9 research outputs found

    Quaternionic Wavelets for Texture Classification

    No full text
    4 pagesInternational audienceThis paper proposes a new texture classifier based on the Quaternionic Wavelet Transform (QWT). This recent transform separates the informations contained in the image better than a classical wavelet transform (DWT), and provides a multiscale image analysis which coefficients are 2D analytic, with one near-shift invariant magnitude and a phase, that is made of three angles. The interpretation and use of the QWT coefficients, especially the phase, are discussed, and we present a texture classifier using both the QWT magnitude and the QWT phase of images. Our classifier performs a better recognition rate than a standard wavelet based classifier

    The development of the quaternion wavelet transform

    Get PDF
    The purpose of this article is to review what has been written on what other authors have called quaternion wavelet transforms (QWTs): there is no consensus about what these should look like and what their properties should be. We briefly explain what real continuous and discrete wavelet transforms and multiresolution analysis are and why complex wavelet transforms were introduced; we then go on to detail published approaches to QWTs and to analyse them. We conclude with our own analysis of what it is that should define a QWT as being truly quaternionic and why all but a few of the “QWTs” we have described do not fit our definition

    Classification using semantic feature and machine learning: Land-use case application

    Get PDF
    Land cover classification has interested recent works especially for deforestation, urban are monitoring and agricultural land use. Traditional classification approaches have limited accuracy especially for non-heterogeneous land cover. Thus, using machine may improve the classification accuracy. The presented paper deals with the land-use scene recognition on very high-resolution remote sensing imagery. We proposed a new framework based on semantic features, handcrafted features and machine learning classifiers decisions. The method starts by semantic feature extraction using a convolutional neural network. Handcraft features are also extracted based on color and multi-resolution characteristics. Then, the classification stage is processed by three learning machine algorithms. The final classification result performed by majority vote algorithm. The idea behind is to take advantages from semantic features and handcrafted features. The second scope is to use the decision fusion to enhance the classification result. Experimentation results show that the proposed method provides good accuracy and trustable tool for land use image identification

    Connecting spatial and frequency domains for the quaternion Fourier transform

    Get PDF
    The quaternion Fourier transform (qFT) is an important tool in multi-dimensional data analysis, in particular for the study of color images. An important problem when applying the qFT is the mismatch between the spatial and frequency domains: the convolution of two quaternion signals does not map to the pointwise product of their qFT images. The recently defined ‘Mustard’ convolution behaves nicely in the frequency domain, but complicates the corresponding spatial domain analysis. The present paper analyses in detail the correspondence between classical convolution and the new Mustard convolution. In particular, an expression is derived that allows one to write classical convolution as a finite linear combination of suitable Mustard convolutions. This result is expected to play a major role in the further development of quaternion image processing, as it yields a formula for the qFT spectrum of the classical convolution
    corecore