaches in
the following.

Learning search control knowledge by explaining individual examples goes back to early works on the
STRIPS planning system (Fikes et al., 1972), which learns macro-actions representing entire action se-
quences that are gleaned from successful searches. These macro-actions may help subsequent searches
on related planning tasks by introducing shortcuts in the state spaces. Iba (1989) and Coles and Smith
(2007) adapt this approach to learning macro-actions during forward state-space search so to speed up
that search.

Minton et al. (1989) drove the idea of explanation-based learning for search further forward as part of
their work on the PRODIGY/EBL planning system. PRODIGY/EBL conducts backward state-space search
purely guided via a database of learned action preference rules. New rules are generated after search
by inspecting the generated search space for instances of first-order logic characterizations of different
learning concepts. Besides featuring concepts to learn form successful searches, like the approaches before
it, PRODIGY/EBL is also able to learn from search failures, i.e., search branches that could not be completed
to a solution (without including a cycle). The corresponding failure concepts serve as the basis to derive
sound action pruning rules, i.e., ones guaranteeing not to prune any solution.

FAILSAFE (Mostow and Bhatnagar, 1987; Bhatnagar andMostow, 1994) learns action pruning rules during
forward state-space search. To foster learning, new rules are generated not only upon search failures, but
whenever search is deemed to be under-constrained. To foster pruning, FAILSAFE learns overly generic
rules, at the price of loosing soundness guarantees. FAILSAFE features a mechanism to relax some of its
learned rules so to recover from situations where all solution paths were pruned.

Kambhampati et al. (1996) implement a form of conflict-driven learning in partial-order planning, i.e.,
in search in the space of plans. A depth limit ensures that the search space remains finite. Conflicts are
identified on a local per search node basis via different failure conditions, such as inconsistencies in the
constructed partial plans, or once exceeding the depth limit. Sound pruning rules are learned from failures
by isolating the individual failure conditions and regressing those through the search decisions. The failure
explanation of nodes crossing the depth limit requires additional domain knowledge. If the explanation
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is not possible, learning remains sound but becomes incomplete. Kambhampati (1998) later unifies and
relates the overall procedure to conflict-driven learning on constraint satisfaction problems.

Conflict-driven learning in state-space search has been studied in a length-bounded setting. GRAPHPLAN’s
memoization technique (Blum and Furst, 1997; Long and Fox, 1999), storing subgoals unreachable at
different layers, can be seen as seen as a simple form of NoGood learning. Kambhampati (2000) later
extends this by a generalization procedure. Specifically, whenever GRAPHPLAN backtracks from its layer
𝐿𝑘 to layer 𝐿𝑘+1 with subgoal 𝐺𝑘 , proving that 𝐺𝑘 is not reachable at layer 𝐿𝑘 , instead of memoizing 𝐺𝑘 ,
one attempts to extract a small reason 𝑟𝑘 ⊆ 𝐺𝑘 sufficient for the unreachability. 𝑟𝑘 is stored, and used
to refute other subgoals 𝐺′

𝑘
≠ 𝐺𝑘 , namely if 𝑟𝑘 ⊆ 𝐺′

𝑘
, that may be encountered in later iterations. As

observed by Suda (2014), this closely resembles PDR (Bradley, 2011; Suda, 2014).

Given the relation between length-bounded reachability in symbolic transition systems and propositional
satisfiability (Kautz and Selman, 1999; Biere et al., 1999; Rintanen et al., 2006), via the appropriate compi-
lations, the conflict-driven learning techniques developed in this area (e.g., Dechter, 1986; Dechter, 1990;
Prosser, 1993; Silva and Sakallah, 1996; Moskewicz et al., 2001; Beame et al., 2004) apply unmodified.

SIXTHSENSE (Kolobov et al., 2010b) learns to detect dead ends during probabilistic forward state-space
search, yet incorporates classical planning as a sub-procedure. Moreover, SIXTHSENSE relies onℎ2 (Haslum
and Geffner, 2000) for generalizing its pruning rules, and as such cannot learn recognizing dead ends other
than the ones recognized by ℎ2.

PRP (Muise et al., 2012b) learns to detect dead ends in FOND planning, but again relies on a classical-
planning sub-procedure, and its generalization capabilities are bounded byℎ1 (Haslum and Geffner, 2000).

Online heuristic refinement, improving the cost-to-goal estimates during heuristic forward search, has
also received some attention. For example, Fickert and Hoffmann (2017) refine the critical-path based
ℎCFF heuristic during an enforced hill-climbing search to escape local minima. Eifler and Fickert (2018)
refine Cartesian abstraction heuristics during A∗ search based on inconsistencies in the Bellman equations.
In principle, the refinements can result in recognizing new dead ends, but they are not geared at this
purpose.

Finally, search using value function refinements via Bellman updates (e.g., Korf, 1990; Reinefeld and Mars-
land, 1994; Barto et al., 1995; Bonet and Geffner, 2006) will eventually learn that a state is a dead end,
yet it does not generalize that knowledge.

In difference to all these approaches, our presented techniques are unique in the sense of (1) learning
sound and generalizable state-pruning rules, (2) during forward state-space search, (3) without length
bound, and (4) providing the ability to learn to recognize any dead-end state.

9.2.2. Dead-End Detection and Proving Unsolvability

Both, dead-end detection and proving unsolvability, have been traditionally neglected in classical planning;
the latter has even been completely ignored, the focus being exclusively on solvable problems. First works
designing techniques dedicated to dead-end detection appeared in 2013 and 2014 (Bäckström et al., 2013;
Hoffmann et al., 2014); proving unsolvability became the center of attention for the first time in 2016,
with the inaugural Unsolvability International Planning Competition (UIPC’16).

Dead-end detection has been traditionally treated as byproduct of heuristic functions (e.g., Haslum and
Geffner, 2000; Hoffmann and Nebel, 2001; Edelkamp, 2002; Helmert and Domshlak, 2009; Richter and
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Westphal, 2010; Helmert et al., 2014). Hoffmann et al. (2014) were the first to break with this tradi-
tion. They designed unsolvability detectors based on merge-and-shrink abstractions (Dräger et al., 2009;
Helmert et al., 2014; Sievers and Helmert, 2021). In UIPC’16, apart from merge-and-shrink abstrac-
tions (Torralba et al., 2016), new unsolvability detectors participated based on potential heuristics (Pom-
merening et al., 2015; Seipp et al., 2016), pattern databases (Edelkamp, 2002; Pommerening and Seipp,
2016), and critical-path heuristics (Haslum and Geffner, 2000; Haslum, 2016). But, in all those techniques,
the unsolvability detector is constructed before search, and remains static during search.

Apart from the mentioned unsolvability detectors, UIPC’16 featured many other approaches tailored for
proving unsolvability, such as symbolic search via BDDs (Edelkamp et al., 2015; Torralba, 2016), partial
delete-relaxation (Domshlak et al., 2015; Gnad et al., 2016b), and sound pruning techniques (Wehrle
and Helmert, 2014; Torralba and Hoffmann, 2015; Torralba and Kissmann, 2015). Yet, none of these
incorporate any kind of learning.

Eriksson et al. (2017) have presented a generic proof system that can be plugged into many planning tech-
niques proving unsolvability so to generate unsolvability certificates. Our techniques can provide unsolv-
ability certificates without further modifications. Eriksson et al.’s (2017) proof system yields an inductive
state set that separates initial and goal states. The structure of our certificates depends on the underlying
unsolvability detector, specifying an instantiation that recognizes the initial state as dead end.

9.3. Future Work

Regarding future work, lots more remains to be explored. First and foremost, one thing we would par-
ticularly like to see is the export of this (kind of) technique to game-playing and model checking, where
dead-end detection is at least as, probably even more, important than in classical planning. This works out
of the box modulo the applicability of the underlying unsolvability detector. Specifically, the critical-path
heuristic and the ΠC compilation rely on a conjunctive subgoaling structure. Though, supporting richer
formalisms (such as also disjunctions, or even integer arithmetic) should be doable, and there already ex-
ists some work in that direction (e.g., Löhr, 2014). Porting U-trap learning per-se requires only a suitable
adaption of the syntactic progression operation, but questions remain pertaining to how to then exactly
integrate additional unsolvability detector U.

On the algorithmic side of things, a major open point is the learning utility problem (e.g., Minton et al.,
1989): the relation between learning overhead and impact on search. Learning can only be effective if the
extent of the latter dominates the former. One possibility to tackle this problem could be a safety beltmech-
anism as already used for other search pruning techniques; if we could predict, during searching, what the
learning utility will be, then we could enable/disable learning accordingly. This poses the question of how
to measure the impact on search without knowing exactly how large the search space would have been if
we had not pruned a state. Moreover, as search is progressing and the learned information keeps growing,
the unsolvability detector refinements and evaluations become continuously more expensive, while not all
information that was ever learned remains useful for the remaining search. Periodically cleaning up the
learned knowledge has shown to be highly critical for the efficiency of clause learning SAT solvers (e.g.,
Audemard and Simon, 2009). Challenging questions in our setting pertain to deciding when to start a
cleanup, and more importantly, how to even decide what information to forget.

We have covered a range of different unsolvability detectors, and seen that these methods can perform
complementary on different domains. An interesting question remaining is how to effectively combine
these methods? Moreover, an exciting line of research is the design of different refinement methods, be it
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for considered, or for other dead-end detectors. In particular, can we refine merge-and-shrink unsolvabil-
ity heuristics on the fly? For the critical-path heuristics, open questions pertain to different strategies for
selecting the conjunctions resolving a flaw. Regarding the state-equation and potential heuristics, there
remains the quest for alternative ways to incorporate conjunctions (or other information) without induc-
ing an exponential blow-up like ΠC , while also not constraining the interactions between the individual
elements like partial variable merges do. Regarding U-traps, it could be worthwhile to investigate more ex-
pressive state-set representations, such as using Cartesian products over subsets of variable domains (e.g.,
Seipp and Helmert, 2018) instead of conjunctions.

Another point on the agenda is the integration of other search-space reduction techniques. For safe re-
duction techniques (ones guaranteeing to preserve at least one solution path, if one exists), this is prin-
cipally possible already, although one needs to pay attention to particularities arising from some of the
presented unsolvability-detector refinement algorithms (specifically, the recognized-neighbors property).
Yet, when using a transitive unsolvability detector for learning, there again emerges the problem of dupli-
cating knowledge embedded in the reduction technique already. This brings up the question whether there
exist formalisms that, similar to U-traps, allow to synergistically combine learning with other search-space
reduction techniques.

Interesting questions also appear in the context of unsafe search-space reduction methods, such as inwidth-
based search (Lipovetzky and Geffner, 2012), in under-approximation refinement (Heusner et al., 2014), or
in partial grounding approaches (Gnad et al., 2019). For instance, width-based search uses a predefined set
of state formulae, considering only states that satisfy some formula not satisfied by any state seen before
it. Conflicts – states for which all goal paths have been pruned – abound, the more confined the chosen
state formulae. On the one hand, this enlarges the potential for conflict-driven learning. Open questions
pertain to unsolvability predictors that reason about the still available state formulae, i.e., given a state,
how to derive sufficient conditions to whether there exists a non-pruned goal path, and can we refine
these predictions upon finding unrecognized conflicts? On the other hand, conflict-driven learning could
be an effective means to make width-based search complete. Namely, when the current set of formulae is
too aggressive in the sense of pruning all solution paths, there is the question of how to refine the set of
formulae before reiterating search. The analysis of conflicts could direct this refinement.

Last but not least, a promising direction for future work is lifting the presented techniques to weaker forms
of conflicts. A particularly appealing variant is given by loop-back states, i.e., states 𝑠 all whose solution
paths need to pass through some ancestor of 𝑠 in the search space.While loop-back states need not necessar-
ily be dead ends, their exploration in search is equally wasteful. Loop-back states can be expected to appear
much more frequently than dead-end states, addressing one of the main bottlenecks of the conflict-driven
learning approach in its current form. Open questions pertain to the development of unsolvability-detector
equivalents for recognizing loop-back states, alongside with corresponding refinement procedures.





Part III.

State-Space Search Methods for Goal-Probability Analysis in
Probabilistic Planning

When acting under uncertainty, it may not be possible to achieve the goal while avoiding
dead-end states under all possible circumstances. An important objective in such settings
is MaxProb, determining the maximal probability with which the goal can be reached, and
identifying a policy achieving that probability. This part of the thesis is concerned with MDP
probabilistic planning methods solving variants of this objective optimally.
While this setup and objective certainly is relevant, there has been little work towards devel-
oping solvers, the main effort being made by Kolobov et al. (2011). Hou et al. (2014) consider
several variants of topological value iteration, solving MaxProb but necessitating to build the
entire reachable state space. Other works addressing goal-probability maximization do not
aim at guaranteeing optimality (e.g., Teichteil-Königsbuch et al., 2010; Camacho et al., 2016).
MDP heuristic search has the potential to find an optimal solution without building the entire
state space, but cannot be applied to MaxProb directly due to the possibility of having 0-
reward cycles. To remedy this limitation, Kolobov et al. (2011) devised the FRET framework,
which admits heuristic search, yet requires several iterations of complete searches. Kolobov
et al.’s contribution is mainly theoretical – considering not only MaxProb but a much larger
class of MDPs – and their empirical evaluation serves merely as a proof of concept. Given this
(i) What is actually the empirical state of the art in MDP heuristic search for MaxProb?
(ii) What about simpler yet still relevant special cases, and weaker objectives, that may be easier

to solve?
Regarding (ii), a relevant special case is acyclic planning, covering, e.g., limited-budget plan-
ning, or penetration testing models, where FRET is not needed. Moreover, as alternatives to
MaxProb, it might be reasonable to ask for policies achieving some minimal goal-probability
threshold (AtLeastProb) or accuracy with respect to MaxProb (ApproxProb). These weaker
objectives enable what we will refer to as early termination.
Regarding (i), we develop a large MDP state-space search tool box composed of (a) search
algorithms: variants of known and new heuristic search algorithms, equipped with early-ter-
mination criteria, tie-breaking strategies fostering early termination, a new FRET variant,
and heuristic search algorithms without FRET dependency; (b) state-space reduction methods:
we consider probabilistic bisimulation, and dead-end pruning via classical-planning heuristic
functions; (c) goal-probability heuristics: we develop MaxProb variants of the occupation-mea-
sure and probabilistic operator-counting heuristics (Trevizan et al., 2017b). We systematically
explore the behavior of the resulting design space on a large benchmark suite we design for
that purpose, clarifying the state of the art, and demonstrating significant benefits of our new
algorithm variants.
This part is based on the material presented in (Steinmetz et al., 2016a).
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10. Probabilistic Planning

This chapter establishes the formal basis of goal-probability analysis in MDP-based probabilistic planning.
The structure broadly follows that of Chapter 2. We start with the syntactic representation of probabilis-
tic planning tasks, then define their semantics by a means of MDPs. For the syntactic specification, we
build upon the classical planning formalism presented in Section 2.1.2, extending it by the support of non-
deterministic action outcomes. We introduce a limited cost budget variant, which plays an important role
in our experiments. We revisit the central concepts in the realm of MDPs, and define our goal-probability
objectives in this context. For an in-depth discussion of the theory of MDPs, we refer to standard text-
books (e.g., Puterman, 1994).

10.1. Probabilistic FDR Planning Tasks

This part of the thesis is entirely based on the FDR formalism. Probabilistic planning tasks differ from the
classical ones (Definition 2.4) in only the action definition. We provide the full definition for completeness:

Definition 10.1 (Probabilistic FDR Task). A probabilistic FDR task is a tuple

Π = ⟨V,A,I,G⟩

with components

• V is a finite set of variables, each 𝑣 ∈ V has a finite domain D𝑣 .

• A is a finite set of actions. Each action 𝑎 ∈ A has a precondition pre(𝑎), a variable assignment, and
a non-empty finite set of outcomes out(𝑎). Each outcome 𝑜 ∈ out(𝑎) is associated with a non-zero
outcome probability prob(𝑜) ∈ (0, 1], and the outcome effect eff(𝑜), which is a variable assignment.
We require that the outcome probabilities sum up to 1: ∑𝑜∈out(𝑎) prob(𝑜) = 1.

• I is the initial state, a complete variable assignment.

• G is the goal, a variable assignment.

We sometimes refer to Π’s individual components byVΠ, AΠ, IΠ, and GΠ. Action costs are omitted, as
these are not relevant for goal-probability analysis. We say that an action is probabilistic if it has more
than one outcome, and we call it deterministic otherwise. Facts F Π, states SΠ, and the notion of action
applicability are defined just as for classical FDR tasks. For a state 𝑠 ∈ SΠ, applicable action 𝑎 ∈ A(𝑠),
and outcome 𝑜 ∈ out(𝑎), we define by 𝑠⟦𝑜⟧ = (𝑠 ◦ eff(𝑜)) the result of 𝑜 in 𝑠. Different outcomes of an
action may result in different states. Hence, the result of applying actions is no longer guaranteed to be
a unique state, but depends on the action outcome. The choice of the action outcome is not controllable.
One can think of it as being selected by external entity. The outcome probabilities provide an estimation
of the likelihood that a particular outcome occurs.
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Example 10.1. Reconsider the rover running example from Section 1.2, and the classical FDR planning task
encoding (Example 2.2). Assume that we have incomplete knowledge about the surface structure. In particular,
some connections between the locations might be impassable by the rover. To take into account this uncertainty
inside the planning task, we introduce for each pair of connected locations𝑥 and𝑦 a new variable 𝑐𝑜𝑛(𝑥,𝑦) with
domain D𝑐𝑜𝑛(𝑥,𝑦) = { 𝑝𝑎𝑠, 𝑖𝑚𝑝,𝑢𝑛𝑘 }. The value 𝑢𝑛𝑘 represents unknown knowledge about the connection
status, the values 𝑝𝑎𝑠 (passable) and 𝑖𝑚𝑝 (impassable) reflect information that rover has discovered. The
𝑐𝑜𝑙𝑙𝑒𝑐𝑡 and 𝑑𝑟𝑜𝑝 actions remain deterministic, having a single outcome whose effect is defined just as in the
classical case. To reflect the connection uncertainty, the𝑚𝑜𝑣𝑒 actions from before are replaced by two variants

• 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝐴𝑛𝑑𝑀𝑜𝑣𝑒 is probabilistic, and applicable only if the status of the connection has not been
unveiled yet: pre(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝐴𝑛𝑑𝑀𝑜𝑣𝑒 (𝑥,𝑦, 𝑘)) = { 𝑐𝑜𝑛(𝑥,𝑦) ↦→ 𝑢𝑛𝑘, 𝑟𝑜𝑣 ↦→ 𝑥, 𝑏𝑎𝑡 ↦→ 𝑘 }. There
are two probabilistic outcomes out(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝐴𝑛𝑑𝑀𝑜𝑣𝑒 (𝑥,𝑦, 𝑘)) = { 𝑜𝑝𝑎𝑠 , 𝑜𝑖𝑚𝑝 }, the connection being
impassable eff(𝑜𝑖𝑚𝑝) = { 𝑐𝑜𝑛(𝑥,𝑦) ↦→ 𝑖𝑚𝑝,𝑏𝑎𝑡 ↦→ 𝑘 − 1 } and vice versa eff(𝑜𝑝𝑎𝑠) = { 𝑐𝑜𝑛(𝑥,𝑦) ↦→
𝑝𝑎𝑠, 𝑟𝑜𝑣 ↦→ 𝑦,𝑏𝑎𝑡 ↦→ 𝑘 − 1 }. The outcome probabilities could follow any prior belief on the availability
of each individual connection. For the sake of the example, we simply assume that prob(𝑜𝑖𝑚𝑝) = 1

5 and
prob(𝑜𝑝𝑎𝑠) = 4

5 .

• 𝑚𝑜𝑣𝑒 is deterministic, but requires that the connection is known to be passable. Formally, the action has
precondition pre(𝑚𝑜𝑣𝑒 (𝑥,𝑦, 𝑘)) = { 𝑐𝑜𝑛(𝑥,𝑦) ↦→ 𝑝𝑎𝑠, 𝑟𝑜𝑣 ↦→ 𝑥, 𝑏𝑎𝑡 ↦→ 𝑘 }, and has a single outcome
out(𝑚𝑜𝑣𝑒 (𝑥,𝑦, 𝑘)) = { 𝑜 } with effect as in the classical variant eff(𝑜) = { 𝑟𝑜𝑣 ↦→ 𝑦,𝑏𝑎𝑡 ↦→ 𝑘 − 1 },
and outcome probability prob(𝑜) = 1.

Sometimes it can be useful to constrain the space of solutions by a finite cost budget. For instance, such
constraints are naturally given by consumable resources, as in resource-constrained planning (e.g., Haslum
and Geffner, 2001; Nakhost et al., 2012; Coles et al., 2013). Moreover, step-limited goal reachability ob-
jectives, such as finite-horizon goal-probability maximization, constitute a special case. Limited-budget
probabilistic FDR tasks allow to specify such budget explicitly:

Definition 10.2 (Limited-Budget Probabilistic FDR Task). A limited-budget probabilistic FDR task is a
tuple

Π𝔟 = ⟨V,A,I𝔟,G⟩

whereV, A, and G are defined as before, and

• 𝔠 :
⋃

𝑎∈A out(𝑎) → ℝ+0 is the outcome cost function.

• I𝔟 is a complete assignment toV ∪ { 𝔟 }, and I𝔟 [𝔟] ∈ ℝ+0 gives the initial budget.

The statesSΠ𝔟 of Π𝔟 are the complete assignments toV∪{ 𝔟 } withD𝔟 = ℝ. The value 𝑠 [𝔟] in state 𝑠 ∈ SΠ𝔟

denotes the remaining budget in 𝑠.

The facts F Π𝔟 of Π𝔟 are defined as before, ignoring the budget variable. We also continue to identify states
𝑠 ∈ SΠ𝔟 by sets of facts, specifying the remaining budget 𝑠 [𝔟] in addition. The outcome cost function
defines how the remaining budget gets updated. An action 𝑎 ∈ A is applicable in a state 𝑠 ∈ SΠ𝔟 if
pre(𝑎) ⊆ 𝑠 and 𝑠 [𝔟] ≥ 0. If applicable, the result of outcome 𝑜 ∈ out(𝑎) is the defined as

𝑠⟦𝑜⟧ = (𝑠 ◦ eff(𝑜))) ◦ { 𝔟 ↦→ (𝑠 [𝔟] − 𝔠(𝑜)) }

In words, the FDR state variablesV are updated according to the effect eff(𝑜), as before, and the remaining
budget 𝔟 is updated as per the outcome cost 𝔠(𝑜). Note that the budget value may become negative. We
will come back to this in the semantic definition in the next section.
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Example 10.2. The battery level in Example 10.1 can be seen as a limited budget. To obtain a limited-budget
probabilistic FDR variant, we remove 𝑏𝑎𝑡 from FDR state variables. The initial battery level becomes the initial
budget I𝔟 [𝔟] = 2. Actions 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝐴𝑛𝑑𝑀𝑜𝑣𝑒 and𝑚𝑜𝑣𝑒 are no longer parameterized in the current battery
level. The effects on 𝑏𝑎𝑡 are replaced by the outcome cost function, which assigns 0 to all outcomes but those
of the move actions, defining 𝔠(𝑜) = 1 for all their outcomes. The preconditions on 𝑏𝑎𝑡 are implicitly enforced
as moving is no longer possible once the remaining budget becomes negative.

Definition 10.2 can be straightforwardly extended to multiple budgets and cost functions. In principle, all
techniques presented later on can be easily adapted to the multiple budget case as well. For the sake of
simplicity, we however restrict ourselves to a single budget only in the following.

Probabilistic (limited-budget) FDR tasks can be related back to classical FDR tasks via a determinization
operation (Bonet and Geffner, 2005; Jimenez et al., 2006):

Definition 10.3 (All-Outcomes Determinization). Let Π = ⟨V,A,I,G⟩ be a probabilistic FDR task. The
all-outcomes determinization (short determinization) of Π is given by the classical FDR planning task ΠD =
⟨V,AD,I,G⟩, with determinized actions AD = { 𝑎𝑜 | 𝑎 ∈ A, 𝑜 ∈ out(𝑎) }, where pre(𝑎𝑜 ) = pre(𝑎) and
eff(𝑎𝑜 ) = eff(𝑜). Additionally, if Π is a budget-limited task, we define the cost of the determinized action as
𝔠(𝑎𝑜 ) = 𝔠(𝑜).

The all-outcomes determinization represents every probabilistic action outcome by a deterministic action,
pretending to be always able to choose the desired action outcome. There also exist other variants, most
notablymost-likely outcome determinization, choosing the outcomes to be represented more selectively. Yet,
an exhaustive outcome treatment is a requirement of the techniques that will be presented later on.

10.2. Markov Decision Processes

Markov Decision Processes (MDPs) are a common framework to describe systems with stochastic behavior.
MDPs can be defined in a multitude of ways. Common to all definitions is some form of states, with tran-
sitions between states via some form of actions. Transitions are non-deterministic in that taking an action
in a state may result in one of potentially many states, some more, some less likely as specified by the
transition probability function. To reflect the transition uncertainty, MDP optimization objectives usually
ask for the maximization or minimization of the expected value of some optimization function. Two cate-
gories are commonly studied in literature: the maximization of a reward function (e.g., Puterman, 1994);
and reachability based objectives (e.g., Bertsekas, 1995; Kolobov et al., 2011), such as expected-cost min-
imization. In this thesis, we will exclusively deal with the latter kind. Our MDP definition closely follows
that of labeled transition systems (cf. Definition 2.5):

Definition 10.4 (Goal-Oriented MDP). A goal-oriented MDP is tuple

M = ⟨S,A,P, 𝑠I,S∗⟩

with components

• S is a finite set of states.

• A is a finite set of action symbols.

• P : S ×A ×S → [0, 1] is the transition probability function such that for each 𝑠 ∈ S and 𝑎 ∈ A∑
𝑠′∈S
P(𝑠, 𝑎, 𝑠′) ∈ { 0, 1 }
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• 𝑠I ∈ S is the initial state.

• S∗ ⊆ S are the goal states.

Since goal-oriented MDPs are the only form of MDPs that we consider, we will be simply calling them
MDPs, and make a distinction to other classes of MDPs only if relevant for the discussion.

We extend the notions introduced for labeled transition systems as follows. We say that there is determin-
istic transition from 𝑠 to 𝑠′ via 𝑎 if P(𝑠, 𝑎, 𝑠′) = 1. In this case, we also call 𝑠′ the deterministic successor
of 𝑠 under 𝑎. Vice versa, if P(𝑠, 𝑎, 𝑠′) > 0 but P(𝑠, 𝑎, 𝑠′) < 1, we call it a probabilistic transition, and 𝑠′
a probabilistic successor of 𝑠 under 𝑎. The set of all 𝑎-successors of a state 𝑠 inM then is

Succ[M](𝑠, 𝑎) = { 𝑠′ ∈ S | P(𝑠, 𝑎, 𝑠′) > 0 }

The set of all successors of 𝑠 inM is

Succ[M](𝑠) =
⋃
𝑎∈A

Succ[M](𝑠, 𝑎)

Similarly, the predecessors of 𝑠 inM are the states

Pred[M](𝑠) = { 𝑠′ ∈ S | P(𝑠′, 𝑎, 𝑠) > 0 for some 𝑎 ∈ A }

The transitive closure Succ+ [M](𝑠) yields the set of all descendants of 𝑠. Pred+ [M](𝑠) gives the set of
all ancestors of 𝑠. The states reachable from 𝑠 inM are given by R[M](𝑠) = Succ+ [M](𝑠) ∪ { 𝑠 }. We
denote the set of actions labeling an outgoing transition from 𝑠 by

A[M](𝑠) = { 𝑎 ∈ A | Succ[M](𝑠, 𝑎) ≠ ∅ }

We omit [M] ifM is clear from the context.

A state 𝑠 is a dead end if no goal state is reachable from 𝑠, i.e., if R(𝑠) ∩ S∗ = ∅. The terminal states in
M are the states without outgoing transitions:

S⊥ = { 𝑠 ∈ S | A(𝑠) = ∅ }

A path inM is a finite or infinite alternating sequence of states and actions 𝜎 = ⟨𝑠0, 𝑎1, 𝑠2, 𝑎2, . . .⟩ such
that P(𝑠𝑖 , 𝑎𝑖 , 𝑠𝑖+1) > 0 holds for all 𝑖 ≥ 0. A finite path ⟨𝑠0, 𝑎1, 𝑠2, . . . , 𝑎𝑛, 𝑠𝑛⟩ is a cycle if 𝑛 ≥ 1 and 𝑠𝑛 = 𝑠0.
Cycles of the form ⟨𝑠, 𝑎, 𝑠⟩ are also called self-loops.M is acyclic if it does not contain any cycle.

An MDPM′ = ⟨S′,A′,P′, 𝑠′I,S∗′⟩ is a subgraph ofM if (i) S′ ⊆ S, and (ii)A′ ⊆ A, and (iii) S′∗ ⊆ S∗,
and (iv) it holds for all 𝑠, 𝑠′ ∈ S′ and𝑎 ∈ A′ thatP′(𝑠, 𝑎, 𝑠′) ∈ {0,P(𝑠, 𝑎, 𝑠′)}. Notice that the combination
of (iv) and the requirement∑𝑠′∈S′ P′(𝑠, 𝑎, 𝑠′) ∈ {0, 1} in theMDP definition only leaves the choice of either
including a transition entirely or not at all, i.e., ∅ ⊂ Succ[M′] (𝑠, 𝑎) ⊂ Succ[M](𝑠, 𝑎) is not possible.

Let ∅ ⊂ 𝑆 ⊆ S be a non-empty subset of states. The subgraph ofM induced by 𝑆 is given byM|𝑆 =
⟨𝑆,A,P|𝑆 , 𝑠′I,S∗ |𝑆⟩, where S∗ |𝑆 = S∗ ∩ 𝑆 , for every 𝑠, 𝑠′ ∈ 𝑆 and 𝑎 ∈ A: P|𝑆 (𝑠, 𝑎, 𝑠′) = P(𝑠, 𝑎, 𝑠′) if
Succ[M](𝑠, 𝑎) ⊆ 𝑆 , and P|𝑆 (𝑠, 𝑎, 𝑠′) = 0 otherwise. The choice of the initial state is not important. Let
𝑠 ∈ S be some state. The subgraph ofM reachable from 𝑠 is the subgraph induced by the states reachable
from 𝑠, i.e.,M|R(𝑠) . Note thatP|R(𝑠) is identical toP for all states 𝑠′ ∈ R(𝑠), since Succ[M](𝑠′, 𝑎) ⊆ R(𝑠)
holds by definition. The subgraph reachable from the initial state,M|R(𝑠I) , is called the reachable subgraph
ofM.

Finally, the notion of end components (Courcoubetis and Yannakakis, 1995; de Alfaro, 1997) lifts strongly
connected components to the probabilistic setting:
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Definition 10.5 (End Component). A subgraph M′ of M over a non-empty set of states S′ is an end
component (EC) ofM if it holds for all pairs 𝑠, 𝑠′ ∈ S′ that 𝑠 ∈ Succ[M′] (𝑠′).

Abusing notion, we call a set of states 𝑆 ⊆ S an end component if there exists an end componentM′
with states S′ = 𝑆 . Notice that end components are SCCs closed under probabilistic branching. More
concretely, while the notion of strongly connected component only requires the existence of some path
between each pair of states from S′, end components require that these paths must be formed from
probabilistic transitions that remain within the component, i.e., where ∑

𝑠′∈S′ P(𝑠, 𝑎, 𝑠′) = 1.

10.3. Probabilistic State Space

Having the basic MDPs notions in place, we are now ready to define the semantics of probabilistic planning
tasks. The state space induced by a probabilistic FDR task is defined analogously to the classical case,
substituting the transition relation by transition probabilities:

Definition 10.6 (Probabilistic State Space). Let Π be a probabilistic FDR task. The probabilistic state space
induced by Π is the MDP

MΠ = ⟨SΠ,AΠ,PΠ, 𝑠ΠI ,SΠ
∗ ⟩

where

• The transition probabilities are defined as follows. Let 𝑠, 𝑠′ ∈ SΠ and 𝑎 ∈ AΠ. If 𝑎 ∉ AΠ (𝑠), then
PΠ (𝑠, 𝑎, 𝑠′) = 0. Otherwise,

PΠ (𝑠, 𝑎, 𝑠′) =
∑

𝑜∈out(𝑎):𝑠′=𝑠⟦𝑜⟧
prob(𝑜)

aggregates the probabilities of all outcomes that result in 𝑠′; defining ∑
∅ = 0.

• 𝑠ΠI = IΠ is the initial state of Π.

• SΠ
∗ = { 𝑠 ∈ SΠ | GΠ ⊆ 𝑠 } are the states that satisfy the goal of Π.

The state space induced by a limited-budget task differs only in the special treatment of states with negative
remaining budget:

Definition 10.7 (Limited-Budget Probabilistic State Space). Let Π𝔟 be a limited-budget probabilistic FDR
task. The probabilistic state space induced by Π𝔟 is the MDP

MΠ𝔟 = ⟨SΠ𝔟 ,AΠ𝔟 ,PΠ𝔟 , 𝑠Π𝔟
I ,SΠ𝔟

∗ ⟩

whose components are defined similarly to Definition 10.6 but:

• SΠ𝔟
∗ = { 𝑠 ∈ SΠ𝔟 | GΠ𝔟 ⊆ 𝑠, 𝑠 [𝔟] ≥ 0 } are the states that satisfy the goal of Π𝔟 and whose remaining

budget is not negative.

Note that limited-budget tasks Π𝔟 have infinitely many states. Thus, the probabilistic state space is actually
not an MDP as per Definition 10.4. However, since the initial budget is bounded, all outcomes have non-
negative cost, and states with negative remaining budget are terminal, the subgraphMΠ𝔟 |R(𝑠I) reachable
from the initial state is guaranteed to be finite. In other words,MΠ𝔟 |R(𝑠I) fits our MDP definition. As we
will exclusively consider algorithms that work on this reachable subgraph, we glance over this subtlety in
the following. Finally, observe that if 𝔠(𝑜) > 0 holds for all outcomes 𝑜 , then the remaining budget strictly
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decreases along every transition, and thereforeMΠ𝔟 |R(𝑠I) is acyclic. We will consider acyclic MDPs as a
special case.

10.4. Policies

As opposed to classical planning, the applications of actions in an MDP can non-deterministically result
in one of potentially many states. Formulating a goal reaching strategy hence necessitates a notion that
supports the specification of appropriate reactions to the arising contingencies. Common definitions of
such strategies differ slightly depending on the MDP objective. For the scope of this thesis, it suffices to
consider the most simplest variant, where the choice of what to do next must be unique (deterministic),
and it must solely depend on the current state (memoryless). In our context, there always exists an optimal
solution (defined below), satisfying these properties (see Bertsekas, 1995).

Definition 10.8 (Policy). Let M = ⟨S,A,P, 𝑠I,S∗⟩ be an MDP. A policy for M is a partial function
𝜋 : (S \ S∗) ⇀ A such that 𝜋 (𝑠) ∈ A(𝑠) whenever 𝜋 (𝑠) is defined.

If 𝜋 (𝑠) is not defined, we also write 𝜋 (𝑠) = ⊥. The execution of a policy implicitly defines a subgraph of
the original MDP, with transitions as determined by the policy:

Definition 10.9 (Policy Graph). The policy graph induced by 𝜋 is the subgraphM𝜋 = ⟨S,A,P𝜋 , 𝑠I,S∗⟩
ofM where

P𝜋 (𝑠, 𝑎, 𝑠′) =
{
P(𝑠, 𝑎, 𝑠′) if 𝜋 (𝑠) = 𝑎

0 otherwise

The set of terminal states inM𝜋 is denoted S𝜋
⊥ . Suppose 𝑠 ∈ S. We denote by R𝜋 (𝑠) the set of states

reachable from 𝑠 via 𝜋 , i.e.,R𝜋 (𝑠) = R[M𝜋 ] (𝑠). The terminal states reachable from 𝑠 then areS𝜋
⊥ |R𝜋 (𝑠) =

S𝜋
⊥ ∩ R𝜋 (𝑠). We say that 𝜋 is closed with respect to 𝑠 if S𝜋

⊥ |R𝜋 (𝑠) ⊆ S⊥ ∪ S∗, i.e., if it holds for all states
𝑠′ reachable from 𝑠 via 𝜋 , 𝑠′ ∈ R𝜋 (𝑠), that 𝜋 (𝑠′) ≠ ⊥ or 𝑠′ ∈ S∗ ∪ S⊥. A closed policy is a policy closed
with respect to 𝑠I .

10.5. Stochastic Shortest Path Problems

Stochastic shortest path problems (short SSPs) (Bertsekas, 1995) constitute the most thoroughly studied
subclass of goal-oriented MDPs. The huge conglomerate of effective MDP heuristic search approaches,
parts of which we will adapt in the course of the thesis, is founded in the SSP assumptions. We provide a
definition suited to our context:

Definition 10.10 (SSP). LetM = ⟨S,A,P, 𝑠I,S∗⟩ be an MDP.M is an SSP if it holds for every policy 𝜋
and reachable state 𝑠 ∈ R(𝑠I) that R𝜋 (𝑠) ∩ (S∗ ∪ S𝜋

⊥) ≠ ∅.

In words, SSPs require that the execution of every policy from any state must eventually end in an absorbing
state, i.e., goal state or terminal state in the corresponding policy graph. In particular, notice that acyclic
MDPs trivially satisfy the SSP condition, as every path must end in a terminal or goal state by definition.

10.6. Goal-Probability Value Function

The quality of a policy is expressed as a value function:
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Definition 10.11 (Value Function). A value function inM is a function 𝑉 : S → [0, 1].

The range is restricted to the interval [0, 1], as we are only considering goal-probability objectives, and
these are the only values that make sense in that context. Abusing notion, we write𝑉 ⊲⊳ 𝑉 ′ for ⊲⊳∈ { <, ≤
,=, ≥, > } if it holds 𝑉 (𝑠) ⊲⊳ 𝑉 ′(𝑠) for all 𝑠 ∈ S.

We follow Kolobov et al. (2011), and specify the goal reaching probabilities of a policy as the maximal
non-discounted expected reward where reaching the goal gives reward 1 and all other rewards are 0:

Definition 10.12 (Policy Value Function). Let 𝜋 : (S \ S∗) ⇀ A be a policy forM. The goal-probability
value function, or simply value function or goal probabilities, of 𝜋 is the piecewise minimal function
𝑉 𝜋 : S → [0, 1] such that:

𝑉 𝜋 (𝑠) =

1 if 𝑠 ∈ S∗
0 if 𝑠 ∉ S∗ and 𝜋 (𝑠) = ⊥∑

𝑠′∈S P(𝑠, 𝜋 (𝑠), 𝑠′)𝑉 𝜋 (𝑠′) otherwise

The execution of a policy stops at goal states, or states in which the policy is not defined. The former states
trivially reach the goal with a probability of 1. Vice versa, the policy never reaches the goal from the latter
states, i.e., their goal-probability value is 0. For all other states, the goal-probability value is given by the
expected goal probability achieved by following the (probabilistic) transition chosen by the policy.

Example 10.3. Consider the running example (Example 10.1). There a three locations𝐵,𝐴1, 𝐴2, all connected
to each other. The rover is initially at𝐴1, the sample 𝑠𝑎𝑚𝑝1 at𝐴1, and the sample 𝑠𝑎𝑚𝑝2 at𝐴2. Assume that
the goal is { 𝑠𝑎𝑚𝑝2 ↦→ 𝐵 }. Suppose that the initial battery level is 3, and that all connections to and from
the base are initially known to be traversable. Consider the following two strategies for the initial state:

𝜋1 observe and move from 𝐴1 to 𝐴2, abstain if impassable; collect 𝑠𝑎𝑚𝑝2 at 𝐴2; move to the base 𝐵; drop
𝑠𝑎𝑚𝑝2,

𝜋2 take the detour via 𝐵 to get to 𝐴2; collect the sample, move back to 𝐵, and drop the sample.

Since connections to the base are passable, the second policy is guaranteed to satisfy the goal: 𝑉 𝜋2 (𝑠I) = 1.
On the other hand, moving directly from 𝐴1 to 𝐴2 in 𝜋1 succeeds only if this connection is indeed passable. If
this is the case, then the goal will be satisfied too. If not, the policy stops. The goal probability is 𝑉 𝜋1 (𝑠I) =
4
5 · 1 +

1
5 · 0 = 4

5 . Note that 𝜋1 cannot be extended to increase the goal probability since the unsuccessful move
still drains the battery, excluding also the alternative route via 𝐵.

We diverge slightly from literature in that we do not generally constrain policies to be closed, i.e., they may
decide to stop at arbitrary states instead of only at terminal or goal states. If closed policies are desired,
𝜋 (𝑠) = ⊥ at a non-terminal state 𝑠 can be interpreted as “act arbitrarily”. As for such states 𝑉 𝜋 (𝑠) = 0 by
definition, augmenting policies in this manner cannot possibly decrease the expected goal probability, i.e.,
𝑉 𝜋 lower bounds the goal probabilities of every closed policy that agrees with 𝜋 on all states 𝑠 where 𝜋 (𝑠)
is defined.

The piecewise minimality requirement is necessary to account for 0-reward (non-goal) cycles. For example,
consider the policy 𝜋 (𝑠0) = 𝜋 (𝑠1) = 𝑎 for the MDP in Figure 10.1. The equation characterizing 𝑉 𝜋 is
satisfied by any 𝑉 iff𝑉 (𝑠∗) = 1 and𝑉 (𝑠0) = 𝑉 (𝑠1), e.g., 𝑉 (𝑠0) = 𝑉 (𝑠1) = 𝑉 (𝑠∗) = 1. The equation alone
does hence not suffice to uniquely identify 𝑉 𝜋 . Yet, among all value functions satisfying the equation,
𝑉 𝜋 (𝑠∗) = 1 and 𝑉 𝜋 (𝑠0) = 𝑉 𝜋 (𝑠1) = 0 is the only one that is piecewise minimal.

Finally, given the goal probabilities achieved by individual policies, we can formally characterize optimality:
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𝑠0 𝑠1

𝑎

𝑎

𝑠∗

Figure 10.1.: Example MDP with three states, and (deterministic) transitions as depicted. 𝑠∗ is the only goal state. 𝑎
induces a 0-reward cycle between 𝑠0 and 𝑠1.

Definition 10.13 (MaxProb). The optimal goal-probability function, also called maximal goal probabil-
ities (MaxProb) or simply optimal value function, is the function 𝑉 ∗ : S → [0, 1] such that, for all states
𝑠 ∈ S:

𝑉 ∗(𝑠) = max
𝑝𝑜𝑙𝑖𝑐𝑦 𝜋

𝑉 𝜋 (𝑠)

A policy 𝜋 is optimal in 𝑠 ∈ S if 𝑉 𝜋 (𝑠) = 𝑉 ∗(𝑠). An optimal policy forM is a policy optimal in 𝑠I .

10.7. Goal-Probability Objectives & Complexity

Having defined policies and their associated goal-probability measure, it is now time to formulate the algo-
rithmic questions addressed in the remainder of this part of thesis. We will consider three goal-probability
objectives:

MaxProb: Given a (budget-limited) probabilistic FDR task Π. Find an optimal policy 𝜋∗ forMΠ, i.e., 𝜋∗
such that 𝑉 𝜋∗ (𝑠I) = 𝑉 ∗(𝑠I).

AtLeastProb: GivenΠ and a probability threshold𝜃 ∈ [0, 1]. Find a policy 𝜋 forMΠ such that𝑉 𝜋 (𝑠I) ≥ 𝜃 ,
or prove that no such policy exists.

ApproxProb: Given Π and an error bound 𝛿 ∈ [0, 1]. Find a policy 𝜋 forMΠ such that𝑉 ∗(𝑠I) −𝑉 𝜋 (𝑠I) ≤
𝛿 .

The first question asks for a provably optimal solution akin to optimal classical planning. Optimal planning
being notoriously difficult, the other two questions consider weaker objectives, aiming at sub-optimal
policies that meet user defined quality constraints. The sub-optimality parameter controls the difficulty of
finding a desired policy, ranging from very trivial (e.g., 𝜃 = 0) to as expensive as optimal planning (e.g.,
𝛿 = 0). We will evaluate the impact of this parameter in detail in our experiments. In terms of the worst
case complexity, however, all three questions are indistinguishable. In a decision theoretic formulation, the
questions boil down to

Probabilistic Plan-Existence: Given Π and 𝜃 ∈ [0, 1]. Does there exist a policy 𝜋 for MΠ such that
𝑉 𝜋 (𝑠I) ≥ 𝜃?

Probabilistic plan-existence can be decided in polynomial time in the size of the flat MDP representation
MΠ (Papadimitriou and Tsitsiklis, 1987). However, as we have already observed in the classical setting,
there is a significant size discrepancy between syntactic Π and semantic MΠ representation: the state
explosion problem. With respect to the size of Π, the result by Papadimitriou and Tsitsiklis merely shows
that probabilistic plan-existence can be decided in exponential time in the input size. Unfortunately, it
turns out that this is actually the best one can do in the worst case. As has been shown by Littman (1997),
probabilistic plan-existence for factored MDPs, as we consider here, is an EXPTIME-complete decision
problem.
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There are three default algorithms when it comes to solvingMDPs optimally: via linear programming; value
iteration; and policy iteration. This chapter revisits variants of the LP-based method and value iteration for
goal-probability analysis. Both approaches require and operate on an explicit representation of the entire
(reachable) state spaceMΠ. They address MaxProb specifically. While the weaker objectives are solved
as a byproduct, the methods do not benefit from the possibly less strict solution requirements. The more
advanced techniques presented in the next chapter build upon the two baseline methods, addressing those
deficiencies.

This chapter is to a large extent based on standard text book results (Puterman, 1994; Bertsekas, 1995).
We try to offer a comprehensive overview of central notions and the theoretical characteristics, underlying
optimally solving MDPs. As such, this chapter also lays down the basics for upcoming chapters. Given that
goal-probability analysis is considered only tangentially in the aforementioned text books, it can sometimes
be difficult to crystallize the principal arguments of why certain properties hold true in this context. To
provide the reader with a fundamental understanding of the most important concepts, we insert detailed
proofs, specifically targeting MaxProb analysis, where we see a need. Moreover, we introduce a variant of
Dai et al.’s (2011) topological VI algorithm, adapted to the MaxProb objective, and show how an optimal
policy can be extracted as a post-process.

11.1. Linear Program Representation

Linear programming offers a directmethod to solve MDPs. The MDP’s dynamics and optimization objective
can be naturally formulated as an LP (Puterman, 1994):

Definition 11.1 (Primal Goal-Probability LP). Let M = ⟨S,A,P, 𝑠I,S∗⟩ be an MDP. The primal goal-
probability LP is:

minimize
𝑣

∑
𝑠∈S

𝑣𝑠 (11.1a)

subject to 𝑣𝑠 ≥ 0 𝑠 ∈ S, (11.1b)
𝑣𝑠∗ = 1 𝑠∗ ∈ S∗, (11.1c)
𝑣𝑠 ≥

∑
𝑡∈S
P(𝑠, 𝑎, 𝑡)𝑣𝑡 𝑠 ∈ (S \ S∗), 𝑎 ∈ A(𝑠) (11.1d)

The LP has one variable 𝑣𝑠 for every state 𝑠 ∈ S, which represents the state’s𝑉 ∗(𝑠) value. (11.1b) enforces
proper probability bounds. As per the case distinction in Definition 10.12, the other constraints of the
LP assert that: (11.1c) the goal-probability value of every goal state must be 1; and (11.1d) the goal-
probability value attached to non-goal states must not be lower than the expected goal probability of any
of its outgoing transitions. The point-wise minimality requirement is represented via the objective function
(11.1a).

135
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Theorem 11.1 (Puterman, 1994). The primal goal-probability LP has a unique optimal solution 𝑣∗, for which
𝑣∗𝑠 = 𝑉 ∗(𝑠) holds for all states 𝑠 ∈ S.

This LP encoding however has some obvious downsides. In particular, it requires an explicit representation
of the entire MDPM, with all its states and transitions. As discussed previously, this is not tractable forM
implicitly described by probabilistic FDR tasks, or even not possible at all in the limited-budget case. To
remedy this issue, at least to some extent, note that it is actually not necessary to compute the 𝑉 ∗ values
for all states. In particular, it suffices to construct the LP for the typically much smaller reachable subgraph
M|R(𝑠I) . This restricted LP still guarantees that the optimal solution satisfies 𝑣∗𝑠 = 𝑉 ∗(𝑠) for all reachable
states 𝑠 ∈ S|R(𝑠I) , since trivially their goal-probability values inM|R(𝑠I) and inM are the same.

The dual of the goal-probability LP will become handy later on. For the sake of brevity, we define it directly
on the reachable subgraph:

Definition 11.2 (Dual Goal-Probability LP). Suppose 𝑠I ∉ S∗. The dual goal-probability LP over the reach-
able subgraphM|R(𝑠I) is

maximize
𝑜𝑚

∑
𝑠∗∈S∗ |R(𝑠I )

𝑖𝑛(𝑠∗) (11.2a)

subject to 𝑜𝑚𝑠,𝑎 ≥ 0 𝑠 ∈ (R(𝑠I) \ S∗), 𝑎 ∈ A(𝑠), (11.2b)
𝑜𝑢𝑡 (𝑠) − 𝑖𝑛(𝑠) ≤

[
𝑠 = 𝑠I

]
𝑠 ∈ (R(𝑠I) \ S∗) (11.2c)

using the following shorthand:
𝑜𝑢𝑡 (𝑠) =

∑
𝑎∈A(𝑠)

𝑜𝑚𝑠,𝑎

𝑖𝑛(𝑠) =
∑

𝑡∈(R(𝑠I)\S∗)

∑
𝑎∈A(𝑡 )

P(𝑡, 𝑎, 𝑠)𝑜𝑚𝑡,𝑎

[
𝜙
]
denotes the Iverson bracket (Iverson, 1962), i.e.,

[
𝜙
]
= 1 if 𝜙 is true, and

[
𝜙
]
= 0 otherwise. If

𝑠I is a goal state, then trivially 𝑉 ∗(𝑠I) = 1 and the empty policy is an optimal one. We exclude this case
from the LP definition for simplicity. The variables of the dual LP are commonly known as the occupation
measures (Altman, 1996). Intuitively, 𝑜𝑚𝑠,𝑎 represents the expected number of times 𝑎 is executed in 𝑠.
The constraint (11.2c) ensures that no state can be exited more often than entering it. The constraint
bound for the initial state represents the probability mass that is fed into the MDP. The objective function
(11.2a) demands maximizing the probability mass that reaches the goal states. The objective value of the
optimal solutions is exactly the maximal goal probability of the initial state.

While linear programming offers a very natural way to solve MDPs, it is seldom used in practice. Since the
LP-encoding encompasses a description of the entire (reachable) MDP, facing millions or even billions of
states in common benchmarks, the size is typically way beyond what off-the-shelf LP solvers can handle
efficiently. The iterative numeric procedures presented next tend to work better on such large inputs. In
the chapter hereafter, we will revisit a recently proposed variant that adopts ideas from heuristic search
to further restrict the subgraphM|R(𝑠I) represented in the LP, without loosing the optimality property.

11.2. Value Iteration

Value iteration (short VI) computes the optimal value function of MDPs by solving the associated system of
Bellman equations (Bellman, 1957) through an iterative numeric procedure. An optimal policy can be read
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off in a post-process. Each iteration computes a new value function 𝑉 (𝑘) by applying so called Bellman
updates to the value function𝑉 (𝑘−1) of the preceding iteration. The update operation guarantees that the
difference between the value functions gets gradually smaller, thus converging to a fixed point𝑉 (∞) . This
fixed point is a solution to the Bellman equations, yielding 𝑉 (∞) = 𝑉 ∗.

This section is structured as follows. In Section 11.2.1, we revisit the core operation underlying VI – the
Bellman update operator – in the context of goal-probability analysis. Moreover, we introduce and prove
the theoretical properties of the update operator that gives rise to the computation of 𝑉 ∗ via algorithms
like VI. Some of these properties will also play an important role to show correctness of the advanced
algorithms presented in the upcoming chapter. In Section 11.2.2, we introduce the termination condition,
which will also be adopted by the algorithms in the next chapter. Section 11.2.3 covers topological VI (Dai
et al., 2011), an efficient VI variant. Finally, Section 11.2.4 explains how a policy can be extracted from
the value function, once computed by VI.

For the following discussion, letM = ⟨S,A,P, 𝑠I,S∗⟩ be an arbitrary MDP.

11.2.1. Principles

The Bellman update operator takes a value function as input and produces a new value function by pre-
tending to act optimally according the provided value estimates:

Definition 11.3 (Q-Value). Let 𝑉 : S → [0, 1] be a value function. Suppose 𝑠 ∈ (S \ S∗) and 𝑎 ∈ A(𝑠).
The 𝑸 -value of 𝑠 and 𝑎 in 𝑉 is

(𝑸𝑉 )(𝑠, 𝑎) =
∑
𝑠′∈S
P(𝑠, 𝑎, 𝑠′)𝑉 (𝑠′)

Definition 11.4 (Bellman Update Operator). Let 𝑉 : S → [0, 1] be a value function. Suppose 𝑠 ∈ S. The
Bellman update (sometimes called Bellman backup, or value update) of 𝑉 at 𝑠 is

(𝑩𝑉 )(𝑠) =

1 if 𝑠 ∈ S∗
0 if 𝑠 ∉ S∗ and A(𝑠) = ∅
max𝑎∈A(𝑠) (𝑸𝑉 ) (𝑠, 𝑎) otherwise

In words, the 𝑸 -value (𝑸𝑉 )(𝑠, 𝑎) is the expected value when executing 𝑎 in 𝑠, in accordance to the prior
goal-probability estimates 𝑉 . For goal and terminal states, the Bellman update operator simply returns
the exact (known) goal probability. For other states, (𝑩𝑉 )(𝑠) follows the best action as per the expected
𝑸 -values in 𝑉 .

We use 𝑩𝑉 as a shorthand to denote the value function resulting from synchronously applying Bellman
updates to𝑉 and all states 𝑠 ∈ S. Moreover, given a policy 𝜋 , it will be convenient to write 𝑩𝜋 for denoting
the Bellman update operator restricted to the policy graphM𝜋 , i.e.,

(𝑩𝜋𝑉 ) (𝑠) =

1 if 𝑠 ∈ S∗
0 if 𝑠 ∉ S∗ and 𝜋 (𝑠) = ⊥
(𝑸𝑉 )(𝑠, 𝜋 (𝑠)) otherwise

The Bellman update operator offers two properties that enable the computation of𝑉 ∗ via VI and its deriva-
tives:
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(I) considering an infinite sequence of value functions obtained by repeatedly applying the update
operator to the result of itself, this sequence converges in the limit; and

(II) Bellman’s characterization of the optimal value function as means of such a fixed point.

In finite-horizon and infinite-horizon discounted MDPs, (I) follows immediately from the syntactic MDP
definition. As a matter of fact, both types of MDPs can be seen as special cases of SSPs (Bertsekas and
Tsitsiklis, 1996), for which the Bellman update operator was shown to converge to a unique fixed point,
regardless of the initial value function (Bertsekas, 1995). For goal-probability MDPs in their full generality,
matters turn out to be more difficult. For the purpose of this thesis, it suffices to establish property (I), if
starting from value functions of the following kind:

Definition 11.5 (Monotone Value Function). Let 𝑉 be a value function. 𝑉 is a monotone upper bound of
𝑉 ∗ (or simply monotone upper bound) if 𝑉 ≥ 𝑉 ∗ and 𝑉 ≥ 𝑩𝑉 . 𝑉 is a monotone lower bound of 𝑉 ∗ (or
simply monotone lower bound) if 𝑉 ≤ 𝑉 ∗ and 𝑉 ≤ 𝑩𝑉 .

Monotonicity can be seen as a generalization of the consistency property of heuristics in the classical
planning setting (cf. Definition 2.7). It requires the value bounds to be consistent according to the prob-
abilistic transition function. In the case of upper bounds, 𝑉 (𝑠) must not be smaller than the expected
value under any of the state’s outgoing transitions. Vice versa, for lower bounds, it must hold that𝑉 (𝑠) ≤∑

𝑠′ P(𝑠, 𝑎, 𝑠′)𝑉 (𝑠′) for each action applicable in 𝑠. In particular, notice that for deterministic transitions,
the latter inequality boils down to exactly the definition of consistent classical-planning heuristics, modulo
the cost function. The monotonicity property is invariant under the Bellman update operator:

Theorem 11.2 (Monotonicity Invariance). Let 𝑉 be a value function. Suppose 𝑠 ∈ S, and let

𝑉 ′(𝑡) =
{
(𝑩𝑉 ) (𝑠) if 𝑡 = 𝑠

𝑉 (𝑡) otherwise

If 𝑉 is a monotone lower bound (upper bound), then so is 𝑉 ′.

Proof. Suppose 𝑉 is a monotone lower bound. The proof for upper bounds is symmetric. It holds for all
states 𝑡 ≠ 𝑠 that 𝑉 ′(𝑡) = 𝑉 (𝑡), and 𝑉 (𝑡) ≤ 𝑉 ∗(𝑡) is true by assumption, i.e., 𝑉 ′(𝑡) ≤ 𝑉 ∗(𝑡). To obtain
𝑉 ′ ≤ 𝑉 ∗, it remains to show that𝑉 ′(𝑠) ≤ 𝑉 ∗(𝑠). If 𝑠 is a goal or terminal state, then𝑉 ′(𝑠) = 𝑉 ∗(𝑠) holds
by definition. Otherwise

𝑉 ′(𝑠) = (𝑩𝑉 )(𝑠) = max
𝑎∈A(𝑠)

∑
𝑠′
P(𝑠, 𝑎, 𝑠′)𝑉 (𝑠′) ≤ max

𝑎∈A(𝑠)

∑
𝑠′
P(𝑠, 𝑎, 𝑠′)𝑉 ∗(𝑠′) = 𝑉 ∗(𝑠)

To show that𝑉 ′ is monotone, let 𝑡 be any state. If 𝑡 is a goal or terminal state, then (𝑩𝑉 ′)(𝑡) = 𝑉 ∗(𝑡), and
𝑉 ∗(𝑡) ≥ 𝑉 ′(𝑡), as we have just shown. Suppose 𝑡 is neither terminal, nor a goal state. The monotonicity
property of 𝑉 yields the following chain of inequalities:

(𝑩𝑉 ′)(𝑡) = max
𝑎∈A(𝑡 )

∑
𝑡 ′
P(𝑡, 𝑎, 𝑡 ′)𝑉 ′(𝑡 ′) ≥ max

𝑎∈A(𝑡 )

∑
𝑡 ′
P(𝑡, 𝑎, 𝑡 ′)𝑉 (𝑡 ′) = (𝑩𝑉 )(𝑡) ≥ 𝑉 ′(𝑡)

□

The claim can be straightforwardly extended to the synchronous application of 𝑩 to all states. Provided
that the initial value function is monotone and bounded, property (I) follows via standard results from the
fixed-point theory:
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Theorem 11.3 (Convergence). Let𝑉 (0) be a monotone (lower or upper) bound. Let𝑉 (1),𝑉 (2), . . . be defined
such that 𝑉 (𝑖) = 𝑩𝑉 (𝑖−1) for all 𝑖 ≥ 1. There exists a value function 𝑉 (∞) such that

lim
𝑛→∞

𝑉 (𝑛) = 𝑉 (∞)

Proof. Suppose that 𝑉 (0) is a monotone lower bound. The argumentation for upper bounds is symmetric.
It follows from Theorem 11.2 that 𝑉 (0) ≤ 𝑉 (1) · · · ≤ 𝑉 ∗. Consider the (possibly infinite) totally ordered
set 𝐶 = {𝑉 (0),𝑉 (1), . . . }. Notice that each non-empty (possibly infinite) subset of 𝐶 has a supremum
(bounded above by𝑉 ∗) and an infimum (bounded below by𝑉 (0)). Hence,𝐶 constitutes a complete lattice.
Let 𝑖 < 𝑗 be arbitrary, i.e., 𝑉 (𝑖) ≤ 𝑉 ( 𝑗) . Therefore, 𝑩𝑉 (𝑖) = 𝑉 (𝑖+1) ≤ 𝑉 ( 𝑗) ≤ 𝑩𝑉 ( 𝑗) . In other words, 𝑩 is
an order-preserving function 𝑩 : 𝐶 → 𝐶. It follows from the Knaster-Tarski fixed-point theorem (Tarski,
1955) that 𝑩 must have a fixed point 𝑉 (∞) ∈ 𝐶. □

The computation of 𝑉 ∗ can be phrased as finding such a fixed point 𝑉 (∞) , as per property (II):

Theorem 11.4 (Bellman Equations for Goal Probability). The optimal goal-probability function satisfies

𝑉 ∗ = 𝑩𝑉 ∗

or equivalently, for all states 𝑠 ∈ S

𝑉 ∗(𝑠) =

1 if 𝑠 ∈ S∗
0 if 𝑠 ∉ S∗ and A(𝑠) = ∅
max𝑎∈A(𝑠)

∑
𝑠′∈S P(𝑠, 𝑎, 𝑠′)𝑉 ∗(𝑠′) otherwise

For SSPs, 𝑉 ∗ is the unique solution to the Bellman equations (Bertsekas, 1995). In this case, finding just
any fixed point𝑉 (∞) of 𝑩 suffices to establish the desired connection𝑉 (∞) = 𝑉 ∗. Unfortunately, this does
not need to be the case for goal-probability MDPs in general, as the example in Figure 10.1 showed. Since
𝑉 ∗ is however by definition the piecewise smallest value function satisfying the Bellman equations, we are
guaranteed to obtain 𝑉 (∞) = 𝑉 ∗ if 𝑉 (0) is a monotone lower bound. Namely, consider the set 𝐶 from the
proof of Theorem 11.3. As per Theorem 11.2, it holds for all 𝑉 (𝑖) ∈ 𝐶 that 𝑉 (𝑖) ≤ 𝑉 ∗, so in particular,
𝑉 (∞) ≤ 𝑉 ∗ for the fixed point 𝑉 (∞) ∈ 𝐶. Together with 𝑉 (∞) = 𝑩𝑉 (∞) and the prior observation, this
yields 𝑉 (∞) = 𝑉 ∗.

In summary, this condenses into the following simple algorithm: initialize 𝑉 (0) (𝑠) = 0 for all states 𝑠;
for 𝑖 = 1, 2, . . . compute 𝑉 (𝑖) = 𝑩𝑉 (𝑖−1) . Since 𝑉 (0) is trivially a monotone lower bound, the sequence of
value functions converges to the optimal goal probabilities𝑉 ∗ as per the previous observation. Since in this
method, the value of every state gets updated in each iteration, it is often referred to as synchronous VI. In
contrast, asynchronous VI updates the value function only at a single state per iteration. The convergence
guarantee is not affected so long as every state is updated infinitely often during the course of all iterations.

11.2.2. Termination

An issue that we glanced over so far is the convergence test, i.e., at which point 𝑛 can the computation
of the sequence 𝑉 (0),𝑉 (1), . . . ,𝑉 (𝑛) be terminated? The most intrusive thought is to terminate as soon as
it holds 𝑉 (𝑛) = 𝑉 (𝑛−1) , i.e., once the fixed point has been reached. Unfortunately, this is not possible in
general. Below, we give an example where the condition is not satisfied after any finite step 𝑛. The process
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𝑠0

𝑎0

𝑎1

𝑠⊥

𝑠∗

1 − 𝛽

𝛽
1 − 𝛾

𝛾

Figure 11.1.: MDP with three states, and two probabilistic transitions. 𝑠∗ is a goal state; 𝑠⊥ is a dead end. The
probabilities are chosen s.t. 𝛾 < 𝛽 < 𝜖.

must hence be terminated before the exact fixed point is reached, i.e., once the difference 𝑉 ∗ −𝑉 (𝑛) has
become sufficiently small. Since𝑉 ∗ is however not known, this difference cannot be computed directly. The
most commonly deployed approximation is via the maximal value change going into the next iteration:

Definition 11.6 (Bellman Residual). Let 𝑉 be a value function. Suppose 𝑠 ∈ S. The Bellman residual of 𝑠
in 𝑉 is

(𝚫𝑉 )(𝑠) = | (𝑩𝑉 ) (𝑠) −𝑉 (𝑠) |

The Bellman residual of 𝑉 is
𝚫𝑉 = max

𝑠∈S
(𝚫𝑉 ) (𝑠)

Definition 11.7 (𝜖-Consistency). Let 𝜖 ≥ 0 be a threshold. Let 𝑉 be a value function. Suppose 𝑠 ∈ S. Then
𝑠 is called 𝜖-consistent in 𝑉 if (𝚫𝑉 ) (𝑠) ≤ 𝜖. 𝑉 is called 𝜖-consistent if 𝚫𝑉 ≤ 𝜖.

VI is run until 𝑉 (𝑛) becomes 𝜖-consistent, for some 𝜖 > 0. Starting from a monotone value function, the
Bellman residuals monotonically decrease along the sequence of computed value functions, i.e., one can
show that 𝚫𝑉 (𝑖) ≥ 𝚫𝑉 ( 𝑗) for 𝑗 ≥ 𝑖. The proof is provided in Appendix C.1.1. In other words, once the
residual has become small, the effects of subsequent Bellman updates become more and more negligible.
At this point, one can therefore expect that 𝑉 (𝑛) is already very close to 𝑉 ∗. For sufficiently small 𝜖, this
usually works out well. Nevertheless, note that, from a theoretical point of view, 𝜖-consistency does per se
not warrant any bound on the actual difference to the optimal value function. In fact, no matter how small
𝜖 is chosen, one can easily come up with an artificial example where 𝚫𝑉 (𝑛) ≤ 𝜖, yet𝑉 (𝑛) is still arbitrarily
far off from 𝑉 ∗. Example 11.1 shows an extreme example.

Example 11.1. Consider the MDP depicted in Figure 11.1. Table 11.1 shows the sequence of value functions
𝑉 (0),𝑉 (1), . . . where 𝑉 (0) is initialized to 0 everywhere, and 𝑉 (𝑖) = 𝑩𝑉 (𝑖−1) for 𝑖 > 0. 𝑉 (1) is 𝜖-consistent
since its Bellman residual is 𝛽 < 𝜖. However, 𝑉 (1) (𝑠0) = 0 although 𝑉 ∗(𝑠0) = 1.

Under certain circumstances, one can infer a bound on the difference to the optimal value function di-
rectly from the Bellman residual. For instance, for infinite-horizon discounted MDPs, the error bound can
be expressed directly as a combination of the Bellman residual and the discount factor. Also for SSPs, it is
possible to measure the error bound, yet there no longer exists a simple closed-form characterization (Bert-
sekas, 1995). There however exist closed-form over-approximations, trading accuracy for computational
tractability (Hansen, 2017). Such approximations are also available for goal-probability objectives (Quat-
mann and Katoen, 2018). Given a formula that characterizes (an approximation of) the error bound based
on the Bellman residual, one can vice versa calculate an appropriate value of 𝜖 that guarantees to meet a
desired error bound. In the remainder of the thesis, we assume that an 𝜖 parameter is given that yields a
sufficiently precise solution, and focus on finding an 𝜖-consistent value function.
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𝑘 𝑉 (𝑘) (𝑠0) 𝑉 (𝑘) (𝑠⊥) 𝑉 (𝑘) (𝑠∗) 𝚫𝑉 (𝑘)

0 0 0 0 1
1 0 0 1 𝛽

𝚫𝑉 (1) = 𝛽 < 𝜖 ⇒ 𝜖-consistent
2 𝛽 0 1 (1 − 𝛽)𝛾
3 (1 − 𝛾)𝛽 + 𝛾 0 1 (1 − 𝛾) (1 − 𝛽)𝛾
4 (1 − 𝛾)2𝛽

+(1 − 𝛾)𝛾 + 𝛾
0 1 (1 − 𝛾)2 (1 − 𝛽)𝛾

...
n (1 − 𝛾)𝑛−2𝛽

+∑𝑛−3
𝑖=0 (1 − 𝛾)𝑖𝛾

0 1 (1 − 𝛾)𝑛−2 (1 − 𝛽)𝛾

...
∞ 1 0 1 0

Table 11.1.: Value functions computed by VI for the MDP from Figure 11.1, along with their Bellman residuals.

11.2.3. Topological Value Iteration

Updating the values of all states in every iteration is problematic in two respects. The complete enumer-
ation of all states of FDR tasks, with or without budget-limit, is intractable. Secondly, many updates are
redundant, making the overall approach very inefficient. Topological VI (short TVI) addresses both issues
by exploiting the graph structure of the MDP (Dai et al., 2011). To reduce the number of considered states,
TVI restricts its focus on the reachable subgraph. To eliminate redundant updates, TVI makes use of the
topological order induced by the MDP’s successor relation. In regards of the latter, observe that the Bell-
man update of a state can change only if the values of its successors have changed beforehand. Vice versa,
the result of the Bellman update may keep changing as long as the values of the state’s successors are
changing.

Algorithm 11.1 shows our TVI variant, reflecting the aforementioned observations. While it assumes an
MDPM as input,M does not need to be represented explicitly. The reachable subgraph is constructed
in a pre-process. The value function is initialized to 0 for all reachable states. TVI computes all maximal
SCCs of the reachable subgraph via Tarjan’s algorithm (see Chapter 3). The SCCs cover exactly the mutual
dependencies between the states’ values. VI is applied to each SCC individually. The SCC computation
guarantees that child SCCs are listed before their parents. TVI processes the SCCs following this order to
ensure that the Bellman updates are performed bottom up, successor states before parents, thus propagat-
ing converged values through the MDP in inverse topological order. For states not appearing in any cycle,
a single update suffices. IfM is acyclic, then TVI performs exactly one update per state, and the computed
values are guaranteed to be exact.

Theorem 11.5 (Dai et al., 2011). For every MDPM, and threshold 𝜖 > 0, TVI terminates eventually, and
the resulting value function𝑉 is 𝜖-consistent at all reachable states. IfM is acyclic, then𝑉 (𝑠) = 𝑉 ∗(𝑠) holds
for all states 𝑠 ∈ R(𝑠I).

Dai et al. (2011) also introduce focused TVI, which eliminates sub-optimal transitions in a pre-process to
obtain smaller SCCs. While this can be much more runtime-effective, it still requires building the entire
state space. In our experiments, runtime/memory exhaustion during this process, i.e., during building the
state space, was the only reason for VI failures. So we do not consider this variant here.
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Algorithm 11.1: Topological VI for MaxProb analysis.
Input:M = ⟨S,A,P, 𝑠I,S∗⟩, 𝜖 ∈ (0, 1)
Output: 𝑉 : R(𝑠I) → [0, 1]

1 BuildM|R(𝑠I);
2 𝑆1, 𝑆2, . . . , 𝑆𝑛 ← Maximal SCCs ofM|R(𝑠I) in inverse topological order ; /* (Alg. 3.1) */
/* Initialize value function */

3 𝑉 ← empty map; foreach 𝑠 ∈ R(𝑠I) do 𝑉 (𝑠) ← 0;
/* Process SCCs, children before parents */

4 for 𝑖 ← 1 to 𝑛 do
5 if 𝑆𝑖 = { 𝑠 } and 𝑠 has no self-loop then

/* Single update suffices */
6 𝑉 (𝑠) ← (𝑩𝑉 ) (𝑠)
7 else

/* Apply VI to just the states in the current component until
reaching 𝜖-consistency */

8 repeat
9 error← 0;

10 foreach 𝑠 ∈ 𝑆𝑖 do
11 error← max{ error, (𝚫𝑉 ) (𝑠) };
12 𝑉 (𝑠) ← (𝑩𝑉 ) (𝑠);
13 until error < 𝜖;

14 return 𝑉 ;

𝑠0 𝑠1

𝑎0

𝑎0

𝑠3∗ 𝑠2∗𝑎1 𝑎1

Figure 11.2.: Example MDP with four states, and (deterministic) transitions as depicted. 𝑠2∗ and 𝑠3∗ are goal states.

11.2.4. Policy Extraction

Once 𝑉 ∗ (or a sufficiently precise approximation thereof) has been is found, one can obtain an optimal
policy 𝜋∗ by acting greedily on the computed value function:

Definition 11.8 (Greedy Policy). Let 𝑉 be a value function inM. Suppose 𝑠 ∈ (S \ S∗), and 𝑆 ⊆ S. An
action 𝑎 ∈ A(𝑠) is greedy on 𝑉 for 𝑠 if it holds that (𝑸𝑉 )(𝑠, 𝑎) ≥ (𝑸𝑉 ) (𝑠, 𝑎′) for all 𝑎′ ∈ A(𝑠). A policy
𝜋 is greedy on 𝑉 for 𝑆 if, for all 𝑠 ∈ (𝑆 \ S⊥ \ S∗), 𝜋 (𝑠) is greedy on𝑉 for 𝑠. 𝜋 is greedy on 𝑉 if 𝜋 is greedy
on 𝑉 for (S \ S𝜋

⊥).

In other words, an action is greedy on 𝑉 for 𝑠, if it achieves the maximal expected value according to 𝑉
under all applicable actions for 𝑠. A policy is greedy on 𝑉 , if, whenever 𝜋 (𝑠) ≠ ⊥, 𝜋 (𝑠) is greedy on 𝑉 for
𝑠. A policy greedy on 𝑉 that is also closed, needs to assign an action greedy on 𝑉 to every non-terminal,
non-goal state from R𝜋 (𝑠I). Note that every optimal policy is necessarily greedy on 𝑉 ∗. Unfortunately,
however, the opposite is not true in general, i.e., there can exist closed policies greedy on 𝑉 ∗ that are not
optimal. Example 11.2 shows such an example.
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Algorithm 11.2: MaxProb policy extraction from a given value function.
Input:M = ⟨S,A,P, 𝑠I,S∗⟩, 𝑉 : S → [0, 1]
Output: Policy 𝜋𝑉 : (S \ S∗) ⇀ A

1 𝜋𝑉 ← empty policy;
/* start from goal states */

2 processed← S∗;
3 while processed ≠ ∅ do
4 𝑠 ← pick some state from processed;
5 processed← processed \ { 𝑠 };

/* check for unprocessed predecessors */
6 foreach 𝑠′ ∈ Pred[M](𝑠) s.t. 𝑠′ ∉ S∗ and 𝜋𝑉 (𝑠′) = ⊥ do

/* extend the policy if 𝑠′ has a greedy action that transitions into 𝑠
*/

7 if ∃𝑎 ∈ A(𝑠′) : P(𝑠′, 𝑎, 𝑠) > 0∧ 𝑎 is greedy on 𝑉 for 𝑠′ then
8 𝜋𝑉 (𝑠′) ← 𝑎;

/* repeat for predecessors of 𝑠′ */
9 processed← processed ∪ { 𝑠′ };

10 return 𝜋𝑉 ;

Example 11.2. Consider the MDP from Figure 11.2. All states 𝑠 have an optimal goal-probability value of
𝑉 ∗(𝑠) = 1. The 𝑎0-transitions for 𝑠0 and 𝑠1 have maximal expected value. However, the policy 𝜋 (𝑠0) = 𝜋 (𝑠1) =
𝑎0 is not optimal, since it never reaches the goal.

Arbitrarily selecting actions greedy on the value function may not yield an optimal policy due to 0-reward
cycles. To avoid the pitfall of 0-reward cycles by construction, we follow an idea by Kolobov et al. (2011),
and build the policy backwards starting from the goal states. Algorithm 11.2 shows the procedure. The
algorithm ensures that the execution of the policy from any 𝑠 with 𝜋𝑉 (𝑠) ≠ ⊥ is guaranteed to reach
the goal with a non-zero probability. The set processed keeps track of the states for which this has already
been satisfied. The policy 𝜋𝑉 is incrementally extended by looking for transitions ⟨𝑠, 𝑎, 𝑠′⟩ from any state
𝑠 where 𝜋𝑉 (𝑠) = ⊥ into some state 𝑠′ ∈ processed, via an action 𝑎 that is greedy on 𝑉 for 𝑠. When such a
transition is found, 𝜋𝑉 (𝑠) is set to 𝑎, and 𝑠 is added to processed. The process is continued until the policy
cannot be extended any further. The resulting policy 𝜋𝑉 is guaranteed to perform no worse than 𝑉 , i.e.,
𝑉 𝜋𝑉 ≥ 𝑉 , provided that 𝑉 supports the construction:

Theorem 11.6. Let 𝑉 be a monotone value function. Algorithm 11.2 on 𝑉 terminates. Suppose 𝜋𝑉 is the
resulting policy. If there exists a policy 𝜋 with 𝑉 𝜋 ≥ 𝑉 that is greedy on 𝑉 , then 𝑉 𝜋𝑉 ≥ 𝑉 .

Proof sketch. Algorithm 11.2 terminates eventually since each state can be processed at most once, and
the number of states is finite. Since, by assumption, there exists a policy 𝜋 greedy on 𝑉 with 𝑉 𝜋 ≥ 𝑉 ,
the exhaustive backpropagation done by Algorithm 11.2 guarantees that 𝜋𝑉 (𝑠) is defined for all non-goal
states with 𝑉 (𝑠) > 0. By construction, executing 𝜋𝑉 from any state 𝑠 with 𝜋𝑉 (𝑠) ≠ ⊥ will eventually end
in either a goal state, or a state where 𝜋𝑉 is not defined. Hence, 𝜋𝑉 induces an SSPM𝜋𝑉 . Therefore,𝑉 𝜋𝑉

is the unique fixed point of 𝑩𝜋𝑉 . This means particularly that the sequence𝑉 (0),𝑉 (1), . . . , where𝑉 (0) = 𝑉 ,
and 𝑉 (𝑖) = 𝑩𝜋𝑉𝑉 (𝑖−1) , converges to 𝑉 𝜋𝑉 . Since 𝑉 is monotone, it holds that 𝑉 ≤ 𝑩𝑉 . So, by selection of
𝜋𝑉 , 𝑉 ≤ 𝑩𝜋𝑉𝑉 , i.e., 𝑉 (0) ≤ 𝑉 (1) . Since 𝑩𝜋𝑉 is a monotone function (cf. Theorem 11.2), it follows that
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𝑉 = 𝑉 (0) ≤ 𝑉 (∞) = 𝑉 𝜋𝑉 .

□

The proof arguments are spelled out in Appendix C.1.2. Notice that it does not suffice that𝑉 is a monotone
lower bound in order to guarantee the existence of a policy 𝜋 that is greedy on 𝑉 and satisfies 𝑉 𝜋 ≥ 𝑉 .
For example, consider the value function 𝑉 (𝑠0) = 𝑉 (𝑠1) = 1 and 𝑉 (𝑠2∗) = 𝑉 (𝑠3∗) = 0 for the MDP from
Figure 11.2. This value function is a monotone lower bound on 𝑉 ∗. Yet, the only closed policy greedy on
𝑉 is 𝜋 from Example 11.2, for which it holds 𝑉 𝜋 (𝑠0) = 𝑉 𝜋 (𝑠1) = 0.

Nevertheless, VI guarantees the existence of such a greedy policy at all times. When starting from the
trivial monotone lower bound 0, the source of every Bellman-update value increase must necessarily be a
goal state. Therefore, the actions responsible for a value increase must start some goal path. By recurring
the same argument, one can hence show that each non-goal state with a non-zero goal-probability value
has a path to a goal state composed of only greedy actions. In combination, these paths yield the requested
policy. We formalize this intuition as two separate lemmas:

Lemma 11.1. Suppose 𝑉 (0) (𝑠) = 0 for all states 𝑠 ∈ S, and, for 𝑖 > 0, 𝑉 (𝑖) = 𝑩𝑉 (𝑖−1) . At any point 𝑖 ≥ 0,
and for every non-goal state 𝑠0 ∈ S \ S∗ with𝑉 (𝑖) (𝑠0) > 0, there exists a path 𝑠0, 𝑎0, 𝑠1, 𝑎1, . . . , 𝑠𝑛 such that

(i) 𝑠𝑛 ∈ S∗, and

(ii) ∀0 ≤ 𝑗 < 𝑛, 𝑎 𝑗 is greedy on 𝑉 (𝑖) for 𝑠 𝑗 , and

(iii) ∀0 ≤ 𝑗 < 𝑛, 𝑉 (𝑖) (𝑠 𝑗 ) ≤ 𝑉 (𝑖) (𝑠 𝑗+1).

Proof sketch. The proof is by induction on 𝑖. The induction beginning, 𝑖 = 0 and 𝑖 = 1, holds trivially.
Suppose as the induction hypothesis (IH1), that the claim holds for 𝑖. To show the induction step, we use a
second induction, now on the𝑉 (𝑖+1) values (on the sequence of states ordered by decreasing𝑉 (𝑖+1) values).
For the induction beginning, let 𝑠 be any non-goal state with maximal 𝑉 (𝑖+1) (𝑠) > 0 value. Let 𝑎 ∈ A(𝑠)
be greedy on 𝑉 (𝑖) for 𝑠, i.e., (𝑸𝑉 (𝑖)) (𝑠, 𝑎) = (𝑩𝑉 (𝑖)) (𝑠), and let 𝑠1 ∈ Succ[M](𝑠, 𝑎) be any successor
with 𝑉 (𝑖) (𝑠1) ≥ (𝑸𝑉 (𝑖))(𝑠, 𝑎) > 0. By (IH1), there exists a goal path 𝜎 , starting from 𝑠1, that satisfies
(ii) and (iii) w.r.t. 𝑉 (𝑖) . Notice that if 𝜎 violates (ii) or (iii) w.r.t. 𝑉 (𝑖+1) at any point, then there must be a
probabilistic transition out of 𝜎 into some state 𝑠′ with 𝑉 (𝑖+1) (𝑠′) > 𝑉 (𝑖+1) (𝑠). Given the selection of 𝑠, 𝑠′
must be a goal state. We obtain the requested path for 𝑠 by splitting 𝜎 at the failure point, inserting the
corresponding transition into 𝑠′. For the induction step, let 𝑠 be any state with 𝑉 (𝑖+1) (𝑠) > 0. Suppose as
the second induction hypothesis (IH2) that the claim holds for all states 𝑠′ with 𝑉 (𝑖+1) (𝑠′) > 𝑉 (𝑖+1) (𝑠).
We obtain 𝑠1, the path 𝜎 , and the failure state 𝑠′, i.e., 𝑉 (𝑖+1) (𝑠′) > 𝑉 (𝑖+1) (𝑠), just as before. If 𝑠′ is a goal
state, then we can also construct the requested path for 𝑠 just as before. If 𝑠′ is not a goal state, then we
use (IH2) to obtain a goal path 𝜎′ from 𝑠′ that satisfies (ii) and (iii) w.r.t.𝑉 (𝑖+1) . The requested path for 𝑠
results from concatenating 𝑠, 𝑎; the part of 𝜎 up to the failure point 𝑠′; and 𝜎′.

□

The full proof is available in Appendix C.1.2.

Lemma 11.2. Suppose 𝑉 (0) (𝑠) = 0 for all states 𝑠 ∈ S, and, for 𝑖 > 0, 𝑉 (𝑖) = 𝑩𝑉 (𝑖−1) . For all 𝑖 ≥ 0, there
exists a policy 𝜋 such that 𝑉 𝜋 ≥ 𝑉 (𝑖) .
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Proof. Let 𝑖 ≥ 0 be arbitrary. We incrementally build 𝜋 as follows. Let 𝑠 ∈ S \ S∗ be any non-goal state
with𝑉 (𝑖) (𝑠) > 0 and 𝜋 (𝑠) = ⊥. Let 𝑠 = 𝑠0, 𝑎0, 𝑠1, 𝑎1, . . . , 𝑠𝑛 be the goal path as per Lemma 11.1. For each
0 ≤ 𝑗 < 𝑛 where 𝜋 (𝑠 𝑗 ) = ⊥, set 𝜋 (𝑠 𝑗 ) = 𝑎 𝑗 . Repeat until 𝜋 is defined for all non-goal states with non-zero
𝑉 (𝑖)-value. Notice that, by construction, executing 𝜋 from any state 𝑠 with 𝜋 (𝑠) ≠ ⊥ has a chance to reach
a goal state. Thus, the induced subgraphM𝜋 is an SSP, and 𝑉 𝜋 is the unique solution to the Bellman
equations in that subgraph. Further, notice that it holds 𝑉 (𝑖) (𝑠) ≤ (𝑸𝑉 (𝑖)) (𝑠, 𝜋 (𝑎)) = (𝑩𝜋𝑉 (𝑖)) (𝑠), for
all states 𝜋 (𝑠) ≠ ⊥, as per the selection of the paths and due to monotonicity. For the remaining states,
𝜋 (𝑠) = ⊥, if 𝑠 is a goal state, then 𝑉 (𝑖) (𝑠) ≤ 1 = (𝑩𝜋𝑉 (𝑖))(𝑠) is trivially satisfied. If 𝑠 is not a goal state,
then 𝑉 (𝑖) (𝑠) = 0 ≤ (𝑩𝜋𝑉 (𝑖)) (𝑠), by construction of 𝜋 . In summary, 𝑉 (𝑖) ≤ 𝑩𝜋𝑉 (𝑖) . Via the monotonicity
invariance, and given that 𝑉 𝜋 is the unique fixed point of 𝑩𝜋 , we conclude that 𝑉 (𝑖) ≤ 𝑉 𝜋 . □

While Lemma 11.1 and Lemma 11.2 specifically consider the synchronous version of VI, i.e., updating the
value of all states in each iteration, this assumption was made only for simplicity’s sake. Both results can
be trivially extended to asynchronous VI, such as the topological variant. The combination of Lemma 11.2
and Theorem 11.6 shows the desired property:

Corollary 11.1. Let 𝜖 > 0 be a threshold. Suppose 𝑉 is the value function resulting from TVI onM and
𝜖. Let 𝜋𝑉 be the policy constructed by Algorithm 11.2 for 𝑉 . Then 𝜋𝑉 satisfies 𝑉 𝜋𝑉 ≥ 𝑉 . If 𝑉 = 𝑉 ∗ is the
optimal goal-probability function, then 𝜋𝑉 is an optimal policy.





12. MDP Heuristic Search

The algorithms presented in the previous chapter are attractive choices for solving MDPs optimally given
their conceptual simplicity, and versatility in terms of supported MDP types and optimization objectives.
To find a solution, they however necessitate the explicit construction of the entire (reachable) state space.
For MDPs compactly described in the form of probabilistic planning tasks, this is typically not possible.
MDP heuristic search has the potential to find optimal policies while building only a small fraction of the
state space. This is accomplished by making use of heuristics, i.e., prior knowledge about the optimal value
function, in order to identify regions of the state space not reachable from the initial state via any optimal
policy. To find policies that are optimal for the initial state, yet not necessarily for every possible state,
such regions can be safely ignored. Moreover, by exploiting the fact that it suffices to find just a single such
policy, regions of the state space may not need to be considered even if relevant to other optimal policies.

In general, there are two categories of optimal MDP heuristic search algorithms, distinguished along the
fundamental approach – LP vs. VI – on which they are based. Heuristic search as a variation of VI has a
long history, and most known heuristic search instances fall into that category (e.g., Nilsson, 1971; Barto
et al., 1995; Hansen and Zilberstein, 2001; Bonet and Geffner, 2003b). However, their application was
so far limited almost exclusively to expected-cost minimization. Part of the reason for this is the lack of
support of MDPs that do not comply with the SSP assumptions. Incompatibility issues stem from the use of
the heuristic function as a means to initialize the value function. To provide the guarantee of finding an op-
timal solution, the heuristic function needs to be admissible, i.e., it has to optimistically bound the optimal
value function. In our context, admissible heuristic functions hence need to upper bound the maximal goal
probabilities. Yet, as we have seen in the previous chapter, starting from such a bound can result in converg-
ing to fixed points different from 𝑉 ∗. To make this class of heuristic search algorithms applicable beyond
SSPs, Kolobov et al. (2011) have introduced FRET, which runs multiple iterations of complete heuristic
searches, identifying and removing 0-reward cycles in between the iterations to escape sub-optimal fixed
points. On the other side, there is heuristic search as an extension of the LP-formalism. This approach has
been proposed only very recently (Trevizan et al., 2016). Being based on the LP-approach instead of VI,
this variant eludes the problem of sub-optimal fixed point by its design, and hence it does not require the
FRET outer-loop. As Trevizan et al. (2017a) show, MaxProb analysis is supported by this algorithm out of
the box.

In the remainder of this chapter, we tailor a variety of existing MDP heuristic search algorithms to the
goal-probability objectives. Correctness of all presented algorithms is shown with respect to the following
definition:

Definition 12.1 (Solving the goal-probability objectives). LetA be an algorithm that receives an MDP and
(optionally) a convergence threshold 𝜖 ≥ 0 as input, and returns a policy for the MDP as output. LetM be
an MDP with initial state 𝑠I and maximal goal probabilities 𝑉 ∗. We say that A solves MaxProb if, for some
𝜖 ≥ 0, A terminates onM, returning a policy 𝜋 s.t. 𝑉 𝜋 (𝑠I) = 𝑉 ∗(𝑠I). A solves AtLeastProb if, for some
𝜖 ≥ 0, A terminates onM, returning either “impossible” if 𝑉 ∗(𝑠I) < 𝜃 , or a policy 𝜋 s.t. 𝑉 𝜋 (𝑠I) ≥ 𝜃 . A
solves ApproxProb if, for some 𝜖 ≥ 0, A terminates onM with a policy 𝜋 s.t. 𝑉 ∗(𝑠I) − 𝑉 𝜋 (𝑠I) ≤ 𝛿 . We
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simply say that A solves the goal-probability objectives if A solves all three: MaxProb, AtLeastProb, and
ApproxProb.

We will mostly focus on traditional VI-based approaches. Concretely, we adapt AO∗ (Nilsson, 1971), tar-
geting acyclic MDPs as a simple, yet still relevant special case in which FRET is not necessary. For the
general case, we design a variant of LRTDP (Bonet and Geffner, 2003b), and we introduce a family of
depth-first heuristic searches (DFHS), which systematizes algorithm parameters underlying improved LAO∗
(short ILAO∗) (Hansen and Zilberstein, 2001), heuristic dynamic programming (HDP) (Bonet and Geffner,
2003a), and learning depth-first search (LDFS) (Bonet and Geffner, 2006). All algorithms are equipped
with early-termination conditions, addressing the AtLeastProb and ApproxProb objectives, by utilizing both
lower and upper bounds on 𝑉 ∗. LRTDP and DFHS solve the goal-probability objectives for only SSPs. To
deal with MDPs beyond SSPs, we revisit FRET as it has been proposed by Kolobov et al. (2011). Further-
more, we introduce a new FRET version, offering particular advantages in our setting. Finally, by viewing
this new FRET variant as a natural extension of sub-procedures readily present in LRTDP and DFHS, we
obtain VI-based heuristic search algorithms that can be applied to goal probability MDPs (and beyond)
completely without any FRET outer-loop. For the sake of completeness (not a contribution of ours), we
also provide a short description of the LP-based heuristic search algorithm for goal-probability analysis (Tre-
vizan et al., 2017a) at the end of this chapter. Goal-probability heuristics will be the topic of Chapter 14.

The chapter is structured as follows. We start with an illustration of VI-based heuristic search as a whole.
We continue with algorithms for the simpler acyclic case, proceed to the general case via FRET, and finally
present the methods that natively solve arbitrary goal-probability MDPs.

12.1. Introductory Example

All VI-based heuristic search algorithms share a basic principle. In this section, we demonstrate this princi-
ple via the example MDP from Figure 12.1. Note that this MDP is acyclic, i.e., it satisfies the SSP assump-
tions. Hence, the Bellman equations have a unique solution. We for now ignore the complications arising
from the existence of sub-optimal fixed points.

The following observation builds the basis of heuristic search. Notice that, when starting from a monotone
upper bound𝑉 on𝑉 ∗, to guarantee that a policy 𝜋 greedy on𝑉 is optimal for the initial state 𝑠0, it suffices
that (1) 𝜋 is closed for 𝑠0, and (2) the values of the states reachable from 𝑠0 via 𝜋 have converged. As
per the definition of greedy policies, it holds that (𝑩𝑉 )(𝑠) = (𝑩𝜋𝑉 ) (𝑠) for all states 𝑠 visited by 𝜋 . Then,
given the convergence requirement 𝑉 (𝑠) = (𝑩𝑉 )(𝑠) for those states, it hence follows (𝑩𝜋𝑉 ) (𝑠) = 𝑉 (𝑠).
In other words,𝑉 satisfies the Bellman equations of 𝜋 ’s value function. As by assumption these equations
have a unique solution, we hence obtain 𝑉 (𝑠) = 𝑉 𝜋 (𝑠) for all the visited states 𝑠. Finally, since 𝑉 ∗ ≤ 𝑉 is
preserved by the Bellman update operator, as per the monotonicity invariance, it follows

𝑉 ∗(𝑠) ≤ 𝑉 (𝑠) = 𝑉 𝜋 (𝑠) ≤ 𝑉 ∗(𝑠)

where the latter inequality holds by definition of 𝑉 ∗. In conclusion, 𝜋 is optimal.

Reflecting this observation, the heuristic search approaches differ from VI’s value computation by restrict-
ing Bellman updates to states reachable from 𝑠0 via actions greedy on the current value function. They
terminate once during that computation a closed policy is found on which the Bellman updates no longer
change. Throughout the computation, transitions are ignored whose estimated values are worse than those
of the greedy options. This creates the potential to compute an optimal policy while considering only a
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Figure 12.1.: Example MDP. 0 < 𝛼 < 𝛽 < 𝛾 < 1. There are 12 states. 𝑠3, 𝑠5, 𝑠7, 𝑠8 are terminal, dead-end states. 𝑠∗
is the only goal state. The 𝒗 labels below state 𝑠 shows heuristic estimate 𝐻 (𝑠) = 𝑣 . The 𝒒 labels below actions show
the corresponding 𝑸𝐻 -values. The computed optimal policy is highlighted in bold. The grayed-out areas indicate
parts of the state space that were ignored.

small fraction of all states. To make effective use of this potential, admissible heuristic functions are used
to initialize the value functions.

Definition 12.2 (Goal-Probability Heuristic). We call any monotone upper bound 𝐻 on 𝑉 ∗ an (admissible)
goal-probability heuristic (or simply heuristic, if clear from the context).

Equipped with an accurate heuristic function, heuristic search may be able to rule out many transitions
right off the start. But note the general procedure does not even require a precise value initializations to
guide the value updates. Namely, the information obtained through value updates themselves can often
already prove transitions non-optimal, while considering just a few probabilistic successor states.

To demonstrate this generic yet basic principle, consider the MDP from Figure 12.1. Assume a monotone
upper bound𝐻 with𝐻 (𝑠1) = 𝐻 (𝑠5) = 0, and𝐻 (𝑠) = 1 elsewhere. Consider the value function𝑉 (0) (𝑠) :=
𝐻 (𝑠). Constrained by the greedy options under 𝑉 (0) , the first iteration of Bellman updates is restricted
to states reached from 𝑠0 via 𝑎2. Suppose we update the value of 𝑠3, and propagate the resulting value
change back to 𝑠0, i.e., let 𝑉 (1) (𝑠3) := (𝑩𝑉 (0)) (𝑠3) = 0 and 𝑉 (1) (𝑠) := 𝑉 (0) (𝑠) for all other states;
𝑉 (2) (𝑠0) := (𝑩𝑉 (1)) (𝑠0) = 𝛾 and 𝑉 (2) (𝑠) := 𝑉 (1) (𝑠) elsewhere. These updates change the greedy action
of 𝑠0 from 𝑎2 to 𝑎3. For the next iteration of Bellman updates, we follow the greedy actions 𝜋𝑉 (2) (𝑠0) := 𝑎3,
𝜋𝑉 (2) (𝑠6) := 𝑎8, and 𝜋𝑉 (2) (𝑠11) := 𝑎11. At this point, however, the values of all the states visited by 𝜋𝑉 (2)
have converged. We terminate. Indeed, 𝜋𝑉 (2) is an optimal policy for 𝑠0.

Upon termination, region (I) in Figure 12.1 has not been visited. Due to the value function initialization by
𝐻 , 𝑎1 could be proved non-optimal from the beginning. A single update was sufficient to remove 𝑎2 from
the possible solution candidates at 𝑠0, despite the lack of precise heuristic estimates for the corresponding
successor states. Region (II) had not to be considered. Finally, the consideration of (III) has never become
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Algorithm 12.1: GOALPROB-AO∗

Input: Acyclic MDPM = ⟨S,A,P, 𝑠I,S∗⟩ (symbolically represented),
Goal-probability heuristic 𝐻 : S → [0, 1]

Output: Policy 𝜋 s.t. MaxProb: 𝑉 𝜋 (𝑠I) = 𝑉 ∗(𝑠I)
AtLeastProb: 𝑉 𝜋 (𝑠I) ≥ 𝜃 or “impossible”
ApproxProb: 𝑉 ∗(𝑠I) −𝑉 𝜋 (𝑠I) ≤ 𝛿

1 Initialize empty subgraph (the search space) M̂;
2 Initialize empty 𝜋𝑈 ,𝑉𝑈 , 𝜋𝐿,𝑉 𝐿;
3 Insert 𝑠I into M̂, i.e., insert 𝑠I into Ŝ, and if 𝑠I ∈ S∗, insert it into Ŝ∗;
4 Initialize 𝑉𝑈 (𝑠I) and 𝑉 𝐿 (𝑠I), i.e., 𝑉𝑈 (𝑠I) ← 𝐻 (𝑠I), and 𝑉 𝐿 (𝑠I) ← 1 if 𝑠I ∈ Ŝ∗ else 𝑉 𝐿 (𝑠I) ← 0 ;
5 tip← { 𝑠I }; solved← ∅;
6 while ⊤ do
7 if AtLeastProb: 𝑉 𝐿 (𝑠I) ≥ 𝜃

ApproxProb: 𝑉𝑈 (𝑠I) −𝑉 𝐿 (𝑠I) ≤ 𝛿
then

8 return 𝜋𝐿 ; /* early termination (positive) */
9 if AtLeastProb: 𝑉𝑈 (𝑠I) < 𝜃 then

10 return impossible ; /* early termination (negative) */
11 if 𝑠I ∈ solved then return 𝜋𝑈 ; /* regular termination */
12 𝑠 ← 𝑠I;
13 while 𝑠 ∉ tip do
14 𝑠 ← pick some 𝑠 ∈ Succ[M̂] (𝑠, 𝜋𝑈 (𝑠)) \ solved ; ♣
15 ExpandAndInitialize(𝑠) ; /* (Algorithm 12.2) */
16 BackwardUpdate(𝑠) ; /* (Algorithm 12.3) */

necessary even though the path from 𝑠6 via 𝑎8, 𝑎11, and 𝑎12 would yield a valid alternative to the found
optimal policy.

12.2. Acyclic MDPs

We introduce variants of AO∗ and exhaustive search for goal-probability analysis. AO∗ exploits an initial
monotone upper bound on the goal probabilities in the way just sketched. In contrast, exhaustive search
works solely with a monotone lower bound similar to VI. It offers early termination conditions over VI, yet
in the limit may still need to construct the whole state space to find an optimal policy.

12.2.1. AO∗

AO∗ (Nilsson, 1971) lifts standard graph search algorithms to AND/OR graphs. Algorithm 12.1 shows the
pseudo-code of our AO∗ variant for solving the goal-probability objectives. For ease of presentation, Algo-
rithm 12.1 assumes an arbitrary (acyclic) MDPM as input, abstracting away from representation details.
Note, however, thatM does not need to be provided in an explicit form. In particular, Algorithm 12.1 can
operate directly on the (budget-limited) probabilistic FDR task description Π, i.e., the probabilistic state
spaceMΠ does not need to be constructed beforehand. The algorithm incrementally builds a subgraph
M̂, the search space, of the input MDPM, to the extent necessary to find the desired policy.
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Algorithm 12.2: ExpandAndInitialize of GOALPROB-AO∗

1 procedure ExpandAndInitialize(𝑠)
2 tip← tip \ { 𝑠 };

/* Do not expand goal states */
3 if 𝑠 ∈ Ŝ∗ then
4 return;

/* Generate transitions of 𝑠, and initialize data structures for new
states */

5 foreach 𝑡 ∈ Succ[M](𝑠) \ Ŝ do
6 Insert 𝑡 into M̂;
7 Initialize 𝑉𝑈 (𝑡) and 𝑉 𝐿 (𝑡), i.e., 𝑉𝑈 (𝑡) ← 𝐻 (𝑡), and 𝑉 𝐿 (𝑡) ← 1 if 𝑡 ∈ Ŝ∗ else 𝑉 𝐿 (𝑡) ← 0 ;
8 tip← tip ∪ { 𝑡 };
9 Update P̂ accordingly, i.e., copy all P̂ (𝑠, 𝑎, 𝑡) ← P(𝑠, 𝑎, 𝑡);

Algorithm 12.3: BackwardUpdate of GOALPROB-AO∗

1 procedure BackwardUpdate(𝑠)
/* process states in reverse topological order */

2 queue← empty heap;
3 if 𝑠 ∉ Ŝ∗ ∧ 𝑠 is terminal then 𝑉𝑈 (𝑠) ← 0;
4 if 𝑠 ∈ Ŝ∗ ∨ 𝑠 is terminal then /* mark solved & propagate labels */
5 solved← solved ∪ { 𝑠 };
6 Insert all 𝑡 ∈ Pred[M̂] (𝑠) into queue;
7 else Insert 𝑠 into queue ; /* insert for regular update */
8 while queue ≠ ∅ do
9 𝑡 ← pop max state from queue w.r.t. topological order;

10 Update 𝜋𝑈 (𝑡), 𝑉𝑈 (𝑡), 𝜋𝐿 (𝑡), 𝑉 𝐿 (𝑡) ; ⋆
11 if Succ[M̂] (𝑡, 𝜋𝑈 (𝑡)) ⊆ solved then
12 solved← solved ∪ { 𝑡 };

/* propagate solved label: */
13 Insert all 𝑡 ′ ∈ Pred[M̂] (𝑡) into queue;
14 else if 𝑉 𝐿 (𝑡) or 𝑉𝑈 (𝑡) has changed then

/* propagate changed value: */
15 Insert all 𝑡 ′ ∈ Pred[M̂] (𝑡) into queue;

Adopting ideas from prior work (e.g., McMahan et al., 2005; Little et al., 2005; Smith and Simmons, 2006;
Kuter and Hu, 2007), we maintain two value functions, namely both an upper bound 𝑉𝑈 and a lower
bound 𝑉 𝐿 on goal probability. 𝑉 𝐿 is simply initialized to 0 for all states but goal states. 𝑉𝑈 is initialized
by the provided monotone upper bound 𝐻 . Additionally, we maintain two policies 𝜋𝑈 and 𝜋𝐿, which are
updated alongside the value functions, ensuring that they remain greedy policies of𝑉𝑈 and𝑉 𝐿 throughout.

The subgraph M̂ is initialized to consist only of the initial state 𝑠I . The tip states of this MDP are the states
that have not been expanded yet, i.e., those states of M̂ that have not yet gone through Algorithm 12.2.
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Every iteration of AO∗’s main while loop identifies a tip state 𝑠 reachable from 𝑠I via 𝜋𝑈 . 𝑠 is expanded,
inserting its successors and transitions into M̂, while initializing𝑉𝑈 and𝑉 𝐿 for newly created states. Then,
𝑉𝑈 and𝑉 𝐿 are updated at 𝑠, and possible value changes are propagated through M̂. When the policy 𝜋𝑈
has been fully expanded, i.e., there is no tip state 𝑠 reachable from 𝑠I via 𝜋𝑈 we terminate. The termination
condition and the identification of the tip state 𝑠 are both based on a state labeling mechanism. Goal and
terminal states are labeled solved upon visiting them for the first time in AO∗’s update procedure. The
remaining states are labeled solved when all their successors under the current policy 𝜋𝑈 were marked
solved. Every state not marked solved must have a descendant under 𝜋𝑈 that has not been expanded
yet. To find 𝑠, we trace a single path in 𝜋𝑈 ’s policy graph by starting from 𝑠I , and iteratively selecting a
successor under 𝜋𝑈 that is not labeled solved. Since the MDP is acyclic, an unsolved terminal state in M̂
must be reached eventually. Notice that this holds interdependently of the exact choice of the unlabeled
successor states. However, the selections have a crucial impact on the performance of AO∗. On the one
hand, guiding the exploration towards goal states, may lead to improving the lower bound𝑉 𝐿 (𝑠I) quickly,
fostering early termination. On the other hand, biasing the exploration towards dead-end states may allow
to disprove the current policy’s optimality early on, which can be beneficial for regular termination. We
discuss different outcome-selection strategies, breaking ties at ♣, in Chapter 13.

Algorithm 12.3 shows the value update and labeling procedure. Again due acyclicity, a single backward
pass through M̂ suffices to propagate value changes and to the keep the labels in sync. Algorithm 12.3
processes states individually, starting from the expanded state 𝑠, updating its values and policies, and
repeating with a state’s predecessors if deemed necessary due to value changes or for label propagation.
By considering the states in reverse topological order, no state must be touched more than once. When
updating the policy 𝜋𝑈 (𝑠), there might be multiple actions greedy on𝑉𝑈 for 𝑠 at our disposal. As above, the
choice does not affect correctness of the algorithm, yet it may translate into faster termination. Different
policy tie-breaking strategies (⋆) are discussed in Chapter 13.

Regarding early termination, the lower bound enables positive early termination when we can already
guarantee sufficient goal probability, namely 𝑉 𝐿 (𝑠I) ≥ 𝜃 in AtLeastProb, and 𝑉 𝐿 (𝑠I) ≥ 𝑉𝑈 (𝑠I) − 𝛿 in
ApproxProb. The upper bound enables negative early termination in AtLeastProb, when 𝑉𝑈 (𝑠I) < 𝜃 .

The correctness of GOALPROB-AO∗ is easy to establish. Every iteration of themainwhile loop removes a state
from the tip list. Given that every state is inserted at most once into this list, GOALPROB-AO∗ must terminate
after a finite number of steps. Due to the monotone initialization of 𝑉 𝐿 and 𝑉𝑈 , and the monotonicity
invariance of the Bellman update operator, 𝑉 𝐿 (𝑠) ≤ 𝑉 ∗(𝑠) ≤ 𝑉𝑈 (𝑠) holds for all states 𝑠 ∈ Ŝ during
the entire execution of the algorithm. Correctness in case of negative early termination hence follows
directly. Suppose that the negative termination condition did not apply. That the returned policy fulfills
the requirements of respective objective can be shown via induction on the maximal distance to terminal
states in the policy graph induced by 𝜋𝑈 , respectively 𝜋𝐿 –which is defined sinceM is acyclic. ForMaxProb,
observe that once any state 𝑠 is marked solved, it holds 𝑉 𝜋𝑈 (𝑠) = 𝑉𝑈 (𝑠) = 𝑉 ∗(𝑠). For goal states and
terminal states this is trivially satisfied. Suppose a non-goal, non-terminal state 𝑠 is marked solved. Then,

𝑉𝑈 (𝑠) =
∑

𝑡∈Succ[M](𝑠,𝜋𝑈 (𝑠))
P(𝑠, 𝜋𝑈 (𝑠), 𝑡)𝑉𝑈 (𝑡)

as per the selection of 𝜋𝑈 (𝑠). Since 𝑠 is marked solved, it must hold that Succ[M](𝑠, 𝜋𝑈 (𝑠)) ⊆ solved.
Via the induction hypothesis, 𝑉𝑈 (𝑡) = 𝑉 𝜋𝑈 (𝑡) for all states 𝑡 ∈ Succ[M](𝑠, 𝜋𝑈 (𝑠)). Plugging this into
the definition of 𝑉 𝜋𝑈 (𝑠) shows that 𝑉𝑈 (𝑠) = 𝑉 𝜋𝑈 (𝑠). Finally, the chain of relations 𝑉 ∗(𝑠) ≤ 𝑉𝑈 (𝑠) =
𝑉 𝜋𝑈 (𝑠) ≤ 𝑉 ∗(𝑠) leads to the desired result 𝑉 𝜋𝑈 (𝑠) = 𝑉 ∗(𝑠).

Finally, we need to prove that, in case of early termination, returning 𝜋𝐿 achieves what we want, i.e.,
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Algorithm 12.4: GOALPROB-EXHAO∗

Input: Acyclic MDPM = ⟨S,A,P, 𝑠I,S∗⟩ (symbolically represented)
Output: Policy satisfying the desired goal-probability objective, or “impossible”.

1 Initialize empty M̂ and 𝜋𝐿, 𝑉 𝐿, and insert 𝑠I;
2 tip← { 𝑠I };
3 while open ≠ ∅ do
4 if MaxProb: 𝑉 𝐿 (𝑠I) = 1

AtLeastProb: 𝑉 𝐿 (𝑠I) ≥ 𝜃
ApproxProb: 𝑉 𝐿 (𝑠I) ≥ 1 − 𝛿

then

5 return 𝜋𝐿 ; /* early termination */
6 Select some 𝑠 from tip; tip← tip \ { 𝑠 } ; ♣
7 ExpandAndInitialize(𝑠) ; /* Algorithm 12.2 */
8 BackwardUpdate(𝑠) ; /* Algorithm 12.3 */
/* regular termination */

9 if 𝑉 𝐿 (𝑠I) < 𝜃 then return impossible;
10 else return 𝜋𝐿;

𝑉 𝜋𝐿 (𝑠I) ≥ 𝜃 for AtLeastProb, and 𝑉 ∗(𝑠I) − 𝑉 𝜋𝐿 (𝑠I) ≤ 𝛿 for ApproxProb. Following the same inductive
reasoning as above, we show that𝑉 𝜋𝐿 (𝑠) ≥ 𝑉 𝐿 (𝑠). For the induction beginning, it holds for all goal states
and terminal states that 𝑉 𝜋𝐿 (𝑠) = 𝑉 𝐿 (𝑠) = 𝑉 ∗(𝑠) due to the special case treatments in Algorithm 12.2
and Algorithm 12.3. In the induction step, it holds that

𝑉 𝐿 (𝑠) =
∑

𝑡∈Succ[M](𝑠,𝜋𝐿 (𝑠))
P(𝑠, 𝜋𝐿 (𝑠), 𝑡)𝑉 𝐿 (𝑡)

as per the definition of 𝜋𝐿 (𝑠). By the induction hypothesis, then

𝑉 𝐿 (𝑠) ≤
∑

𝑡∈Succ[M](𝑠,𝜋𝐿 (𝑠))
P(𝑠, 𝜋𝐿 (𝑠), 𝑡)𝑉 𝜋𝐿 (𝑡)

where the sum is exactly 𝑉 𝜋𝐿 (𝑠). Hence, 𝑉 𝜋𝐿 (𝑠I) ≥ 𝑉 𝐿 (𝑠I) ≥ 𝜃 , concluding the proof for AtLeastProb,
and 𝑉 ∗(𝑠I) −𝑉 𝜋𝐿 (𝑠I) ≤ 𝑉𝑈 (𝑠I) −𝑉 𝐿 (𝑠I) ≤ 𝛿 concluding the proof for ApproxProb.

Theorem 12.1. SupposeM is any acyclic MDP, and𝐻 is any monotone upper bound forM. Then, GOALPROB-
AO∗ with 𝐻 solves the goal-probability objectives forM.

12.2.2. Exhaustive AO∗

We complement AO∗ by an exhaustive search variant, which only maintains a lower bound 𝑉 𝐿 akin to
VI, yet enables early termination by propagating value changes through the constructed MDP subgraph
just as in GOALPROB-AO∗. Algorithm 12.4 shows the pseudo-code. The overall structure is similar to Algo-
rithm 12.1. Due to the lack of an upper bound, the exploration ofM does however not follow any particular
policy. Instead the tip states of M̂ are interpreted as a global open list of states still to be expanded. Akin to
the selection of the unlabeled successor states in GOALPROB-AO∗, the selection of the state to expand next
has a direct influence on the development of𝑉 𝐿 (𝑠I). This can be leveraged to foster early termination via
the outcome-selection strategy in ♣. Regular termination does not happen before not the entire reachable
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fragment ofM has been visited. Analogously to GOALPROB-AO∗, the 𝑉 𝐿 value of a state is updated upon
expansion, and value changes are propagated via the same backward pass through M̂ as in Algorithm 12.3.
Regarding early termination, in addition to the conditions used in GOALPROB-AO∗, we can terminate in
MaxProb once𝑉 𝐿 (𝑠I) = 1. This condition was not necessary in GOALPROB-AO∗, because when𝑉 𝐿 (𝑠I) = 1,
then all paths induced by 𝜋𝐿 end in a goal state, so are labeled solved, and therefore GOALPROB-AO∗ would
terminate regularly anyways. We can terminate in ApproxProb, when𝑉 𝐿 (𝑠I) ≥ 1−𝛿 . Again this condition
is redundant in GOALPROB-AO∗, since it is subsumed by𝑉 𝐿 (𝑠I) ≥ 𝑉𝑈 (𝑠I) − 𝛿 tested there. Correctness in
case of early termination follows just as before. In case of regular termination, the exhaustive construction
ofM turns the update procedure into a variant of VI. Hence:

Theorem 12.2. GOALPROB-EXHAO∗ solves the goal-probability objectives for every acyclic MDPM.

12.3. General MDPs via FRET

In the presence of cycles, solving the goal probability objectives becomes significantly more complicated.
Firstly, cycles introduce an interdependence between states, necessitating the propagation of value changes
back and forth between states. A single pass of updates from leafs back to the initial state no longer suffices.
Moreover, detecting convergence via the simple bottom-up labeling procedure from before is no longer
possible either, given that states can be descendants of themselves. Last but not least, the Bellman equations
may no longer have a unique solution. This is problematic, as due to the upper-bounding initialization of
the value function, heuristic search is generally prone to converge to non-optimal fixed points. In the
following, we address these issues in turn.

In Section 12.3.1, we revisit Bonet and Geffner’s (2003a) FIND-AND-REVISE algorithm, a generic schema
for VI-based heuristic search on cyclic MDPs. We then design variants of LRTDP (Bonet and Geffner, 2003b)
and depth-first heuristic search (DFHS), using the results for the FIND-AND-REVISE schema to prove their
correctness. To optimally solve SSPs, the family of FIND-AND-REVISE algorithms can be used directly. A
single run of heuristic search suffices. Handling MDPs beyond SSPs requires multiple iterations of heuristic
search, yielding a series of fixed points, until the optimal one is found. Section 12.3.4 spells out this
procedure, known as FRET (Kolobov et al., 2011), and introduces our new FRET variant.

12.3.1. The Find-and-Revise Schema

The FIND-AND-REVISE schema (Bonet and Geffner, 2003a) summarizes the principal steps conducted by
any VI-based heuristic search algorithm so to guarantee convergence to an 𝜖-consistent value function
after a finite number of iterations. Algorithm 12.5 shows the pseudocode. Starting from a monotone upper
bound 𝑉 = 𝐻 , 𝑉 is iteratively updated through an alternation of FIND and REVISE steps. FIND system-
atically explores the policy graph of some policy greedy on the current 𝑉 , starting from the initial state,
and searching for states whose values are not yet 𝜖-consistent. REVISE updates the value of such a state,
possibly changing the greedy policy as a side effect. This is repeated until all states reached via the policy
are 𝜖-consistent. The result is a value function 𝑉 and greedy policy 𝜋 such that 𝜋 is closed for the initial
state 𝑠I , and 𝑉 is 𝜖-consistent w.r.t. 𝜋 and 𝑠I , i.e., (𝚫𝑉 )(𝑠) ≤ 𝜖 holds for all 𝑠 ∈ R𝜋 (𝑠I).

Termination is guaranteed because of the monotone value function initialization, and since 𝜖 > 0. Namely,
suppose 𝑉 (0) = 𝐻,𝑉 (1),𝑉 (2), . . . is the series of value function computed along the FIND-AND-REVISE
execution. As per the monotonicity invariance, it holds that 𝑉 (0) ≥ 𝑉 (1) ≥ 𝑉 (2) ≥ · · · . Moreover, as
long as FIND-AND-REVISE does not terminate, it holds that 𝑉 (𝑖−1) −𝑉 (𝑖) > 𝜖. In other words, each round
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Algorithm 12.5: FIND-AND-REVISE Schema
Input: MDPM = ⟨S,A,P, 𝑠I,S∗⟩ (symbolically represented),

Goal-probability heuristic 𝐻 : S → [0, 1],
Convergence threshold 𝜖 ≥ 0 (𝜖 > 0 ifM is not acyclic),

Output: 𝑉 ≥ 𝑉 ∗ and policy 𝜋 greedy on 𝑉 such that (i) 𝜋 is closed for 𝑠I , and
(ii) ∀𝑠 ∈ R𝜋 (𝑠I) : (𝚫𝑉 ) (𝑠) ≤ 𝜖

1 Initialize 𝑉 by 𝐻 ;
2 while ⊤ do
3 𝜋 ← policy closed for 𝑠I and greedy on 𝑉 ;
4 𝑠 ← any state reachable from 𝑠I via 𝜋 s.t. (𝚫𝑉 )(𝑠) > 𝜖 ; /* Find */
5 if no such state exists then return 𝑉 , 𝜋 ;
6 𝑉 (𝑠) ← (𝑩𝑉 )(𝑠) ; /* Revise */

of updates makes the value function become closer to a fixed point by at least 𝜖. The smallest possible
fixed point in any goal-probability MDP is 𝑉 ∗. Hence, with 𝜖 > 0, we obtain a finite upper bound on the
FIND-AND-REVISE iterations: ∑

𝑠∈S

𝐻 (𝑠) −𝑉 ∗(𝑠)
𝜖

Upon termination, it holds for all states 𝑠 reachable from 𝑠I via 𝜋 that

𝑉 (𝑠) − (𝑩𝜋𝑉 ) (𝑠) = 𝑉 (𝑠) − (𝑩𝑉 )(𝑠) ≤ 𝜖

where the equality is true, because 𝜋 is greedy on𝑉 . In other words, as 𝜖 goes to 0,𝑉 approaches a fixed
point of 𝑩𝜋 . Suppose that the MDP is an SSP. Then, 𝑉 𝜋 is the unique such fixed point, i.e., 𝑉 approaches
𝑉 𝜋 . Due to the monotone initialization, and the monotonicity invariance of the Bellman update operator,
it still holds that 𝑉 ≥ 𝑉 ∗ upon termination. Therefore,

𝑉 𝜋 ≤ 𝑉 ∗ ≤ 𝑉

As discussed in Section 11.2.2, choosing an appropriate convergence threshold 𝜖 allows to control the
final precision 𝑒𝑟𝑟𝑜𝑟 (𝜖) = max𝑠∈R𝜋 (𝑠I) 𝑉

∗(𝑠) −𝑉 (𝑠). From the previous system of inequalities, we obtain
max𝑠∈R𝜋 (𝑠I) 𝑉

∗(𝑠) −𝑉 𝜋 (𝑠) ≤ 𝑒𝑟𝑟𝑜𝑟 (𝜖). Hence, if 𝜖 is chosen small enough, then FIND-AND-REVISE indeed
computes an optimal policy. In summary:

Theorem 12.3 (Bonet and Geffner, 2003a). LetM be an MDP with initial state 𝑠I . Let 𝐻 be any monotone
upper bound forM, and let 𝜖 > 0 be any convergence threshold. FIND-AND-REVISE(M, 𝐻, 𝜖) terminates after
at most ∑𝑠∈S

𝐻 (𝑠)−𝑉 ∗ (𝑠)
𝜖 iterations. The result is a value function𝑉 and a closed policy greedy on𝑉 such that

𝑉 is 𝜖-consistent w.r.t. 𝜋 .

Corollary 12.1. IfM in Theorem 12.3 is an SSP, then for sufficiently small 𝜖, 𝜋 is optimal.

12.3.2. LRTDP

LRTDP (Bonet and Geffner, 2003b) is an extension of real-time dynamic programming (short RTDP) (Barto
et al., 1995) by a state labeling procedure akin to AO∗. The solved labels provide a cheap yet sound ter-
mination condition. Moreover, they reduce redundant computations, fostering convergence, by removing
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Algorithm 12.6: GOALPROB-LRTDP
Input: MDPM = ⟨S,A,P, 𝑠I,S∗⟩ (symbolically represented),

Goal-probability heuristic 𝐻 : S → [0, 1],
Convergence threshold 𝜖 ≥ 0 (𝜖 > 0 ifM is not acyclic),

Output: Policy 𝜋 as described in the text, or “impossible”.
1 Initialize empty M̂ and 𝜋𝑈 , 𝑉𝑈 , 𝜋𝐿, 𝑉 𝐿, and insert 𝑠I;
2 tip← { 𝑠I }; solved← ∅;
3 while ⊤ do
4 [early termination criteria as in Algorithm 12.1]
5 if 𝑠I ∈ solved then return 𝜋𝑈 ; /* regular termination */
6 trial← empty stack;
7 𝑠 ← 𝑠I;
8 while 𝑠 ∉ solved do
9 if 𝑠 ∈ tip then

10 ExpandAndInitialize(𝑠) ; /* Algorithm 12.2 */
11 if 𝑠 ∈ Ŝ∗ ∨ 𝑠 is terminal then
12 solved← solved ∪ { 𝑠 };
13 break;
14 Push 𝑠 onto trial;
15 Update 𝜋𝑈 (𝑠),𝑉𝑈 (𝑠), 𝜋𝐿 (𝑠),𝑉 𝐿 (𝑠) ; ⋆
16 if Cyclic: 𝑉𝑈 (𝑠) has changed by less than 𝜖 then break;
17 𝑠 ← sample 𝑡 ∈ Succ[M̂] (𝑠, 𝜋𝑈 (𝑠)) ; ♣
18 while trial ≠ ∅ do
19 𝑠 ← pop from trial;
20 CheckAndMarkSolved(𝑠, 𝜖) ; /* Algorithm 12.7 */
21 if 𝑠 ∉ solved then break;

from consideration states whose values have already converged. Algorithm 12.6 shows the pseudo-code
of our goal-probability variant. The main change to the original version of LRTDP consists in maintaining
both a lower bound and upper bound on𝑉 ∗, along with corresponding policies, and adding the same early
termination criteria as in GOALPROB-AO∗ (cf. Algorithm 12.1).

LRTDP performs multiple iterations of trials, sampling a path induced by the current greedy policy 𝜋𝑈 ,
starting from the initial state 𝑠I , and ending in a terminal, goal, or any other state that is already la-
beled solved. Following Kolobov et al. (2011), we introduce an additional termination condition based on
𝜖-consistency in order to prevent trials from getting trapped in 0-reward cycles. Once a trial has been com-
pleted, the visited states are processed in reverse order, calling CheckAndMarkSolved (Algorithm 12.7)
to update the solved labels. The labeling procedure guarantees that once any state 𝑠 is labeled solved, the
𝑉𝑈 values of all states reached from 𝑠 via 𝜋𝑈 are 𝜖-consistent. LRTDP terminates (regularly) when 𝑠I is
labeled solved. By default, the trials are sampled according to the MDP’s transition probabilities. The exact
sampling method does not play any role for the termination or correctness guarantees. However, recall
that the policy exploration strategy has an impact on the development of the lower and upper bounds,
potentially translating into faster termination. Hence, to reflect this on LRTDP’s trials, we deploy different
outcome-selection strategies to bias successor sampling at ♣. Secondly, recall that the actions chosen into
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Algorithm 12.7: CheckAndMarkSolved of GOALPROB-LRTDP
1 procedure CheckAndMarkSolved(𝑠, 𝜖)
2 if 𝑠 ∈ solved then return;
3 consistent← ⊤;
4 open← empty stack; closed← empty stack;
5 Push 𝑠 onto open;
6 while open ≠ ∅ do
7 𝑡 ← pop from open;
8 Push 𝑡 onto closed;
9 if 𝑡 ∈ tip then

10 ExpandAndInitialize(𝑡) ; /* Algorithm 12.2 */
11 Update 𝜋𝑈 (𝑡),𝑉𝑈 (𝑡), 𝜋𝐿 (𝑡),𝑉 𝐿 (𝑡) ; ⋆
12 if 𝑉𝑈 (𝑡) has changed by more than 𝜖 then
13 consistent← ⊥;
14 else if 𝑡 ∈ Ŝ∗ ∨ 𝑡 is terminal then
15 solved← solved ∪ { 𝑡 };
16 else
17 foreach 𝑡 ′ ∈ Succ[M̂] (𝑡, 𝜋𝑈 (𝑡)) s.t. 𝑡 ′ ∉ (solved ∪ open ∪ closed) do
18 Push 𝑡 ′ onto open;

19 if consistent then
20 solved← solved ∪ closed;
21 else
22 while closed ≠ ∅ do
23 𝑡 ← pop state from closed;
24 Update 𝜋𝑈 (𝑡),𝑉𝑈 (𝑡), 𝜋𝐿 (𝑡),𝑉 𝐿 (𝑡) ; ⋆

𝜋𝑈 upon the value updates is not less important. In particular, as suggested by Hansen and Zilberstein
(2001), we stick to the currently chosen actions as long as possible, to avoid unnecessarily jumping between
explorations of different, qualitatively equivalent, policies. If this is not possible, we consult a tie-breaking
strategy, by default, breaking ties arbitrarily. Sticking to the convention introduced for GOALPROB-AO∗,
the corresponding places in the pseudocode are indicated by⋆. Different outcome-selection and policy
tie-breaking strategies are the topic of Chapter 13.

Regarding the labeling method, note that because of cycles, it is not possible to simply propagate solved
labels from children to parents as in AO∗. Instead, to determine whether a state 𝑠 is solved, the sub-
procedure CheckAndMarkSolved performs a systematic exploration of the policy graph induced by 𝜋𝑈 .
The exploration starts at 𝑠, and branches are cut off at 𝜖-inconsistent states, and states already marked
solved. The visited states, including 𝑠, are labeled solved iff no 𝜖-inconsistent state was found. If the MDP
is known to be acyclic, 𝜖 can be set 0. In general, however, 𝜖 > 0 is required to guarantee termination (cf.
Section 11.2.2). In contrast to the original version, we update the policies and value functions during the
CheckAndMarkSolved explorations, which yields a small empirical advantage over computing only the
Bellman residuals.
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Regarding correctness. Note that each iteration of the main while loop updates the value of some state 𝑠
that is reachable from 𝑠I via 𝜋𝑈 and whose Bellman residual satisfies (𝚫𝑉𝑈 )(𝑠) > 𝜖, or else 𝑠I is labeled
solved. Due to CheckAndMarkSolved’s exhaustive exploration of the policy graph, when 𝑠I is labeled
solved, then 𝑉𝑈 is 𝜖-consistent at all states reached from 𝑠I via 𝜋𝑈 . As per the first observation, LRTDP
matches the FIND-AND-REVISE schema, i.e., Theorem 12.3 guarantees that 𝑠I is labeled solved after a
finite number of iterations. As per the second observation, LRTDP offers the same solution guarantees
upon regular termination.

Correctness of early termination follows in a similar manner as for AO∗, i.e., by exploiting that 𝑉 𝐿 and
𝑉𝑈 remain monotone lower, respectively upper bounds throughout. Note that this is true even in the
general case, i.e., if early termination applies, then we can terminate the overall FRET process. Proving that
𝑉 𝜋𝐿 (𝑠I) ≥ 𝑉 𝐿 (𝑠I) is a little bit more difficult than in the acyclic case. First, in contrast to AO∗, LRTDP does
not guarantee that 𝜋𝐿 remains greedy on𝑉 𝐿 at all times, due to the lack of an exhaustive value propagation
procedure as in Algorithm 12.3. Secondly, due to 0-reward cycles, selecting the actions into 𝜋𝐿 arbitrarily
does generally not guarantee to achieve the desired goal probability (cf. Example 11.2). Regarding the
first issue, notice that 𝜋𝐿 does actually not need to be greedy on 𝑉 𝐿. It suffices that 𝜋𝐿 selects an action
whose expected value is at least as good as the value stored in 𝑉 𝐿, i.e., if (*) 𝑉 𝐿 (𝑠) ≤ (𝑸𝑉 𝐿) (𝑠, 𝜋𝐿 (𝑠)).
This property is guaranteed by LRTDP, simply because it holds (𝑸𝑉 𝐿) (𝑠, 𝜋𝐿 (𝑠)) ≥ 𝑉 𝐿 (𝑠) when 𝜋𝐿 (𝑠) and
𝑉 𝐿 (𝑠) are updated, and since𝑉 𝐿 is a monotone lower bound, this relation remains satisfied after updating
𝑉 𝐿 at other states. Regarding the second issue, notice that, similarly to the discussion in Section 11.2.4, as
per the initialization of 𝑉 𝐿, every value increase must originate from a goal state. Thus, if we update 𝜋𝐿

only to reflect value increases, we make sure that 𝜋𝐿 induces goal paths just as in Lemma 11.1 (replacing
the requirement of greedy actions by (*)). Via the arguments from Lemma 11.2, we then obtain the desired
result: 𝑉 𝜋𝐿 (𝑠) ≥ 𝑉 𝐿 (𝑠). With that property in place, we can conclude

Theorem 12.4. Suppose M is any MDP, and 𝐻 is any monotone upper bound for M. Then, GOALPROB-
LRTDP with 𝐻 solves AtLeastProb and ApproxProb forM. Moreover, ifM satisfies the SSP assumptions, then
GOALPROB-LRTDP also solves MaxProb forM.

Proof. Due to the monotone initialization of𝑉 𝐿 and𝑉𝑈 ,𝑉 𝐿 (𝑠) ≤ 𝑉 ∗(𝑠) ≤ 𝑉𝑈 (𝑠) holds for all states 𝑠 ∈ Ŝ
during the entire execution of the algorithm. If 𝑉𝑈 (𝑠) < 𝜃 , then 𝑉 ∗(𝑠) < 𝜃 . When carefully updating 𝜋𝐿

in the way described above, 𝜋𝐿 satisfies 𝑉 𝜋𝐿 (𝑠I) ≥ 𝑉 𝐿 (𝑠I). Then, if 𝑉 𝐿 (𝑠I) ≥ 𝜃 , 𝜋𝐿 clearly achieves
the AtLeastProb objective. In case of ApproxProb early termination, we have 𝛿 ≥ 𝑉𝑈 (𝑠I) − 𝑉 𝐿 (𝑠I) ≥
𝑉𝑈 (𝑠I) − 𝑉 𝜋𝐿 (𝑠I) ≥ 𝑉 ∗(𝑠I) − 𝑉 𝜋𝐿 (𝑠I). In conclusion, GOALPROB-LRTDP solves the AtLeastProb and
ApproxProb objectives. Finally, given that, as explained above, GOALPROB-LRTDP instantiates the FIND-
AND-REVISE schema, Corollary 12.1 shows the second part of the claim. □

12.3.3. Depth-First Heuristic Search

We finally consider systematic heuristic searches (not based on trials like LRTDP) with a strong depth
exploration bias. Such an orientation is particularly beneficial in our setting. First and foremost, it cre-
ates a tendency towards reaching terminal or goal states quickly, i.e., states whose exact goal probability
values are known. Secondly, value changes can be propagated quickly and efficiently to the initial state
by leveraging the inverse exploration order. Lastly, solved labels can be computed with almost no addi-
tional overhead, even in the presence of cycles. We refer to the family of algorithms with such a strong
depth bias by Depth-First Heuristic Search (DFHS). Known instances are ILAO∗ (Hansen and Zilberstein,
2001), heuristic dynamic programming (HDP) (Bonet and Geffner, 2003a), and learning depth-first search
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Algorithm 12.8: GOALPROB-DFHS
Input: MDPM = ⟨S,A,P, 𝑠I,S∗⟩ (symbolically represented),

Goal-probability heuristic 𝐻 : S → [0, 1],
Convergence threshold 𝜖 ≥ 0 (𝜖 > 0 ifM is not acyclic),

Output: Policy 𝜋 as described in the text, or “impossible”.
1 Initialize empty M̂ and 𝜋𝑈 , 𝑉𝑈 , 𝜋𝐿, 𝑉 𝐿, and insert 𝑠I;
2 tip← { 𝑠I };
3 solved← ∅; visited← ∅;
4 checkTerm← ⊥;
5 while ⊤ do
6 [early termination criteria as in Algorithm 12.1]
7 if checkTerm then /* test for regular termination */
8 if LABEL ∧ 𝑠I ∈ solved then return 𝜋𝑈 ;
9 else if ¬LABEL then

10 𝜋𝑈 ,𝑉𝑈 , 𝜋𝐿,𝑉 𝐿 ← run VI on visited, stop when their 𝑉𝑈 -values are 𝜖-consistent ; ⋆
11 if 𝜋𝑈 has not changed then return 𝜋𝑈 ;

12 visited← ∅;
13 if LABEL then
14 stack← empty stack; minReach← empty map;
15 checkTerm← DFHS_Exploration(𝑠I) ; /* (Algorithm 12.9) */

(LDFS) (Bonet and Geffner, 2006). Their commonality lies in conducting depth-first explorations of anMDP
subgraph defined by actions greedy on the current upper bound 𝑉𝑈 . The algorithms differ in the exact
subgraph considered, how depth-first branches are terminated, how the overall algorithm is terminated,
and in whether or not updates are performed on the way down of exploration, on the way up, both, or
neither of them. Algorithm 12.8 systematizes these parameters.

The main DFHS loop (Algorithm 12.8) consists in running a series of depth-first explorations (shown in
Algorithm 12.9), stopping when either an early termination criterion is satisfied, or a signal is issued to
start the regular termination test. Each exploration starts from the initial state 𝑠I , and it considers only
actions greedy on the current 𝑉𝑈 . There are two options: searching the 𝜋𝑈 policy graph specifically, or
searching the MDP subgraph obtained by following in each state all actions greedy on 𝑉𝑈 . However, the
latter variant, employed by LDFS, is not effective for goal-probability analysis. Consider an MDP, in which
many states can reach the goal with almost certainty, or just any MDPs in the context of loose upper
bounds 𝐻 , e.g., initializing 𝑉𝑈 to 1 almost everywhere. The 𝑉𝑈 -greedy graph then becomes the entire
reachable state space, whose construction we try to avoid via heuristic search. We hence omit this option,
and therewith LDFS, from our DFHS family.

We again maintain lower and upper bounds on goal probability, along with the corresponding policies.
Early termination criteria for the AtLeastProb and ApproxProb objectives are the same as in GOALPROB-AO∗.
Detecting whether a fixed point has been found can be done in two ways: (LABEL) by maintaining solved
labels; or (¬LABEL) by running value iteration on the states of the 𝜋𝑈 policy graph. Regular termination
happens when (LABEL) the initial state is labeled solved; respectively (¬LABEL), if the greedy policy did
not change during VI. Both cases require as prerequisite that 𝜋𝑈 is closed for 𝑠I , which is indicated by
DFHS_Exploration’s return value.
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Algorithm 12.9: DFHS_Exploration of GOALPROB-DFHS
Input: State 𝑠 s.t. 𝑠 ∉ visited; Convergence threshold 𝜖 ≥ 0 (𝜖 > 0 ifM is not acyclic)
Output: True if 𝜋𝑈 has been fully expanded and no 𝜖-inconsistent state was found; false otherwise.

1 procedure DFHS_Exploration(𝑠, 𝜖)
2 if 𝑠 ∈ solved ∨ (𝑠 ∉ tip ∧ 𝑠 is terminal) then
3 solved← solved ∪ { 𝑠 };
4 return ⊤;
5 visited← visited ∪ { 𝑠 };
6 if 𝑠 ∈ tip then
7 ExpandAndInitialize(𝑠) ; /* Algorithm 12.2 */
8 if 𝑠 ∈ Ŝ∗ then return ⊤ ;
9 if 𝑠 is terminal then 𝑉𝑈 (𝑠) ← 0; return ⊥ ;

10 if CUTOFFTIP then
11 if UPDATEFORWARD ∨ UPDATEBACKWARD then Update 𝜋𝑈 (𝑠),𝑉𝑈 (𝑠), 𝜋𝐿 (𝑠),𝑉 𝐿 (𝑠) ; ⋆
12 return ⊥;

13 flag← ⊤;
14 if UPDATEFORWARD then
15 Update 𝜋𝑈 (𝑠),𝑉𝑈 (𝑠), 𝜋𝐿 (𝑠),𝑉 𝐿 (𝑠) ; ⋆
16 if 𝑉𝑈 (𝑠) has changed by more than 𝜖 then
17 if CUTOFFINCONSISTENT then return ⊥ ;
18 else flag← ⊥;

19 if LABEL then
20 stackIdx← |stack|; minReach[𝑠] ← stackIdx; push 𝑠 onto stack;
21 foreach 𝑡 ∈ Succ[M̂] (𝑠, 𝜋𝑈 (𝑠)) do
22 if 𝑡 ∉ visited then flag← DFHS_Exploration(𝑡, 𝜖) ∧ flag;
23 if LABEL then
24 if 𝑡 ∈ stack then minReach[𝑠] ← min(minReach[𝑠],minReach[𝑡]) ;
25 else if 𝑡 ∉ solved then flag← ⊥ ;

26 if UPDATEBACKWARD ∨ ¬flag then
27 Update 𝜋𝑈 (𝑠),𝑉𝑈 (𝑠), 𝜋𝐿 (𝑠),𝑉 𝐿 (𝑠) ; ⋆
28 if 𝑉𝑈 (𝑠) has changed by more than 𝜖 or 𝜋𝑈 (𝑠) has changed then
29 flag← ⊥;

30 if LABEL ∧ stackIdx = minReach[𝑠] then
31 𝑆 ← pop from stack all states down to 𝑠;
32 if flag then solved← solved ∪ 𝑆;
33 return flag;

The states’ values may be updated during the searches: (UPDATEFORWARD) on the way down of exploration,
before applying 𝜋𝑈 and generating the successor states; and (UPDATEBACKWARD) on the way back from
exploration, once all successors under 𝜋𝑈 were handled recursively. A search branch is always terminated
at goal and terminal states, so as at any other solved labeled state. In addition, search branches may be
cutoff: (CUTOFFTIP) at tip states, i.e., states that have not been expanded before, and (CUTOFFINCONSISTENT)
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Parameter ILAO∗ HDP
LABEL – ✓
UPDATEFORWARD – ✓
UPDATEBACKWARD ✓ –
CUTOFFTIP ✓ –
CUTOFFINCONSISTENT – ✓

Table 12.1.: Overview of parameters for known DFHS instances.

at 𝜖-inconsistent states, provided that the Bellman residual is available (UPDATEFORWARD is enabled).

Neither UPDATEFORWARD nor UPDATEBACKWARD is needed if VI is used to check termination (LABEL is set to
false). However, to be able to determine correctly when to label a state as solved, one of the update flags
needs to be activated. As suggested by Bonet and Geffner (2003a), to compute labels in the cyclic case,
we keep track of the policy graph’s SCCs. Following Tarjan’s algorithm (cf. Chapter 3), this can be done
with only little overhead alongside DFHS’s depth-first exploration. Terminal and goal states are labeled
solved when visited. Other states are labeled solved when backtracking from an SCC 𝑆 (line 30) such that
(1) the values of all states in the SCC are 𝜖-consistent, and (2) every 𝑆-successor in the 𝜋𝑈 policy graph,
not part of the SCC itself, has been labeled solved already. The flag variable keeps track of the latter two
requirements during exploration: flag is set to false whenever𝑉𝑈 (𝑠) was not consistent during one of the
updates, or when the requirements were violated in one of 𝑠 ’s successors. Note that flag also needs to be
set to false if 𝜋𝑈 (𝑠) changes after a backward update (line 28), as in this case, a fresh exploration starting
from 𝑠 is needed to reassure the closeness and consistency properties for the modified policy. For updates
in the forward direction, this additional condition is not necessary because 𝜋𝑈 is explored after the update.
Following GOALPROB-AO∗ and GOALPROB-LRTDP, the places relevant to policy tie-breaking are marked
by⋆. The outcome-selection strategy (previously indicated by ♣) is not as relevant for DFHS, given that
DFHS_Exploration explores all successors anyhow.

In summary, GOALPROB-DFHS offers 5 configurable parameter flags constrained by two dependencies:

• LABEL⇒ UPDATEFORWARD ∨ UPDATEBACKWARD

• CUTOFFINCONSISTENT⇒ UPDATEFORWARD

In total, this yields 22 valid algorithm configurations. Note, however, that the combination of the forward-
update flag (UPDATEFORWARD) and backward-update flag (UPDATEBACKWARD) is redundant. Backward up-
dates will happen automatically as needed due to value changes during the forward updates. Leaving at
least one of the two flags disabled leaves 14 configurations. The known DFHS instances ILAO∗ (Hansen and
Zilberstein, 2001) and HDP (Bonet and Geffner, 2003b) map into the configurations shown in Table 12.1.

Correctness of early termination in all algorithms variants follows via the exact same arguments as for
GOALPROB-LRTDP. We emphasize here again that the cyclic case necessitates breaking ties in favor of
the currently chosen actions when updating 𝜋𝐿, so to avoid issues due to 0-reward cycles. Regarding
termination in general, note that it is generally mandatory to give precedence to the currently chosen
action when updating 𝜋𝑈 . Otherwise, the checks in GOALPROB-DFHS line 11 and in DFHS_Exploration
line 28 prevent termination. To prove termination of the DFHS family, we leverage once again the FIND-
AND-REVISE schema. The policy exploration sub-procedure must return true eventually, because at some
point all states will have been expanded; as per Theorem 12.3, no more 𝜖-inconsistent states are left; and
therefore the policy also no longer needs to be changed. This suffices if LABEL is used for termination,
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since at that point the initial state must have been labeled solved. Suppose that VI is used as the regular
termination test. The termination condition is satisfied, if the values of all visited states are already 𝜖-
consistent, and hence 𝜋𝑈 will not have to be changed. If it is not satisfied, then at least one 𝜖-inconsistent
gets updated. This cannot be repeated indefinitely, as per Theorem 12.3.

To show correctness in the case of regular termination, we prove that FIND-AND-REVISE’s solution proper-
ties are satisfied: (1) 𝜋𝑈 is closed for 𝑠I , and (2) 𝑉𝑈 is 𝜖-consistent in all states reachable from 𝑠I via 𝜋𝑈 .
(1) must be true given Algorithm 12.9’s exhaustive exploration, and since checkTermination can be true
only if no search branch was cutoff. If VI is used to test termination, then (2) clearly holds. For the LABEL
termination option, observe that a state 𝑠 is labeled solved only if (1) and (2) are satisfied for 𝑠. This is
trivially the case for terminal and goal states. On the other hand, labeling an SCC 𝑆 solved requires ˆflag for
the SCC entry state 𝑠 ∈ 𝑆 to be true. As per the conjunction in line 15 of Algorithm 12.9, ˆflag aggregates the
flag values of all states in the SCC. Hence, due to the exhaustive exploration, and the check in line 25, ˆflag
can only be true if all successors outside the SCC are labeled solved. Finally, given the requirement that
one of UPDATEFORWARD and UPDATEBACKWARD must be enabled, if ˆflag is true, then 𝑆 can also not contain
any 𝜖-inconsistent state. In summary, the states in 𝑆 are labeled solved correctly, as per the requirements
(1) and (2). In conclusion:

Theorem 12.5. SupposeM is any MDP, and 𝐻 is any monotone upper bound forM. Every valid instance of
GOALPROB-DFHS with 𝐻 solves AtLeastProb and ApproxProb forM. IfM satisfies the SSP assumptions, then
GOALPROB-DFHS also solves MaxProb forM.

12.3.4. FRET Framework

To apply the FIND-AND-REVISE heuristic search schema to classes of MDPs, in which the Bellman equations
have multiple solutions, Kolobov et al. (2011) proposed FIND-AND-REVISE-AND-ELIMINATE-TRAPS (short
FRET). Like FIND-AND-REVISE, FRET maintains a monotone upper bound 𝑉𝑈 , which is continuously up-
dated throughout the FRET process. Each FRET iteration runs FIND-AND-REVISE until termination, i.e.,
until finding the next (potentially sub-optimal) fixed point. In between these iterations, FRET performs
a trap elimination step, searching and processing traps so to escape sub-optimal fixed points, and by that
ensures progress in the next iteration. Once no more traps are left, FRET has converged to 𝑉 ∗, and termi-
nates.

Next, we introduce FRET more formally. Our exposition is based on the version from (Kolobov, 2013),
which is what Kolobov et al. (2011) ended up implementing. We reformulate the method and theoretical
results given by Kolobov (2013) in terms of the standard notions of end components (cf. Definition 10.5)
and quotient systems (e.g., de Alfaro, 1997; Givan et al., 2003) (defined below). We provide alternative
correctness arguments leveraging those notions. The alternative view gives rise to our new FRET variant,
which is introduced at the end of this section.

Principles

In general, traps are end components composed of only 0-reward transitions (not to be confused with
dead-end traps, as seen in Chapter 8). For the purpose of goal-probability analysis, the notion of traps
simplifies to end components over non-goal states:

Definition 12.3 (Goal-Probability Trap). LetM = ⟨S,A,P, 𝑠I,S∗⟩ be an MDP. Suppose 𝑇 ⊆ S. 𝑇 is a
goal-probability trap (trap, for simplicity) inM if 𝑇 is an end component ofM and 𝑇 ∩ S∗ = ∅. A trap 𝑇
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inM is permanent if Succ[M](𝑇 ) ⊆ 𝑇 . A trap that is not permanent is called transient.

We say that a trap 𝑇 is reachable from some 𝑠 ∈ S inM, if there is any 𝑡 ∈ 𝑇 that is reachable from 𝑠
inM. A reachable trap inM is one that is reachable from the initial state. Notice that the existence of
sub-optimal fixed points has a one-to-one correspondence to the existence of traps:

Theorem 12.6. M is an SSP if and only ifM contains no reachable trap.

Proof sketch. IfM is not an SSP, then there exists a policy 𝜋 and a state 𝑠 such that executing 𝜋 from 𝑠 never
reaches an absorbing state (goal state, or state where 𝜋 is not defined). The policy subgraphM𝜋 |R𝜋 (𝑠) is
an EC and contains no goal states, i.e., is a trap. IfM has a goal-free ECM′, then one can construct a
counterexample 𝜋 to the SSP conditions by assigning 𝜋 (𝑠) = 𝑎 for all 𝑠 ∈ S′ and some arbitrary 𝑎 ∈ A′(𝑠)
(which must exist due to the EC conditions). Let 𝑠 ∈ S′. Then, R𝜋 (𝑠) ⊆ S′ by construction. SinceM′
contains no goal states, R𝜋 (𝑠) ∩S∗ = ∅, and since 𝜋 is defined for all states in S′, R𝜋 (𝑠) ∩S𝜋

⊥ = ∅. Hence,
the execution of 𝜋 from 𝑠 never reaches an absorbing state, i.e.,M is not an SSP. □

The proof arguments are spelled out in Appendix C.2.1.

As discussed in Chapter 11, SSPs have the nice property that 𝑉 ∗ is the unique solution to the Bellman
equations (Bertsekas, 1995). In other words, if there are no traps, then the issue of sub-optimal fixed
points disappears. Now, notice that all states of a trap necessarily have the same goal probability, simply
because each state of the trap can reach every other state in the trap with probability 1, as per the definition
of end components. Hence, as far as the computation of goal probabilities is concerned, we could simply
treat a trap as if it was a single state. This suggests the following simple (yet ineffective) algorithm: while
the MDPM contains a reachable trap𝑇 , obtain a new MDP𝔔𝑇 , in which𝑇 is collapsed into a single state
𝔱; continue with 𝔔𝑇 and repeat until no more traps are left. The resulting MDP is guaranteed to be an
SSP, which could then be handed to any off-the-shelf heuristic search algorithm. The sketched procedure is
commonly known as the end-component decomposition of an MDP (e.g., Ciesinski et al., 2008). Yet, per se,
it is not particularly helpful in our situation, given that it entails the construction of the whole state space,
which to avoid was one of the main reasons why we moved to heuristic search in the first place. Before we
detail how to leverage these observations more efficiently, let’s however first flesh out the formal details,
and show that the general idea does indeed work out.

Collapsing traps is captured formally via the notion of quotient systems:

Definition 12.4 (Quotient MDP). LetM = ⟨S,A,P, 𝑠I,S∗⟩ be an MDP. Let ∅ ⊂ 𝑇 ⊆ S be a non-empty
set of states. The quotient ofM and 𝑇 is the MDP𝔔𝑇 = ⟨S𝑇 ,A𝑇 ,P𝑇 , 𝔰I,S𝑇∗ ⟩ where

• The states are S𝑇 = (S \𝑇 ) ∪ { 𝔱 }; 𝔱 denoting a new state, representing all states of 𝑇 . We use

𝔰𝑇 (𝑠) =
{
𝔱 if 𝑠 ∈ 𝑇
𝑠 otherwise

to denote the state in𝔔𝑇 associated with a state 𝑠 ∈ S ofM.

• The actions are A𝑇 = A ∪ { ⟨𝑠, 𝑎⟩ | 𝑠 ∈ 𝑇, 𝑎 ∈ A }.

• The transition probabilities are defined as follows. For all states 𝑠 ∈ S \𝑇 , 𝑎 ∈ A, and 𝔰′ ∈ S𝑇 :

P𝑇 (𝑠, 𝑎, 𝔰′) =
{
P(𝑠, 𝑎, 𝑠′) if 𝔰′ = 𝑠′ ∈ S∑
𝑡∈𝑇 P(𝑠, 𝑎, 𝑡) otherwise
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For all 𝑡 ∈ 𝑇 , 𝑎 ∈ A, and 𝔰′ ∈ S𝑇

P𝑇 (𝔱, ⟨𝑡, 𝑎⟩, 𝔰′) =

0 if Succ[M](𝑡, 𝑎) ⊆ 𝑇
P(𝑡, 𝑎, 𝑠′) if 𝔰′ = 𝑠′ ∈ S∑
𝑡 ′∈𝑇 P(𝑡, 𝑎, 𝑡 ′) otherwise

• The initial state is 𝔰I = 𝔰𝑇 (𝑠I).

• The goal states are S𝑇∗ = { 𝔰𝑇 (𝑠) | 𝑠 ∈ S∗ }.

The quotient ofM and 𝑇 replaces all states from 𝑇 by a single state 𝔱. The incoming transitions of 𝔱 are
those incoming to any state of 𝑇 , and its outgoing transitions are those transitions of 𝑇 -states exiting 𝑇 .
Additional action labels ⟨𝑠, 𝑎⟩ are introduced to be able to reflect multiple outgoing transitions from the
states of 𝑇 via the same action 𝑎. Observe that the quotient ofM and any trap 𝑇 preserves the optimal
goal probabilities:

Theorem 12.7. Suppose 𝑇 is a trap inM. Denote by 𝑉 ∗ [𝔔𝑇 ] the optimal goal-probability function of the
quotient𝔔𝑇 ofM and 𝑇 . It holds for all states 𝑠 ∈ S that 𝑉 ∗(𝑠) = 𝑉 ∗ [𝔔𝑇 ] (𝔰𝑇 (𝑠)).

Proof sketch. Since the only difference betweenM and𝔔𝑇 are the transitions affecting𝑇 /𝔱, it suffices to
establish 𝑉 ∗ [𝔔𝑇 ] (𝔱) = 𝑉 ∗(𝑡) for 𝑡 ∈ 𝑇 . If either side is 0, the claim follows trivially. For the remaining
cases, note that optimal policies of both MDPs can be translated into one another, while preserving their
goal-probability values. Let 𝜋∗ be an optimal policy forM. There must some 𝑡 ∈ 𝑇 and 𝑠 ∉ 𝑇 such that
P(𝑡, 𝜋∗(𝑡), 𝑠) > 0. A corresponding policy for𝔔𝑇 is given 𝜋𝑇 (𝔱) := ⟨𝑡, 𝜋∗(𝑡)⟩, and falling back to 𝜋∗ in all
other cases. 𝜋𝑇 necessarily achieves the same goal probabilities than 𝜋∗. Vice versa, let 𝜋𝑇 be an optimal
policy for 𝔔𝑇 . Assume 𝜋𝑇 (𝔱) = ⟨𝑡, 𝑎⟩. We construct a policy 𝜋 forM as follows. For all states 𝑠 ∉ 𝑇 , we
define 𝜋 (𝑠) := 𝜋𝑇 (𝑠). To define the policy for the states in 𝑇 , we start with 𝜋 (𝑡) := 𝑎. We proceed with
the states 𝑡 ′ ∈ 𝑇 that have a transition 𝑎′ ∈ A(𝑡 ′) such that P(𝑡 ′, 𝑎′, 𝑡) > 0 and Succ(𝑡 ′, 𝑎′) ⊆ 𝑇 . We set
𝜋 (𝑡 ′) := 𝑎′, and continue with the states 𝑡 ′′ ∈ 𝑇 that have a transition 𝑎′′ going into 𝑡 or 𝑡 ′, while staying
within the trap. We iterate this process until all states in 𝑇 were processed. The existence of the depicted
transitions follows immediately from the EC properties. The construction of the policy ensures that the
goal probabilities of 𝜋𝑇 are preserved.

□

The full proof is provided in Appendix C.2.2.

FRET-𝑉

Kolobov et al. (2011) observed that in order to guarantee that FIND-AND-REVISE converges to 𝑉𝑈 = 𝑉 ∗,
it suffices to inspect just an MDP subgraph induced by 𝑉𝑈 with respect to traps:

Definition 12.5 (𝑉 -Greedy Graph). Let 𝑉 be a value function. The 𝑉 -greedy graph is the subgraphM𝑉 =
⟨S,A,P𝑉 , 𝑠I,S∗⟩ ofM where

P𝑉 (𝑠, 𝑎, 𝑠′) =
{
P(𝑠, 𝑎, 𝑠′) if 𝑎 is greedy on 𝑉 for 𝑠
0 otherwise
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Algorithm 12.10: FRET-𝑉
Input: MDPM = ⟨S,A,P, 𝑠I,S∗⟩ (symbolically represented),

Goal-probability heuristic 𝐻 : S → [0, 1],
Convergence threshold 𝜖 > 0,

Output: Policy satisfying the desired goal-probability objective, or “impossible”.
1 𝔔 ←M ; /* start with the original MDP */
2 𝑉𝑈 ← 𝐻 ; /* initialize value function by the provided upper bound */
3 repeat

/* (re)run heuristic search on the quotient MDP, starting from the
previous value function 𝑉𝑈 , to find the next fixed point */

4 𝑉𝑈 , 𝜋𝑈 ,𝑉 𝐿, 𝜋𝐿 ← FIND-AND-REVISE(𝔔,𝑉𝑈 , 𝜖) ; /* Algorithm 12.5 */
5 if early-termination criterion applied then /* cf. Algorithm 12.1 */
6 return translate 𝜋𝐿 into policy forM (see proof of Theorem 12.7), respectively return

“impossible”;
7 while the 𝑉𝑈 -greedy graph contains some reachable state 𝑠 s.t. (𝚫𝑉𝑈 )(𝑠) > 𝜖 do
8 𝑉𝑈 (𝑠) ← (𝑩𝑉𝑈 )(𝑠);
9 𝑆1, . . . , 𝑆𝑛 ← maximal SCCs of the 𝑉𝑈 -greedy graph reachable from the initial state;

10 trapRemoved← ⊥;
11 foreach 𝑖 = 1 . . . 𝑛 do
12 if 𝑆𝑖 is a leaf SCC and the 𝑉𝑈 -greedy graph contains 𝑆𝑖 -involving transitions then

/* ⇒ 𝑆𝑖 is a permanent trap in the 𝑉𝑈 -greedy graph */
13 𝔔 ← quotient of𝔔 and 𝑆𝑖 with collapsed state 𝔱;
14 𝑉𝑈 (𝔱) ← 𝑉𝑈 (𝑠), for any 𝑠 ∈ 𝑆𝑖 ;
15 delete all 𝑠 ∈ 𝑆𝑖 from 𝑉𝑈 ;
16 trapRemoved← ⊤;

17 until ¬trapRemoved;
18 𝜋𝑈 ← apply Algorithm 11.2 on 𝑉𝑈 to construct a policy for𝔔;
19 return translate 𝜋𝑈 into policy forM (cf. proof of Theorem 12.7);

In other words, the 𝑉 -greedy graph is simply the union of all graphs that are induced by the policies
greedy on 𝑉 . We abbreviate the set of states reachable from 𝑠 inM𝑉 by R𝑉 (𝑠) = R[M𝑉 ] (𝑠). As per the
principles of heuristic search, the focus on 𝑉 -greedy actions may rule out from consideration regions of
the state space whose expected values under 𝑉 are already proved worse than some alternative. In effect,
the 𝑉 -greedy graph can be much smaller than the entire state space. At the same time, however, it still
contains enough information to determine when 𝑉 = 𝑉 ∗ is satisfied:

Theorem 12.8. Suppose that 𝑉 (𝑠) = (𝑩𝑉 ) (𝑠) for all states 𝑠 ∈ R𝑉 (𝑠I). If M𝑉 contains no reachable
permanent trap, then 𝑉 (𝑠) = 𝑉 ∗(𝑠) holds for states 𝑠 ∈ R𝑉 (𝑠I).

Proof sketch. Since M𝑉 contains no permanent traps, M𝑉 must contain a path from every state 𝑠 ∈
R𝑉 (𝑠I) to some absorbing state. Since all paths inM𝑉 are over actions greedy on𝑉 , applying VI’s policy
extraction procedure (Algorithm 11.2) on𝑉 , starting from the absorbing states, yields a policy 𝜋𝑉 such that
𝑉 𝜋𝑉 (𝑠) ≥ 𝑉 (𝑠) is satisfied for all 𝑠 ∈ R𝑉 (𝑠I) (cf. Theorem 11.6). The claim follows with𝑉 ∗(𝑠) ≥ 𝑉 𝜋𝑉 (𝑠),
and 𝑉 (𝑠) ≥ 𝑉 ∗(𝑠), where the latter is true because 𝑉 ∗ is the piecewise smallest fixed point. □
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Figure 12.2.: Example MDP showing the necessity of value convergence over the entire𝑉𝑈 -greedy graph in FRET-𝑉 .
The initial state is 𝑠0. 𝑠∗ is the only goal state. States are annotated by their𝑉𝑈 -value. Transitions are annotated by
the corresponding 𝑸𝑉𝑈 -value. Colored areas as discussed in the text.

The full proof if available in Appendix C.2.3.

Algorithm 12.10 consolidates the theoretical observations made so far. In contrast to Kolobov et al.’s (2011)
FRET variant, we additionally include a check to appropriately handle early termination of the underlying
FIND-AND-REVISE algorithm. Moreover, the value-update part (lines 7 – 8) was not mentioned by Kolobov
et al. explicitly, yet is required for the analysis as per Theorem 12.8 to be sound. Specifically, as FIND-AND-
REVISE only guarantees that the values of states reached via the returned 𝜋𝑈 have converged, 𝑉𝑈 may
have not yet converged on all states in the𝑉𝑈 -greedy graph, and this hence needs to be verified in a post
process. Example 12.1 provides an illustration.

Example 12.1. Consider the MDP shown in Figure 12.2. The states are annotated by their 𝑉𝑈 -value upon
termination of the first FIND-AND-REVISE call. The gray area marks the 𝑉𝑈 -greedy graph. The green part high-
lights the greedy policy 𝜋𝑈 corresponding to the FIND-AND-REVISE call. The values of the states in the 𝜋𝑈 policy
graph (𝑠0 and 𝑠1) have converged, as per the FIND-AND-REVISE termination guarantee. However, 𝑉𝑈 has not
yet converged on all states in the𝑉𝑈 -greedy graph since (𝑩𝑉𝑈 )(𝑠2) = 0 < 1 = 𝑉𝑈 (𝑠2). The only trap in the
𝑉𝑈 -greedy graph is given by the 𝜋𝑈 subgraph, which is not permanent given the 𝑎⊥ transition leaving 𝑠0. Even
though there are no permanent traps, it is still not possible to extract a policy 𝜋 from the𝑉𝑈 -greedy graph such
that 𝑉 𝜋 = 𝑉𝑈 , as per Theorem 12.8. In fact, 𝑉𝑈 > 𝑉 ∗, since 𝑉 ∗(𝑠) < 𝑉𝑈 (𝑠) holds for all 𝑠 ∈ { 𝑠0, 𝑠1, 𝑠2 }.

Termination of the post-hoc update cycle follows similarly to FIND-AND-REVISE via the standard mono-
tonicity argument. It is worth noting that the𝑉𝑈 -greedy graph can only become smaller during the course
of these updates, and that the policy graph of 𝜋𝑈 remains a subgraph ofM𝑉𝑈 at all times. The latter is
true, since the values in the 𝜋𝑈 -graph have converged as per the FIND-AND-REVISE properties. The former
then follows, as due to monotonicity, the values of states outside the 𝜋𝑈 -graph either have converged too,
or must decrease. An alternative to verifying value convergence explicitly is to instead remove all traps. In
the absence of any trap, the properties of FIND-AND-REVISE together with Theorem 12.6 guarantee conver-
gence to𝑉 ∗. However, this variant may lead to removing more traps than necessary, as per Theorem 12.8.
Moreover, identifying transient traps is algorithmically more difficult. Lastly, the analysis is still conducted
on the𝑉 -greedy graph, which as we discuss in the next section, can become a bottleneck in the context of
goal-probability objectives. We hence stick to FRET-𝑉 in the version proposed by Kolobov et al. (2011).

Algorithm 12.10 follows the general procedure sketched at the beginning of this section: it continuously
updates a monotone upper bound 𝑉𝑈 via FIND-AND-REVISE; after FIND-AND-REVISE has converged, it



12.3. General MDPs via FRET 167

searches and collapses permanent traps in the𝑉𝑈 -greedy graph; and these steps are repeated until nomore
permanent traps are left. Note that the permanent traps are exactly the leaf SCCs ofM𝑉𝑈 that contain
at least one transition (see also the detailed proof of Theorem 12.8 in Appendix C.2.3). To identify all
permanent traps, it hence suffices to compute the maximal SCCs via, e.g., Tarjan’s algorithm (cf. Chapter 3).
The identified traps are collapsed one-by-one by building the corresponding quotient MDPs. The MDP
transformations preserve optimal goal probabilities, as per Theorem 12.7. Since collapsing a trap strictly
reduces the available transitions, of which there are only finitely many in the first place, FRET-𝑉 must
terminate eventually. The final𝑉𝑈 -greedy graph no longer contains permanent traps. As per Theorem 12.8,
for sufficiently small 𝜖, we can construct from 𝑉𝑈 an optimal policy for the quotient system. This policy
can be translated into an optimal policy for the original MDP by acting, within collapsed traps, in a way
so that an absorbing state is eventually reached with certainty (as sketched in proof of Theorem 12.7).

Theorem 12.9. LetM be any MDP, and 𝐻 be any monotone upper bound forM. FRET-𝑉 with 𝐻 and any
FIND-AND-REVISE algorithm solves all the goal-probability objectives forM.

FRET-𝜋

Constructing the 𝑉𝑈 -greedy graph may not always be feasible. In general, the number of policies greedy
on𝑉𝑈 can be exponential in the number of states, and all of them are represented in the𝑉𝑈 -greedy graph.
Specifically, consider the last trap analysis step in FRET-𝑉 , i.e., verifying that 𝑉 ∗ satisfies Theorem 12.8.
Notice that, even if each optimal policy visits only a small number of states on its own, every state could
very well be visited by some optimal policy. Hence, the𝑉 ∗-greedy graph, considered in that last step, may
already cover the entire state space. Although this issue may sound pathological at first glance, it can in
fact be a problem in goal-probability analysis. For example, the delineated situation immediately arises
in cases, where a large fraction of the states can reach the goal with certainty. Secondly, note that the
𝑉𝑈 -greedy graph can be smaller than the entire state space only if the values in𝑉𝑈 allow to discriminate
between some transitions. In particular, with an imprecise initialization, the𝑉𝑈 -greedy graph analyzed in
the first trap elimination step will likely cover large parts of the state space.

To address these shortcomings, notice that the computation of an optimal policy does actually not require
to consider the entire𝑉𝑈 -greedy graph. Namely, considering the policy 𝜋𝑈 associated with the fixed point
returned by FIND-AND-REVISE, a direct consequence of Theorem 12.6 is that 𝑉𝑈 (𝑠) = 𝑉 ∗(𝑠) holds for the
states visited by 𝜋𝑈 if the 𝜋𝑈 policy graph is trap-free:

Theorem 12.10. Let 𝑉 be a value function, and let 𝜋 be a closed policy greedy on 𝑉 . Suppose that 𝑉 (𝑠) =
(𝑩𝑉 )(𝑠) for all 𝑠 ∈ R𝜋 (𝑠I). IfM𝜋 contains no reachable permanent trap, then 𝑉 (𝑠) = 𝑉 ∗(𝑠) holds for all
states 𝑠 ∈ R𝜋 (𝑠I), and 𝜋 is an optimal policy.

Proof. M𝜋 cannot contain any transient trap, because each state may have at most one outgoing transition,
as given by 𝜋 ’s action selection. SinceM𝜋 neither contains permanent traps by assumption, it follows via
Theorem 12.6 thatM𝜋 satisfies the SSP assumptions. Hence, 𝑉 𝜋 is the unique solution of the Bellman
equations inM𝜋 . Let 𝑠 ∈ R𝜋 (𝑠I) be arbitrary. Since 𝜋 is closed, and 𝑉 is a fixed point of the Bellman
equations inM over R𝜋 (𝑠I), it follows 𝑉 (𝑠) ≥ 𝑉 ∗(𝑠). Since 𝜋 is greedy on 𝑉 , it holds that (𝑩𝑉 ) (𝑠) =
(𝑩𝜋𝑉 )(𝑠). Therefore, 𝑉 also satisfies the Bellman equations inM𝜋 over R𝜋 (𝑠I). In conclusion, 𝑉 𝜋 (𝑠) =
𝑉 (𝑠). The claim follows with 𝑉 ∗(𝑠) ≤ 𝑉 (𝑠) = 𝑉 𝜋 (𝑠) ≤ 𝑉 ∗(𝑠). □

Algorithm 12.11 details our new FRET variant, which we baptize FRET-𝜋 . It differs from the original
version in terms of (1) the MDP subgraph considered: we only inspect the 𝜋𝑈 policy graph instead of the
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Algorithm 12.11: FRET-𝜋
Input: MDPM = ⟨S,A,P, 𝑠I,S∗⟩ (symbolically represented),

Goal-probability heuristic 𝐻 : S → [0, 1],
Convergence threshold 𝜖 > 0,

Output: Policy satisfying the desired goal-probability objective, or “impossible”.
1 𝔔 ←M ; /* start with the original MDP */
2 𝑉𝑈 ← 𝐻 ; /* initialize value function by the provided upper bound */
3 repeat

/* (re)run heuristic search on the quotient MDP, starting from the
previous value function 𝑉𝑈 , to find the next fixed point */

4 𝑉𝑈 , 𝜋𝑈 ,𝑉 𝐿, 𝜋𝐿 ← FIND-AND-REVISE(𝔔,𝑉𝑈 , 𝜖) ; /* Algorithm 12.5 */
5 if early-termination criterion applied then /* cf. Algorithm 12.1 */
6 return translate 𝜋𝐿 into policy forM (see proof of Theorem 12.7), respectively return

“impossible”;
7 𝑆1, . . . , 𝑆𝑛 ← maximal SCCs of the 𝜋𝑈 policy graph reachable from the initial state;
8 trapRemoved← ⊥;
9 foreach 𝑖 = 1 . . . 𝑛 do

10 if 𝑆𝑖 is a leaf SCC and the 𝜋𝑈 policy graph contains 𝑆𝑖 -involving transitions then
/* ⇒ 𝑆𝑖 is a permanent trap in the 𝜋𝑈 policy graph */

11 𝔔 ← quotient of𝔔 and 𝑆𝑖 with collapsed state 𝔱;
12 𝑉𝑈 (𝔱) ← 𝑉𝑈 (𝑠), for any 𝑠 ∈ 𝑆𝑖 ;
13 delete all 𝑠 ∈ 𝑆𝑖 from 𝑉𝑈 ;
14 trapRemoved← ⊤;

15 until ¬trapRemoved;
16 return translate 𝜋𝑈 into policy forM (cf. proof of Theorem 12.7);

entire 𝑉𝑈 -greedy graph; (2) ensuring value convergence over all states reached via any policy greedy on
𝑉𝑈 is then no longer necessary; and (3) the final policy 𝜋𝑈 computed by FIND-AND-REVISE is already
guaranteed to be an optimal policy for the quotient system 𝔔, as per Theorem 12.10, i.e., the provided
𝜋𝑈 can be translated into an optimal policy forM directly. Termination and correctness, for sufficiently
small 𝜖, follow in the same manner as for FRET-𝑉 , substituting Theorem 12.8 by Theorem 12.10.

Theorem 12.11. LetM be any MDP, and 𝐻 be any monotone upper bound forM. FRET-𝜋 with 𝐻 and any
FIND-AND-REVISE algorithm solves all the goal-probability objectives forM.

Since FRET-𝜋 and its FIND-AND-REVISE sub-procedure operate on a subgraph of the 𝑉𝑈 -greedy graph at
all times, the part of the state space explicitly constructed by FRET-𝜋 is guaranteed to be a subgraph of that
touched by FRET-𝑉 . There are cases where FRET-𝜋 finds an optimal policy while touching exponentially
fewer states than FRET-𝑉 . In terms of the number of iterations, or number of traps eliminated until ter-
mination, both methods are generally incomparable though. FRET-𝑉 potentially eliminates more traps in
each iteration, and may hence require fewer iterations overall. Yet not all these traps may actually need to
be eliminated (we might eventually find an optimal policy not entering them), and each trap elimination
step may be much more costly. Vice versa, since permanent traps in the 𝜋𝑈 policy graph can be transient
traps in the 𝑉𝑈 -greedy graph, FRET-𝜋 may eliminate traps that need not to be eliminated by FRET-𝑉 . In
summary, we obtain the following three observations:
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Theorem 12.12. There exist parameterized families of MDPsM𝑛, and monotone upper bounds 𝐻𝑛 where

I) FRET-𝜋 is guaranteed to find an optimal policy while considering only states polynomial in 𝑛, whereas
FRET-𝑉 must consider exponentially many states in 𝑛.

II) FRET-𝑉 terminates after a polynomial number of iterations in𝑛 (after eliminating a polynomial number
of traps in 𝑛), whereas FRET-𝜋 needs an exponential number of iterations in 𝑛 (needs to eliminate
exponentially many traps in 𝑛).

III) FRET-𝑉 requires an exponential number of iterations in 𝑛 (needs to eliminate an exponential number of
traps in 𝑛), whereas FRET-𝜋 has the potential to terminate after just a polynomial number of iterations
in 𝑛 (after eliminating a polynomial number of traps in 𝑛).

We provide detailed examples for all three cases in Appendix C.2.4.

12.4. General MDPs without FRET

We finally consider heuristic search algorithms capable of solving the goal-probability objectives for arbi-
traryMDPswithout relying on FRET.We present four such algorithms. First, we observe that the ELIMINATE-
TRAPS part of our new FRET variant can be naturally viewed as an extension of sub-procedures readily
available in LRTDP and the DFHS family. This results in new heuristic search variants that can be ap-
plied directly to goal-probability analysis without the need of any FRET outer-loop. Our adaptions can be
straightforwardly extended to also handle the class of generalized SSPs (Kolobov et al., 2011), containing
goal-probability analysis as a special case. Afterwards, we introduce a variant of the exhaustive anytime
algorithm from Section 12.2.2 supporting cyclic MDPs. We close the section with Trevizan et al.’s (2016)
IDUAL heuristic search algorithm, which in contrast to all algorithms presented so far, is based on the LP
formulation.

12.4.1. Trap-Aware LRTDP

To prevent termination with a sub-optimal fixed point, we embed FRET-𝜋 ’s post-convergence analysis
directly into LRTDP. We do so by modifying LRTDP’s solved labeling procedure, additionally requiring the
𝜋𝑈 policy subgraph rooted at a state 𝑠 to be trap-free, before labeling 𝑠 solved. If the values of the states
in the policy graph have converged, but there are traps, we collapse the traps as in FRET-𝜋 , yet seamlessly
continue running LRTDP afterwards. Once the initial state is labeled solved, we have found an optimal
policy for the traps-removed MDP, as per Theorem 12.10. It then only remains to map this policy into an
optimal policy for the original MDP. The necessary changes almost only pertain to LRTDP’s solved labeling
procedure. Algorithm 12.12 shows the adapted pseudo-code. We refer by TA-LRTDP to this new LRTDP
variant.

Recall that the (permanent) traps in the policy graph are exactly the leaf SCCs of this graph. Hence, the
main difference between Algorithm 12.12 and the original version (Algorithm 12.7) lies in computing the
maximal SCCs alongside the policy exploration. Given that the original CheckAndMarkSolved function
already explores the policy in a depth-first fashion, this computation boils down to only little bookkeeping
overhead as per Tarjan’s algorithm. For the sake of readability, Algorithm 12.12 implements the exploration
via a recursive procedure instead of the iterative method in Algorithm 12.7. A permanent trap is identified
once the exploration backtracks out of an SCC 𝑆 , none of whose states 𝑠 ∈ 𝑆 had a transition in the 𝜋𝑈
policy graph that leaves 𝑆 . The latter condition is indicated by the isLeafSCC flag. The collected traps are
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Algorithm 12.12: CheckAndMarkSolvedAndEliminateTraps
1 procedure CheckAndMarkSolvedAndEliminateTraps(𝑠, 𝜖)
2 if 𝑠 ∈ solved then return;
3 consistent← ⊤;
4 closed← empty stack;
5 traps← ∅; sccStack← empty stack; minReach← empty map;
6 ExpandPolicy(𝑠, 𝜖);
7 if consistent then
8 if traps ≠ ∅ then
9 foreach 𝑆 ∈ traps do

10 M̂ ← quotient of M̂ and 𝑆 with collapsed state 𝔱;
11 Replace all 𝑡 ∈ 𝑆 by 𝔱 in 𝜋𝑈 ,𝑉𝑈 , 𝜋𝐿,𝑉 𝐿;

12 else solved← solved ∪ closed ;
13 else
14 while closed ≠ ∅ do
15 𝑡 ← pop state from closed;
16 Update 𝜋𝑈 (𝑡),𝑉𝑈 (𝑡), 𝜋𝐿 (𝑡),𝑉 𝐿 (𝑡);

17 procedure ExpandPolicy(𝑠, 𝜖)
18 push 𝑠 onto closed;
19 if 𝑠 ∈ tip then
20 ExpandAndInitialize(𝑠) ; /* Algorithm 12.2 */
21 Update 𝜋𝑈 (𝑠),𝑉𝑈 (𝑠), 𝜋𝐿 (𝑠),𝑉 𝐿 (𝑠) ; ♣
22 if 𝑉𝑈 (𝑠) has changed by more than 𝜖 then
23 consistent← ⊥;
24 else if 𝑠 ∈ Ŝ∗ ∨ 𝑠 is terminal then
25 solved← solved ∪ { 𝑠 };
26 else
27 isLeafSCC← ⊤;
28 stackIdx← |sccStack|; minReach[𝑠] ← stackIdx;
29 push 𝑠 onto sccStack;
30 foreach 𝑡 ∈ Succ[M̂] (𝑠, 𝜋𝑈 (𝑠)) do
31 if 𝑡 ∉ closed ∧ 𝑡 ∉ solved then
32 isLeafSCC← ExpandPolicy(𝑡, 𝜖) ∧ isLeafSCC
33 if 𝑡 ∈ sccStack then
34 minReach[𝑠] ← min(minReach[𝑠],minReach[𝑡])
35 else isLeafSCC← ⊥;
36 if minReach[𝑠] = stackIdx then
37 𝑆 ← pop from sccStack all states down to 𝑠;
38 if isLeafSCC then traps← traps ∪ { 𝑆 } ;
39 return ⊥;
40 else return isLeafSCC ;
41 return ⊥;
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eliminated when the values of all states visited during policy exploration are consistent. States are labeled
solved only if neither an inconsistent state, nor a trap was found. Note that each iteration of our new
LRTDP variant either updates an 𝜖-inconsistent state, labels a state as solved, or eliminates a trap. Since
there are only finitely many states and traps, the last two options cannot happen indefinitely. The former
can also occur just a finite number of times, as per the usual FIND-AND-REVISE arguments. Hence, the
TA-LRTDP must terminate eventually. Correctness in the case of early termination holds as before. In the
case of regular termination, correctness follows via the exact same arguments as provided for FRET-𝜋 and
GOALPROB-LRTDP.

Theorem 12.13. LetM be any MDP, and 𝐻 be any monotone upper bound forM. TA-LRTDP with 𝐻 solves
all the goal-probability objectives forM.

By incorporating trap analysis into LRTDP directly, one gets rid of many redundant computations. Namely,
after each iteration of FRET-𝜋 , GOALPROB-LRTDP needs to reassure convergence for every state, including
states for which an optimal policy has already been found. Likewise, after each fixed point computation of
GOALPROB-LRTDP, FRET-𝜋 needs to re-expand the entire policy, including parts that were already proved
trap-free in some prior iteration. In contrast, once CheckAndMarkSolvedAndEliminateTraps is called
on a state, whose policy successors are consistent and trap-free, the solved labels prevent this state from
ever being touched again.

12.4.2. Trap-Aware Depth-First Heuristic Search

FRET-𝜋 ’s post-convergence analysis can be integrated into the DFHS algorithm family in a manner similar
to LRTDP. For the sake of brevity, we omit the full pseudocode, and just list the necessary changes. As in
TA-LRTDP, TA-DFHS operates on a quotient MDP, in which traps are eliminated so to guarantee conver-
gence to an optimal policy. Upon termination of the DFHS driver (Algorithm 12.8), the computed quotient
system policy needs to be translated back into a policy of the original MDP. In the depth-first exploration
(Algorithm 12.9), we enable the SCC computation regardless of whether solved labeling is turned on or off.
To identify the leaf SCCs, we maintain an isLeafSCC flag, as in Algorithm 12.12. The policy graph contains
a trap iff we backtrack out of an SCC (line 30 in Algorithm 12.9), while isLeafSCC is set to true. We abstain
from eliminating a trap if flag was set to false, i.e., if either forward or backward updates are enabled,
and an inconsistent state was found. Since in this case the policy might have changed, the identified trap
might no longer need to be eliminated. When we backtrack out of a trap while flag is true, we eliminate
the trap, but do not set solved labels. If a trap was eliminated, the policy exploration procedure returns
false to signal the need of a policy exploration, starting from the newly created collapsed trap state.

Notice that each policy exploration via the modified DFHS_Exploration procedure updates the value of
some 𝜖-inconsistent state, expands a tip state, marks a state as solved, or eliminates a trap. As per the ar-
guments from previous section, none of these can be happen infinitely often. Hence, DFHS_Exploration
must eventually return true, informing the DFHS driver to check the termination condition. If DFHS then
does not terminate, it must have updated the value of at least one 𝜖-inconsistent state, continuing with
another policy exploration. Eventually, all states must be 𝜖-consistent. In conclusion, TA-DFHS terminates.
Early termination is again not affected by any of the changes. Correctness of regular termination with
solved labels follows exactly as in TA-LRTDP: a state 𝑠 is labeled solved only if the policy graph rooted
at 𝑠 is 𝜖-consistent, and does not contain any trap. Assume VI is used for the termination test. Note that
VI is only started if the call to DFHS_Exploration returned true, which entails that the policy graph is
trap-free. After VI, the values of the states in that policy graph are 𝜖-consistent. Therefore, if the policy has
not changed during the course of value updates, correctness follows just as before.
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Algorithm 12.13: GOALPROB-EXHDFS
Input:M = ⟨S,A,P, 𝑠I,S∗⟩, 𝜖 ∈ (0, 1)
Output: Policy satisfying the desired goal-probability objective, or “impossible”.

1 Initialize empty M̂ and 𝜋𝐿, 𝑉 𝐿, and insert 𝑠I;
2 tip← { 𝑠I };
3 trace← empty stack; sccStack← empty stack; minReach← empty map;
4 if 𝐸𝑥𝑝𝑎𝑛𝑑 (𝑠I) then return 𝜋𝐿;
5 else if 𝑉 𝐿 (𝑠I) < 𝜃 then return impossible;
6 else return 𝜋𝐿;
7 procedure 𝐸𝑥𝑝𝑎𝑛𝑑 (𝑠)
8 stackIdx = |stack|; minReach[𝑠] ← stackIdx;
9 push 𝑠 onto sccStack and trace;

10 ExpandAndInitialize(𝑠) ; /* Algorithm 12.2 */
11 if PropagateValuesOnTrace() then return ⊤;
12 foreach 𝑠′ ∈ Succ[M̂] (𝑠) \ S∗ do ♣
13 if 𝑠′ ∈ tip then
14 if 𝐸𝑥𝑝𝑎𝑛𝑑 (𝑠′) then return ⊤;
15 if 𝑠′ ∈ sccStack then
16 minReach[𝑠] = min(minReach[𝑠],minReach[𝑠′]);

17 pop 𝑠 from trace;
18 if minReach[𝑠] = stackIdx then
19 𝑆 ← pop all states from sccStack down to 𝑠;
20 Run VI on 𝑆 until 𝜖-convergence;
21 return PropagateValuesOnTrace();
22 return ⊥;
23 procedure PropagateValuesOnTrace()
24 foreach 𝑠 ∈ trace from top to bottom do
25 Update 𝑉 𝐿 (𝑠) and 𝜋𝐿 (𝑠);
26 return check early-termination criteria as in Algorithm 12.4;

Theorem 12.14. LetM be any MDP, and 𝐻 be any monotone upper bound forM. TA-DFHS with 𝐻 solves
all the goal-probability objectives forM.

12.4.3. Anytime Exhaustive Depth-First Search

As per VI’s correctness arguments, heuristic search on a monotone lower bound converges to 𝑉 ∗ without
the need of FRET’s post-convergence trap analysis. Algorithm 12.13 shows the pseudocode.

The principle idea is the same as in Section 12.2.2. Due to the absence of an upper bound, we generally
have to explore the state space completely in order to find an optimal policy. However, by backpropagating
value changes, from children to parents, during the exploration, we might be able to terminate early when
sufficient goal probability is achieved. To guarantee convergence to an 𝜖-consistent value function, we
keep track of the state space’s SCCs during search, similar to TVI. When having fully expanded a maximal
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SCC 𝑆 , and all descendants of the states in 𝑆 , we run VI on 𝑆 until reaching 𝜖-consistency. By enforcing a
depth-first order on the exploration of the state space, the SCCs can be computed with only little overhead,
utilizing Tarjan’s algorithm. We backpropagate value changes upon each state expansion (line 11), and
when backtracking from an SCC after VI has converged (line 21). The depth-first exploration removes the
necessity of tracking parent pointers. The ancestors of the currently expanded state in the search space
are exactly the states stored in sccStack. However, in preliminary experiments, we have observed that
updating the values of all states on the stack is almost always detrimental, causing too much overhead. In
Algorithm 12.4, we hence only backpropagate values along the path traversed by the search, which already
suffices to incentivize early termination. The outcome-selection strategy (♣) may control locally at each
state, in which order the successors are going to be processed.

As per the usual monotonicity arguments, each call to VI must reach 𝜖-convergence after a finite number of
iterations. Given that the algorithm expands every (reachable) state exactly once in the worst case, it must
hence terminate eventually. Correctness in the case of early termination follows similarly to GOALPROB-
LRTDP. In the case of regular termination, the exhaustive search algorithm boils down to TVI, performing
additional value updates, which however does not impede any of TVI’s correctness arguments.

Theorem 12.15. GOALPROB-EXHDFS solves the goal-probability objectives for every MDPM.

12.4.4. I-Dual

Breaking with the tradition, IDUAL (Trevizan et al., 2016; Trevizan et al., 2017a) is based on the LP formu-
lation of an optimal policy, and by that eludes the issue of getting trapped in sub-optimal fixed points by
design. But despite of exchanging the foundation, IDUAL is not so much different from the heuristic search
approaches that we have seen so far. IDUAL incrementally expands a state space subgraph M̂ via policy
explorations, using a monotone upper bound 𝐻 ≥ 𝑉 ∗ to estimate the goal probability of the tip states tip
of that graph. Initially, tip = Ŝ = { 𝑠I }. Each iteration computes a policy 𝜋 up to the tip states that would
be optimal if the tip states’ values were indeed the exact goal probabilities. The subgraph is extended by
expanding the tip states R𝜋 (𝑠I) ∩ tip reached from the initial state through that policy, possibly inserting
new tip states into M̂. Once R𝜋 (𝑠I) ∩ tip becomes empty, 𝜋 is guaranteed to be an optimal policy, and
IDUAL terminates. The policy 𝜋 is computed by solving the MaxProb dual LP (Definition 11.2) over M̂,
adjusting the optimization function according to the tip states:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝑦

∑
𝑠∗∈Ŝ∗

𝑖𝑛(𝑠∗) +
∑̂
𝑠∈tip

𝑖𝑛(𝑠)𝐻 (𝑠) (12.1)

Since M̂ will eventually become the entire reachable state space, which cannot be extended any further,
IDUAL is guaranteed to terminate. Notice that, due to the monotone upper bound 𝐻 , the LP cannot under-
estimate the value of any policy. Suppose 𝜋 is the final policy before termination. Hence, ∑𝑠∈tip 𝑖𝑛(𝑠) = 0,
and the objective value of the LP becomes exactly the goal probability achieved by the policy for 𝑠I . Since
the LP optimizes over all possible policies, given the previous observation, 𝜋 must therefore be optimal. In
vein of Section 12.1, IDUAL follows the very same principles as the VI-based heuristic search algorithms
from before: (1) state space explorations are guided by policies optimal according to the information gath-
ered so far; and (2) sub-optimal parts of the state space are identified without exploration via an initial
estimate𝐻 on𝑉 ∗. Consequently, IDUAL also shares the same potential of finding an optimal policy without
building the entire reachable state space.
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IDUAL can be straightforwardly adapted to support early termination on the weaker goal-probability objec-
tives. The objective values of the generated LP solutions yield a sequence of non-increasing goal-probability
upper bounds. Hence, we can interrupt IDUAL’s iterations via the same negative early termination condi-
tions as in all our other heuristic search algorithms. Specifically, we can terminate in case of AtLeastProb
with “impossible” once the objective value 𝑉 ∗ of IDUAL’s current LP drops below 𝜃 , 𝑉 ∗ < 𝜃 . Moreover, we
can terminate in ApproxProb, when 𝑉 ∗ ≤ 𝛿 , returning the corresponding policy. Given that IDUAL does
not maintain a goal-probability lower bound, and it cannot be easily extended to maintain such bound,
positive early termination is not possible.



13. Heuristic Search Tie-Breaking Strategies

A heuristic search algorithm lays down the general framework to guarantee convergence to an optimal
solution. However, this framework leaves some room for diverging implementations, given that not all
operations are uniquely determined. As has already been pointed out by Hansen and Zilberstein (2001)
for LAO∗, smartly resolving these ambiguities can be vital for the efficiency of the search. This especially
pertains to our setting, where good anytime behavior on 𝑉 𝐿 and/or 𝑉𝑈 can be particularly beneficial for
early termination. We explore the potential of fostering this via

Action selection tie-breaking (⋆): Biasing the tie-breaking in the selection of “best” actions 𝜋𝑈 greedy with
respect to 𝑉𝑈 .

Outcome selection (♣): Biasing the outcome-state sampling during trials (LRTDP), respectively the choice
of expanded states in AO∗, and in the exhaustive search variants.

As suggested by Hansen and Zilberstein (2001), in (⋆), we generally stick to the currently chosen actions
as long as possible. We apply tie-breaking, changing 𝜋𝑈 (𝑠), only if some other action becomes strictly better
in 𝑠. This follows the rationale of effectively using already gathered information, given the likelihood of a
different policy visiting parts of the state space that have not been explored so far, and hence in which the
current 𝑉𝑈 estimates might still be rather imprecise. Furthermore, recall that this strict updating rule is
generally necessary to guarantee termination of DFHS.

Example 13.1. To illustrate the effect of these tie-breaking strategies on heuristic search, consider the MDP
from Figure 13.1. We assume MaxProb analysis. The outcome probabilities of the probabilistic transitions do
not matter for the purpose of this example. Note that the MDP is acyclic. For the sake of simplicity, we follow
a procedure like AO∗ to find an optimal policy. However, the following observation does apply to any VI-based
heuristic search algorithm alike. Suppose that we start from the (not very accurate) initial goal-probability
estimates, as given in the figure. Hence, initially, every policy is greedy on 𝑉𝑈 . To demonstrate the effect of
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Figure 13.1.: MDP used in Example 13.1 to demonstrate the impact of different tie-breaking strategies. 𝑠0 is the
initial state, 𝑠∗ is the (only) goal state, 𝑠⊥ is a terminal dead-end state. Transition function as depicted. States are
annotated by their heuristic value.

175



176 13. Heuristic Search Tie-Breaking Strategies

(♣), consider first the policy, which explores the top part of the MDP: 𝜋𝑈 (𝑠0) = 𝑎1 (and 𝜋𝑈 (𝑠) = 𝑎 for the
remaining non-goal, non-terminal states 𝑠). During the expansion of the policy, AO∗ has the option (*) to
follow from 𝑠1 either the transition to 𝑠2 or to 𝑠3. Suppose 𝑠2. Then the Bellman updates after the expansion
change the value of 𝑠2 to 𝑉𝑈 (𝑠2) = 0, and the value of 𝑠1 to some 𝑉𝑈 (𝑠1) < 1. Afterwards, 𝑎1 is no longer
greedy on𝑉𝑈 for 𝑠0. Note, however, that 𝑎2 is still a greedy action for 𝑠0, and 𝑎2 remains greedy as long as 𝑠3
has not been explored. In effect, when choosing next 𝜋𝑈 (𝑠0) = 𝑎2, AO∗ will in the end have explored the entire
MDP before the optimal policy, 𝜋𝑈 (𝑠0) = 𝑎3, was found. Now, observe that if we had instead chosen 𝑠3 in (*),
𝑎2 would have been removed from the choices of greedy actions at 𝑠0 right away. The 𝑎2 subgraph would have
not been expanded. Finally, notice that we could have avoided considering any of the 𝑎1 and 𝑎2 subgraphs, if
the (⋆) tie-breaking strategy had chosen 𝜋𝑈 (𝑠0) = 𝑎3 form the start.

In general, we cannot expect to always select the best option, such as the ones in Example 13.1, as this
ultimately requires knowledge attainable only via the options’ explorations. To still bias the selections to
the “good” options, we experiment with a variety of strategies, some of which had been used already
successfully in other contexts. In what follows, where a strategy specifies one of (⋆) or (♣) only, the other
setting is as in the default strategy. Before we describe the different strategies, recall that the outcome-
selection strategy is relevant only for AO∗, LRTDP, and the exhaustive search variants. The latter algorithms
behave differently from the other heuristic search variants, as they do not maintain an upper bound, i.e.,
there is no selection (⋆) of actions greedy with respect to 𝑉𝑈 , and the explorations do not follow any
particular policy, i.e., the selection in (♣) pertains to all open states. We discuss the concrete use of (♣) in
our exhaustive search algorithms at the end of this chapter.

Default strategy. We adopt the commonly used settings. This is, we break ties arbitrarily during greedy
policy construction (⋆). Specifically, in our implementation, we always choose the first action encountered
with maximal expected value. There is no bias (♣) on outcome states in AO∗ (open outcome states are
selected in the order in which they are generated); in LRTDP the outcome states are sampled according
to the transition probabilities.

Most-likely outcome bias. We also tried LRTDP’s default outcome-selection bias in AO∗, always selecting
the most likely open outcome state during the policy graph traversals.

Gap-bias strategy. Inspired by BRTDP (McMahan et al., 2005), we bias the selections according to the
gap between the upper and lower bounds. This gap can be understood as the uncertainty in the values
computed so far, larger gaps meaning more uncertainty. As per our motivation for action selection tie-
breaking, we want to introduce a bias towards policies for which we have gathered the most information
so far. Hence, in (⋆), we break ties in favor of actions 𝑎 that minimize the expected gap∑

𝑡

P(𝑠, 𝑎, 𝑡)
(
𝑉𝑈 (𝑡) −𝑉 𝐿 (𝑠)

)
In contrast, the purpose of (♣) is to foster the retrieval of new information from less explored parts of the
policy graph. Therefore, for AO∗, we prefer states in (♣) with larger value gap 𝑉𝑈 (𝑡) −𝑉 𝐿 (𝑡). In LRTDP,
we sample the successors according to the renormalized weighed probabilities(

𝑉𝑈 (𝑡) −𝑉 𝐿 (𝑡)
)
P(𝑠, 𝜋𝑈 (𝑠), 𝑡)

attaching successors more probability weights the larger their current value gap.
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ℎ-bias strategy. We use a heuristic function ℎ from classical planning to estimate the cost of the cheapest
goal path from a state. We generally break ties in favor of states with smaller ℎ value. Specifically, in (⋆),
we select among the greedy actions for a state 𝑠 one that minimizes the expected heuristic value∑

𝑡

P(𝑠, 𝑎, 𝑡)ℎ(𝑡)

To select the outcome state (♣) in AO∗, we choose one with smallest heuristic value. For LRTDP, we bias the
random sampling of the successor state 𝑡 ∈ Succ(𝑠, 𝜋𝑈 (𝑠)) by renormalizing the weighted probabilities:

1

ℎ(𝑡) P(𝑠, 𝜋
𝑈 (𝑠), 𝑡)

i.e., we prioritize high probability outcomes with small ℎ value. We also experimented with a variant,
setting the determinized action costs to the negated logarithm of outcome probability (e.g., Jimenez et al.,
2006). This is compelling in principle because, then, the maximal success probability of any goal path
from a state can be computed through a bisimulation-based merge-and-shrink heuristic (Helmert et al.,
2014). However, while interesting from a theoretical perspective, in practice, constructing such a heuristic
is typically not feasible.

Helpful actions strategy. Inspired by common methods in classical planning (e.g., Hoffmann and Nebel,
2001; Helmert, 2006), we experiment with a helpful actions strategy, which in (⋆) prefers to set 𝜋𝑈 (𝑠)
to actions participating in a delete-relaxed determinized plan for 𝑠, if such an action exists.

State selection in exhaustive search. We apply the selection strategies for (♣) to the set of states in the
current search graph M̂ that still need to be expanded. Following ExhDFS, the default strategy in ExhAO∗is
depth-first, the rationale being to try to reach absorbing states quickly. The (♣) selection strategy then
serves as tie-breaking rule to select among the deepest yet-to-be expanded states. For ExhAO∗we also
experimented with a breadth-first strategy, just for comparison.





14. Goal-Probability Occupation-Measure Heuristics

While heuristic search is a popular method to optimally solve probabilistic planning problems, research on
MDP heuristic functions that actually do reason about action-outcome uncertainty has so far been scarce.
The most widely deployed approach to obtain heuristics for MDP planning is based on the determinization
of the MDP into a classical planning task (e.g., Bonet and Geffner, 2005; Jimenez et al., 2006). This is
appealing in principle, given that, e.g., the cost of the cheapest determinized plan for a state is an admissible
estimation of the minimal expected-cost to reach the goal from that state in the MDP. While computing the
cost of the cheapest determinized plan is still intractable in general, given the computational complexity of
optimal classical planning, there however exists huge conglomerate of highly developed optimal classical
planning heuristics that one can leverage to tightly approximate the plans’ costs. The limits inherent to
the determinization approach become quickly apparent in the context of goal-probability analysis. Here,
heuristic search requires the heuristics to upper bound the goal probability. Yet, through determinization,
one can solely obtain upper bounds of a qualitative kind: dead-end detection. Namely, on the one hand,
the goal probability of any state, for which not even a determinized plan exists, is known exactly: 0. But,
on the contrary, if a state does have a determinized plan, then we merely know that the state can reach
the goal via some selection of probabilistic action outcomes, but we have no information for all the other
action outcomes. Hence, the only safe upper bound in this case is the trivial one: 1. In Chapter 15, we
explore dead-end detection as a means to pruning, reducing the MDP directly, instead of relying on the
heuristic search’s ability to efficiently exploit the dead-end bounds.

Recently, Trevizan et al. (2017b) have introduced a heuristic capable of admissibly estimating expected cost
without determinization. The crux lies in the interpretation of expected cost as a weighted sum over the
occupation measures of the probabilistic actions, i.e., the expected number of times an action needs to be
executed until reaching the goal (cf. Section 11.1). Starting from the LP-formulation of expected-cost MDPs
over these occupation measures, Trevizan et al. replaced the constraints that represent the optimal policies
exactly by necessary properties that every policy must satisfy. Every optimal solution to the resulting LP
translates into an admissible estimate of the expected cost, simply because every optimal policy’s occupa-
tion measures must satisfy the constraints. The LP’s constraints are generated directly from the planning
task description by syntactically projecting the task onto each of its state variables, formulating constraints
on action applications locally with respect to each of the variables. The occupation-measure heuristic re-
lates closely to the framework of LP-based operator-counting heuristics from classical planning (Pommeren-
ing et al., 2014). Motivated by that relation, Trevizan et al. (2017b) further introduced the regrouped
operator-counting heuristic ℎroc. ℎroc extends the operator-counting heuristic LP, defined over the MDP’s
determinization, with additional constraints that regroup operator counts, making sure that the executions
of a probabilistic action’s outcomes match the outcome probabilities. While ℎroc is theoretically dominated
by the occupation-measure heuristic, i.e., it can provably not provide closer bounds to 𝑉 ∗, the ℎroc LP is
however considerably smaller, leading to tremendous practical advantages.

In this chapter, we adapt Trevizan et al.’s (2017b) heuristics towards estimating goal probability. The
necessary changes are in principle straightforward, and mostly pertain to exchanging the expected-cost
minimization LP by the LP from Definition 4.2. Additionally to those changes, we provide a more gen-
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eral definition of the occupation-measure heuristic, adding the support of syntactic projections onto arbi-
trary variable subsets, instead of only the singleton variable ones. Moreover, we define the probabilistic
operator-counting heuristic directly based upon the probabilistic planning task description, avoiding the
determinization step. On the one hand, this results in an LP much smaller than that underlying ℎroc, re-
moving the need of representing each action outcome via an individual LP variable, while, at the same,
making the regrouping constraints obsolete. On the other hand, it gives rise to a more natural character-
ization of probabilistic operator-counting heuristics, in terms of a generic family of LP-based heuristics,
similarly to Pommerening et al.’s (2014) classical planning variant. Different elements from this family
arise from combinations of different probabilistic operator-counting constraints, i.e., properties of optimal
MDP policies formulated in terms of LP constraints over a set of LP variables that is commonly shared
among all the operator-counting constraints. We identify concrete properties that these constraints must
satisfy, in order that their combination is guaranteed to result in admissible goal probability estimates.
We provide probabilistic operator-counting constraints based on the syntactic projections, a reinterpreta-
tion of the state equation (Bonet, 2013) for goal probability, and action landmarks (e.g., Hoffmann et al.,
2004; Karpas and Domshlak, 2009). Finally, going beyond Trevizan et al.’s (2017b) admissibility proofs,
we show that all presented heuristics are not only upper-bounds on goal probability, but also satisfy the
more strict monotonicity property.

14.1. Goal-Probability Occupation-Measure Heuristic

The occupation-measure heuristic is centered around the syntactic projection of probabilistic planning
tasks. Our definition is a straightforward extension of that given by Trevizan et al. (2017b) to arbitrary
variable subsets:

Definition 14.1 (Syntactic Projection). Let Π = ⟨V,A,I,G⟩ be a probabilistic FDR task. Let ∅ ⊂ 𝑋 ⊆ V
be a non-empty subset of variables. The syntactic projection of Π onto 𝑋 is the probabilistic FDR task Π |𝑋 =
⟨𝑋,A|𝑋 ,I|𝑋 ,G|𝑋 ⟩, defined as follows:

• The projection of a (partial) variable assignment 𝑃 onto 𝑋 is given by 𝑃 |𝑋 = { 𝑣 ↦→ 𝑃 [𝑣] | 𝑣 ∈
𝑋 ∩ vars(𝑃) }. Hence, the initial state is I|𝑋 = { 𝑣 ↦→ I[𝑣] | 𝑣 ∈ 𝑋 }. The goal is G|𝑋 = { 𝑣 ↦→
G[𝑣] | 𝑣 ∈ 𝑋 ∩ vars(G) }.

• The actions are given by A|𝑋 = { 𝑎 |𝑋 | 𝑎 ∈ A }, where for each 𝑎 ∈ A, 𝑎 |𝑋 is defined as pre(𝑎 |𝑋 ) =
pre(𝑎) |𝑋 , and out(𝑎 |𝑋 ) = { 𝑜 |𝑋 | 𝑜 ∈ out(𝑎) } with prob(𝑜 |𝑋 ) = prob(𝑜) and eff(𝑜 |𝑋 ) = eff(𝑜) |𝑋 .

In other words, the syntactic projection of Π onto some variable subset 𝑋 simply throws away all parts of
Π on variables not contained in 𝑋 . We refer to the syntactic projections onto a single variables 𝑋 = { 𝑣 }
as the atomic projections of Π. For the sake of readability, we abbreviate the state spaceMΠ |𝑋 induced
by the syntactic projection Π |𝑋 throughM𝑋 = ⟨S𝑋 ,A𝑋 ,P𝑋 , 𝑠𝑋I ,S𝑋∗ ⟩. Moreover, for atomic projections,
we occasionally omit the set notation, e.g., writingM𝑣 to denote the state space of the syntactic project
Π |𝑣 , and we identify the states S𝑣 directly through the variable’s values D𝑣 . Example 14.1 shows a basic
example task, alongside some syntactic projections. The example will be reused throughout this chapter.

Example 14.1. Consider the probabilistic FDR task Π = ⟨V,A,I,G⟩ with variables V = { 𝑝, 𝑞, 𝑟 }, do-
mains D𝑝 = D𝑞 = { 1, 0 } and D𝑟 = { 0, 1, 2 }; initial state I = { 𝑝 ↦→ 1, 𝑞 ↦→ 0, 𝑟 ↦→ 0 }; goal
G = { 𝑝 ↦→ 1, 𝑞 ↦→ 1, 𝑟 ↦→ 0 }; and three actions A = { 𝑎1, 𝑎2, 𝑎3 }, where

• 𝑎1 has precondition pre(𝑎1) = { 𝑟 ↦→ 0 }, and two outcomes out(𝑎1) = { 𝑜1,1, 𝑜1,2 }:
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M{ 𝑝 }

𝑝 ↦→ 0

𝑝 ↦→ 1

𝑎3 |𝑝
𝑎1 |𝑝

𝑎1 |𝑝

𝑎2 |𝑝

𝑎2 |𝑝

2
8

6
8

𝑜𝑚𝑝,1,𝑎1 ≥ 0, 𝑜𝑚𝑝,1,𝑎2 ≥ 0, 𝑜𝑚𝑝,1,𝑎3 ≥ 0,
𝑜𝑚𝑝,0,𝑎1 ≥ 0, 𝑜𝑚𝑝,0,𝑎2 ≥ 0

(14.1b)

−2
8𝑜𝑚𝑝,1,𝑎3 ≤ 0 (14.1c): 𝔰 = { 𝑝 ↦→ 0 }
2
8𝑜𝑚𝑝,1,𝑎3 ≤ 1 (14.1c): 𝔰 = { 𝑝 ↦→ 1 }

2
8𝑜𝑚𝑝,1,𝑎3 + 𝑣G ≤ 1 (14.1d)

M{𝑞 }

𝑞 ↦→ 0

𝑞 ↦→ 1

𝑎3 |𝑞
𝑎1 |𝑞

𝑎1 |𝑞

𝑎2 |𝑞

𝑎2 |𝑞4
8

4
8

𝑜𝑚𝑞,1,𝑎1 ≥ 0, 𝑜𝑚𝑞,1,𝑎2 ≥ 0,
𝑜𝑚𝑞,0,𝑎1 ≥ 0, 𝑜𝑚𝑞,0,𝑎2 ≥ 0, 𝑜𝑚𝑞,0,𝑎3 ≥ 0

(14.1b)

4
8𝑜𝑚𝑞,0,𝑎3 ≤ 1 (14.1c): 𝔰 = {𝑞 ↦→ 0 }

−4
8𝑜𝑚𝑞,0,𝑎3 ≤ 0 (14.1c): 𝔰 = {𝑞 ↦→ 1 }

−4
8𝑜𝑚𝑞,0,𝑎3 + 𝑣G ≤ 0 (14.1d)

M{ 𝑟 }

𝑟 ↦→ 0

𝑟 ↦→ 1

𝑟 ↦→ 2

𝑎1 |𝑟

𝑎2 |𝑟

𝑎3 |𝑟
1
2

1
2

𝑜𝑚𝑟,0,𝑎1 ≥ 0, 𝑜𝑚𝑟,1,𝑎2 ≥ 0, 𝑜𝑚𝑟,1,𝑎3 ≥ 0 (14.1b)

𝑜𝑚𝑟,0,𝑎1 − 𝑜𝑚𝑟,1,𝑎2 ≤ 1 (14.1c): 𝔰 = { 𝑟 ↦→ 0 }

𝑜𝑚𝑟,1,𝑎2 − 1
2𝑜𝑚𝑟,0,𝑎1 ≤ 0 (14.1c): 𝔰 = { 𝑟 ↦→ 1 }

−1
2𝑜𝑚𝑟,0,𝑎1 ≤ 0 (14.1c): 𝔰 = { 𝑟 ↦→ 2 }

𝑜𝑚𝑟,0,𝑎1 − 𝑜𝑚𝑟,1,𝑎2 + 𝑣G ≤ 1 (14.1d)

Tying constraints (14.1e), choosing 𝑋0 = { 𝑟 }.

𝑜𝑚𝑝,0,𝑎1 + 𝑜𝑚𝑝,1,𝑎1 = 𝑜𝑚𝑟,0,𝑎1

𝑜𝑚𝑝,0,𝑎2 + 𝑜𝑚𝑝,1,𝑎2 = 𝑜𝑚𝑟,1,𝑎2

𝑜𝑚𝑝,1,𝑎3 = 𝑜𝑚𝑟,1,𝑎3

𝑜𝑚𝑞,0,𝑎1 + 𝑜𝑚𝑞,1,𝑎1 = 𝑜𝑚𝑟,0,𝑎1

𝑜𝑚𝑞,0,𝑎2 + 𝑜𝑚𝑞,1,𝑎2 = 𝑜𝑚𝑟,1,𝑎2

𝑜𝑚𝑞,0,𝑎3 = 𝑜𝑚𝑟,1,𝑎3

Figure 14.1.: Left: state spaces of the syntactic projections from Example 14.1. Right: the corresponding instantia-
tions of the 𝐻 gpom constraints.

– eff(𝑜1,1) = { 𝑟 ↦→ 1 } and prob(𝑜1,1) = 1
2 ,

– eff(𝑜1,2) = { 𝑟 ↦→ 2 } and prob(𝑜1,2) = 1
2 .

• 𝑎2 has precondition pre(𝑎2) = { 𝑟 ↦→ 1 } and a single outcome with effect eff(𝑜) = { 𝑟 ↦→ 0 }.

• 𝑎3 has precondition pre(𝑎3) = {𝑞 ↦→ 0, 𝑟 ↦→ 1 }, and four outcomes out(𝑎3) = { 𝑜3,1, 𝑜3,2, 𝑜3,3, 𝑜3,4 }:
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– eff(𝑜3,1) = ∅ and prob(𝑜3,1) = 3
8 ,

– eff(𝑜3,2) = { 𝑝 ↦→ 0 } and prob(𝑜3,2) = 1
8 ,

– eff(𝑜3,3) = {𝑞 ↦→ 1 } and prob(𝑜3,3) = 3
8 ,

– eff(𝑜3,4) = { 𝑝 ↦→ 0, 𝑞 ↦→ 1 } and prob(𝑜3,4) = 1
8 .

The syntactic projection of Π onto 𝑟 has initial state I|𝑟 = { 𝑟 ↦→ 0 }; goal G|𝑟 = { 𝑟 ↦→ 0 }; and the actions
𝑎1 |𝑟 = 𝑎1, 𝑎2 |𝑟 = 𝑎2, and 𝑎3 |𝑟 with pre(𝑎3 |𝑟 ) = { 𝑟 ↦→ 1 }, and all its outcomes have an empty effect. The
left-hand side of Figure 14.1 depicts the state spaces of the atomic projections Π |𝑝 , Π |𝑞 , and Π |𝑟 .

Consider any syntactic projection Π |𝑋 , and any optimal policy 𝜋 for the original task Π. Let 𝐿𝑃 (Π |𝑋 )
be the dual MaxProb LP encoding (Definition 11.2) for Π |𝑋 , with occupation-measure variables 𝑜𝑚𝑋,𝔰,𝑎

for each 𝔰 ∈ S𝑋 and 𝑎 |𝑋 ∈ A𝑋 . Notice that every execution 𝑠0, 𝜋 (𝑠0), 𝑠1, 𝜋 (𝑠1), . . . of 𝜋 in Π induces a
corresponding path 𝑠0 |𝑋 , 𝜋 (𝑠0) |𝑋 , 𝑠1 |𝑋 , 𝜋 (𝑠1) |𝑋 , . . . for Π |𝑋 . Hence, given that 𝜋 ’s occupation measures
𝑜𝑚𝜋

𝑠,𝑎 satisfy 𝐿𝑃 (Π) by definition, it is easy to show that setting each 𝑜𝑚𝑋,𝔰,𝑎 to the sum of 𝑜𝑚𝜋
𝑠,𝑎 over

all states 𝑠 with 𝑠 |𝑋 = 𝔰 yields a feasible solution to 𝐿𝑃 (Π |𝑋 ). Moreover, note that the objective value
of this solution cannot be less than the value of the policy in Π, since every execution of 𝜋 that ends in
a goal state of Π, necessarily also ends in a goal state of Π |𝑋 . As this applies to all syntactic projections
alike, we can analogously construct from 𝜋 a feasible solution to the conjunction ∧

𝑋∈X 𝐿𝑃 (Π |𝑋 ) of the
LP constraints, for any set of variable-subsets X, while the minimum over all the LP’s objective functions
is an upper bound on the policy’s goal-probability value. Although the occupation measures 𝑜𝑚𝑋,𝔰,𝑎 and
𝑜𝑚𝑋 ′,𝔱,𝑎, for any action 𝑎 and individual states 𝔰 ∈ S𝑋 , 𝔱 ∈ S𝑋 ′, can in general not be put in direct relation,
observe that, as per the construction, the chosen occupation measures of two syntactic projections agree on
the total mass associated with 𝑎. Namely, ∑𝔰∈S𝑋 𝑜𝑚𝑋,𝔰,𝑎 =

∑
𝔱∈S𝑋 ′ 𝑜𝑚𝑋 ′,𝔱,𝑎 =

∑
𝑠∈S 𝑜𝑚

𝜋
𝑠,𝑎. By making this

relation explicit in forms of additional constraints for each 𝑎, one can tie together the LPs of the individual
syntactic projections. In summary, this results in the following construction:

Definition 14.2 (Goal-Probability Projection Occupation-Measure Heuristic). Let Π = ⟨V,A,I,G⟩ be a
probabilistic FDR task. LetX be a set of non-empty variable subsets. Let 𝑠 be a state of Π. The goal-probability
projection occupation-measure heuristic 𝐻 gpom

X (𝑠) over X assigns to 𝑠 the optimal objective value of the
following LP:

maximize
𝑜𝑚, 𝑣G

𝑣G (14.1a)

subject to 𝑜𝑚𝑋,𝔰,𝑎 ≥ 0
𝑋 ∈ X, 𝔰 ∈ S𝑋 ,
𝑎 |𝑋 ∈ A𝑋 (𝔰), (14.1b)

𝑜𝑢𝑡𝑋 (𝔰) − 𝑖𝑛𝑋 (𝔰) ≤
[
𝔰 ⊆ 𝑠

]
𝑋 ∈ X, 𝔰 ∈ S𝑋 , (14.1c)∑

𝔰∈S𝑋∗
(𝑜𝑢𝑡𝑋 (𝔰) − 𝑖𝑛𝑋 (𝔰)) + 𝑣G ≤

[
G|𝑋 ⊆ 𝑠

]
𝑋 ∈ X, (14.1d)

𝑜𝑚𝑋 (𝑎) − 𝑜𝑚𝑋0 (𝑎) = 0 𝑋 ∈ X, 𝑎 ∈ A (14.1e)

where 𝑋0 ∈ X can be chosen arbitrarily, and we use the following shorthand:

𝑜𝑢𝑡𝑋 (𝔰) =
∑

𝑎 |𝑋 ∈A𝑋 (𝔰)
𝑜𝑚𝑋,𝔰,𝑎

𝑖𝑛𝑋 (𝔰) =
∑
𝑎∈A

∑
𝔱∈S𝑋
P𝑋 (𝔱, 𝑎 |𝑋 , 𝔰)𝑜𝑚𝑋,𝔱,𝑎

𝑜𝑚𝑋 (𝑎) =
∑

𝔰∈S𝑋 : 𝑎 |𝑋 ∈A𝑋 (𝔰)
𝑜𝑚𝑋,𝔰,𝑎
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In a nutshell, the𝐻 gpom
X LP glues together the dual MaxProb LPs (Definition 11.2) of the individual syntactic

projections, with the usual occupation-measure variables (14.1b), and the flow constraints (14.1c). The
tying constraints (14.1e) ensure that every action is executed overall the same number of times in each
syntactic projection. The additional variable 𝑣G represents the minimum over the individual objective
values, whose value shall be maximized just like in the objective of dual MaxProb LP. The goal constraints
(14.1d) ensure that this interpretation is correct, enforcing 𝑣G to not exceed the probability mass that
sinks at the goal states of any Π |𝑋 . Importantly, note that as opposed to the LP from Definition 11.2,
Definition 14.2 allows the execution of actions in goal states 𝔰 ∈ S𝑋∗ . This is necessary because, as per the
projection operation, being in a goal state in one of the syntactic projections does not necessarily mean that
we have already reached a goal state in all the considered projections. However, when strictly interpreting
goal states as sink states as in Definition 11.2, it would also not be possible any longer to apply additional
actions in the other projections, given the tying constraints. Example 14.2 details the complete 𝐻 gpom

X LP
for the planning task from Example 14.1.

Example 14.2. Consider again the planning task and the syntactic projections from Example 14.1. The right-
hand side of Figure 14.1 depicts the constraints of 𝐻 gpom

X (𝑠I) over the atomic projections. Notice that the pure
self-loop transitions cancel out in the flow constraints. Moreover, notice that 𝑜𝑚𝑝,1,𝑎3 = 𝑜𝑚𝑟,1.𝑎3 > 0 is needed
in order to generate 𝑞’s goal value, and thus achieve a goal-probability value 𝑣G > 0. The optimal solutions to
the LP lie in the intersection of the two straight lines: 1 − 2

8𝑜𝑚𝑝,1,𝑎3 = 4
8𝑜𝑚𝑞,0,𝑎3 , where 𝑜𝑚𝑞,0,𝑎3 = 𝑜𝑚𝑝,1,𝑎3

due to the tying constraints. Solving the equation results in 𝑜𝑚𝑝,1,𝑎3 = 𝑜𝑚𝑞,0,𝑎3 = 𝑜𝑚𝑟,1,𝑎3 = 4
3 and 𝑣G = 2

3 .
Consequently, the heuristic estimate of 𝑠I is 𝐻 gpom

X (𝑠I) = 𝑣G = 2
3 ≥

1
3 = 𝑉 ∗(𝑠I).

Theorem 14.1. 𝐻 gpom
X is a monotone upper bound forMΠ.

Proof sketch. To show that 𝐻 gpom
X is a monotone upper bound, it suffices to show that it holds 𝐻 gpom

X (𝑠) ≥
(𝑩𝐻 gpom

X )(𝑠) for all states 𝑠 ∈ SΠ. Due to the monotonicity invariance (Theorem 11.2), and the conver-
gence property as per Theorem 11.3, the limit lim𝑘→∞ 𝑩 (𝑘)𝐻 gpom

X = 𝑉 (∞) exists, and it holds 𝐻 gpom
X ≥

𝑉 (∞) . Since 𝑉 ∗ is by definition the piecewise smallest fixed point of 𝑩 , i.e., 𝑉 (∞) ≥ 𝑉 ∗, it transitively
follows that 𝐻 gpom

X ≥ 𝑉 ∗.

Suppose 𝑠 ∈ (SΠ
⊥ \ SΠ

∗ ) is some non-goal terminal state. Then (𝑩𝐻 gpom
X )(𝑠) = 0, and 𝐻 gpom

X (𝑠) ≥ 0 is
trivially satisfied (choosing 0 for all LP variables always satisfies the constraints).

Suppose 𝑠 ∈ SΠ
∗ is a goal state. Note that 𝑣G = 1 and 𝑜𝑚𝑋,𝑡,𝑎 = 0 satisfies all constraints (14.1b) – (14.1e).

Hence, 𝐻 gpom
X (𝑠) ≥ 1 = (𝑩𝐻 gpom

X ) (𝑠).

Finally, suppose 𝑠 ∈ (SΠ \ SΠ
⊥ \ SΠ

∗ ) is some non-terminal, non-goal state. We show that

𝐻 gpom
X (𝑠) ≥

∑
𝑡∈Succ(𝑠,𝑎)

P(𝑠, 𝑎, 𝑡)𝐻 gpom
X (𝑡)

holds for every action applicable in 𝑠, and hence ≥ also holds when taking the maximum over all those
actions. Let 𝑎 ∈ A(𝑠) be arbitrary, and for each 𝑡 ∈ Succ(𝑠, 𝑎), let 𝑜𝑚𝑡 denote an optimal solution to the
𝐻 gpom
X (𝑡) LP. Consider

𝑣G :=
∑

𝑡∈Succ(𝑠,𝑎)
P(𝑠, 𝑎, 𝑡)𝑣𝑡G

𝑜𝑚𝑋,𝔰,𝑎 :=
∑

𝑡∈Succ(𝑠,𝑎)
P(𝑠, 𝑎, 𝑡)𝑜𝑚𝑡

𝑋,𝔰,𝔞 +
[
𝔰 ⊆ 𝑠 and 𝔞 = 𝑎 |𝑋

]
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We next show that 𝑜𝑚 satisfies the 𝐻 gpom
𝑋 (𝑠) constraints. The range constraint (14.1b) is trivially satisfied.

The tying constraint is satisfied because we changed the overall occupation measure only for 𝑎, and the
change for 𝑎 is the same for all 𝑋 ∈ X. Namely, denoting by S𝑋 (𝑎) = { 𝔰 ∈ S𝑋 | 𝑎 |𝑋 ∈ A𝑋 (𝔰) } the set
of projection states in which 𝑎 |𝑋 is applicable, it holds that

𝑜𝑚𝑋 (𝑎) =
∑

𝔰∈S𝑋 (𝑎)
𝑜𝑚𝑋,𝔰,𝑎

=
∑

𝔰∈S𝑋 (𝑎)

( ∑
𝑡∈Succ(𝑠,𝑎)

P(𝑠, 𝑎, 𝑡)𝑜𝑚𝑡
𝑋,𝔰,𝑎 +

[
𝔰 ⊆ 𝑠 and 𝑎 = 𝑎

])
(def. of 𝑜𝑚)

=
∑

𝔰∈S𝑋 (𝑎)

∑
𝑡∈Succ(𝑠,𝑎)

P(𝑠, 𝑎, 𝑡)𝑜𝑚𝑡
𝑋,𝔰,𝑎 +

[
𝑎 = 𝑎

]
(𝔰 ⊆ 𝑠 exactly if 𝔰 = 𝑠 |𝑋 )

=
∑

𝑡∈Succ(𝑠,𝑎)
P(𝑠, 𝑎, 𝑡)

∑
𝔰∈S𝑋 (𝑎)

𝑜𝑚𝑡
𝑋,𝔰,𝑎 +

[
𝑎 = 𝑎

]
(commutat. and distributivity)

=
∑

𝑡∈Succ(𝑠,𝑎)
P(𝑠, 𝑎, 𝑡)𝑜𝑚𝑡

𝑋 (𝑎) +
[
𝑎 = 𝑎

]
(def. of 𝑜𝑚𝑋 for 𝑡)

=
∑

𝑡∈Succ(𝑠,𝑎)
P(𝑠, 𝑎, 𝑡)𝑜𝑚𝑡

𝑋0
(𝑎) +

[
𝑎 = 𝑎

]
(𝑜𝑚𝑡 satisfies (14.1e))

= 𝑜𝑚𝑋0 (𝑎) (invert the steps above for 𝑋0)

Showing that the chosen values for 𝑜𝑚 also satisfies (14.1d) and (14.1c) amounts to equation transforma-
tions, similar to those above, together with exploiting the fact that 𝑜𝑚𝑡 satisfies the respective constraints
for the successor state 𝑡 . We spare the reader the tedious details, and illustrate only the main argument.
The detailed transformations are available in Appendix C.3.1. The key observation is that the difference
between “in-flow” and “out-flow” of any state 𝔰 ∈ S𝑋 over 𝑜𝑚 can be rewritten into (cf. Equation (C.3)
in the appendix):

𝑜𝑢𝑡𝑋 (𝔰) − 𝑖𝑛𝑋 (𝔰) =
∑

𝑡∈Succ(𝑠,𝑎)
P(𝑠, 𝑎, 𝑡)(𝑜𝑢𝑡𝑡𝑋 (𝔰) − 𝑖𝑛𝑡𝑋 (𝔰)) +

[
𝔰 ⊆ 𝑠

]
− P𝑋 (𝑠 |𝑋 , 𝑎 |𝑋 , 𝔰)

In words, it is the expected flow difference over the successor states, plus additional factors taking into
account the flow inserted for 𝑠, and the additional execution of 𝑎 |𝑋 in 𝑠 |𝑋 , as per the construction of
𝑜𝑚. Consider the flow constraint (14.1c). The additional

[
𝔰 ⊆ 𝑠

]
term cancels out with the inequality’s

right-hand side. Given that the flow constraint is satisfied for all successors 𝑡 , it is left to show that:

∑
𝑡∈Succ(𝑠,𝑎)

P(𝑠, 𝑎, 𝑡)
[
𝔰 ⊆ 𝑡

]
≤ P𝑋 (𝑠 |𝑋 , 𝑎 |𝑋 , 𝔰)

i.e., that the probability of transitioning from 𝑠 |𝑋 into 𝔰 in the state space of the syntactic projection is not
less than the probability of transitioning from 𝑠 into any 𝑡 with 𝑡 |𝑋 = 𝔰. This can be shown by plugging in
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the syntactic definitions:∑
𝑡∈Succ(𝑠,𝑎)

P(𝑠, 𝑎, 𝑡)
[
𝔰 ⊆ 𝑡

]
=

∑
𝑜∈out(𝑎)

prob(𝑜)
[
𝔰 ⊆ 𝑠⟦𝑜⟧

]
(def. of state space)

=
∑

𝑜∈out(𝑎)
prob(𝑜)

[
𝔰 = 𝑠⟦𝑜⟧|𝑋

]
(def. of states in S𝑋 )

=
∑

𝑜∈out(𝑎)
prob(𝑜)

[
𝔰 = 𝑠⟦𝑜 |𝑋⟧|𝑋

]
(effects of 𝑜 on variables outside 𝑋
are projected away afterwards any-
ways)

=
∑

𝑜∈out(𝑎)
prob(𝑜)

[
𝔰 = 𝑠 |𝑋⟦𝑜 |𝑋⟧

]
(does not matter whether we project
before or after the application of 𝑜 |𝑋 )

= P𝑋 (𝑠 |𝑋 , 𝑎 |𝑋 , 𝔰) (def. of P𝑋 in the state spaceM𝑋 of
the syntactic projection)

This completes the proof of (14.1c). That the goal constraint (14.1d) is satisfied can be shown analogously.
Appendix C.3.1 spells out the details.

□

14.2. Probabilistic Operator-Counting Heuristic

The size of the projection occupation-measure heuristic LP is polynomial in the sizes of the considered syn-
tactic projections. Consider specifically the atomic projections. Notice that the 𝐻 gpom LP over these projec-
tions consists of variables and constraints in the order of ∑𝑣∈V |D𝑣 | · |A|. Trevizan et al. (2017b) observed
in their experiments that even in this smallest possible instantiation, the occupation-measure heuristic is
often already prohibitively expensive. The regrouped operator-counting heuristic ℎroc avoids the introduc-
tion of LP variables for each action fact pair by leveraging the state equation from classical planning (Bonet,
2013; Pommerening et al., 2014) (see also Chapter 7). In a nutshell, the state equation formulates con-
straints directly on the action outcome occurrences, based on viewing facts as tokens that the outcomes
produce and consume. This results in an LP with no more than ∑

𝑎∈A |out(𝑎) | LP variables overall, and a
number of constraints comparable to the occupation-measure heuristic LP. ℎroc extends the state equation
LP by additional ∑𝑎∈A |out(𝑎) |2 regrouping constraints to enforce that the outcome occurrences of every
action are chosen proportionally to the outcome probability distribution. In this section, we take Trevizan
et al.’s (2017b) idea one step further. Following Pommerening et al.’s (2014) operator-counting heuristics
from classical planning, we introduce probabilistic operator-counting heuristics as an entire framework of
heuristics, postulating constraints on the execution counts of probabilistic actions directly, instead of their
outcomes. To instantiate the framework, we in particular reinterpret the state equation in the context
of probabilistic actions. As a result, we obtain a new state equation heuristic variant, using only |A| LP
variables, and that comes without the need of any additional regrouping constraints.

The basic building block of our heuristic framework are probabilistic operator-counting constraints:

Definition 14.3 (Goal-Probability Operator-Counting Constraint). Let Π = ⟨V,A,I,G⟩ be a probabilistic
FDR task. Let Y be a set of real variables, which at least includes for each action 𝑎 ∈ A a non-negative
probabilistic operator-counting variable 𝑦𝑎, and a non-negative goal-probability variable 𝑣G . Let Γ be a
function that maps each state 𝑠 to a set of linear inequalities over Y. We call Γ feasible, if all states 𝑠 ∈ SΠ

have a feasible solution 𝑦 to Γ(𝑠), where 𝑣G = 𝑦𝑎 = 0, for all 𝑎 ∈ A. We say that Γ is goal-respecting, if
every goal state 𝑠∗ ∈ SΠ

∗ has a feasible solution 𝑦 to Γ(𝑠∗) with 𝑣G = 1 and 𝑦𝑎 = 0, for all 𝑎 ∈ A. We say
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that Γ is consistent, if for all non-goal states 𝑠 ∈ SΠ \ SΠ
∗ , all applicable actions 𝑎 ∈ A(𝑠), and all feasible

solutions 𝑦𝑡 , 𝑣𝑡G to Γ(𝑡) of all successors 𝑡 ∈ Succ(𝑠, 𝑎), there is a feasible solution 𝑦, 𝑣G to Γ(𝑠) such that
(i) 𝑣G =

∑
𝑡∈Succ(𝑠,𝑎) P(𝑠, 𝑎, 𝑡)𝑣𝑡G , and (ii) for all 𝑎 ∈ A, 𝑦𝑎 =

∑
𝑡∈Succ(𝑠,𝑎) P(𝑠, 𝑎, 𝑡)𝑦𝑡𝑎 +

[
𝑎 = 𝑎

]
. If Γ is

feasible, goal-respecting, and consistent, then we call Γ a goal-probability operator-counting constraint for
Π.

The definition of goal-probability operator-counting constraints makes sure that, for each state 𝑠 and every
policy 𝜋 , 𝜋 defines a feasible solution to Γ(𝑠) with 𝑣G ≥ 𝑉 𝜋 (𝑠). Notice, however, that the opposite direction
does generally not hold. For instance, consider an MDP with states 𝑠0, 𝑠1, a terminal dead-end state 𝑠⊥,
and a goal state 𝑠∗. Say that there is a deterministic transition 𝑠0

𝑎−→ 𝑠1, and a probabilistic transition from
𝑠1 via 𝑎 going into 𝑠∗ with probability 𝛼 and into 𝑠⊥ with probability 1−𝛼 . Suppose the constraint function
Γ assigns Γ (𝑠0) = { 𝑣G ≤ 𝛼 }, and Γ (𝑠) = ∅ for the other states. Obviously, for every policy, we can
find feasible solutions to Γ (𝑠0) and Γ (𝑠1), where 𝑣G matches the respective policy value. Still, Γ is not a
goal-probability operator-counting constraint, as the consistency property is violated: 𝑣𝑠1G = 1 and 𝑦𝑠1𝑎 = 0

is a feasible solution to Γ (𝑠1), yet 𝑣G = 𝑣𝑠1G = 1 and 𝑦𝑎 = 1 does not satisfy Γ (𝑠0). As we shall see below,
the stricter constraint characterization is needed for the monotonicity property.

Definition 14.4 (Goal-Probability Operator-Counting Heuristic). Let Π = ⟨V,A,I,G⟩ be a probabilistic
FDR task. Let Γ be a goal-probability operator-counting constraint over variables Y. The goal-probability
operator-counting heuristic 𝐻 gpoc

Γ for Γ assigns to each state 𝑠 the optimal objective value of the following
LP

maximize
Y, 𝑣G

𝑣G

subject to 0 ≤ 𝑣G ≤ 1,

𝑦𝑎 ≥ 0 𝑎 ∈ A,

Y |= 𝛾 𝛾 ∈ Γ(𝑠)

Consider the example from before. It holds that 𝐻 gpoc
Γ (𝑠0) = 𝛼 , and 𝐻 gpoc

Γ (𝑠) = 1 for the other three
states, i.e.𝐻 gpoc

Γ is actually an upper bound on𝑉 ∗. However,𝐻 gpoc
Γ is not monotone, since (𝑩𝐻 gpoc

Γ )(𝑠0) =
𝐻 gpoc
Γ (𝑠1) = 1 > 𝛼 = 𝐻 gpoc

Γ (𝑠0). The consistency property guarantees that this is the case:

Theorem 14.2. Let Γ be a goal-probability operator-counting constraint. Then, 𝐻 gpoc
Γ is a monotone upper

bound forMΠ.

Proof. First, notice that 𝐻 gpoc
Γ (𝑠) is properly defined for all states 𝑠 ∈ SΠ: since Γ is feasible, the 𝐻 gpoc

Γ (𝑠)
LP has a feasible solution; and since 𝑣G is bounded from above, there also exists an optimal solution.
Similar to the proof of Theorem 14.1, it suffices to show that 𝐻 gpoc

Γ ≥ 𝑩𝐻 gpoc
Γ . We omit the Γ subscript for

the sake of readability. Let 𝑠∗ ∈ SΠ
∗ be any goal state. Since Γ is goal-respecting, it directly follows that

𝐻 gpoc(𝑠∗) ≥ 1 = (𝑩𝐻 gpoc)(𝑠∗). Let 𝑠 be any non-goal state. Since Γ is feasible, it holds that 𝐻 gpoc(𝑠) ≥ 0.
This already completes the proof for terminal states. Suppose that 𝑠 is not terminal, and let 𝑎 ∈ A(𝑠)
be any action applicable in 𝑠. As per the consistency property, there exists a feasible solution to Γ(𝑠),
whose objective value is∑𝑡∈Succ(𝑠,𝑎) P(𝑠, 𝑎, 𝑡)𝐻 gpoc(𝑡), i.e.,𝐻 gpoc(𝑠) ≥ (𝑸𝐻 gpoc) (𝑠, 𝑎). As this in particular
includes the action with maximal 𝑸 -value, it thus follows that 𝐻 gpoc(𝑠) ≥ (𝑩𝐻 gpoc)(𝑠). □

The power of the classical-planning operator-counting framework lies in its ability to form admissible
heuristics by glewing together operator-counting constraints generated from different sources. The con-
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ditions in our probabilistic version make sure that this is still possible. On this matter, notice that for the
previous proof, it would be sufficient if the consistency conditions were satisfied for just a single selec-
tion of optimal solutions 𝑦𝑡 of the successor states 𝑡 ∈ Succ(𝑠, 𝑎). However, when combining multiple
goal-probability operator-counting constraints, one would then have to argue whether all the constraints
satisfy the consistency condition on the same set of successor solutions 𝑦𝑡 . Definition 14.3 guarantees that
the combination is safe without making further assumptions:

Proposition 14.1. Let Γ1 and Γ2 be two goal-probability operator-counting constraints over real variablesY1,
respectively Y2. Suppose that the operator-counting and the goal-probability variables are the only variables
that commonly appear in bothY1 andY2. Let Γ(𝑠) = Γ1(𝑠)∪Γ2(𝑠), for all 𝑠 ∈ SΠ. Then Γ is a goal-probability
operator-counting constraint.

Proof. Since Γ1 and Γ2 are feasible and goal-respecting, it directly follows that Γ is feasible and goal-
respecting. To show that Γ is consistent, let 𝑠 be any non-goal state, 𝑎 ∈ A(𝑠) be any applicable ac-
tion, and for each successor 𝑡 ∈ Succ(𝑠, 𝑎), let 𝑦𝑡 be any feasible solution to Γ(𝑡). Note that, as per
the selection, 𝑦𝑡 is a feasible solution to Γ1(𝑡), as well as a feasible solution to Γ2(𝑡). Since Γ1 and Γ2
are consistent, there must exist a feasible solution 𝑦1, 𝑣1G to Γ1(𝑠), and a feasible solution 𝑦2, 𝑣2G to
Γ2(𝑠) such that: (i) 𝑣1G = 𝑣2G =

∑
𝑡∈Succ(𝑠,𝑎) P(𝑠, 𝑎, 𝑡)𝑣𝑡G , and similarly (ii) for all actions 𝑎 ∈ A:

𝑦1𝑎 = 𝑦2𝑎 =
∑

𝑡∈Succ(𝑠,𝑎) P(𝑠, 𝑎, 𝑡)𝑦𝑡𝑎 +
[
𝑎 = 𝑎

]
. Given that these are the only variables that commonly

appear in Y1 and Y2, it hence follows that letting each 𝑥 ∈ Y1 ∪ Y2 be

𝑥 :=



∑
𝑡∈Succ(𝑠,𝑎) P(𝑠, 𝑎, 𝑡)𝑣𝑡G, if 𝑥 = 𝑣G∑
𝑡∈Succ(𝑠,𝑎) P(𝑠, 𝑎, 𝑡)𝑦𝑡𝑎 +

[
𝑎 = 𝑎

]
, if 𝑥 = 𝑦𝑎 for some 𝑎 ∈ A

𝑦1 [𝑥], if 𝑥 ∈ Y1
𝑦2 [𝑥], if 𝑥 ∈ Y2

where 𝑦𝑖 [𝑥] denotes the value of 𝑥 in the solution 𝑦𝑖 ; yields a feasible solution to both Γ1(𝑠) and Γ2(𝑠),
i.e., 𝑥 is a feasible solution to Γ(𝑠), and it satisfies the consistency conditions by construction. □

Finally, notice that adding more constraints to Γ can only be beneficial in terms of the heuristic estimates:

Proposition 14.2. Let Γ and Γ′ be two goal-probability operator-counting constraints forΠ. If it holds Γ(𝑠) ⊆
Γ′(𝑠) for all states 𝑠 ∈ SΠ, then 𝐻 gpoc

Γ ≥ 𝐻 gpoc
Γ′ .

The remainder of this section presents three methods for generating goal-probability operator-counting
constraints.

Projection Occupation-Measure Constraints

The family of goal-probability operator-counting heuristics can be straightforwardly linked back to the
projection occupation-measure heuristic:

Corollary 14.1. Let X be a set of non-empty variable subsets. Suppose the constraint function Γgpom
X (𝑠)

returns the set of 𝐻 gpom
X (𝑠) constraints (14.1b) – (14.1e), together with

𝑦𝑎 = 𝑜𝑚𝑋0 (𝑎) 𝑎 ∈ A (14.2)

for an arbitrary 𝑋0 ∈ X. Then Γgpom
X is a goal-probability operator counting constraint. Moreover, it holds

that 𝐻 gpoc
ΓgpomX

= 𝐻 gpom
X .
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That Γgpom
X is feasible and goal-respecting follows immediately from the constraint definitions. That Γgpom

X is
consistent can be shown via the same arguments as in the monotonicity proof of Theorem 14.1. Obviously,
Γgpom
X by itself is not very useful. Instead of using it inside the operator-counting framework, one could
simply use 𝐻 gpom directly, and by that also get rid of the additional operator counting variables. However,
this interpretation gives rise to additional enhancements of the projection occupation-measure heuristic,
via the combination with other operator-counting constraints, as per Proposition 14.2.

Goal-Probability State Equation

Recall from Chapter 7 that the state equation describes a relation between fact achievement and deletion
counts that holds true in every plan. Obviously, during the execution of any action sequence, no fact may
ever be deleted more often than it is achieved. Moreover, the total difference between achievements and
deletions of any fact cannot be larger than 1, since in between every two deletions, the fact has to be
re-achieved, and vice versa for the achievements. Since goal facts must be satisfied at the end of every
plan, they must be achieved more often than deleted, i.e., their achievement-deletion difference has to be
exactly 1. These relations can be postulated as operator-counting constraints by simply partitioning for
each fact 𝑣 ↦→ 𝑑 the set of actions into ones that achieve 𝑣 ↦→ 𝑑 , the producers, and ones that delete 𝑣 ↦→ 𝑑 ,
the consumers, and bounding the difference between their operator counts accordingly.

Lifting the classical state equation to the probabilistic setting amounts to the following changes. In the
presence of probabilistic actions, not every execution of an action may delete or achieve a fact, as this
now depends on the action’s probabilistic outcomes. Hence, instead of categorizing deterministic actions
into producers and consumers, we attach to each probabilistic action the probability that it produces and
consumes some fact, weighting the probabilistic operator counts accordingly. Secondly, as in our setting
the goal may not be reachable with certainty, the production-consumption difference of goal facts can no
longer be bounded by 1. We replace the bound by the goal-probability variable 𝑣G .

Definition 14.5 (Goal-Probability State-Equation Constraint). Let Π = ⟨V,A,I,G⟩ be a probabilistic
FDR task. Let 𝑠 be a state of Π. The goal-probability state-equation constraint Γseq(𝑠) for 𝑠 is∑

𝑎∈A
(𝑐𝑜𝑛𝑠𝑎𝑣 ↦→𝑑 − 𝑝𝑟𝑜𝑑

𝑎
𝑣 ↦→𝑑 )𝑦𝑎 +

[
G[𝑣] = 𝑑

]
𝑣G ≤

[
𝑠 [𝑣] = 𝑑

]
𝑣 ∈ V, 𝑑 ∈ D𝑣, (14.3)

using the following probability weights:

𝑝𝑟𝑜𝑑𝑎𝑣 ↦→𝑑 =


∑

𝑜∈out(𝑎) :
eff(𝑜) [𝑣]=𝑑

prob(𝑜), if pre[𝑣] ≠ 𝑑

0, otherwise

𝑐𝑜𝑛𝑠𝑎𝑣 ↦→𝑑 =


∑

𝑜∈out(𝑎) :
eff(𝑜) [𝑣]=𝑑′≠𝑑

prob(𝑜), if pre[𝑣] = 𝑑

0, otherwise

Intuitively, ∑𝑎∈A (𝑐𝑜𝑛𝑠𝑎𝑣 ↦→𝑑
− 𝑝𝑟𝑜𝑑𝑎𝑣 ↦→𝑑 )𝑦𝑎 represents the difference between total expected consumption

and the total expected production of 𝑣 ↦→ 𝑑 . For a non-goal fact, (14.3) therefore requires that the expected
consumption does not exceed the expected production, counting plus 1 on the production side, if 𝑣 ↦→ 𝑑 is
true in the state. The leftovers of the expected production after consumption of a fact can be interpreted as
a bound on the probability that the fact holds after the execution of any policy that fits the operator counts.
With this interpretation, the goal probability of any such policy is bounded by the minimum leftover over
all the goal facts. Notice that this is exactly what the additional 𝑣G term in (14.3) for goal fact does.
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Theorem 14.3. Γseq constitutes a goal-probability operator-counting constraint.

Proof. Since the right-hand side of (14.3) is non-negative for all facts and states, assigning all operator-
counting and the goal-achiever variables to 0 trivially satisfies those constraints. Hence, Γseq is feasible.
Let 𝑠∗ ∈ SΠ

∗ be any goal state. Note that 𝑣G = 1 and 𝑦𝑎 = 0, for all 𝑎 ∈ A, satisfies Γseq(𝑠∗), since
for all 𝑣 and 𝑑 , G[𝑣] = 𝑑 implies 𝑠∗ [𝑣] = 𝑑 , i.e.,

[
G[𝑣] = 𝑑

]
≤

[
𝑠∗ [𝑣] = 𝑑

]
. Thus, Γseq is goal-

respecting. To show that Γseq is consistent, let 𝑠 be any non-goal state, 𝑎 ∈ A(𝑠) be any applicable action,
and 𝑦𝑡 , 𝑣𝑡G be any feasible solution to Γseq(𝑡), for each 𝑡 ∈ Succ(𝑠, 𝑎). Let 𝑣G =

∑
𝑡∈Succ(𝑠,𝑎) P(𝑠, 𝑎, 𝑡)𝑣𝑡G ,

and 𝑦𝑎 =
∑

𝑡∈Succ(𝑠,𝑎) P(𝑠, 𝑎, 𝑡)𝑦𝑡𝑎 +
[
𝑎 = 𝑎

]
, for all 𝑎 ∈ A, as in Definition 14.5. Furthermore, let

𝛿𝑎
𝑣 ↦→𝑑

= 𝑐𝑜𝑛𝑠𝑎
𝑣 ↦→𝑑
−𝑝𝑟𝑜𝑑𝑎𝑣 ↦→𝑑 be the weight associated with 𝑎 in (14.3). Let 𝑣 ∈ V and 𝑑 ∈ D𝑣 be arbitrary.

In the following, we omit the 𝑣 ↦→ 𝑑 subscript for the sake of brevity. Plugging in the definition of 𝑦 into
the left-hand side of (14.3) gives:∑

𝑎∈A
𝛿𝑎 (

∑
𝑡∈Succ(𝑠,𝑎)

P(𝑠, 𝑎, 𝑡)𝑦𝑡𝑎 +
[
𝑎 = 𝑎

]
) +

[
G[𝑣] = 𝑑

] ∑
𝑡∈Succ(𝑠,𝑎)

P(𝑠, 𝑎, 𝑡)𝑣𝑡G

=
∑

𝑡∈Succ(𝑠,𝑎)
P(𝑠, 𝑎, 𝑡)

(∑
𝑎∈A

𝛿𝑎𝑦𝑡𝑎 +
[
G[𝑣] = 𝑑

]
𝑣𝑡G

)
+ 𝛿𝑎

≤
∑

𝑡∈Succ(𝑠,𝑎)
P(𝑠, 𝑎, 𝑡)

[
𝑡 [𝑣] = 𝑑

]
+ 𝛿𝑎 (14.4a)

=
∑

𝑜∈out(𝑎)
prob(𝑜)

[
𝑠⟦𝑜⟧[𝑣] = 𝑑

]
+ 𝛿𝑎

=
[
𝑠 [𝑣] = 𝑑

] ∑
𝑜∈out(𝑎):
eff(𝑜) [𝑣]=⊥

prob(𝑜) +
∑

𝑜∈out(𝑎) :
eff(𝑜) [𝑣]=𝑑

prob(𝑜) + 𝛿𝑎 (14.4b)

=
[
𝑠 [𝑣] = 𝑑

]
(1 −

∑
𝑜∈out(𝑎):

eff(𝑜) [𝑣]≠⊥

prob(𝑜)) +
∑

𝑜∈out(𝑎) :
eff(𝑜) [𝑣]=𝑑

prob(𝑜) + 𝛿𝑎

=
[
𝑠 [𝑣] = 𝑑

]
(1 −

∑
𝑜∈out(𝑎):

eff(𝑜) [𝑣]≠⊥

prob(𝑜)) + 𝑝𝑟𝑜𝑑𝑎 + (𝑐𝑜𝑛𝑠𝑎 − 𝑝𝑟𝑜𝑑𝑎)

=
[
𝑠 [𝑣] = 𝑑

]
(1 −

∑
𝑜∈out(𝑎):

eff(𝑜) [𝑣]≠⊥

prob(𝑜)) + 𝑐𝑜𝑛𝑠𝑎 (14.4c)

where (14.4a) holds because all 𝑦𝑡 satisfy (14.3); and (14.4b) uses the fact that 𝑣 ↦→ 𝑑 holds after an
outcome 𝑜 either if 𝑜 has no effect on 𝑣 and 𝑣 ↦→ 𝑑 already holds in 𝑠, or if 𝑜 sets 𝑣 to 𝑑 . If 𝑐𝑜𝑛𝑠𝑎 = 0,
then it directly follows that (14.4c) is ≤

[
𝑠 [𝑣] = 𝑑

]
, i.e., (14.3) is satisfied. If 𝑐𝑜𝑛𝑠𝑎 > 0, then 𝑠 [𝑣] =

pre(𝑎) [𝑣] = 𝑑 . Hence, by definition, 𝑐𝑜𝑛𝑠𝑎 =
∑

𝑜∈out(𝑎),eff(𝑜) [𝑣]≠⊥ prob(𝑜). Plugged into (14.4c) yields
(1 − 𝑐𝑜𝑛𝑠𝑎) + 𝑐𝑜𝑛𝑠𝑎 = 1 =

[
𝑠 [𝑣] = 𝑑

]
. In summary, 𝑦, 𝑣G is a feasible solution to Γseq(𝑠), and thus Γseq

is consistent. □

While we have not introduced Trevizan et al.’s (2017b)ℎroc heuristic formally, we still want to point out that
ℎroc and the operator-counting heuristic as per Definition 14.5 are equivalent, glossing over the different
objective settings. Intuitively, the action-outcome counts𝑦𝑎,𝑜 of ℎroc map equivalently into the probabilistic
operator-counting variables through the division by the outcome probability, i.e., defining 𝑦𝑎 = 1

prob(𝑜)𝑦𝑎,𝑜
for each 𝑎, and some arbitrary 𝑜 ∈ out(𝑎). Note that all outcomes yield the same probabilistic operator
count due to the regrouping constraints. Vice versa, the action-outcome counts can be defined from the
probabilistic operator-counting by multiplying with the respective outcome probability.
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The domination relation between ℎroc and the atomic projection occupation-measure heuristic shown by
Trevizan et al. (2017b) still holds in our setting. The goal-probability state-equation heuristic cannot
provide tighter goal-probability bounds than the projection occupation-measure heuristic over the atomic
projections. We provide the proof in Appendix C.3.2.

Theorem 14.4. Let X = { { 𝑣 } | 𝑣 ∈ V } be the set of singleton variable sets. For every state 𝑠, there is an
optimal solution 𝑜𝑚∗, 𝑣∗G to the 𝐻 gpom

X (𝑠) LP such that, for an arbitrary 𝑣0 ∈ V,

𝑣G = 𝑣∗G

𝑦𝑎 =
∑

𝑑∈D𝑣0

𝑜𝑚∗𝑣0,𝑑,𝑎 for all 𝑎 ∈ A

satisfies Γseq(𝑠).

Corollary 14.2. Let X be the set of singleton variable sets. It holds for all states 𝑠 that 𝐻 gpom
X (𝑠) ≤ 𝐻 gpoc

Γseq (𝑠).

Trevizan et al. (2017b) hypothesize for the expected-cost versions that the dominance relation also holds
in the opposite direction, i.e., that both heuristics are actually equivalent. This hypothesis is further sub-
stantiated by Pommerening et al.’s (2014) result in the classical planning context, showing that the state
equation heuristic dominates optimal cost-partitioning over the atomic projections, i.e., the direct ana-
logue to the projection occupation-measure heuristic. This hence strongly suggests that the equivalence
also holds for the goal-probability variants. We however leave the proof for future work.

Goal-Probability Landmark Constraints

Adapting another one of Pommerening et al.’s (2014) operator-counting constraints from classical plan-
ning, our last goal-probability operator-counting constraint is based on the notion of disjunctive action
landmarks:

Definition 14.6 (Disjunctive Action Landmark). Let Π = ⟨V,A,I,G⟩ be a probabilistic FDR task. Let 𝑠 be
a state of Π. A set of actions 𝐿 ⊆ A is a disjunctive action landmark (short landmark) for 𝑠, if every path
inMΠ from 𝑠 to a goal state includes an action from 𝐿.

In the classical planning variant, the landmark operator-counting constraint for a landmark 𝐿 simply re-
quires that the sum of operator counts over 𝐿 is at least 1. Notice that this does not work in our setting
directly. For example, consider the task from Example 14.1. 𝐿 = { 𝑎3 } is a landmark for the initial state.
Yet, no policy can execute 𝑎3 more than 1

2 times, since its 𝑟 ↦→ 1 precondition is achieved by 𝑎1 only with a
probability of 1

2 . However, observe that the probabilistic operator counts from 𝐿 necessarily upper bound
the goal probability, given that every goal path must include some action from 𝐿. Therefore, we simply
substitute the strict 1 bound by 𝑣G , and obtain:

Definition 14.7 (Goal-Probability Landmark Constraint). Let 𝑠 be a state. Let 𝐿 ⊆ A be a landmark of 𝑠.
The goal-probability landmark constraint 𝛾 lm

𝐿 for 𝐿 is∑
𝑎∈𝐿

𝑦𝑎 ≥ 𝑣G (14.5)

Example 14.3. Consider the goal-probability operator-counting heuristic equipped with projection occupation-
measure constraints from Figure 14.1. Note that 𝐿 = { 𝑎2 } is a landmark for 𝑠I . The occupation-measure
variables for 𝑟 equal to the probabilistic operator-counting variables. Hence, the flow constraint of 𝑟 ↦→ 1
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can be interpreted equivalently as 2𝑦𝑎2 ≤ 𝑦𝑎1 . The goal constraint can be viewed as 𝑣G ≤ 1 − 𝑦𝑎1 + 𝑦𝑎2 ,
i.e., combined with flow constraint, (1) 𝑣G ≤ 1−𝑦𝑎2 . Consider the additional landmark constraint for 𝐿: (2)
𝑦𝑎2 ≥ 𝑣G . The largest value of 𝑣G that satisfies both (1) and (2) is given by the intersection of both inequalities:
1 − 𝑦𝑎2 = 𝑦𝑎2 , i.e., 𝑣G = 𝑦𝑎2 = 1

2 . With the landmark constraint for 𝐿, we hence obtain an estimate of 1
2 ,

improving the prior bound 2
3 .

Theorem 14.5. Let 𝐿 ⊆ A be a subset of actions. Suppose

Γlm
𝐿 (𝑠) =

{
{𝛾 lm

𝐿 }, if 𝐿 is a landmark of 𝑠
∅, otherwise

Then Γlm
𝐿 is a goal-probability operator-counting constraint.

Proof. Setting all variables to 0 trivially satisfies (14.5), i.e., Γlm
𝐿 is feasible. Since goal states can have by

definition no landmarks, i.e., Γlm
𝐿 (𝑠∗) = ∅ for all 𝑠∗ ∈ SΠ

∗ , Γlm
𝐿 is also goal-respecting. Suppose for contra-

diction that Γlm
𝐿 it is not consistent. Let 𝑠 and 𝑎 be the state and action, and 𝑦𝑡 , 𝑣𝑡G be the feasible successor

solutions, where the consistency property is violated. Let 𝑦, 𝑣G be the combination of the successor solu-
tions as in Definition 14.3. By assumption, 𝑦, 𝑣G does not satisfy Γlm

𝐿 (𝑠), i.e., Γlm
𝐿 (𝑠) = {𝛾 lm

𝐿 }, and 𝐿 must
be landmark for 𝑠. Plugged the landmark constraint (14.5), this gives:∑

𝑎∈𝐿

∑
𝑡∈Succ(𝑠,𝑎)

P(𝑠, 𝑎, 𝑡)𝑦𝑡𝑎 +
[
𝑎 ∈ 𝐿

]
<

∑
𝑡∈Succ(𝑠,𝑎)

P(𝑠, 𝑎, 𝑡)𝑣𝑡G

Notice that 𝑎 cannot be contained in 𝐿, since all operator-counting variables must be non-negative, and
the right hand side can be at most 1. Hence, 𝐿 is still a landmark for all successors states 𝑡 ∈ Succ(𝑠, 𝑎).
This yields a contradiction: ∑

𝑎∈𝐿

∑
𝑡∈Succ(𝑠,𝑎)

P(𝑠, 𝑎, 𝑡)𝑦𝑡𝑎 <
∑

𝑡∈Succ(𝑠,𝑎)
P(𝑠, 𝑎, 𝑡)𝑣𝑡G

⇔
∑

𝑡∈Succ(𝑠,𝑎)
P(𝑠, 𝑎, 𝑡)

∑
𝑎∈𝐿

𝑦𝑡𝑎 <
∑

𝑡∈Succ(𝑠,𝑎)
P(𝑠, 𝑎, 𝑡)𝑣𝑡G

⇔
∑

𝑡∈Succ(𝑠,𝑎)
P(𝑠, 𝑎, 𝑡)

(∑
𝑎∈𝐿

𝑦𝑡𝑎 − 𝑣𝑡G

)
< 0

where the difference ∑
𝑎∈𝐿 𝑦

𝑡
𝑎 − 𝑣𝑡G must be non-negative, since all 𝑦𝑡 satisfy (14.5) by assumption. □





15. State-Space Reduction Techniques

The tighter the heuristic function bounds the optimal value function, the more effective heuristic search
becomes. Yet, upper-bounding goal-probability heuristics are still sparse. Moreover, even if we make the
idealistic assumption of being provided with an almost perfect heuristic, i.e., one whose estimates are off
the optimal values by just a constant factor, Helmert and Röger (2008) have shown that search effort
can still scale exponentially in the problem size. While Helmert and Röger have considered specifically
classical planning, their result directly extends to the probabilistic setting. In this chapter, we explore two
optimality-preserving state-space reduction techniques, applicable independent of the search algorithm.
Section 15.1 leverages the well-known notion of bisimulation to this end. Section 15.2 discusses dead-end
detection as a means to identify and prune irrelevant states. Dead-end pruning is particularly promising
in our budget-limited MDP variant. In Section 15.3, we consider this case specifically, exploring a related
dead-end pruning technique from budget-limited (oversubscription) classical planning (Domshlak and
Mirkis, 2015).

15.1. Probabilistic Bisimulation

Bisimulation is a known method to reduce the size of state spaces (Milner, 1990; Larsen and Skou, 1991;
Dean and Givan, 1997). The idea essentially is to group sets of equivalent states together as block states,
and then solve the smaller MDP over these block states. Here, we observe that this approach can be
fruitfully combined with state-of-the-art classical planning techniques, namely merge-and-shrink heuris-
tics (Dräger et al., 2009; Helmert et al., 2014), which allow to effectively compute a bisimulation over
the determinized state space. Determinized-bisimilar states are bisimilar in the probabilistic state space
as well, so this identifies a practical special case of probabilistic bisimulation given a factored problem
specification.

Let us spell this out in a little more detail. Formally, a bisimulation is a relation between states with the
following property (Larsen and Skou, 1991; Dean and Givan, 1997):

Definition 15.1 (Probabilistic Bisimulation). LetM = ⟨S,A,P, 𝑠I,S∗⟩ be an MDP. Let ∼ ⊆ S × S be an
equivalence relation over states. ∼ is called a probabilistic bisimulation forM if, whenever 𝑠 ∼ 𝑠′, it holds
that

(i) 𝑠 ∈ S∗ iff 𝑠′ ∈ S∗, and

(ii) for every 𝑎 ∈ A, and 𝑡 ∈ S, ∑𝑡 ′∈S : 𝑡 ∼ 𝑡 ′ P(𝑠, 𝑎, 𝑡 ′) =
∑

𝑡 ′∈S : 𝑡 ∼ 𝑡 ′ P(𝑠′, 𝑎, 𝑡 ′)

We call two states 𝑠 and 𝑠′ probabilistic bisimilar, if there exists a probabilistic bisimulation ∼ forM with
𝑠 ∼ 𝑠′. Let 𝑆∼1 , . . . , 𝑆∼𝑛 be the equivalence classes induced by such∼, and consider the quotient MDP𝔔∼ over
these equivalence classes (cf. Definition 12.4), i.e., the MDP, in which every 𝑆∼𝑖 is collapsed into a single
block state 𝔱𝑆∼𝑖 . Dean and Givan show that an optimal solution to this quotient MDP induces an optimal
solution to the MDP itself:

193



194 15. State-Space Reduction Techniques

Theorem 15.1 (Dean and Givan, 1997). LetM be an MDP with states S, and ∼ be a probabilistic bisimu-
lation forM. Suppose 𝜋∼ is a policy for𝔔∼. Then defining

𝜋 (𝑠) := 𝜋∼(𝔱[𝑠]∼)

for all 𝑠 ∈ S yields a policy forM such that 𝑉 𝜋 (𝑠) = 𝑉 𝜋∼ (𝔱[𝑠]∼) holds for all 𝑠 ∈ S. The state set [𝑠]∼
denotes the equivalence class to which 𝑠 belongs.

Now, consider a determinized bisimulation (Milner, 1990; Nissim et al., 2011) for the state space ΘΠD

induced by the all-outcomes determinization ΠD:

Definition 15.2 (Bisimulation). Let Θ = ⟨S,L,T , 𝑠I,S∗, 𝔠⟩ be an LTS. Let ∼ ⊆ S × S be an equivalence
relation over states. Then ∼ is called a bisimulation for Θ if, whenever 𝑠 ∼ 𝑠′, it holds that

(1) 𝑠 ∈ S∗ iff 𝑠′ ∈ S∗, and

(2) if ⟨𝑠, 𝑎, 𝑡⟩ ∈ T , for some 𝑡 ∈ S, then there exists 𝑡 ′ ∈ S such that ⟨𝑠′, 𝑎, 𝑡 ′⟩ ∈ T , and 𝑡 ∼ 𝑡 ′.

It is easy to easy to see that any bisimulation for ΘΠD is a probabilistic bisimulations forMΠ:

Theorem 15.2. Let Π be a (budget-limited) probabilistic FDR task. Suppose ∼D is a bisimulation for ΘΠD .
Then ∼D is a probabilistic bisimulation forMΠ.

Proof. Condition (i) is clearly satisfied. To show (ii), let 𝑠, 𝑠′ ∈ SΠ by any states with 𝑠 ∼D 𝑠′. Consider any
action 𝑎 ∈ A. Note that 𝑎 is applicable in 𝑠 iff 𝑎 is applicable in 𝑠′, as per condition (2) of Definition 15.2.
If 𝑎 is not applicable in 𝑠, (ii) follows immediately. Suppose 𝑎 is applicable in 𝑠, and let 𝑡 ∈ SΠ be any state.
Observe that ∑

𝑡 ′∈SΠ : 𝑡 ′ ∼D 𝑡
PΠ (𝑠, 𝑎, 𝑡 ′) =

∑
𝑜∈out(𝑎) : 𝑠⟦𝑜⟧∼D 𝑡

prob(𝑜)

=
∑

⟨𝑠,𝑎𝑜 ,𝑡 ′⟩∈T ΠD : 𝑡 ′ ∼D 𝑡
prob(𝑜) (15.1)

=
∑

⟨𝑠′,𝑎𝑜 ,𝑡 ′⟩∈T ΠD : 𝑡 ′ ∼D 𝑡
prob(𝑜) (15.2)

=
∑

𝑡 ′∈SΠ : 𝑡 ′ ∼D 𝑡
PΠ (𝑠′, 𝑎, 𝑡 ′)

where (15.1) uses the definition of the all-outcomes determinization; and (15.2) holds, because of condi-
tion (2) of the determinized bisimulation. The claim follows. □

Notice that condition (2) over the all-outcomes determinization is more restrictive than needed, as it insists
on the subset of outcomes being the same on both sides, rather than only their summed-up probability
being the same. In particular, one can show that there are probabilistic bisimulations for Π that are not
bisimulations for ΠD:

Example 15.1. Consider a probabilistic FDR task with binary variables V = { 𝑣1, 𝑣2, 𝑣3, 𝑣4 }; goal G =
{ 𝑣4 ↦→ 1 }; and two actions A = { 𝑎1, 𝑎2 }, where:

• 𝑎1 has precondition pre(𝑎1) = { 𝑣3 ↦→ 0 } and two equally likely outcomes with eff(𝑜1) = { 𝑣1 ↦→
1, 𝑣3 ↦→ 1 } and eff(𝑜2) = { 𝑣2 ↦→ 1, 𝑣3 ↦→ 1 }
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• 𝑎2 has precondition pre(𝑎2) = { 𝑣1 ↦→ 1, 𝑣2 ↦→ 1, 𝑣3 ↦→ 1, 𝑣4 ↦→ 0 }, and a single outcome with
eff(𝑜) = { 𝑣4 ↦→ 1 }.

Consider the states 𝑠1 = { 𝑣1 ↦→ 1, 𝑣2 ↦→ 0, 𝑣3 ↦→ 0, 𝑣4 ↦→ 0 } and 𝑠2 = { 𝑣1 ↦→ 0, 𝑣2 ↦→ 1, 𝑣3 ↦→
0, 𝑣4 ↦→ 0 }. Note that both states are probabilistic bisimilar: both states have only one applicable action 𝑎1,
transitioning with 1

2 probability into the same state { 𝑣1 ↦→ 1, 𝑣2 ↦→ 1, 𝑣3 ↦→ 1, 𝑣4 ↦→ 0 }, and with 1
2

they transition into two different terminal states. The terminal states are probabilistic bisimilar by definition.
However, 𝑠1 and 𝑠2 are not bisimilar in the all-outcomes determinization: 𝑠1 transitions via 𝑜1 into the terminal
state; 𝑠2 via 𝑜2.

But how to compute a determinized bisimulation for Π? The naive solution is to build the state space up
front and then computing a determinized bisimulation on it. One can potentially domuch better though, by
usingmerge-and-shrink with the widely employed shrinking strategies based on bisimulation (Nissim et al.,
2011; Helmert et al., 2014). In a nutshell, this algorithm framework constructs an abstraction by starting
with a collection of abstractions each considering a single state variable only, then iteratively “merging”
two abstractions (replacing them with their synchronized product) until only a single abstraction is left,
and “shrinking” abstractions to a bisimulation thereof in between every merging step. As we shall see in
the experiments, this often still incurs a prohibitive overhead, but it can be feasible, and lead to substantial
state space size reductions. In some cases, it results in tremendous performance improvements.

15.2. Dead-End Pruning

Clearly, dead-end states can be treated exactly like terminal states, without harming correctness or opti-
mality guarantees of any search algorithm. Hence, if we are able to detect a state 𝑠 as dead end, the part
of the state space below 𝑠 no longer needs to be explored. Apart from this pruning itself, for the heuristic
search algorithms, dead-end information can be leveraged as an additional source of heuristic information,
yielding the initialization of the upper bound as 𝑉𝑈 (𝑠) = 𝑉 ∗(𝑠) = 0. This more informed initial upper
bound typically leads to additional search reductions.

The only question remaining open is how to detect dead ends? Kolobov et al. (2011) employ SIXTH-
SENSE (Kolobov et al., 2010a), which learns dead-end detection rules by generalizing from information
obtained using a classical planner. Here we instead exploit the power of classical-planning heuristic func-
tions, run on the all-outcomes determinization. This is especially promising in limited-budget planning,
where we can use lower bounds on determinized plan cost to detect states with insufficient remaining
budget. Observe that this is natural and effective using admissible remaining-cost estimators, yet would
be impractical using an actual classical planner (which would need to be optimal and thus prohibitively
slow). In the unlimited-budget case, we can use any heuristic function able to detect dead ends (returning
∞), which applies to most known heuristics.

Proposition 15.1. Let Π be a probabilistic FDR task. Let 𝑠 be a state in Π. Suppose ℎ∗(𝑠) is the cost of an
optimal plan for 𝑠 in ΠD, or ℎ∗(𝑠) = ∞ if 𝑠 is a dead end in ΠD. Then 𝑠 is a dead end in Π iff ℎ∗(𝑠) = ∞. If
Π is a limited-budget task, then 𝑠 is a dead end in Π iff ℎ∗(𝑠) > 𝔟(𝑠).

Proposition 15.1 can be utilized via any classical-planning heuristic that admissibly approximates ℎ∗.
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15.3. Budget Pruning via Landmarks: Heuristic vs. Budget Reduction

For limited-budget planning, we also considered adopting the problem reformulation by Domshlak and
Mirkis (2015) for oversubscription planning, which reduces the budget 𝔟 using landmarks and in exchange
allows traversing yet unused landmarks at a reduced cost during search. It turns out, however, that pruning
states whose reformulated budget is < 0 is equivalent to the much simpler method pruning states whose
heuristic exceeds the (original/not reformulated) remaining budget. The added value of Domshlak and
Mirkis’s reformulation thus lies, not in its pruning per se, but in its compilation into a planning language,
creating the potential of synergizing with other heuristics.

For the sake of simplicity, let’s consider a classical planning setup. The arguments in probabilistic and
oversubscription setups are essentially the same. Let Π = ⟨V,A,I,G⟩ be an FDR task with a global
budget 𝔟I . Let L be a set of disjunctive action landmarks for 𝑠I (cf. Definition 14.6), i.e., every 𝐿 ∈ L
is a set of actions that contains an action from every plan for 𝑠I . Let furthermore { 𝔠𝐿 | 𝐿 ∈ L } be a
cost partitioning (Karpas and Domshlak, 2009) for L, i.e., a set of non-negative action cost functions such
that, for each 𝑎 ∈ A, ∑𝐿∈L 𝔠𝐿 (𝑎) ≤ 𝔠(𝑎). Denote ℎ(𝐿) = min𝑎∈𝐿 𝔠𝐿 (𝑎), and for a subset L′ ⊆ L of
landmarks denote ℎ(L′) = ∑

𝐿∈L′ ℎ(𝐿). Intuitively, each landmark 𝐿 ∈ L is assigned a weight ℎ(𝐿), and
the admissible heuristic value ℎ(L) for 𝑠I is obtained by summing up these weights.

We now describe Domshlak and Mirkis’s (2015) pruning technique in these terms. Domshlak and Mirkis’s
formulation is based on a compilation into a planning language, which is more complicated, but is equiv-
alent to our description here as far as the pruning is concerned.

Domshlak and Mirkis’s technique maintains the “non-used” landmarks as part of states. Namely, for a state
𝑠 reached from 𝑠I via the path 𝜎 , 𝐿 ∈ L is non-used in 𝑠 iff 𝜎 contains no action from 𝐿. We denote the
set of non-used landmarks in 𝑠 by L(𝑠). Obviously, every 𝐿 ∈ L(𝑠) remains a landmark for 𝑠. Note also
that, as L(𝑠) is part of the state, even if two search paths lead to the same end state but use different
landmarks, their end states are considered to be different. This restriction arises from the compilation
approach, where the book-keeping of landmarks must happen inside the language, i.e., inside states. One
could formulate the pruning technique without this restriction; we get back to this below.

The pruning technique now arises from the interplay of a reduced global budget and reduced action costs
depending on non-used landmarks. Define the reduced global budget as 𝔟′I = 𝔟I − ℎ(L). For any action
𝑎, denote by L(𝑎) the set of landmarks 𝑎 participates in, i.e., L(𝑎) = {𝐿 | 𝐿 ∈ L, 𝑎 ∈ 𝐿}. For any state
𝑡 during search, and an applicable action 𝑎, the transition from 𝑡 to 𝑡⟦𝑎⟧ has a reduced cost, namely the
cost 𝔠(𝑎) −ℎ(L(𝑎) ∩L(𝑡)). In words, we reduce the cost of 𝑎 by the summed-up) weights of the non-used
landmarks 𝑎 participates in.

Consider now some state 𝑠 during search. Denote the remaining reduced budget in 𝑠 by 𝔟′(𝑠). Say that we
prune 𝑠 iff 𝔟′(𝑠) < 0.1 Consider any path 𝜎 from 𝑠I to 𝑠. As non-used landmarks are part of the state, all
these paths must touch the same subset of landmarks from L, namely L \ L(𝑠). Denote the sum of the
original (non-reduced) costs of the actions from 𝜎 by 𝔠(𝜎). Relative to this cost, the cost saved thanks to

1Domshlak and Mirkis (2015) do not maintain the remaining budget as part of the state, but instead prune 𝑠 if 𝑔(𝑠) > 𝔟′I , where
𝑔(𝑠) is the cost of the path 𝜎 from 𝑠I to 𝑠. This is, obviously, equivalent, except that duplicate detection is more powerful as it
compares states based on their state variable assignments only. For the purpose of our discussion here, this does not make a
difference. Note that, in the probabilistic setting, we do have to distinguish states based the remaining budget 𝔟′(𝑠) as well,
as goal probability depends on both.
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the cost reduction is exactly ℎ(L \ L(𝑠)), the weight of the touched landmarks. Hence

𝔟′(𝑠) = 𝔟′I − (𝔠(𝜎) − ℎ(L \ L(𝑠)))
= (𝔟I − ℎ(L)) − 𝔠(𝜎) + ℎ(L \ L(𝑠))
= (𝔟I −

∑
𝐿∈L

ℎ(𝐿)) − 𝔠(𝜎) +
∑

𝐿∈L\L(𝑠)
ℎ(𝐿)

= 𝔟I − 𝔠(𝜎) −
∑

𝐿∈L(𝑠)
ℎ(𝐿)

= 𝔟I − 𝔠(𝜎) − ℎ(L(𝑠))

Thus, 𝑠 is pruned, 𝔟′(𝑠) < 0, iff 𝔟I − 𝔠(𝜎) < ℎ(L(𝑠)). The latter condition is the same as 𝔟(𝑠) < ℎ(L(𝑠)),
which is exactly the pruning condition resulting from using ℎ(L(𝑠)) as an admissible heuristic function
pruning against the remaining budget.

In a non-compilation setting, one could, as is indeed customary in admissible landmark heuristics, handle
landmarks in a path-dependent manner. That is, non-used landmarks are maintained as annotations to
states rather than as part of them, and multiple search paths may end in the same state 𝑠 but use different
landmarks. The set of remaining landmarks L(𝑠) for 𝑠 then is the union over those for each individual
path; that is, 𝐿 ∈ L is non-used in 𝑠 iff there exists at least one path that does not touch 𝐿. This still suffices
to guarantee that 𝐿 is a landmark for 𝑠. The landmark heuristic approach as per Karpas and Domshlak
(2009) does this kind of book-keeping, and uses the admissible heuristic value ℎ(L(𝑠)).

If one were to apply Domshlak and Mirkis’s (2015) reformulation technique without maintaining land-
marks as part of state, then the notion of transition-cost reduction would have to becomemore complicated
(lest one loses information). This is because, if 𝑠 is reached on 𝜎1 with a reduced cost due to touching land-
mark 𝐿1, but later on we find another path 𝜎2 to 𝑠 that does not touch 𝐿1, then 𝐿1 actually still is a valid
landmark for 𝑠, and therefore there was no need to reduce the cost on 𝜎1. To account for this, we would
have to revise path costs posthoc, every time a new path to 𝑠 becomes available. After these revisions, the
cost reduction on each path 𝜎 to 𝑠 is exactly ℎ(L \ L(𝑠)): the weight of the non-used landmarks L(𝑠) is
no longer subtracted, and the weight of the other landmarks L \ L(𝑠) is subtracted on every 𝜎 because,
by definition, every 𝜎 touches every 𝐿 ∈ L \ L(𝑠). So the cost saved on every path 𝜎 to 𝑠, relative to 𝜎 ,
is exactly ℎ(L \ L(𝑠)), from which point the same arguments as above apply to show that the pruning is
equivalent to pruning via 𝔟(𝑠) < ℎ(L(𝑠)).

In summary, pruning 𝑠 based on reduced remaining budget 𝔟′(𝑠) < 0 is equivalent to pruning 𝑠 based on
original remaining budget vs. the landmark heuristic 𝔟(𝑠) < ℎ(L(𝑠)). It should be noted, though, that such
pruning is not the only benefit of Domshlak and Mirkis’s (2015) reformulation technique. The technique
allows to compute another, complementary, admissible heuristic ℎ on the reformulated task Π′ (and this
is what Domshlak and Mirkis point out as part of the motivation, and what they do in practice). From
our perspective here, the landmark heuristic and ℎ are used additively for admissible pruning against the
remaining budget, where additivity is achieved with a method generalizing cost partitionings: in Π′, the
cost-reduced variant of each action can be applied only once. So if ℎ does not abstract away this constraint,
and if ℎ uses an action twice, then it employs the reduced cost only once, yet pays the full cost the second
time. Exploring this kind of generalized cost partitioning in more detail is an interesting research line for
future work.





16. Experimental Evaluation

Over the course of the previous chapters, we have developed an extensive design space of probabilistic
state-space search methods for solving goal-probability objectives. Here, we systematically explore this
design space through a comprehensive empirical evaluation, and therewith shed light on the current state
of the art in goal-probability planning.

In summary, the algorithm design space encompasses the following top-level choice points:

(a) Search algorithm (cf. Chapters 11 and 12).

(b) Tie-breaking strategy (cf. Chapter 13).

(c) State-space reduction technique (cf. Chapter 15).

(d) Goal-probability heuristic (cf. Chapter 14).

These algorithm dimensions are mostly orthogonal. To make our experiments feasible, we split them into
two parts. In part I), we inspect the various options for (a) – (c) from the preceding chapters, analyzing
the resulting algorithm behavior on the different goal-probability objectives. Based upon the findings,
we then investigate in part II) the impact of the goal-probabilistic heuristics (d) on the best-performing
configurations from I). In what follows, we first describe our implementation and the benchmarks. We
then discuss the results for I) and II).

The source code and benchmarks are publicly available1. All experiments were run on a cluster of Intel
Xeon E5-2660 machines running at 2.20 GHz, with time and memory cut-offs of 30 minutes and 4 GB.
We used Cplex 12.6.3 as the LP solver. In cases where necessary, the convergence parameter 𝜖 was set to
5 · 10−5 (the same value as used by Kolobov et al. (2011), the main prior work on optimal MDP heuristic
search for goal-probability probabilistic planning).

16.1. Implementation

We implemented all algorithms in FAST DOWNWARD (FD) (Helmert, 2006). As our focus is on goal-oriented
MDPs with probabilistic actions, whose outcomes are listed explicitly, naturally we use PPDDL (Younes et
al., 2005), rather than RDDL (Sanner, 2010), as the surface-level language. FD’s translator component
was extended to handle PPDDL, and we added support for specifying a numeric budget limit.

Given the FD implementation framework in contrast to previous works on optimal probabilistic planning,
we implemented all algorithms from scratch. For FRET, we closely followed the original implementation, up
to details not specified by Kolobov et al. (2011), based on personal communication with Andrey Kolobov.
Kolobov’s original source code is not available anymore, which also plays a role in our state-of-the-art
comparison, see next.
1https://doi.org/10.5281/zenodo.6992688
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Given the scant prior work on optimal goal-probability analysis in planning, the state of the art is rep-
resented by topological VI, by LRTDP with dead-end pruning on acyclic problems, and by FRET-𝑉 using
LRTDP with dead-end pruning on cyclic problems. All these configurations are particular points in the
space of configurations we explore, so the comparison to the state of the art is part of our comparison
across configurations. The only thing missing here is the particular form of dead-end detection, which
was SIXTHSENSE (Kolobov et al., 2010a) in the only prior work, by Kolobov et al. (2011). As SIXTHSENSE
is a complex method and advanced dead-end pruning via heuristic functions is readily available in our
framework, we did not re-implement SIXTHSENSE. Our discussion of cyclic problems in Section 16.3.2
below includes a detailed comparison of our results with those by Kolobov et al. (2011), on IPPC Explod-
ingBlocks which is the only domain Kolobov et al. considered.

Note that providing quality guarantees is an important property in this study. For this reason, and for the
sake of clarity, we do not compare against unbounded suboptimal approaches, such as using an algorithm
with a discounted criterion or assigning large finite penalties to dead ends (Teichteil-Königsbuch et al.,
2011; Kolobov et al., 2012a).

LRTDP is a randomized algorithm. To test the robustness of LRTDP, we executed selected configurations
10 times, varying the RNG seed. The performance between the different runs was almost indistinguishable
(standard deviation of runtime is < 1 second in most cases, and peak memory usage < 2 MB). For the
sake of simplicity, we selected one of the RNG seeds arbitrarily, and we keep it fixed throughout all the
following experiments.

16.2. Benchmark Suite

Our aim being to comprehensively explore the relevant problem space, we designed a broad suite of bench-
marks, 1641 instances in total, based on domains from the International Probabilistic Planning Competi-
tions (IPPC), resource-constrained planning (RCP), and network penetration testing (pentesting).

IPPC From the IPPC, we selected those PPDDL domains in STRIPS format, or with moderate non-STRIPS
constructs, easily compilable into STRIPS. This resulted in 12 domains from IPPC’04 – IPPC’08.

Canadian RCP Domains For resource-constrained planning, we adopted the NoMystery, Rovers, and TPP
benchmarks by Nakhost et al. (2012), more precisely those suites with a single consumed resource (fuel,
energy, money), which correspond to limited-budget planning. To make the benchmarks feasible for opti-
mal probabilistic planning, we had to reduce their size parameters (number of locations etc). We scaled all
parameters with the same number < 1, chosen to get instances at the borderline of feasibility for VI. We
created probabilistic versions by adding uncertainty about the underlying road map, akin to the Canadian
Traveller’s Problem (Papadimitriou and Yannakakis, 1991), each road segment being present with a given
probability (this is encoded through a separate, probabilistic, action attempting a segment for the first
time, akin to Example 10.1). For simplicity, we set that probability to 0.8 throughout.

Pentesting For pentesting, the general objective is – using exploits – to compromise computers in a net-
work, one after another, until specific targets are reached (or no action is available). We modified the
POMDP generator by Sarraute et al. (2012), which itself is based on a test scenario used at Core Security2

2http://www.coresecurity.com/

http://www.coresecurity.com/
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to output PPDDL encodings of Hoffmann’s (2015) attack-asset MDP pentesting models. In these models,
the network configuration is known and fixed, and each exploit is callable once and succeeds (or fails)
with some probability. The generator uses a network consisting of an exposed part, a sensitive part, and
a user part. It allows to scale the numbers ℎ of hosts and 𝐸 of exploits. Sarraute et al.’s (2012) POMDP
model and solver (Kurniawati et al., 2008) scale to 𝐻 = 6, 𝐸 = 10.3 For our benchmarks, we fixed 𝐻 = 𝐸
for simplicity. We scaled the instances from 6 . . . 20 without budget limit, and from 10 . . . 24 with budget
limit.

From each of the above benchmark tasks Π (except the pentesting ones for which we already generated a
separate limited-budget version anyway), we obtained several limited-budget benchmarks, as follows. We
set outcome costs to 1 where not otherwise specified. We determined the minimum budget 𝔟min required
to achieve non-0 goal probability. For the resource-constrained benchmarks, 𝔟min is given by the generator
itself, as the minimum amount of resource required to reach the goal in the deterministic domain version.
For all other benchmarks, we ran FD with A∗ using the LMcut heuristic (Helmert and Domshlak, 2009) on
the all-outcomes determinization of Π. If this failed, we skipped Π, otherwise we read 𝔟min off the cost
of the optimal plan. We created several limited-budget tasks Πℭ, differing in their constrainedness level ℭ.
Namely, following Nakhost et al. (2012), we set the initially available budget in Πℭ to 𝔟(I𝔟) := ℭ ∗ 𝔟min,
so that ℭ is the factor by which the available budget exceeds the minimum needed (to be able to reach
the goal at all). We let ℭ range in {1.0, 1.2, . . . , 2.0}.

16.3. Evaluating the State of the Art in Goal-Probability Planning

We evaluate the algorithm design space spanned by the parameters (a) – (c) from above. We consider all
three goal-probability objectives, AtLeastProb, ApproxProb, and MaxProb. For AtLeastProb, we let 𝜃 range
in {0.1, 0.2, . . . , 1.0} (𝜃 = 0 is pointless). For ApproxProb, we let 𝛿 range in {0.0, 0.1, . . . , 0.9} (𝛿 = 1 is
pointless). We next discuss the results for the acyclic benchmarks, where a FRET-like analysis is generally
not needed. Afterwards, we consider the cyclic part.

16.3.1. Acyclic Planning

The acyclic part of our benchmark suite comprises the budget-limited benchmarks (all action outcomes
have a non-zero cost), pentesting with and without budget limit (in either case, exploits can be used
just once), as well as IPPC TriangleTireworld (moves are unidirectional). We consider the three objectives
MaxProb, AtLeastProb, and ApproxProb. We run the search algorithm variants: VI, GOALPROB-EXHAO∗,
GOALPROB-AO∗, GOALPROB-LRTDP, 14 GOALPROB-DFHS variants, and GOALPROB-IDUAL. We do not run
GOALPROB-EXHDFS, since the simple bottom-up update procedure of GOALPROB-EXHAO∗ is sufficient in
acyclic planning, and GOALPROB-EXHAO∗ by default explores the state space in a depth-first manner. In
the following, we will omit the “GOALPROB-” prefix in algorithm names. Keep in mind though that our
algorithms differ from the original ones, in particular in terms of early termination which depends on the
objective MaxProb, AtLeastProb, or ApproxProb.

To study the termination benefits of the lower bound, we will switch it on and off where applicable, en-
abling/disabling the corresponding early termination conditions. Where A denotes one of our heuristic

3For modeling/solving the entire network, that is. With their domain-dependent decomposition algorithm “4AL”, trading accu-
racy for performance, Sarraute et al. scale up much further.



202 16. Experimental Evaluation

# Total

i. Search Algorithms & Pruning in MaxProb 96

Search algorithms: • VI; • ExhAO∗; • AO∗ |U; • LRTDP|U; • DFHS|U (×14); • IDUAL;
and • VI on DB

Dead-end pruning: • disabled; • LMcut; • PDB; and • M&S with 𝑁 ∈ { 50𝑘,∞ }
Tie-breaking: default

ii. AtLeastProb and ApproxProb Objective Parameters 17

Search algorithms: • VI; • ExhAO∗; • AO∗ |U; • AO∗ |LU; • LRTDP|U; • LRTDP|LU;
• DFHS|U (×1, best from i.); • DFHS|LU (×1); and • IDUAL

Dead-end pruning: PDB
Tie-breaking: default

iii. Tie-Breaking Strategies on AtLeastProb and ApproxProb 57

Search algorithms: • VI; • ExhAO∗; • AO∗ |U; • AO∗ |LU; • LRTDP|U; • LRTDP|LU; • DFHS|U
(×1); • DFHS|LU (×1); and • IDUAL

Dead-end pruning: PDB
Tie-breaking: all (• 1; • 4; • 4; • 5; • 3; • 4; • 3; • 4; and • 1)

Table 16.1.: Overview of experiments on the acyclic benchmark part. In ii. and iii., the heuristic search configura-
tions are doubled because AtLeastProb vs. ApproxProb result in different algorithm configurations (using different
termination criteria).

search algorithms, we denote byA|U andA|LU the variants ofA maintaining only𝑉𝑈 respectively both
𝑉𝑈 and 𝑉 𝐿.

Each search algorithm instance is run with up to 5 tie-breaking strategies, as described in Chapter 13.

For dead-end pruning / pruning against the remaining budget, we run LMcut (Helmert and Domshlak,
2009), a canonical PDB heuristic over patterns generated through a hill-climbing procedure (Haslum et al.,
2007), and merge-and-shrink (M&S) with the state-of-the-art shrinking strategies based on bisimulation
and an abstraction-size bound 𝑁 (Nissim et al., 2011; Helmert et al., 2014); we show data for 𝑁 = ∞ and
𝑁 = 50𝑘 (we also tried 𝑁 ∈ {10𝑘, 100𝑘, 200𝑘} which resulted in similar behavior). We also run variants
without dead-end pruning. We use the deterministic-bisimulation (DB) reduced state space only for VI:
once (and if) a bisimulation is successfully computed, the quotient MDP is easily solved by that simplest
algorithm. Given DB, we do not require any dead-end pruning because all dead ends are already removed
from the reduced state space.

Overall, this yields 1791 different possible algorithm configurations. We do not actually test all these
configurations, of course, as not all of them are interesting, or needed to make the essential observations.
We instead organize our experiment in terms of three parts i. – iii., each focusing on a particular issue of
interest. Consider Table 16.1, which gives an overview of the configurations considered in each experiment.
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The design of the experiments is as follows:

i. We first evaluate different search algorithms and dead-end pruning methods on MaxProb, fixing the
tie-breaking strategy to default.

We omit here all A|LU, because for MaxProb heuristic search, maintaining 𝑉 𝐿 is redundant (early
termination is dominated by regular termination).

ii. We next fix the best-performing dead-end pruning method, and analyze search algorithm perfor-
mance in AtLeastProb and ApproxProb as a function of the parameter 𝜃 respectively 𝛿 .

We again fix the tie-breaking strategy to default here, leaving their examination to iii.

iii. We finally vary the tie-breaking strategy, keeping otherwise the setting of experiment ii.

We will conclude our discussion with additional data illustrating typical anytime behavior. Each part of
the experiment is described in a separate sub-section in what follows.

Search Algorithms & Pruning Methods in MaxProb

Tables 16.2 and 16.3 show coverage data, i.e., the number of benchmark instances for which MaxProb was
solved within the given time and memory limits.

Consider first Table 16.2, which shows the results for a representative selection of DFHS|U configurations.
A comparison of all DFHS parameter combinations is available in Appendix A.2. Overall, there are only
little performance differences between the different variants. The termination parameter has the largest
impact. The LABEL variants dominate their VI counterparts throughout. Among the VI configurations, the
additional forward updates (FW) yield a slight but consistent advantage, while the cutoff options are more
detrimental than helpful. This is so because the former tends to decrease the number of VI calls by spot-
ting inconsistency early; while the latter options consistently result in more, presumably mostly redundant,
DFHS iterations. In contrast, for LABEL termination, the benefit of the additional forward updates disap-
pears almost entirely. Yet, the TIP variants (cutting off the exploration at tip states) have a slight edge over
disabling cutoffs completely. This difference mainly comes from Blocksworld-b, ExplodingBlocks-b, and
TriangleTireworld-b, where the TIP configurations solve more instances, while in Elevators-b the TIP con-
figurations perform slightly worse than with cutoffs disabled. The other cutoff option (INC), stopping the
exploration at 𝜖-inconsistent states, is detrimental in almost all domains, most notably in Blocksworld-b,
Elevators-b, and Zenotravel-b. Given the relative close overall performance, and since the DFHS|U config-
uration LABEL/BW/TIP yields the overall highest coverage results, we will use it as the representative of
the DFHS family in the remaining discussion. Note that this DFHS variant differs from ILAO∗ only in the
termination method, LABEL vs. VI. For the sake of simplicity, we will be henceforth referring to it as Labeled
ILAO∗, short LILAO∗.

Table 16.3 shows the coverage results for the remaining search algorithms and pruning functions. Due
to space reasons, IDUAL is represented only in combination with PDB, yet, qualitatively, the differences
between the different heuristic functions for IDUAL are similar to the other search algorithms. Of the prun-
ing methods, PDB clearly stands out. For every search algorithm, it yields the by far best overall coverage.
LMcut has a substantial advantage only in ExplodingBlocks-b. M&S has an advantage in Schedule-b. Note
that, for M&S with 𝑁 = ∞, overall coverage is worse than for using no pruning at all. This is due to
the prohibitive overhead, in some domains, of computing a bisimulation on the determinized state space.
Running VI directly on the deterministic-bisimulated state space (“VI on DB”) performs slightly worse
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DFHS|U
VI LABEL

BW FW BW FW
NONE TIP NONE INC NONE TIP NONE INC TIP ∪ INC

Domain # – LM PDB – LM PDB – LM PDB – LM PDB – LM PDB – LM PDB – LM PDB – LM PDB – LM PDB

IPPC Benchmarks
TriTire 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

IPPC Benchmarks with Budget Limit
Blocksw-b 180 54 64 99 54 64 100 54 64 99 54 64 92 54 64 109 54 64 112 54 64 109 54 64 102 54 64 102
Boxw-b 18 0 3 3 0 3 0 0 3 3 0 3 0 0 3 3 0 3 3 0 3 3 0 3 3 0 3 3
Drive-b 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
Elevators-b 90 80 86 84 76 84 81 83 87 87 77 86 81 89 90 90 83 89 86 90 90 90 78 87 83 78 86 82
ExpBloc-b 150 64 118 99 62 119 95 64 119 99 63 118 97 64 123 100 63 126 101 64 123 99 62 126 96 63 126 100
Random-b 72 37 45 53 37 45 53 37 45 53 37 45 53 37 45 53 37 45 53 37 45 53 37 45 53 37 45 53
RecTire-b 36 24 36 36 23 36 36 25 36 36 27 36 36 25 36 36 25 36 36 27 36 36 28 36 36 28 36 36
Schedule-b 138 60 65 60 60 65 60 60 65 60 60 62 60 62 65 62 62 65 62 62 65 62 62 65 62 62 65 62
SeaResc-b 90 72 75 83 71 76 83 72 75 83 72 76 83 73 75 84 71 76 84 72 75 84 72 76 84 71 76 84
Tirew-b 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
TriTire-b 60 52 56 57 49 55 56 52 57 57 52 56 56 52 57 57 51 57 59 52 57 57 52 57 59 50 57 59
Zenotra-b 78 36 42 42 31 42 42 37 42 42 25 37 39 42 42 42 42 42 42 42 42 42 35 41 42 36 41 42∑ IPPC-b 1092 659 770 796 643 769 786 664 773 799 647 763 777 678 780 816 668 783 818 680 780 815 660 780 800 659 779 803

Canadian RCP Benchmarks with Budget Limit
NoMyst-b 60 13 45 52 12 43 49 15 46 52 15 45 52 24 52 57 21 49 57 24 52 57 24 49 57 21 50 57
Rovers-b 60 51 58 58 47 58 57 51 59 58 51 59 58 55 60 59 51 60 60 55 60 60 55 60 59 51 60 60
TPP-b 60 25 45 50 21 43 46 26 47 54 25 46 51 33 52 55 29 49 54 36 53 55 30 50 55 29 50 54∑ RCP-b 180 89 148 160 80 144 152 92 152 164 91 150 161 112 164 171 101 158 171 115 165 172 109 159 171 101 160 171

Pentesting Benchmarks
Pentest-b 90 58 67 68 57 67 68 60 68 68 53 63 63 61 68 70 61 68 69 61 68 70 58 67 68 58 66 67
Pentest 15 8 9 9 8 9 9 9 9 9 8 8 8 9 10 9 9 9 9 9 10 9 8 8 8 8 8 8∑ Pentest 105 66 76 77 65 76 77 69 77 77 61 71 71 70 78 79 70 77 78 70 78 79 66 75 76 66 74 75

Table 16.2.: Acyclic planning. MaxProb coverage (number of tasks solvedwithin time &memory limits) for a represen-
tative selection of DFHS configurations. Best results in bold. Domains “-b” modified with budget limit. “#”: number
of instances. DFHS parameters are abbreviated as “VI”: labeling (LABEL) is disabled, termination is checked via VI;
“LABEL”: labeling is enabled; “BW”: value updates only on the way back up of the exploration; “FW”: additionally
doing value updates on the way down of exploration; “NONE” no cutoffs, exploration is terminated only at terminal
and goal states; “TIP”: cutting off exploration at tip states (CUTOFFTIP), i.e., states that have not been expanded yet;
“INC” cutting off exploration at inconsistent states (CUTOFFINCONSISTENT); and “TIP ∪ INC” using both CUTOFFTIP and
CUTOFFINCONSISTENT. Recall that ILAO∗ corresponds to entry VI/BW/TIP; HDP corresponds to LABEL/FW/INC. Dead-
end pruning disabled: “–”. Otherwise, pruning against remaining budget on “-b” domains; based on ℎ(𝑠) = ∞ on
other domains. “LM”: LMcut; “PDB”: canonical PDB heuristic. Default tie-breaking strategy.

than using the bisimulation for dead-end pruning. This is an artifact of our implementation, where in the
absence of enough bisimilar states, the storage of the probabilistic bisimulation-reduced state space may
actually require more memory than VI using the bisimulation for dead-end pruning. A notable exception
is TriangleTireworld. Far beyond the standard benchmarks in Table 16.3 (triangle-side length 20), VI on
DB scales to side length 74 in both the original domain and the limited-budget version. For comparison,
the hitherto best solver by far was PROB-PRP (Camacho et al., 2016), which scales to side length 70 on
the original domain, and is optimal only for goal probability 1, i.e., in the presence of strong cyclic plans
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VI exhAO∗ AO∗ |U LRTDP|U LILAO∗ |U idual

M&S M&S M&S M&S M&SDomain # – LM PD
B

N ∞
– LM PD

B

N ∞
– LM PD

B

N ∞
– LM PD

B

N ∞
– LM PD

B

N ∞ PD
B

VI
on
DB

IPPC Benchmarks
TriTire 10 5 5 5 5 5 5 5 5 5 5 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

IPPC Benchmarks with Budget Limit
Blocksw-b 180 54 64 94 61 54 54 64 93 56 54 54 64 92 56 54 54 64 100 56 54 54 64 112 57 54 76 54
Boxw-b 18 0 3 3 0 0 0 3 0 0 0 0 3 0 0 0 0 3 3 0 0 0 3 3 0 0 0 0
Drive-b 90 90 90 90 90 48 90 90 90 90 48 90 90 90 90 48 90 90 90 90 48 90 90 90 90 48 90 48
Elevators-b 90 90 90 90 90 35 90 90 90 90 35 88 90 90 89 35 86 89 88 87 35 83 89 86 85 35 50 34
ExpBloc-b 150 58 84 80 76 58 56 83 79 75 58 61 116 93 79 58 65 127 97 84 58 63 126 101 82 58 83 58
Random-b 72 34 33 40 40 36 36 41 51 47 36 36 44 52 48 36 37 45 53 47 36 37 45 53 48 36 50 34
RecTire-b 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 30 36 36 36 36 25 36 36 36 36 34 36
Schedule-b 138 59 59 60 64 63 59 59 60 62 61 60 65 60 72 63 62 65 62 71 63 62 65 62 72 63 60 51
SeaResc-b 90 74 75 85 85 84 72 75 83 82 82 72 76 82 82 82 71 75 84 84 84 71 76 84 85 84 62 80
Tirew-b 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
TriTire-b 60 50 54 55 55 55 47 53 54 54 54 49 56 57 57 57 52 57 58 57 57 51 57 59 58 58 50 60
Zenotra-b 78 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 34 41 41 40 41 42 42 42 42 42 20 42∑ IPPC-b 1092 677 720 765 729 601 672 726 768 724 596 678 772 784 741 601 671 782 802 742 602 668 783 818 745 604 665 587

Canadian RCP Benchmarks with Budget Limit
NoMyst-b 60 23 46 54 52 50 21 43 50 49 48 21 45 53 50 50 22 49 57 54 52 21 49 57 56 52 27 49
Rovers-b 60 54 58 57 58 58 52 55 56 55 56 55 58 58 58 59 51 59 59 59 60 51 60 60 59 60 39 58
TPP-b 60 37 49 49 40 34 29 42 44 39 31 34 47 51 39 34 30 50 53 43 34 29 49 54 42 32 16 33∑ RCP-b 180 114 153 160 150 142 102 140 150 143 135 110 150 162 147 143 103 158 169 156 146 101 158 171 157 144 82 140

Pentesting Benchmarks
Pentest-b 90 68 70 70 70 54 64 67 68 70 53 57 67 67 67 52 58 66 66 66 51 61 68 69 70 54 48 40
Pentest 15 10 10 10 10 10 9 9 9 10 10 8 9 9 9 9 8 8 8 8 8 9 9 9 9 9 7 9∑ Pentest 105 78 80 80 80 64 73 76 77 80 63 65 76 76 76 61 66 74 74 74 59 70 77 78 79 63 55 49

Table 16.3.: Acyclic planning. MaxProb coverage for remaining search algorithms, including also the overall best
DFHS variant (LABEL/BW/TIP), called “LILAO∗”. “M&S”: pruning via merge-and-shrink; “𝑁 ” with size bound 𝑁 =
50𝑘 , “∞” without size bound. “VI on DB”: VI run on reduced (deterministic-bisimulated) state space. Other abbrevi-
ations as in Table 16.2. Default tie-breaking strategy.

– which holds for the original domain but not for the limited-budget version. (We could not actually run
PROB-PRP on the limited-budget domain version, as PROB-PRP does not natively support a budget, and
hard-coding the budget into PPDDL resulted in encodings too large to pre-process.)

ExhAO∗ is better than VI only in case of early termination on𝑉 𝐿 (𝑠I) = 1, i.e., when a full-certainty policy
is found before visiting the entire state space. This happened only very seldom, and primarily in Ran-
dom-b. ExhAO∗is otherwise dominated by VI. Equipped with non-trivial value initialization, LRTDP|U and
LILAO∗ |U outperform AO∗ |U, the latter suffering from the need of storing parent pointers for its update
procedure, leading to a larger memory footprint. For the trivial value initialization (𝑉𝑈 = 1 everywhere),
memory consumption also becomes frequently an issue for the other two algorithms, making AO∗’s over-
head comparatively less important. Overall, LILAO∗ |U performs slightly better than LRTDP|U. The differ-
ence mainly comes from Blocksworld-b, the Canadian RCP benchmarks, and pentesting, whereas LRTDP|U
has a slight edge in Elevators-b. IDUAL is not competitive with any of the other search algorithms, the over-
head generated by the LP solver calls is typically prohibitive, and outclassed by the much faster numeric
computations done in all other methods.
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Figure 16.1.: Acyclic MaxProb planning. Per-instance comparison between VI (𝑥 -axes) and LRTDP|U and IDUAL (𝑦-
axes), with and without pruning using PDB. Top: search space size (number of states visited). Bottom: runtime in
seconds. Default tie-breaking strategy. “oom” represents out of memory; “to” out of time.

To gauge the efficiency of heuristic search for MaxProb, compare LRTDP|U and VI in Table 16.3. With the
trivial goal-probability initialization, the overall picture is mixed. While LRTDP|U achieves higher coverage
in 5 domains, it is worse in 9 other domains, and performs equally in the remaining 4 domains. In terms of
total coverage, the per-domain differences cancel out, making LRTDP|U and VI almost identical. Still, we
find it remarkable that LRTDP|U is able to improve upon VI at all, given the common perception that a good
initial value estimator is required for heuristic search to be of any use. The advantage of heuristic search
however becomes really apparent as the quality of the value initialization increases. Equipped with PDB,
LRTDP|U dominates VI in almost every domain. Moreover, comparing the respective coverage increases
from the trivial bound (“–”) to PDB shows that LRTDP|U is able utilize the additional information much
more effectively.

We next shed additional light on this by comparing search space sizes and runtime values. Tables 16.4
and 16.5 provide aggregate data, Figure 16.1 shows per-instance scatter plots for the comparison of VI
vs. LRTDP|U. Data for ExhAO∗ is not shown as its coverage is dominated by VI (cf. Table 16.3), and the
same goes for its runtime and search space. Moreover, we have omitted IDUAL from the tables, whose
consideration would otherwise skew the commonly solved instance basis. A comparison between IDUAL
and VI is available in Figure 16.1. We include the “ ↰(non-triv.)” rows in the tables to show behavior on the
more interesting instances, where the averages are not biased by the many very small instances in most
domains.
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VI AO∗ |U LRTDP|U LILAO∗ |U

M&S M&S M&S M&SDomain # – LM PD
B

N ∞
– LM PD

B

N ∞
– LM PD

B

N ∞
– LM PD

B

N ∞

IPPC Benchmarks
TriTire 5 3.37k 3.37k 3.37k 3.37k 3.37k 0.14 0.14 0.14 0.14 0.14 0.18 0.16 0.16 0.16 0.16 0.14 0.14 0.14 0.14 0.14

↰

(non-triv.) 2 8.39k 8.39k 8.39k 8.39k 8.39k 0.22 0.22 0.22 0.22 0.22 0.31 0.27 0.27 0.27 0.27 0.23 0.22 0.22 0.22 0.22

IPPC Benchmarks with Budget Limit
Blocksw-b 54 0.15k 34.7 27.5 24.2 23.2 0.14k 28.5 22.1 19.2 18.4 40.5 7.47 6.43 4.76 4.43 37.3 5.98 5.28 3.79 3.47

↰

(non-triv.) 10 0.57k 0.16k 0.12k 0.11k 0.11k 0.52k 0.13k 99.7 90.7 87.0 0.11k 24.5 20.2 17.1 15.5 97.8 17.9 15.2 12.6 11.0
Drive-b 48 1.73 1.11 1.47 0.83 0.79 1.71 0.99 1.37 0.74 0.7 1.67 0.99 1.32 0.74 0.69 1.66 0.94 1.29 0.69 0.65
Elevators-b 35 11.4 3.08 6.24 4.72 2.72 4.75 0.24 1.49 0.96 0.12 4.85 0.25 1.53 0.98 0.13 4.6 0.24 1.45 0.95 0.12
ExpBloc-b 53 3.76k 27.6 79.9 83.6 22.0 0.98k 0.54 1.36 3.03 0.41 0.4k 0.59 1.55 4.17 0.5 1.0k 0.56 1.51 4.57 0.43

↰

(non-triv.) 15 13.0k 77.8 0.25k 0.27k 60.4 3.43k 1.19 3.52 9.46 0.86 1.38k 1.31 4.01 12.9 1.08 3.47k 1.21 3.89 14.1 0.88
Random-b 31 0.97k 0.18k 0.18k 0.17k 0.17k 12.6 2.1 2.09 2.07 2.07 12.8 3.22 3.2 3.19 3.19 12.8 2.25 2.23 2.22 2.22

↰

(non-triv.) 3 9.6k 1.71k 1.69k 1.61k 1.61k 54.8 1.06 0.69 0.69 0.69 56.4 1.06 0.69 0.69 0.69 56.4 1.06 0.69 0.69 0.69
RecTire-b 25 22.7 2.51 0.96 0.96 0.96 22.3 2.25 0.72 0.72 0.72 22.6 2.27 0.76 0.76 0.76 22.6 2.24 0.72 0.72 0.72

↰

(non-triv.) 8 55.2 6.06 2.29 2.29 2.29 54.8 5.41 1.69 1.69 1.69 55.0 5.47 1.79 1.79 1.79 54.9 5.38 1.68 1.68 1.68
Schedule-b 59 1.64k 0.4k 0.34k 0.33k 0.33k 55.1 2.99 1.72 1.35 1.27 13.2 3.02 2.3 2.09 2.05 18.5 2.33 1.7 1.36 1.28

↰

(non-triv.) 11 8.65k 2.13k 1.8k 1.78k 1.77k 0.27k 14.7 8.73 6.76 6.36 62.2 14.8 11.6 10.6 10.3 86.7 11.3 8.61 6.82 6.41
SeaResc-b 71 3.28k 0.5k 0.32k 0.32k 0.32k 3.26k 0.4k 0.23k 0.24k 0.23k 3.26k 0.45k 0.27k 0.26k 0.26k 3.26k 0.32k 0.21k 0.21k 0.21k

↰

(non-triv.) 31 7.42k 1.13k 0.71k 0.71k 0.71k 7.36k 0.88k 0.52k 0.53k 0.52k 7.38k 1.01k 0.6k 0.59k 0.59k 7.38k 0.72k 0.47k 0.47k 0.47k
Tirew-b 90 0.27 0.17 0.17 0.17 0.17 0.08 0.05 0.05 0.05 0.05 0.15 0.06 0.06 0.06 0.06 0.13 0.05 0.05 0.05 0.05
TriTire-b 49 5.77k 0.29k 0.29k 0.29k 0.29k 3.36k 47.6 47.6 47.6 47.6 2.61k 27.5 27.5 27.5 27.5 2.42k 27.1 27.1 27.1 27.1

↰

(non-triv.) 15 18.7k 0.94k 0.94k 0.94k 0.94k 10.9k 0.15k 0.15k 0.15k 0.15k 8.42k 87.7 87.7 87.7 87.7 7.8k 86.8 86.8 86.8 86.8
Zenotra-b 34 4.13k 0.74k 0.61k 0.97k 0.44k 4.13k 0.73k 0.61k 0.97k 0.44k 1.31k 0.22k 0.21k 0.31k 0.14k 1.59k 0.27k 0.25k 0.37k 0.18k

↰

(non-triv.) 26 5.34k 0.96k 0.78k 1.27k 0.58k 5.34k 0.96k 0.77k 1.26k 0.57k 1.67k 0.29k 0.25k 0.4k 0.18k 2.03k 0.34k 0.31k 0.48k 0.23k

Canadian RCP Benchmarks with Budget Limit
NoMyst-b 21 15.4k 0.16k 31.4 32.0 31.4 12.7k 0.12k 19.4 20.0 19.4 13.7k 0.12k 17.9 18.5 17.9 13.6k 0.12k 17.7 18.2 17.7

↰

(non-triv.) 21 15.4k 0.16k 31.4 32.0 31.4 12.7k 0.12k 19.4 20.0 19.4 13.7k 0.12k 17.9 18.5 17.9 13.6k 0.12k 17.7 18.2 17.7
Rovers-b 51 3.38k 1.04k 1.3k 1.01k 0.9k 1.68k 0.3k 0.46k 0.29k 0.22k 2.3k 0.37k 0.57k 0.37k 0.27k 2.06k 0.32k 0.51k 0.32k 0.24k

↰

(non-triv.) 30 5.67k 1.75k 2.2k 1.7k 1.53k 2.8k 0.49k 0.77k 0.49k 0.36k 3.85k 0.62k 0.96k 0.63k 0.46k 3.44k 0.53k 0.85k 0.54k 0.39k
TPP-b 19 8.78k 0.85k 0.89k 4.1k 0.43k 4.92k 0.36k 0.28k 2.3k 93.9 6.33k 0.39k 0.35k 2.85k 0.11k 5.77k 0.37k 0.29k 2.65k 95.1

↰

(non-triv.) 16 10.4k 1.0k 1.05k 4.85k 0.51k 5.81k 0.42k 0.33k 2.71k 0.11k 7.47k 0.46k 0.41k 3.37k 0.13k 6.81k 0.43k 0.34k 3.13k 0.11k

Pentesting Benchmarks
Pentest-b 49 0.3k 0.16k 0.2k 0.17k 0.16k 0.3k 0.16k 0.2k 0.17k 0.16k 0.3k 0.16k 0.2k 0.17k 0.16k 0.3k 0.16k 0.2k 0.17k 0.16k

↰

(non-triv.) 11 1.25k 0.68k 0.83k 0.71k 0.68k 1.24k 0.68k 0.83k 0.71k 0.68k 1.25k 0.68k 0.83k 0.71k 0.68k 1.25k 0.68k 0.83k 0.71k 0.68k
Pentest 8 38.9 34.7 38.9 34.7 34.7 38.9 34.7 38.9 34.7 34.7 38.9 34.7 38.9 34.7 34.7 38.9 34.7 38.9 34.7 34.7

↰

(non-triv.) 1 0.19k 0.17k 0.19k 0.17k 0.17k 0.19k 0.17k 0.19k 0.17k 0.17k 0.19k 0.17k 0.19k 0.17k 0.17k 0.19k 0.17k 0.19k 0.17k 0.17k

Table 16.4.: Acyclic MaxProb planning. Per-domain average search space size (number of states visited) data in
multiples of 1000. “#” gives the size of the instance basis, namely those instances solved by all shown configurations.
“ ↰(non-triv.)” considers of those only instances not solved by VI in < 1 second. Rows with empty instance basis are
skipped. “k” multiples of 1000. Default tie-breaking strategy.

A clear message from Table 16.4 and Figure 16.1 is that the heuristic search algorithms, apart from a
few exceptions, visit much fewer states than VI does. Even with the trivial upper bound initialization,
search spaces are reduced in all domains except RectangleTireworld-b, SearchAndRescue-b, and Pentest.
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VI AO∗ |U LRTDP|U LILAO∗ |U

M&S M&S M&S M&SDomain # – LM PD
B

N ∞
– LM PD

B

N ∞
– LM PD

B

N ∞
– LM PD

B

N ∞

IPPC Benchmarks
TriTire 5 5.08 30.1 5.41 10.1 9.79 0.0 0.01 0.03 0.03 0.03 0.0 0.01 0.03 0.03 0.03 0.01 0.01 0.04 0.03 0.03

↰

(non-triv.) 2 12.7 75.0 13.5 25.1 24.4 0.01 0.01 0.05 0.06 0.06 0.01 0.01 0.05 0.06 0.06 0.01 0.02 0.06 0.07 0.07

IPPC Benchmarks with Budget Limit
Blocksw-b 54 0.6 1.04 0.12 0.6 0.45 5.64 1.53 0.6 0.96 0.8 1.12 0.29 0.11 0.56 0.41 0.62 0.21 0.09 0.52 0.4

↰

(non-triv.) 10 2.42 4.74 0.39 1.89 1.39 22.8 7.1 2.63 3.71 3.08 2.36 0.92 0.24 1.61 1.15 1.45 0.58 0.16 1.49 1.09
Drive-b 48 0.01 0.02 0.02 1.31 29.2 0.04 0.03 0.04 1.3 29.1 0.04 0.02 0.04 1.27 28.7 0.04 0.02 0.03 1.25 28.4
Elevators-b 35 0.03 0.02 0.06 2.24 46.7 0.04 0.01 0.06 2.22 47.4 0.1 0.01 0.07 2.11 46.5 0.2 0.01 0.09 2.11 46.0
ExpBloc-b 53 7.6 0.27 1.47 8.82 54.3 15.2 0.01 1.37 8.11 53.9 10.2 0.01 1.38 7.88 52.1 17.7 0.02 1.38 7.81 52.4

↰

(non-triv.) 15 26.3 0.77 0.87 24.9 158.1 53.4 0.03 0.49 22.5 157.1 35.6 0.03 0.49 21.9 151.0 61.9 0.03 0.49 21.7 152.5
Random-b 31 4.26 18.2 0.53 10.3 17.7 6.47 0.54 0.21 8.19 14.1 7.26 0.56 0.21 7.64 14.5 7.5 0.53 0.19 7.28 14.1

↰

(non-triv.) 3 42.0 175.5 4.15 95.6 171.9 31.2 0.84 0.86 74.4 135.5 67.6 0.84 0.9 69.0 140.0 71.4 0.84 0.85 65.4 135.2
RecTire-b 25 1.69 1.19 0.38 0.28 0.28 3.71 1.34 0.4 0.29 0.29 57.9 1.37 0.4 0.29 0.29 187.4 1.33 0.39 0.28 0.29

↰

(non-triv.) 8 4.73 3.45 0.93 0.71 0.72 10.5 3.89 0.98 0.76 0.75 174.3 3.98 0.98 0.74 0.75 553.5 3.85 0.96 0.73 0.74
Schedule-b 59 3.21 21.0 0.92 7.56 48.5 0.67 0.24 0.18 5.93 45.0 0.31 0.21 0.18 5.84 44.6 0.37 0.19 0.19 5.74 44.2

↰

(non-triv.) 11 17.0 111.8 4.39 35.0 256.7 3.36 1.19 0.42 26.6 237.9 1.47 1.04 0.46 26.1 235.7 1.76 0.91 0.49 25.6 233.5
SeaResc-b 71 11.0 30.6 9.28 2.28 2.3 109.3 25.7 11.1 4.0 3.87 173.7 31.8 10.7 3.68 3.72 109.2 21.1 9.83 2.8 2.81

↰

(non-triv.) 31 24.9 69.8 19.8 5.11 5.14 248.7 58.5 23.8 8.97 8.67 395.1 72.3 22.9 8.23 8.34 248.2 47.9 21.0 6.23 6.27
Tirew-b 90 0.01 0.01 0.03 0.01 0.01 0.01 0.01 0.03 0.01 0.01 0.01 0.01 0.03 0.01 0.01 0.01 0.01 0.03 0.01 0.01
TriTire-b 49 12.1 4.04 0.53 1.71 1.56 55.9 1.5 0.56 0.81 0.82 65.8 1.12 0.5 0.65 0.68 72.9 0.98 0.37 0.53 0.54

↰

(non-triv.) 15 39.2 13.1 1.62 5.51 5.03 181.5 4.86 1.72 2.6 2.63 212.9 3.59 1.5 2.05 2.15 235.9 3.16 1.08 1.67 1.69
Zenotra-b 34 13.0 69.9 7.03 5.52 9.74 104.4 79.9 16.0 20.7 14.5 297.8 32.3 22.6 25.2 15.1 62.2 27.1 10.1 10.4 11.4

↰

(non-triv.) 26 16.9 91.3 8.52 6.64 11.6 135.2 104.3 19.8 26.5 17.7 382.2 42.0 26.6 32.4 18.5 79.4 35.3 12.2 13.0 13.7

Canadian RCP Benchmarks with Budget Limit
NoMyst-b 21 27.4 2.04 11.9 0.58 0.74 128.9 1.84 12.3 0.6 0.76 383.6 2.07 12.2 0.63 0.77 509.0 2.48 12.4 0.71 0.83

↰

(non-triv.) 21 27.4 2.04 11.9 0.58 0.74 128.9 1.84 12.3 0.6 0.76 383.6 2.07 12.2 0.63 0.77 509.0 2.48 12.4 0.71 0.83
Rovers-b 51 12.8 6.46 5.89 3.97 5.02 28.0 3.31 6.03 3.07 3.61 95.3 5.63 9.44 5.36 5.09 108.7 6.26 10.9 6.29 5.69

↰

(non-triv.) 30 21.6 10.8 8.83 6.62 8.4 46.8 5.5 9.02 5.07 5.99 160.1 9.44 14.8 8.97 8.5 182.2 10.5 17.2 10.5 9.49
TPP-b 19 21.8 8.15 2.49 13.4 187.2 88.9 4.96 2.56 25.1 184.6 285.1 6.79 3.79 59.8 183.9 312.0 8.27 4.38 77.9 182.7

↰

(non-triv.) 16 25.8 9.62 2.72 15.5 216.7 105.2 5.85 2.81 29.3 213.7 337.5 8.02 4.27 70.5 213.2 369.3 9.78 4.96 91.9 211.7

Pentesting Benchmarks
Pentest-b 49 1.48 1.86 0.67 7.49 113.1 62.8 11.5 13.3 17.5 122.4 83.5 21.5 26.0 27.1 130.4 15.3 4.16 3.47 9.39 112.9

↰

(non-triv.) 11 6.21 7.83 2.75 12.8 180.2 268.5 48.8 56.4 55.6 222.1 358.5 91.1 110.0 97.2 261.7 64.7 17.6 14.6 22.0 184.8
Pentest 8 0.22 0.24 0.17 0.2 0.2 9.56 3.61 5.38 3.54 3.58 15.0 10.4 19.0 10.5 10.5 1.27 0.77 0.98 0.72 0.76

↰

(non-triv.) 1 1.15 1.23 0.82 0.97 0.97 56.8 20.7 31.3 20.1 20.3 99.5 64.7 119.0 65.3 64.8 7.15 4.16 5.2 3.88 4.17

Table 16.5.: Acyclic MaxProb planning. Per-domain average runtime (in seconds) over commonly solved instances.
Same setup and presentation as in Table 16.4.

Figure 16.1a gives a picture of the impact of heuristic search, exemplified again through LRTDP|U. Observe
that LRTDP|U’s search space is 1 order of magnitude smaller than that by VI in many instances, and larger
gains (up to 4 orders of magnitude) also occur in rare cases. As portrayed in Figure 16.1b, when providing
heuristic search additional information through dead-end detection, the differences become even larger.

These observations have not been made in this clarity before. While Kolobov et al. also report LRTDP to
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beat VI on MaxProb, they consider only a single domain; they do not experiment with trivially initialized
𝑉𝑈 ; and they do not use dead-end pruning in VI, so that LRTDP already benefits from a smaller state space,
and the impact of heuristic search remains unclear.

Even though the search space of the heuristic search algorithms is in many cases only a small fraction of
the whole (dead-end pruned) state space, this is not necessarily reflected in runtime. On those instances
solved by VI, it is typically fast, often faster than heuristic search and rarely outperformed significantly. This
is despite having larger search spaces, i.e., heuristic search does visit less states but suffers from having to
do more updates on these (recall that VI here updates each visited state exactly once). Significant runtime
advantages over VI are obtained by heuristic search only in TriangleTireworld, ExplodingBlocks-b, and
Random-b.

Comparing the heuristic search algorithms, the conclusions are more fine-grained but overall similar to
what we concluded from coverage above. Like the other heuristic search algorithms, IDUAL visits orders of
magnitudes fewer states than VI (cf. Figure 16.1c), yet that advantage is completely overshadowed by the
computational overhead of solving the LPs (cf. Figure 16.1f). The remaining heuristic search algorithms
perform very similarly overall, yet there are significant differences in some domains. The volatility between
the algorithms is largest if no dead-end pruning is used. In almost every domain, one of the three shown al-
gorithms stands out, either positively or negatively. The most striking examples are Blocksworld-b, where
AO∗ |U visits significantly more states than LRTDP|U and LILAO∗ |U; ExplodingBlocks-b where LRTDP|U ex-
cels; Zenotravel-b where, despite the smaller search space size, LRTDP|U is dominated by AO∗ |U, which
in turn is dominated by LILAO∗ |U; and the Canadian RCP benchmarks, on which LRTDP|U and LILAO∗ |U
struggle. AO∗ |U’s runtime advantages stem from its update procedure, which propagates value changes
more effectively, in total requiring fewer updates necessary until termination. Across the non-trivial com-
monly solved instances in the tables, the average number of updates done in AO∗ |U is about 3 times smaller
than that in LRTDP|U, and about 2.5 times smaller than in LILAO∗ |U. This advantage is hidden in coverage
due to the larger memory demand. The difference between the algorithms diminishes as value initializa-
tion becomes better. Comparing the PDB configurations, LILAO∗ |U and LRTDP|U have similar search space
sizes in almost all domains, yet LILAO∗ |U is able to propagate the dead-end information more effectively.
Over the non-trivial instances, LILAO∗ |U needs only about half as much value updates as LRTDP|U, which
is reflected on runtime. AO∗ |U utilizes the heuristic not quite as well as LRTDP|U and LILAO∗ |U. AO∗ |U’s
search space is almost consistently larger on the limited-budget IPPC benchmarks. Only on the RCP bench-
marks, AO∗ |U is able to keep its runtime lead.

The impact of dead-end pruning on VI is typically moderate. The gains for heuristic search are much more
pronounced. Comparing across different dead-end pruning methods, although M&S with 𝑁 = ∞ clearly
yields the largest search space reductions, and necessarily so as it recognizes all dead-ends, the overhead
of the bisimulation computation outweighs the search space reduction in all but a few cases. In terms of
pruning power, the different heuristics have strengths in different domains. LMcut is especially beneficial
in Elevators-b and ExplodingBlocks-b; M&S with 𝑁 = 50𝑘 holds the lead in Blocksworld-b and Schedule-b.
Even though the PDB configurations stand out in terms of search space size in only TPP-b, overall it offers
the best trade-off between accuracy and overhead, being less expensive to construct than M&S and more
efficient to evaluate than LMcut, while the search space sizes are usually close to the best of LMcut and
M&S.
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Figure 16.2.: Acyclic planning. Total coverage for (left) AtLeastProb as a function of 𝜃 , and (right) for ApproxProb
as a function of 𝛿 . All configurations use the default tie-breaking strategy and PDB dead-end pruning.

AtLeastProb and ApproxProb Objective Parameter Analysis

We now turn to the weaker objectives, AtLeastProb and ApproxProb. We fix PDB as the (almost always
most effective) dead-end pruning technique. We examine the power of early termination for different
search algorithms and tie-breaking strategies. This is best viewed as a function of the goal-probability
threshold 𝜃 in AtLeastProb, and of the desired goal probability accuracy 𝛿 in ApproxProb. VI forms a
baseline independent of 𝜃 (𝛿). Consider Figure 16.2.

For AtLeastProb (the left plot in Figure 16.2), in the interesting region of benchmark instances not feasible
for VI yet sometimes feasible for the other search algorithms, one clear feature is the superiority of LRTDP
and LILAO∗. ExhAO∗ exhibits a strikingly strong behavior for small values of 𝜃 , approaching (and in one
case even surpassing) the performance of LRTDP|U. It is in particular also more effective than AO∗ |LU.
Evidently, the depth-first expansion strategy is quite effective for anytime behavior on 𝑉 𝐿 and thus for
termination via 𝑉 𝐿 (𝑠I) ≥ 𝜃 . In general, for all algorithms, using 𝑉 𝐿 is a clear advantage for small 𝜃 .
For larger 𝜃 , maintaining 𝑉 𝐿 can become a burden, yet 𝑉𝑈 is of advantage due to early termination on
𝑉𝑈 (𝑠I) < 𝜃 .

The AtLeastProb performance behavior of algorithms using both bounds resemble an easy-hard-easy pat-
tern. The spike at the left-hand side in Figure 16.2 (left), i.e., significantly worse performance for 𝜃 = 0.1
than for 𝜃 = 0.2, is an outlier due to the Pentest domains. This is because, in contrast to typical probabilis-
tic planning scenarios, in penetration testing the goal probability – the chance of a successful attack – are
typically small, and indeed this is so in our benchmarks. Searches using an upper bound quickly obtain
𝑉𝑈 (𝑠I) < 0.2, terminating early based on 𝑉𝑈 (𝑠I) < 𝜃 for 𝜃 = 0.2. But it takes a long time to obtain
𝑉𝑈 (𝑠I) < 0.1.

For ApproxProb (right plot in Figure 16.2), smaller values of 𝛿 consistently result in worse performance. We
see again the superiority of LRTDP and LILAO∗, and a competitive behavior of ExhAO∗ compared to AO∗ |LU
in 𝛿 regions allowing aggressive early termination. Again, the key to LRTDP and LILAO∗’s performance is
their effective updates of 𝑉 𝐿. Finally, we also see again the superiority of algorithms using both bounds
over those that don’t.
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Figure 16.3.: Acyclic planning. Total coverage for AtLeastProb as a function of 𝜃 , varying the tie-breaking strategy.
Abbreviations: “depth” depth-first exploration; “breadth” breadth-first exploration; “ℎ-bias”ℎ-bias strategy; “helpful”
helpful actions strategy; “gap” gap-bias strategy; “likely” most-likely outcome bias. All configurations use PDB dead-
end pruning.

Tie-Breaking Strategies

Figure 16.3 shows different tie-breaking strategies in AtLeastProb. The relative performance is the same
in ApproxProb, so we do not include a separate figure for that.

For the sake of readability, we show only the most competitive base algorithms, ExhAO∗, AO∗ and LRTDP
using upper and lower bounds, as well as the VI baseline. We omit LILAO∗ |LU whose performance across
the different tie-breaking strategies is identical to LRTDP|LU. For ExhAO∗, we see that a depth-biased explo-
ration is important, the breadth-first variant lacks behind consistently. Especially for small values of 𝜃 , the
depth-bias allows to raise 𝑉 𝐿 (𝑠I) much more effectively, fostering early termination. The helpful-actions
strategy has no impact on the development of the bounds for any algorithm, but the additional overhead
negatively (if at all) affects the results. The ℎ-bias results in the by far biggest improvements over the
default strategy across all the search algorithms, guiding the explorations to goal states quickly, and with
that fostering the development of the 𝑉 𝐿 bounds. For AO∗ |LU, the gap-bias strategy is almost as beneficial
as the ℎ-bias strategy. The most-prob-outcome bias consistently improves coverage across the board as
well, yet not quite as much as the other two strategies. For LRTDP|LU, the gap-bias strategy resulted in
almost identical behavior compared to the default strategy.

An Illustration of Typical Anytime Behavior

To conclude our discussion of acyclic planning, Figure 16.4 exemplifies typical anytime behavior, i.e., the
development of the 𝑉 𝐿 (𝑠I) and 𝑉𝑈 (𝑠I) bounds on the initial state value, as a function of runtime, for
LRTDP|LU and ExhAO∗. The behavior for AO∗ |LU and LILAO∗ |LU is very similar to LRTDP|LU.

The benefit of PDB pruning is evident. Observe that ExhAO∗ is way more effective than LRTDP in quickly
improving the lower bound. Indeed, the runs shown here find an optimal policy very quickly. Across the
benchmarks solved by both ExhAO∗ and LRTDP, omitting those where both took < 1 second, in about
50% of cases ExhAO∗ finds an optimal policy faster than LRTDP. On the downside, unless 𝑉 ∗(𝑠I) ≥ 𝜃 ,
ExhAO∗ must explore the entire state space. In summary, heuristic search is much stronger in proving that
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Figure 16.4.: Acyclic planning. Anytime behavior in LRTDP|LU (𝑉𝑈 and 𝑉 𝐿) and ExhAO∗ (𝑉 𝐿 only), as a function
of runtime (in seconds). Elevators instance 11, without pruning and with PDB pruning, for constrainedness level
ℭ = 1.4 (left) respectively ℭ = 1.8 (right). Default tie-breaking strategy.

the maximum goal probability is found, but can be distracting for improving 𝑉 𝐿 quickly.

As both parts of Figure 16.4 use the same base instance but with different constrainedness levels ℭ, we can
also draw conclusions on the effect of surplus budget.Withmore budget, more actions can be applied before
reaching terminal states. This adversely affects the upper bound (consistently across our experiments),
which takes a much longer time to decrease. The lower bound, on the other hand, often increases more
quickly with higher ℭ as it is easier to find goal states.

16.3.2. Cyclic Planning

The cyclic part of our benchmark suite comprises the standard IPPC benchmarks (except TriangleTire-
world), as well as NoMystery, Rovers, and TPP without budget limit.

In terms of algorithms, we evaluate LRTDP and DFHS in combination with both FRET variants. Further-
more, we consider the trap-aware (TA) LRTDP and DFHS variants, as well as IDUAL, which support cyclic
planning without dedicated FRET outer loop. We do not run AO∗, as it is restricted to acyclic state spaces,
and for the same reason substitute ExhAO∗ by ExhDFS. As baseline, we consider topological VI. We con-
sider five dead-end pruning methods as before. We replace LMcut by ℎFF (Hoffmann and Nebel, 2001),
which identifies the exact same dead ends but often yields more informative cost-to-goal estimates (useful
for tie-breaking). We did not useℎFF before because its cost-to-goal bounds (except for dead-end detection)
are not guaranteed to be admissible, and thus not suited for pruning against the remaining budget. Each
heuristic search algorithm is tested with up to 4 different tie-breaking strategies. We use the deterministic-
bisimulation (DB) reduced state space again with VI. Given the deterministic bisimulation, additional
dead-end pruning is not needed.

We consider all three goal-probability objectives. Running all parameter combinations would yield a total
of 4791 possible configurations. As before, not all of these are interesting, and we instead organize our
experiment in terms of parts focusing on issues of interest. We follow roughly the same structure as in
the acyclic part. Specifically, we have parts i. on MaxProb, ii. on AtLeastProb and ApproxProb objective
parameters, and iii. on tie-breaking strategies. We combine the discussion of ii. and iii. into a single sub-
section below, and integrate an illustration of anytime behavior alongside. Table 16.6 provides an overview
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# Total

i. Search Algorithms & Pruning in MaxProb 241

Search algorithms: • VI; • ExhDFS; • LRTDP|U (×3); • DFHS|U (×14×3); • IDUAL; and • VI
on DB

Dead-end pruning: • disabled; • ℎFF; • PDB; and • M&S with 𝑁 ∈ { 50𝑘,∞ }
Tie-breaking: default

ii. AtLeastProb and ApproxProb Objective Parameters 29

Search algorithms: • VI; • ExhDFS; • LRTDP|U (×3); • LRTDP|LU (×3); • DFHS|U (×1, best
from i., ×3); • DFHS|LU (×1×3); and • IDUAL

Dead-end pruning: ℎFF

Tie-breaking: default

iii. Tie-Breaking Strategies on AtLeastProb and ApproxProb 93

Search algorithms: • VI; • ExhDFS; • LRTDP|U (×3); • LRTDP|LU (×3); • DFHS|U (×1×3);
• DFHS|LU (×1×3); and • IDUAL

Dead-end pruning: ℎFF

Tie-breaking: all (• 1; • 3; • 3; • 4; • 3; • 4; and • 1)

Table 16.6.: Overview of experiments on the cyclic benchmark part. LRTDP and DFHS are executed in three variants:
wrapped in FRET-𝑉 vs. wrapped in FRET-𝜋 vs. using the trap-aware (TA) extensions. In ii. and iii., the heuristic
search configurations are doubled because AtLeastProb vs. ApproxProb result in different algorithm configurations
(using different termination criteria).

of tested configurations.

Search Algorithms & Pruning Methods in MaxProb

We evaluate the trap-aware versions of LRTDP and DFHS separately at the end of this sub-section, and
for the time being concentrate on the more fundamental difference between the two FRET variants. Ta-
ble 16.7 and Table 16.8 provide MaxProb coverage results for the remaining algorithm configurations.
More specifically, Table 16.7 shows the results for a selection of different DFHS instantiations. A compar-
ison of all variants is available in Appendix A.2. For space reasons, we do not include results for M&S
pruning. Moreover, as there were almost no coverage differences between the DFHS configurations for
FRET-𝑉 , we do not vary the FRET variant here. Table 16.8 complements Table 16.7, showing results for
all pruning functions, the remaining search algorithms, and both FRET variants. For convenience, we also
include the overall best-performing DFHS configuration, HDP. We omit the M&S results for IDUAL whose
performance relative to the other dead-end detection methods is identical to the other heuristic search
algorithms.
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FRET-𝜋 DFHS|U
VI LABEL

BW FW BW FW
NONE TIP NONE INC NONE TIP NONE INC TIP ∪ INC

Domain # – ℎFF PDB – ℎFF PDB – ℎFF PDB – ℎFF PDB – ℎFF PDB – ℎFF PDB – ℎFF PDB – ℎFF PDB – ℎFF PDB

IPPC Benchmarks
Blocksw 30 9 22 17 9 16 14 9 22 18 9 22 18 9 22 18 9 16 14 9 22 18 9 22 18 9 16 14
Boxw 15 0 7 5 0 5 4 0 7 5 0 7 5 0 7 5 0 5 4 0 7 5 0 7 5 0 5 4
Drive 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
Elevators 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
ExpBloc 30 10 25 16 10 26 16 10 25 16 10 26 16 10 25 16 10 27 16 10 25 16 10 28 16 10 27 16
Random 15 5 14 11 5 13 11 5 14 11 5 14 11 5 14 11 5 14 11 5 14 11 5 14 11 5 14 11
RecTire 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
Schedule 30 6 10 10 6 10 10 6 10 10 6 10 10 6 10 10 6 10 10 6 10 10 6 10 10 6 10 10
SeaResc 15 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 5 5 5 5 6 6 5 5 6
Tirew 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
Zenotra 30 4 10 8 4 8 8 4 10 9 4 10 9 4 10 9 4 8 8 4 10 9 4 10 9 4 8 8∑ IPPC 224 98 152 131 98 142 127 98 152 133 98 153 133 98 152 133 98 144 128 98 152 133 98 156 134 98 144 128

Canadian RCP Benchmarks
NoMyst 10 4 5 5 0 4 4 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5
Rovers 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
TPP 10 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9 8 8 8∑ RCP 30 22 23 23 18 22 22 22 23 23 22 23 23 22 23 23 22 23 23 22 23 23 22 24 24 22 23 23

Table 16.7.: Cyclic planning. MaxProb coverage for a representative selection of DFHS configurations; showing only
the dominating FRET version, FRET-𝜋𝑈 . Best results in bold. DFHS parameters abbreviated as in Table 16.2. ILAO∗
corresponds to the configuration VI/BW/TIP; HDP corresponds to LABEL/FW/INC; and our new LILAO∗ variant to
LABEL/BW/TIP. Dead-end pruning variants: “–” none, else based on ℎ = ∞. Default tie-breaking strategy.

Consider first the results for the different DFHS|U variants in Table 16.7. Differences are even less pro-
nounced than in the acyclic case. Yet, similarly to before, the LABEL based termination check has a slight
advantage over termination by VI. In contrast to the acyclic case, cutting off the exploration at tip states is
detrimental overall, with negative effects on coverage in Blocksworld, Boxworld, Random, Zenotravel, and
NoMystery. It turns out that the four former domains actually contain no dead ends. In this case, one DFHS
run until convergence does nothing but completely exploring a single policy; values do not change, and
traps are removed only after convergence. The cutoffs merely increase the number of (mostly redundant)
iterations until the policy is fully explored. Cutting off the exploration at 𝜖-inconsistent states does not
suffer from the same problem, as there are no inconsistent states, so it never applies. On the domains with
dead ends, the cutoffs can however still be useful. This is most notable in ExplodingBlocks. The additional
FW updates have a very slim advantage over doing backward updates (BW) only; its main benefit being
the support of cutoffs at 𝜖-inconsistent states. Given again the marginal differences between the different
DFHS variants, we will consider a single representative in the remaining discussion. Contrary to the acyclic
case, we choose HDP, which avoids the TIP cutoff bottleneck.

Consider now Table 16.8. Thanks to early termination, ExhDFS is able to improve coverage over VI in 4
out of the 14 domains. Running VI on the deterministic-bisimulation reduced state space was not really
effective in any case. Akin to the acyclic case, both LRTDP|U and the chosen DFHS|U variant perform
equally well; and IDUAL cannot really hold on to the performance of the other heuristic search algorithms.
But, the most striking result here by far is that FRET-𝜋 significantly outperforms its competitors. While
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FRET-𝑉 FRET-𝜋
VI exhDFS LRTDP|U HDP|U LRTDP|U HDP|U idual VI

M&S M&S M&S M&S M&S M&SDomain # – ℎFF

PD
B

N ∞
– ℎFF

PD
B

N ∞
– ℎFF

PD
B

N ∞
– ℎFF

PD
B

N ∞
– ℎFF

PD
B

N ∞
– ℎFF

PD
B

N ∞
– ℎFF

PD
B on

DB

IPPC Benchmarks
Blocksw 30 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 22 18 12 9 9 22 18 12 9 9 9 9 9
Boxw 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 5 0 0 0 7 5 0 0 0 0 0 0
Drive 15 15 15 15 15 8 15 15 15 15 8 15 15 15 15 8 15 15 15 15 8 15 15 15 15 8 15 15 15 15 8 15 15 15 8
Elevators 15 15 15 15 15 5 15 15 15 15 5 15 15 15 15 5 15 15 15 15 5 15 15 15 15 5 15 15 15 15 5 13 13 13 5
ExpBloc 30 9 11 10 10 7 9 10 10 10 7 10 14 12 10 7 10 14 12 10 7 10 26 16 10 7 10 28 16 11 7 8 18 11 7
Random 15 1 1 1 1 1 2 2 2 2 1 5 2 4 3 1 5 2 4 3 1 5 14 11 5 1 5 14 11 5 1 5 5 5 0
RecTire 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
Schedule 30 7 7 7 7 7 6 6 6 6 6 6 10 10 10 7 6 10 10 10 7 6 10 10 10 7 6 10 10 10 7 7 10 10 6
SeaResc 15 6 6 6 6 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 3 3 3 5
Tirew 15 14 14 14 14 12 15 15 15 15 12 15 15 15 15 12 15 15 15 15 12 15 15 15 15 12 15 15 15 15 12 15 15 15 12
Zenotra 30 7 7 7 7 7 8 8 8 8 8 4 8 6 7 8 4 8 6 7 8 4 10 9 8 8 4 10 9 8 8 5 5 5 6∑ IPPC 224 97 99 98 98 76 99 100 100 100 76 98 107 105 103 76 98 107 105 103 76 98 153 133 109 76 98 156 134 111 77 94 107 100 72

Canadian RCP Benchmarks
NoMyst 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 5 5 5 5 4 5 5 5 5 4 5 5 5 5 0 0 0 5
Rovers 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 8 10 10 10
TPP 10 8 8 8 8 7 10 10 10 10 7 6 6 6 6 6 6 6 6 6 6 8 9 9 8 6 8 9 9 8 6 2 2 2 6∑ RCP 30 23 23 23 23 22 25 25 25 25 22 21 21 21 21 21 20 21 21 21 21 22 24 24 23 21 22 24 24 23 21 10 12 12 21

Table 16.8.: Cyclic planning. MaxProb coverage for the remaining search algorithms, varying the FRET variant and
dead-end pruning method. Best results in bold. The overall best DFHS variant, HDP, is included for ease of reference.
Abbreviations as in Table 16.7; “M&S” dead-end pruning via merge-and-shrink with size bound 𝑁 = 50𝑘 and no
size bound∞. “on DB”: run on bisimulation-reduced state space. Default tie-breaking strategy.

this holds to a small extent even for the trivial value function initialization, its lead becomes substantial
when dead-end pruning is enabled. FRET-𝑉 does not nearly benefit as much from the heuristic functions;
regardless of the underlying heuristic search algorithm.

Among the different dead-end pruning methods, ℎFF has a clear lead. That lead is small but consistent for
the search algorithms other than the FRET-𝜋 variants (with advantages primarily due to ExplodingBlocks).
The lead is significant for the FRET-𝜋 variants, where ℎFF outclasses the other heuristics on multiple do-
mains. ℎFF is especially effective on Blocksworld, Boxworld, ExplodingBlocks, Random, and Zenotravel.
Now, recall however that of those 5 domains, ExplodingBlocks is the only one with dead ends. Thus, the
benefit of ℎFF here is actually not attributed entirely to its stronger dead-end detection capabilities. Indeed,
this brings into focus a FRET implementation detail that turns out to be particularly important. To facilitate
the implementation of our tie-breaking strategies, we order states in our trap representation by increasing
ℎ value (according to the ℎ used for dead-end detection). Trap-leaving transitions are processed following
the order of the source states in the trap, biasing the (default) policy selection towards source states with
smaller ℎ values – thus states, deemed to be closest to the goal. The main advantage of ℎFF lies in offering
a particularly strong guidance during policy action selection while at the same time causing less overhead
than its competitors. The “blind” configurations (not using any heuristic for dead-end pruning) in contrast
order the trap states arbitrarily, so for the dead-end free domains, they reflect exactly the results of when
this feature is disabled. On the domains with dead ends, the trap state order had only a marginal impact.
On those domains, disabling the ordering feature yields exactly the same coverage results.
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Figure 16.5.: Cyclic MaxProb planning. Per-instance comparison between FRET-𝜋 with LRTDP|U (𝑦-axes) and VI
respectively IDUAL (𝑥 -axes), with and without pruning using ℎFF. Top: search space size (number of states visited).
Bottom: runtime in seconds. Default tie-breaking strategy. “oom” represents out of memory; “to” out of time.

As before, we shed additional light on the coverage results through search space size and runtime data.
Figure 16.5 compares the search space sizes for LRTDP|U with FRET-𝜋 vs. VI and IDUAL. As evident from
part (a) and (b) of this figure, the non-trivial value initialization using ℎFF is useful, but gains of up to 3
orders of magnitude over VI are possible even without it.

Table 16.9 provides aggregate search space size and Table 16.10 aggregate runtime data. No data is shown
for the configuration using FRET-𝑉 with HDP|U as, like coverage, that data is almost identical to that of
FRET-𝑉 with LRTDP|U: the search space sizes are exactly the same, and runtimes differ only by a few
seconds. Table 16.9 confirms the general superiority of FRET-𝜋 also in terms of search space size. It visits
significantly less states than its competitors, and this consistently across the benchmark set. Closest to the
performance of FRET-𝜋 is IDUAL. Yet, as shown in Figure 16.5c, IDUAL still frequently considers orders of
magnitude more states. The search space size advantage is typically, but not always, reflected on runtime.
A notable exception is NoMystery (not shown in the table due IDUAL not solving any instance, but visible in
Figures 16.5d and 16.5e), where FRET-𝜋 requires excessively many iterations to remove all traps, resulting
in a substantial slow-down, despite the smaller search space.

Taking aside the aforementioned impact on policy action selection, the effect of the heuristics in terms of
dead-end pruning is considerably smaller than in the acyclic case. This can be clearest seen for VI. Sub-
stantial search space reductions can be observed only in a single domain, ExplodingBlocks. In all other
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Figure 16.6.: Cyclic MaxProb planning. Comparison between FRET and VI for IPPC’08 ExplodingBlocks, as shown by
Kolobov et al. (2011). Left: search space size (number of states visited). Right: runtime in seconds. Both are shown
as a function of the IPPC instance index. Different variants included for comparison. The data for the “Kolobov”
entries is taken from their paper (the code being not available anymore), hence the runtime comparison is modulo
the different computational platforms, and should be treated with care. All shown FRET configurations (including
Kolobov’s variant) use LRTDP. Default tie-breaking strategy.

domains, improvements are usually moderate, or even non-existing. The evaluation and construction over-
head becomes the dominating factor in the comparison between the different heuristic functions.

ExplodingBlocks also happens to be the single domain Kolobov et al. (2011) experimented with. Fig-
ure 16.6 provides a detailed comparison to Kolobov et al.’s data, which is the only state of the art measure
provided by previous work. We use here the exact runtime and search space size data reported by Kolobov
et al., as their source code is not available anymore.

Kolobov et al. ran VI with no pruning vs. FRET-𝑉 using LRTDPwith pruning based on SIXTHSENSE (Kolobov
et al., 2010a). They observed a coverage of 4 for the former and of 6 for the latter, identical with our results
for VI without pruning; our FRET-𝑉 configuration using LRTDP with ℎFF solves one more instance (note
that the results reported in Table 16.8 are aggregated over the IPPC’06 and IPPC’08 versions). To give
more details, Figure 16.6 shows the number of states visited, and the total runtime, in terms of plots over
IPPC instance index as done by Kolobov et al. (2011).

Consider search space size, the left plot in Figure 16.6. Kolobov’s VI and our VI without pruning visit
the exact same number of states. The substantially better performance of VI with ℎFF dead-end pruning
shows that the omission of Kolobov et al.’s (2011) study, using dead-end pruning in FRET but not in VI,
can possibly obfuscate the conclusions regarding the effect of heuristic search vs. the effect of the state
pruning itself. Namely, equippedwithℎFF pruning, VI becomes almost as effective as Kolobov’s FRET variant
using the even stronger dead-end detector SIXTHSENSE. In terms of runtime, the picture on the right-hand
side of Figure 16.6, it appears to be even more effective, but SIXTHSENSE’s information sources are also
more time-intensive than ℎFF. Moreover, keep in mind the different computational environments, so this
comparison must be taken with a grain of salt. Moving back to our FRET-𝑉 variant, the picture however
again changes. Being somewhat more effective than Kolobov’s variant (both in terms of search space size
and runtime data), our FRET-𝑉 implementation clearly outperforms VI using the same pruning. All in all,
given the clarity of FRET-𝜋 ’s advantage in terms of both metrics, what we can certainly take away is that
this variant of FRET substantially improves over the previous state of the art.

As promised, we finally inspect the trap-aware (TA) variants of LRTDP and DFHS. Figure 16.7 shows the
data. We compare TA-LRTDP|U and TA-HDP|U to LRTDP respectively HDPwrapped in FRET-𝜋 , without and
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LRTDP|U HDP|U
– ℎFF – ℎFF

Domain # FRET TA FRET TA FRET TA FRET TA

IPPC Benchmarks
Blocksw 30 9 9 22 22 9 9 22 22
Boxw 15 0 2 7 9 0 0 7 12
Drive 15 15 15 15 15 15 15 15 15
Elevators 15 15 15 15 15 15 15 15 15
ExpBloc 30 10 10 26 28 10 10 28 28
Random 15 5 5 14 15 5 5 14 15
RecTire 14 14 14 14 14 14 14 14 14
Schedule 30 6 6 10 10 6 6 10 10
SeaResc 15 5 5 5 6 5 5 6 6
Tirew 15 15 15 15 15 15 15 15 15
Zenotra 30 4 5 10 14 4 5 10 12∑ IPPC 224 98 101 153 163 98 99 156 164

Canadian RCP Benchmarks
NoMyst 10 4 5 5 5 4 5 5 5
Rovers 10 10 10 10 10 10 10 10 10
TPP 10 8 10 9 10 8 10 9 10∑ RCP 30 22 25 24 25 22 25 24 25
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Figure 16.7.: Cyclic MaxProb planning. Comparison between FRET-𝜋 and the trap-aware (TA) variants of LRTDP
and HDP. (a) provides MaxProb coverage data. Best results in bold. “FRET” heuristic search wrapped in FRET-𝜋 ,
“TA” trap-aware variants without FRET outer loop. Right: per-instance comparison between the FRET-𝜋 (𝑥 -axes)
and trap-aware (𝑦-axes) variants, using ℎFF pruning. (b) and (c): search space size (number of states visited). (d)
and (e): runtime (in seconds). Default tie-breaking strategy. “oom” represents out of memory; “to” out of time.

with (ℎFF) pruning. In terms of coverage, Figure 16.7a, the TA variants further improve the already strong
FRET-𝜋 baselines, doing so consistently, with significant improvements in Boxworld, ExplodingBlocks (for
LRTDP), and Zenotravel. The plots on the right-hand side Figure 16.7 elucidate the reasons for the latter
via search space size and runtime comparisons. Consider search space size, Figures 16.7b and 16.7c. The
FRET-𝜋 and TA variants are almost indistinguishable, which makes sense given that the latter differs from
the former basically only in interleaving trap analysis with heuristic search instead of keeping the two pro-
cesses separate. That this integration is however beneficial can be clearly seen in Figures 16.7d and 16.7e.
Avoiding running heuristic search from scratch after every trap analysis step, and with that the redundant
work associated with each such call, has a tremendous effect on runtime. Runtime reductions of 1 order of
magnitude are common, and this goes up to 2 orders of magnitude in some cases. The runtime differences
correlate directly with the number of FRET-𝜋 iterations.

AtLeastProb and ApproxProb Objective Parameter Analysis, Tie-Breaking Strategies, and Anytime Behavior

For the weaker objectives AtLeastProb and ApproxProb, as before we examine coverage as a function of
𝜃 respectively 𝛿 . Figures 16.8a and 16.8b show the data. Figures 16.8c and 16.8d compare the different
tie-breaking strategies in AtLeastProb for the most competitive algorithms from parts (a) and (b). We do
not show results for HDP, which performs almost identically to LRTDP.
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VI
exhDFS [default] exhDFS [ℎ-bias]
exhDFS [helpful]
FRET-𝜋 LRTDP|LU [default] FRET-𝜋 LRTDP|LU [gap]
FRET-𝜋 LRTDP|LU [ℎ-bias] FRET-𝜋 LRTDP|LU [helpful]
TA-LRTDP|LU [default] TA-LRTDP|LU [gap]
TA-LRTDP|LU [ℎ-bias] TA-LRTDP|LU [helpful]

Figure 16.8.: Cyclic planning. Total coverage as a function of the objective parameter value for different goal-
probability objectives and algorithm configurations. Comparison of different search algorithms, using the default
tie-breaking strategy, on (a) AtLeastProb and (b) ApproxProb. (c) and (d) compare different tie-breaking strategies
on AtLeastProb. Abbreviations as in Figure 16.3. All configurations using ℎFF pruning.

The overall behavior in Figure 16.8 is similar to that for the acyclic case. ExhDFS has a surprisingly strong
performance. While not entirely reaching the performance of FRET-𝜋 , it is able to beat FRET-𝑉 for the 𝜃
values up to 0.9, due to aggressive early termination; and ExhDFS maintains a lead over the VI baseline
across the board. In the range from 0.9 to 1, FRET-𝑉 is much stronger due to negative early termination
on the goal-probability upper bound. FRET-𝜋 and the TA variant perform similarly, with a slight edge for
FRET-𝜋 , which tends to be more effective on raising the lower bound. When maintaining both an upper
and a lower bound, the FRET configurations again exhibit an easy-hard-easy pattern due to the advantages
of early termination. That this pattern is somewhat less pronounced for the FRET-𝜋 variants is an artifact
of the benchmark set, combined performance loss at some point in the scaling. In each domain, there is
an instance number 𝑥 so that, below 𝑥 , FRET-𝜋 solves MaxProb, while above 𝑥 neither𝑉 𝐿 (𝑠I) nor𝑉𝑈 (𝑠I)
can be improved at all, remaining 0 respectively 1 up to the time/memory limit.

The effect of the tie-breaking strategies is almost identical to the acyclic case. ExhDFS benefits the most
from non-default tie-breaking. Biasing the DFS exploration towards states with smallerℎ values has proved
particularly effective in quickly increasing the lower bound, fostering early termination. The helpful-actions
bias is still beneficial, yet to a smaller extent, providing less fine granular guidance. As opposed to the
acyclic case, we did not experiment with the breadth-first exploration bias, which is incompatible with the
ExhDFS search algorithm. Theℎ-bias is also beneficial for TA-LRTDP. The other tie-breaking strategies have
only a marginal effect on the development of the bounds in LRTDP in either variant. Due to the additional
overhead, they negatively affect the performance, if at all.

Figure 16.9 exemplifies anytime behavior of ExhDFS and LRTDP|LU with FRET-𝜋 for ExplodingBlocks. The
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Figure 16.9.: Cyclic planning. Anytime behavior of ExhDFS and LRTDP|LU with FRET-𝜋 , with and without pruning,
and using the default and ℎ-bias tie-breaking strategies. Left: IPPC’08 ExplodingBlocks instance 4. Right: instance
15.

right plot considers the largest instance feasible when using pruning. The left plot considers the second-
largest instance feasible without pruning: on the largest one feasible without pruning, the maximum goal
probability is 1 so the anytime curve for 𝑉𝑈 is not interesting. We included plots for both default and
ℎ-bias tie-breaking to show the impact of that strategy on the development of 𝑉 𝐿 bound (we did not vary
the tie-breaking strategy in Figure 16.4 for acyclic planning, where the difference between the strategies
was negligible and thus not interesting). In the instance on the right-hand side of Figure 16.9, ExhDFS
timed out before raising its 𝑉 𝐿 bound once.

16.4. Occupation-Measure and Operator-Counting Heuristics for Goal Probability

We finally compare the goal-probability heuristics from Chapter 14 to dead-end pruning. We primarily
focus on MaxProb analysis. We also experimented with the AtLeastProb and ApproxProb objectives, for
which the relative behavior of the different configurations was the same. We next describe the experiment
setup, and specify what heuristic variants we run exactly. We then discuss the results.

16.4.1. Experiment Setup

We consider cyclic as well as acyclic planning as before. Note, however, that none of our goal-probability
heuristics provide native support of an explicit budget. We diverge in the following from our previous ex-
periments on budget-limited planning in that we no longer consider the budget to be an explicit algorithm
parameter, and instead enforce it at the level of the PPDDL model files, following an encoding akin to the
original resource-constrained planning benchmarks (Nakhost et al., 2012).

We consider two goal-probability occupation-measure heuristics: 𝐻 gpom
atomic over the atomic projections, the

variant corresponding to Trevizan et al.’s (2017b) expected-cost heuristic ℎpom; and, to see how the heuris-
tic behaves for larger projections 𝐻 gpom

pairs over the projections onto all pairs of variables. Moreover, we con-
sider two instances of the goal-probability operator-counting framework:𝐻 gpoc

pseq using only the probabilistic
state equation, and 𝐻 gpoc

pseq+lm augmenting the state equation by landmark constraints. We do not consider
landmark constraints in isolation, which does not make sense for goal-probability objectives; these would
simply result in the trivial goal-probability bound 1 for all states.

The landmarks for the landmark constraints are generated anew for every state via LMcut (Helmert and
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Domshlak, 2009).4 When LMcut returns ∞, i.e., identifies a dead end, we prune the state. In order to
estimate the gains from the landmark constraints over just the additional dead-end pruning capability, we
additionally tested the goal-probability operator-counting variant, using the probabilistic state equation
without landmark constraints, in combinationwith dead-end pruning through LMcut. As the landmarks are
not needed for the latter configuration, we instead use, as in our previous experiments,ℎFF (Hoffmann and
Nebel, 2001) which identifies the exact same dead ends as LMcut while being often cheaper to compute.

We compare all these heuristics to the best-performing pruning methods from Section 16.3: dead-end
pruning via ℎFF (Hoffmann and Nebel, 2001) and PDB (Haslum et al., 2007). We include the deterministic
state-equation heuristic ℎseq (Bonet, 2013) as an additional dead-end pruning baseline.

We run all heuristics and pruning methods with LRTDP, LILAO∗, and IDUAL. On the cyclic benchmarks, we
use the TA variants of LRTDP and LILAO∗.5 We also include results for FRET-𝑉 , which may benefit espe-
cially from the (potentially) more accurate value-function initialization. Moreover, we consider a variant
of Trevizan et al.’s (2017b) i2dual, an enhanced combination of IDUAL and the projection occupation-
measure heuristic over atomic projections, which embeds the heuristic computation directly into IDUAL’s
LPs. Trevizan et al. showed in their experiments that this embedding creates a synergistic interplay be-
tween heuristic and search, typically resulting in a much stronger performance than using the heuristic in
IDUAL via separate heuristic LPs.

To briefly summarize this integration, recall that IDUAL’s LP objective function encodes the “steady-state
probability distribution” over frontier and goal states that is induced by the policy underlying IDUAL’s
occupation-measure LP variables. The goal states are weighted by their exact 𝑉 ∗-value, 1, while the fron-
tier states are weighted according to the provided goal-probability heuristic 𝐻 . In other words, IDUAL’s
objective function simply represents the expected value of the policy that its LP variables represent, as
per the current frontier states and the provided 𝐻 bounds. Now, observe that given any set of probability-
weighted states, the expected 𝐻 gpom

atomic value can be computed via just a single LP (omitting atomic in the
following). To do so, one only needs to aggregate the given probability weights, computing for each
variable-value pair (fact) the sum of the probability weights of the states that contain that fact. The fact
probability weights must then only be plugged into the 𝐻 gpom LP by changing accordingly the bounds of
the goal (14.1d) and flow constraints (14.1c). From this, the integration of𝐻 gpom into IDUAL is straightfor-
ward. Both their LPs are merged. The set of states for which the expected heuristic value is to be computed
are IDUAL’s current frontier states. The probability weights associated with any one of them is given by the
sum over IDUAL’s occupation-measure LP variables representing a transition going into that frontier state;
and these accordingly yield 𝐻 gpom’s constraint bounds. Finally, the frontier-state part of IDUAL’s objective
function is replaced by 𝐻 gpom’s goal-probability LP variable 𝑣G , i.e., the variable that stores the expected
goal-probability estimate. For simplicity, we stick to the name i2dual to denote this integration. However,
keep in mind that our version differs from the one by Trevizan et al. (2017b), as we are considering goal-
probability maximization rather than expected-cost minimization. Lastly, notice that this integration is
actually not bound to the atomic occupation-measure projection heuristic, but in principle works for any
set of projections. However, we do not further explore this idea here.

4Given that the landmarks for different states are not necessarily related, the resulting goal-probability operator-counting
heuristic may not be monotone. We circumvent this issue by replacing the Bellman update operator by (�̂�𝑉 ) (𝑠) :=
min{𝑉 (𝑠), (𝑩𝑉 ) (𝑠) }. Notice that when starting from any upper bound, the sequence of value functions produced by the
modified �̂� operator is again guaranteed to be monotonically decreasing (which is what we need).

5To avoid comparability issues stemming from the policy tie-breaking choices being affected by the trap state order (cf. Sec-
tion 16.3.2), we order the states in our trap representation by increasing ℎFF value in all configurations.
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Cyclic IPPC Benchmarks
Blocksw 30 9 9 9 9 9 4 9 9 9 9 22 22 22 19 9 23 19 22 9 9 9 9 9 4 9 9 9 25
Boxw 30 0 0 0 0 0 0 0 0 0 2 9 10 7 7 0 7 7 7 0 0 0 0 0 0 0 0 0 0
Drive 15 15 15 15 15 15 8 15 15 15 15 15 15 15 15 8 15 15 15 15 15 15 15 15 8 15 15 15 15
Elevators 15 15 15 15 15 15 10 15 15 15 15 15 15 15 15 15 15 15 15 13 13 13 13 13 10 13 13 13 15
ExpBloc 30 10 14 12 10 10 9 10 12 14 10 28 16 10 10 10 10 24 25 8 18 11 9 8 10 9 18 18 9
Random 15 5 2 4 2 2 1 2 2 2 5 15 11 14 12 2 14 13 14 5 5 5 5 4 1 5 5 5 10
RecTire 14 14 14 14 14 13 10 14 14 14 14 14 14 14 13 10 14 14 14 14 14 14 14 13 10 14 14 14 13
Schedule 30 6 10 10 7 10 7 10 10 10 6 10 10 6 10 7 10 10 10 7 10 10 6 10 6 10 10 10 7
SeaResc 15 5 5 5 5 5 3 5 4 5 5 6 6 5 5 3 5 5 6 3 3 3 3 3 3 3 3 3 3
Tirew 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 14 15 15 15 15
Zenotra 30 4 8 6 8 6 1 8 5 8 5 14 15 12 10 3 12 9 12 5 5 5 5 5 1 5 4 5 8∑ IPPC 239 98 107 105 100 100 68 103 101 107 101 163 149 135 131 82 140 146 155 94 107 100 94 95 67 98 106 107 120

Canadian RCP Benchmarks without Budget Limit
NoMyst 10 5 5 5 5 5 0 5 5 5 5 5 5 5 5 0 5 5 5 0 0 0 0 0 0 0 0 0 0
Rovers 10 10 10 10 10 10 8 10 10 10 10 10 10 10 10 10 10 10 10 8 10 10 8 8 8 8 10 10 8
TPP 10 6 6 6 6 6 1 6 6 6 10 10 10 10 10 2 10 10 10 2 2 2 2 2 2 2 2 2 2∑ RCP 30 21 21 21 21 21 9 21 21 21 25 25 25 25 25 12 25 25 25 10 12 12 10 10 10 10 12 12 10

Acyclic IPPC Benchmarks
TriTire 10 10 10 10 10 10 6 10 10 10 10 10 10 10 10 3 10 10 10 10

IPPC Benchmarks with Compiled Budget Limit
Blocksw-b 180 54 54 61 63 51 0 54 54 54 54 54 54 64 54 0 54 54 54 23
Drive-b 90 90 90 90 82 56 20 82 76 85 89 90 90 81 56 20 85 76 86 62
Elevators-b 90 79 75 78 62 46 5 61 58 61 42 42 43 45 42 3 42 47 42 44
ExpBloc-b 150 62 83 103 71 57 6 64 85 87 44 81 84 66 53 6 58 85 85 47
Random-b 72 37 36 44 50 48 11 48 48 48 38 38 43 48 41 11 42 42 43 45
RecTire-b 36 18 18 18 12 10 1 16 13 16 13 18 18 12 9 1 16 13 16 12
Schedule-b 138 62 60 62 60 56 36 60 60 60 58 59 59 60 56 36 59 59 58 44
SeaResc-b 90 71 59 84 49 38 6 52 49 56 30 34 60 34 33 6 34 35 35 17
Tirew-b 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
TriTire-b 60 49 43 57 46 29 15 37 35 38 29 32 48 46 29 15 34 34 34 25
Zenotra-b 78 42 21 42 12 1 0 7 6 9 3 7 25 9 0 0 3 5 6 0∑ IPPC-b 1092 654 629 729 597 482 190 571 574 604 490 545 614 555 463 188 517 540 549 409

Canadian RCP Benchmarks with Compiled Budget Limit
NoMyst-b 60 20 10 53 0 0 0 0 3 6 0 2 25 0 0 0 0 2 2 0
Rovers-b 60 51 49 58 37 18 0 38 41 45 9 20 35 14 10 0 11 21 20 1
TPP-b 60 26 18 47 3 1 0 2 3 4 1 2 15 2 1 0 1 2 2 0∑ RCP-b 180 97 77 158 40 19 0 40 47 55 10 24 75 16 11 0 12 25 24 1

Pentesting Benchmarks
Pentest-b 90 61 58 68 55 46 1 57 58 58 37 47 48 48 44 1 50 50 50 28
Pentest 15 9 9 9 9 9 8 9 9 9 7 7 7 7 8 8 8 8 8 5∑ Pentest 105 70 67 77 64 55 9 66 67 67 44 54 55 55 52 9 58 58 58 33

Table 16.11.: MaxProb coverage on cyclic (top) and acyclic (bottom) benchmarks. Best results in bold. FRET-𝑉 results
not shown for the acyclic part, where FRET is generally not needed. “LRTDP” on the cyclic part shows the results of
TA-LRTDP. Comparison of different goal-probability heuristics: “–” trivial value initialization (1 everywhere) and no
pruning; “prune” dead-end pruning by either ℎFF, PDB, as before, or “seq” the deterministic state-equation heuristic;
“gpom” goal-probability occupation-measure heuristic over the atomic projections “atomic”, and over the projections
onto all pairs of variables “pairs”; “gpoc” goal-probability operator-counting heuristic, all configurations use the
probabilistic state-equation as basis, “pseq” only that, “pseq+lm” with landmarks constraints using landmarks from
LMcut, “pseq/ℎFF” combines pseq with dead-end pruning by ℎFF. “i2dual” embedding of 𝐻 gpoc

atomic directly into IDUAL.
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16.4.2. Discussion

Table 16.11 provides MaxProb coverage data for the cyclic (top) and acyclic (bottom) benchmarks. For
space reasons, we do not show results for LILAO∗, whose performance is overall close to that of LRTDP (cf.
Section 16.3). As in our previous experiments, FRET-𝑉 LRTDP is completely outclassed by the TA-LRTDP
variant. We hence focus on the latter in the following.

Before we dive into the heuristics’ evaluation, we need to insert a general remark regarding the budget
compilation. Note that LRTDP without pruning nor heuristic solves considerably less instances than the
explicit-budget variant in Table 16.3. While the benchmarks are semantically equivalent, the budget com-
pilation inflates the syntactic planning task size, which (a) induces a considerable overhead in grounding,
i.e., in processing the budget-extended PPDDL model files, and furthermore (b) results in a slow down
of frequently used operations like the transition computation due to a significantly increased number of
actions. Moreover, notice that the difference between the dead-end pruning configurations in Table 16.11
and the budget-pruning ones in Table 16.3 is even larger. This indicates that the explicit knowledge of the
budget is exploited more effectively for pruning by the latter configurations compared to the completely
automatically computed dead-end information when the budget is not explicitly provided.

Consider now the advanced goal-probability heuristics in Table 16.11. In terms of raw coverage, they are
not able to compete with dead-end pruning. The overhead associated with the heuristic computations
could typically not be compensated by more informative bounds. The heuristic computation becomes in
particular a bottleneck in the budget-limited part. In 35% of the cyclic benchmark instances and about
70% of the acyclic instances, the computation of 𝐻 gpom

pairs for the initial state did not even finish within the
30 minutes time limit. While in significantly less cases, the computation of𝐻 gpom

atomic and the two probabilistic
operator-counting heuristics for the initial state did still exceed the time limit in 5% and 2% of the acyclic
instances respectively. Coverage differences between the different heuristics directly reflect the magnitude
of their overhead.

The most surprising result from Table 16.11 is i2dual. While on the acyclic part i2dual also suffers from
exceedingly expensive LP solver calls, on the cyclic IPPC benchmarks, the embedding of𝐻 gpom

atomic into IDUAL
lifts the (hopeless) performance of IDUAL to the level of the overall best configuration, TA-LRTDP with
ℎFF pruning, on multiple domains. Note in particular that i2dual achieves substantially better coverage
results than the IDUAL configuration with separate 𝐻 gpom

atomic. We emphasize that the synergy between IDUAL
and 𝐻 gpom

atomic in i2dual goes beyond a more effective use of heuristic information. The most drastic coverage
improvements are in Blocksworld, Elevators, Random, and Zenotravel. As previously noted, Blocksworld,
Random, and Zenotravel are dead-end free, so the goal-probability bounds make no difference here (are
1 throughout). We speculate that the integration of 𝐻 gpom

atomic into IDUAL’s LPs guides the LP solver by in-
troducing a distinction between states for which an optimal policy is already available in IDUAL’s search
space, and states for which this is not the case. Presumably, the LP solver prefers visiting the former states
only, as a non-zero probability of reaching IDUAL’s frontier states entails finding a non-0 solution to the
embedded 𝐻 gpom

atomic LP, and thus requires additional computations.

Even though at the end of the day, none of the tested goal-probability heuristics payed off, in some domains
they still yielded much better search guidance compared to dead-end pruning. Table 16.12 presents per-
domain search space size statistics averaged over the per search algorithm commonly solved instances.
We omitted the dead-end free domains. As when using 𝐻 gpom

pairs , it is typically only possible to finish the
smallest instances, we additionally provide in Table 16.13 data aggregating the results over the instances
commonly solved by the shown configuration, omitting 𝐻 gpom

pairs and its solved instances. (We also omitted
𝐻 gpom

atomic from this comparison, see next.)
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LRTDP idual
prune gpoc prune gpoc

Domain # – ℎFF PD
B

se
q

ps
eq

ps
eq

+
lm

ps
eq

/ℎ
FF

# – ℎFF PD
B

se
q

ps
eq

ps
eq

+
lm

ps
eq

/ℎ
FF

i2 d
ua

l

Cyclic IPPC Benchmarks
Drive 7 1.08k 0.73k 0.78k 1.1k 0.8k 0.71k 0.73k 7 1.07k 0.72k 0.77k 1.07k 0.8k 0.7k 0.72k 1.01k
RecTire 4 0.92k 0.42k 92.25 0.68k 0.68k 0.65k 0.42k 3 0.82k 0.52k 0.24k 0.52k 0.52k 0.49k 0.52k 0.81k
SeaResc 2 1.51m 1.27m 1.27m 1.51m 1.51m 1.27m 1.27m
Tirew 1 2.92k 0.72k 6.57k 2.92k 2.92k 0.72k 0.72k 0.11k

Canadian RCP Benchmarks without Budget Limit
NoMyst 5 0.57m 0.2m 0.19m 0.21m 0.21m 0.16m 0.2m
TPP 8 1.73m 1.03m 1.05m 1.63m 1.63m 0.42m 1.03m

Acyclic IPPC Benchmarks
TriTire 4 0.45k 0.43k 0.43k 0.45k 0.45k 0.43k 0.43k 7 0.22m 0.31m 0.31m 0.22m 0.22m 0.31m 0.31m 6.37k

IPPC Benchmarks with Compiled Budget Limit
Blocksw-b 54 37.33k 36.73k 3.47k 5.28k 16.62k 16.25k 16.64k 23 11.15k 10.99k 0.68k 1.49k 8.28k 8.19k 8.26k 9.36k
Drive-b 56 10.0k 8.21k 7.46k 4.54k 8.31k 8.05k 8.07k 42 5.14k 4.13k 3.47k 2.08k 4.12k 3.97k 3.98k 4.93k
Elevators-b 53 55.42k 55.31k 41.6k 44.4k 53.52k 45.97k 53.4k 38 9.43k 7.7k 3.78k 5.76k 6.39k 3.71k 6.48k 1.21k
ExpBloc-b 54 1.92m 16.16k 1.28k 43.36k 85.56k 0.92k 1.08k 35 34.52k 1.28k 0.79k 4.51k 5.26k 0.86k 0.89k 7.96k
Random-b 25 28.59k 28.63k 2.93k 2.81k 2.35k 2.23k 2.35k 22 21.76k 51.65k 4.75k 6.5k 6.99k 4.06k 6.99k 1.88k
RecTire-b 11 2.94k 0.27k 0.14k 0.27k 0.27k 0.27k 0.27k 11 2.78k 0.31k 0.16k 0.32k 0.32k 0.3k 0.31k 0.98k
Schedule-b 24 54.33k 40.51k 12.74k 8.44k 37.53k 33.71k 37.54k 8 4.3k 2.85k 1.05k 1.26k 2.09k 2.06k 2.14k 6.48k
SeaResc-b 43 0.27m 0.25m 33.38k 0.27m 0.27m 0.17m 0.25m 11 9.29k 8.15k 2.25k 8.7k 8.95k 6.29k 7.93k 9.34k
TriTire-b 20 0.1m 97.31k 5.0k 6.43k 70.55k 68.46k 68.53k 10 10.98k 10.29k 0.67k 0.92k 6.82k 6.61k 6.61k 8.53k
Zenotra-b 6 0.13m 67.44k 14.27k 0.1m 0.12m 67.32k 67.31k

Canadian RCP Benchmarks with Compiled Budget Limit
Rovers-b 37 0.33m 0.19m 59.87k 0.3m 0.34m 0.19m 0.19m 1 11.88k 4.67k 0.44k 10.64k 11.51k 4.56k 4.59k 12.35k
TPP-b 2 0.12m 78.31k 4.25k 47.15k 87.1k 71.67k 75.8k

Pentesting Benchmarks
Pentest-b 54 0.54m 0.21m 0.13m 0.13m 0.16m 0.16m 0.16m 27 15.36k 3.89k 2.55k 2.6k 3.02k 2.96k 2.99k 4.82k
Pentest 1 3.23m 2.87m 2.87m 2.87m 1.84m 1.83m 1.83m

Table 16.13.: Per-domain average MaxProb search space size. We aggregate the results for both search algorithms
separately, considering for each search algorithm only instances commonly solved by the shown heuristic/pruning
instantiations but not solved by 𝐻 gpom

pairs . Otherwise same setup as in Table 16.12 and abbreviations as in Table 16.11.
Best results among the individual search algorithms in bold. Results between the different search algorithms are not
directly comparable due to the aggregation over different instance sets.

In general, the search space size statistics for 𝐻 gpom
atomic and 𝐻

gpoc
pseq are identical for LRTDP, and almost identi-

cal for IDUAL. In fact, in most cases,𝐻 gpom
atomic and𝐻

gpoc
pseq resulted in the exact same goal-probability estimates.

If not, the difference was in the order of 10−16 to 10−15, i.e., the most-likely cause being floating-point pre-
cision errors. The little differences however still result in slight variations in IDUAL’s objective function. This
may affect the found LP solution, and therewith change IDUAL’s state expansion part. Similar to Trevizan
et al.’s (2017b) conjecture in the expected-cost setting, we surmise that both heuristics are theoretically
identical. Compared to 𝐻 gpom

atomic, 𝐻
gpoc
pseq ’s LP is much smaller, which explains the coverage difference.

Comparing 𝐻 gpoc
pseq with ℎseq dead-end pruning, the latter frequently achieves considerably smaller search

spaces. This is due to its stronger dead-end detection capability: ℎseq may return ∞ (identifies a dead
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end), although 𝐻 gpoc
pseq returns a non-zero goal-probability estimate. To understand why this can happen,

consider the following example task with initial state 𝑠I = { 𝑥 ↦→ 0, 𝑦 ↦→ 0 }, goal { 𝑥 ↦→ 1, 𝑦 ↦→ 1 }, and
two deterministic actions both with precondition { 𝑥 ↦→ 0, 𝑦 ↦→ 0 }, one with effect { 𝑥 ↦→ 1, 𝑦 ↦→ 2 },
and vice versa one with effect { 𝑥 ↦→ 2, 𝑦 ↦→ 1 }. The LP corresponding to ℎseq(𝑠I) is infeasible, i.e.,
ℎseq(𝑠I) = ∞, because both actions consume the initial state’s facts, which are available just once, while at
the same time both actions need to be executed once to produce every goal fact at least once. In contrast,
setting the actions’ probabilistic operator-counts to 1

2 yields a feasible solution to the 𝐻 gpoc
pseq (𝑠I) LP; the

initial state’s facts are consumed 1
2 +

1
2 = 1, and 𝐻 gpoc

pseq no longer insists in achieving all goal facts with
full certainty. As both goal facts are achieved 1

2 times, thus 𝐻 gpoc
pseq (𝑠I) = 1

2 . Conversely, however, by taking
into account probabilistic information, 𝐻 gpoc

pseq is able to return estimates < 1 for non dead ends, or dead
ends not recognized by ℎseq. This has proved beneficial in Pentest without budget limit.

Consider the effect of the landmark constraints. Using both 𝐻 gpoc
pseq (without landmarks) and ℎFF dead-

end detection for search guidance is almost equivalent to choosing for each instance the best of the two
standalone configurations. In some cases, the combination creates synergistic effects, showing in much
smaller search spaces compared to the individual components. This is most striking in ExplodingBlocks-b.
Comparing this 𝐻 gpoc

pseq dead-end pruning combination with the 𝐻 gpoc
pseq+lm, the latter frequently yields much

smaller state space sizes. Recall that the only difference between the two are the landmark constraints
in the latter’s operator-counting heuristic. This hence shows that the additional landmark constraints can
indeed be very beneficial in obtaining tighter goal-probability bounds. In particular, notice that 𝐻 gpoc

pseq+lm
yields the by far smallest search spaces on the cyclic Rovers and TPP domains.

Lastly, notice that although being the computationally most expensive heuristic in our comparison, 𝐻 gpom
pairs

also resulted in the smallest search spaces almost throughout the benchmark set, the only exception being
Canadian RCP domains.



17. Discussion

We close this part by briefly summarizing the presentedmaterial. Moreover, we discuss related and possible
future work as relevant to this part of the thesis.

17.1. Summary

Optimal goal-probability analysis in probabilistic planning is a notoriously hard problem, to the extent
that the amount of work addressing it is limited. In this part, we provided a comprehensive review of the
theoretical foundation. We examined weaker objectives that permit bounded sub-optimal solutions, and
developed a large design algorithm space featuring known, adapted, and new algorithms addressing these
problems. Our experimental evaluation clarified the empirical state of the art.

We considered explicit state-space search methods in the form of value iteration and heuristic search. A
major advantage of heuristic search is its potential to find an optimal solution without visiting the whole
state space. This is accomplished by guiding the value-update procedure along transitions greedy on the
current value function. Sub-optimal regions of the state space are implicitly ignored. We adapted different
well-known, as well as proposed a new family of heuristic search algorithms, equipped them with early
termination conditions exploiting the weaker goal-probability objectives, and we showed their correctness
under appropriate conditions.

To guarantee optimality, heuristic search requires an admissible initialization of the values, i.e., upper
bounds on the states’ goal probabilities. Yet, due to subtleties in the context of goal-probability analysis,
this can trap heuristic search into cycles, preventing it from converging to an optimal solution. In order to
remedy the situation, Kolobov et al. (2011) have proposed FRET, an iteration of multiple heuristic searches,
interleavedwith trap identification and removal steps.We revisited FRET in the form introduced by Kolobov
et al., and introduced a new variant. Both versions differ in the state space subgraph considered for the trap
analysis; the former explores all options greedy on the values provided by heuristic search, while the latter
restricts the analysis onto the policy returned by the search. We proved correctness of both variants by
reformulating, in terms of standard MDP notions, and extending the arguments provided by Kolobov et al.
Furthermore, we showed that the analysis conducted by this new FRET variant can be viewed as a natural
extension of solved-labeling mechanisms readily implemented by various heuristic search algorithms. As
a result, we obtained new algorithm variants that natively support goal-probability analysis for MDPs
in general, without the need of any FRET outer-loop. While our exposition focused on goal-probability
analysis specifically, the necessary changes can straightforwardly be extended to the more general class of
GSSPs (Kolobov et al., 2011).

Our experiments showed that heuristic search can be beneficial by itself, even if starting from the triv-
ial goal-probability upper bound 1 everywhere. To further improve the effectiveness, we explored two
strands of approaches. On the one hand, we considered goal-probability preserving state space reduction
techniques, based on the well-known notion of bisimulation and via dead-end pruning. More specifically,

229



230 17. Discussion

we showed how to use the merge-and-shrink framework from classical planning as a means to effectively
constructing a probabilistic bisimulation. The distinction between bisimilar states can be dropped with-
out sacrificing correctness. Secondly, we utilized classical planning heuristics in combination with the
all-outcomes determinization to identify dead ends. By treating such as states as being terminal, one avoids
the construction of state-space parts irrelevant for the goal-probability objectives. Moreover, dead-end de-
tection yields a non-trivial value initialization, which may be exploited by heuristic search for even more
pruning. For budget-limited planning, we used admissible classical planning heuristics to identify and
prune states with insufficient remaining budget. On the side, we observed that the landmarks compilation
as per Domshlak and Mirkis (2015) reducing the remaining budget is, on its own, equivalent to pruning
against the remaining budget with a standard admissible landmark heuristic in terms of dead-end detec-
tion power. The proposed state space reduction methods are not limited to heuristic search specifically,
but can be useful in all search algorithms.

On the other hand, we considered the derivation of quantitative goal-probability estimates, going beyond
pure dead-end detection. To this end, we revised Trevizan et al.’s (2017b) occupation-measure and operator-
counting expected-cost heuristics. Besides changes necessary as per the goal-probability context, we ex-
tended the occupation-measure heuristics to arbitrary projections. We provided a generic definition of
probabilistic operator-counting heuristics, which more closely resembles the original definition from clas-
sical planning (Pommerening et al., 2014), while avoiding the detour via the all-outcomes determiniza-
tion. To instantiate this framework, we re-interpreted the state equation (Bonet, 2013) for goal-probability
analysis, and showed how to map landmarks into probabilistic operator-counting constraints. We proved
that the proposed heuristics monotonically upper bound goal probability, as needed for the correctness of
heuristic search.

We investigated the behavior of the resulting algorithm design space on a large benchmark suite we de-
signed for that purpose. In summary, we observed that heuristic search yields substantial benefits, when
combined with dead-end pruning. The ability of early termination significantly improves the performance
on the weaker objectives. Our FRET variant is much better suited for the goal-probability objective, and its
native embedding into the heuristic search algorithms further reduces the FRET-related overhead. Bisim-
ulation reduction yields an optimal MaxProb solver that excels in TriangleTireworld. The occupation-
measure and operator-counting heuristics could not entirely keep their promises. While they provided
informative goal-probability bounds in some cases, this increase in informativeness could not compensate
for the computational cost associated with the heuristic computations.

17.2. Related Work

Teichteil-Königsbuch et al. (2010) and Camacho et al. (2016) consider goal-probability maximization,
but do not aim at guaranteeing optimality. MaxProb also partly underlies the International Probabilistic
Planning Competitions (Younes et al., 2005; Bryce and Buffet, 2008), when planners are evaluated by how
often they reach the goal in online policy execution. The time limit in the IPPC setting mixes MaxProb with
a bias towards policies reaching the goal quickly. This also relates to the proposals by Teichteil-Königsbuch
(2012) and Kolobov et al. (2012a) asking for the cheapest policy among those maximizing goal probability,
and to the proposal by Chatterjee et al. (2016) asking for the cheapest policy ensuring that a target state
is reached almost surely in a partially observable setting.

Limited-budget planning has been studied in various forms before. Our probabilistic variant was previ-
ously considered by Hou et al. (2014). It differs from constrained MDPs (Altman, 1999) in carrying the
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remaining budget locally with each state, instead of globally enforcing a limit on the total expected cost of
a policy. With uniform action outcome cost, it simplifies to a finite-horizon setting, or step-bounded reacha-
bility analysis. In a deterministic setting, budget-limited planning appeared in an oversubscription context,
the objective being to maximize the reward from achieved (soft) goals subject to the budget (Domsh-
lak and Mirkis, 2015). In classical-planning it relates to resource-constrained planning (e.g., Haslum and
Geffner, 2001; Nakhost et al., 2012; Coles et al., 2013). There also exist work on probabilistic planning
with resources (Marecki and Tambe, 2008; Meuleau et al., 2009; Coles, 2012), but these usually deal with
stochastic and continuous resource consumption.

The analysis of reachability properties in systems exhibiting stochastic behavior is a fundamental con-
cern in quantitative model checking. Goal-probability analysis directly relates to the verification of PCTL
(Probabilistic Computation Tree Logic) formulae (Hansson and Jonsson, 1994) on systems modeled as
MDPs (e.g., Bianco and de Alfaro, 1995; de Alfaro, 1997; Baier and Kwiatkowska, 1998). PCTL is an ex-
tension of Clarke et al.’s (1986) branching-time logic CTL by operators bounding the likelihood of wanted
(or unwanted) system execution paths, and as such links closely to our AtLeastProb objective. The most
common approach to validate a given PCTL formula is using VI to compute the maximal (or minimal)
probability of satisfying the corresponding reachability property, i.e., solving MaxProb, and comparing
the result against the formula’s probability bounds afterwards. While this principally constitutes one par-
ticular point in the space of algorithms that we explored, probabilistic model checkers typically feature
additional improvements to VI to cope with the state explosion problem. A variant especially worth men-
tioning is symbolic VI (Kwiatkowska et al., 2002), which, motivated by earlier work on model checking
non-stochastic systems (e.g., McMillan, 1993), exploits symbolic data structures to compactly represent
the state space and the value function. VI can be implemented with operations that run in time and space
polynomial in the size of the data structure. This may yield a significant advantage, as the symbolic repre-
sentation has the potential of being exponentially more compact than the represented system.

Brázdil et al. (2014) considered MDP heuristic search in the form of RTDP (Barto et al., 1995) and
BRTDP (McMahan et al., 2005) for verifying PCTL properties. To prevent search from getting trapped
in sub-optimal fixed points, they identify and remove traps on-the-fly during the search. Contrary to FRET,
they need to run only a single iteration of heuristic search. In contrast to our trap-aware heuristic search
adaptions, trap identification and removal steps are not executed as necessary upon encountering a trap,
but periodically during (B)RTDP’s trials, once every some predetermined number of steps. Moreover, their
trap analysis, and consequently the correctness argument, differs from FRET and our trap-aware adaptions
in terms of the MDP subgraph considered. Klauck and Hermanns (2021) presented an extension of LRTDP,
and explored its combination with FRET-𝜋 for model checking a broad range of different MDP objectives,
including MaxProb, its opposite “MinProb”, as well as various other reward-centered objectives.

The fundamental relationship between goal-probability analysis in probabilistic planning and the verifica-
tion of reachability properties in quantitative model checking, on the one hand, and the to a large extent
independent development of algorithmic improvements, on the other hand, ask for systematic comparison
of the state of the art from both communities. Asmentioned in Section 1.5.2, we (Klauck et al., 2018; Klauck
et al., 2020) did so via automatic translations between PPDDL (Younes et al., 2005) and Jani (Budde et al.,
2017), a model specification language widely supported by probabilistic model checkers. In an extensive
empirical comparison between PROBABILISTIC FAST DOWNWARD and various state-of-the-art probabilistic
model checkers, we could show that the heuristic search approaches available in the former, as well as
the VI variants available in the latter tools can be superior in different situations. In particular, heuristic
search outperforms VI, and its variants, on some standard model-checking benchmarks, while at the same
time, symbolic VI excels in some planning benchmarks.
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17.3. Future Work

There are many promising future directions, of which we would like to emphasize:

Symbolic heuristic search algorithms Similar to symbolic VI, there have been attempts in creating sym-
bolic MDP heuristic search algorithms (Teichteil-Königsbuch, 2005). However, these variants have to our
knowledge not yet been applied to goal-probability analysis, and appropriate extensions, such as symbolic
FRET, still need to be developed.

State-space reduction via dominance relations Goal probability can only be higher in dominating states,
raising the opportunity to prune dominated regions and/or transfer upper/lower bounds across states.
State dominance is ubiquitous in limited-budget planning (and resource-constrained planning). More
general dominance relations have been shown to exist and to be automatically computable in a classi-
cal planning context (Torralba and Hoffmann, 2015). The transfer of these techniques to the probabilistic
setting is a promising line of future work.

A big open research challenge remains the development of new, more precise or more efficient, approaches
to compute goal-probability bounds for heuristic search. We want to point out three options that appear
particularly promising:

Goal-probability potential heuristics Given the relation between potential heuristics and LP heuristics ob-
served in classical planning (Pommerening et al., 2015), can we extend this connection to the probabilistic
setting, and with that obtain admissible goal-probability potential heuristics? Let us briefly recall Chapter 7.
Potential heuristics form simple linear combinations of real-valued state-feature weights. As Pommeren-
ing et al. showed, the feasible solutions to the dual of the classical-planning state-equation LP characterize
exactly the weights corresponding to admissible facts potential heuristics. Interestingly, this result can be
straightforwardly extended to our probabilistic setting, i.e., one can show that the dual of the probabilistic
state-equation LP yields fact potential heuristics that monotonically upper bound goal probability (cf. Ap-
pendix C.4). However, what about potential heuristics using more complex state features? In particular,
Pommerening et al. (2017) showed that admissible classical-planning fact-pair potential heuristics can
still be characterized exactly through an LP encoding polynomial in the size of the task. In Chapter 7, we
have analyzed the use of the compilation ΠC to construct admissible classical-planning potential heuristics
over arbitrary conjunction sets. Can these techniques be adapted to compute conjunction potential heuris-
tics that admissibly bound goal probability? Complications arise, e.g., from the transition normal form
(TNF) assumption (the standard TNF transformation from classical planning (Pommerening and Helmert,
2015), introducing auxiliary preconditions, no longer works for probabilistic planning tasks, given that not
all action outcomes must affect the same variables and therefore can prevail that auxiliary precondition).

Optimal “outcome-probability partitioning” for goal-probability heuristics We recently noted that syntactic
projections can also yield informative goal-probability upper bounds without surrounding LP construc-
tion (Klößner et al., 2021). A major advantage over the projection occupation-measure heuristic is that
the goal-probability bounds can be computed upfront, before search, through a single application of value
iteration on the syntactic projection, simplifying the heuristic calls during search to simple table lookups.
We showed that the individual estimates of such projection heuristics can always be combined admissi-
bly by taking the minimum, and furthermore, identified conditions where this is even guaranteed when
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taking the product (which dominates the minimum). Such multiplicative projection heuristic ensembles
empirically compare favorably to the projection occupation-measure heuristic. In the context of expected-
cost MDPs, it is known that the projection occupation-measure expected-cost heuristic computes an opti-
mal cost partitioning, i.e., computes the best possible admissible additive combination of the considered
expected-cost projections (Klößner et al., 2022a). In the goal-probability setting, the relation between
occupation-measure heuristics and (multiplicative) projection heuristic ensembles is however not so clear
anymore. In fact, it turns out that both heuristic classes are in general incomparable (we provide examples
in Appendix C.5). This raises a series of questions. First and foremost, canwe find a notion that, analogously
to cost partitioning for expected cost, captures the best possible admissible multiplicative combination of
goal-probability heuristics? Is it possible to efficiently compute this best combination? And how does the
goal-probability occupation-measure heuristic relate to this notion?

Goal-probability bounds via state-space abstractions In decades of research on classical planning heuris-
tics, various other, more flexible, classes of state abstractions have been explored (e.g., Helmert et al., 2014;
Seipp and Helmert, 2018). Applying them to the stochastic setting is promising, in principle, but comes
with its own difficulties. State abstractions can be viewed as equivalence relations ∼ between states; its se-
mantics being captured in terms of the abstract state space, i.e., a transition structure over ∼’s equivalence
classes that retains the original transition behavior. A particularity arising in the probabilistic context is
that the abstract state space of abstractions in general can no longer be expressed as an MDP: if 𝑠 ∼ 𝑡 where
P(𝑠, 𝑎, 𝑠′) ≠ P(𝑡, 𝑎, 𝑠′) for some 𝑠′, then the transition probability from the equivalence class [𝑆]∼ ⊇ { 𝑠, 𝑡 }
via 𝑎 may no longer be unique. Bounded-parameter MDPs (Givan et al., 2000) allow to specify transition
probabilities as intervals, yet are susceptible to pathologies, where distinguishing between more states
can result in worse heuristic estimates (Tagorti et al., 2013). An alternative view on MDP abstractions are
stochastic two-player games, in which one player resolves the state-action choices (as in MDPs), while
the other player decides the transition probabilities for the chosen state-action pair (Kwiatkowska et al.,
2006). By accordingly instantiating both players, one can infer lower and upper bounds on the minimal
and maximal goal probabilities. Beyond the exploration of the space of potential abstract state space rep-
resentations, a major open topic is how to actually construct “good” abstractions, i.e., how to efficiently
find some ∼ that distinguishes only so many states so that the heuristic computation remains feasible, yet
that distinguishes enough states to obtain informative bounds. A possible starting point may be given by
the vast research on abstraction methods in the context of quantitative model checking (e.g., D’Argenio
et al., 2001; Kwiatkowska et al., 2006; Hermanns et al., 2008).





Part IV.

Conflict-Driven Learning in Probabilistic-Planning
State-Space Search

Dead-end detection is an integral part of guiding MDP heuristic search for goal-probability
analysis. For forward state-space search in classical planning, we presented a conflict-driven
learning approach that has the ability to produce accurate dead-end predictors during the
search by utilizing information that becomes available because of the search. This essentially
relied on two ingredients (1) the identification of conflicts, i.e., dead ends encountered in
search that the predictor failed to recognize, and (2) techniques to explain the situation at
those conflicts so to refine the predictions, preventing the consideration of similar dead ends
in the remainder of the search. Here, we lift those ideas towards learning to recognize dead
ends during MDP state-space search. We show how to identify conflicts in the conglomerate
of MDP state-space search algorithms developed in Part III, doing so in a sound and complete
manner. For dead-end prediction and refinement, we leverage once again the interface to clas-
sical planning via the all-outcomes determinization. The techniques developed in Part II then
plug in directly. Our experiments demonstrate that the attained dead-end learning methods
can indeed be an effective means for MaxProb analysis. Even when using nothing but the
learned dead-end information for pruning, the performance is on par with, and sometimes
even stronger than, that of state-of-the-art static dead-end detectors.
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18. Conflict-Driven Learning in MDP State-Space
Search for Goal-Probability Analysis

Applying the conflict-driven learning methodology as introduced in classical planning to MDP state-space
search is in principle straightforward. Regarding conflict explanation and refinement, thanks to the all-
outcomes determinization (Bonet and Geffner, 2005; Jimenez et al., 2006), the techniques developed in
Part II work plug and play. There only remains the question of how to identify conflicts. But, for this,
thanks to the Bellman updates, the heuristic search algorithms seem to provide a solution out of the box:
whenever the maintained goal-probability upper bound of some unrecognized dead-end state 𝑠 becomes 0,
we know that 𝑠 is a dead end, and hence have found a conflict. Unfortunately, this comes with some issues.
Information available in the search graph, i.e., in the state-space subgraph unveiled by search so far, is not
directly reflected on the value function. This would hence delay the identification of dead ends. Yet recall
from Part II that quick conflict identification is key for conflict-driven learning to be effective. Moreover,
value updates are not exact, i.e., with commonly used stopping conditions like 𝜖-convergence, the values
of some states may never become small enough proving them to be dead ends, thus further hampering the
dead-end learning potential. Lastly, in practice, there would be a chance of incorrectly classifying a state
as dead end due to inaccuracies in the floating-point number representation.

To avoid all these difficulties, we fall back to the procedures presented in Chapter 5, analyzing the search
graph directly. Soundness, i.e., that no solvable state is ever misclassified as conflict, is guaranteed by
construction. By carefully initiating the analyses, one can furthermore guarantee completeness, i.e., to
discover all currently known conflicts in the identification pass.

This chapter is structured as follows. In Section 18.1, we briefly revisit the relevant notions. In Section 18.2,
we provide a formal characterization of what it means for a conflict to become known, considering a rea-
sonably generic view of MDP state-space search. Section 18.3 integrates the conflict identification method
from Chapter 5 into different MDP heuristic search algorithms, and shows how to make best use of the
learned dead-end information in those algorithms. Section 18.4 designs depth-first search and VI variants,
which similarly to our classical-planning depth-first search variant, have a structure predetermined for
the conflict-driven learning approach. Finally, Section 18.5 evaluates the impact of dead-end learning on
the different algorithms for goal-probability analysis, considering the cyclic and acyclic benchmarks from
Chapter 16, and using a selection of the dead-end detection and refinement methods from Part II.

18.1. Preliminaries

Let Π be a probabilistic planning task with state spaceM = ⟨S,A,P, 𝑠I,S∗⟩. We assume to be provided
with an unsolvability detector U forM, i.e., a function U : S ↦→ { 0,∞ } such that U(𝑠) = ∞ only if 𝑠
is a dead end inM. Recall from Chapter 15 that such a U can be obtained from any classical planning
unsolvability detector via the all-outcomes determinization ΠD. Furthermore, we assume that there is a
refinement operation available, which, given one or multiple unrecognized dead ends, i.e., dead ends 𝑠
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where U(𝑠) = 0, updates U into U′ such that (1) U′ generalizes U, i.e., U′ still recognizes the dead ends
recognized by U, and (2) U′(𝑠) = ∞ for the given states 𝑠, making U′ in fact strictly more general. Recall
from Proposition 15.1 that the dead ends of a probabilistic planning task Π are exactly the dead ends of
the all-outcomes determinization ΠD. Hence, in particular, the conflict refinement procedures from Part II
combined with the all-outcomes determinization perfectly suite the aforementioned requirements. Finally,
recall that a set of states 𝑆 satisfies the U recognized-neighbors property in the all-outcomes determiniza-
tion if, for the neighbor states𝑇 = Succ[ΘΠD] (𝑆)\𝑆 , it holds thatU(𝑡) = ∞, for all 𝑡 ∈ 𝑇 . Observe that this
holds if and only if 𝑆 satisfies theU recognized-neighbors property inM, as Succ[ΘΠD] (𝑆) = Succ[M](𝑆)
holds by the definition of ΠD.

18.2. Conflict Characterization

The search algorithms from Chapters 11 and 12 have in common to incrementally build and to operate on
an MDP subgraph M̂ = ⟨Ŝ,A, P̂, 𝑠I, Ŝ∗⟩ ofM. We refer as the tip states of M̂ to all (non-pruned) states
tip ⊆ Ŝ, whose successors and transitions have not yet been inserted into M̂.

The general idea now is the same as in classical planning. We use U for pruning dead-ends during the
exploration and expansion of M̂. At which point U is evaluated exactly does not matter for the following
discussion, we specify the options below. It suffices to note that at any point in time, every state 𝑠 ∈ Ŝ
falls into one of the following categories: (i) 𝑠 ∈ tip, (ii) 𝑠 ∈ Ŝ∗, (iii) Succ[M](𝑠) = Succ[M̂] (𝑠), or
(iv) U(𝑠) = ∞. Every dead end in M̂ that is not recognized by U is a conflict. We attempt to learn from
conflicts, refining U, so to recognize and prune similar dead ends in the remainder of the search. Note
that these extensions do not affect the correctness guarantees of any of the algorithms as per the same
arguments justifying why dead-end pruning is safe (cf. Chapter 15). It now only remains to specify how
to know exactly whether a state in M̂ is a conflict.

Following the concepts from Chapter 5, a dead end 𝑠 ∈ Ŝ becomes known when M̂ has unveiled enough
of the state spaceM to know for sure that no goal state can be reached from 𝑠. In other words, 𝑠 becomes
known when all future state expansions in search cannot make a goal state become reachable from 𝑠.
Analogous to Chapter 5, the future search graphs can be captured formally as all MDPs that coincide with
the present one on all non-tip states (those that were expanded); where two MDPs coincide on a set of
states 𝑆 if they agree on all 𝑆-leaving transitions. The complete definition is almost identical to the classical
planning case, and omitted for the sake of brevity. The currently known dead ends are given by

Definition 18.1 (Known Dead End). Let 𝑠 ∈ Ŝ be any state visited so far. 𝑠 is a known dead end given M̂
if 𝑠 is a dead end in every MDPM′ that coincides with M̂ on Ŝ \ tip.

Like in the classical setting, the known dead ends can obviously not have any tip-state descendant in M̂.
Yet, unlike in the classical setting, a state that cannot reach any tip state must not necessarily be a dead
end. Capturing the known dead ends of M̂ additionally entails explicitly validating goal unreachability:

Proposition 18.1. At any point during MDP state-space search, the known dead ends are exactly those states
𝑠 ∈ Ŝ where R[M̂](𝑠) ∩ (tip ∪ Ŝ∗) = ∅.

This follows via the same arguments as given for Proposition 5.1.

Clearly, the definition of known dead ends is sound in the following sense:

Proposition 18.2. If 𝑠 is a known dead end given M̂, then 𝑠 is a dead end inM.



18.3. Conflict-Driven Learning in MDP Heuristic Search 239

Proof. Suppose for contradiction that 𝑠 was not a dead end inM. Let 𝜎 = ⟨𝑠0 = 𝑠, 𝑎1, 𝑠1, . . . , 𝑎𝑛, 𝑠𝑛⟩ be a
path from 𝑠 to some goal state 𝑠𝑛 ∈ S∗ inM. If 𝑠𝑛 ∈ Ŝ, then 𝑠𝑛 ∈ Ŝ∗. Since 𝑠 is a dead end in M̂, 𝜎 can
hence not be a path in M̂. Since none of the states are dead ends, it follows that U(𝑠𝑖) = 0 for all 𝑖. Then,
of the four cases (i) – (iv) above, for states 𝑠𝑖 , 0 ≤ 𝑖 < 𝑛, there remains only the possibility of (i) 𝑠𝑖 ∈ tip,
or (ii) Succ[M](𝑠) = Succ[M̂] (𝑠). (ii) cannot hold for all of them. In conclusion, there exists at least one
tip state that is reachable from 𝑠. But, this contradicts Proposition 18.1. □

18.3. Conflict-Driven Learning in MDP Heuristic Search

It remains to specify how to verify Proposition 18.1 efficiently, and how to leverage the learned dead-end
information, i.e., when to evaluate U. We start with the latter.

18.3.1. Utilizing the Learned Knowledge

To understand how to best utilize the learned dead-end information, let us briefly revisit the concepts
of MDP heuristic search as per Chapter 12. Specifically, we consider those heuristic search algorithms
operating on an admissible (upper-bounding) goal-probability approximation 𝑉𝑈 (we do not consider
IDUAL; and exhaustive anytime DFS is discussed in the next section). Let 𝜋𝑈 be the corresponding greedy
policy. Recall that 𝜋𝑈 is closed in a state 𝑠 ∈ Ŝ, if no tip state is reachable from 𝑠 in the policy induced
subgraph M̂𝜋𝑈

. Furthermore, recall that 𝑉𝑈 is called 𝜖-consistent w.r.t. 𝜋𝑈 and 𝑠, 𝜖 ≥ 0, if 𝑉𝑈 is 𝜖-
consistent in all states reachable from 𝑠 in M̂𝜋𝑈

. We say that heuristic search has converged on a state
𝑠 ∈ Ŝ if 𝜋𝑈 is closed in 𝑠 and𝑉𝑈 is 𝜖-consistent w.r.t. 𝜋𝑈 and 𝑠; 𝜖 being the termination parameter. Once
converged on 𝑠, 𝑉𝑈 (𝑠) and 𝜋𝑈 (𝑠) no longer change. Note that convergence is transitive, i.e., if search
has converged on 𝑠 and 𝑠′ is reachable from 𝑠 in M̂𝜋𝑈

, then search has converged on 𝑠′ as well. The goal
of heuristic search is to converge on the initial state 𝑠I . This is accomplished via series of policy graph
M̂𝜋𝑈

traversals, during which tip states (if reached) might be expanded, and 𝑉𝑈 and 𝜋𝑈 are updated.
The search can be guided by using a goal-probability upper-bounding approximation 𝐻 to initialize 𝑉𝑈

and 𝜋𝑈 .

Furthermore, 𝐻 can be used for dead-end pruning. Namely when a state 𝑠 is inserted into M̂ for the first
time, 𝑠 would typically be noted down for later expansion by appending it to tip. If, however, 𝐻 (𝑠) = 0,
then 𝑠 must necessarily be a dead end, and the expansion can be safely skipped.

The unsolvability detector U used for learning can be incorporated at three different places: (1) at genera-
tion time, as just described, i.e., when 𝑠 is inserted into M̂, not adding it to tip and initializing𝑉𝑈 (𝑠) = 0 if
U(𝑠) = ∞; (2) at expansion time, i.e., when expanding a tip state 𝑠, pruning that expansion if U(𝑠) = ∞;
and (3) at reexpansion time, i.e., when traversing other non-tip states 𝑠 during the policy-graph explo-
rations, removing the outgoing transitions of 𝑠 from M̂ if U(𝑠) = ∞. Retesting U(𝑠) = ∞ in (b) and (c)
makes sense in our setup, given that since the last evaluation of U(𝑠), U could have been refined, causing 𝑠
to now be recognized. (1) and (2) are similar to the adaptions in the classical planning searches (cf. Chap-
ter 5). (3) has no correspondence in the classical searches, where every state is expanded at most once.
(1), (2), and (3) together ensure immediate convergence, i.e., that heuristic search converges on every
recognized dead end it visits during the policy-graph traversals, without further updates or explorations.

On acyclic MDPs, where 𝜖-consistency is not needed, heuristic search furthermore ensures convergence
completeness: if heuristic search converges on a dead end 𝑠, then 𝑠 must have become known. Note that
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Figure 18.1.: Example MDP illustrating that 𝜖-consistency cutoffs may prevent some dead ends from ever becoming
known. The SSP conditions are satisfied; no goal-probability trap analysis is needed. All states are dead ends. 𝑠𝑛 is
a tip state. 𝑠𝑛+1 has not yet been inserted into M̂, and serves for illustration purposes only. 𝑠⊥ is duplicated for read-
ability. States are annotated by their values under the 𝑉𝑈 value function maintained by search. The corresponding
greedy policy 𝜋𝑈 is marked in bold.

this is important to guarantee that all (reachable) dead ends have a chance to become known at some point.
Given that 𝜋𝑈 no longer changes on converged states, and heuristic search only explores the 𝜋𝑈 induced
subgraph, tip states only reachable from converged states will not be expanded anymore. In particular, if
a tip state is only reachable from a converged dead end, that dead end can no longer become known.

Proposition 18.3. On acyclic MDPs with 𝜖 = 0, when heuristic search converges on a dead end 𝑠, then 𝑠 has
become a known dead end in M̂.

Proof. To show convergence completeness, suppose for contradiction that heuristic search converged on
a dead end 𝑠 that has not yet become known. With 𝜖 = 0 and as per the correctness of the heuristic
search algorithm, it hence holds 𝑉𝑈 (𝑠) = 0. Given that 𝑠 is not known, M̂ must contain a path ⟨𝑠0 =
𝑠, 𝑎1, 𝑠1, . . . , 𝑎𝑛, 𝑠𝑛⟩ such that 𝑠𝑛 ∈ tip or 𝑠𝑛 ∈ Ŝ∗. Since 𝑠 is a dead end, the latter cannot be the case, so
𝑠𝑛 ∈ tip. From the monotonicity of the value updates, it follows that 𝑉𝑈 (𝑠) ≥ ∏𝑛

𝑖=1 P̂ (𝑠𝑖−1, 𝑎𝑖 , 𝑠𝑖)𝑉𝑈 (𝑠𝑛).
With 𝑠𝑛 ∈ tip, it follows that 𝑉𝑈 (𝑠𝑛) = 𝐻 (𝑠𝑛) > 0. But this yields a contradiction to 𝑉𝑈 (𝑠) = 0. □

Although proving unsolvability is not the purpose of MDP heuristic search (which really is just a classical
planning problem), notice that this also implies that, if the initial state 𝑠I is unsolvable, once heuristic
search has converged on 𝑠I , it has become known. So, via the corresponding U refinement, we can obtain
an unsolvability certificate just as in the classical planning case.

Importantly, however, convergence completeness is not guaranteed onMDPs in general, where (a) heuristic
search can converge on dead ends, that have not yet become known, due to goal-probability traps, and (b)
with 𝜖 > 0, 𝜖-consistency may cause the exploration of M̂ to be cut short. (a) is only a temporary issue,
given that after the trap’s removal, heuristic search must reestablish convergence, which allows the dead
ends to become known. (b) may however prevent some dead ends from ever becoming known.

Figure 18.1 depicts an example. Note that all states are dead ends; 𝑠⊥ is the only one that is currently
known. Consider the current policy 𝜋𝑈 (𝑠) = 𝑎0 and 𝜋𝑈 (𝑡) = 𝑎2 (which is greedy as per the depicted 𝑉𝑈

values). Moreover, assume that 𝜖 ≥ 𝑝𝑛 − 𝑝𝑛−1. Observe that𝑉𝑈 is 𝜖-consistent in all states visited by that
policy, i.e., heuristic search has converged on 𝑠 and 𝑡 . As the tip state 𝑠𝑛 can only be reached from 𝑠 via
𝑎1 ≠ 𝜋𝑈 (𝑠), 𝑠𝑛 will never be expanded. But then, 𝑠 and 𝑡 cannot become known. To remedy the situation,
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we need a smaller 𝜖 value. In the example, 𝜖 < 𝑝𝑛+1 − 𝑝𝑛 would be sufficient to force heuristic search
to also explore 𝑠𝑛. While there always exists a small enough 𝜖 to prevent (b) from happening, these will
typically be too small to be practical. Note that in the example, we could in fact make 𝜖 arbitrarily small
by scaling the path length 𝑛. Moreover, given that suitable 𝜖 are task specific, and furthermore depend on
the value function initialization 𝐻 , it is not clear how to derive them in general. In practical regards, this
means that there is a chance that some some conflicts cannot be captured by the known dead end concept,
which if the case, might limit the effect of conflict learning.

18.3.2. Conflict Identification

Wefinally describe how to identify the known dead ends during search. As per the algorithms in Chapter 12,
we distinguish between acyclic and general MDPs.

Acyclic MDPs

Matters are particularly simple in the acyclic case, where a simple bottom-up labeling procedure suffices
to collect all known dead ends. Specifically, we need to alter heuristic search at two places. First, when
expanding a tip state 𝑡 , we check whether all successors of 𝑡 have been flagged known. If so, we trigger
the refinement of U on 𝑡 , mark 𝑡 as known, and repeat the test for 𝑡 ’s parent states in M̂. This process is
repeated recursively until reaching a state some of whose successors were not yet marked known, or after
flagging the initial state known. Secondly, we trigger the backward propagation process when a non-tip
state is pruned during reexpansion.

As per Proposition 18.1, a dead end 𝑠 becomes known exactly at the moment when all tip states are
disconnected from 𝑠. This can happen because of two reasons: either search has expanded the last tip
state 𝑡 that was reachable from 𝑠 in M̂; or search has removed from M̂ the outgoing transitions of some
non-tip state 𝑡 so that all paths from 𝑠 to some tip state went through 𝑡 . In both cases, 𝑠 is an ancestor of
𝑡 , and hence will be collected if the backward propagation process is started at 𝑡 . If 𝑡 was pruned during
reexpansion, this holds by construction. Suppose that 𝑡 was tip state. Assume as the invariant that prior
to its expansion, we have identified and flagged all dead ends that were known at that time. Given that 𝑠
can reach 𝑡 , and 𝑠 becomes known after the expansion of 𝑡 , it follows that all successors of 𝑡 must also be
known dead ends after the expansion of 𝑡 . Since M̂ is acyclic, none of the successors of 𝑡 can reach 𝑡 , so
these must have been already known dead ends prior to the expansion of 𝑡 , and as per the invariant, are
marked known. Thus, 𝑡 is marked known, starting the propagation process. In conclusion

Proposition 18.4. Upon the termination of the labeling procedure, the states marked known are exactly the
known dead ends.

Notice that if dead ends are pruned only based U’s predictions, then as per the refinement calls, every dead
end marked known is recognized by U. Hence, the U recognized-neighbors property is satisfied on every
refinement:

Proposition 18.5. Suppose that only U is used for dead-end pruning. When a dead end 𝑠 is marked known,
then {𝑠} satisfies the U recognized-neighbors property.

While the sketched conflict identification procedure can be integrated into any search algorithm, it fits
particularly well the design of AO∗. The only change needed for AO∗ is checking additionally in each
BackwardUpdate(𝑡) call (cf. Algorithm 12.3) whether the successors of 𝑡 have been marked known, and
if so also setting the solved label. BackwardUpdate(𝑡) is called at the end of each expansion trace, as
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required to start the propagation process. Moreover, the propagation of the solved labels ensures that the
update function’s backward pass reaches all known dead-end ancestors of 𝑡 .

General MDPs

In the presence of cycles, the bottom-up labeling procedure no longer guarantees to identify all known dead
ends. Recall, however, that we already faced that problem in open & closed list based search (Section 5.1).
And, it turns out that we can still leverage the same solution. All we need to do is to replace the condition
from Proposition 5.1 by that from Proposition 18.1.

In summary, the procedure works as follows. Whenever expanding a tip state 𝑠, we run a lookahead search
in M̂ starting from 𝑠 and looking for a tip or goal state. If neither is found, then R[M̂](𝑠) ∩ (tip∪ Ŝ∗) = ∅,
i.e., 𝑠 is a known dead end. We refine U on all states of R[M̂](𝑠) not recognized so far. To then collect
also the dead ends that have become known due to the expansion of 𝑠, we run backward propagation
on the parents of all states of R[M̂](𝑠). To prevent the recursions from running into cycles, we label
already identified dead ends, and skip recursive calls on labeled parents. Finally, by appropriately starting
the backward propagation process, we ensure to also discover the dead ends that became known due
to pruning a non-tip state during reexpansion. As per the arguments given in Section 5.1, the backward
propagation process always terminates with all known dead ends being labeled:

Proposition 18.6. Upon termination of the backward propagation procedure, the labeled states are exactly
the known dead ends.

Moreover, as per the proof arguments of Proposition 6.1, if only U is used for dead-end pruning, then the
U recognized-neighbors property is satisfied on every refinement:

Proposition 18.7. Suppose that only U is used for dead-end pruning. Whenever a dead component R[M̂](𝑠)
is labeled during the propagation procedure, then R[M̂](𝑠) satisfies the U recognized-neighbors property.

Recall that heuristic search as in LRTDP or DFHS requires certain adaptions to work on general goal-
probability MDPs. To make sure that Proposition 18.6 remains satisfied, the conflict identification proce-
dure may need to be integrated into those auxiliary processing steps as well. Specifically, this pertains to
FRET-𝑉 , which may expand M̂ beyond what was considered by its underlying heuristic search algorithm.
FRET-𝜋 and the trap-aware heuristic search variants do not require any further adaption besides calling
the identification method during the heuristic searches.

Finally, notice that the conflict identification procedure also works out-of-the-box for IDUAL, given the
similarity of its state-space exploration part to the other heuristic algorithms. Yet, we do not further explore
this option here.

18.4. Conflict-Driven Learning in Topological VI & Anytime DFS

Exhaustive depth-first search has turned out to be especially effective in quickly making dead ends become
known, which fosters learning, and therewith increases the potential for pruning. While the MDP heuristic
searches discussed before also have a strong depth bias, their explorations are non-exhaustive due to their
focus on the policy induced subgraphs. To leverage the full potential of depth-first search for dead-end
learning, we equip our ExhDFS variant (Algorithm 12.13) with the ability to identify known dead ends.
Topological VI (TVI, cf. Algorithm 11.1) can be adapted in the exact same manner.
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The modifications follow our observations from Section 5.2 for DFS in classical planning. In a nutshell, we
evaluate U prior to every state expansion, skipping the expansion of recognized dead ends. To account for
U refinements, we reevaluate U on 𝑠 whenever the exploration backtracks to 𝑠, cutting off the expansion
of the remaining successors when U(𝑠) = ∞. A dead end 𝑠 becomes known exactly at the moment when
search backtracks out of the maximal SCC 𝑆 containing 𝑠. This is so because, the states from 𝑆 have exactly
the same descendants in M̂. In other words, as long as any one of 𝑆 can still reach a tip state, none of
the states of 𝑆 can become known; while once no more tip states are reachable, search necessarily needs
to backtrack out of 𝑆 . In contrast to the classical case, though, not every SCC out of which we backtrack
constitutes a known dead end. To check that no goal was reachable, we maintain and propagate goal-
reachability flags during the depth-first exploration. When backtracking out of an SCC 𝑆 from which a
goal state was reachable, we run VI on 𝑆 until 𝜖-convergence as before. Yet, when a dead-end SCC is
identified, we skip running VI (𝑉 𝐿 (𝑠) = 0 = 𝑉 ∗(𝑠) is satisfied as per the initialization), and instead refine
U. These are all changes.

Notice that due to its exhaustive state-space exploration, upon termination of topological VI, every reach-
able dead end must have become known (this does not necessarily hold for ExhDFS due to its early-
termination criteria). This means that, if U is the only method used for pruning dead ends and U is
transitive, the final U recognizes all reachable dead ends, i.e., U is perfect on the reachable states. More-
over, observe that, both TVI and ExhDFS inherit the properties discussed in Section 5.2 for DFS in classical
planning. In particular, they (1) deliver an unsolvability certificate upon termination when 𝑉 ∗(𝑠I) = 0.
This holds even for cyclic MDPs and regardless of 𝜖, as opposed to the cyclic MDP heuristic search algo-
rithms from before. Moreover, they guarantee (2) to immediately backjump to the shallowest non-refuted
state; and (3) guarantee refinements on all U-known dead ends prior to the next state expansion.

18.5. Experimental Evaluation

We evaluate MDP search with conflict-driven learning for optimal goal-probability analysis. We focus pri-
marily on MaxProb. But, all observations equally apply to the weaker AtLeastProb and ApproxProb objec-
tives. We next specify the general experiment setup, then discuss the results.

18.5.1. Experiment Setup

Our implementation is based on PROBABILISTIC FAST DOWNWARD from Part III. The source code is publicly
available.1 The experiments were run on a cluster of Intel Xeon E5-2660 machines running at 2.20 GHz,
with time and memory cut-offs of 30 minutes and 4 GB.

We experiment with five search algorithms: topological VI; ExhDFS; AO∗; LILAO∗ (ILAO∗ using solved
labels instead of VI for the termination test), as a representative of the DFHS algorithm family; and LRTDP.
We use the default tie-breaking setups throughout. AO∗ is restricted to acyclic MDPs. We use the trap-aware
variants of LILAO∗ and LRTDP on cyclic MDPs to handle goal-probability traps, which as shown in Part III,
tends to be more effective than FRET. For 𝜖-convergence, we set 𝜖 = 5·10−5 as in our previous experiments.

We run every search algorithm with four different conflict learning methods, the most competitive ones
from Part II: critical-path unsolvability detector UC using neighbors refinement; and U-trap learning for
three different U: using no additional unsolvability detector, which we will refer to as the naive unsolv-
ability detector U0 that returns 0 for all states; the critical-path U1 unsolvability detector (Haslum and
1https://doi.org/10.5281/zenodo.6992688
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Geffner, 2000); and the unsolvability PDB heuristic component Updb of the UIPC’16 winning AIDOS port-
folio (Seipp et al., 2016). We compare the learning configurations to search without learning, using U1

respectively Updb for dead-end pruning. This covers the best performing pruning variants from our experi-
ments from Part III. We additionally include results using no pruning at all, again denoted as U0; and we
run the heuristic search algorithms with Klößner et al.’s (2021) overall best multiplicative goal-probability
PDB heuristic, using the systematic patterns with up to 3 variables (Pommerening et al., 2013).

We adopt the cyclic and acyclic benchmark suites from Part III, which encompass budget-limited and
budget-unlimited variants of various IPPC, Canadian RCP, and pentesting benchmarks. We consider only
domains with dead ends (this affects only the cyclic benchmarks), i.e., those domains where the conflict-
driven learning approach could make sense. For the acyclic part, recall that the budget limit is controlled in
that the initially available budget is set to ℭ∗𝔟min, where 𝔟min is the minimal budget required to reach the
goal at all, and ℭ ∈ { 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 } is the constrainedness level. The smaller ℭ is, the more
dead ends there will be. This makes ℭ particularly interesting for our study. Given that the unsolvability
detectors and refinement methods do not support an explicit budget, we adopt the benchmark variants
from Section 16.4, which enforce the budget limit directly at the level of the PPDDL model files.

The remainder of this section is structured as follows. In Section 18.5.2, we consider MaxProb coverage
results as means to compare the different conflict learning methods to each other and to the state of the
art. Section 18.5.3 and 18.5.4 provide additional details on the performance of conflict-driven learning in
MDP search. For the sake of comprehensibility, we focus in those part mostly on a single search algorithm,
LILAO∗. We analyze the effectiveness of the different search algorithms in leveraging the conflict-driven
approach in Section 18.5.5.

18.5.2. Coverage Analysis

Table 18.1 shows the coverage results for ExhDFS and LILAO∗. The results for VI are qualitatively similar
to that for DFS; the other heuristic algorithms behave similarly to LILAO∗. We provide additional details
on the differences between the different search algorithms in Section 18.5.5.

Consider first the non-learning variants. The results are in line with the experiments in Chapter 16. In
summary, on the cyclic benchmark part, there are generally only little differences. The exhDFS config-
urations perform basically identically. For LILAO∗, differences are primarily due to ExplodingBlocks. In
Schedule and SearchAndRescue, there is only the “blind” U0 configuration which (negatively) stands out.
The differences become larger on the acyclic benchmark part. Comparing the two unsolvability detectors,
U1 has the edge on the cyclic benchmarks (due to ExplodingBlocks), and Updb is more effective on the
acyclic benchmarks. Heuristic search based on an admissible value function (here represented by LILAO∗)
outperforms search without such bound (exhDFS) consistently, achieving higher coverage in almost ev-
ery domain. The difference grows the more informed the value function initialization (the pruning) gets.
The most notable exception is budget-limited Random, where LILAO∗ lacks behind exhDFS no matter of
the pruning method. Comparing the multiplicative goal-probability PDB heuristic “PPDB” with PDB-based
dead-end pruning “Updb” in LILAO∗, the more informative goal-probability bounds offered by the former
pay off mainly on the Pentest benchmarks, and to a smaller extent in TriangleTireworld-b. On all other do-
mains, dead-end pruning via Updb performs as good, and often even better than PPDB. This is in line with
Klößner et al.’s (2021) observation that for the goal-probability PDB heuristic to provide more information
than mere dead-end detection, one typically needs to consider larger patterns, in particular larger than
the size-3 patterns considered by PPDB; but generating such is out of scope of the systematic approach
deployed by PPDB.
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exhDFS LILAO∗
w/o learning w/ learning w/o learning w/ learning

U-trap U-trap

Domain # U0 U1 Updb UC U0 U1 Updb U0 U1 Updb PPDB UC U0 U1 Updb

Cyclic IPPC Benchmarks (with Dead Ends)
Drive 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
ExplBlocksw 30 11 11 11 11 11 11 11 10 28 19 19 23 10 28 19
RectTireworld 14 14 14 14 14 12 14 14 14 14 14 14 14 12 14 14
Schedule 30 7 7 7 7 6 7 7 6 10 10 10 10 6 10 10
SearchRescue 15 5 6 5 6 6 6 5 5 6 6 6 5 5 5 5
Tireworld 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15∑ IPPC 119 67 68 67 68 65 68 67 65 88 79 79 82 63 87 78

Canadian RCP Benchmarks without Budget Limit
NoMystery 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Rovers 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
TPP 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10∑ RCP 30 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

Acyclic IPPC Benchmarks (with Dead Ends)
TriTireworld 10 7 7 7 7 7 7 7 10 10 10 10 10 10 10 10

IPPC Benchmarks with Compiled Budget Limit
Blocksworld-b 180 54 54 54 52 55 56 57 54 54 59 54 54 56 56 57
Boxworld-b 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Drive-b 90 89 90 90 73 90 90 90 90 90 90 90 80 90 90 90
Elevators-b 90 77 74 72 53 71 71 68 79 75 76 76 52 75 73 65
ExplBlocksw-b 150 62 71 77 83 85 84 84 62 90 101 86 88 84 104 97
Random-b 72 48 48 50 50 51 51 51 37 40 44 44 44 45 45 45
RectTireworld-b 36 18 12 18 12 12 12 12 18 13 18 18 13 12 12 12
Schedule-b 138 59 60 60 59 60 60 60 62 60 62 60 60 70 65 70
SearchRescue-b 90 59 63 73 71 77 75 75 70 69 83 76 76 84 83 84
Tireworld-b 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
TriTireworld-b 60 41 42 51 51 52 51 51 49 47 57 59 54 57 54 57
Zenotravel-b 78 17 19 31 18 31 30 31 40 34 42 42 18 40 37 42∑ IPPC-b 1092 614 623 666 612 674 670 669 651 662 722 695 629 703 709 709

Canadian RCP Benchmarks with Compiled Budget Limit
NoMystery-b 60 9 10 36 21 35 29 36 19 16 51 43 19 46 35 52
Rovers-b 60 46 48 52 46 55 52 52 50 49 57 51 46 60 57 59
TPP-b 60 17 18 32 14 36 27 35 24 23 45 40 13 42 39 48∑ RCP-b 180 72 76 120 81 126 108 123 93 88 153 134 78 148 131 159

Pentesting Benchmarks
Pentest-b 90 57 62 67 63 68 67 67 61 63 68 77 63 69 68 68
Pentest 15 9 10 9 10 10 10 9 9 9 9 10 9 9 9 9∑ Pentest 105 66 72 76 73 78 77 76 70 72 77 87 72 78 77 77

Table 18.1.: MaxProb coverage (number of instances solved within time and memory limits) on cyclic (upper part)
and acyclic benchmarks (lower part). Best results in bold. Abbreviations: “exhDFS” exhaustive anytime DFS; “LILAO∗”
variant of ILAO∗ replacing the VI termination check by maintaining solved labels, using TALILAO∗ on the cyclic
benchmarks; “w/o learning” baselines with dead-end learning disabled: “U0” using trivial goal-probability value
initialization and no pruning; “U1” dead-end pruning via U1; “Updb” dead-end pruning via the unsolvability PDB
heuristic of AIDOS; “PPDB” orthogonal goal-probability PDB heuristic over the systematic patterns of size up to 3;
“w/ learning” dead-end learning enabled, using: “UC” with neighbors refinement; “U-trap” combining dead-end
pruning via U by U-trap dead-end learning, “U0-trap” without additional unsolvability detector.
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Consider now dead-end learning. On the cyclic part, the impact is again limited. For exhDFS, the learn-
ing configurations are (almost) indistinguishable from the non-learning ones. The same holds the U-trap
learning configurations of LILAO∗; UC learning turns out detrimental overall, with considerable coverage
losses in ExplodingBlocks. The picture becomes clearer on the acyclic benchmark set. The relative perfor-
mance between the different learning methods is the same for exhDFS and LILAO∗. Though, the impact
of dead-end learning tends to be larger on exhDFS than on LILAO∗; we discuss the reasons below.

Learning again particularly excels on the budget-limited RCP domains. U-trap learning can build upon its
performance on the classical planning benchmark versions. For LILAO∗, all three U-trap learning variants
improve coverage across the budget-limited RCP set compared to the corresponding U-based dead-end
pruning baselines. The same holds for exhDFS and U0-trap and U1-trap learning, for Updb-trap learning
coverage is improved in TPP. The improvements are generally largest for U0-trap and U1-trap learning,
unsurprisingly so, given the much stronger performance of Updb pruning in the first place. Note though
that the road-graph uncertainty makes the Canadian variants more complex than in the original classical
planning equivalents: whether the available budget (resource) in a state is sufficient to accomplish the
goal varies depending on the roads that are (un)available in that state. This appears to cause substantial
problems to UC learning. In stark contrast to the performance on the classical planning domain variants,
UC is mostly detrimental here. While the UC learning configurations can solve slightly more instances
of NoMystery than the U1-pruning baselines, coverage decreases in Rovers and TPP, in the latter even
substantially.

On the IPPC domains, the results are no longer in clear favor of dead-end learning. U-trap learning still
offers a strong performance in many domains, but it is also detrimental in some domains. Starting from
the weaker baselines, U0-trap and U1-trap learning are able to improve coverage, relative to the baseline,
in almost every domain. Updb-trap learning performs not quite as well compared to the Updb pruning only.
Coverage improvements in up to 5 out of the 12 domains are contrasted by coverage losses in up to 4
domains, the latter dominating the former in total. However, overall, all three U-trap learning variants are
still competitive with Updb pruning, the strongest configuration here. Comparing the three U-trap config-
urations to each other, while they all perform equally overall, each one has its own advantages. U1-trap
learning is especially effective on ExplodingBlocks-b, yet in the other domains U1 rarely pays off com-
pared to the naive U0-trap learning variant. Updb-trap learning inherits the per-domain best performance
of its Updb dead-end pruning and U0-trap learning components. Finally, UC learning is again not really
competitive. It improves over U1 dead-end pruning in budget-limited Random, SearchAndRescue, and
TriangleTireworld for both exhDFS and LILAO∗, and in ExplodingBlocks for exhDFS. At the same time,
however, it leads to significant coverage drops on Drive, Elevators, and, for LILAO∗, on Zenotravel. The
latter outweighs the benefits from the former.

18.5.3. Search Reduction

Figure 18.2 complements the coverage data from Table 18.1 by per-instance comparisons between the
LILAO∗ configurations with and without learning, showing results for search space size, i.e., number of
states visited until termination, and total runtime. We show results forUC ,U0-trap, andUpdb-trap learning.
The results for U1-trap learning are similar to that for U0-trap learning.

Consider first UC , Figures 18.2a and 18.2b. As evident from Figure 18.2a, there is clearly no lack of
potential for conflict-driven learning in MDP heuristic search. The search space with UC learning is often
orders of magnitude smaller than without learning (using just U1 for dead-end pruning). This shows
that (1) LILAO∗ is well capable of identifying sufficiently many conflicts for the UC refinements, and that
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Figure 18.2.: Per-instance comparison of LILAO∗ (TALILAO∗ on cyclic benchmarks) without (𝑥 -axes) versus with
(𝑦-axes) dead-end learning for different conflict refinement methods. From top to bottom: UC with neighbors re-
finement; U0-trap learning; and Updb-trap learning. Left: search space size, i.e., number of states |Ŝ | visited until
termination. Right: runtime in CPU seconds. Instances are distinguished along the constrainedness factor ℭ, where
for ℭ = ∞, the budget is not limited. “oom” out of memory; “to” out of time.



248 18. Conflict-Driven Learning in MDP State-Space Search for Goal-Probability Analysis

(2) the UC refinements generalize to other states at sufficient scale, leading to additional pruning in the
remainder of the search. UC learning can however not leverage this advantage due to the UC refinement
and computation overhead. As shown by Figure 18.2b, despite the often much smaller search space, the
runtime of UC learning is frequently even up to one order of magnitude higher than without learning. The
search space size profile of U0-trap learning, Figure 18.2c, is similar to that of UC learning. But contrary
to UC , U0-trap learning is less heavy on runtime. As shown in Figure 18.2d, the search space reductions
here typically translate directly into runtime reductions, which explains the coverage improvements in
Table 18.1. Consider finally Updb-trap learning, Figures 18.2e and 18.2f. The much stronger dead-end
detection capabilities of the Updb unsolvability detector leaves less potential for dead-end learning. While
search space size is still reduced frequently, the scale of which is much smaller than for the other two
learning variants. Search space reductions of up to 2 orders of magnitude are still possible. The effect on
runtime is however often overshadowed by the PDB construction time.

To close the discussion of Figure 18.2, consider the different constrainedness levels ℭ. The entry “ℭ = ∞”
represents the budget-unlimited (including the cyclic) benchmarks. The plots show a clear trend: the more
constrained the budget, the higher is the impact of dead-end learning. The reason simply is that smaller
values of ℭ lead to more dead ends, which makes conflict identification easier, and creates more pruning
potential so that the learning effort can pay off. However, in line with the coverage results, the plots also
show that dead-end learning has almost no effect on the budget-unlimited domains.

18.5.4. Performance Analysis

Table 18.2 provides additional data supporting the analysis of the performance of conflict-driven learning.
In order for it to work well, there must be three prerequisites satisfied: (1) conflicts must be identified,
(2) the conflict refinements have to generalize to dead ends other than the identified conflicts, and (3)
the scale of that generalization must outweigh the overhead associated with the conflict learning. The
table grasps these prerequisites for each of the three conflict learning methods from Figure 18.2 in terms
of (1) “# Id” the number instances on which at least one conflict was identified, so as the mean number
of identified conflict components; (2) “Red 𝑆” the mean search space size reduction factor over the “Id”
instances relative to the configuration without learning; and (3) “Red 𝑡” the mean runtime reduction factor,
the gap between (2) and (3) roughly corresponding to the conflict learning overhead.

Consider the budget-unlimited benchmarks. Clearly, (1) is the main bottleneck for the shown dead-end
learning configurations. UC and Updb-trap learning do not even identify a single conflict in many domains.
In the remaining domains only comparatively few conflicts are identified, not sufficient for the refinements
to generalize. The same holds for U0-trap learning, with the exception of ExplodingBlocks, where conflicts
are identified, and generalization does happen, but U0-trap learning is not effective as per (3).

The situation changes on the budget-limited benchmarks. For UC and U0-trap learning, (1) is no longer
an issue; conflicts are identified in almost all instances of all domains. The amount of possible conflicts
obviously relates to the quality of the unsolvability detector. This is reflected on the Updb-trap learning
data. In domains where Updb already has a high dead-end detection accuracy, naturally, no or only few
conflicts can be found. This particularly applies to the *Tireworld-b domains, and to a smaller extent to
Blocksworld-b.

Considering the data for (2) and (3), generalization happens in almost all domains where conflicts are iden-
tified. The most notable exceptions are RectangleTireworld-b and Tireworld-b forUC andU0-trap learning,
Zenotravel-b and Pentest-b for Updb-trap learning, and Drive-b for UC learning. Yet, despite strong gener-
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LILAO∗
UC learning U0-trap learning Updb-trap learning

Id & common U1 Id & common U0 Id & common Updb

Domain # Cov # Id Confl Red 𝑆 Red 𝑡 Cov # Id Confl Red 𝑆 Red 𝑡 Cov # Id Confl Red 𝑆 Red 𝑡

Cyclic IPPC Benchmarks (with Dead Ends)
Drive 15 15 0 15 15 3.6 1.1 0.9 15 9 1.7 1.1 1.0
ExplBlocksw 30 23 11 4.9 1.0 0.8 10 9 913.2 1.7 0.7 19 11 264.8 1.3 1.0
RectTireworld 14 14 12 1.8 1.1 1.0 12 12 6.4 1.0 0.9 14 0
Schedule 30 10 0 6 2 3.0 1.3 1.6 10 0
SearchRescue 15 5 0 5 5 2.0 1.2 1.3 5 2 1.0 1.0 1.0
Tireworld 15 15 0 15 14 9.9 1.1 0.8 15 0

Canadian RCP Benchmarks without Budget Limit
NoMystery 10 5 0 5 5 7.0 1.0 0.9 5 0
Rovers 10 10 0 10 9 2.1 1.0 0.9 10 0
TPP 10 10 0 10 10 5.7 1.2 1.2 10 0

Acyclic IPPC Benchmarks
TriTireworld 10 10 0 10 6 2.0 1.0 0.5 10 0

IPPC Benchmarks with Compiled Budget Limit
Blocksworld-b 180 54 54 211.2 6.0 0.2 56 56 2.2k 2.7 0.5 57 4 10.9k 14.2 1.0
Boxworld-b 18 0 0 0 0 0 0
Drive-b 90 80 80 90.1 1.2 0.2 90 90 83.4 1.8 0.6 90 60 124.4 1.7 1.0
Elevators-b 90 52 52 248.9 3.8 0.1 75 75 3.8k 3.1 0.9 65 65 1.2k 1.8 1.0
ExplBlocksw-b 150 88 84 20.2 5.3 1.8 84 84 210.4 12.5 3.1 97 72 152.9 2.0 1.0
Random-b 72 44 29 5.8 12.5 3.4 45 45 3.9 3.2 2.8 45 26 2.0 3.1 1.0
RectTireworld-b 36 13 12 16.8 1.2 1.0 12 12 22.0 1.2 1.4 12 0
Schedule-b 138 60 60 7.0 1.8 1.1 70 70 20.0 2.3 1.1 70 43 32.8 1.6 1.0
SearchRescue-b 90 76 76 29.2 7.1 3.4 84 84 170.3 8.9 6.5 84 60 20.7 1.3 1.0
Tireworld-b 90 90 73 4.5 1.1 0.9 90 90 13.6 1.0 0.7 90 0
TriTireworld-b 60 54 54 67.3 7.0 3.0 57 57 268.8 5.2 1.7 57 0
Zenotravel-b 78 18 18 435.8 6.8 0.2 40 40 37.0k 4.3 1.2 42 26 1.4k 1.0 1.0

Canadian RCP Benchmarks with Compiled Budget Limit
NoMystery-b 60 19 19 569.6 90.0 1.9 46 46 11.1k 38.5 18.7 52 33 693.1 1.0 1.0
Rovers-b 60 46 46 312.2 4.3 0.5 60 60 1.1k 5.9 9.5 59 59 391.6 1.6 1.0
TPP-b 60 13 13 867.2 16.0 0.3 42 42 30.7k 7.1 4.4 48 48 4.7k 1.8 1.0

Pentesting Benchmarks
Pentest-b 90 63 62 16.9 1.8 1.1 69 69 35.3 3.0 4.5 68 68 12.3 1.1 1.0
Pentest 15 9 0 9 9 6.2 1.1 1.0 9 2 2.4 1.0 1.0

Table 18.2.: Analysis of different conflict refinement methods in LILAO∗ (TALILAO∗ on cyclic benchmarks). Configu-
rations abbreviated as in Table 18.1. “Cov” repeats MaxProb coverage for convenience; “# Id” shows the number of
solved instances in which at least one conflict was identified; “Id & common” considers of the Id instances only those
also solved by the corresponding baseline pruning configuration without learning (using the unsolvability detector
as indicated in the table); “Confl” geometric mean of the number of conflict components identified, “k” multiples of
1000; “Red 𝑆” and “Red 𝑡” geometric mean search space size respectively runtime reduction factors with learning
relative to without.

alization, conflict learning may still not be effective. The discrepancy between the theoretically possible
performance improvement “Red 𝑆” (ignoring the overhead) and the actual improvement “Red 𝑡” is partic-
ularly high for UC learning. As per the reported data, UC learning is effective only in ExplodingBlocks-b,
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U0-trap learning
Coverage improvements Search space reduction

Domain # VI exhDFS AO∗ LILAO∗ LRTDP # Com. VI ex
hD

FS

AO
∗

LI
LA

O∗

LR
TD

P

Cyclic IPPC Benchmarks (with Dead Ends)
Drive 15 15 +0 -0 15 +0 -0 15 +0 -0 15 +0 -0 15 1.0 1.0 1.1 1.1
ExplBlocksw 30 9 +0 -0 11 +0 -0 10 +0 -0 10 +0 -0 9 2.7 2.9 1.6 2.3
RectTireworld 14 14 +0 -2 14 +0 -2 14 +0 -2 14 +0 -2 12 1.0 1.0 1.0 1.0
Schedule 30 7 +0 -1 7 +0 -1 6 +0 -0 6 +0 -0 6 1.2 1.0 1.1 1.1
SearchRescue 15 6 +0 -0 5 +1 -0 5 +0 -0 5 +0 -0 5 1.1 1.1 1.2 1.2
Tireworld 15 14 +0 -0 15 +0 -0 15 +0 -0 15 +0 -0 14 1.0 1.0 1.1 1.5∑ IPPC 119 65 +0 -3 67 +1 -3 65 +0 -2 65 +0 -2

Canadian RCP Benchmarks without Budget Limit
NoMystery 10 5 +0 -0 5 +0 -0 5 +0 -0 5 +0 -0 5 1.0 1.0 1.0 1.0
Rovers 10 10 +0 -0 10 +0 -0 10 +0 -0 10 +0 -0 10 1.0 1.0 1.0 1.0
TPP 10 8 +0 -0 10 +0 -0 10 +0 -0 10 +0 -0 8 1.0 1.1 1.2 1.3∑ RCP 30 23 +0 -0 25 +0 -0 25 +0 -0 25 +0 -0

Acyclic IPPC Benchmarks (with Dead Ends)
TriTireworld 10 5 +0 -0 7 +0 -0 10 +0 -0 10 +0 -0 10 +0 -0 5 1.0 1.0 1.0 1.0 1.0

IPPC Benchmarks with Compiled Budget Limit
Blocksworld-b 180 54 +1 -0 54 +1 -0 54 +0 -0 54 +2 -0 54 +2 -0 54 3.5 3.5 2.4 2.7 2.7
Boxworld-b 18 0 +0 -0 0 +0 -0 0 +0 -0 0 +0 -0 0 +0 -0
Drive-b 90 90 +0 -0 89 +1 -0 90 +0 -0 90 +0 -0 90 +0 -0 89 2.3 2.3 2.5 1.8 2.3
Elevators-b 90 72 +0 -6 77 +0 -6 85 +0-13 79 +0 -4 82 +0-11 66 2.5 3.0 3.0 3.0 3.2
ExplBlocksw-b 150 51+26 -0 62+23 -0 61+21 -0 62+22 -0 65+20 -0 51 18.6 10.5 8.4 7.9 8.3
Random-b 72 31 +7 -0 48 +3 -0 36 +9 -0 37 +8 -0 37 +8 -0 31 2.6 1.7 1.9 2.1 2.1
RectTireworld-b 36 18 +0 -6 18 +0 -6 18 +0 -6 18 +0 -6 18 +0 -6 12 7.7 7.7 3.0 1.2 1.2
Schedule-b 138 52 +5 -0 59 +1 -0 60 +7 -0 62 +8 -0 62 +8 -0 52 2.4 1.8 1.9 1.7 1.6
SearchRescue-b 90 59+18 -0 59+18 -0 71+11 -0 70+14 -0 67+16 -0 59 8.8 8.8 6.7 7.3 9.6
Tireworld-b 90 90 +0 -0 90 +0 -0 90 +0 -0 90 +0 -0 90 +0 -0 90 1.1 1.1 1.0 1.0 1.1
TriTireworld-b 60 42+10 -0 41+11 -0 49 +7 -0 49 +8 -0 49 +8 -0 41 6.9 7.1 5.5 3.6 5.1
Zenotravel-b 78 18+13 -0 17+14 -0 42 +0 -4 40 +0 -0 35 +4 -0 17 9.5 9.5 6.9 4.4 4.9∑ IPPC-b 1092 577+80-12 614+72-12 656+55-23 651+62-10 649+66-17

Canadian RCP Benchmarks with Compiled Budget Limit
NoMystery-b 60 9+26 -0 9+26 -0 21+24 -0 19+27 -0 20+27 -0 9 93.2 94.7 39.6 26.3 51.4
Rovers-b 60 46 +7 -0 46 +9 -0 55 +5 -0 50+10 -0 51 +8 -0 46 7.9 9.9 4.8 5.7 9.2
TPP-b 60 17+18 -0 17+19 -0 34+11 -1 24+18 -0 26+18 -0 17 15.2 15.7 4.9 6.2 10.6∑ RCP-b 180 72+51 -0 72+54 -0 110+40 -1 93+55 -0 97+53 -0

Pentesting Benchmarks
Pentest-b 90 58+10 -0 57+11 -0 56+12 -0 61 +8 -0 57 +9 -0 56 4.0 4.0 3.6 2.9 2.8
Pentest 15 10 +0 -0 9 +1 -0 8 +1 -0 9 +0 -0 9 +0 -1 8 1.1 1.1 1.1 1.1 1.1∑ Pentest 105 68+10 -0 66+12 -0 64+13 -0 70 +8 -0 66 +9 -1

Table 18.3.: Comparing the impact of U0-trap learning on different search algorithms. On the cyclic benchmarks,
AO∗ cannot be applied, for LILAO∗ and LRTDP we fall back to TALILAO∗ and TALRTDP. Left: coverage improvement
data for U0-trap learning relative to the U0 baseline without learning, showing from left to right: total number of
instances solved by the U0 baseline; “+” number of instances solved with learning but not without; “-” number of
instances not solved with learning but solved without. Right: geometric mean search space size reduction factors
over commonly solved instances. “# Com.” shows the number of those instances. Largest improvements in the two
categories respectively in bold.
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Random-b, SearchAndRescue-b, TriangleTireworld-b, and NoMystery-b. With the exception of Exploding-
Blocks-b, these are exactly the domains in which UC learning achieves higher coverage than U1 pruning
without learning.

The difference between “Red 𝑆” and “Red 𝑡” is generally is smaller for U0-trap learning, although in some
cases the overhead can still be prohibitive. Notice that in some cases runtime reduction actually exceeds
search space reduction, most notably Rovers-b and Pentest-b. This is so because reevaluating the unsolv-
ability detector during the policy-graph traversals can reduce state reexpansions, and therewith reduce
search effort without actually reducing the search space size.

Finally, note that despite generalization is happening to a notable extent on multiple domains, Updb-trap
learning has no effect on performance measure “Red 𝑡”. This is so because the PDB construction usually
takes a large fraction of the total runtime, which is the same with and without learning. Ignoring the
construction, the overhead of the Updb-trap refinements actually outweighs the search space reduction in
almost all cases. The main strength of Updb-trap learning lies in the combination of the performance of its
two base components: Updb pruning, and U0-trap learning. Contrary to the results in classical planning,
synergistic effects between Updb dead-end pruning and trap learning, i.e., instances solved by Updb-trap
learning, yet not by either of its components, happened only rarely: 1 instance of NoMystery-b, and 2
instances of TPP-b.

18.5.5. Search Algorithm Comparison

Table 18.3 compares the extent to which the different search algorithms can benefit from conflict-driven
learning. We chose U0-trap learning as comparison basis because (a) it is competitive with the static dead-
end detectors, and (b) dead-end learning is most essential for the performance. The table shows MaxProb
coverage improvement data over the non-learning configurations as a total measure of performance gains.
Moreover, it measures the effectiveness of the different search algorithms in utilizing the conflict-driven
learning approach in terms of search space size reduction factors of with learning relative to without. The
quicker a search algorithm identifies conflicts, and the more efficient it uses the gained information for
pruning, the larger the search space reduction factor will be.

Consider the budget-unlimited benchmarks. As we have just seen, conflict-driven learning has generally
only little effect as conflicts are not being identified at sufficient scale. While the previous analysis focused
on MDP heuristic search as per LILAO∗ specifically, Table 18.3 indicates that this is an artifact of the bench-
marks, and does not stem from the inability of heuristic search to identify conflicts per se. In particular,
recall that upon termination, VI will have identified all reachable conflicts. Yet, considerable search space
reductions can be observed only in ExplodingBlocks. And this is indeed also the only domain on which
conflicts are identified to a notable extent. On the other budget-unlimited domains, conflict identification
in VI behaves similarly to the U0-trap learning results in LILAO∗ from Table 18.2. Given the undersupply
of conflicts in all algorithms, the impact of U0-trap learning on them is basically the same.

Differences become more pronounced on the budget-limited benchmarks. VI’s and exhDFS’s exhaustive
explorations are advantageous in making dead ends quickly become known. This is reflected on coverage
improvements to a certain extent. But, it really becomes evident on the search space reduction data, where
VI and exhDFS dominate the heuristic search algorithms almost consistently, and partly even substantially.
Though, notice that there actually a few cases where the opposite is the case, notably budget-unlimited
Tireworld and TPP, and SearchRescue-b. This confirms once again that heuristic search is able utilize dead-
end information more effectively; as via the non-trivial goal-probability value initialization, sub-optimal



252 18. Conflict-Driven Learning in MDP State-Space Search for Goal-Probability Analysis

regions of the state space can be identified, translating into the pruning of even non-dead-end states.

Comparing the heuristic search algorithms to each other, they perform equally well. LILAO∗ tends to be
least effective in identifying conflicts overall, though. Its tip-state cutoffs during the policy-graph traversals
introduce a breadth-bias into the exploration, which is generally detrimental for conflict identification.
While AO∗ also cuts off its traversals once reaching a tip state, its explorations differ from LILAO∗ in running
down just a single policy execution trace versus exploring the entire policy-graph up to the current tip states.
As such, AO∗ is less affected from the breadth bias induced by the cutoffs. LRTDP has much stronger depth
bias. Its trials go deep, and the subsequent calls to the CheckAndMarkSolved sub-procedure yield the
necessary exploration for dead ends to become known. This is reflected on the data from Table 18.3.

18.6. Discussion

We briefly summarize the contents of this chapter, and discuss possible future works pertaining specifically
to conflict-driven learning in the probabilistic context.

18.6.1. Summary and Related Work

We have shown how to learn to recognize dead ends during MDP state-space search. Regarding dead-end
detection and conflict refinement, thanks to the all-outcomes determinization, the techniques developed in
Part II apply unchanged. For conflict identification, the procedures from Chapter 5 work almost out of the
box. We have equipped a range of different MDP search algorithms with these procedures, and discussed
how to leverage the learned information. The conflict identification setup in all algorithms was proved to
be sound and complete, i.e., to fulfill the prerequisites of the conflict refinements, and to utilize as much
of the search’s knowledge as possible for dead-end learning.

Our experiments demonstrated that conflict-driven learning can be an effective means for goal-probability
analysis. Even when using nothing but the learned dead-end information for pruning, the performance
is on par with that of state-of-the-art static unsolvability detectors. However, not all tested configurations
worked equally well. UC learning almost always caused a prohibitive overhead, which was compensated
only rarely, despite that the learned information generalized to a remarkable extent. U-trap learning has
been overall much more effective. Yet, like in our experiments on classical planning, the impact of learning
significantly varies between different domains. Substantial improvements were generally achieved only if
dead ends are plenty, causing sufficiently many conflicts to become known quickly, and providing enough
pruning potential for the conflict refinements to pay off. This property is naturally provided by the budget-
limited benchmarks, but not so much in the remaining domains.

Contrasting their counterparts in classical planning, conflict-driven learning has shown to work quite ef-
fectively in MDP heuristic search. Although the relative gains were notably smaller compared to VI and the
anytime DFS variant that are geared for this kind of learning, significant performance improvements could
still be observed on many domains. Part of the reason for this is certainly the goal-probability objective.
Maximizing goal probability entails minimizing the likelihood of entering dead end states. So, their iden-
tification naturally happens as a byproduct of finding the MaxProb policy. Another distinguishing property
is the strong depth-bias in their exploration, which fosters conflict identification, and therewith increases
the potential of pruning.

Related work has already been extensively discussed in Section 9.2, but we want to nevertheless comment
on one work that is particularly closely related: Kolobov et al.’s (2010b) work on SIXTHSENSE. Like we do,
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SIXTHSENSE learns NoGoods, i.e., efficiently testable dead-end conditions, during MDP heuristic search.
It differs from our approach in two fundamental points: (1) the invocation of NoGood generation; and
(2) the fact that its NoGood learning procedure is inherently incomplete. More specifically, regarding (1),
SIXTHSENSE starts the generation of new NoGoods at predetermined intervals during search instead of
based on a systematic conflict analysis and discovery as we do here. Regarding (2), SIXTHSENSE validates
the generated NoGoods against GRAPHPLAN’s (Blum and Furst, 1997) underlying ℎ2 (Haslum and Geffner,
2000) reachability approximation, and therewith cannot learn to recognize any dead end not recognized
by ℎ2. In contrast, our learning techniques are able to represent every dead end.

18.6.2. Future Work

An interesting avenue for future work remains the application of our techniques to other MDP reacha-
bility problems. This particularly pertains to quantitative model-checking tasks. These could principally
be handled already via available compilations into probabilistic planning (Klauck et al., 2020). The more
interesting question in the long term, however, is obtaining variants of our techniques that integrate na-
tively into existing model-checking tools. Beyond goal-probability analysis, our experiments also left open
an evaluation on expected-cost objectives, for which dead-end detection, while less, can still be of vital
importance. Notice that all our search and learning modifications work on these objectives out of the box.

In the context of expected-cost minimization on SSPs, it could be furthermore worthwhile to investigate the
extension of “conflicts” to states that are unable to reach the goal with absolute certainty. As this condition
is weaker than the dead-end requirement, it allows for more pruning. Pruning such states however still
remains safe because they must not be visited by any optimal policy according to the SSP requirements.

An obvious next step in the context of goal-probability analysis is lifting the conflict-driven learning ap-
proach to learning quantitative NoGoods, i.e., given some 0 < 𝑝 < 1, can we learn to identify states
that cannot reach the goal with more than 𝑝 probability? Such information can be exploited directly in
heuristic search as means to initialize the goal-probability value function: if a 𝑝-NoGood covers a state
𝑠, then clearly 𝑉𝑈 (𝑠) = 𝑝 ≥ 𝑉 ∗(𝑠) is valid goal-probability upper bound. The learned information can
be helpful even beyond initialization, as a newly learned NoGood may generalize to other visited states
where𝑉𝑈 (𝑠) > 𝑝. Spinning the idea further, such a learning procedure would yield the building blocks for
generating goal-probability certificates, i.e., (hopefully) compact self-contained proofs of a state not being
able to reach the goal with a probability higher than the provided threshold. On the one hand, this can
serve as a proof that the returned policy is indeed optimal. On the other hand, such certificates can be of
particular interest in a quantitative model checking context, delivering the arguments for why the system
under investigation remains safe almost surely.

More generally speaking, quantitative NoGood learning can also be interpreted as learning and refining a
goal-probability upper bound 𝐻 online, during search; 𝐻 providing the reasoning of why state 𝑠 cannot
reach the goal with probability higher than 𝑝 = 𝐻 (𝑠). Online heuristic refinement has already been
used successfully in classical planning (e.g., Fickert and Hoffmann, 2017; Eifler and Fickert, 2018; Seipp,
2021). Translating the methodology of conflict-driven dead-end learning, conflicts becomes states 𝑠 visited
by search such that 𝐻 (𝑠) > 𝑉 ∗(𝑠). This then re-raises the questions of (1) how to identify conflicts, and
(2) given a conflict 𝑠, how find a refinement 𝐻 ′ of 𝐻 such that 𝐻 (𝑠) > 𝐻 ′(𝑠); while hopefully also
𝐻 (𝑡) > 𝐻 ′(𝑡) for states 𝑡 ≠ 𝑠. An obvious characterization for (1) is given by the Bellman operator, i.e.,
a state is a conflict if 𝑉𝑈 (𝑠) > (𝑩𝑉𝑈 )(𝑠). But how to test this efficiently, and possibly on all currently
visited states? (2) is more problematic given the lack of goal-probability heuristics to even start from. The
projection based heuristics as in Chapter 14, or as in probabilistic PDB heuristics (Klößner et al., 2021),
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are not very well suited due to supporting only coarse refinements. A promising aspirant might again be
given by the ΠC compilation (Haslum, 2016), with its support of representing selective fact conjunctions
C. As we have seen in Chapter 7, by applying the classical-planning state-equation heuristic to ΠC , one
can render the heuristic perfect in the limit. Can this result be generalized to the goal-probability state-
equation heuristic from Chapter 14? Answering this question entails lifting ΠC to probabilistic planning
tasks in the first place.
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19. Conclusion

The ability to analyze conflicts, and to learn from them avoiding similar mistakes in the future, is a funda-
mental algorithm ingredient in constraint satisfaction. But despite this success, it has received only little
attention in state-space search so far. Transferred to state-space search, conflicts take the form of dead-
end states, i.e., states starting from which it is not possible to reach the target states. Although not quite
as quintessential as in constraint satisfaction, the ability to deal with such conflicts effectively remains
important in many state-space search applications, such as planning with limited resources, game playing,
model checking of safety properties, and for decision-making in uncertain environments.

In this work, we have demonstrated how to learn sound and generalizable knowledge from conflicts during
state-space search in the context of classical and probabilistic planning.

In Part II, we equipped state-space search in classical planning with the ability to learn from conflicts. At
the heart of our technique are unsolvability detectors, sound and efficient to test dead-end criteria. The
overall principle is simple. Whenever search encounters a dead-end state 𝑠 that was not refuted, a conflict,
we compute a reason for why 𝑠 is a dead end, and use this to refine the unsolvability detector so that it
recognizes 𝑠 afterwards. This refinement has the potential to generalize to unseen states, namely all dead
ends for which the same reason applies. To implement this principle, we developed methods for identifying
conflicts during search based on the information that search is unveiling as part of its exploration. For
dead-end refutation and refinement, we considered three families of unsolvability detectors: critical-path
heuristics, state-equation and potential heuristics, as well as dead-end traps. We showed that they can
converge to the perfect unsolvability detector, recognizing all dead ends, in the limit, and designed suitable
conflict-based refinement algorithms. Wrapped in a depth-first search, the resulting technique reaches
the elegance of conflict-driven learning in constraint satisfaction, including the ability to immediately
backjump to the shallowest non-refuted state after a conflict was found.

For probabilistic planning, we focused on goal-probability maximization in MDPs, where dead ends take an
especially important role. State-space search methods for goal-probability planning were however severely
underexplored. In preparation of applying conflict-driven learning in this context, Part III filled that gap
by (i) designing and exploring a large space of MDP state-space search methods, systematizing known
algorithms and contributing several new algorithm variants, (ii) introducing simpler, but still practically
relevant, special cases, and (iii) providing a comprehensive empirical analysis, which among other things
demonstrated significant benefits of our new algorithm variants.

In Part IV, we concluded our journey by lifting the concepts introduced in Part II to the MDP search
methods from Part III. Thanks to the fact that action-outcome uncertainty is irrelevant with respect to
qualitative reachability questions, for dead-end refutation and refinement, the techniques from before
apply unchanged. We showed the missing component, conflict identification, to be possible via only small
modifications to our previous methods, accounting for the different structure of MDP versus graph search.

Our experimental evaluation in Parts II and IV confirmed that conflict-driven learning can significantly
reduce search effort for (a) finding plans in classical planning in the presence of dead ends, (b) proving
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classical planning tasks unsolvable, and (c) for goal-probability maximization in MDP planning. But, this
requires certain properties to be present, with the result that exact impact varies substantially depending
on the domain. Viewed overall, our techniques do not, as it stands, deliver an empirical breakthrough.
Nevertheless, we expect our work to be the beginning of the story, not its end, and lots remains to be
explored in future work.

Regarding learning, there are open questions pertaining to different refinement algorithms, to the integra-
tion of other dead-end detection methods, as well as to combined techniques that utilize the complemen-
tary strengths of different unsolvability detectors. There are open questions concerning other search tech-
niques, such as symmetry or partial-order reduction. Besides investigating how to synergistically combine
them with learning in search, these could be leveraged within the refinements for stronger generalization,
e.g., by learning to recognize also dead ends where symmetric reasons apply.

A particular promising direction is the extension of the approach to broader forms of conflicts. In classical
planning, one could learn to identify states that may reach the goal, but only if going back to some ancestor
state. Such states are equally wasteful to explore than dead ends, yet presumably appear more frequently
in search, and exist even in domains without dead ends. Challenges lie in the development of according
unsolvability detector equivalents, and suitable refinement methods. In probabilistic planning, exciting
questions pertain to taking the step from dead-end learning to learning goal-probability estimates.

Last but not least, there remains the exploration of other sorts of state-space search applications, where
dead-end reasoning is equally or even more important than in the planning variants considered here. This
includes, in particular, FOND planning, game playing, and qualitative and quantitative model checking.
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A. Supplemental Results

A.1. Offline U-Trap Coverage

Baseline Offline U-trap
U0 U0 U1 U2 MSa PDB SEQ POT

Domain # 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Unsolvability IPC (UIPC) 2016 Benchmarks
BagBarman 20 12 12 12 12 12 4 0 0 0 12 12 12 12 12 12
BagGripper 25 6 5 1 3 0 0 0 3 2 3 1 3 0 0 0
BagTransport 29 7 7 7 7 7 7 6 0 0 7 7 7 7 7 7
Bottleneck 25 10 10 15 10 15 12 12 3 3 10 15 10 15 10 15
CaveDiving 25 7 7 7 7 7 7 7 2 2 7 7 7 8 7 7
ChessBoard 23 5 5 5 5 5 5 5 1 1 5 5 5 5 5 13
Diagnosis 11 4 4 5 4 5 4 3 2 1 4 5 4 5 4 5
DocTransfer 20 5 6 11 12 9 7 2 5 5 6 11 6 7 6 5
NoMystery 20 2 2 2 2 2 2 2 8 7 2 2 2 2 2 2
PegSol 24 24 24 24 24 24 24 24 0 0 24 24 24 24 24 24
PegSolRow5 15 5 5 5 5 5 5 5 3 3 5 5 5 5 5 5
Rovers 20 7 7 7 7 7 7 7 9 9 7 7 7 7 7 7
SlidingTiles 20 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Tetris 20 10 10 10 10 10 5 0 5 5 10 10 10 10 5 5
TPP 30 17 17 17 17 17 17 16 21 21 17 18 17 17 17 16∑ UIPC 327 131 131 138 135 135 116 99 72 69 129 139 129 134 121 133

Unsolvable Resource-Constrained Planning (RCP) Benchmarks
NoMystery 150 26 26 26 26 42 26 44 128 128 26 28 26 26 26 33
Rovers 150 3 3 3 3 4 3 4 96 92 3 3 3 3 3 3
TPP 25 5 5 8 5 8 5 0 9 8 5 8 5 7 5 0∑ RCP 325 34 34 37 34 54 34 48 233 228 34 39 34 36 34 36∑ Total 652 165 165 175 169 189 150 147 305 297 163 178 163 170 155 169

Table A.1.: Coverage results for search with dead-end detection by offline U-traps only, for conjunction candidates
of size 𝑘 ∈ { 1, 2 }, and different U. Best results in bold.
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U1 U2 MSa PDB SEQ POT

Domain # – Γ1 Γ2 – Γ1 Γ2 – Γ1 Γ2 – Γ1 Γ2 – Γ1 Γ2 – Γ1 Γ2

Unsolvability IPC (UIPC) 2016 Benchmarks
BagBarman 20 8 8 8 0 0 0 4 0 0 12 12 12 4 4 4 4 4 4
BagGripper 25 3 1 0 0 0 0 3 3 2 3 3 1 23 14 0 3 0 0
BagTransport 29 6 6 6 16 16 7 6 0 0 7 7 7 29 29 19 24 24 19
Bottleneck 25 20 20 21 21 21 12 10 3 3 19 19 19 25 25 25 25 25 22
CaveDiving 25 7 7 7 6 6 6 7 2 2 7 7 7 8 8 9 8 8 7
ChessBoard 23 5 5 5 4 4 4 5 1 1 5 5 5 23 23 23 23 23 23
Diagnosis 11 6 6 5 5 5 4 4 2 1 5 5 5 4 4 4 4 4 4
DocTransfer 20 7 12 9 7 7 2 10 5 5 12 12 11 6 6 7 7 7 5
NoMystery 20 2 2 2 2 2 2 8 8 7 11 11 11 2 2 2 5 5 2
PegSol 24 24 24 24 21 22 22 24 0 0 24 24 24 24 24 24 22 22 22
PegSolRow5 15 5 5 5 4 4 4 5 3 3 5 5 5 15 15 15 15 15 15
Rovers 20 7 7 7 7 7 7 9 9 9 12 12 12 6 6 6 6 6 6
SlidingTiles 20 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Tetris 20 5 5 5 5 5 0 5 5 5 10 10 10 20 20 15 20 15 5
TPP 30 17 17 17 15 15 15 24 21 21 24 24 24 14 14 14 19 19 17∑ UIPC 327 132 135 131 123 124 95 134 72 69 166 166 163 213 204 177 195 187 161

Unsolvable Resource-Constrained Planning (RCP) Benchmarks
NoMystery 150 52 52 52 83 84 63 130 128 128 149 149 149 16 16 16 68 68 54
Rovers 150 7 7 8 67 67 67 111 96 92 93 93 93 1 1 3 1 1 3
TPP 25 7 7 9 8 8 0 17 9 8 20 20 20 1 1 2 11 11 0∑ RCP 325 66 66 69 158 159 130 258 233 228 262 262 262 18 18 21 80 80 57∑ Total 652 198 201 200 281 283 225 392 305 297 428 428 425 231 222 198 275 267 218

Table A.2.: Coverage results for search using U (“–”) versus U + UΓ for dead-end detection, for offline constructed
U-traps Γ with 𝑘 ∈ { 1, 2 } (“Γ𝑘”). Best results in bold.
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A.2. MaxProb Coverage for DFHS Variants

DFHS|U w/ PDB pruning
VI LABEL

NOUP BW FW BW FW

Domain # NONE TIP NONE TIP NONE TIP INC TIP∪INC NONE TIP NONE TIP INC TIP∪INC

IPPC Benchmarks
TriTire 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

IPPC Benchmarks with Budget Limit
Blocksw-b 180 100 99 99 100 99 100 92 98 109 112 109 113 102 102
Boxw-b 18 3 3 3 0 3 3 0 3 3 3 3 3 3 3
Drive-b 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
Elevators-b 90 85 83 84 81 87 84 81 82 90 86 90 87 83 82
ExpBloc-b 150 98 97 99 95 99 98 97 98 100 101 99 101 96 100
Random-b 72 53 53 53 53 53 53 53 53 53 53 53 53 53 53
RecTire-b 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36
Schedule-b 138 60 60 60 60 60 60 60 60 62 62 62 62 62 62
SeaResc-b 90 83 83 83 83 83 83 83 83 84 84 84 84 84 84
Tirew-b 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
TriTire-b 60 57 54 57 56 57 56 56 55 57 59 57 59 59 59
Zenotra-b 78 42 40 42 42 42 42 39 39 42 42 42 42 42 42∑ IPPC-b 1092 797 788 796 786 799 795 777 787 816 818 815 820 800 803

Canadian RCP Benchmarks with Budget Limit
NoMyst-b 60 51 49 52 49 52 49 52 49 57 57 57 57 57 57
Rovers-b 60 58 58 58 57 58 58 58 58 59 60 60 60 59 60
TPP-b 60 48 47 50 46 54 48 51 47 55 54 55 54 55 54∑ RCP-b 180 157 154 160 152 164 155 161 154 171 171 172 171 171 171

Pentesting Benchmarks
Pentest-b 90 68 68 68 68 68 68 63 62 70 69 70 69 68 67
Pentest 15 9 9 9 9 9 9 8 8 9 9 9 9 8 8∑ Pentest 105 77 77 77 77 77 77 71 70 79 78 79 78 76 75

Table A.3.: Acyclic planning. MaxProb coverage for different DFHS configurations. Best results in bold. DFHS param-
eters are abbreviated as “VI”: termination is checked via VI; “LABEL”: labeling is enabled; “NOUP” no value updates
during the policy-graph exploration; “BW”: value updates only on the way back up of the exploration; “FW”: addition-
ally doing value updates on the way down of exploration; “NONE” no cutoffs, exploration is terminated only at termi-
nal and goal states; “TIP”: cutting off exploration at tip states (CUTOFFTIP), i.e., states that have not been expanded
yet; “INC” cutting off exploration at inconsistent states (CUTOFFINCONSISTENT); and “TIP ∪ INC” using both CUTOFFTIP
and CUTOFFINCONSISTENT. Recall that ILAO∗ corresponds to entry VI/BW/TIP; HDP corresponds to LABEL/FW/INC. All
configurations use PDB pruning. Default tie-breaking strategy.
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FRET-𝜋 DFHS|U w/ ℎFF pruning
VI LABEL

NOUP BW FW BW FWDomain #
NONE TIP NONE TIP NONE TIP INC TIP∪INC NONE TIP NONE TIP INC TIP∪INC

IPPC Benchmarks
Blocksw 30 22 22 22 16 22 16 22 16 22 16 22 16 16 22
Boxw 15 7 7 7 5 7 5 7 5 7 5 7 5 5 7
Drive 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
Elevators 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
ExpBloc 30 24 24 25 26 25 26 26 26 25 27 25 27 27 28
Random 15 14 14 14 13 14 13 14 13 14 14 14 14 14 14
RecTire 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
Schedule 30 10 10 10 10 10 10 10 10 10 10 10 10 10 10
SeaResc 15 5 5 5 5 5 5 5 5 5 5 5 5 5 6
Tirew 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
Zenotra 30 10 10 10 8 10 8 10 8 10 8 10 8 8 10∑ IPPC 224 151 151 152 142 152 142 153 142 152 144 152 144 144 156

Canadian RCP Benchmarks
NoMyst 10 5 5 5 4 5 4 5 4 5 5 5 5 5 5
Rovers 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
TPP 10 8 8 8 8 8 8 8 8 8 8 8 8 8 9∑ RCP 30 23 23 23 22 23 22 23 22 23 23 23 23 23 24

Table A.4.: Cyclic planning. MaxProb coverage for different DFHS configurations. Results for FRET-𝜋 only. Best
results in bold. DFHS parameters are abbreviated as “VI”: termination is checked via VI; “LABEL”: labeling is enabled;
“NOUP” no value updates during the policy-graph exploration; “BW”: value updates only on the way back up of the
exploration; “FW”: additionally doing value updates on the way down of exploration; “NONE” no cutoffs, exploration
is terminated only at terminal and goal states; “TIP”: cutting off exploration at tip states (CUTOFFTIP), i.e., states that
have not been expanded yet; “INC” cutting off exploration at inconsistent states (CUTOFFINCONSISTENT); and “TIP∪ INC”
using both CUTOFFTIP and CUTOFFINCONSISTENT. Recall that ILAO∗ corresponds to entry VI/BW/TIP; HDP corresponds
to LABEL/FW/INC. All configurations use ℎFF pruning. Default tie-breaking strategy.
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B.1. Conflict Identification in Forward State-Space Search

B.1.1. Correctness of the Known-Dead-End Labeling Procedure (Theorem 5.1)

Theorem 5.1. At the start of the while loop in Algorithm 5.1, the labeled states are exactly the known dead
ends.

Proof. Soundness, i.e., 𝑡 labeled⇒ 𝑡 is a known dead end, follows immediately from construction because
at the moment a state 𝑡 is labeled we have R[Θ̂] (𝑡) ⊆ closed, and once that condition is true obviously it
remains true for the remainder of the search.

Completeness, i.e., 𝑡 is a known dead end ⇒ 𝑡 labeled, can be proved by induction on the number of
expansions. Assume that the claim holds before a state 𝑠 is expanded; we need to show that, for any states
𝑡 that were not known dead ends before but are known dead ends now, 𝑡 will be labeled. Call such 𝑡 new-
label states. Clearly, any new-label state must be an ancestor of 𝑠. Therefore, a new-label state can exist
only if, after the expansion, R[Θ̂] (𝑠) ⊆ closed: else, an open state is reachable from 𝑠, and transitively is
reachable from all ancestors of 𝑠. In the case where R[Θ̂] (𝑠) ⊆ closed, 𝑠 is labeled and so is every new-
label state parent 𝑡 of 𝑠, due to the recursive invocation on 𝑡 . It remains to show that each new-label state
𝑡 will indeed be reached, and thus labeled, during the reverse traversal of the search space induced by the
recursive invocations of CheckAndLearn. This is a direct consequence of the following two observations:
(1) each ancestor 𝑡 of 𝑠 has not been labeled dead end so far, and (2) for each new-label state 𝑡 , the search
space contains a path of new-label states 𝑡 = 𝑡0, 𝑡1, . . . , 𝑡𝑛 = 𝑠. The first observation follows immediately
from the algorithm: since 𝑡 is an ancestor of 𝑠, 𝑡 must have been expanded at some point (which means
that 𝑡 could not have been labeled dead end before its expansion), and 𝑡 could not have been labeled dead
end during any previous call to CheckAndLearn because at least one open state was reachable from 𝑡
during any such call. The second observation follows immediately from R[Θ̂] (𝑡) ⊆ closed: (as above) 𝑡 is
an ancestor of 𝑠, i.e., the search space contains a path 𝑡 = 𝑡0, 𝑡1, . . . , 𝑡𝑛 = 𝑠, and due to the transitivity of
reachability, for every 1 ≤ 𝑖 < 𝑛, R[Θ̂] (𝑡𝑖) ⊆ closed. Obviously, for every 1 ≤ 𝑖 ≤ 𝑛, 𝑠 is also reachable
from 𝑡𝑖 , meaning that 𝑡𝑖 must be a new-label state, too. Since CheckAndLearn will traverse at least one
such path from 𝑡 to 𝑠 in reverse order, 𝑡 will indeed be labeled eventually.

□

B.2. Critical-Path Heuristics: Conflict Refinement & NoGood Learning

B.2.1. Correctness of Path-Cut Refinement Algorithm (Theorem 6.1)

Theorem 6.1. Suppose 𝔠(𝑎) = 1 for all 𝑎 ∈ A. Let C be any set of atomic conjunctions. Let 𝑠 be a state with
ℎC (𝑠) < ℎ∗(𝑠). Then:
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(i) The execution of PathCutRefine(G, ℎC (𝑠)) terminates eventually, and is well defined, i.e., (a) in any
call PathCutRefine(𝑃, 𝑁 ) there exists 𝑐 ∈ C so that 𝑐 ⊆ 𝑃 and ℎC (𝑠, 𝑐) ≥ 𝑁 ; and (b) if 𝑁 = 0,
then 𝑃 ⊈ 𝑠.

(ii) If X is the set of conjunctions resulting from PathCutRefine(G, ℎC (𝑠)), then ℎC∪X (𝑠) > ℎC (𝑠).

Proof.

(i) (a) follows directly from Equation (6.1). Initially, there must be some 𝑐 ∈ C so that 𝑐 ⊆ G and
ℎC (𝑠, 𝑐) = ℎC (𝑠,G) (last case of Equation (6.1)). Consider a recursive call PathCutRefine(𝑃, 𝑛).
Let 𝑃 ′, 𝑛′ be the arguments of the call to PathCutRefine that caused the recursion, let 𝑎 be the
corresponding action, and let 𝑐′ ⊆ 𝑃 ′ be the conjunction selected in PathCutRefine(𝑃 ′, 𝑛′). Due
to the selection of 𝑐′, we have ℎC (𝑠, 𝑐′) = ℎC (𝑠, 𝑃 ′) = 𝑛′ = 𝑛 + 1; and because 𝑐′ ⊆ 𝑃 ′, we also
have regress(𝑐′, 𝑎) ⊆ regress(𝑃 ′, 𝑎) = 𝑃 . Hence, by definition of ℎC , ℎC (𝑠, 𝑃) ≥ 𝑛, i.e., there is a
conjunction 𝑐 ∈ C, 𝑐 ⊆ 𝑃 so that ℎC (𝑠, 𝑐) ≥ 𝑛.

For (b), assume for contradiction that there is a call PathCutRefine(𝑃, 0) where 𝑃 ⊆ 𝑠. Let
𝑎𝑛, . . . , 𝑎1 be the actions that label the recursion path down to the call PathCutRefine(𝑃, 0). It
is easy to show by induction that ⟨𝑎1, . . . , 𝑎𝑛⟩ is actually a plan for 𝑠. However, 𝑛 is exactly ℎC (𝑠),
which means that ℎC (𝑠) = ℎ∗(𝑠), a contradiction to the assumption.

(ii) We show for every call PathCutRefine(𝑃, 𝑛) and for the constructed conflict 𝑥 thatℎC∪X (𝑠, 𝑥) > 𝑛
when PathCutRefine(𝑃, 𝑛) terminates. In other words, when PathCutRefine(G, ℎC (𝑠)) termi-
nates, then we have ℎC∪X (𝑠) > ℎC (𝑠), as desired. The proof is by induction on 𝑛. For 𝑛 = 0, the
conflict 𝑥 ⊆ 𝑃 is chosen such that 𝑥 ⊈ 𝑠. Hence, ℎC∪X (𝑠, 𝑥) > 0 = 𝑛 due to Equation (6.1). For
the induction step, 𝑛 > 0, let 𝑥 be the conflict that is constructed in the call PathCutRefine(𝑃, 𝑛).
Since 𝑛 > 0, there must be an atomic conjunction 𝑐 ∈ C that is part of 𝑥 , 𝑐 ⊆ 𝑥 , and so that
ℎC (𝑠, 𝑐) ≥ 𝑛. If ℎC (𝑠, 𝑐) > 𝑛, then clearly ℎC (𝑠, 𝑥) > 𝑛 and the claim follows. So, assume that
ℎC (𝑠, 𝑐) = 𝑛, and let 𝑎 ∈ A[𝑥] be an arbitrary achiever of 𝑥 (i.e., regress(𝑥, 𝑎) ≠ ⊥). In case
A[𝑥] is empty, it directly follows that ℎC∪X (𝑠, 𝑥) = ∞ > 𝑛 (Equation (6.1)). Otherwise, dis-
tinguish between the cases 𝑎 ∈ A[𝑐] and 𝑎 ∉ A[𝑐]. If 𝑎 ∉ A[𝑐], then, since 𝑐 ⊆ 𝑥 and
𝑥 ∩ del(𝑎) = ∅, i.e. 𝑐 ∩ del(𝑎) = ∅, we have that add(𝑎) ∩ 𝑐 = ∅. Therefore, 𝑐 ⊆ regress(𝑥, 𝑎)
and thus ℎC∪X (𝑠, regress(𝑥, 𝑎)) ≥ 𝑛. On the other hand, if 𝑎 ∈ A[𝑐], then we must have re-
curred on 𝑃 ′ = regress(𝑃, 𝑎) and 𝑛′ = 𝑛 − 1. If 𝑥′ is the conflict constructed in this call, then we
know by induction hypothesis that ℎC∪X (𝑠, 𝑥′) > 𝑛′. Because of the selection of 𝑥 , we ensured that
𝑥′ ⊆ regress(𝑥, 𝑎), and as a consequence ℎC∪X (𝑠, regress(𝑥, 𝑎)) > 𝑛′ = 𝑛 − 1. Since 𝑎 was chosen
arbitrarily, this shows that ℎC∪X (𝑠, 𝑥) > 𝑛.

□

B.2.2. Proof that Size-Minimal UC Neighbor-Conflict Extraction is NP-HARD

Consider the Extract(𝑃) procedure from Algorithm 6.2. Let 𝑥 ⊆ 𝑃 be given such that the properties (b)
𝑥 is unreachable from the dead-end states 𝑆; and (c) for all neighbors 𝑡 ∈ 𝑇 , UC (𝑡, 𝑥) = ∞, are satisfied.
We show that deciding whether |𝑥 | is minimal among all conjunctions 𝑥′ ⊆ 𝑃 satisfying those properties
is NP-HARD in general.

We do so via a reduction from the minimal vertex cover problem. That problem asks for given graph
𝐺 = (𝑉 , 𝐸) with vertices𝑉 and edges 𝐸 for a size-minimal subset𝐶 ⊆ 𝑉 such that for all edges (𝑢, 𝑣) ∈ 𝐸,
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either 𝑢 ∈ 𝐶 or 𝑣 ∈ 𝐶.

We construct a planning task Π𝐺 as follows. Let F = 𝑉 ∪ { 𝑝 }, where 𝑔 does not appear in𝑉 . Let G = F ,
and A = { 𝑎(𝑢,𝑣) | (𝑢, 𝑣) ∈ 𝐸 }, with pre(𝑎(𝑢,𝑣)) = ∅, add(𝑎(𝑢,𝑣)) = {𝑔 }, and del(𝑎(𝑢,𝑣)) = {𝑢, 𝑣 }. The
construction of Π𝐺 is obviously polynomial in the size of𝐺 . Consider 𝑠 = 𝑉 . Note that 𝑆 = { 𝑠 } satisfies the
U1 recognized-neighbors property, because every action removes some “vertex facts”. Further, note that
for every successor 𝑠⟦𝑎(𝑢,𝑣)⟧ = F \ {𝑢, 𝑣 }, i.e., the facts not reachable by 𝑠⟦𝑎(𝑢,𝑣)⟧ under U1 are exactly
𝑢 and 𝑣 . Let 𝑥 ⊆ G be a size-minimal conjunction that satisfies (b) and (c). From (c) and the previous
observation, it follows 𝐶 = 𝑥 \ {𝑔 } is a minimal vertex cover. This shows the claim.

□

B.2.3. Worst-Case UC Refinement Example (Proposition 6.2)

Proposition 6.2. There are planning tasks Π, and dead-end states 𝑠 ∈ SΠ such that UC (𝑠) = ∞ entails that
C contains exponentially many conjunctions in |Π |, even if restricting the states 𝑠 to ones that satisfy the UC′

recognized-neighbor property for some polynomially bounded C′.

Proof. Consider the family of STRIPS planning tasks Π𝑛 = ⟨F ,A,I,G⟩ with

• Facts F = { 𝑝𝑖 | 1 ≤ 𝑖 ≤ 𝑛 } ∪ {𝑞𝑖 | 1 ≤ 𝑖 ≤ 𝑛 } ∪ { 𝑟 }.

• Actions A = { 𝑎𝑖 | 1 ≤ 𝑖 ≤ 𝑛 } ∪ {𝑏𝑖 | 1 ≤ 𝑖 ≤ 𝑛 }, where

pre(𝑎𝑖) = { 𝑝𝑖 } add(𝑎𝑖) = { 𝑟 } del(𝑎𝑖) = { 𝑝𝑖 }
pre(𝑏𝑖) = { 𝑝𝑖 , 𝑟 } add(𝑏𝑖) = {𝑞𝑖 } del(𝑏𝑖) = { 𝑝𝑖 }

• Initial state I = { 𝑝𝑖 | 1 ≤ 𝑖 ≤ 𝑛 }.

• Goal G = {𝑞𝑖 | 1 ≤ 𝑖 ≤ 𝑛 }.

Each Π𝑛, 𝑛 ≥ 1, is obviously unsolvable. Note that the initial state I satisfies the recognized-neighbors
property for U1: the actions applicable in I are 𝑎1, . . . , 𝑎𝑛; and applying any 𝑎𝑖 in I removes 𝑝𝑖 , which
cannot be added, and hence U1(I⟦𝑎𝑖⟧, {𝑞𝑖 }) = U1(I⟦𝑎𝑖⟧, pre(𝑏𝑖)) = ∞, i.e., U1(I⟦𝑎𝑖⟧,G) = ∞.

However, in order to obtain UC (I) = UC (I,G) = ∞, C has to contain exponentially many conjunctions.
Observe that UC (I,G) = ∞ entails that UC (I, 𝑃) = ∞ for every 𝑃 = { 𝑟 } ∪ {𝑋𝑖 | 1 ≤ 𝑖 ≤ 𝑛 }, where
𝑋𝑖 ∈ { 𝑝𝑖 , 𝑞𝑖 }, and 𝑝𝑘 ∈ 𝑃 for at least one 1 ≤ 𝑘 ≤ 𝑛. Namely, suppose there was such 𝑃 with UC (I, 𝑃) <
∞. As the exact selection 𝑋𝑖 is not important, assume w.l.o.g. that 𝑃 = { 𝑟, 𝑞1, . . . , 𝑞𝑘 , 𝑝𝑘+1, . . . , 𝑝𝑛 } for
𝑘 < 𝑛. Observe that

UC (I,G) ≤ UC (I, regress(G, 𝑏𝑛))
≤ UC (I, regress(regress(G, 𝑏𝑛), 𝑏𝑛−1))
. . .

≤ UC (I, regress(regress(. . . , 𝑏𝑘+2), 𝑏𝑘+1))
= UC (I, 𝑃)
< ∞

which contradicts the assumption UC (I,G) = ∞.
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Finally, note that ℎ∗(I, 𝑃 ′) < ∞ for every 𝑃 ′ ⊂ 𝑃 such that 𝑋𝑖 ∉ 𝑃 ′ from some 1 ≤ 𝑖 ≤ 𝑛. Therefore,
UC (I, 𝑃) = ∞ can only be true if C contains a conjunction 𝑐𝑃 such that {𝑋1, . . . , 𝑋𝑛 } ⊆ 𝑐𝑃 . The number
of such conjunctions is exponential in 𝑛, concluding the proof.

□

B.3. LP Heuristics Over Conjunctions: Compilation, Convergence & Conflict
Refinement

B.3.1. ΠC Dominates Partial Variable Merges (Theorem 7.1)

Theorem 7.1. For every Π in TNF, every set of conjunctions C, and every state 𝑠, it holds that

ℎseq [ΠC] (𝑠) ≥ ℎC𝑠𝑒𝑞 (𝑠)

Proof. Let SEQ[ΠC] be the LP underlying ℎseq [ΠC] (𝑠), and CSEQ that underlying ℎC𝑠𝑒𝑞 (𝑠). If there is no
feasible solution to SEQ[ΠC], then ℎseq [ΠC] (𝑠) = ∞, and ℎseq [ΠC] (𝑠) ≥ ℎC𝑠𝑒𝑞 (𝑠) follows trivially.

Suppose that 𝑋 is a feasible solution to SEQ[ΠC], where 𝑋𝑎𝐶 denotes the count-value for the action oc-
currence 𝑎𝐶 ∈ AC . We show how to construct from 𝑋 a feasible solution 𝑌 for CSEQ with equal objective
value. We choose the values of 𝑌𝑎 and 𝑌𝑥→𝑥′

𝑎 in the following way. For every action 𝑎 ∈ A, we set

𝑌𝑎 :=
∑

𝐶⊆C:𝑎𝐶∈AC
𝑋𝑎𝐶 (T7.1.1)

(the sum over all occurrences 𝑎𝐶 of 𝑎). Let𝑉 be any non-unit set of variables glanced by the conjunctions C,
and consider the corresponding partial-variable-merge state spaceΘC𝑉 . The transition variables are defined
as follows:

• For every transition 𝑐 𝑎−→ 𝑐′:
𝑌 𝑐→𝑐′
𝑎 :=

∑
𝐶⊆C:𝑎𝐶∈AC,
𝜋𝑐 ↦→⊥∈eff(𝑎𝐶 ),
𝜋𝑐′ ↦→⊤∈eff(𝑎𝐶 )

𝑋𝑎𝐶 (T7.1.2)

• For every transition 𝔰𝑉
𝑎−→ 𝑐:

𝑌 𝔰𝑉→𝑐
𝑎 :=

∑
𝐶⊆C:𝑎𝐶∈AC,
𝜋𝑐 ↦→⊤∈eff(𝑎𝐶 )

𝑋𝑎𝐶 (T7.1.3)

• For every transition 𝑐 𝑎−→ 𝔰𝑉 :
𝑌 𝑐→𝔰𝑉
𝑎 :=

∑
𝐶⊆C:𝑎𝐶∈AC,
𝜋𝑐 ↦→⊤∈pre(𝑎𝐶 ),
𝜋𝑐 ↦→⊥∈eff(𝑎𝐶 )

𝑋𝑎𝐶 (T7.1.4)

Notice that every action occurrence 𝑎𝐶 ∈ AC counts towards at most one transition in every partial
variable merge. Assume the contrary, and let 𝑎𝐶 ∈ AC be an action occurrence, which is counted in two
distinct, state-changing transitions 𝑥1

𝑎−→ 𝑥2 and 𝑥3
𝑎−→ 𝑥4. Note that 𝑥1 ≠ 𝔰𝑉 or 𝑥2 ≠ 𝔰𝑉 , and 𝑥3 ≠ 𝔰𝑉 or

𝑥4 ≠ 𝔰𝑉 . We distinguish between the following cases
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• 𝑥2 = 𝑐1 and 𝑥4 = 𝑐2 for 𝑐1, 𝑐2 ∈ C with vars(𝑐1) = vars(𝑐2) = 𝑉 and 𝑐1 ≠ 𝑐2. From (T7.1.2)
and (T7.1.3) and the definition of 𝑎𝐶 , it follows that 𝑐1, 𝑐2 ∈ 𝐶 what contradicts the compatibility
requirement of 𝐶.

• 𝑥1 = 𝑐1 and 𝑥3 = 𝑐2 for 𝑐1, 𝑐2 ∈ C with vars(𝑐1) = vars(𝑐2) = 𝑉 and 𝑐1 ≠ 𝑐2. We show that
𝑐1 ⊆ regress(𝐶, 𝑎) and 𝑐2 ⊆ regress(𝐶, 𝑎), which contradicts the compatibility requirement of 𝐶.
As per the definition (T7.1.4), 𝜋𝑐𝑖 ↦→ ⊤ ∈ pre(𝑎𝐶 ) if 𝑥𝑖+1 = 𝔰𝑉 , for both 𝑖 ∈ { 1, 3 }, which by the
definition of 𝑎𝐶 implies 𝑐𝑖 ⊆ regress(𝐶, 𝑎), as desired. Consider (T7.1.2), and suppose 𝑥𝑖+1 = 𝑐′.
Since Π is in TNF and 𝑐′ ∈ 𝐶, as per 𝜋𝑐′ ↦→ ⊤ ∈ eff(𝑎𝐶 ), it follows that 𝑉 ⊆ vars(regress(𝐶, 𝑎)).
By the definition of 𝑎𝐶 , 𝜋𝑐𝑖 ↦→ ⊥ ∈ eff(𝑎𝐶 ) implies that 𝑐𝑖 ∥ regress(𝐶, 𝑎). With vars(𝑐𝑖) = 𝑉 ⊆
vars(regress(𝐶, 𝑎)), hence 𝑐𝑖 ⊆ regress(𝐶, 𝑎).

• 𝑥2 = 𝑐1 and 𝑥3 = 𝑐2 for 𝑐1, 𝑐2 ∈ C with vars(𝑐1) = vars(𝑐2) = 𝑉 where either 𝑥1 ≠ 𝑐2 or
𝑥4 ≠ 𝑐1. From (T7.1.2), (T7.1.3), and (T7.1.4), it follows that 𝜋𝑐2 ↦→ ⊥ ∈ eff(𝑎𝐶 ) and 𝜋𝑐1 ↦→
⊤ ∈ eff(𝑎𝐶 ). By definition of 𝑎𝐶 , 𝜋𝑐2 ↦→ ⊥ ∈ eff(𝑎𝐶 ) implies that 𝑐2 ∥ regress(𝐶, 𝑎), and hence
𝑐2 ∥ regress(𝑐1, 𝑎). Therefore, the partial variable merge must contain the transition 𝑐2

𝑎−→ 𝑐1. Since
Π is in TNF, 𝑎 can only label a single transition going into 𝑐1, respectively a single transition going
out of 𝑐2. But this means that 𝑥1 = 𝑐2 and 𝑥4 = 𝑐1, a contradiction to the assumption.

Since 𝑥1
𝑎−→ 𝑥2 and 𝑥3

𝑎−→ 𝑥4 are two different transitions, one of the three cases must apply. But all of
them lead to a contradiction to one of the assumptions. This hence shows that every 𝑎𝐶 is associated with
at most one transition of every partial variable merge.

It remains to show that the constructed𝑌 satisfies the fact state-equation constraints (7.1); the conjunction
state-equation constraints, simplified for TNF tasks, Equation (7.3); and the link constraints (7.4).

We start with showing Equation (7.4). Again, suppose that 𝑉 is any non-singleton variable set glanced by
the conjunctions C. Let 𝑎 be any action. If Equation (7.4) enforces “≤”, the claim follows immediately as
per the above arguments (every 𝑎𝐶 is counted by 𝑌𝑥→𝑥′

𝑎 for ΘC𝑉 at most once). Suppose Equation (7.4)
enforces “=”, i.e., ΘC𝑉 contains exactly one transition 𝑥 𝑎−→ 𝑥′. Note that for this to be the case, it must hold
in particular that𝑉 ⊆ vars(pre(𝑎)). Since CSEQ ignores self-looping transitions, it must further be 𝑥 ≠ 𝑥′.
Distinguish the following three cases:

• 𝑥 = 𝑐 and 𝑥 = 𝑐′, for 𝑐, 𝑐′ ∈ C, vars(𝑐) = vars(𝑐′). It follows that 𝑐 ⊆ pre(𝑎), i.e., 𝑐 ⊆ regress(𝐶, 𝑎),
for any 𝐶; 𝑐 ∦ eff(𝑎), i.e., 𝜋𝑐 ↦→ ⊥ ∈ eff(𝑎𝐶 ) for all 𝑎𝐶 ; and regress(𝑐′, 𝑎) = pre(𝑎), so via the
definition of 𝑎𝐶 , 𝑐′ ∈ 𝐶, and thus 𝜋𝑐 ↦→ ⊤ ∈ eff(𝑎𝐶 ), for all 𝑎𝐶 . In conclusion, via (T7.1.2) and
(T7.1.1), 𝑌 𝑐→𝑐′

𝑎 =
∑

𝐶⊆C,𝑎𝐶∈AC 𝑋𝑎𝐶 = 𝑌𝑎.

• 𝑥 = 𝔰𝑉 and 𝑥 = 𝑐, 𝑐 ∈ C, vars(𝑐) = 𝑉 . Via vars(𝑐) = 𝑉 ⊆ vars(pre(𝑎)), it follows that
regress(𝑐, 𝑎) = pre(𝑎). Therefore, by the definition of 𝑎𝐶 , 𝑐 ∈ 𝐶 for every action occurrence of
𝑎, i.e., 𝜋𝑐 ↦→ ⊤ ∈ eff(𝑎𝐶 ), for every 𝑎𝐶 . In other words, 𝑌 𝔰𝑉→𝑐

𝑎 = 𝑌𝑎 via (T7.1.3) and (T7.1.1).

• 𝑥 = 𝑐 and 𝑥 = 𝔰𝑉 for 𝑐 ∈ C, vars(𝑐) = 𝑉 . With 𝑉 ⊆ vars(pre(𝑎)), it follows that 𝑐 ⊆ regress(𝐶, 𝑎)
for all 𝐶. Since ΘC𝑉 contains the transition 𝑐

𝑎−→ 𝔰𝑉 , 𝑎 must change some variable 𝑣 ∈ 𝑉 , i.e.,
eff(𝑎) ∦ 𝑐. Thus, for all action occurrence𝑎𝐶 ∈ AC of𝑎, 𝜋𝑐 ↦→ ⊤ ∈ pre(𝑎𝐶 ) via the first observation,
and 𝜋𝑐 ↦→ ⊥ ∈ eff(𝑎𝐶 ) as per the second observation. In conclusion, 𝑌 𝑐→𝔰𝑉

𝑎 = 𝑌𝑎, as per (T7.1.4)
and (T7.1.1)

Next, consider the state-equation constraint Equation (7.1) for the fact 𝑝 = 𝑣 ↦→ 𝑑 . Denote by PROD[ΠC]
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and CONS[ΠC] the producers and consumers defined in ΠC . It is easy to see that

PROD[ΠC] (𝑝) = {𝑎𝐶 | 𝑎 ∈ PROD(𝑝),𝐶 ⊆ C s.t. 𝑎𝐶 ∈ AC}

and that
CONS[ΠC] (𝑝) = {𝑎𝐶 | 𝑎 ∈ CONS(𝑝),𝐶 ⊆ C s.t. 𝑎𝐶 ∈ AC}

As per (T7.1.1), it holds that∑
𝑎∈PROD(𝑝)

𝑌𝑎 =
∑

𝑎∈PROD(𝑝)

∑
𝐶⊆C,𝑎𝐶∈AC

𝑋𝑎𝐶 =
∑

𝑎𝐶∈PROD[ΠC] (𝑝)
𝑋𝑎𝐶

and similarly for the consumers. Since 𝑋 satisfies the constraint for 𝑝 in SEQ[ΠC] by assumption, 𝑌 hence
satisfies 𝑝 ’s constraint in CSEQ.

It is left to show that 𝑌 satisfies Equation (7.3) for all non-singleton conjunctions 𝑐 ∈ C. We show that (a)
the consumption part for 𝑐 in Equation (7.3) is at most as large as the consumption part for 𝜋𝑐 ↦→ ⊤ in
Equation (7.1), and vice versa that (b) the production part for 𝑐 is at least as large as the production part
of 𝜋𝑐 ↦→ ⊤. Let 𝑐 ∈ C be arbitrary, and let 𝑉 = vars(𝑐).

(a) The consumption part of 𝑐 in Equation (7.3) is ∑
⟨𝑐,𝑎,𝑥⟩∈T C𝑉 ,𝑥≠𝑐 𝑌

𝑐→𝑥
𝑎 . Let 𝑎 be any action occur-

ring in this sum, and let 𝑐 → 𝑥 be the corresponding transition. This transition must be unique
as per the TNF assumptions. Suppose 𝑥 = 𝑐′ ∈ C. Due the TNF assumption, it holds for all
𝑎𝐶 ∈ AC with 𝜋𝑐′ ↦→ ⊤ ∈ eff(𝑎𝐶 ) that 𝜋𝑐 ↦→ ⊤ ∈ pre(𝑎𝐶 ). Hence, as per (T7.1.2), 𝑌 𝑐→𝑐′

𝑎 =∑
𝐶 s.t. 𝑎𝐶∈AC,𝜋𝑐 ↦→⊥∈eff(𝑎𝐶 ),𝜋𝑐′ ↦→⊤∈eff(𝑎𝐶 ) 𝑋𝑎𝐶 ≤

∑
𝐶 s.t. ∈𝑎𝐶CONS[ΠC] (𝜋𝑐 ↦→⊤) 𝑋𝑎𝐶 . Suppose 𝑥 = 𝔰𝑉 . The

construction (T7.1.4) directly yields that “≤” relation. Since all 𝑋 variables are non-negative, the ≤
relation is preserved by the summing over all the actions 𝑎, yielding the desired result.

(b) For the production part of 𝑐 in Equation 7.3, notice that every action occurrence 𝑎𝐶 with 𝜋𝑐 ↦→
⊤ ∈ eff(𝑎𝐶 ) is counted in at least one transition 𝑥

𝑎−→ 𝑐. Let 𝑎𝐶 be any such action occurrence. By
definition, regress(𝑐, 𝑎) ≠ ⊥, and hence 𝑎 must induce at least one transition going into 𝑐 in the
respective variable merge. If 𝔰𝑉

𝑎−→ 𝑐, then 𝑌 𝔰𝑉→𝑐
𝑎 counts 𝑋𝑎𝐶 by construction (T7.1.3). If 𝑐′ 𝑎−→ 𝑐,

𝑐′ ≠ 𝑐, then as per the TNF assumption, it must be 𝑐′ ⊆ regress(𝑐, 𝑎) and 𝑐′ ∦ eff(𝑎). Hence,
𝜋𝑐′ ↦→ ⊥ ∈ eff(𝑎𝐶 ). As per (T7.1.2), 𝑋𝑎𝐶 is counted in 𝑌 𝑐′→𝑐

𝑎 .

Since Δ𝑐 = Δ𝜋𝑐 ↦→⊤, and 𝑋 satisfies the state-equation constraint for 𝜋𝑐 ↦→ ⊤, we conclude that 𝑌 also
satisfies Equation (7.3) for conjunctions 𝑐 ∈ C.

Finally, note that the construction as per (T7.1.1) guarantees matching objective values. This completes
the proof. □

B.3.2. Partial Variable Merges May Need Exponentially More Conjunctions Than ΠC (Theorem 7.2)

Theorem 7.2. There exists families of Π and C s.t., to obtain ℎC
′𝑠𝑒𝑞 (𝑠) ≥ ℎseq [ΠC] (𝑠) for all states 𝑠, C′

must be exponentially larger than C.

Proof. Consider the following transportation example. The map consists of two locations 𝐴 and 𝐵, and is
fully connected. There is a single truck 𝑡 with load capacity 𝑙 , which must bring 𝑛 packages 𝑝1, . . . , 𝑝𝑛 to
their destinations. To do so, there are three types of actions: to𝑚𝑜𝑣𝑒 the truck between 𝐴 and 𝐵; to 𝑙𝑜𝑎𝑑
package 𝑝𝑖 into truck at 𝐵, requiring that enough load capacity is available; and to 𝑢𝑛𝑙𝑜𝑎𝑑 the package
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𝑝𝑖 at location 𝐴. All actions have cost 1. In the initial state, 𝑡 is at 𝐴, 𝑙 is 1, and all packages are at 𝐵. The
goal is to have all variables 𝑡, 𝑝1, . . . , 𝑝𝑛 at 𝐴, and 𝑙 = 1. Every optimal plan for this task needs to do one
𝑙𝑜𝑎𝑑 , one 𝑢𝑛𝑙𝑜𝑎𝑑, and two𝑚𝑜𝑣𝑒 actions for every package, summing up to a total of ℎ∗(I) = 4𝑛.

In ℎseq [ΠC], considering all conjunctions 𝑐 of size |𝑐 | ≤ 3 makes visible that no two packages can be
in the truck at the same time, yielding ℎseq [ΠC] (I) = ℎ∗(I). Similar to Example 7.2, every solution to
SEQ[ΠC] must load and unload every package once. To see that ℎseq [ΠC] (I) must also account for two
𝑚𝑜𝑣𝑒 actions for each package, consider the action 𝑎0 = 𝑢𝑛𝑙𝑜𝑎𝑑 (𝑝𝑖 , 𝐴) for any package 𝑝𝑖 . Every action
occurrence 𝑎𝐶0 of 𝑎0 consumes the conjunction 𝑐𝑖 = {𝑡 ↦→ 𝐴, 𝑝𝑖 ↦→ 𝑇 }. The only possibility to produce 𝑐𝑖 is
via an action occurrence of the𝑚𝑜𝑣𝑒 action, moving the truck to𝐴, and assuming 𝑝𝑖 ↦→ 𝑇 in its context. Ob-
serve that the same𝑚𝑜𝑣𝑒 action occurrence cannot be used to achieve 𝑐𝑖 and 𝑐𝑗 for two different packages
𝑖 ≠ 𝑗 . This is true because every action occurrence 𝑎𝐶1 of 𝑎1 = 𝑚𝑜𝑣𝑒 (𝐵,𝐴) with {𝑝𝑖 ↦→ 𝑇, 𝑝𝑗 ↦→ 𝑇 } ⊆ 𝐶
consumes the conjunction 𝑐′ = {𝑡 ↦→ 𝐵, 𝑝𝑖 ↦→ 𝑇, 𝑝𝑗 ↦→ 𝑇 }. However, 𝑐′ cannot be produced without
violating some constraint. There are two possibilities: (1) via an action occurrence of𝑚𝑜𝑣𝑒 (𝐴, 𝐵), includ-
ing {𝑝𝑖 ↦→ 𝑇, 𝑝𝑗 ↦→ 𝑇 } in the context; and (2) loading one of the packages, e.g., 𝑙𝑜𝑎𝑑 (𝑝𝑖 , 𝐵) including
{𝑝𝑗 ↦→ 𝑇 } in the context. Option (1) cannot be used, as this would basically lead to a cyclic dependency
between the respective𝑚𝑜𝑣𝑒 (𝐴, 𝐵) and𝑚𝑜𝑣𝑒 (𝐵,𝐴) action occurrences. Option (2) leads to the consump-
tion of the conjunction {𝑝𝑗 ↦→ 𝑇, 𝑙 ↦→ 1}, which obviously cannot be produced without violating the state
equation constraints. Hence, for every package 𝑝𝑖 , 𝑐𝑖 must be produced through a separate 𝑚𝑜𝑣𝑒 (𝐵,𝐴)
action occurrence. Since every such occurrence consumes 𝑡 ↦→ 𝐵, its state equation constraint forces to
count for one𝑚𝑜𝑣𝑒 (𝐴, 𝐵) action application per package. This shows that ℎseq [ΠC] (I) = ℎ∗(I).

In contrast, in order to obtain ℎC𝑠𝑒𝑞 (I) = ℎ∗(I), C needs to contain exponentially many conjunctions.
Let C be any set of conjunctions. Let COUNT denote any solution to CSEQ with minimal objective value.
Consider first the state equation constraints in Equation (7.1) over facts 𝑝 = 𝑣 ↦→ 𝑑 . For 𝑣 = 𝑡 , the
state equation constraints are satisfied if the number of 𝑚𝑜𝑣𝑒 (𝐵,𝐴) action counts matches the number
of𝑚𝑜𝑣𝑒 (𝐴, 𝐵) action counts. For 𝑣 ≠ 𝑡 , the𝑚𝑜𝑣𝑒 count variables do not appear in any constraint. Next,
consider any partial variable merge over the variable set 𝑉 , and let 𝑚 denote the number of packages
considered in 𝑉 . For 𝑉 = {𝑣}, the satisfaction of the corresponding constraints in Equation (7.3) and
Equation (7.4) are implied by the satisfaction of the state equation constraints, Equation (7.1), for 𝑣 .
Assume that |𝑉 | > 1. We distinguish between the following cases: For𝑚 = 0, i.e., 𝑉 = {𝑡, 𝑙}, the abstract
initial state in the corresponding partial variable merge is identical to the abstract goal state. No 𝑚𝑜𝑣𝑒
action transitions are required to satisfy the constraints corresponding to 𝑉 . For 𝑚 > 0 but 𝑡 ∉ 𝑉 , the
corresponding partial variable merge does not contain any𝑚𝑜𝑣𝑒 transition. For𝑚 > 0, 𝑡 ∈ 𝑉 , but 𝑙 ∉ 𝑉 ,
to reach the abstract goal state from the abstract initial state, at most one𝑚𝑜𝑣𝑒 (𝐵,𝐴) transition and at
most one𝑚𝑜𝑣𝑒 (𝐴, 𝐵) transition is required to satisfy the constraints. If𝑚 > 0 and 𝑡, 𝑙 ∈ 𝑉 , reaching the
abstract goal state requires at most𝑚 𝑚𝑜𝑣𝑒 (𝐵,𝐴) transitions, and at most 2𝑚 𝑚𝑜𝑣𝑒 transitions in total.
Choosing COUNT𝑚𝑜𝑣𝑒 (𝐴,𝐵) or COUNT𝑚𝑜𝑣𝑒 (𝐵,𝐴) to a value larger than the maximal number of𝑚𝑜𝑣𝑒 (𝐴, 𝐵)
and𝑚𝑜𝑣𝑒 (𝐵,𝐴) transition counts over all considered partial variable merges, leads to a contradiction to
the minimality of COUNT. Hence, the combination of all the above cases shows that COUNT𝑚𝑜𝑣𝑒 (𝐴,𝐵) +
COUNT𝑚𝑜𝑣𝑒 (𝐵,𝐴) ≤ max{2, 2�̂�}, for the variable set 𝑉 with 𝑡, 𝑙 ∈ 𝑉 and number of packages �̂� maximal
among all such variable sets. As an immediate consequence, if it holds that ℎC𝑠𝑒𝑞 (I) = ℎ∗(I), then it
must also hold that �̂� = 𝑛, i.e., 𝑉 = V.

We finally show that if C contains from any optimal plan less than 4𝑛 − 3 states, then the partial variable
merge corresponding to V requires less than 𝑛 𝑚𝑜𝑣𝑒 (𝐵,𝐴) transitions to reach the abstract goal, and
hence ℎC𝑠𝑒𝑞 (I) cannot encode ℎ∗(I). Since there are exponentially many optimal plans, one for each
permutation of 𝑝1, . . . , 𝑝𝑛, and they all commonly visit exactly two states (the initial state and the goal
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state), this hence shows that C must contain exponentially many conjunctions. We show the claim by
contraposition. Assume there is an optimal plan 𝜋 = ⟨𝑎1, . . . , 𝑎4𝑛⟩ visiting states I = 𝑠0, 𝑠1, . . . , 𝑠4𝑛 with
indices 0 ≤ 𝑖 < 𝑗 ≤ 4𝑛 such that 𝑖 + 3 ≤ 𝑗 and 𝑠𝑖 , 𝑠𝑗 ∉ C. Since 𝜋 is optimal, one of the actions 𝑎𝑖 , . . . , 𝑎𝑖+3
must be𝑚𝑜𝑣𝑒 (𝐵,𝐴). However, since 𝑠𝑖 , 𝑠𝑗 ∉ C, both states are represented in the partial variable merge
by the same abstract state, introducing a shortcut, and avoiding at least one𝑚𝑜𝑣𝑒 (𝐵,𝐴) transition. Hence,
the minimal number of𝑚𝑜𝑣𝑒 (𝐵,𝐴) transitions required to reach the abstract goal must be smaller than 𝑛.

In conclusion, C′ must contain exponentially many conjunctions (in 𝑛) in order that

ℎC
′SEQ(I) ≥ ℎseq [ΠC] (I) = ℎ∗(I)

while |C| is polynomially bounded in 𝑛.

□

B.3.3. Potential Heuristic Convergence (Theorem 7.5)

Theorem 7.5. Let Π be any task in TNF, and 𝑈 ∈ ℝ+0 . Then there exists a set C of conjunctions s.t., with 𝑤
obtained from any solution to POT[ΠCTNF,𝑈 ] optimal for (O2),ℎpot

C,𝑤 (𝑠) = ℎ∗(𝑠) for all states 𝑠 withℎ∗(𝑠) ≤ 𝑈 .

Proof. Let C = S. Let 𝑀 = |V| be the number of variables, and 𝑁 = |S| be the number of states, and
let 𝛼 = 𝑀 + 𝑁 . We first construct a feasible solution �̂� for POT[ΠCTNF,𝑈 ] such that, for the corresponding
conjunction weights 𝑤 : C ↦→ ℝ, ℎpot

C,𝑤 (𝑠) = min{ℎ∗(𝑠), 𝛼𝑈 }. Hence, in particular ℎpot
C,𝑤 (𝑠) = ℎ∗(𝑠) for

all states with ℎ∗(𝑠) < 𝑈 . We conclude the proof by showing that every feasible solution to POT[ΠCTNF,𝑈 ],
optimal under objective (O2), must achieve the same heuristic values.

The desired �̂� can be constructed as follows:

�̂� (𝜋𝑠 ↦→ ⊥) = 𝑈 𝑠 ∈ S
�̂� (𝜋𝑠 ↦→ ∗) = 𝑈 𝑠 ∈ S
�̂� (𝜋𝑠 ↦→ ⊤) = min{𝑈 ,ℎ∗(𝑠) − (𝛼 − 1)𝑈 } 𝑠 ∈ S
�̂� (𝑣 ↦→ 𝑑) = 𝑈 remaining facts 𝑣 ↦→ 𝑑

First, note that �̂� indeed achieves the desired heuristic values, i.e., it holds for all states 𝑠 ∈ S, where
ℎ∗(𝑠) ≤ 𝛼𝑈 , that

ℎpot
C,�̂� [Π

C] (𝑠C) = 𝑀 ·𝑈 +
∑
𝑠′≠𝑠

�̂� (𝜋𝑠′ ↦→ ⊥) + �̂� (𝜋𝑠 ↦→ ⊤)

= 𝑀 ·𝑈 +
∑
𝑠′≠𝑠

𝑈 + ℎ∗(𝑠) − (𝛼 − 1)𝑈

= (𝛼 − 1)𝑈 + ℎ∗(𝑠) − (𝛼 − 1)𝑈
= ℎ∗(𝑠)

For the states 𝑠 ∈ S, ℎ∗(𝑠) > 𝛼𝑈 , we have

ℎpot
C,�̂� [Π

C] (𝑠C) = 𝑀 ·𝑈 +
∑
𝑠′≠𝑠

�̂� (𝜋𝑠′ ↦→ ⊥) + �̂� (𝜋𝑠 ↦→ ⊤)

= 𝑀 ·𝑈 +
∑
𝑠′≠𝑠

𝑈 +𝑈

= 𝛼 ·𝑈
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Further note that the weights defined by �̂� are all bounded from above by𝑈 by construction. �̂� guarantees
goal-awareness, i.e., satisfies Equation (7.7), as∑

𝑝∈GC
�̂� (𝑝) = 𝑀 ·𝑈 +

∑
𝑠≠𝑠∗

�̂� (𝜋𝑠 ↦→ ⊥) + �̂� (𝜋𝑠∗ ↦→ ⊤)

= (𝛼 − 1)𝑈 + ℎ∗(𝑠∗) − (𝛼 − 1)𝑈
= 0

where 𝑠∗ is the unique (as per the TNF assumption) goal state.

We finally need to show that �̂� satisfies the consistency constraints of all actions of ΠCTNF. To simply presen-
tation, we abuse notion and overload PROD and CONS, denoting PROD(𝑎𝐶 ) = { 𝑝 ∈ F ΠC | 𝑎𝐶 ∈ PROD(𝑝) },
and CONS(𝑎𝐶 ) likewise. We distinguish between the following four cases:

• For the auxiliary 𝑢𝑛𝑠𝑒𝑡𝜋𝑠 ↦→⊥ action, we have

�̂� (𝜋𝑠 ↦→ ⊥) − �̂� (𝜋𝑠 ↦→ ∗) ≤ 0

which is trivially satisfied.

• For the auxiliary 𝑢𝑛𝑠𝑒𝑡𝜋𝑠 ↦→⊤ action, we have

�̂� (𝜋𝑠 ↦→ ⊤) − �̂� (𝜋𝑠 ↦→ ∗) ≤ 𝑈 − �̂� (𝜋𝑠 ↦→ ∗) = 𝑈 −𝑈 = 0

• For the action occurrences 𝑎𝐶 with vars(regress(𝐶, 𝑎)) ⊂ V, we have∑
𝑝∈CONS(𝑎𝐶 )

�̂� (𝑝) −
∑

𝑝∈PROD(𝑎𝐶 )
�̂� (𝑝)

=
∑

𝑝∈CONS(𝑎)
�̂� (𝑝) +

∑
𝑠∈S,pre(𝑎)⊆𝑠

�̂� (𝜋𝑠 ↦→ ∗) −
∑

𝑝∈PROD(𝑎)
�̂� (𝑝) −

∑
𝑠∈S,pre(𝑎)⊆𝑠

�̂� (𝜋𝑠 ↦→ ⊥)

=
∑

𝑠∈S,pre(𝑎)⊆𝑠
�̂� (𝜋𝑠 ↦→ ∗) −

∑
𝑠∈S,pre(𝑎)⊆𝑠

�̂� (𝜋𝑠 ↦→ ⊥)

=
∑

𝑠∈S,pre(𝑎)⊆𝑠
(�̂� (𝜋𝑠 ↦→ ∗) − �̂� (𝜋𝑠 ↦→ ⊥))

= 0 ≤ 𝔠(𝑎)

where the production and consumption of the original facts from Π cancel out as per the TNF
assumption; and as for the chosen conjunctions 𝑠 = 𝑐 ∈ C, 𝑐 ∥ pre(𝑎) iff pre(𝑎) ⊆ 𝑐; and for
every such 𝑐, it holds 𝑐 ∦ eff(𝑎), i.e., 𝜋𝑐 ↦→ ⊥ ∈ eff(𝑎𝐶 ). However, 𝑐 ⊈ regress(𝐶, 𝑎), so it must
be 𝜋𝑐 ↦→ ∗ ∈ pre(𝑎𝐶 ). 𝑎𝐶 cannot produce any 𝜋𝑠 ↦→ ⊤ fact, as 𝜋𝑐 ↦→ ⊤ ∈ eff(𝑎𝐶 ) implies
V = vars(𝑠) ⊆ regress(𝐶, 𝑎) as per the TNF assumption.

• Finally, consider the action occurrences 𝑎𝐶 where vars(regress(𝐶, 𝑎)) = V. Let 𝑠 = regress(𝐶, 𝑎)
be the corresponding source state, and let 𝑡 = 𝑠⟦𝑎⟧ be the associated target state. By the definition
of 𝑎𝐶 , and as per the chosen conjunctions C, we have pre(𝑎𝐶 ) = pre(𝑎) ∪ { 𝜋𝑠 ↦→ ⊤ } ∪ { 𝜋𝑠′ ↦→
⊥ | 𝑠′ ≠ 𝑠 } and eff(𝑎𝐶 ) = eff(𝑎) ∪ { 𝜋𝑠 ↦→ ⊥, 𝜋𝑡 ↦→ ⊤ }. This yields:∑

𝑝∈CONS(𝑎𝐶 )
�̂� (𝑝) −

∑
𝑝∈PROD(𝑎𝐶 )

�̂� (𝑝)

= �̂� (𝜋𝑠 ↦→ ⊤) + �̂� (𝜋𝑡 ↦→ ⊥) − �̂� (𝜋𝑠 ↦→ ⊥) − �̂� (𝜋𝑡 ↦→ ⊤)
= �̂� (𝜋𝑠 ↦→ ⊤) − �̂� (𝜋𝑡 ↦→ ⊤) = . . . (to be continued next)
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where, again, the original facts cancel out due to the TNF assumption. We distinguish between the
four cases, according to the �̂� (𝜋𝑠 ↦→ ⊤) and �̂� (𝜋𝑡 ↦→ ⊤) definitions:

– If ℎ∗(𝑠) > 𝛼 ·𝑈 , and ℎ∗(𝑡) > 𝛼 ·𝑈 , then

. . . = 𝑈 −𝑈 = 0 ≤ 𝔠(𝑎)

– If ℎ∗(𝑠) ≤ 𝛼 ·𝑈 , and ℎ∗(𝑡) > 𝛼 ·𝑈 , then

. . . = ℎ∗(𝑠) − (𝛼 − 1)𝑈 −𝑈 = ℎ∗(𝑠) − 𝛼 ·𝑈 ≤ 0 ≤ 𝔠(𝑎)

– Assumeℎ∗(𝑠) > 𝛼 ·𝑈 , andℎ∗(𝑡) ≤ 𝛼 ·𝑈 . Note that the former implies thatℎ∗(𝑡)+𝔠(𝑎) > 𝛼 ·𝑈 .
So,

. . . = 𝑈 − ℎ∗(𝑡) + (𝛼 − 1)𝑈 = 𝛼 ·𝑈 − ℎ∗(𝑡) ≤ 𝔠(𝑎)

– If ℎ∗(𝑠) ≤ 𝛼 ·𝑈 , and ℎ∗(𝑡) ≤ 𝛼 ·𝑈 , then

. . . = ℎ∗(𝑠) − (𝛼 − 1)𝑈 − ℎ∗(𝑡) + (𝛼 − 1)𝑈
= ℎ∗(𝑠) − ℎ∗(𝑡) ≤ 𝔠(𝑎)

which is satisfied as ℎ∗ is consistent.

In all cases, Equation (7.6) is satisfied.

We conclude that �̂� satisfies the consistency constraints, Equation (7.6), for all action occurrences.

Finally, consider any solution �̂� ′ to POT[ΠCTNF,𝑈 ] that is optimal under objective (O2). As per the definition
of (O2): ∑

𝑠∈S

1

|S|ℎ
pot
C,�̂�′ [Π

C] (𝑠C) ≥
∑
𝑠∈S

1

|S|ℎ
pot
C,�̂� [Π

C] (𝑠C)

Suppose for contradiction, there were some states 𝑠 such that ℎpot
C,�̂�′ [Π

C] (𝑠C) ≠ ℎpot
C,�̂� [Π

C] (𝑠C). In particu-
lar, as per the above relation, there must then be some state 𝑠 for which ℎpot

C,�̂�′ [Π
C] (𝑠C) > ℎpot

C,�̂� [Π
C] (𝑠C)

(otherwise the sum couldn’t be larger or equal). For all states 𝑡 with ℎ∗(𝑡) > 𝛼 ·𝑈 , it holds that

ℎpot
C,�̂� [Π

C] (𝑡C) = 𝛼𝑈

= 𝑀 ·𝑈 + (𝑁 − 1) ·𝑈 +𝑈
≥

∑
𝑣∈V

�̂� ′(𝑣 ↦→ 𝑡C [𝑣]) +
∑
𝑠′≠𝑡

�̂� ′(𝜋𝑠′ ↦→ ⊥) + �̂� ′(𝜋𝑡 ↦→ ⊤)

= ℎpot
C,�̂�′ [Π

C] (𝑡C)

Hence, for the selected state 𝑠, ℎ∗(𝑠) ≤ 𝛼 · 𝑈 . But then, ℎpot
C,�̂� [Π

C] (𝑠C) = ℎ∗(𝑠), as per our construction,
which means that ℎpot

C,�̂�′ [Π
C] (𝑠C) > ℎ∗(𝑠). This is a contradiction to the admissibility of ℎpot

C,�̂�′ [Π
C]. In

conclusion, such a state 𝑠 cannot exist. This completes the proof.

□
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Learning Effectiveness: State Equation vs. Critical-Path Heuristics (Propositions 7.1 and 7.2)

Proposition 7.1. There exist planning tasks Π, dead-end states 𝑠, and sets of conjunctions C such that
Useq [ΠC] (𝑠) = ∞, but in order that UC′ (𝑠) = ∞, |C′ | must be exponential in

��ΠC ��.
Proof. Consider the planning tasks Π𝑛 = ⟨V,A,I,G⟩ with components

• V = { 𝑣𝑖 | 1 ≤ 𝑖 ≤ 𝑛 } ∪ {𝑢 } with domains D𝑣𝑖 = { 0, 1 } and D𝑢 = { 0, 1, . . . , 𝑛 − 1 },

• A = { 𝑎𝑖,𝑘 | 1 ≤ 𝑖 ≤ 𝑛, 0 < 𝑘 < 𝑛 }, where

pre(𝑎𝑖,𝑘 ) = { 𝑣𝑖 ↦→ 0, 𝑢 ↦→ 𝑘 } eff(𝑎𝑖,𝑘 ) = { 𝑣𝑖 ↦→ 1, 𝑢 ↦→ 𝑘 − 1 }

• I = { 𝑣𝑖 ↦→ 0 | 1 ≤ 𝑖 ≤ 𝑛 } ∪ {𝑢 ↦→ 𝑛 − 1 }

• G = { 𝑣𝑖 ↦→ 1 | 1 ≤ 𝑖 ≤ 𝑛 }

The tasks are clearly unsolvable. Moreover, Useq(I) = ∞ because, intuitively, producing all 𝑣𝑖 ↦→ 1 is not
possible, while consuming no 𝑢 ↦→ 𝑘 fact more than once. More precisely, consider the SEQ constraint for
the 𝑢 facts:

𝑢 ↦→ 𝑛 − 1: ∑𝑛
𝑖=1 COUNT𝑎𝑖,𝑛−1 ≤ 1

𝑢 ↦→ 𝑘: ∑𝑛
𝑖=1 COUNT𝑎𝑖,𝑘 −

∑𝑛
𝑖=1 COUNT𝑎𝑖,𝑘+1 ≤ 0

where 0 < 𝑘 < 𝑛 − 1. It follows via induction on 𝑘 that
𝑛∑
𝑖=1

COUNT𝑎𝑖,𝑘 ≤ 1

for all 0 < 𝑘 < 𝑛. However, to satisfy all goal-fact constraints, it must be
𝑛∑
𝑖=1

𝑛−1∑
𝑘=1

COUNT𝑎𝑖,𝑘 ≥ 𝑛

This is in contradiction to the inequality above.

Finally, we show that UC (I) = ∞ requires C to contain (at least) one conjunction for every subset of G.
More specifically, we show that for each non-empty set ∅ ⊂ 𝑥 ⊂ { 𝑣𝑖 ↦→ 1 | 1 ≤ 𝑖 ≤ 𝑛 }, there must exist
𝑐 ∈ 𝐶 such that 𝑐 [𝑣𝑖] = 1 iff 𝑥 [𝑣𝑖] = 1, and 𝑐 [𝑢] = 𝑛 − |𝑥 |. Suppose for contradiction that C does not
contain such a conjunction for some 𝑥 . Without loss of generality, assume 𝑥 = { 𝑣1 ↦→ 1, . . . , 𝑣𝑗 ↦→ 1 }, for
some 1 ≤ 𝑗 < 𝑛 (the variable indices are interchangeable). The following inequalities are satisfied:

UC (I) = UC (I,G)
≤ UC (I, regress(G, 𝑎𝑛,𝑛−1))
≤ UC (I, regress(regress(G, 𝑎𝑛,𝑛−1), 𝑎𝑛−1,𝑛−2))
≤ UC (I, regress(regress(regress(G, 𝑎𝑛,𝑛−1), 𝑎𝑛−1,𝑛−2), 𝑎𝑛−2,𝑛−3))
...

≤ UC (I, regress(. . . , 𝑎 𝑗+1,𝑛−𝑗 ))
= UC (I, 𝑥 ∪ { 𝑣𝑖 ↦→ 0 | 𝑗 + 1 ≤ 𝑖 ≤ 𝑛 } ∪ {𝑢 ↦→ 𝑛 − 𝑗 }︸                                                       ︷︷                                                       ︸

=:𝑃

)
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By assumption, for every 𝑐 ∈ C, 𝑐 ⊆ 𝑃 , 𝑐 contains strictly less than 𝑗 facts 𝑣𝑖 ↦→ 1. However, every
such conjunction 𝑐 is reachable, i.e., ℎ∗(𝑠, 𝑐) < ∞, and thus UC (𝑠, 𝑐) < ∞. Hence, UC (I, 𝑃) < ∞, and
consequently UC (I) < ∞. The claim follows, because there are exponentially many 𝑥 , and each 𝑥 defines
at least one unique conjunction 𝑐𝑥 ∈ C. □

Proposition 7.2. There exist planning tasks Π, sets of conjunctions C, and dead-end states 𝑠, where UC (𝑠) =
∞, but in order that Useq [ΠC′] (𝑠) = ∞,

��ΠC′ �� must be exponential in |C|.

Proof. A family of planning tasks satisfying the claim is given by Π𝑛 = ⟨V,A,I,G⟩ with components

• V = { 𝑣𝑖 | 1 ≤ 𝑖 ≤ 𝑛 } with domains D𝑣𝑖 = { 0, 1, 2 }

• A ={ 𝑠𝑒𝑡0(𝑖) | 1 ≤ 𝑖 ≤ 𝑛 }
∪ { 𝑠𝑒𝑡1(𝑖, 𝑗) | 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗 }
∪ { 𝑠𝑒𝑡2(𝑖) | 1 ≤ 𝑖 ≤ 𝑛 }

where
Action 𝑎 pre(𝑎) eff(𝑎)
𝑠𝑒𝑡0(𝑖) { 𝑣𝑖 ↦→ 2 } { 𝑣𝑖 ↦→ 0 }
𝑠𝑒𝑡1(𝑖, 𝑗) { 𝑣𝑖 ↦→ 1, 𝑣𝑗 ↦→ 0 } { 𝑣𝑗 ↦→ 1 }
𝑠𝑒𝑡2(𝑖) { 𝑣𝑖 ↦→ 0 } { 𝑣𝑖 ↦→ 2 }

• I = { 𝑣𝑖 ↦→ 0 | 1 ≤ 𝑖 ≤ 𝑛 },

• G = { 𝑣𝑖 ↦→ 1 | 1 ≤ 𝑖 ≤ 𝑛 }.

For the critical-path heuristic, the singleton conjunction already suffice to recognize I, i.e., U1(I) = ∞,
because of the mutual dependency between 𝑣𝑖 ↦→ 1 and 𝑣𝑗 ↦→ 1.

However, in order that Useq [ΠC] (I) = ∞,
��ΠC �� must be exponential in 𝑛. Namely, consider the set of

dead-end states
𝑆 = { 𝑠 ∈ SΠ𝑛 | ∀𝑖 : 𝑠 [𝑣𝑖] ∈ { 0, 2 } }

Note that all 𝑠 ∈ 𝑆 are reachable from I. Hence, due to transitivity property, if Useq [ΠC] (I) = ∞, then
Useq [ΠC] (𝑠) = ∞ for all 𝑠 ∈ 𝑆 . This entails that, for each 1 ≤ 𝑗 ≤ 𝑛, every 𝑠 ∈ 𝑆 with 𝑠 [𝑣𝑗 ] = 0, and each
1 ≤ 𝑖 ≤ 𝑛, 𝑖 ≠ 𝑗 , C contains a conjunction 𝑐 such that 𝑣𝑖 , 𝑣𝑗 ∈ vars(𝑐), and either

(i) 𝑐 [𝑣𝑖] = 1 and (𝑐 \ { 𝑣𝑖 ↦→ 1 }) ⊆ 𝑠, or

(ii) 𝑐 ⊆ 𝑠.

If for some 𝑖 and 𝑗 , such a conjunction did not exist, one can construct a solution to the SEQ[ΠC] (𝑠) LP
as follows. Let 𝑡 be identical to 𝑠, but 𝑡 [𝑣𝑖] = 1 and 𝑡 [𝑣𝑗 ] = 1. Note that 𝑡 is solvable. To produce all
conjunctions 𝑐 ⊆ 𝑡 , where 𝑐 ⊈ 𝑠, while consuming all conjunctions 𝑐 ⊆ 𝑠, where 𝑐 ⊈ 𝑡 , it suffices to set
COUNT𝑠𝑒𝑡1(𝑖, 𝑗)𝐶 = 1 with

𝐶 = { 𝑐 ∈ C | 𝑐 ⊆ 𝑡, 𝑐 [𝑣𝑗 ] = 1 }

With the absence of conjunctions (i) and (ii), all ΠC facts consumed by 𝑠𝑒𝑡1(𝑖, 𝑗)𝐶 are provided by 𝑠C ,
and there exists no ΠC fact from 𝑠C not in 𝑡C that is not also consumed by 𝑠𝑒𝑡1(𝑖, 𝑗)𝐶 . Moreover, by
construction of𝐶, 𝑠𝑒𝑡1(𝑖)𝐶 produces all ΠC facts contained in 𝑡C \𝑠C . To obtain a feasible solution, it then
only remains to fill the COUNT values according to a plan for the state 𝑡 .
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If C contained exponentially many conjunctions, the claim would follow immediately. If |C| is not expo-
nential in 𝑛, there must be an upper limit on the size of the context, enumerated via the conjunctions in
C, i.e., some 𝑘 such that for all 𝑥 ⊆ { 𝑣𝑖 ↦→ 𝑑 | 1 ≤ 𝑖 ≤ 𝑛,𝑑 ∈ { 0, 2 } }, |𝑥 | ≤ 𝑘 , and all 𝑣𝑖 , 𝑣𝑗 ∉ vars(𝑥):
either (i) 𝑥 ∪ { 𝑣𝑖 ↦→ 1, 𝑣𝑗 ↦→ 0 } ∈ C or (ii) 𝑥 ∪ { 𝑣𝑖 ↦→ 0, 𝑣𝑗 ↦→ 0 } ∈ C and 𝑥 ∪ { 𝑣𝑖 ↦→ 2, 𝑣𝑗 ↦→ 0 } ∈ C.
The action occurrences of 𝑠𝑒𝑡0( 𝑗) enumerate all subsets of the conjunctions. The number of variables not
enumerated by 𝑥 , i.e., 𝑛 − 𝑘 , must still be polynomial in 𝑛. Hence, the number of corresponding conjunc-
tions must be polynomially related to 𝑛, and therewith the number of subsets (hence action occurrences)
scales exponentially in 𝑛. This concludes the proof.

□

B.4. On Unsolvability Detectors, the Traps They Set, and Trap Learning

B.4.1. Learning Effectiveness: Comparison to the State-Equation and Critical-Path Heuristics
(Propositions 8.1 and 8.2 and 8.3)

Proposition 8.1. There exist planning tasks Π, dead-end states 𝑠, and sets of conjunctions Γ satisfying (i) and
(ii) of Lemma 8.1, where 𝑠 ∈ 𝑇 Γ but in order that UC (𝑠) = ∞, |C| must be exponential in |Γ |.

Proof. A family of tasks Π𝑛 = ⟨V,A,I,G⟩ suiting these requirements is given by an FDR variant of the
task from of Proposition 6.2.

• V = { 𝑣𝑖 | 1 ≤ 𝑖 ≤ 𝑛 } ∪ {𝑢 } with domains D𝑣𝑖 = { 0, 1, 2 } and D𝑢 = { 0, 1 }

• A = { 𝑎𝑖 | 1 ≤ 𝑖 ≤ 𝑛 } ∪ {𝑏𝑖 | 1 ≤ 𝑖 ≤ 𝑛 } with
pre(𝑎𝑖) = { 𝑣𝑖 ↦→ 0, 𝑢 ↦→ 0 } eff(𝑎𝑖) = { 𝑣𝑖 ↦→ 2, 𝑢 ↦→ 1 }
pre(𝑏𝑖) = { 𝑣𝑖 ↦→ 0, 𝑢 ↦→ 1 } eff(𝑏𝑖) = { 𝑣𝑖 ↦→ 1 }

• I = { 𝑣𝑖 ↦→ 0 | 1 ≤ 𝑖 ≤ 𝑛 } ∪ {𝑢 ↦→ 0 }

• G = { 𝑣𝑖 ↦→ 1 | 1 ≤ 𝑖 ≤ 𝑛 } ∪ {𝑢 ↦→ 1 }

As shown in the proof of Proposition 6.2, UC (I) = ∞ entails that C contains an exponential number of
conjunctions in 𝑛. However, consider Γ = { { 𝑣𝑖 ↦→ 2 } | 1 ≤ 𝑖 ≤ 𝑛 } ∪ {𝑢 ↦→ 0 }. Γ obviously satisfies trap
condition (i), given that every such fact disagrees with the goal. Trap condition (ii) is satisfied because
{ 𝑣𝑖 ↦→ 2 } is invariant under all transitions; {𝑢 ↦→ 0 } ∦ pre(𝑏𝑖); and the progression of {𝑢 ↦→ 0 } via
any 𝑎𝑖 makes true the respective { 𝑣𝑖 ↦→ 2 }. Therefore, 𝑇 Γ is a trap, and it holds that I ∈ 𝑇 Γ . □

Proposition 8.2. There exist planning tasks Π, dead-end states 𝑠, and sets of conjunctions C, where UC (𝑠) =
∞, but for every Γ satisfying (i) and (ii) of Lemma 8.1 with 𝑠 ∈ 𝑇 Γ , |Γ | is exponential in |C|.

Proof. Such a task is given in Proposition 7.2. Let Γ be any set of conjunctions satisfying (i) and (ii) of
Lemma 8.1 such that I ∈ 𝑇 Γ . Reconsider the set of dead ends

𝑆 = { 𝑠 ∈ SΠ𝑛 | ∀𝑖 : 𝑠 [𝑣𝑖] ∈ { 0, 2 } }

Observe that 𝑆 ⊆ Γ. Suppose not. Consider any 𝑠 ∈ 𝑆 \ Γ. Since all states from 𝑆 are reachable from I,
I ∈ 𝑇 Γ implies that 𝑠 ∈ 𝑇 Γ . Hence, there exists some 𝑐 ∈ Γ such that 𝑐 ⊆ 𝑠, and it must be 𝑐 ⊂ 𝑠 by
assumption. Let 𝑣𝑖 ∉ vars(𝑐). We can construct a solvable state 𝑡 where 𝑐 ⊆ 𝑡 by defining 𝑡 to be identical
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to 𝑠 but 𝑡 [𝑣𝑖] = 1. However, with 𝑡 ∈ 𝑇 Γ , we get a contradiction to the assumption that 𝑇 Γ is a trap.
Hence, 𝑆 ⊆ Γ. In contrast, as shown in Proposition 7.2, for UC (I) = ∞, it suffices that C contains just
the singleton conjunctions. This concludes the proof. □

Proposition 8.3. There exist planning tasks Π, dead-end states 𝑠, and sets of conjunctions C such that
Useq [ΠC] (𝑠) = ∞, but for every Γ satisfying (i) and (ii) of Lemma 8.1 with 𝑠 ∈ 𝑇 Γ , |Γ | is exponential
in

��ΠC ��.
Proof. Such a task is given in Proposition 7.1. Let Γ be any set of conjunctions satisfying (i) and (ii) of
Lemma 8.1 such that I ∈ 𝑇 Γ . Consider the dead-end states

𝑆 = { 𝑠 ∈ SΠ𝑛 | |𝑉0(𝑠) | ≥ 1, 𝑠 [𝑢] = |𝑉0(𝑠) | − 1 }

where 𝑉0(𝑠) = { 𝑣𝑖 | 1 ≤ 𝑖 ≤ 𝑛, 𝑠 [𝑣𝑖] = 0 }. Note that all states from 𝑆 are reachable from I. Given
that 𝑇 Γ is a dead-end trap and I ∈ 𝑇 Γ , it follows that 𝑆 ⊆ 𝑇 Γ . Hence, for every 𝑠 ∈ 𝑆 , there must exist
a conjunction 𝑐𝑠 ∈ Γ such that 𝑐𝑠 ⊆ 𝑠. Observe that 𝑉0(𝑠) ∪ {𝑢 } ⊆ vars(𝑐𝑠). Suppose not. Then, no
matter whether 𝑣𝑖 ∉ vars(𝑐𝑠) or 𝑢 ∉ vars(𝑐𝑠), we can construct a solvable state 𝑠′ such that 𝑐𝑠 ⊆ 𝑠′. This
contradicts the assumption that 𝑇 Γ is a trap. But, with 𝑉0(𝑠) ∪ {𝑢 } ⊆ vars(𝑐𝑠), Γ must contain a distinct
conjunction for each subset of { 𝑣𝑖 ↦→ 0 | 1 ≤ 𝑖 ≤ 𝑛 }, and hence |Γ | is exponential in 𝑛. In contrast, as
shown in Proposition 7.1, Useq(I) = ∞, without the need of any additional conjunction. □



C. Proofs of Part III

C.1. Fundamental Algorithms

C.1.1. Proof that Bellman Residuals are Monotonically Decreasing

Theorem C.1. LetM = ⟨S,A,P, 𝑠I,S∗⟩ be an MDP. Let 𝑉 (0) be a monotone (lower or upper) bound for
M. Let 𝑉 (𝑖) = 𝑩𝑉 (𝑖−1) for all 𝑖 ≥ 1. Then 𝚫𝑉 (𝑖) ≥ 𝚫𝑉 (𝑖+1) for all 𝑖 ≥ 0.

Proof. Suppose𝑉 (0) is a monotone lower bound. The case of upper bounds can be shown analogously. Let
𝑠 ∈ S be arbitrary. We show that (𝚫𝑉 (𝑖+1)) (𝑠) ≤ 𝚫𝑉 (𝑖) . If 𝑠 is a terminal or goal state, then 𝑉 (𝑖+1) (𝑠) =
𝑉 ∗(𝑠), and therefore (𝑩𝑉 (𝑖+1)) (𝑠) −𝑉 (𝑖+1) (𝑠) = 𝑉 ∗(𝑠) −𝑉 ∗(𝑠) = 0, i.e., (𝚫𝑉 (𝑖+1)) (𝑠) = 0 and the claim
is trivially satisfied. Suppose that 𝑠 is neither terminal nor a goal state. Let 𝑎 ∈ A(𝑠) be the action with
maximal (𝑸𝑉 (𝑖+1)) (𝑠, 𝑎) value, i.e., (𝑩𝑉 (𝑖+1)) (𝑠) = (𝑸𝑉 (𝑖+1)) (𝑠, 𝑎). Then

(𝚫𝑉 (𝑖+1))(𝑠) = (𝑸𝑉 (𝑖+1)) (𝑠, 𝑎) −𝑉 (𝑖+1) (𝑠)
=

∑
𝑠′
P(𝑠, 𝑎, 𝑠′)𝑉 (𝑖+1) (𝑠′) −𝑉 (𝑖+1) (𝑠)

=
∑
𝑠′
P(𝑠, 𝑎, 𝑠′)(𝑉 (𝑖) (𝑠′) + (𝚫𝑉 (𝑖)) (𝑠′)) −𝑉 (𝑖+1) (𝑠)

≤
∑
𝑠′
P(𝑠, 𝑎, 𝑠′) (𝑉 (𝑖) (𝑠′) + 𝚫𝑉 (𝑖)) −𝑉 (𝑖+1) (𝑠)

=
∑
𝑠′
P(𝑠, 𝑎, 𝑠′)𝑉 (𝑖) (𝑠′) −𝑉 (𝑖+1) (𝑠) + 𝚫𝑉 (𝑖)

= (𝑸𝑉 (𝑖))(𝑠, 𝑎) −𝑉 (𝑖+1) (𝑠) + 𝚫𝑉 (𝑖)

≤ 𝚫𝑉 (𝑖)

□

C.1.2. Correctness Proof of VI Policy Extraction (Theorem 11.6 and Lemma 11.1)

Theorem 11.6. Let 𝑉 be a monotone value function. Algorithm 11.2 on 𝑉 terminates. Suppose 𝜋𝑉 is the
resulting policy. If there exists a policy 𝜋 with 𝑉 𝜋 ≥ 𝑉 that is greedy on 𝑉 , then 𝑉 𝜋𝑉 ≥ 𝑉 .

Proof. Algorithm 11.2 terminates eventually since each state can be processed at most once, and the
number of states is finite. Let 𝜋𝑉 be the resulting policy.

By assumption, there exists a greedy policy 𝜋 of 𝑉 with 𝑉 𝜋 ≥ 𝑉 . Due to the exhaustive backpropagation
done by Algorithm 11.2, 𝜋𝑉 (𝑠) must be defined for all non-goal states with 𝑉 (𝑠) > 0. Namely, for every
such state, it holds 𝑉 𝜋 (𝑠) > 0 by definition. Therefore, there must be a path from 𝑠 to some goal state
with action labels according to the selections by 𝜋 . Given that Algorithm 11.2 considers all greedy actions,
this path will eventually be considered, leading to an assignment of 𝜋𝑉 (𝑠).

279
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To show that 𝑉 𝜋𝑉 (𝑠) ≥ 𝑉 (𝑠) for all states 𝑠 ∈ S, consider the policy graph M𝜋𝑉 . Let 𝑉 ∗ [M𝜋𝑉 ] be
the optimal goal probability value function in M𝜋𝑉 . Observe that 𝑉 ∗ [M𝜋𝑉 ] = 𝑉 𝜋𝑉 . By construction,
executing 𝜋𝑉 from any state 𝑠 with 𝜋𝑉 (𝑠) ≠ ⊥ will eventually end in either a goal state, or a state where
𝜋𝑉 is not defined. The same must necessarily also hold for all other policies inM𝜋𝑉 , since the only choice
left is whether to apply the action already chosen by 𝜋𝑉 , or not to apply any action. Therefore,M𝜋𝑉 is an
SSP. So, the Bellman equations forM𝜋𝑉 have a unique solution, and this solution is𝑉 ∗ [M𝜋𝑉 ]. This also
means that𝑉 ∗ [M𝜋𝑉 ] is the fixed point to the sequence of value functions𝑉 (0),𝑉 (1), . . . where𝑉 (0) = 𝑉
and𝑉 (𝑖) = 𝑩𝜋𝑉𝑉 (𝑖−1) . By𝑉 ’s monotonicity assumption, it holds that𝑉 ≤ 𝑩𝑉 . By definition of 𝜋𝑉 , it holds
for all states 𝑠 with 𝜋𝑉 (𝑠) ≠ ⊥ that (𝑸𝑉 ) (𝑠, 𝜋𝑉 (𝑠)) = 𝑩𝑉 . Thus, (𝑩𝜋𝑉𝑉 )(𝑠) = (𝑩𝑉 )(𝑠) ≥ 𝑉 (𝑠). For all
states 𝑠 with 𝜋𝑉 (𝑠) = ⊥, it either holds that 𝑠 is a goal state, or 𝑉 (𝑠) = 0. In either case, (𝑩𝜋𝑉𝑉 ) (𝑠) ≥
𝑉 (𝑠). In combination, 𝑉 (0) ≤ 𝑉 (1) . As per Theorem 11.2, 𝑩𝜋𝑉 preserves monotonicity, i.e., it holds that
𝑉 (0) ≤ 𝑉 (∞) . Since 𝑉 (0) = 𝑉 as per definition, and 𝑉 (∞) = 𝑉 ∗ [M𝜋𝑉 ] = 𝑉 𝜋𝑉 given thatM𝜋𝑉 is an SSP,
the claim 𝑉 ≤ 𝑉 𝜋𝑉 follows.

□

Lemma 11.1. Suppose 𝑉 (0) (𝑠) = 0 for all states 𝑠 ∈ S, and, for 𝑖 > 0, 𝑉 (𝑖) = 𝑩𝑉 (𝑖−1) . At any point 𝑖 ≥ 0,
and for every non-goal state 𝑠0 ∈ S \ S∗ with𝑉 (𝑖) (𝑠0) > 0, there exists a path 𝑠0, 𝑎0, 𝑠1, 𝑎1, . . . , 𝑠𝑛 such that

(i) 𝑠𝑛 ∈ S∗, and

(ii) ∀0 ≤ 𝑗 < 𝑛, 𝑎 𝑗 is greedy on 𝑉 (𝑖) for 𝑠 𝑗 , and

(iii) ∀0 ≤ 𝑗 < 𝑛, 𝑉 (𝑖) (𝑠 𝑗 ) ≤ 𝑉 (𝑖) (𝑠 𝑗+1).

Proof. The proof is via a nested induction. The outer induction is on 𝑖. For the induction beginning, note
that the claim is trivially satisfied for 𝑖 = 0 and 𝑖 = 1. For 𝑖 = 0, 𝑉 (0) (𝑠) = 0 holds for all states. For
𝑖 = 1, 𝑉 (1) (𝑠) = 1 iff 𝑠 is a goal-state, and 𝑉 (1) (𝑠) = 0 holds for all other states. Suppose as the induction
hypothesis (IH1) that the claim is satisfied for all value functions up to (and including)𝑉 (𝑖) . We show the
induction step 𝑖 +1 via a second induction, now on the𝑉 (𝑖+1) values (more specifically, we do an induction
over a sequence of states, in which states are ordered from large to small 𝑉 (𝑖+1) (𝑠) values).

For the induction beginning, let 𝑠 ∈ S be any non-goal state with 𝑉 (𝑖+1) (𝑠) > 0 and whose 𝑉 (𝑖+1) (𝑠)
value is maximal among all non-goal states. Let 𝑎 ∈ A(𝑠) be any action that is greedy on 𝑉 (𝑖) for 𝑠, i.e.,
𝑉 (𝑖+1) (𝑠) = (𝑸𝑉 (𝑖))(𝑠, 𝑎). Let 𝑠1 ∈ Succ(𝑠, 𝑎) be any successor with 𝑉 (𝑖) (𝑠1) ≥ (𝑸𝑉 (𝑖))(𝑠, 𝑎) > 0. If 𝑠1 is
a goal state, we are done immediately. Otherwise, we use (IH1) to obtain a goal-path 𝑠1, 𝑎1, 𝑠2, . . . , 𝑠𝑛 that
satisfies (ii) and (iii) w.r.t. 𝑉 (𝑖) . Let 1 ≤ 𝑗 < 𝑛 be the first position along this path such that either (ii) or
(iii) w.r.t. 𝑉 (𝑖+1) is violated. If such a 𝑗 does not exist, then 𝑠, 𝑎, 𝑠1, 𝑎1, . . . , 𝑠𝑛 would already constitute the
requested path for 𝑠 and 𝑉 (𝑖+1) .

• If (ii) is violated, then there must be another action 𝑎′𝑗 ∈ A(𝑠 𝑗 ) that achieves a higher 𝑸 -value:
(𝑸𝑉 (𝑖+1)) (𝑠 𝑗 , 𝑎′𝑗 ) > (𝑸𝑉 (𝑖+1))(𝑠 𝑗 , 𝑎 𝑗 ). Choose again some successor 𝑠′𝑗+1 ∈ Succ(𝑠 𝑗 , 𝑎′𝑗 ) that sup-
ports that 𝑸 -value with a sufficient goal-probability value: 𝑉 (𝑖+1) (𝑠′𝑗+1) ≥ (𝑸𝑉 (𝑖+1))(𝑠 𝑗 , 𝑎′𝑗 ). Ob-
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serve that

𝑉 (𝑖+1) (𝑠) ≤ 𝑉 (𝑖) (𝑠1)
(1)
≤ 𝑉 (𝑖+1) (𝑠1)
(2)
≤ 𝑉 (𝑖+1) (𝑠 𝑗 )
(3)
= (𝑸𝑉 (𝑖))(𝑠 𝑗 , 𝑎 𝑗 )
(4)
≤ (𝑸𝑉 (𝑖+1)) (𝑠 𝑗 , 𝑎 𝑗 )
< (𝑸𝑉 (𝑖+1)) (𝑠 𝑗 , 𝑎′𝑗 )
≤ 𝑉 (𝑖+1) (𝑠′𝑗+1)

where (1) and (4) hold due to monotonicity; (2) holds because (iii) is satisfied up to point 𝑗 by
assumption; and (3) since𝑎 𝑗 is greedy on𝑉 (𝑖) for 𝑠 𝑗 . Since 𝑠 has maximal𝑉 (𝑖+1)-value among all non-
goal states by assumption, we conclude that 𝑠′𝑗+1 is a goal state. The path 𝑠, 𝑎, 𝑠1, 𝑎1, . . . , 𝑠 𝑗 , 𝑎′𝑗 , 𝑠′𝑗+1
shows the claim.

• If (iii) is violated, then 𝑉 (𝑖+1) (𝑠 𝑗 ) > 𝑉 (𝑖+1) (𝑠 𝑗+1). Observe that

𝑉 (𝑖+1) (𝑠) ≤ 𝑉 (𝑖) (𝑠1)
(1)
≤ 𝑉 (𝑖) (𝑠 𝑗+1)
(2)
≤ 𝑉 (𝑖+1) (𝑠 𝑗+1)
< 𝑉 (𝑖+1) (𝑠 𝑗 )

where (1) holds since the path satisfies (iii) on𝑉 (𝑖) by its construction; (2) holds due to monotonicity.
Again, by assumption, 𝑠 𝑗 must be a goal state, and the path 𝑠, 𝑎, 𝑠1, 𝑎1, . . . , 𝑠 𝑗−1, 𝑎 𝑗−1, 𝑠 𝑗 concludes
the claim.

For the induction step, consider any non-goal state 𝑠 with𝑉 (𝑖+1) (𝑠) > 0. Suppose as the second induction
hypothesis (IH2) that, for all non-goal states 𝑠′ with with 𝑉 (𝑖+1) (𝑠′) > 𝑉 (𝑖+1) (𝑠), there exists a path as in
the claim. Consider an action 𝑎, successor state 𝑠1, and path 𝜎 = 𝑠1, 𝑎1, 𝑠2, . . . , 𝑠𝑛 just as in the proof of
the induction beginning. Via the exact same arguments, this path violates (ii) or (iii) for𝑉 (𝑖+1) only if one
reaches some state 𝑠′ with𝑉 (𝑖+1) (𝑠′) > 𝑉 (𝑖+1) (𝑠). If 𝑠′ is a goal state, then we can construct the requested
path for 𝑠 in the exact same manner as in the induction beginning. If 𝑠′ is not a goal state, then as per
(IH2), there exists a goal-path 𝜎′ starting from 𝑠′ that satisfies (ii) and (iii) w.r.t. 𝑉 (𝑖+1) . We obtain the
requested path for 𝑠 by concatenating 𝑠, 𝑎; the part of 𝜎 up to the failure point; and 𝜎′.

□

C.2. MDP Heuristic Search

C.2.1. Relation Between SSPs and the Existence of Traps (Theorem 12.6)

Theorem 12.6. M is an SSP if and only ifM contains no reachable trap.
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Proof. SupposeM is not an SSP. Theremust exist a policy 𝜋 and a reachable state 𝑠 s.t.R𝜋 (𝑠)∩S𝜋
⊥ = ∅ and

R𝜋 (𝑠) ∩ S∗ = ∅. Let 𝑆1, . . . , 𝑆𝑛 be the maximal SCCs in the policy graph subgraphM𝜋 |R𝜋 (𝑠) , i.e., all size-
maximal subsets 𝑆𝑖 ⊆ R𝜋 (𝑠) such thatM𝜋 |R𝜋 (𝑠) contains a path between every distinct pair of states in
𝑆𝑖 . There must exist at least one SCC since 𝑠 ∈ R𝜋 (𝑠), i.e., R𝜋 (𝑠) ≠ ∅. Given that by assumptionM𝜋 |R𝜋 (𝑠)
contains no terminal state, it holds for all 𝑡 ∈ R𝜋 (𝑠) that 𝜋 (𝑡) ≠ ⊥. Since the graph over the maximal SCCs
is acyclic, there must be some leaf, i.e., 𝑆𝑖 where for each 𝑡 ∈ 𝑆𝑖 and 𝑡 ′ ∉ 𝑆𝑖 , P(𝑡, 𝜋 (𝑡), 𝑡 ′) = 0. Consider
the subgraphM′ ofM with states S′ = 𝑆𝑖 and transition probabilities P′, where for each 𝑡, 𝑡 ′ ∈ 𝑆𝑖 and
𝑎 ∈ A:

P′(𝑡, 𝑎, 𝑡 ′) =
{
P(𝑡, 𝑎, 𝑡 ′) if 𝑎 = 𝜋 (𝑡)
0 otherwise

This is a valid transition probability function as per the selection of 𝑆𝑖 . Since 𝑆𝑖 is strongly connected, if 𝑆𝑖
contains more than one state, then all pairs of (not necessarily distinct) states from 𝑆𝑖 are reachable from
each other. If 𝑆𝑖 = { 𝑡 }, then P′(𝑡, 𝜋 (𝑡), 𝑡) = 1, i.e., 𝑡 has a self-loop. In both cases, it follows thatM′ is
an EC. Finally, by assumption, 𝑆𝑖 is reachable and does not contain a goal state. This concludes one half of
the claim.

Now, suppose thatM contains a reachable, goal-free ECM′. Let S′ be its states, and P′ be its transition
function. We construct a policy 𝜋 that violates the SSP requirements. For each 𝑡 ∈ S′, let 𝜋 (𝑡) = 𝑎 for
some 𝑎 ∈ A[M′] (𝑡). Note that A[M′] (𝑡) ≠ ∅ for each 𝑡 ∈ S′ since there is path between every pair of
states from S′ inM′, so every state must have at least one outgoing transition. Let 𝑠 ∈ S′ be arbitrary. By
construction, R𝜋 (𝑠) ⊆ S′. By assumption, S′ does not contain a goal state, i.e., R𝜋 (𝑠) ∩ S∗ = ∅. Since 𝜋
is defined on all states in S′, R𝜋 (𝑠) ∩ S𝜋

⊥ = ∅. By assumption, 𝑠 is reachable from 𝑠I . In conclusion, we
have found a state 𝑠 and policy 𝜋 that do not comply with the SSP conditions.

□

C.2.2. Collapsing Traps Preserves Goal Probabilities (Theorem 12.7)

Lemma C.1. Let𝑉 be a fixed point of𝑩 inM. Let𝑇 be a trap inM. It holds for all 𝑠, 𝑠′ ∈ 𝑇 that𝑉 (𝑠) = 𝑉 (𝑠′).

Proof. Let 𝑇𝑚𝑖𝑛 ⊆ 𝑇 be the subset of states with minimal 𝑉 -value among all states of 𝑇 . Suppose for
contradiction that𝑇𝑚𝑖𝑛 ≠ 𝑇 . As per the definition of end components, there must exist some 𝑠 ∈ 𝑇𝑚𝑖𝑛 and
action 𝑎 ∈ A(𝑠) such that Succ(𝑠, 𝑎) ⊆ 𝑇 and Succ(𝑠, 𝑎) ∩ (𝑇 \𝑇𝑚𝑖𝑛) ≠ ∅. Since 𝑇 does not contain any
goal state, we obtain

(𝑩𝑉 ) (𝑠) ≥ (𝑸𝑉 )(𝑠, 𝑎)
=

∑
𝑡∈𝑇𝑚𝑖𝑛

P(𝑠, 𝑎, 𝑡)𝑉 (𝑠) +
∑

𝑡∈(𝑇 \𝑇𝑚𝑖𝑛)
P(𝑠, 𝑎, 𝑡)𝑉 (𝑡)

>
∑

𝑡∈𝑇𝑚𝑖𝑛

P(𝑠, 𝑎, 𝑡)𝑉 (𝑠) +
∑

𝑡∈(𝑇 \𝑇𝑚𝑖𝑛)
P(𝑠, 𝑎, 𝑡)𝑉 (𝑠)

= 𝑉 (𝑠)

which is a contradiction to the fixed point assumption. □

Theorem 12.7. Suppose 𝑇 is a trap inM. Denote by 𝑉 ∗ [𝔔𝑇 ] the optimal goal-probability function of the
quotient𝔔𝑇 ofM and 𝑇 . It holds for all states 𝑠 ∈ S that 𝑉 ∗(𝑠) = 𝑉 ∗ [𝔔𝑇 ] (𝔰𝑇 (𝑠)).
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Proof. We first show 𝑉 ∗(𝑠) ≤ 𝑉 [𝔔𝑇 ]∗(𝔰𝑇 (𝑠)), then 𝑉 ∗(𝑠) ≥ 𝑉 [𝔔𝑇 ]∗(𝔰𝑇 (𝑠)). Note that in either case,
we only need to argue about the values of the states of 𝑇 , since 𝔔𝑇 changes the transition function only
by rewiring transition from and into 𝔱, i.e., if they all agree on their value, then necessarily every other
state must do so as well.

Regarding “≤”, if it holds𝑉 ∗(𝑡) = 0, for any 𝑡 ∈ 𝑇 , then𝑉 ∗(𝑡) = 0 for all 𝑡 ∈ 𝑇 as per Lemma C.1. Hence,
the ≤ case is trivially satisfied. Otherwise, let 𝜋∗ be a policy inM that is optimal in all states. 𝜋∗(𝑡) must
be defined for all 𝑡 ∈ 𝑇 , since 𝑉 ∗(𝑡) > 0 by assumption, and 𝑇 does not contain any goal state. Moreover,
due to the same reasons, Succ[M](𝑡, 𝜋∗(𝑡)) ⊈ 𝑇 must be true for at least one state 𝑡 ∈ 𝑇 . Consider the
policy

𝜋𝑇 (𝔰) :=
{
𝜋∗(𝑠) if 𝔰 = 𝑠 ∈ S
⟨𝑡, 𝜋∗(𝑡)⟩ otherwise

As per Lemma C.1, all states of𝑇 have the same goal probability. Since the transition in𝔔𝑇 for ⟨𝑡, 𝜋∗(𝑡)⟩ is
exactly the same as for 𝑡 and 𝜋∗(𝑡) inM, modulo self-loops, it follows that𝑉 𝜋𝑇 (𝔱) = 𝑉 𝜋∗ (𝑡). In conclusion,
it holds for all 𝑠 ∈ S that 𝑉 ∗(𝑠) = 𝑉 𝜋∗ (𝑠) = 𝑉 𝜋𝑇 (𝔰𝑇 (𝑠)) ≤ 𝑉 ∗ [𝔔𝑇 ] (𝔰𝑇 (𝑠)).

The opposite direction, “≥”, is again trivially satisfied if 𝑉 ∗ [𝔔𝑇 ] (𝔰𝑇 ) = 0. For the remaining case, let
𝜋𝑇 be a policy for 𝔔𝑇 that is optimal in all states 𝔰 ∈ S𝑇 . We construct a policy 𝜋 for M such that
𝑉 𝜋 (𝑠) = 𝑉 𝜋𝑇 (𝔰𝑇 (𝑠)) holds for all states 𝑠 ∈ S. For all 𝑠 ∉ 𝑇 , let 𝜋 (𝑠) := 𝜋𝑇 (𝑠). Since 𝑉 𝜋𝑇 (𝔱) > 0,
and 𝔱 cannot be a goal state in the quotient system, there must be some 𝑡 ∈ 𝑇 and 𝑎 ∈ A(𝑡) such that
𝜋𝑇 (𝔱) = ⟨𝑡, 𝑎⟩. Define 𝜋 (𝑡) := 𝑎. To define the policy on the remaining states in𝑇 , we follow a procedure
similar to Algorithm 11.2. We start with processed = { 𝑡 }. If processed ≠ 𝑇 , then by the definition of
end components, there must exist some state 𝑡 ′ ∈ 𝑇 \ processed, and some action 𝑎′ ∈ A(𝑡 ′) such that
Succ[M](𝑡 ′, 𝑎′) ⊆ 𝑇 and Succ[M](𝑡 ′, 𝑎′) ∩ processed ≠ ∅. Set 𝜋 (𝑡 ′) := 𝑎′, processed := processed∪ { 𝑡 ′ },
and repeat. Eventually, all states in 𝑇 must have been processed. Then, by construction, 𝜋 achieves the
same goal probability for all states in 𝑇 , i.e., for all 𝑡 ′ ∈ 𝑇 : 𝑉 𝜋 (𝑡 ′) = 𝑉 𝜋 (𝑡) = 𝑉 𝜋𝑇 (𝔱). In conclusion, it
holds for all states 𝑠 ∈ S that 𝑉 ∗(𝑠) ≥ 𝑉 𝜋 (𝑠) = 𝑉 𝜋𝑇 (𝔰𝑇 (𝑠)) = 𝑉 ∗ [𝔔𝑇 ] (𝔰𝑇 (𝑠)).

□

C.2.3. Correctness of FRET-𝑉 (Theorem 12.8)

Theorem 12.8. Suppose that 𝑉 (𝑠) = (𝑩𝑉 ) (𝑠) for all states 𝑠 ∈ R𝑉 (𝑠I). If M𝑉 contains no reachable
permanent trap, then 𝑉 (𝑠) = 𝑉 ∗(𝑠) holds for states 𝑠 ∈ R𝑉 (𝑠I).

Proof. We show that for every state 𝑠 ∈ R𝑉 (𝑠I) with𝑉 (𝑠) > 0, there exists a path inM𝑉 from 𝑠 to some
goal state. Then, since all paths inM𝑉 are over actions greedy on𝑉 , applying Algorithm 11.2 on𝑉 yields a
policy 𝜋𝑉 greedy on𝑉 such that𝑉 𝜋𝑉 (𝑠) ≥ 𝑉 (𝑠) is satisfied for all 𝑠 ∈ R𝑉 (𝑠I), as per the proof arguments
of Theorem 11.6: In summary, 𝜋𝑉 induces an SSPM𝜋𝑉 since, by construction, all policy execution runs
from any state 𝑠 where 𝜋𝑉 (𝑠) ≠ ⊥ reach an absorbing state eventually; hence 𝑉 𝜋𝑉 is the unique fixed
point of 𝑩 inM𝜋𝑉 ; and it holds that𝑉 (𝑠) = (𝑩𝑉 )(𝑠) = (𝑩𝜋𝑉𝑉 )(𝑠) since 𝜋𝑉 is greedy on𝑉 for all states;
concluding that 𝑉 𝜋𝑉 = 𝑉 , as desired. The claim follows with 𝑉 ∗(𝑠) ≥ 𝑉 𝜋𝑉 (𝑠), and 𝑉 (𝑠) ≥ 𝑉 ∗(𝑠), where
the latter is true because 𝑉 ∗ is the piecewise smallest fixed point.

To show that such paths indeed exist, let 𝑆1, . . . , 𝑆𝑛 be the maximal SCCs ofM𝑉 reachable from 𝑠I , in
a topological order, i.e., such that for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, there is no transition from any state in 𝑆 𝑗 to
any state in 𝑆𝑖 . Suppose for contradiction that there is a state 𝑠 ∈ R𝑉 (𝑠I) with 𝑉 (𝑠) > 0, yet 𝑠 does not
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start any goal-path inM𝑉 . Let 𝑖 be the index of the SCC where 𝑠 ∈ 𝑆𝑖 . Without loss of generality, assume
that for all 𝑖 < 𝑗 ≤ 𝑛, 𝑆 𝑗 does not contain such a state. Suppose all states in 𝑆𝑖 have the same value. By
assumption, 𝑆𝑖 cannot contain a goal state. Since the states in 𝑆𝑖 have non-zero𝑉 -value, andM𝑉 contains
no reachable permanent traps, there must hence exist a state 𝑠′ ∈ 𝑆𝑖 , and an action 𝑎 that is greedy on 𝑉
for 𝑠′ such that Succ[M](𝑠′, 𝑎) ⊈ 𝑆𝑖 . Let 𝑡 ∈ Succ[M](𝑠′, 𝑎) \ 𝑆𝑖 be arbitrary. Note that 𝑡 must appear in
some SCC 𝑆 𝑗 with 𝑗 > 𝑖. Since 𝑠 cannot reach a goal state inM𝑉 , 𝑠′ cannot either. So, 𝑡 cannot reach a
goal state, and with 𝑗 > 𝑖, it follows that𝑉 (𝑡) = 0. This leads to a contradiction to fixed point assumption:

𝑉 (𝑠′) = (𝑩𝑉 ) (𝑠′) = (𝑸𝑉 )(𝑠′, 𝑎)
=

∑
𝑡∈𝑆𝑖
P(𝑠′, 𝑎, 𝑡)𝑉 (𝑠′) +

∑
𝑡∉𝑆𝑖

P(𝑠′, 𝑎, 𝑡)𝑉 (𝑡)

< 𝑉 (𝑠′) +
∑
𝑡∉𝑆𝑖

P(𝑠′, 𝑎, 𝑡)𝑉 (𝑡)

= 𝑉 (𝑠′)

Now, suppose that not all states have the same value. Let 𝑆𝑚𝑎𝑥 ⊂ 𝑆𝑖 be the subset of states with maximal
𝑉 -value among the states of 𝑆𝑖 . Let 𝑠 ∈ 𝑆𝑚𝑎𝑥 be any state, which has an action 𝑎 ∈ A(𝑠) that is greedy
on 𝑉 such that Succ[M](𝑠, 𝑎) ⊈ 𝑆𝑚𝑎𝑥 . Given that 𝑆𝑖 is an SCC, such a state and an action must exist.
Regardless of whether or not Succ[M](𝑠, 𝑎) ⊆ 𝑆𝑖 is satisfied, with the same reasons as above, 𝑠 transitions
via a greedy action into a state with strictly smaller 𝑉 -value, while the values of all other successors are
no larger than 𝑉 (𝑠). This contradicts once again the fixed point assumption.

□

C.2.4. Comparison Between FRET-𝑉 and FRET-𝜋 (Theorem 12.12)

Theorem 12.12. There exist parameterized families of MDPsM𝑛, and monotone upper bounds 𝐻𝑛 where

I) FRET-𝜋 is guaranteed to find an optimal policy while considering only states polynomial in 𝑛, whereas
FRET-𝑉 must consider exponentially many states in 𝑛.

II) FRET-𝑉 terminates after a polynomial number of iterations in𝑛 (after eliminating a polynomial number
of traps in 𝑛), whereas FRET-𝜋 needs an exponential number of iterations in 𝑛 (needs to eliminate
exponentially many traps in 𝑛).

III) FRET-𝑉 requires an exponential number of iterations in 𝑛 (needs to eliminate an exponential number of
traps in 𝑛), whereas FRET-𝜋 has the potential to terminate after just a polynomial number of iterations
in 𝑛 (after eliminating a polynomial number of traps in 𝑛).

Proof.

I) Consider the following family of probabilistic FDR tasks: Π𝑛 = ⟨V𝑛,A𝑛, 𝑠I𝑛,G𝑛⟩ with

• Binary variablesV𝑛 = { 𝐵1, 𝐵2, . . . , 𝐵𝑛 }, with domains D𝐵𝑖 = { 0, 1 } for all 1 ≤ 𝑖 ≤ 𝑛.

• Actions A𝑛 = { 𝑠𝑒𝑡1, 𝑠𝑒𝑡2, . . . , 𝑠𝑒𝑡𝑛 } with precondition pre(𝑠𝑒𝑡𝑖) = { 𝐵𝑖 ↦→ 0 } and just a
single outcome 𝑜𝑖 with eff(𝑜𝑖) = { 𝐵𝑖 ↦→ 1 }, for each 𝑖.

• Initial state 𝑠I𝑛 = { 𝐵1 ↦→ 0, . . . , 𝐵𝑛 ↦→ 0 }.

• Goal G𝑛 = { 𝐵1 ↦→ 1, . . . , 𝐵𝑛 ↦→ 1 }.
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Note that𝑉 ∗(𝑠) = 1 for all states, and that every closed policy is optimal. Starting from𝑉𝑈 = 1 = 𝑉 ∗,
FIND-AND-REVISE will expand just a single closed policy greedy on 𝑉 ∗ until termination, which is
optimal as per the previous observation. Hence, 𝑛2 is an upper bound on the states touched by FIND-
AND-REVISE (each policy needs 𝑛 steps to reach the goal state, and each visited state along this path
has no more than 𝑛 successors). Since the MDP is acyclic, there are no traps, and FRET-𝜋 imme-
diately terminates. In contrast, FRET-𝑉 builds the 𝑉 ∗-greedy graph to check termination, which
encompasses all 2𝑛 states.

II) Consider the family of probabilistic FDR tasks Π𝑛 = ⟨V𝑛,A𝑛, 𝑠I𝑛,G𝑛⟩, modeling a binary counter:

• Variables V𝑛 = {𝑋, 𝐵1, 𝐵2, . . . , 𝐵𝑛 }, with domains D𝐵𝑖 = { 0, 1 } for all 1 ≤ 𝑖 ≤ 𝑛, and
D𝑋 = { 0, 1, 2 }.

• Actions A𝑛 = { 𝑠𝑒𝑡1, 𝑠𝑒𝑡2, . . . , 𝑠𝑒𝑡𝑛 } ∪ {𝑢𝑛𝑠𝑒𝑡1, 𝑢𝑛𝑠𝑒𝑡2, . . . , 𝑢𝑛𝑠𝑒𝑡𝑛 } ∪ { 𝑒𝑛𝑑 }, where

– 𝑠𝑒𝑡𝑖 has precondition pre(𝑠𝑒𝑡𝑖) = {𝑋 ↦→ 0, 𝐵1 ↦→ 1, . . . , 𝐵𝑖−1 ↦→ 1, 𝐵𝑖 ↦→ 0 }, and just a
single outcome 𝑜 with eff(𝑜) = { 𝐵1 ↦→ 0, . . . , 𝐵𝑖−1 ↦→ 0, 𝐵𝑖 ↦→ 1 }.

– Vice versa, 𝑢𝑛𝑠𝑒𝑡𝑖 has precondition pre(𝑢𝑛𝑠𝑒𝑡𝑖) = {𝑋 ↦→ 0, 𝐵1 ↦→ 0, . . . , 𝐵𝑖−1 ↦→
0, 𝐵𝑖 ↦→ 1 }, and just a single outcome 𝑜 with eff(𝑜) = { 𝐵1 ↦→ 1, . . . , 𝐵𝑖−1 ↦→ 1, 𝐵𝑖 ↦→ 0 }.

– 𝑒𝑛𝑑 has precondition pre(𝑒𝑛𝑑) = { 𝐵1 ↦→ 1, . . . , 𝐵𝑛 ↦→ 1, 𝑋 ↦→ 0 }, and two outcomes
eff(𝑜1) = {𝑋 ↦→ 1 } and prob(𝑜1) = 1

2 ; and eff(𝑜1) = {𝑋 ↦→ 2 } and prob(𝑜1) = 1
2 .

• Initial state 𝑠I𝑛 = {𝑋 ↦→ 0, , 𝐵1 ↦→ 0, . . . , 𝐵𝑛 ↦→ 0 }.

• Goal G𝑛 = {𝑋 ↦→ 1 }.

Note that the state space induced by Π𝑛 is simply a chain of 2𝑛 states corresponding to the numbers
0 – 2𝑛−1 (according to the binary representation as per the 𝐵𝑖 bits), where each pair of states 𝑘
and 𝑘 + 1 are bi-connected via corresponding 𝑠𝑒𝑡 and 𝑢𝑛𝑠𝑒𝑡 actions. The chain is followed by a
probabilistic transition via 𝑒𝑛𝑑 into a goal state 𝑠∗ and a dead end 𝑠⊥. The optimal goal probabilities
are 𝑉 ∗(𝑠) = 1

2 for all the “number states”, 𝑉 ∗(𝑠∗) = 1, and 𝑉 ∗(𝑠⊥) = 0. Starting from the upper
bound 𝑉𝑈 (𝑠) = 0 if 𝑠 = 𝑠⊥ and 𝑉𝑈 (𝑠) = 1 otherwise, FIND-AND-REVISE terminates immediately.
𝑉𝑈 satisfies the Bellman equations for all number states. 𝑒𝑛𝑑 is not greedy on 𝑉𝑈 , i.e., the 𝑉𝑈 -
greedy graph contains only the number states. Since the 𝑉𝑈 -greedy graph contains both 𝑠𝑒𝑡 and
𝑢𝑛𝑠𝑒𝑡 transitions for each of those states, the entire graph is one big end component. FRET-𝑉 hence
collapses all 2𝑛 states into a single quotient state, after which FIND-AND-REVISE will terminate with
the optimal solution. In contrast, FRET-𝜋 requires 2𝑛−1 iterations, since every possible greedy policy
can only use 𝑢𝑛𝑠𝑒𝑡 in only a single state that is reached by following the policy. It must include an
𝑢𝑛𝑠𝑒𝑡 action, because 𝑒𝑛𝑑 becomes greedy on 𝑉𝑈 only after having removed all cycles. No matter
on which state 𝑢𝑛𝑠𝑒𝑡 is applied, the policy graph contains only a single trap, and this trap consists
of exactly 2 states. Hence, FRET-𝜋 requires 2𝑛−1 iterations, eliminating the same number of traps,
until the entire chain has been collapsed into a single quotient state.

III) Consider a modified version of the binary counter example from above, where everything stays the
same but

• A𝑛 = { 𝑠𝑒𝑡1, 𝑠𝑒𝑡2, . . . , 𝑠𝑒𝑡𝑛 } ∪ {𝑢𝑛𝑠𝑒𝑡1, 𝑢𝑛𝑠𝑒𝑡3, . . . , 𝑢𝑛𝑠𝑒𝑡𝑛 } ∪ { 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑 }, i.e., 𝑢𝑛𝑠𝑒𝑡 is no
longer possible for the second bit.

– 𝑠𝑒𝑡𝑖 and 𝑢𝑛𝑠𝑒𝑡𝑖 are defined as above.
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– 𝑠𝑡𝑎𝑟𝑡 has precondition pre(𝑠𝑡𝑎𝑟𝑡) = {𝑋 ↦→ 2 }, and just a single outcome eff(𝑜) =
{𝑋 ↦→ 0 }.

– 𝑒𝑛𝑑 has precondition pre(𝑒𝑛𝑑) = {𝑋 ↦→ 2 }, and just a single outcome eff(𝑜) = {𝑋 ↦→
1 }.

• Initial state 𝑠I𝑛 = {𝑋 ↦→ 2, 𝐵1 ↦→ 0, . . . , 𝐵𝑛 ↦→ 0 }, i.e., 𝑋 is initially 2.

As opposed to the previous binary counter example, the state space now starts with a choice at the initial
state whether to directly transition into a goal state via 𝑒𝑛𝑑 , or to start counting via 𝑠𝑡𝑎𝑟𝑡 . Similarly as
before, the states reached via 𝑠𝑡𝑎𝑟𝑡 form a chain of numbers from 0 to 2𝑛−1. Successors in this chain are
however no longer completely bi-connected, due to the missing 𝑢𝑛𝑠𝑒𝑡2 action. The chain is no longer one
big trap. Instead it is now grouped into connected components of exactly 4 states, with the exception of
the first two, and the last two states. This makes 2𝑛−2 + 1 traps in total. The optimal goal probability is
𝑉 ∗(𝑠) = 1 for all states where 𝑋 is not 0, and 𝑉 ∗(𝑠) = 0 if 𝑋 is 0 (the counter states). Starting from the
upper bound𝑉𝑈 = 1, FIND-AND-REVISE again terminates immediately.𝑉𝑈 satisfies the Bellman equations
for all reachable states, since every counter state is still part of at least one𝑢𝑛𝑠𝑒𝑡 cycle. After the first call to
FIND-AND-REVISE, the 𝑉𝑈 -greedy graph thus includes the entire (reachable) state space. Moreover, 𝑠𝑡𝑎𝑟𝑡
remains a greedy action of 𝑉𝑈 thereafter, as long as not every trap has been eliminated. Note that at any
point in time, there is only a single trap in the counter chain that is permanent. In other words, FRET-𝑉
can eliminate only a single trap per iteration. Hence, FRET-𝑉 requires 2𝑛−2 + 1 iteration until all traps
have been collapsed. On the other hand, if we are lucky, and the initial FIND-AND-REVISE call returned the
policy 𝜋𝑈 (𝑠I𝑛) = 𝑒𝑛𝑑 , then FRET-𝜋 terminates immediately, without eliminating any trap. (Note however
that this depends on tie-breaking. In particular, in the worst case, FRET-𝜋 may also need to eliminate all
the 2𝑛−2 + 1 traps.)

□

C.3. Goal-Probability Occupation-Measure Heuristics

C.3.1. Equations for the 𝐻 gpom Monotonicity Proof (Theorem 14.1)

For the sake of simplicity, in the following, we use the projection actions 𝑎 |𝑋 and the original actions 𝑎
interchangeably. We first rewrite 𝑜𝑢𝑡𝑋 and 𝑖𝑛𝑋 individually:

𝑜𝑢𝑡𝑋 (𝔰) =
∑

𝑎∈A𝑋 (𝔰)
𝑜𝑚𝑋,𝔰,𝑎

=
∑

𝑎∈A𝑋 (𝔰)

( ∑
𝑡∈Succ(𝑠,𝑎)

P(𝑠, 𝑎, 𝑡)𝑜𝑚𝑡
𝑋,𝔰,𝑎 +

[
𝔰 ⊆ 𝑠 ∧ 𝑎 = 𝑎

])
(def. of 𝑦)

=

( ∑
𝑎∈A𝑋 (𝔰)

∑
𝑡∈Succ(𝑠,𝑎)

P(𝑠, 𝑎, 𝑡)𝑜𝑚𝑡
𝑋,𝔰,𝑎

)
+
[
𝔰 ⊆ 𝑠

]
(𝑎 = 𝑎 is satisfied once)

=

( ∑
𝑡∈Succ(𝑠,𝑎)

P(𝑠, 𝑎, 𝑡)
∑

𝑎∈A𝑋 (𝔰)
𝑜𝑚𝑡

𝑋,𝔰,𝑎

)
+
[
𝔰 ⊆ 𝑠

]
(commutat. and distributivity)

=
∑

𝑡∈Succ(𝑠,𝑎)
P(𝑠, 𝑎, 𝑡)𝑜𝑢𝑡𝑡𝑋 (𝔰) +

[
𝔰 ⊆ 𝑠

]
(def. of 𝑜𝑢𝑡𝑋 for 𝑡)

(C.1)
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𝑖𝑛𝑋 (𝔰) =
∑
𝔱∈S𝑋

∑
𝑎∈A𝑋

P𝑋 (𝔱, 𝑎 |𝑋 , 𝔰)𝑜𝑚𝑋,𝔱,𝑎

=
∑
𝔱∈S𝑋

∑
𝑎∈A𝑋

P𝑋 (𝔱, 𝑎 |𝑋 , 𝔰)
( ∑
𝑡∈Succ(𝑠,𝑎)

P(𝑠, 𝑎, 𝑡)𝑜𝑚𝑡
𝑋,𝔱,𝑎 +

[
𝔱 ⊆ 𝑠 ∧ 𝑎 = 𝑎

])
(C.2a)

=

( ∑
𝔱∈S𝑋

∑
𝑎∈A𝑋

P𝑋 (𝔱, 𝑎 |𝑋 , 𝔰)
∑

𝑡∈Succ(𝑠,𝑎)
P(𝑠, 𝑎, 𝑡)𝑜𝑚𝑡

𝑋,𝔱,𝑎

)
+ P𝑋 (𝑠 |𝑋 , 𝑎 |𝑋 , 𝔰) (C.2b)

=

( ∑
𝑡∈Succ(𝑠,𝑎)

P(𝑠, 𝑎, 𝑡)
∑
𝔱∈S𝑋

∑
𝑎∈A𝑋

P𝑋 (𝔱, 𝑎 |𝑋 , 𝔰)𝑜𝑚𝑡
𝑋,𝔱,𝑎

)
+ P𝑋 (𝑠 |𝑋 , 𝑎 |𝑋 , 𝔰) (C.2c)

=
∑

𝑡∈Succ(𝑠,𝑎)
P(𝑠, 𝑎, 𝑡)𝑖𝑛𝑡𝑋 (𝔰) + P𝑋 (𝑠 |𝑋 , 𝑎 |𝑋 , 𝔰) (C.2d)

where (C.2a) uses the definition of 𝑜𝑚; (C.2b) uses the fact that
[
𝔱 ⊆ 𝑠 ∧ 𝑎 = 𝑎

]
is satisfied once (when

𝔱 = 𝑠 |𝑋 ); (C.2c) apply the commutativity and distributivity laws; and (C.2d) uses the definition of 𝑖𝑛𝑋 for
𝑡 .

Putting (C.1) and (C.2) together yields:

𝑜𝑢𝑡𝑋 (𝔰) − 𝑖𝑛𝑋 (𝔰)

=

( ∑
𝑡∈Succ(𝑠,𝑎)

P(𝑠, 𝑎, 𝑡)𝑜𝑢𝑡𝑡𝑋 (𝔰) +
[
𝔰 ⊆ 𝑠

])
−

( ∑
𝑡∈Succ(𝑠,𝑎)

P(𝑠, 𝑎, 𝑡)𝑖𝑛𝑡𝑋 (𝔰) + P𝑋 (𝑠 |𝑋 , 𝑎 |𝑋 , 𝔰)
)

=
∑

𝑡∈Succ(𝑠,𝑎)
P(𝑠, 𝑎, 𝑡) (𝑜𝑢𝑡𝑡𝑋 (𝔰) − 𝑖𝑛𝑡𝑋 (𝔰)) +

[
𝔰 ⊆ 𝑠

]
− P𝑋 (𝑠 |𝑋 , 𝑎 |𝑋 , 𝔰)

(C.3)

Plugging (C.3) into the goal constraint (14.1d) yields:∑
𝔰∈S𝑋∗
(𝑜𝑢𝑡𝑋 (𝔰) − 𝑖𝑛𝑋 (𝔰)) + 𝑣G

=
∑
𝔰∈S𝑋∗

( ∑
𝑡∈Succ(𝑠,𝑎)

P(𝑠, 𝑎, 𝑡)(𝑜𝑢𝑡𝑡𝑋 (𝔰) − 𝑖𝑛𝑡𝑋 (𝔰)) +
[
𝔰 ⊆ 𝑠

]
− P𝑋 (𝑠 |𝑋 , 𝑎 |𝑋 , 𝔰)

)
+ 𝑣G

=
∑
𝔰∈S𝑋∗

∑
𝑡∈Succ(𝑠,𝑎)

P(𝑠, 𝑎, 𝑡)(𝑜𝑢𝑡𝑡𝑋 (𝔰) − 𝑖𝑛𝑡𝑋 (𝔰)) +
[
G|𝑋 ⊆ 𝑠

]
−

∑
𝔰∈S𝑋∗
P𝑋 (𝑠 |𝑋 , 𝑎 |𝑋 , 𝔰) + 𝑣G (C.4a)

=

( ∑
𝑡∈Succ(𝑠,𝑎)

P(𝑠, 𝑎, 𝑡) [
∑
𝔰∈S𝑋∗
(𝑜𝑢𝑡𝑡𝑋 (𝔰) − 𝑖𝑛𝑡𝑋 (𝔰)) + 𝑣𝑡G]

)
+
[
G|𝑋 ⊆ 𝑠

]
−

∑
𝔰∈S𝑋∗
P𝑋 (𝑠 |𝑋 , 𝑎 |𝑋 , 𝔰) (C.4b)

≤
∑

𝑡∈Succ(𝑠,𝑎)
P(𝑠, 𝑎, 𝑡)

[
G|𝑋 ⊆ 𝑡

]
+
[
G|𝑋 ⊆ 𝑠

]
−

∑
𝔰∈S𝑋∗
P𝑋 (𝑠 |𝑋 , 𝑎 |𝑋 , 𝔰) (C.4c)

where (C.4a) holds because 𝑠 |𝑋 is the only state in S𝑋 , which satisfies 𝑠 |𝑋 ⊆ 𝑠, and 𝑠 |𝑋 ∈ S𝑋∗ iff
G|𝑋 ⊆ 𝑠 by the definition of the syntactic projection; (C.4b) plugs in the definition of 𝑣G , and applies the
commutativity and distributivity laws; (C.4c) uses the fact that each 𝑡 satisfies the (14.1d) constraint.

Similar to flow constraint, the
[
G|𝑋 ⊆ 𝑠

]
term cancels out with the right-hand side of the goal constraint
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(14.1d). The goal constraint is satisfied, because the following equations hold true:∑
𝑡∈Succ(𝑠,𝑎)

P(𝑠, 𝑎, 𝑡)
[
G|𝑋 ⊆ 𝑡

]
=

∑
𝑜∈out(𝑎)

prob(𝑜)
[
G|𝑋 ⊆ 𝑠⟦𝑜⟧

]
=

∑
𝑜∈out(𝑎)

prob(𝑜)
[
G|𝑋 ⊆ 𝑠⟦𝑜⟧|𝑋

]
=

∑
𝑜∈out(𝑎)

prob(𝑜)
[
G|𝑋 ⊆ 𝑠⟦𝑜 |𝑋⟧|𝑋

]
=

∑
𝑜∈out(𝑎)

prob(𝑜)
[
G|𝑋 ⊆ 𝑠 |𝑋⟦𝑜 |𝑋⟧

]
=

∑
𝑜∈out(𝑎)

prob(𝑜)
[
𝑠 |𝑋⟦𝑜 |𝑋⟧ ∈ S𝑋∗

]
=

∑
𝔰∈S𝑋∗
P𝑋 (𝑠 |𝑋 , 𝑎 |𝑋 , 𝔰)

C.3.2. Dominance Relation Between 𝐻 gpom and 𝐻 gpoc
𝑠𝑒𝑞 (Theorem 14.4)

Theorem 14.4. Let X = { { 𝑣 } | 𝑣 ∈ V } be the set of singleton variable sets. For every state 𝑠, there is an
optimal solution 𝑜𝑚∗, 𝑣∗G to the 𝐻 gpom

X (𝑠) LP such that, for an arbitrary 𝑣0 ∈ V,

𝑣G = 𝑣∗G

𝑦𝑎 =
∑

𝑑∈D𝑣0

𝑜𝑚∗𝑣0,𝑑,𝑎 for all 𝑎 ∈ A

satisfies Γseq(𝑠).

Proof. Let Π = ⟨V,A,I,G⟩ be a probabilistic FDR task, and 𝑠 be a state of Π. Suppose 𝐻 gpom
X is the goal-

probability occupation-measure heuristic over the atomic projections. Let 𝑜𝑚∗, 𝑣∗G be an optimal solution
to the 𝐻 gpom

X (𝑠) LP, and let 𝑦, 𝑣G be defined as in the claim. Let 𝑣 ∈ V, and 𝑑 ∈ D𝑣 be arbitrary. Consider
the following action partitioning:

A𝑑 = { 𝑎 ∈ A | pre(𝑎) [𝑣] = 𝑑 }
A¬𝑑 = { 𝑎 ∈ A | pre(𝑎) [𝑣] = 𝑑′ ≠ 𝑑 }
A⊥ = { 𝑎 ∈ A | pre(𝑎) [𝑣] = ⊥ }

Similarly, we partition the outcomes of each action 𝑎 ∈ A:

out𝑑 (𝑎) = { 𝑜 ∈ out(𝑎) | eff(𝑜) [𝑣] = 𝑑 }
out¬𝑑 (𝑎) = { 𝑜 ∈ out(𝑎) | eff(𝑜) [𝑣] = 𝑑′ ≠ 𝑑 }
out⊥(𝑎) = { 𝑜 ∈ out(𝑎) | eff(𝑜) [𝑣] = ⊥ }

We denote the respective summed up outcome probabilities by 𝜌𝑎
𝑑
=

∑
𝑜∈out𝑑 (𝑎) prob(𝑜), and analogously,

𝜌𝑎¬𝑑 and 𝜌𝑎⊥. Note that, as per the definition of the syntactic projection, it holds for all 𝑑′ ∈ D𝑣 and 𝑎 ∈ A
that

P𝑣 (𝑑′, 𝑎 |𝑋 , 𝑑) =

0 if pre(𝑎) [𝑣] = 𝑑′′ ≠ 𝑑′

𝜌𝑎
𝑑
+ 𝜌𝑎⊥ if 𝑑′ = 𝑑

𝜌𝑎
𝑑

otherwise
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Further notice that, for all actions 𝑎 ∈ A, where pre(𝑎) [𝑣] is defined, there is just a single occupation-
measure variable for 𝑣 and 𝑎, which is 𝑦𝑎 = 𝑜𝑚𝑣,pre(𝑎) [𝑣],𝑎. Plugging these observation into the definition
of 𝑖𝑛𝑣 (𝑑) gives:

𝑖𝑛𝑣 (𝑑) =
∑
𝑎∈A

∑
𝑑′∈D𝑣

P𝑣 (𝑑′, 𝑎 |𝑋 , 𝑑)𝑜𝑚𝑣,𝑑′,𝑎

=
∑
𝑎∈A𝑑

(𝜌𝑎𝑑 + 𝜌
𝑎
⊥)𝑜𝑚𝑣,𝑑,𝑎 +

∑
𝑎∈A¬𝑑

𝜌𝑎𝑑𝑜𝑚𝑣,pre(𝑎) [𝑣],𝑎 +
∑
𝑎∈A⊥

∑
𝑑′∈D𝑣

P𝑣 (𝑑′, 𝑎 |𝑋 , 𝑑)𝑜𝑚𝑣,𝑑′,𝑎

=
∑
𝑎∈A𝑑

(𝜌𝑎𝑑 + 𝜌
𝑎
⊥)𝑦𝑎 +

∑
𝑎∈A¬𝑑

𝜌𝑎𝑑𝑦𝑎 +
∑
𝑎∈A⊥
(
∑

𝑑′∈D𝑣

𝜌𝑎𝑑𝑜𝑚𝑣,𝑑′,𝑎 + 𝜌𝑎⊥𝑜𝑚𝑣,𝑑,𝑎)

=
∑
𝑎∈A𝑑

(𝜌𝑎𝑑 + 𝜌
𝑎
⊥)𝑦𝑎 +

∑
𝑎∈A¬𝑑

𝜌𝑎𝑑𝑦𝑎 +
∑
𝑎∈A⊥

𝜌𝑎𝑑
∑

𝑑′∈D𝑣

𝑜𝑚𝑣,𝑑′,𝑎 +
∑
𝑎∈A⊥

𝜌𝑎⊥𝑜𝑚𝑣,𝑑,𝑎

=
∑
𝑎∈A𝑑

(𝜌𝑎𝑑 + 𝜌
𝑎
⊥)𝑦𝑎 +

∑
𝑎∈A¬𝑑

𝜌𝑎𝑑𝑦𝑎 +
∑
𝑎∈A⊥

𝜌𝑎𝑑𝑦𝑎 +
∑
𝑎∈A⊥

𝜌𝑎⊥𝑜𝑚𝑣,𝑑,𝑎

For the actions 𝑎 ∈ A¬𝑑 , 𝑎 |𝑣 is by definition not applicable in 𝑣 ↦→ 𝑑 . Moreover, the three 𝜌 probability
weights cover all outcomes, i.e., 𝜌𝑎

𝑑
+ 𝜌𝑎¬𝑑 + 𝜌

𝑎
⊥ = 1, for all 𝑎 ∈ A. Therefore,

𝑜𝑢𝑡𝑣 (𝑑) =
∑

𝑎 |𝑋 ∈A𝑣 (𝑑)
𝑜𝑚𝑣,𝑑,𝑎 =

∑
𝑎∈A𝑑

𝑜𝑚𝑣,𝑑,𝑎 +
∑
𝑎∈A⊥

𝑜𝑚𝑣,𝑑,𝑎

=
∑
𝑎∈A𝑑

𝑦𝑎 +
∑
𝑎∈A⊥

𝑜𝑚𝑣,𝑑,𝑎

=
∑
𝑎∈A𝑑

(𝜌𝑎𝑑 + 𝜌
𝑎
¬𝑑 + 𝜌

𝑎
⊥)𝑦𝑎 +

∑
𝑎∈A⊥
(𝜌𝑎𝑑 + 𝜌

𝑎
¬𝑑 + 𝜌

𝑎
⊥)𝑜𝑚𝑣,𝑑,𝑎

For all 𝑎 ∈ A𝑑 , it holds by definition that 𝑝𝑟𝑜𝑑𝑎𝑣 ↦→𝑑 = 0. Likewise, for all 𝑎 ∉ A𝑑 , it holds that 𝑐𝑜𝑛𝑠𝑎𝑣 ↦→𝑑
= 0.

In combination with the above equations, this results in

𝑜𝑢𝑡𝑣 (𝑑) − 𝑖𝑛𝑣 (𝑑) =
∑
𝑎∈A𝑑

𝜌𝑎¬𝑑𝑦𝑎 −
∑

𝑎∈A¬𝑑
𝜌𝑎𝑑𝑦𝑎 −

∑
𝑎∈A⊥

𝜌𝑎𝑑𝑦𝑎 +
∑
𝑎∈A⊥
(𝜌𝑎𝑑 + 𝜌

𝑎
¬𝑑 )𝑜𝑚𝑣,𝑑,𝑎

=
∑
𝑎∈A

𝑐𝑜𝑛𝑠𝑎𝑣 ↦→𝑑𝑦𝑎 −
∑
𝑎∈A

𝑝𝑟𝑜𝑑𝑎𝑣 ↦→𝑑𝑦𝑎 +
∑
𝑎∈A⊥
(𝜌𝑎𝑑 + 𝜌

𝑎
¬𝑑 )𝑜𝑚𝑣,𝑑,𝑎

≥
∑
𝑎∈A
(𝑐𝑜𝑛𝑠𝑎𝑣 ↦→𝑑 − 𝑝𝑟𝑜𝑑

𝑎
𝑣 ↦→𝑑 )𝑦𝑎

If G[𝑣] = 𝑑 , then via (14.1d):[
G|𝑣 ⊆ 𝑠

]
=
[
𝑠 [𝑣] = 𝑑

]
≥ 𝑜𝑢𝑡𝑣 (𝑑) − 𝑖𝑛𝑣 (𝑑) + 𝑣G
≥

∑
𝑎∈A
(𝑐𝑜𝑛𝑠𝑎𝑣 ↦→𝑑 − 𝑝𝑟𝑜𝑑

𝑎
𝑣 ↦→𝑑 )𝑦𝑎 + 𝑣G

i.e., (14.3) is satisfied. Similarly, if G[𝑣] ≠ 𝑑 , then via (14.1c)[
𝑠 [𝑣] = 𝑑

]
≥ 𝑜𝑢𝑡𝑣 (𝑑) − 𝑖𝑛𝑣 (𝑑) ≥

∑
𝑎∈A
(𝑐𝑜𝑛𝑠𝑎𝑣 ↦→𝑑 − 𝑝𝑟𝑜𝑑

𝑎
𝑣 ↦→𝑑 )𝑦𝑎

We conclude that 𝑦, 𝑣G satisfy (14.3) for all 𝑣 and 𝑑 . □
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C.4. Goal-Probability Fact Potential Heuristics

Let 𝑤 : F Π → ℝ be a function assigning real-valued weights to facts. The fact potential heuristic in-
duced by 𝑤 is given by ℎpot

F Π,𝑤
(𝑠) =

∑
𝑣 ↦→𝑑∈𝑠 𝑤𝑣 ↦→𝑑 (cf. Definition 7.5). Now, consider the dual of the

goal-probability state-equation LP (cf. Definition 14.5):

minimize
𝑤

∑
𝑣∈V

𝑤𝑣 ↦→I[𝑣] (C.5a)

subject to 𝑤𝑣 ↦→𝑑 ≥ 0 𝑣 ∈ V, 𝑑 ∈ D𝑣, (C.5b)∑
𝑣∈vars(G)

𝑤𝑣 ↦→G[𝑣] ≥ 1, (C.5c)∑
𝑣,𝑑

(
𝑐𝑜𝑛𝑠𝑎𝑣 ↦→𝑑 − 𝑝𝑟𝑜𝑑

𝑎
𝑣 ↦→𝑑

)
𝑤𝑣 ↦→𝑑 ≥ 0 𝑎 ∈ A (C.5d)

Suppose 𝑤 is a feasible solution of this LP. Obviously, the constraints (C.5b) and (C.5c) ensure that
ℎpot
F Π𝑤
(𝑠∗) ≥ 1, for all goal states. Furthermore, by plugging in the definition of the transition-probability

function, it is straightforward to show that the following relation is satisfied (cf. below):

ℎpot
F Π,𝑤
(𝑠) −

∑
𝑡

PΠ (𝑠, 𝑎, 𝑡)ℎpot
F Π,𝑤
(𝑡) ≥

∑
𝑣,𝑑

(
𝑐𝑜𝑛𝑠𝑎𝑣 ↦→𝑑 − 𝑝𝑟𝑜𝑑

𝑎
𝑣 ↦→𝑑

)
𝑤𝑣 ↦→𝑑 (C.6)

From (C.5d) it then follows that ℎpot
F Π,𝑤

≥ 𝑩ℎpot
F Π,𝑤

, which, as per the argument provided in the proof of
Theorem 14.1, is sufficient to conclude that ℎpot

F Π,𝑤
indeed constitutes a monotone goal-probability upper

bound. With additional constraints similar to those provided by Pommerening et al. (2015) for non-TNF
tasks, it is furthermore possible to drop the domain restriction (C.5b), allowing weights to be negative, and
by that establishing the strict equivalence between feasible LP solutions and monotone upper-bounding
fact potential heuristics.

It is left to show that (C.6) is satisfied. To do so, we use the following shorthand:

𝑠𝑜𝑚𝑒𝑡𝑖𝑚𝑒𝑠𝐶𝑜𝑛𝑠𝑎𝑣 ↦→𝑑 =


∑

𝑜∈out(𝑎) :
eff(𝑜) [𝑣]=𝑑′≠𝑑

prob(𝑜), if pre(𝑎) [𝑣] = ⊥

0, otherwise

Let 𝑠 be an arbitrary state, and 𝑎 ∈ A(𝑠) be any applicable action. We omit the F Π,𝑤 subscript in the
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following.

ℎpot(𝑠) −
∑
𝑡

PΠ (𝑠, 𝑎, 𝑡)ℎpot(𝑡)

= ℎpot(𝑠) −
∑

𝑜∈out(𝑎)
prob(𝑜)ℎpot(𝑠⟦𝑜⟧) (C.7a)

=
∑
𝑣∈V

𝑤𝑣 ↦→𝑠 [𝑣] −
∑

𝑜∈out(𝑎)
prob(𝑜)

(∑
𝑣∈V

𝑤𝑣 ↦→𝑠 [𝑣] −
∑

𝑣∈vars(eff(𝑜))
𝑤𝑣 ↦→𝑠 [𝑣] +

∑
𝑣∈vars(eff(𝑜))

𝑤𝑣 ↦→eff(𝑜) [𝑣]

)
(C.7b)

=
∑

𝑜∈out(𝑎)
prob(𝑜)

( ∑
𝑣∈vars(eff(𝑜))

𝑤𝑣 ↦→𝑠 [𝑣] −
∑

𝑣∈vars(eff(𝑜))
𝑤𝑣 ↦→eff(𝑜) [𝑣]

)
(C.7c)

=
∑

𝑜∈out(𝑎)
prob(𝑜)

©­­­«
∑

𝑣∈vars(eff(𝑜))
eff(𝑜) [𝑣]≠𝑠 [𝑣]

𝑤𝑣 ↦→𝑠 [𝑣] −
∑

𝑣∈vars(eff(𝑜))
eff(𝑜) [𝑣]≠𝑠 [𝑣]

𝑤𝑣 ↦→eff(𝑜) [𝑣]

ª®®®¬ (C.7d)

=
∑

𝑜∈out(𝑎)
prob(𝑜)

∑
𝑣∈vars(eff(𝑜))
eff(𝑜) [𝑣]≠𝑠 [𝑣]

𝑤𝑣 ↦→𝑠 [𝑣] −
∑

𝑜∈out(𝑎)
prob(𝑜)

∑
𝑣∈vars(eff(𝑜))
eff(𝑜) [𝑣]≠𝑠 [𝑣]

𝑤𝑣 ↦→eff(𝑜) [𝑣]

=
∑
𝑣∈V

(
𝑐𝑜𝑛𝑠𝑎𝑣 ↦→𝑠 [𝑣] + 𝑠𝑜𝑚𝑒𝑡𝑖𝑚𝑒𝑠𝐶𝑜𝑛𝑠𝑎𝑣 ↦→𝑠 [𝑣]

)
𝑤𝑣 ↦→𝑠 [𝑣] −

∑
𝑣∈V

∑
𝑑∈D𝑣,
𝑑≠𝑠 [𝑣]

𝑝𝑟𝑜𝑑𝑎𝑣 ↦→𝑑𝑤𝑣 ↦→𝑑 (C.7e)

=
∑
𝑣,𝑑

𝑐𝑜𝑛𝑠𝑎𝑣 ↦→𝑑𝑤𝑣 ↦→𝑑 +
∑
𝑣∈V

𝑠𝑜𝑚𝑒𝑡𝑖𝑚𝑒𝑠𝐶𝑜𝑛𝑠𝑎𝑣 ↦→𝑠 [𝑣]𝑤𝑣 ↦→𝑠 [𝑣] −
∑
𝑣∈V

∑
𝑑∈D𝑣,
𝑑≠𝑠 [𝑣]

𝑝𝑟𝑜𝑑𝑎𝑣 ↦→𝑑𝑤𝑣 ↦→𝑑 (C.7f)

≥
∑
𝑣,𝑑

𝑐𝑜𝑛𝑠𝑎𝑣 ↦→𝑑𝑤𝑣 ↦→𝑑 −
∑
𝑣∈V

∑
𝑑∈D𝑣,
𝑑≠𝑠 [𝑣]

𝑝𝑟𝑜𝑑𝑎𝑣 ↦→𝑑𝑤𝑣 ↦→𝑑 (C.7g)

≥
∑
𝑣,𝑑

𝑐𝑜𝑛𝑠𝑎𝑣 ↦→𝑑𝑤𝑣 ↦→𝑑 −
∑
𝑣,𝑑

𝑝𝑟𝑜𝑑𝑎𝑣 ↦→𝑑𝑤𝑣 ↦→𝑑 (C.7h)

where (C.7a) uses the state space definition; (C.7b) plugs in the definition of potential heuristics; (C.7c)
holds becomes the outcome probabilities sum up to 1 by assumption; (C.7d) effects eff(𝑜) [𝑣] = 𝑠 [𝑣]
cancel out; (C.7e) uses the consumption/production probability weight definitions; (C.7f) uses the fact
that 𝑐𝑜𝑛𝑠𝑎

𝑣 ↦→𝑑
= 0 if 𝑠 [𝑣] ≠ 𝑑; (C.7g) and (C.7h) hold because of the domain restriction𝑤𝑣 ↦→𝑑 ≥ 0.

From (C.5d), it then follows that ℎpot(𝑠) ≥ ∑
𝑡 PΠ (𝑠, 𝑎, 𝑡)ℎpot(𝑡). From (C.5b) and (C.5c), it follows that

ℎpot(𝑠∗) ≥ 1, for all goal states. This suffices as per the arguments of the proof of Theorem 14.1 to conclude
that ℎpot is a monotone goal-probability upper bound.

C.5. Goal-Probability Occupation-Measure Heuristics vs. Multiplicative
Goal-Probability PDBs

To see that goal-probability occupation-measure heuristics are generally incomparable to multiplicative
goal-probability PDB heuristics, consider the following two simple probabilistic planning tasks. Both tasks
share the same variables 𝑥 and𝑦, have initial state I = { 𝑥 ↦→ 0, 𝑦 ↦→ 0 }, and goal G = { 𝑥 ↦→ 1, 𝑦 ↦→ 1 }.
They differ in their actions:

• A1 = { 𝑎1𝑥 , 𝑎1𝑦 }. Action 𝑎1𝑥 has precondition { 𝑥 ↦→ 0 }, and two outcomes with effects { 𝑥 ↦→ 1 }
and { 𝑥 ↦→ 2 } and a probability of 1

2 respectively. 𝑎1𝑦 is defined analogously.
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• A2 = { 𝑎2𝑥 , 𝑎2𝑦 }. Action 𝑎2𝑥 has precondition { 𝑥 ↦→ 0, 𝑦 ↦→ 0 } and a single outcome with effect
{ 𝑥 ↦→ 1, 𝑦 ↦→ 2 }. 𝑎2𝑦 is defined symmetrically.

Consider the atomic projections, i.e., the projections onto 𝑋1 = { 𝑥 } and 𝑋2 = {𝑦 }. Without spelling out
all details, in the first task, both projection heuristics 𝐻𝑋1 and 𝐻𝑋2 are multiplicative, simply because none
of the actions affects both variables. They combine into the goal-probability bound 𝐻𝑋1 (𝑠I) · 𝐻𝑋2 (𝑠I) =
1
2 ·

1
2 = 1

4 = 𝑉 ∗(𝑠I). On the contrary, the goal-probability projection occupation-measure heuristics yields
𝐻 gpom
{𝑋1,𝑋2 } (𝑠I) = 1

2 . In the second task, 𝐻𝑋1 and 𝐻𝑋2 are no longer multiplicative. They combine into
min{𝐻𝑋1 (𝑠I), 𝐻𝑋2 (𝑠I) } = min{ 1, 1 } = 1, whereas 𝐻 gpom

{𝑋1,𝑋2 } (𝑠I) =
1
2 .



Bibliography

Abbeel, P., D. Dolgov, A.Y. Ng, and S. Thrun (2008). “Apprenticeship learning for motion planning with
application to parking lot navigation.” In: 2008 IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE, pp. 1083–1090.

Aberdeen, Douglas, Sylvie Thiébaux, and Lin Zhang (2004). “Decision-Theoretic Military Operations Plan-
ning.” In: Proceedings of the Fourteenth International Conference on Automated Planning and Scheduling
ICAPS 2004. AAAI, pp. 402–412.

Altman, Eitan (1996). “Constrained Markov decision processes with total cost criteria: Occupation mea-
sures and primal LP.” In: Mathematical Methods of Operations Research 43.1, pp. 45–72.

Altman, Eitan (1999). Constrained Markov Decision Processes. CRC Press.
Audemard, Gilles and Laurent Simon (2009). “Predicting Learnt Clauses Quality in Modern SAT Solvers.”

In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI 2009, pp. 399–
404.

Backes, Paul G., Gregg Rabideau, Kam S. Tso, and Steve A. Chien (1999). “Automated Planning and
Scheduling for Planetary Rover Distributed Operations.” In: 1999 IEEE International Conference on
Robotics and Automation, ICRA 1999. IEEE Robotics and Automation Society, pp. 984–991.

Bäckström, Christer and Bernhard Nebel (1995). “Complexity Results for SAS+ Planning.” In: Computa-
tional Intelligence 11, pp. 625–656.

Bäckström, Christer, Peter Jonsson, and Simon Ståhlberg (2013). “Fast Detection of Unsolvable Planning
Instances Using Local Consistency.” In: Proceedings of the Sixth Annual Symposium on Combinatorial
Search, SOCS 2013. AAAI Press.

Baier, Christel and Marta Z. Kwiatkowska (1998). “Model Checking for a Probabilistic Branching Time
Logic with Fairness.” In: Distributed Computing 11.3, pp. 125–155.

Balyo, Tomás and Martin Suda (2016). “Reachlunch Entering The Unsolvability IPC 2016.” In: UIPC 2016
planner abstracts, pp. 3–5.

Barto, Andrew G., Steven J. Bradtke, and Satinder P. Singh (1995). “Learning to Act Using Real-Time
Dynamic Programming.” In: Artificial Intelligence 72.1-2, pp. 81–138.

Bayardo, Roberto J. and Robert Schrag (1996). “Using CSP Look-Back Techniques to Solve Exceptionally
Hard SAT Instances.” In: Proceedings of the 2nd International Conference on Principles and Practice of
Constraint Programming, CP 1996. Springer-Verlag, pp. 46–60.

Beame, Paul, Henry A. Kautz, and Ashish Sabharwal (2004). “Towards Understanding and Harnessing the
Potential of Clause Learning.” In: Journal of Artificial Intelligence Research 22, pp. 319–351.

Beetz, Michael (2002). Plan-Based Control of Robotic Agents: Improving the Capabilities of Autonomous
Robots. Vol. 2554. Lecture Notes in Computer Science. Springer.

Bellman, Richard (1957). Dynamic Programming. 1st ed. Princeton University Press.
Bertsekas, Dimitri (1995). Dynamic programming and optimal control. Athena Scientific.
Bertsekas, Dimitri P. and John N. Tsitsiklis (1996). Neuro-dynamic programming. Vol. 3. Optimization and

neural computation series. Athena Scientific.
Bhatnagar, Neeraj and Jack Mostow (1994). “On-Line Learning from Search Failures.” In: Machine Learn-

ing 15.1, pp. 69–117.

293



294 Bibliography

Bianco, Andrea and Luca de Alfaro (1995). “Model Checking of Probabalistic and Nondeterministic Sys-
tems.” In: Foundations of Software Technology and Theoretical Computer Science, 15th Conference, Pro-
ceedings. Vol. 1026. Lecture Notes in Computer Science. Springer, pp. 499–513.

Biere, Armin, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu (1999). “Symbolic Model Check-
ing without BDDs.” In: Tools and Algorithms for Construction and Analysis of Systems, 5th International
Conference, Proceedings, TACAS 1999. Vol. 1579. Lecture Notes in Computer Science. Springer,
pp. 193–207.

Blum, Avrim and Merrick L. Furst (1997). “Fast Planning Through Planning Graph Analysis.” In: Artificial
Intelligence 90.1-2, pp. 281–300.

Bonet, Blai (2013). “An Admissible Heuristic for SAS+ Planning Obtained from the State Equation.” In:
Proceedings of the 23rd International Joint Conference on Artificial Intelligence, IJCAI 2013. IJCAI/AAAI,
pp. 2268–2274.

Bonet, Blai and Hector Geffner (2001). “Planning as heuristic search.” In: Artificial Intelligence 129.1-2,
pp. 5–33.

Bonet, Blai and Hector Geffner (2003a). “Faster Heuristic Search Algorithms for Planning with Uncer-
tainty and Full Feedback.” In: IJCAI-03, Proceedings of the Eighteenth International Joint Conference
on Artificial Intelligence. Morgan Kaufmann, pp. 1233–1238.

Bonet, Blai andHector Geffner (2003b). “Labeled RTDP: Improving the Convergence of Real-Time Dynamic
Programming.” In: Proceedings of the Thirteenth International Conference on Automated Planning and
Scheduling (ICAPS 2003). AAAI, pp. 12–21.

Bonet, Blai and Hector Geffner (2005). “mGPT: A Probabilistic Planner Based on Heuristic Search.” In:
Journal of Artificial Intelligence Research 24, pp. 933–944.

Bonet, Blai and Hector Geffner (2006). “Learning Depth-First Search: A Unified Approach to Heuristic
Search in Deterministic and Non-Deterministic Settings, and Its Application to MDPs.” In: Proceedings
of the Sixteenth International Conference on Automated Planning and Scheduling, ICAPS 2006. AAAI,
pp. 142–151.

Bonet, Blai and Menkes van den Briel (2014). “Flow-Based Heuristics for Optimal Planning: Landmarks
and Merges.” In: Proceedings of the Twenty-Fourth International Conference on Automated Planning
and Scheduling, ICAPS 2014. AAAI, pp. 47–55.

Borgwardt, Stefan, Jörg Hoffmann, Alisa Kovtunova, and Marcel Steinmetz (2021). “Making DL-Lite Plan-
ning Practical.” In: Proceedings of the 18th International Conference on Principles of Knowledge Repre-
sentation and Reasoning, KR 2021, pp. 641–645.

Borgwardt, Stefan, Jörg Hoffmann, Alisa Kovtunova, Markus Krötzsch, Bernhard Nebel, and Marcel Stein-
metz (2022). “Expressivity of Planning with Horn Description Logic Ontologies.” In: Thirty-Sixth
AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applica-
tions of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial
Intelligence, EAAI 2022. AAAI Press, pp. 5503–5511.

Bradley, Aaron R. (2011). “SAT-Based Model Checking without Unrolling.” In: Verification, Model Checking,
and Abstract Interpretation - 12th International Conference, VMCAI 2011. Vol. 6538. Lecture Notes in
Computer Science. Springer, pp. 70–87.

Brázdil, Tomás, Krishnendu Chatterjee, Martin Chmelik, Vojtech Forejt, Jan Kretıńský,Marta Z. Kwiatkowska,
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