42 research outputs found

    Observational Characterization of the Downward Atmospheric Longwave Radiation at the Surface in the City of São Paulo

    Get PDF
    This work describes the seasonal and diurnal variations of downward longwave atmospheric irradiance (LW) at the surface in São Paulo, Brazil, using 5-min-averaged values of LW, air temperature, relative humidity, and solar radiation observed continuously and simultaneously from 1997 to 2006 on a micrometeorological platform, located at the top of a 4-story building. An objective procedure, including 2-step filtering and dome emission effect correction, was used to evaluate the quality of the 9-yr-long LW dataset. The comparison between LW values observed and yielded by the Surface Radiation Budget project shows spatial and temporal agreement, indicating that monthly and annual average values of LW observed in one point of São Paulo can be used as representative of the entire metropolitan region of São Paulo. The maximum monthly averaged value of the LW is observed during summer (389 ± 14 W m-2; January), and the minimum is observed during winter (332 ± 12 W m-2; July). The effective emissivity follows the LW and shows a maximum in summer (0.907 ± 0.032; January) and a minimum in winter (0.818 ± 0.029; June). The mean cloud effect, identified objectively by comparing the monthly averaged values of the LW during clear-sky days and all-sky conditions, intensified the monthly average LW by about 32.0 ± 3.5 W m-2 and the atmospheric effective emissivity by about 0.088 ± 0.024. In August, the driest month of the year in São Paulo, the diurnal evolution of the LW shows a minimum (325 ± 11 W m-2) at 0900 LT and a maximum (345 ± 12 W m-2) at 1800 LT, which lags behind (by 4 h) the maximum diurnal variation of the screen temperature. The diurnal evolution of effective emissivity shows a minimum (0.781 ± 0.027) during daytime and a maximum (0.842 ± 0.030) during nighttime. The diurnal evolution of all-sky condition and clear-sky day differences in the effective emissivity remain relatively constant (7% ± 1%), indicating that clouds do not change the emissivity diurnal pattern. The relationship between effective emissivity and screen air temperature and between effective emissivity and water vapor is complex. During the night, when the planetary boundary layer is shallower, the effective emissivity can be estimated by screen parameters. During the day, the relationship between effective emissivity and screen parameters varies from place to place and depends on the planetary boundary layer process. Because the empirical expressions do not contain enough information about the diurnal variation of the vertical stratification of air temperature and moisture in São Paulo, they are likely to fail in reproducing the diurnal variation of the surface emissivity. The most accurate way to estimate the LW for clear-sky conditions in São Paulo is to use an expression derived from a purely empirical approach

    A new perspective on the competitiveness of nations

    Get PDF
    The capability of firms to survive and to have a competitive advantage in global markets depends on, amongst other things, the efficiency of public institutions, the excellence of educational, health and communications infrastructures, as well as on the political and economic stability of their home country. The measurement of competitiveness and strategy development is thus an important issue for policy-makers. Despite many attempts to provide objectivity in the development of measures of national competitiveness, there are inherently subjective judgments that involve, for example, how data sets are aggregated and importance weights are applied. Generally, either equal weighting is assumed in calculating a final index, or subjective weights are specified. The same problem also occurs in the subjective assignment of countries to different clusters. Developed as such, the value of these type indices may be questioned by users. The aim of this paper is to explore methodological transparency as a viable solution to problems created by existing aggregated indices. For this purpose, a methodology composed of three steps is proposed. To start, a hierarchical clustering analysis is used to assign countries to appropriate clusters. In current methods, country clustering is generally based on GDP. However, we suggest that GDP alone is insufficient for purposes of country clustering. In the proposed methodology, 178 criteria are used for this purpose. Next, relationships between the criteria and classification of the countries are determined using artificial neural networks (ANNs). ANN provides an objective method for determining the attribute/criteria weights, which are, for the most part, subjectively specified in existing methods. Finally, in our third step, the countries of interest are ranked based on weights generated in the previous step. Beyond the ranking of countries, the proposed methodology can also be used to identify those attributes that a given country should focus on in order to improve its position relative to other countries, i.e., to transition from its current cluster to the next higher one

    The competitiveness of nations and implications for human development

    Get PDF
    This is the post-print version of the final paper published in Socio-Economic Planning Sciences. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2010 Elsevier B.V.Human development should be the ultimate objective of human activity, its aim being healthier, longer, and fuller lives. Thus, if the competitiveness of a nation is properly managed, enhanced human welfare should be the key expected consequence. The research described here explores the relationship between the competitiveness of a nation and its implications for human development. For this purpose, 45 countries were evaluated initially using data envelopment analysis. In this stage, global competitiveness indicators were taken as input variables with human development index indicators as output variables. Subsequently, an artificial neural network analysis was conducted to identify those factors having the greatest impact on efficiency scores

    Early Detection of Gas Dispersion Accident through a Neural Network Based Expert System

    No full text

    Methodological approach in determination of small spatial units in a highly complex terrain in atmospheric pollution research: the case of Zasavje region in Slovenia

    Get PDF
    The study of atmospheric air pollution research in complex terrains is challenged by the lack of appropriate methodology supporting the analysis of the spatial relationship between phenomena affected by a multitude of factors. The key is optimal design of a meaningful approach based on small spatial units of observation. The Zasavje region, Slovenia, was chosen as study area with the main objective to investigate in practice the role of such units in a test environment. The process consisted of three steps: modelling of pollution in the atmosphere with dispersion models, transfer of the results to geographical information system software, and then moving on to final determination of the function of small spatial units. A methodology capable of designing useful units for atmospheric air pollution research in highly complex terrains was created, and the results were deemed useful in offering starting points for further research in the field of geospatial health

    Methodological approach to determine of small spatial units in a highly complex terrain in atmospheric pollution research: the case of Zasavje region in Slovenia

    No full text
    The study of atmospheric air pollution research in complex terrains is challenged by the lack of appropriate methodology supporting the analysis of the spatial relationship between phenomena affected by a multitude of factors. The key is optimal design of a meaningful approach based on small spatial units of observation. The Zasavje region, Slovenia, was chosen as study area with the main objective to investigate in practice the role of such units in a test environment. The process consisted of three steps: modelling of pollution in the atmosphere with dispersion models, transfer of the results to geographical information system software, and then moving on to final determination of the function of small spatial units. A methodology capable of designing useful units for atmospheric air pollution research in highly complex terrains was created, and the results were deemed useful in offering starting points for further research in the field of geospatial health

    Modeling hourly diffuse solar-radiation in the city of São Paulo using a neural-network technique

    No full text
    dIn this work, a perceptron neural-network technique is applied to estimate hourly values of the diffuse solar-radiation at the surface in São Paulo City, Brazil, using as input the global solar-radiation and other meteorological parameters measured from 1998 to 2001. The neural-network verification was performed using the hourly measurements of diffuse solar-radiation obtained during the year 2002. The neural network was developed based on both feature determination and pattern selection techniques. It was found that the inclusion of the atmospheric long-wave radiation as input improves the neural-network performance. on the other hand traditional meteorological parameters, like air temperature and atmospheric pressure, are not as important as long-wave radiation which acts as a surrogate for cloud-cover information on the regional scale. An objective evaluation has shown that the diffuse solar-radiation is better reproduced by neural network synthetic series than by a correlation model. (C) 2004 Elsevier Ltd. All rights reserved
    corecore