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Abstract

Conservation priorities for Prunus africana, a tree species found across Afromontane regions, which is of great commercial
interest internationally and of local value for rural communities, were defined with the aid of spatial analyses applied to a set
of georeferenced molecular marker data (chloroplast and nuclear microsatellites) from 32 populations in 9 African countries.
Two approaches for the selection of priority populations for conservation were used, differing in the way they optimize
representation of intra-specific diversity of P. africana across a minimum number of populations. The first method (S1) was
aimed at maximizing genetic diversity of the conservation units and their distinctiveness with regard to climatic conditions,
the second method (S2) at optimizing representativeness of the genetic diversity found throughout the species’ range.
Populations in East African countries (especially Kenya and Tanzania) were found to be of great conservation value, as
suggested by previous findings. These populations are complemented by those in Madagascar and Cameroon. The
combination of the two methods for prioritization led to the identification of a set of 6 priority populations. The potential
distribution of P. africana was then modeled based on a dataset of 1,500 georeferenced observations. This enabled an
assessment of whether the priority populations identified are exposed to threats from agricultural expansion and climate
change, and whether they are located within the boundaries of protected areas. The range of the species has been affected
by past climate change and the modeled distribution of P. africana indicates that the species is likely to be negatively
affected in future, with an expected decrease in distribution by 2050. Based on these insights, further research at the
regional and national scale is recommended, in order to strengthen P. africana conservation efforts.
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Introduction

The identification of priority sites for conservation action

remains a central issue in the implementation of conservation

interventions, due to the fact that resources are usually limited and

competition for land is high. Different approaches for making

conservation choices when resources are scarce have been

described previously [1–4]. Those currently proposed in the

literature are based on a combination of different criteria,

including measures of diversity, assessments of risk status and

conservation costs [5], applicable at the level of vegetation type,

species, or molecular diversity [6–10].

Despite the recognized importance of evolutionary processes,

they have often been excluded in conservation assessments and

planning, which are more frequently based on species richness,

rather than intra-specific diversity indicators [8,11]; rare are the

cases in which morphological and demographic variables have

been integrated with genetic parameters to define the appropriate

location of conservation units of threatened species [12]. In the

case of multi-taxon approaches, evidence shows that those based

on species richness fail to represent rare, threatened, or genetically

distinct species [13]. The use of range-weighted matrices is an

example of an approach that accounts for range sizes and the

higher probability of extinction for species that are geographically

restricted, compared to congeners with wide distribution [14].

Knowledge of the distribution of genetic diversity adds valuable

information to support conservation efforts because the capacity of

a species to adapt to changing environmental conditions depends

on its heritable variation, which allows evolutionary processes to

take place [15]. In the absence of data on the distribution of a
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species’ genetic variation, sites for conservation could be selected

more or less uniformly throughout the species’ natural range [16],

if the environmental conditions are relatively uniform or if they

follow a continuous gradient. Genecological approaches have been

used [17,18], based on the assumption that tree genetic variation

follows some of the patterns of ecological variation [19]. However,

patterns are species-specific; species react differently to environ-

mental gradients. The correlation between genetic diversity and

species richness is controversial [20], and species diversity and

phylogenetic diversity have different patterns of spatial distribution

[13]. Thus, when genetic data are available they provide more

precise information for decision-making [21]. They can also

support assessments of extinction risks [22].

Some key questions continue to pose challenges. Determining

the number of populations, and the number of individuals within a

population, that are needed to capture useful genetic variation in a

species, or within part of a species’ range, is not simple and there

are many estimates in the published literature [23,24], which, in

some cases, are species-specific [25]. Another question relates to

what criteria should be used, based on genetic parameters, to

define priorities (mean number of alleles per locus, percentage of

polymorphic loci, etc). In addition, the question about whether

conservation emphasis should be higher in peripheral or central

populations, is not resolved and species-specific [26–31]. Gener-

ally, diversity is higher in populations located in central parts of the

distribution range. However, peripheral populations often have

valuable adaptive traits that are specific to marginal environments

[32], and species that have highly dispersed, isolated populations

may not have a recognisable centralised distribution. Furthermore,

issues related to population size matter. Small populations that are

geographically and genetically isolated from each other have been

shown to lose diversity more rapidly than larger populations or

small populations that are linked by gene flow [33].

The concept of the evolutionarily significant unit, defined as ‘‘a

population that merits separate management and has a high

priority for conservation’’ [34] has been proposed [35]. However,

its identification is based on several parameters (e.g., morpholog-

ical and phenological traits, biochemical and molecular markers),

making the approach difficult to adopt in practice, especially at

large spatial scales. It is known that a research–implementation

gap exists in conservation planning, for reasons that include the

lack of dialogue between scientists and managers of natural

resources [36]; the gap can be widened if conservation methods

are perceived as too costly and sophisticated.

Finally, conservation priorities have usually been defined based

on a static snapshot of the current situation, but it is increasingly

recognized that estimates of species vulnerability to global

environmental changes should be incorporated in conservation

planning decisions. This can be assessed in terms of predicted loss

of climatically suitable areas for a particular species [37], and more

recently looking separately at sensitivity, and adaptive capacity

[38].

Among the African indigenous tree species, Prunus africana (also

known by its previous name, Pygeum africanum, Hook f.), with a

broad but disjunct distribution across Afromontane regions, has

been studied due to its economic importance: occurrence data

from herbaria offer wide coverage and recently genetic data

derived from a continent-wide collection have been made

available. Over the past several decades, products from P. africana’s

bark extracts have been the most widely exported of any African

tree species for medicinal purposes, contributing to its overexploi-

tation. Due to the threats to the species, mainly posed by

overexploitation, but also by agricultural expansion and expected

environmental changes, the need for a conservation strategy has

been highlighted [39]; the knowledge that has become available,

such as occurrence data and genetic information, is an ideal base

to develop a continent-wide conservation strategy, starting with

the identification of key conservation sites.

The current study builds on molecular marker data for P.

africana generated as part of two studies by Kadu et al. [40,41],

which showed a clear phylogeographic pattern for the species,

suggesting an early split of ‘east’ and ‘west’ types during southward

migration, followed by more recent splitting events among eastern

populations. These findings confirm the results from earlier pilot

studies based on molecular markers showing the strong partition-

ing of genetic variation of P. africana across geographical distance,

due to its wide but disjunct distribution in Afromontane forest

islands [42]. All these results suggest that a considerable number of

sites may be required for effective conservation of the genetic

variation within the species.

We address a series of issues related to the definition of a

conservation strategy for P. africana, focusing primarily on the

identification of priority populations for conservation. The

formulation of a conservation strategy requires understanding a

species’ spatial distribution. We generated a distribution map of P.

africana based on predictions of the potential species’ distribution

from records and environmental data from the same sites, using

GIS (Geographic Information System) [43–46]. The resulting map

indicates areas of high and low probability of occurrence based on

the species’ current ecological niche (a review of spatially explicit

methods used by biogeographers can be found in [46]).

We adopted the number of alleles (i.e., allelic richness) as a key

measurement to determine priorities in the conservation of the

genetic diversity in P. africana. This is a very informative

parameter, as the number of alleles per locus is dependent on

effective population size, therefore a good indicator of past

demographic changes that would have affected genes associated

with adaptive traits as well as neutral markers [47]. This

parameter is considered ideal especially for hypervariable markers

such as nuclear microsatellites [48].

In order to define the location and number of populations

needed to optimally conserve P. africana, we proposed an approach

based on spatial analyses of genetic parameters and climatic

variables. Geospatial methods can be applied to phylogeography

[46] and can be used to carry out complex analyses that facilitate

the selection of priority populations for conservation of genetic

resources [49–51]. Accurate spatial information on the occurrence

of a species combined with climatic variables has also proven

useful for effective genebank management (e.g., definition of core

collections, identification of collection gaps, etc.) [52]. Geospatial

approaches have been adopted for the conservation in situ of

species for which it is not possible to rely on ex situ conservation

strategies. An example is that of important crop wild relatives, for

which conservation can be achieved only by managing wild

populations in situ, and which derive their properties from their

adaptation to environmental conditions, favoured by evolutionary

processes [53,54].

More specifically, we proposed the selection of a core set of

priority populations based on a combination of two methods: one

aimed at maximizing genetic diversity and distinctiveness of the

conservation unit with regard to climatic conditions (S1), the other

at optimizing representativeness of the genetic diversity found

throughout the species’ range (S2). Both approaches attempt to

maximize the species’ evolutionary potential through the identi-

fication and conservation of populations with the highest possible

levels of genetic variation. The assumption is that this variation

will allow evolutionary processes to take place and foster

adaptation (e.g., [55–57]). These results were obtained through

Conservation Priorities for Prunus africana
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user-friendly, GIS-based, free access software and constitute a first

level in the decision making process to which, subsequently,

economic and other considerations could be added [58].

Finally, we examined the conservation status of the populations

selected, based on the location of our proposed sites for

conservation vs. existing protected areas, and the expected threats

posed by changing environmental conditions, using spatial

analyses to build projected impacts of climate change on the

distribution of the species [59].

Prunus africana
P. africana is of great commercial interest due to the preparation

of medicinal products from its bark, used to treat benign prostatic

hyperplasia. The species also plays an important ecological role,

providing food and home for pollinators and rare fauna, and

supporting vascular and non-vascular canopy epiphytes [60]. In

addition to local use and trade, the collection and processing of the

bark has created economic opportunities for rural communities. A

vast literature describes the various uses and its importance in the

preparation of medicinal products from its bark, marketed

internationally [61–66].

The species has a broad but highly fragmented distribution,

spanning the African continent from South Africa to Ethiopia and

west to Cameroon, but is limited to montane regions where it can

be locally common [67]. Genetic considerations are particularly

relevant for the management and conservation of P. africana, due to

its close association with montane regions and low colonization

potential [68]. The species has hermaphrodite flowers pollinated

by insects. Although self-fertile, it is usually outcrossing; fruits are

dispersed by birds and monkeys [69]. Unsustainable debarking of

P. africana, disproportionately affecting and ultimately causing the

death of large, reproductively mature individuals [70] is likely to

cause reduced seed dispersal and gene flow, increasing isolation

and reducing viability of existing populations. P. africana has been

reported as a pioneer [71] or early successional species, associated

with forest edges and disturbance [72].

Typically, the species is found where the annual temperature

range is 18–26uC, mean annual rainfall ranges from 890 to

2,600 mm, and at an elevation between 900 and 3,400 m, with

increasing elevation range towards lower latitudes. Its distribution

range is limited by high temperatures and by insufficient

precipitation during the warmest months [39]. Moist conditions

could trigger infestation of powdery mildew and occurrence of a

stem borer, whose presence is indicated by resin exuded through

small bore holes [67]. Stem borers seem to be a serious problem

when the species is planted in lowland areas, as observed in

Cameroon [66].

Over the past 40 years, P. africana bark harvest has shifted from

subsistence and local use to large-scale commercial use for

international trade. Studies on the impacts of wild harvest on P.

africana populations have shown that the practices adopted and the

quantities extracted are not sustainable [62,70]. Because of

concerns for the sustainability of the trade, the species has been

assigned a vulnerable conservation status on the IUCN Red List,

and was proposed by Kenya for CITES in 1994 [73], then listed in

1995 in CITES Appendix II. Import of the bark from Cameroon

into the European Union was banned from November 2007 to

December 2010, when CITES lifted the ban subject to a reduced

quota of 150,000 kg for 2010 and 2011 compared to two million

kg of bark in 2005, reduced to one million kg in 2008 [74]. In

various African countries, policies have been established aiming to

ensure the sustainable management of forests that contain P.

africana stands. However, enforcement issues and control problems

persist, and there is considerable urgency to identify and

implement sustainable management options, including conserva-

tion and appropriate domestication measures.

Materials and Methods

Population Sampling and Data Source
Two main datasets on P. africana were used in this study: a) a set

of genetic data from 32 populations collected in the near range-

wide study by Kadu et al. [40,41], and b) a set of 1,500

georeferenced observations obtained from various sources (of

which the 32 populations above are a subset).

The P. africana georeferenced chloroplast (cpSSRs) and nuclear

microsatellites (nSSRs) consisted of: 7 chloroplast DNA loci from

582 individual trees; 6 nuclear loci from 484 individual trees. The

DNA was isolated from leaf samples that were collected during

2007 and 2008 in natural stands (ie, not planted) in 9 African

countries. These are from 32 accurately georeferenced populations

(Table 1), spatially distributed in order to cover as extensively as

possible the species range, across Afromontane forests (it was not

possible to gain access for sampling purposes to Ethiopia and

Angola). The sites were chosen based on a) their degree of isolation

(selecting sites on well-separated mountain chains across the

African continent), b) different ecological conditions (including

geological substrate), c) availability of logistical support for

sampling, d) expected size of the populations (i.e., populations

expected to be too small were avoided a priori). Samples were

collected by research partners from local institutions in different

countries as indicated in Kadu et al. [40,41].

We assembled a dataset of 1,500 georeferenced observations of

P. africana (mostly recorded between 1965 and 2010) that cover the

range of the species and enabled us to define its ecological niche

and to model its potential distribution. We assembled the dataset

accessing the following sources: Mpumalanga Tourism & Parks

Agency Lydenburg, South Africa (botanist Mervyn Lotter),

University of Bangor (John Hall), World Agroforestry Centre

(ICRAF), GBIF [75] and JSTOR Plant Science [76]. For the

spatial analysis, a raster size of 30 minutes (about 50 km near the

equator) was used and molecular marker data were formatted in

such a way to attribute coordinates to each allele/haplotype.

Species Distribution Modeling
P. africana’s potential distribution was modeled using the

distribution modeling program Maxent. This program uses an

algorithm of maximum entropy to calculate the ecological niche of

a species and to define the areas of potential natural distribution

[45,77]. The environmental values are extracted from online geo-

referenced databases. A total of 21 environmental layers were

included to build the potential natural distribution model under

current conditions: 19 BIOCLIM variables were derived from the

WorldClim database [78,79], soil data from the World Soil

Resources Coverage map [80], and environmental data from the

FAO Map on Global Ecological Zones [81]. For the prediction of

species distribution, the threshold ‘‘Maximum sensitivity plus

specificity’’ with threshold = 0.180 was chosen (for details see [82]).

It should be noted that weather station coverage may not be

optimal and interpolated values could be particularly problematic

in montane regions due to factors such as rain shadows and fine-

scale varying topography. However, WorldClim constitutes the

best dataset available as it includes major climate databases from

many sources (e.g., Global Historical Climatology Network, FAO,

WMO, CIAT, R-HYdronet, and a number of additional minor

databases). The geographic observations used for modeling the

potential distribution of P. africana were first filtered in DIVA-GIS

(www.diva-gis.org) [83] to detect outliers. All occurrence records

Conservation Priorities for Prunus africana
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were checked for inconsistency of their coordinates with

administrative area level 1 (usually states or provinces) and for

extreme values in their climatic parameters (extreme values for a

minimum of 3 out of 19 bioclimatic variables examined) according

to the Reverse Jackknife method [84]). After the screening, three

points were excluded and the final dataset included 1,500

geographic observations.

Spatial Analysis for Selection of Priority Populations for
Conservation

Two approaches to select priority populations for conservation

were used. One method (S1) maximizes genetic diversity and

distinctiveness of the conservation unit based on a combination of

genetic and climatic criteria. A second method (S2) is based

exclusively on genetic data and optimizes representativeness of the

genetic diversity found throughout the species’ range. Each of the

selected priority populations was further evaluated for urgency of

conservation action on the basis of current protected status and the

threat posed by predicted future climate conditions.

Method S1. We used the following steps to add populations to

the list of priority sites: populations were clustered based on their

genetic (chloroplast- and nuclear-based) and climatic similarity; in

each genetic cluster, the population with highest ranking in allelic/

haplotype richness and presence of locally common alleles was

selected. The second step identified populations in different

climatic clusters not represented in the selection above. In each

climatic cluster, the population with the highest rank in both

genetic parameters (allelic/haplotype richness and presence of

locally common alleles) was added to the priorities for conserva-

tion.

1: Clustering of populations based on allelic composition: the

degree of genetic similarity between populations was calculated in

the R statistics environment version 2.14 [85] determining Nei’s

distance [86,87] through the R function ‘‘dist.genpop’’ in the

package adegenet version 1.3–4 [88]. Hierarchical clustering was

performed with the R function ‘‘hclust’’ in the package mva,

version 1.0–3, using the unweighted pair-group method of

arithmetic averages (UPGMA). The Kelley-Gardner-Sutcliffe

penalty function for a hierarchical cluster tree was calculated

using the function ‘‘kgs’’ in the package maptree [89] to suggest a

number of clusters in the dataset. The cophenetic distance was

calculated with the function ‘‘cophenetic’’ in the package stats.

The cophenetic distance between two observations is defined as

the distance (or similarity) level at which two observations become

part of the same cluster [90]. With the function ‘‘cor’’ in the

package stats, version 2.15.2, the correlation between Nei’s genetic

distance and the cophenetic distance was determined to validate

the clustering.

2: Identification of populations with highest allelic/haplotype

richness: the dataset analyzed in this study included 147 alleles at 6

nSSR loci and 19 alleles at 7 cpSSR loci. A total of 22 multilocus

haplotypes were constructed by combining single cpSSR loci. An

inherent difficulty with many diversity studies arises from the well-

known property that diversity of a sample increases with sample

size [91,92]. Results of analyses may thus depend on the number

of samples taken within each subunit of the study area. Haplotype

richness for cpSSR and allelic richness for nSSR were determined

in DIVA-GIS, applying the rarefaction method to correct for

sample size bias, recalculating richness measured only within

subunits (30 min grid cell size) containing 7 or more trees

(equivalent to 7 haplotypes or 84 nuclear allele observations) (see

detailed methodology in [79]). Populations were then ranked

based on their allelic/haplotype richness. The Kruskal-Wallis test

[93] was carried out to test for significant differences among

populations in the distribution of allelic richness.

3: Identification of populations with presence of locally common

alleles: locally common alleles are those repeatedly observed but

only in a small area relative to the species’ distribution; they are of

high interest, especially if they are associated with adaptive traits

[94,91]. The definition considers as locally common those alleles

with a frequency higher than 5% in a local population and

occurring in less than 25% of all populations examined [51]. The

distribution of locally common alleles was examined to further

identify zones of high or unique intra-specific diversity. The

average number of locally common alleles was calculated using

GenAlEx 6.5 [95]. Populations were ranked based on this variable.

4: Climate clustering: P. africana observations were clustered

based on climatic data, assuming that natural populations from

different climate zones would show variable adaptive traits not

captured by the analyses of SSR markers data. The 1,500

observations were clustered on the basis of 19 bioclimatic

variables, extracted by point from the 2–5 minutes Wordclim

dataset. The function ‘‘dist’’ in the R statistics environment 2.14.0

was used to calculate the Euclidian distance and hierarchical

clustering was carried out using the UPGMA method. As for the

clustering above, based on genetic similarity, we used the Kelley-

Gardner-Sutcliffe penalty function, in order to derive an optimal

number of clusters, and the cophenetic correlation coefficient to

validate the clustering.

Method S2. The approach S2 was based on the identification

of a minimum number of populations needed to include all the

genetic diversity based on both chloroplast and nuclear markers.

The procedure adopted in DIVA-GIS is called ‘reserve selection’. It

generates a selection of grid cells (30 minute cell size) that are

complementary to each other in terms of diversity included in each

cell, and that captures the maximum amount of diversity in the

smallest number of cells possible (see [96]). The algorithm also

identifies priorities, indicating a ranking for the geographic units of

interest. The first population chosen has the highest allelic

richness; each successive population selected best complements

the intra-specific diversity already represented within the previ-

ously selected priority populations. The ‘reserve selection’ algorithm,

developed by Rebelo and Sigfried [96], was applied to a combined

dataset, including chloroplast and nuclear molecular markers from

across the 32 sample populations studied. This procedure enabled

a selection of cells/populations not only based on their diversity,

but also on differences/complementarity in allelic composition.

Conservation and Threats
The modeled potential distribution was combined with data on

the location of protected areas. The portion of P. africana’s

potential distribution found within protected areas was determined

in order to derive an indicator for the in situ conservation status of

the species. The World Database of Protected Areas (WDPA) [97]

was used to calculate the proportion of P. africana’s potential

distribution that falls within the boundaries of protected areas of

different types. WDPA includes detailed information on flora,

fauna, and a wide range of climatic, environmental and

socioeconomic data for 741 protected areas across 50 countries.

More detailed results were presented for three countries (Kenya,

Uganda and Tanzania) that host high genetic diversity for P.

africana, in order to examine more closely specific threats, such as

climate change and land conversion to croplands.

Loss of forest cover in Africa has been substantial over the past

20 years, with an average area of ca. 3.7 million ha/year converted

to other land uses in the period 1990–2010 [98]. The Global Land

Cover Map 2000 [99] was used to identify those areas with only

Conservation Priorities for Prunus africana
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natural vegetation, excluding ‘‘croplands’’ (regions with over 50%

crop fields or pasture, equivalent to intensive cultivation and/or

sown pasture) and other land uses (e.g., urban settlements).

The potential threats from changes in climatic conditions at the

regional scale were also assessed, by comparing the potential

distribution of P. africana under the current climate, based on the

species’ current distribution, with the potential distribution under

future climatic conditions. Future climate projections were

developed for 2050 under the A2 emission scenario (with

constantly increasing emission rate) from the average of three

different Global Circulation Models (GCMs) downloaded from the

GCM Data Portal [100]: CCCMA-CGCM3.1-T63, HCCPR

HADCM3 and CSIRO-MK3.0. Finally, to determine the

potential distribution of P. africana during the peak of the last

glacial period (between 26,500 and 19,000–20,000 years ago) the

GCM ‘‘CCSM: Last glacial maximum (LGM; ,21,000 years

BP)’’ downloaded from WORLDCLIM (http://www.worldclim.

org/past) was used [Source: Paleoclimate Modeling Intercompar-

ison Project Phase II (PMIP2)].

Results

Distribution Range of Prunus africana and Spatial
Analysis of Genetic Diversity

Based on our dataset of 1,500 georeferenced observations, the

presence of P. africana has been directly recorded in 22 African

countries, while the modeled distribution extends to 34 countries

(Fig. 1).

For the 32 populations sampled for genetic analyses, the

clustering by similarity of allelic profile revealed 5 and 4 groups,

respectively for chloroplast-based (Fig. 2a) and nuclear-based

(Fig. 2b) SSRs. The cophenetic correlation coefficients for cpSSRs

and nSSRs were 0.79 and 0.73, indicating a good clustering

structure in each case. The clustering results converged, showing

that Madagascan populations are distinctive, and highlighting a

clear separation between East and West African populations.

Based on cpSSRs, these western populations showed a similar

genetic profile to those found in Uganda (Fig. 2a). Populations

from Zimbabwe and South Africa grouped with populations from

Kenya and Tanzania; Kenya included populations from 2 clusters,

while Tanzania included populations from 3 clusters (Fig. 2a).

Based on nSSRs, the grouping produced slightly different

results: the western populations showed a similar genetic profile to

those found in Uganda and western Kenya (Fig. 2b). Populations

from Zimbabwe and South Africa clustered together and formed a

separate group from populations in Kenya and Tanzania (Fig. 2b).

Kenya included populations from 2 clusters, while Tanzania

included populations from 1 cluster.

The spatial distributions of haplotype (chloroplast SSRs)

richness and allelic (nuclear SSRs) richness were determined after

rarefaction (Figure 3 a,b). Both types of markers point to

populations in East Africa as the ones with the highest allelic

richness. The Kruskal-Wallis test (p-value , 0.0005) showed that

the 32 populations had significantly different distributions of allelic

richness.

The following populations had highest haplotype richness, in

descending order (Table 1): pop. No. 21 (Kilimanjaro catchment,

Tanzania), 6 (Kinale, Kenya), and 7 (Cherangani Forest, Kenya).

Highest ranking populations for nuclear allelic richness do not

overlap with those having highest haplotype richness. They are

pop. No. 8 (Kakamega Forest, Kenya), 13 (Kibiri Forest, Kenya),

and 25 (Udzungwa, Tanzania). Populations with locally common

alleles were located primarily in Kenya and Uganda, but also in

Tanzania and Madagascar (Table 1).

The set of priority populations that combined highest value of

haplotype richness and highest presence of locally common alleles,

in each of the 5 clusters identified, based on chloroplast markers,

was the following in ascending cluster number (Table 1): pop. No.

1 (Ngashie - Mt Oku, Cameroon), 22 (Kindororo Catchment

reserve, Tanzania), 7 (Cherangani Forest, Kenya), 15 (Lakato

Forest, Madagascar), 21 (Kilimanjaro catchment, Tanzania). The

set of priority populations that combined highest value of allelic

richness and highest presence of locally common alleles, in each of

the 4 clusters identified based on nuclear markers, was the

following: pop. No. 31 (Cashel Valley Chiamanimani, Zimbabwe),

13 (Kibiri Forest, Kenya), 15 (Lakato Forest, Madagascar), 25

(Udzungwa, Tanzania). One of the priority populations above

overlapped: 15 (Lakato Forest, Madagascar).

After the selection above, additional populations were included

in the priority list based on the analysis of climatic variables across

the sites where the species is found. Those populations occurring

in areas having unique climatic conditions, not selected based on

the previous criteria, were added among the priorities for

conservation. The rationale for this is that in the absence of

quantitative genetic data, distinctive environmental conditions can

be a proxy for useful adaptive variation.

A total of 4 distinct climate clusters were identified using all P.

africana occurrence observations available (Fig. 4). The cophenetic

correlation coefficient obtained was 0.81, confirming the validity

of the method adopted. While clusters 1, 2 and 4 correspond to

climatic conditions with a broad distribution across the species

range, and include a large number of the individual observations,

cluster 3 characterizes a limited area, with very distinct climatic

features (low seasonality in temperature and high annual

precipitation, between 2,400 and 3,000 mm) (marked in yellow

in Fig. 4). Of the 32 populations for which genetic data were

available, populations in climate clusters 1 and 3 were not

represented in the selection based on genetic parameters. Thus, in

each of these two clusters, the population with highest haplotype/

allelic richness and presence of locally common alleles was added

to the selection of priority populations for P. africana conservation

(Table 1). The populations added were the following: No. 6

(Kinale, Kenya), and No. 4 (Moka, Equatorial Guinea).

The adoption of approach S1 to select priority areas generated a

list of 10 priority populations (highlighted in bold on the left hand

side of Table 1), that would maximize inclusion of the genetic and

climatic diversity measured across the 32 populations sampled. Six

of the 10 priority populations are located in Kenya (3) and

Tanzania (3). The others are in Madagascar (1), Cameroon (1),

Equatorial Guinea (1) and Zimbabwe (1).

The S2 approach generated a list of 19 priority populations

presented in Table 2. Two of the original 19 priority populations,

in Kakamega and Kibiri forests, fall within the same grid cell due

to their closeness, and are treated as one population; the final

number of priority populations is 18. Seven of the 18 priority

populations are located in Kenya, followed by Madagascar (3),

with 2 each in Tanzania (2), Zimbabwe (2) and Uganda (2), and

with one each in Equatorial Guinea (1) and Cameroon (1). Being

focused on representativeness of the genetic diversity found

throughout the species’ range, approach S2 selects a larger

number of sites among the priorities, and includes also one of the

two populations characterized by peculiar climatic conditions

(pop. No. 4 in Equatorial Guinea).

A combination of the two approaches allows a further selection

of 6 priority populations, which were identified as priorities using

both methods. These populations constitute a core set of proposed

conservation areas: 2 populations in Kenya (pop. No. 6, 13), and

one population each in Equatorial Guinea (pop. No. 4),

Conservation Priorities for Prunus africana
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Madagascar (pop. No. 15), Tanzania (pop. No. 22), and

Zimbabwe (pop. No. 31). Of the 32 populations sampled for

genetic analyses, 21 are included within official conservation areas,

and 4 others are in sites proposed for special protection (Table 3).

An assessment at the pan-regional level, indicates that protected

areas cover 39% of the observed occurrences of P. africana and

16.7% of its potential current distribution. Among the 6

populations that are selected as priorities by both approaches, 4

are within protected areas.

However, a closer look at 3 countries (Kenya, Uganda and

Tanzania) where the sampled P. africana populations present the

highest haplotype and allelic richness, revealed that a considerable

portion of the area with suitable climate for P. africana is not

covered by natural vegetation; large parts of it have been

converted to cropland (Fig. 5a). Natural vegetation areas

correspond to just 21.5% of the species’ potential distribution; of

this fraction, the portion covered by protected areas corresponds

to 20.5% (Fig. 5b). This means that only ca. 4% of the potential

distribution of the species in Kenya, Uganda and Tanzania is

inside protected areas.

The predicted suitable habitat for the species, according to

climate scenarios based on average values of three GCMs, is

presented in Fig. 6a. This analysis indicated that a considerable

portion (53%) of the current range is expected to become

Figure 1. Prunus africana observations and modeled potential distribution. Probability of occurrence of P. africana is determined on the
basis of climatic/environmental parameters and indicated by different colors, from dark brown (high probability) to yellow (low probability).
doi:10.1371/journal.pone.0059987.g001
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unsuitable for P. africana by year 2050 (red areas), as a result of

changing climate, with large portions of modeled distribution

disappearing from the map (e.g., potential range in Angola) and a

very modest expansion of the species to new suitable habitats (1%

of area expected to be occupied by the species in 2050), while the

blue areas indicate continued suitability for the next 40 years.

The modeled distribution of P. africana in 2050 in Kenya,

Uganda and Tanzania is predicted to be impacted by climate

change (Fig. 5b), and the range of suitable habitats is expected to

decrease by 54% from 2010 to 2050; the part of the range

included in current protected areas is expected to shrink by 46%

by 2050.

Figure 2. Clustering of Prunus africana populations based on molecular marker data. The 32 populations, represented by 30 minute grid
cells, are grouped by Nei’s distance, based on similarity of haplotypes (cpSSR) (2a) and similarity of nuclear microsatellite (nSSRs) allelic composition
(2b).
doi:10.1371/journal.pone.0059987.g002

Figure 3. Prunus africana haplotype richness and allelic richness. Haplotype (cpSSR) (3a) and allelic (nSSR) (3b) richness are determined for 32
populations, after rarefaction, using a 30 minute grid cell size.
doi:10.1371/journal.pone.0059987.g003
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The current modeled potential distribution of P. africana was

compared with the modeled species distribution during the last

glacial maximum, ca. 21,000 years ago (Fig. 6b). The range is

estimated to have shrunk by approximately 45%; on this basis,

likelihood of future losses can be estimated.

The modeled climate for 2050 in each sampled population is

reported in the last column of Table 3.

For two populations, No. 11 in Kenya and No. 29 in Uganda,

the future climatic conditions are predicted to become unsuitable

for P. africana. Another five populations (pop. No. 8 and 13 in

Kenya, No. 22 and 25 in Tanzania, No. 17 in Nigeria) will be

located at the margin of the modeled distribution in 2050. Of the 6

priority populations, 2 will be located at the margin of the modeled

distribution: No. 13 in Kenya, and No. 22 in Tanzania.

Discussion

Both approaches presented (S1 and S2) to select priority

populations indicate a high conservation priority for populations in

the eastern part of the distribution of P. africana, particularly in

Kenya and Tanzania, which harbor a large portion of the genetic

diversity found across the species’ range. At a country level, Kenya

Figure 4. Clustering of 1,500 Prunus africana observations based on level of similarity of bioclimatic variables. Bioclimatic values for 19
variables were associated with all P. africana records. Bioclimatic values were extracted from 2.5 minute rasters obtained from the Worldclim website.
The observation points are grouped (each cluster is highlighted with a different colour) by Euclidean distance.
doi:10.1371/journal.pone.0059987.g004
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has unique opportunities to contribute to the conservation of the

species, as discussed also in Muchugi et al. [101].

The patterns of genetic variation found in P. africana

[40,42,101,102] are associated with the Afromontane habitats

occupied by the species, which play the role of islands of genetic

diversity [58]. The slight differences in clustering of populations

based on the two types of markers used (nuclear or chloroplast

SSRs) may be explained by the fact that cpDNA markers tend to

reflect gene flow patterns that are more historically remote than

the nuclear markers [103]. The Rift Valley disjunction - Albertine

or eastern branch depending on the type of marker used - appears

to have caused a major barrier between eastern and western

populations [40] and explains the relatedness of populations from

Cameroon, Uganda and Western Kenya, which are quite different

from those found in central Kenya. In addition, it is clear from

genetic analyses that populations from Madagascar are distinct

and highly diverse [40,42,101]. Populations in Cameroon and

Equatorial Guinea, although not quite as diverse as those

mentioned above, are also important as their environmental

conditions diverge sufficiently to almost certainly have given rise to

variation in genes controlling adaptive traits.

Obtaining genetic information specific to valuable traits requires

considerable time and cost but, as genomic tools develop, their

potential for describing useful variation of expressed genes will

likely be a breakthrough for conservation genetics [104]. The

approach for selecting priority populations for conservation

presented here is based on neutral molecular markers which are

extremely useful for discerning gene flow and evidence of historic

events such as genetic bottlenecks [105] and are a useful basis to

define conservation priorities. Populations with high diversity in

neutral markers can be considered suitable candidates for high

adaptive variation as well. In addition, disjunctions in the

distribution range (like in the case of P. africana) are indicative of

isolation and we might expect to find local adaptive variation on

this basis.

The approach proposed enables a reduction of the number of

priorities to a minimum set of core sites optimally distributed

across the range of P. africana. In addition, the combination of the

two methods described (S1 and S2) allows inclusion within

priorities of those populations with highest genetic diversity across

genetically separate clusters, but also of populations with lower

diversity belonging to distinct climate clusters, potentially

harbouring important adaptive properties. The clustering and

ranking were obtained through a user friendly sequence of steps,

with the support of freely available software, enabling conditions

for a wide uptake.

The results reveal that although the species is not in danger of

extinction, some important populations, with distinct characteris-

tics, are threatened and their loss would reduce the livelihood

potential for local people. Populations in Cameroon and

Madagascar have been exposed to sustained high rates of

exploitation [61,63]. Bark extraction has been also high, but less

intensive, in Kenya and on the island of Bioko (Equatorial Guinea)

[61,106]. Debarking of P. africana often occurred within Afro-

montane forest habitats of global conservation significance

including in protected areas [107,108] and unpublished reports

indicate that harvest still occurs in such areas (pers. comm. with

stakeholders). In addition, poor natural regeneration has been

Table 2. Prunus africana populations of conservation priority based on the second selection method proposed (S2).

Both SSR

Code Name of population Country Reserve selection (priority)

8 Kakamega Forest, Western Province Kenya 1

13 Kibiri forest, Western province Kenya 1

6 Kinale, Central province Kenya 2

31 Cashel Valley Chimanimani Zimbabwe 3

15 Lakato Forest Madagascar 4

28 Bwindi Forest Uganda 5

5 Chuka, Central province Kenya 6

20 Meru Catchment Reserve Tanzania 7

22 Kindoroko Catchment Reserve Tanzania 8

4 Moka Equatorial Guinea 9

29 Mabira Forest Uganda 10

12 Lari, Central province Kenya 11

10 Ol Danyo Sambuk, Central province Kenya 12

16 Antsahabiraoka Madagascar 13

30 Nyanga National Park Zimbabwe 14

3 Mt Danoua Cameroon 15

9 Londiani, Rift Valley Kenya 16

11 Taita Hills, Coast province Kenya 17

14 Marovoay Madagascar 18

Priorities are identified within 32 Prunus africana populations for which genetic data are available. The method is based on the ‘reserve selection’ analysis carried out in
DIVA-GIS. The method is aimed at enhancing complementary of the genetic diversity represented within the populations selected for conservation priority. The 18
populations selected for conservation priority are listed (2 of the original populations fall within the same grid cell due to their closeness, therefore are treated as one
population and have the same ranking).
doi:10.1371/journal.pone.0059987.t002
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observed in some locations due to unsuitable conditions for

establishment, attributable to insufficient light reaching the forest

floor and the accumulation of thick litter of competing exotic

species [109].

Only 4 P. africana populations of priority conservation value

based on both approaches (S1 and S2) are found within the

boundaries of protected areas. These populations constitute a

starting point for a conservation strategy for P. africana at the

continental scale, because conservation actions would be facilitated

by the existing conservation measures in place. However,

information on the respective IUCN conservation status is not

available for all the identified priority sites for P. africana

conservation; therefore it is not clear what level of protection is

applied, and there are concerns about the effectiveness of

protection despite the legal status.

Illegal logging and other types of encroachment into protected

areas and fire frequently pose threats to the species. The situation

might be worsened by a combination of different pressures on the

forest cover. For example in Zimbabwe, Jimu [110] has reported

that the introduction of plantations of exotic Pinus, Eucalyptus and

Acacia spp. has changed the landscape of the Afromontane region

considerably, and increased fire susceptibility in the forest cover.

These commercial species also encroach on protected areas and

compete strongly with other tree species, including P. africana.

Clearance for agriculture is a major threat affecting forested areas

where P. africana occurs, as illustrated for the eastern part of the

range of the species. It is not clear how climate change and further

expansion of agriculture will interact with threats in different parts

of the Afromontane regions, where P. africana would be pushed to

higher elevations.

Table 3. Current conservation status and expected modeled future climate suitability (2050) for 32 Prunus africana populations,
across 9 African countries.

Coder Name of population Country WDPA protected areas IUCN Category Modeled Climate 2050

1 Ngashie-Mt Oku Cameroon Proposed suitable

2 Lower Mann’s Spring, Mt Cameroon Cameroon Proposed suitable

3 Mt Danoua Cameroon Proposed suitable

4 Moka Equatorial Guinea Designated Ib suitable

5 Chuka, Central province Kenya Designated II suitable

6 Kinale, Central province Kenya NOT PROTECTED suitable

7 Kapcherop, Cherangani Forest, Rift Valley Kenya Designated suitable

8 Kakamega Forest, Western Province Kenya Designated MARGINAL

9 Londiani, Rift Valley Kenya NOT PROTECTED suitable

10 Ol Danyo Sambuk, Central province Kenya Designated II suitable

11 Taita Hills, Coast province Kenya Designated NOT SUITABLE

12 Lari, Central province Kenya NOT PROTECTED suitable

13 Kibiri forest, Western province Kenya Designated MARGINAL

14 Marovoay Madagascar NOT PROTECTED suitable

15 Lakato forest Madagascar NOT PROTECTED suitable

16 Antsahabiraoka Madagascar NOT PROTECTED suitable

17 Ngel Nyaki Forest Reserve, Nigeria Nigeria Designated MARGINAL

18 Mpumalanga South Africa Designated suitable

19 KwaZulu-Natal South Africa Designated IV suitable

20 Meru Catchment Reserve Tanzania Designated II suitable

21 Kilimanjaro Catchment Forest Reserve Tanzania Designated II suitable

22 Kindoroko Catchment Reserve Tanzania Designated MARGINAL

23 Shume Magamba Catchment Forest Reserve Tanzania Proposed IV suitable

24 Kidabaga Tanzania Designated IV suitable

25 Udzungwa Tanzania Designated II MARGINAL

26 Kibale Forest Natural Park Uganda Designated II suitable

27 Kalinzu Forest Reserve Uganda NOT PROTECTED suitable

28 Bwindi Forest Uganda Designated II suitable

29 Mabira Forest Uganda NOT PROTECTED NOT SUITABLE

30 Nyanga National Park Zimbabwe Designated II suitable

31 Cashel Valley Chimanimani Zimbabwe Designated suitable

32 Chirinda Forest Reserve Chipinge Zimbabwe Designated suitable

Populations highlighted in bold are those selected for conservation priority based on both selection approaches (S1 and S2) presented in this study. Sites that are not
officially protected or are expected to present future climate conditions unsuitable for P.africana are highlighted in capital letters, together with areas falling at the
margin of the modeled distribution under future climate scenario in 2050. For some protected areas the IUCN category is not available.
doi:10.1371/journal.pone.0059987.t003
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Figure 5. Prunus africana modeled potential distribution in Kenya, Tanzania and Uganda with respect to croplands and protected
areas. P. africana modeled potential distribution is shown with respect to areas occupied by .50% croplands (5a), and to the location of protected
areas (5b). Areas with expected high and low impact of climate change in 2050 are also highlighted (5b). In low impact areas (blue), no changes in
species distribution are expected, while in areas of high impact (red), climatic conditions are expected to become unsuitable for P. Africana. The
location of 19 populations, for which genetic data are available, is also shown.
doi:10.1371/journal.pone.0059987.g005

Figure 6. Prunus africana modeled potential distribution under past, current and future conditions in 2050. (6a) The spatial distribution
of all P. africana observation points is shown. Areas in red are expected to be highly affected by future climate change; in low impact areas (blue) no
changes in species distribution are expected; areas in green are expected to become suitable for P. africana. (6b) The past scenario refers to the last
glacial maximum (LGM), about 21,000 years before present. Blue indicates areas with continued habitat suitability since LGM until present (original
areas). Green indicates areas most likely unsuitable for P. africana at the LGM, but suitable at present (recent areas of expansion). Red represents areas
suitable during LGM but no longer suitable at present (lost areas). The spatial distribution of the 32 sampled populations, for which genetic data are
available, is indicated by yellow triangles.
doi:10.1371/journal.pone.0059987.g006
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Potential threats from climate change in 2050 are envisaged for

some highly diverse populations in Kenya, Tanzania and Uganda.

The projections presented in this paper do not account for

phenotypic plasticity, which affects the way a species responds to a

change in environmental conditions. However, they are congruent

with those generated by similar studies limited to East African

countries [111,112], although these were based on different

approaches (e.g., maps of vegetation types used as a proxy for the

distribution of specific woody species, different time scale and

future climate scenarios chosen). All predictions indicate a future

contraction of the area suitable for P. africana, with the degree of

reduction highly variable depending on the climate scenarios and

approaches adopted.

It is not clear how populations in Cameroon, Equatorial

Guinea, Nigeria, Angola and South Africa will respond to

environmental challenges. They may be less well equipped as

they have reduced levels of genetic diversity, probably attributable

to their greater distance from the centre of origin of the species.

On the other hand, trends are unclear; more peripheral lowland

populations may contain more useful traits for climate change

adaptation than other populations occurring at higher elevations.

As an example, recommendations for Pinus oocarpa populations in

Mexico suggest transferring seed at higher altitudes upwards,

following a progressive change in climatic conditions [113].

A broad corridor was revealed by modeling the potential range

of the species in the past; it connected Uganda with the

Democratic Republic of the Congo and further with West African

countries, like Cameroon and Nigeria. This may explain the

current occurrence of the species and the possible migration route,

considering the similarities found in the genetic profile of West

African populations and those located on the western side of the

Rift valley in eastern Africa [40,101]. It would be useful to carry

out new genetic studies in the areas of recent expansion of the

species, to understand how genetic diversity in the species relates

to past refugia [114]. In addition, important collection gaps exist in

Ethiopia and Angola and future studies should include these

countries.

Final Considerations

The priority areas for conservation of P. africana identified in the

present study include genetically unique and highly diverse P.

africana populations. The areas selected are also representative of

the main climatic conditions found across the species range and

constitute a network of priority sites for conservation of P. africana

across its range. Gap analyses at a finer scale should be carried out

to identify areas with particular environmental conditions and

elements of intraspecific diversity in P. africana not adequately

represented inside the network of protected areas [52].

Encroachment and conversion of forest land to other uses

threatens viability of isolated populations. Thus it is crucial to

maintain a minimum population size in community forests or in a

series of patches linked by pollinators in farmland. Preliminary

results on gene flow in P. africana populations are available [115–

117] and there is increasing evidence of how diversity and

population sizes of threatened tree species, important for the

livelihood of rural communities, could be maintained through the

incorporation of these species in agricultural landscapes [118,119].

The present study highlights priority populations to be

considered for inclusion in a core set of in situ conservation units

for P. africana, spread across the range and representing the variety

of conditions in which the species grows. Particular attention

should be paid to those priority sites within protected areas but

expected to be in marginal conditions by 2050, due to predicted

climatic changes (No. 13 in Kenya, No. 22 in Tanzania). In situ

priority populations should be inventoried in terms of area and

number of individuals, assessment of regeneration success and

effective population sizes, phenological observations, biotic and

abiotic factors that affect regeneration, and potential factors that

could threaten individual populations.

Planting P. africana has been widely adopted by small-holder

farmers in some countries such as Cameroon, where the intensive

exploitation of the species started earlier, in the 1970s, and where

only scattered remnants of natural populations can be found [120].

Land security is the major factor that enables planting to take

place, and the main incentive to planting P. africana has been

income, while the most important constraints are lack of good

planting materials, destruction by animals and fire, low sale prices

and lack of fertilizers as indicated in a recent survey on farmers’

decisions [120]. The main driver for the recent overexploitation of

P. africana has been the international trade of its bark extract,

increasingly monitored and subjected to regulation through

application of quotas to quantities of bark extract exported from

African countries. However, a growing interest for ethnoherbal

remedies and a search for novel products from traditional

medicinal plants have been documented in local markets; in

Kenya, P. africana is among the most popular species traded in the

local herbal industry [121]. This indicates that the exploitation

pressure on the species is likely to persist, beyond the trends in the

international market, therefore conservation interventions and

sustainable exploitation measures need to be applied.

Attempts have been made to identify superior populations with

regard to the chemical composition of the bark [122]. A molecular

phylogeographic pattern was reflected in the spatial variation of

certain bark constituents, such as ursolic acid. In addition, a very

high concentration of the studied constituents was found in

Madagascan populations, genetically distinct from the African

mainland. Despite the pronounced variation in the concentration

of selected bark constituents among populations, the findings did

not reveal a very distinct geographical pattern in the concentration

of bark constituents, therefore further investigations would be

needed to cast light on these aspects. In addition, a closer dialogue

with pharmaceutical companies is needed to understand better

what compounds determine the medicinal properties of bark

extracts.

Ex situ conservation efforts should be coupled with in situ

conservation, giving priority to threatened populations with known

highest genetic diversity (e.g., Kenya and Tanzania), or to the most

isolated populations that consist of more than 500 mature

individuals. Tests on seeds of P. africana have shown that seeds

can tolerate desiccation under appropriate storage conditions

[123]. The selection of seed sources should take into account the

challenges posed by climate change [124] and common garden

experiments should be established to examine the variation in

adaptive traits and phenotypic plasticity. The current range of

climatic conditions in which the species grows provides additional

information on potential adaptation to future conditions. In

addition, genomic markers may soon be available, if genes can be

linked to adaptive responses. Results would be particularly

important for defining planting zones in changing climates,

though constraints in implementing these actions would come

from the long-term financial implications and land tenure issues.
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l’Annexe II. Convention Sur Le Commerce International Des Especes De

Faune Et De Flore Sauvages Menacees D’extinction. 57.

64. Nsawir AT, Ingram V (2007) The Value of Biodiversity, Pygeum: Money

growing on trees in the Cameroon Highlands. Nature & Faune 22: 29–36.

65. Ingram V, Awono A, Schure J, Ndam N (2009) National Prunus africana

Management plan for Cameroon, CIFOR, Yaounde. 156.

66. Franzel S, Ayuk E, Cunningham AB, Asanga C, Duguma B (2009) Bark for

sale: the economics of Prunus africana as an agroforestry tree for small-scale

farmers in Cameroon. In: Cunningham, AB, editor. Bark: use, management

and commerce in Africa. Advances in Economic Botany Vol. 17. New York

Botanical Garden Press, New York. 408–417.

67. Orwa C, Mutua A, Kindt R, Jamnadass R, Simons A (2009) Agroforestree

Database: a tree reference and selection guide version 4.0. Available: http://

www.worldagroforestry.org/resources/databases/agroforestree. Accessed 2013

Feb 26.

68. St.Clair JB, Howe GT (2011) Strategies for conserving forest genetic resources

in the face of climate change. Turk J Bot 35: 403–409.
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