3 research outputs found

    Unveiling mobility complexity through complex network analysis

    Get PDF
    The availability of massive digital traces of individuals is offering a series of novel insights on the understanding of patterns characterizing human mobility. Many studies try to semantically enrich mobility data with annotations about human activities. However, these approaches either focus on places with high frequencies (e.g., home and work), or relay on background knowledge (e.g., public available points of interest). In this paper, we depart from the concept of frequency and we focus on a high level representation of mobility using network analytics. The visits of each driver to each systematic destination are modeled as links in a bipartite network where a set of nodes represents drivers and the other set represents places. We extract such network from two real datasets of human mobility based, respectively, on GPS and GSM data. We introduce the concept of mobility complexity of drivers and places as a ranking analysis over the nodes of these networks. In addition, by means of community discovery analysis, we differentiate subgroups of drivers and places according both to their homogeneity and to their mobility complexity

    Product assortment and customer mobility

    Get PDF
    Customers mobility is dependent on the sophistication of their needs: sophisticated customers need to travel more to fulfill their needs. In this paper, we provide more detailed evidence of this phenomenon, providing an empirical validation of the Central Place Theory. For each customer, we detect what is her favorite shop, where she purchases most products. We can study the relationship between the favorite shop and the closest one, by recording the influence of the shop’s size and the customer’s sophistication in the discordance cases, i.e. the cases in which the favorite shop is not the closest one. We show that larger shops are able to retain most of their closest customers and they are able to catch large portions of customers from smaller shops around them. We connect this observation with the shop’s larger sophistication, and not with its other characteristics, as the phenomenon is especially noticeable when customers want to satisfy their sophisticated needs. This is a confirmation of the recent extensions of the Central Place Theory, where the original assumptions of homogeneity in customer purchase power and needs are challenged. Different types of shops have also different survival logics. The largest shops get closed if they are unable to catch customers from the smaller shops, while medium size shops get closed if they cannot retain their closest customers. All analysis are performed on a large real-world dataset recording all purchases from millions of customers across the west coast of Italy.</p
    corecore