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The development of the quaternion wavelet
transform

Peter Fletcher* , Stephen John Sangwine

School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe
Park, Colchester, CO4 3SQ, United Kingdom.

Abstract

The purpose of this article is to review what has been written on what other

authors have called quaternion wavelet transforms (QWTs): there is no consen-

sus about what these should look like and what their properties should be. We

briefly explain what real continuous and discrete wavelet transforms and mul-

tiresolution analysis are and why complex wavelet transforms were introduced;

we then go on to detail published approaches to QWTs and to analyse them. We

conclude with our own analysis of what it is that should define a QWT as being

truly quaternionic and why all but a few of the “QWTs” we have described do

not fit our definition.

Keywords: Quaternion wavelet transform, Quaternion STFT.

1. Introduction

In this article we try to show how quaternion wavelet transforms (QWTs)

have been developed. Wavelet transforms represent signals using a linear com-

bination of basis functions called wavelets, whose principal characteristic is that

they are localised in time or space. Unlike a representation using periodic basis
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functions such as sines and cosines, wavelet transforms allow localised signal

content to be analysed.

As we note at the beginning of section 4, most of the theory about wavelets

and wavelet transforms, including that about complex wavelet transforms (CWTs)

and QWTs, has been developed for real-valued signals and greyscale images.

However, we are concerned with signals and images which require more than

one component per sample or pixel, for example quaternion signals and, in

particular, colour images represented as arrays of quaternions: QWTs for pro-

cessing these will have different properties from the majority of the QWTs that

have appeared so far. As well as discussing QWTs for quaternion signals and

arrays, we also briefly consider CWTs for complex signals.

Throughout the paper, when we refer to signals and time, it should also be

understood that we may mean images and space (in the sense of position within

an image). Most of what we cover generalises to the 2-D case of images.

In section 2 we briefly cover the history of real wavelets and describe their

properties. There are three types of wavelet analysis, using continuous wavelets,

discrete wavelets and multiresolution analysis, and we discuss each of these in

turn. There are some problems with real wavelets and in section 3 we see how

complex wavelets were introduced to solve them. In section 4 we survey all

articles that have contributed to the development of QWTs and describe what

each article’s authors have done. There is no single approach to QWTs and in

section 5.4 we say what we believe a “true” QWT should and should not look

like. In section 6 we present our conclusions.

2. Classical (R-valued) wavelet transforms

We start by reviewing briefly the main ideas of wavelets and wavelet trans-

forms in the real-valued case, in order to provide some context for the rest of

the paper. A much fuller treatment is given by, e.g., Kovačević et al. (2014).
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2.1. Background

The Fourier transform (FT) gives information about the frequency content

of a signal, but nothing about where in time or space its different constituent

frequencies occur. In some applications, for example with non-stationary signals

where some frequency content is present only for a limited time, it would be

desirable to know the distribution of frequencies over time or space, which led to

the introduction of the short-time Fourier transform (STFT) by Gabor (1946a).

A “sliding window” is introduced into the FT, initially centred at time 0, say;

the signal is assumed to be approximately stationary in the window and its FT

is found. The window is then shifted by t and the FT of the new section of signal

is found, and so on until the whole signal has been covered. In continuous time

and frequency the STFT in 1-D, centred on time t, can be expressed as

F
STFT

f(ω, t) =

∫ ∞
−∞

f(s)g(s− t)e−jωsds, (1)

where g(·) is the window function. In discrete time the STFT becomes

F
STFT

(ω, t) =
∞∑

m=−∞
f [m]g[m− t]e−jωm. (2)

The function g(·) or g[·] will always be even in practice and some authors would

write g(t− s) and g[t−m] above. Gabor experimented with a number of differ-

ent functions for the window g(·) and found the best he could do was to use a

Gaussian; the STFT with this window function is now called the Gabor trans-

form. We cannot know the exact frequency at a given time and Heisenberg’s

Uncertainty Principle applies per Gabor (1946b):

∆t∆ω >
1

2
, (3)

where ∆t is the uncertainty in time and ∆ω is the uncertainty in angular fre-

quency. The Gabor transform is optimal in the sense that this inequality theo-
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retically becomes an equality when g(·) is a Gaussian.

A major drawback of the STFT is that once the window is chosen, its resolu-

tion is fixed. There are two extremes to consider: a high frequency signal with a

period less than the width of the window and only a few oscillations would have

a relatively large uncertainty as to its actual position; and a lower frequency

signal with a period longer than the width of the window would not actually

be detected at all. Heuristically, the (discrete) wavelet transform is similar to

an STFT, but one with a range of different window sizes: a larger number of

short windows to capture the detail at higher frequencies and a smaller number

of long windows for the lower frequencies.

The term “wavelet” had already been used for many years by geophysicists,

e.g., Ricker (1953), to refer to a single component of a seismogram when in the

early 1980s, e.g., Grossmann and Morlet (1984), the mathematics of wavelets

was developed to allow them to be used as a tool in signal processing. The

simplest wavelet is the Haar wavelet, which appears to have been so-named in

the 1970s or 1980s: Haar (1910) studied systems of orthogonal functions using a

set of orthogonal rectangular basis functions, with each basis function consisting

of a short positive pulse followed immediately by a short negative pulse:

ψ(t) :=


1 0 6 t < 1

2

−1 1
2 6 t < 1

0 otherwise.

Later, after the development of wavelets, this Haar wavelet was generalised to

ψα,β(t) := 2−α/2ψ(2−αt − β), where α, β ∈ {0} ∪ Z+.1 The scale factor 2−α/2

ensures that
∫∞
−∞ |ψα,β(t)|2 dt = 1. ψ(t) is called the mother wavelet and the

ψα,β(t) functions, daughter wavelets; α is a scale parameter and β is a translation

1Some authors write ψα,β(t) = 2α/2ψ(2αt − β), but the notation we have used is as per
Daubechies (1992, p. 10)
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parameter.
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Figure 1: The Haar mother wavelet (ii) and two levels of Haar daughter wavelets:
(i) ψ−1,0(t) =

√
2ψ(2t), (ii), ψ0,0(t) = ψ(t), (iii) ψ1,0(t) = 1√

2
ψ
(
1
2
t
)
.

There was little interest in Haar’s rectangular pulse until it was picked up by

Lévy (1948) as an improvement on the Fourier basis functions for studying the

fine detail of Brownian motion: as demonstrated by Pinsky (2001), Brownian

motion can be expressed as a sum of Haar wavelets.

A square pulse is not the only wavelet that can be used. Strömberg (2006)

started the development of discrete wavelets beyond what Haar had done and

Daubechies (1988) introduced families of orthogonal wavelets with compact sup-

port. The continuous wavelet transform first appeared in Zweig et al. (1976),

although that in Goupillaud et al. (1984) is the oldest which would be recognised

today as a wavelet transform.

2.2. Properties of wavelets

Many wavelets have been developed, each with properties suited to particular

applications. All have the property of localisation in space and time and some

have infinite support, but the most popular, as mathematical objects if not for

applications according to Blatter (1998, p. 6), have finite support. A wavelet
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having finite support simply means that there is a finite interval, outside of

which its amplitude is zero. A wavelet transform should be able to analyse

a signal (or image) at different scales and so the underlying wavelets need to

be localised in spatial frequency. It also needs to encode where in time (or

space) these frequencies occur and so the wavelets need to be localised in time

(or space) as well. A 1-D example of space and time localisation would be a

music score, which shows which musical notes and hence sound frequencies need

to occur and at what times. Wavelet analysis of the music would theoretically

allow the music score to be reconstructed but Fourier analysis of the same music

would not, since it would not reveal the locations of different frequency content

due to individual notes.

The wavelet functions are chosen from L1(R) ∩ L2(R), the space of measur-

able functions that are absolutely and square integrable:∫ ∞
−∞
|ψ(t)|dt <∞, and

∫ ∞
−∞
|ψ(t)|2 dt <∞.

In addition, a wavelet must have zero mean and a squared norm of unity, so:∫ ∞
−∞

ψ(t)dt = 0 and

∫ ∞
−∞
|ψ(t)|2 dt = 1.

We define a wavelet as

ψa,b : R→ C, t 7→ 1√
a
ψ

(
t− b
a

)
,

where (a, b) ∈ R+ × R (Blatter, 1998, p. 14). Note that this definition of ψa,b

is slightly different from the one we used for the ψα,β of the Haar wavelet

above: if ψa,b were that Haar wavelet, we would have a = 2α and b = 2αβ.

Both definitions are in use and we also call a and b the scale and translation

parameters respectively.
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2.3. The continuous wavelet transform

The continuous wavelet transform

Wψf : R+ × R→ C, (a, b) 7→ Wψf(a, b)

of a signal f is defined as

Wψf(a, b) := 〈f, ψa,b〉 =
1√
a

∫ ∞
−∞

f(t)ψ

(
t− b
a

)
dt, (4)

where the variables are as we defined in subsection 2.2. The result is a data

array (
Wψf(a, b)

∣∣(a, b) ∈ R+ × R
)
,

where, if these data are plotted, a is traditionally taken as the vertical axis and

b, the horizontal. Thus, unlike an FT, we transform a 1-D signal into a 2-D

result: the inverse transform has to therefore turn the 2-D representation back

into 1-D, which requires integration over two variables:

f =
1

Cψ

∫ ∞
−∞

∫ ∞
−∞

Wψf(a, b)ψa,b
a2

dadb,

where the scaling factor Cψ is

Cψ = 2π

∫ ∞
−∞

|ψ̂(ξ)|2

|ξ|
dξ <∞

and ψ̂(·) denotes the Fourier transform (Blatter, 1998, pp. 15/16/61). A deriva-

tion of Cψ can be found in (Daubechies, 1992, pp. 24/25).

Incidentally, the Fourier transform itself can be regarded as a particular case

of a continuous wavelet transform, with the mother wavelet ψ(t) = exp(−2πjt).

2.4. The discrete wavelet transform

A discrete wavelet transform (DWT) can be thought of as an all-pass filter,

but one made up of separate low-pass and high-pass filters with cut-offs which

coincide. One can be implemented, together with its inverse, as a two-channel
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filter bank with finite impulse response filters (FIRs), as illustrated in Fig. 2.

The processing block in practice might perform e.g., signal compression by sup-

pression of small components, but for the purposes of our discussion here we

assume that it has been removed and the outputs of the downsamplers (decima-

tors) go straight into the upsamplers (expanders). The H’s are low-pass filters,

the G’s are high-pass filters and the tildes ( ·̃ ) indicate that the ordering of the

filters’ coefficients has been reversed. Together the four filters form a quadra-

ture mirror filter (QMF). The passband of a realisable filter can never have a

perfect cut-off and where filter responses overlap, aliasing can occur. In a QMF,

the aliasing that must occur in the analysis bank is cancelled by the equal and

opposite aliasing in the synthesis bank, leading to a perfect reconstruction of

the input signal, apart from a delay. The aliasing is actually augmented by the

decimators, but this makes it easier to remove.

x[n]

G(z)

H(z)

↓2

↓2

P
ro

ce
ss

in
g

↑2

↑2

G̃(z)

H̃(z)

+ y[n]

Analysis Synthesis

Figure 2: The basic layout of a simple discrete wavelet transform, adapted from (Jaffard
et al., 2001, p. 39, Fig. 3.3).

In terms of z-transforms, we find that

Y (z) =
1

2
X(z)[H(z)H̃(z) +G(z)G̃(z)] +

1

2
X(−z)[H(−z)H̃(z) +G(−z)G̃(−z)]

The second term is due to the decimation and expansion plus aliasing and we

can make it zero by choosing H̃(z) = G(−z) and G̃(z) = −H(−z).
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As an example, let the coefficients of H be h = (a, b, c, d) so that:

H(z) = a+ bz−1 + cz−2 + dz−3, H̃(z) = d+ cz−1 + bz−2 + az−3,

G(z) = d− cz−1 + bz−2 − az−3, G̃(z) = −a+ bz−1 − cz−2 + dz−3.

Then after some calculation we find that

Y (z) = X(z)[(ac+ bd)z−1 + (a2 + b2 + c2 + d2)z−3 + (ac+ bd)z−5].

If a = −0.1294, b = 0.2241, c = 0.8365 and d = 0.4830 then ac+ bd = 0 and

a2 + b2 + c2 + d2 = 1, so that Y (z) = X(z)z−3, exactly the same as the input

but with a delay. These coefficient values chosen were from the Daubechies

db2 wavelet (Weeks, 2011, p. 284), but we could have chosen db3, . . . ,db45, the

Mexican hat wavelet, the Meyer wavelet, etc. The coefficient vectors are always

even-length and h and g may have different lengths.

For more than one level of decomposition of some input signal, the low-pass

output of the first analysis stage would form the input to another analysis stage

and the high-pass output would be saved; and so on to whatever level of analysis

is desired, as illustrated in Fig. 3 with three levels of analysis: with the input

signal x[n], a[n] is the final low frequency approximation and d[0, n], d[1, n] and

d[2, n] are the high frequency details extracted at each level. The frequencies in

the detail decrease as we go from d[0, n] to d[1, n] to d[2, n].

x[n]

G(z)

H(z)

↓2

↓2

G(z)

H(z)

↓2

↓2

G(z)

H(z)

↓2

↓2

d[0, n]

d[1, n]

d[2, n]

a[n]

Figure 3: Illustration of multilevel analysis, adapted from Selesnick et al. (2005, Fig. 24(a)).

In Fig. 4 is illustrated the reverse process, with the detail d′[2, n], d′[1, n] and

9



d′[0, n] added back step-by-step. If no processing has been done between the

analysis and synthesis filters so that d′[2, n] = d[2, n], d′[1, n] = d[1, n], d′[0, n] =

d[0, n] and a′[n] = a[n], then we would theoretically have y[n] = x[n].

y[n]

G̃(z)

H̃(z)

↑2

↑2

G̃(z)

H̃(z)

↑2

↑2

G̃(z)

H̃(z)

↑2

↑2

d′[0, n]

d′[1, n]

d′[2, n]

a′[n]

Figure 4: Illustration of multilevel synthesis, adapted from Selesnick et al. (2005, Fig. 24(b)).

Thus, at each stage of analysis, the detail at that scale is stripped off and at

each stage of synthesis, the detail at that scale is added back in.

In recent years, wavelet transforms have found applications in video and in-

ternet communications compression, object recognition and numerical analysis.

As an example of image compression, the JPEG2000 image compression stan-

dard, described by Taubman and Marcellin (2002), uses CDF 5/7 and CDF 9/7

wavelets, which are two versions of the Cohen-Daubechies-Feauveau wavelet.

2.5. Multiresolution analysis

Multiresolution analysis (MRA) was developed by Mallat (1989a,b) and

Meyer (1992 English edition) as a design method for scaling functions and

wavelets. The idea is that a function is viewed at the finest resolution and

decomposed into the detail at that resolution plus a complementary approxima-

tion; this approximation is then viewed at a lower resolution and decomposed

into the detail at the new resolution plus a new approximation; and so on. This

is a similar idea to the multilevel analysis described in the previous subsection.

Much of this subsection is adapted from Goswami and Chan (2011, pp. 89-94).
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2.5.1. Multiresolution spaces

With MRA, we consider the spaces, to which the detail and approximation

functions resulting from a multilevel analysis, have to belong. We can then

develop conditions that these functions must obey. Let the subspace Vs be

generated by the bases {φk,s : 2−s/2φ(2−st − k); k ∈ Z} and the subspace Ws

by {ψk,s : 2−s/2ψ(2−st − k); k ∈ Z}, so that any function xs(t) ∈ Vs, say, can

be approximated (in an L2 sense) by a linear combination of φk,s for a finite

set of different k’s; and similarly for any function ys(t) ∈Ws, say, and ψk,s. As

with the multilevel analysis, both xs+1(t) ∈ Vs+1 and ys+1(t) ∈ Ws+1 can be

obtained from xs(t).

In the following, we define for a ∈ R+,

Da : ψ 7→ Daψ, Daψ(t) := ψ

(
t

a

)
.

From Blatter (1998, pp. 121/2), a multiresolution analysis has the following

ingredients.

1. A bilateral sequence (Vj , j ∈ Z) of closed subspaces of L2(R). These Vj

are ordered by inclusion,

{0} . . . ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ . . .Vj ⊂ Vj−1 ⊂ . . . ⊂ L2(R) (5)

(smaller values of j correspond to larger spaces Vj), and one has

⋂
j

Vj = {0} (separation axiom)

⋃
j

Vj = L2(R) (completeness axiom)

The time signals x ∈ Vj only comprise features (details) exhibiting a

spread of size > 2j on the time axis. The more negative j is, the finer are

the details that may occur in an x ∈ Vj , and “in the limit” every single

x ∈ L2(R) can be attained by functions xj ∈ Vj .
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2. The Vj are connected to each other by a rigid scaling property:

Vj+1 = D2(Vj) ∀j ∈ Z.

Referring to time signals x, this can be expressed as follows:

x ∈ Vj ⇔ x(2j ·) ∈ V0.

3. V0 contains one basis vector per base step 1. To be precise, there is

a function φ ∈ L2 ∩ L1 such that its translates (φ(· − k), k ∈ Z) form an

orthonormal basis of V0. This function φ is commonly called the scaling

function of the MRA under consideration; it is the determining element

of the whole set-up.

Some authors reverse the ordering of the Vj in equation (5).

Each Vs is a proper subspace of Vs−1 and the orthogonal complement of Vs

in Vs−1 is called Ws, the wavelet subspace, satisfying

Vs ∩Ws = {0} s ∈ Z

Vs ⊕Ws = Vs−1,

where the symbol ⊕ means the direct sum. This leads to

Vs =
∞⊕

`=s+1

W`.

The {Vs} are nested and the {Ws} are (according to Goswami and Chan)

12



“mutually orthogonal”2 and together satisfy

V` ∩ Vm = V`, ` > m

W` ∩Wm = {0}, ` 6= m

V` ∩Wm = {0}, ` > m.

The way Vs and Ws are related as s changes is illustrated in Fig. 5.

V−1

V0 W0

V1 W1

V2 W2

...

...

Figure 5: Illustration of splitting of MRA subspaces, adapted from Goswami and Chan
(2011, p. 97 Fig. 5.2).

2.5.2. Orthogonal decomposition

If we insist that Ws ⊥ Vs, we then have an orthogonal decomposition. This

implies that, e.g., for s = 0,∫ ∞
−∞

φ(t)ψ(t− `)dt = 0, ∀` ∈ Z.

A Riesz basis of a space is one where the basis vectors are normalised and

linearly independent per Mallat (2009, p. 22). The sets {φ(t− k) : k ∈ Z} and

{ψ(t − k) : k ∈ Z} need not be orthogonal in themselves, but we still need the

integer translates of φ to form a Riesz basis for V0.

2We discuss the assumption of orthogonality in section 2.5.2.
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2.5.3. Biorthogonal decomposition

Biorthogonal wavelets are a generalisation of orthogonal wavelets. They

were introduced by Cohen et al. (1992) and increase the number of degrees of

freedom available for filter design; they make perfect reconstruction and linear

phase possible simultaneously, while also allowing filter lengths to differ.

If we do not insist that Ws ⊥ Vs but assume that ψk,s ∈ Ws has a dual

ψ̃k,s ∈ W̃s, this leads to Cohen et al.’s biorthogonality condition,

〈
ψj,k, ψ̃`,m

〉
= δj,` . δk,m, j, k, `,m ∈ Z. (6)

We do now need W̃s ⊥ Vs.

The scaling function also has a dual, φ̃k,s ∈ Ṽs and there is another MRA

{0} . . . ⊂ Ṽ2 ⊂ Ṽ1 ⊂ Ṽ0 ⊂ Ṽ−1 ⊂ . . . Ṽj ⊂ Ṽj−1 ⊂ . . . ⊂ L2(R)

such that Ws ⊥ Ṽs.

In the same way that Vs and Ws are related, Ṽs and W̃s satisfy

Ṽ` = Ṽm + W̃m,

Ṽm ∩ Ṽ` = Ṽm,

 m > `

W̃m ∩ W̃` = {0}, m 6= `

Ṽm ∩ W̃` = {0}, m > `.

W` ⊥ Ṽ` ⇒ Ṽ` ∩Wm = {0},

W̃` ⊥ V` ⇒ V` ∩ W̃m = {0},

 m 6 `.

We can now show how dual wavelets, which are sometimes called analysing

wavelets, are used to find the coefficients of the original wavelets, which are

sometimes called synthesis wavelets. Since

Vs =
N∑
n=1

Ws+n + Vs+N ,
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if xM (t) ∈ Vs, we have

xM (t) =
N∑
n=1

yM+n(t) + xM+N (t), (7)

where xM+N (t) is the coarsest approximation of xM (t), and

xs(t) = 2−s/2
∑
`

a`,sφ(2−st− `) ∈ Vs

ys(t) = 2−s/2
∑
`

w`,sψ(2−st− `) ∈Ws. (8)

Taking the inner product of equation (7) with ψ̃k,s(t) gives

〈
xM (t), ψ̃k,s(t)

〉
=

N∑
n=1

〈
yM+n(t), ψ̃k,s(t)

〉
+
〈
xM+N (t), ψ̃k,s(t)

〉
.

Since xM+N (t) ∈ Vs+N , ψ̃k,s(t) ∈ W̃s and Vs+N is orthogonal to W̃s, the

second inner product on the RHS of this equation is 0. Using Equation (8) to

replace yM+n(t) then gives

〈
xM (t), ψ̃k,s(t)

〉
=

N∑
n=1

(∑
`

w`,M+n

〈
2−(M+n)/2ψ

(
2−(M+n)t− `

)
, ψ̃k,s(t)

〉)
.

Using Equation (6), most of the terms in the expansion of the sum on the RHS

of this equation are zero, except the term where M + n = s and ` = k, so that

〈
xM (t), ψ̃k,s(t)

〉
= wk,s

〈
ψk,s(t), ψ̃k,s(t)

〉
= wk,s (δk,k . δs,s) = wk,s.

Therefore we can analyse a function xM and find its wavelet coefficients by

finding its inner product with the dual wavelet ψ̃.

One advantage of biorthogonal wavelets is that we can have compactly sup-

ported symmetric analysis and synthesis wavelets and scaling functions. A con-

tinuous orthonormal basis cannot satisfy all of these conditions at the same

time. Also, according to Chui and Wang (1995), higher order orthonormal scal-
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ing functions and wavelets have poor time-scale localisation.

3. The Dual-Tree Complex wavelet transform

It is natural to ask whether the concepts of wavelets (localisation in time)

and wavelet transforms (MRA) can be extended to complex signals, i.e., sig-

nals where each sample is a complex value rather than a real one. Such signals

provide an intermediate between real and quaternion and other hypercomplex

signals: they are therefore worthy of study, in order to suggest generalisations

from the real case which may be of significant practical use. In fact, there ap-

pears not to have been any recent work done on generalising either wavelets

or wavelet transforms to the complex case. Some work has been done using

wavelets with complex coefficients to analyse real signals, but we do not look

at this. However, there has been some significant work done with complex

wavelets in a different sense: as we show in this section, the dual-tree com-

plex wavelet transform exists to overcome serious problems with the real-valued

wavelet transform, namely the sensitivity of its coefficients to small time shifts.

The complex wavelet transform (CWT) first appeared in published form in

Kingsbury and Magarey (1998). The authors discuss the major drawback of the

DWT that the CWT was introduced to overcome, namely the DWT’s sensitivity

to small shifts in the input signal: e.g., if an impulse is the input to the filter

bank in Fig. 2 and it is shifted by a small amount, then the wavelet coefficients

at the outputs of the analysis stage change dramatically, as illustrated in Fig. 6.

The inputs here were vectors of 128 zeros with unit impulses at positions 60 and

64 respectively; they are labelled by their squared norms, which give measures of

their energies: the second output has roughly twice the energy of the first. The

non-translation invariance of wavelets subspaces has been studied by a number

of authors, e.g., Hogan and Lakey (2009).

Selesnick et al. (2005) add three more problems with real wavelets:
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• oscillations around singularities result in large and small wavelet coeffi-

cients that may be positive, negative or close to zero;

• aliasing might occur in the set-up in Fig. 2, even if the filter coefficients

are chosen such that aliasing should not occur if thresholding, filtering or

quantisation in the processing step upsets the balance between the forward

and inverse transforms;

• and Fourier sinusoids in higher dimensions are directional plane waves, but

multidimensional real wavelets do not have this property, complicating the

processing of geometric image features such as edges.

Selesnick et al. noted that the Fourier transform does not suffer from these

problems and asked why this was. The answer was that the DWT is based on

real oscillating wavelets, whereas the Fourier transform is based on the complex

exponential (oscillating sinusoids),

exp(jΩt) = cos(Ωt) + j sin(Ωt),

where the real cosine and imaginary sine together form a Hilbert transform pair,

the imaginary part being the Hilbert transform of the real part.

The Hilbert transform Hx(t) of a signal x(t) is defined as

Hx(t) =
1

π

∫ ∞
−∞

x(s)

t− s
ds.

This equation is not very illuminating, but its effect is to introduce a −π/2

phase shift for the positive frequency components of the input signal: e.g.,

cos(Ωt− π/2) = sin(Ωt) as above.

As with the Euler expansion, a complex wavelet has a complex-valued scaling

function and a complex-valued wavelet of the forms

3Adapted from the top pair of plots on uk.mathworks.com/help/wavelet/examples/

dual-tree-wavelet-transforms.html.
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Figure 6: Absolute values of the detail outputs from a level 3 DWT with symlet 7
coefficients; inputs were unit impulses in both cases, but one input had its impulse offset by

four sample periods relative to the other.3

φc(t) = φr(t) + jφi(t)

ψc(t) = ψr(t) + jψi(t).

The real functions φr(t) and ψr(t) are even and the imaginary ones φi(t) and

ψi(t) are odd and, as long as the latter two functions are the respective Hilbert

transforms of the former, these form two Hilbert transform pairs and φc(t) and

ψc(t) are analytic signals as per Ville (1948), which are supported on only one

half of the frequency axis.

However, perfectly analytic wavelets and perfect reconstruction are mutually

exclusive. The reason why is explained by Selesnick et al. (2005, p. 127). The

way found by Kingsbury (1998) to implement the CWT was to construct two

separate trees of filter banks, each satisfying the perfect reconstruction condition

in themselves, but which jointly produce a complex wavelet and scaling function

that are as close as possible to being analytic while not being exactly analytic.

Fig. 7 illustrates the set-up for the analysis side of this dual-tree CWT. One

tree gives the real part of the transform and the other, the imaginary part with
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Figure 7: Analysis filter bank for the dual-tree CWT, adapted from Selesnick et al. (2005,
Fig. 13).

a −π/2 phase shift relative to the real part. As described with the real DWT,

the high-frequency outputs from the G filters are saved, to be added back in on

the synthesis side, which is basically the mirror image of the analysis side but

with H̃ and G̃ filters designed for perfect reconstruction. The first two pairs of

filters (marked H ′ and G′) differ from the rest due to their having to cope with

the same real input and to introduce the phase difference.

This dual-tree CWT was built from two real wavelet transforms, meaning

that all the pre-existing theory and practice of designing real wavelet transforms

could be used for these new filters.

Fig. 8 shows the result of processing the same impulses as were used to

produce Fig. 6, but with a dual-tree CWT instead of a DWT: the energies now

differ by roughly 2.5%, showing the reduction in shift variance. If the outputs

were perfectly analytic there would be no difference at all in the energies.

This CWT was an improvement on the DWT, but as we have suggested,

was still not perfect for all potential applications.

4Adapted from the bottom pair of plots on uk.mathworks.com/help/wavelet/examples/

dual-tree-wavelet-transforms.html.
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Figure 8: Absolute values of the complex detail outputs from a level 3 dual tree CWT with
Kingsbury Q-shift coefficients

(
Q = 1

4
or 3

4
of a sample period

)
; inputs were unit impulses in

both cases, but one input had its impulse offset by four sample periods relative to the other.4

As noted by Bülow (1999, p. 2), there is a close correspondence between the

local structure of a signal and its local phase, and this correspondence had been

used in the past in texture analysis and disparity estimation. A CWT cannot be

used for these types of analysis because being complex, it automatically has one

phase, which is useful for analysis in one direction only. As noted by Soulard

and Carré (2011), phase with the 2-D version of the CWT is ambiguous. This

is where Bülow’s work comes in: his quaternionic Gabor filter is equivalent

to two complex Gabor filters, from which any ambiguity is removed by their

having different
√
−1’s in their imaginary parts; recall from subsection 2.1 that

a Gabor transform is basically an STFT with a Gaussian window. He studied

the phase concept in Chapter 3 of his thesis, Bülow (1999, pp. 59-109), and his

filter initiated a large body of work on quaternion wavelet transforms (QWTs).

We look at these in the next section, after mentioning the few earlier attempts

at a QWT.
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4. Quaternion wavelet transforms

In this section we review the literature on QWTs. There are a number of

different definitions and we shall look in detail particularly at those from the

most-cited papers as per the Web of Science: Bayro-Corrochano (2006) with

over 30 citations, Zhou et al. (2007) with over 25 and Chan et al. (2008) with

over 50. These totals actually include citing articles where the three papers are

mentioned only in passing and we omit discussion of them in what follows.

We have not split up this section into separate subsections for continuous

and discrete QWTs and quaternion MRAs, but we have attempted to group

papers together in a logical fashion, roughly chronologically. The vast majority

of QWTs we describe are suitable only for real-valued signals and greyscale

images, but we mention colour in relation to a few QWTs in subsection 4.5.

4.1. Early papers

Mitrea (1994, ch. 2) introduced Clifford wavelets and a Clifford multireso-

lution analysis: the Clifford Algebra C`(0, 2) is isomorphic to the quaternions.

As a specific example, he constructed theoretical Haar Clifford wavelets. He

applied the Haar wavelet construction to prove the boundedness of the Cauchy

integral operator for Clifford-valued functions on a Lipshcitz surface and noted

applications to classical boundary-value problems for the Laplacian on Lipschitz

domains.

Traversoni (1995) represented the four components of a quaternion as real

wavelets and proposed using this formulation in Navier Stokes problems to ex-

press vorticity using all four dimensions. The energy would then be expressed

as wavelets and low energy turbulence could be filtered out by suppressing the

corresponding wavelets. This idea was not developed further and in Traversoni

(2001a) the author used the ideas of Mitrea to obtain a quaternion multireso-

lution analysis and Haar quaternion wavelet, the latter based on a cubic repre-
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sentation of the Haar square pulse in 3-D. In Traversoni (2001b), he applied his

Haar quaternion wavelets to image analysis, creating a 3-D representation of a

collection of 2-D tomography data.

Bülow (1999) developed a quaternion Hilbert transform and used the polar

representation of a quaternion in a quaternionic Gabor filter, on which a large

body of research has been based. We review this research in subsections 4.2,

4.3 and 4.4.

4.2. QWTs based on a quaternion Gabor transform

Bayro-Corrochano (2006) introduced a 2-D quaternion MRA, a “wavelet

pyramid”, which is also covered in Moya-Sánchez and Bayro-Corrochano (2010):

f(x, y) = Anf(x, y) +

n∑
j=1

[Dj,Hf(x, y) +Dj,V f(x, y) +Dj,Df(x, y)],

where the approximations A and detail D are defined as

Ajf(x, y) =
∞∑

k=−∞

∞∑
`=−∞

aj,k,`Φj,k,`(x, y),

Dj,pf(x, y) =

∞∑
k=−∞

∞∑
`=−∞

dj,p,k,`Ψj,p,k,`(x, y)

with

Φj,k,`(x, y) =
1

2j
Φ

(
x− k

2j
,
y − `

2j

)
, (j, k, `) ∈ Z3,

Ψj,p,k,`(x, y) =
1

2j
Ψp

(
x− k

2j
,
y − `

2j

)
and

aj,k,`(x, y) = 〈f(x, y),Φj,k,`(x, y)〉,

dj,p,k,` = 〈f(x, y),Ψj,p,k,`(x, y)〉.
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He also decomposed the scaling and wavelet functions into 1-D functions:

Φ(x, y) = φ(x)φ(y),

ΨH(x, y) = φ(x)ψ(y),

ΨV (x, y) = ψ(x)φ(y),

ΨD(x, y) = ψ(y)ψ(x).

The way this “wavelet pyramid” works is that given a 2-D image f(x, y), for each

level j we have four matricesAj ,Dp, p = H,V,D with elementsAj(k, `) = aj,k,`

and Dj,p(k, `) = dj,p,k,`.

For his QWT, Bayro-Corrochano (2006) used two quaternionic modulated

Gabor filters in quadrature:

hq =
1

σh
√

2π
exp

(
−x

2 + (εy)2

σ2
h

)
exp

(
i
ChH ωhH x

σh

)
exp

(
j
ChV ωhV εy

σh

)

= hqee + hqoei + hqeoj + hqook (9)

and

gq =
1

σg
√

2π
exp

(
−x

2 + (εy)2

σ2
g

)
exp

(
i
CgH ωgH x

σg

)
exp

(
j
CgV ωgV εy

σg

)

= gqee + gqoei + gqeoj + gqook, (10)

where ε is the aspect ratio, the σ’s are standard deviations, the ω’s are mod-

ulation frequencies, CaB = ωaB σa with a = h or g for low- or high-pass and

B = H or V for horizontal or vertical, ee means even-even, eo means even-odd,

oe means odd-even and oo means odd-odd. These last four come from the co-

sine and sine products of the equations’ expanded exponentials. These filters

are quaternionic versions of the low-pass filter H and high-pass filter G of Fig. 2.
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Bayro-Corrochano gives conditions on the frequencies as follows:

ωhH + ωhV = π, ωhH > ωhV , ωhH = 3ωgH , ωhH =
5π

6
and ωgH =

π

6

(we have changed some of the notation to avoid using tildes to indicate different

constants and to give more meaning to the subscripts).

This quaternion wavelet also appeared in Bayro-Corrochano (2005) and joint

conference paper Bayro-Corrochano and de La Torre Gomora (2004) and while

he did include Bülow (1999) in these two papers’ and his 2006 paper’s references,

he did not explicitly state that equations (9) and (10) come directly from Bülow’s

equation (3.40) for a quaternionic Gabor filter.

Despite all the citations, only a few researchers have actually done anything

with this QWT. Naouai et al. (2011) used it in the extraction of road map

information from high resolution remotely sensed images: conventional methods

for updating road maps rely on human intervention and are expensive and time

consuming. Ding et al. (2012) analysed black and white images in preparation

for colourisation. Chen et al. (2013) developed a new image quality assessment

metric for colour images based on phase congruency. Feng et al. (2014) used

phase congruency for edge saliency map extraction and image blur measurement.

4.3. QWTs for phase-based stereo matching

Xu et al. (2005) worked on phase-based stereo matching for uncalibrated

images. They revised and expanded their work in Xu et al. (2007), Traversoni

and Xu (2007) and Zhou et al. (2007), extending the work of Bayro-Corrochano

to symmetric/asymmetric biorthogonal wavelet bases in order to build linear-

phase quaternion wavelet filters (LPQWFs). Given the scaling function φ`,m(x)

and the wavelet base ψ`,m(x) of a biorthogonal wavelet, where ` denotes the

scale factors 2`, ` = 0, 1, . . . ,K and m ∈ Z, the offsets from the origin, four

corresponding 1-D analytic wavelets ψH`,m(x), ψV`,m(y), φH`,m(x) and φV`,m(y) can
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be built as:

ψH`,m(x) = ψ`,m(x) + iHx(ψ`,m(x))

ψV`,m(y) = ψ`,m(y) + jHy(ψ`,m(y))

φH`,m(x) = φ`,m(x) + iHx(φ`,m(x))

φV`,m(y) = φ`,m(y) + jHy(φ`,m(y)),

where Hx(·) and Hy(·) denote the partial Hilbert transforms along the x-axis

and y-axis and H and V refer to horizontal and vertical respectively.

The 2-D scale function Φq(x, y) and its three associated quaternion wavelet

functions Ψq
H(x, y), Ψq

V (x, y) and Ψq
D(x, y) can then be built as:

Φq(x, y) = φ`,m(x)φ`,m(y)

Ψq
H(x, y) = φH`,m(x)ψV`,m(y)

Ψq
V (x, y) = ψH`,m(x)φV`,m(y)

Ψq
D(x, y) = ψH`,m(x)ψV`,m(y),

where D refers to diagonal. Φq(x, y) is a real 2-D scale function and expanding

the three wavelet equations leads to 12 products that can be written succinctly

as:

Ψq
P (x, y) = ψP (x, y)

+ iHx
(
ψP (x, y)

)
+ jHy

(
ψP (x, y)

)
+ kHxy

(
ψP (x, y)

)
,

where Hxy(·) denotes the total Hilbert transform and ψP (x, y), P ∈ {H,V,D}

is a general 2-D real wavelet with different orientations. Thus each quaternion

wavelet consists of a Hilbert quadruple and is suited to the construction of 2-D
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analytic signals.

Zhou et al. developed a practical technique for constructing their LPQWFs

using real biorthogonal bases. They used a cost function approach, minimisation

of which avoided false matches in their stereo matching algorithm.

Despite the relatively high number of citations mentioned in the introduc-

tion, all the papers citing Zhou et al. (2007) appear to report something other

than any extension to or application of their QWT.

4.4. The dual tree quaternion wavelet transform

The dual tree QWT was introduced in Chan et al. (2004b). It went through

several refinements in Chan et al. (2004a), Chan et al. (2005) and Chan et al.

(2006), culminating in Chan et al. (2008). In table 1, we analyse by application

all the articles up to 2015 that make use of this version of the QWT. Chan et al.

themselves used it for edge geometry estimation and image disparity estimation

and have made their matlab R© code for the latter, including that for their

QWT, available on the website of the Digital Signal Processing Group at Rice

University.5 This QWT is based on the 2-D analytic signal of Bülow (1999):

Definition 4.1. Let f be a real-valued 2-D signal. the 2-D quaternion analytic
signal is defined as6

fqA(x, y) = f(x, y) + ifHx
(x, y) + jfHy

(x, y) + kfHxy
(x, y)

where

fHx(x, y) = f(x, y) ∗ ∗ δ(y)

πx
,

fHy
(x, y) = f(x, y) ∗ ∗ δ(x)

πy
,

fHxy
(x, y) = f(x, y) ∗ ∗ 1

π2xy
.

5http://dsp.rice.edu/software/qwt
6We have changed the notation slightly for consistency with previous results.

26

http://dsp.rice.edu/software/qwt


The function fHxy (·) is the total Hilbert transform and fHx(·) and fHy (·) are
the partial Hilbert transforms; δ(x) and δ(y) are impulse sheets along the y and
x axes respectively and ∗∗ denotes 2-D convolution.

Per Bow (2002, p. 422), “An impulse sheet is defined such that it has an

infinite length in one direction and its cross-section has the usual δ-function

properties”. This definition is not worded very well, but what it means is that

the impulse sheet δ(x) above is a sheet in the x–y plane whose cross-section

anywhere parallel to the y–z plane is a δ-function; and similarly, δ(y) is a sheet

in the x–y plane whose cross-section anywhere parallel to the x–z plane is a

δ-function.

This QWT is constructed by simply arranging the four components of a 2-D

complex wavelet as a quaternion, using appropriate filters for the calculation

of the coefficients. The basis functions are shifted and scaled copies of the fol-

lowing; the superscripts H, V and D label the horizontal, vertical and diagonal

sub-bands respectively:

fqA0
(x, y) = φ(x, y) = φh(x)φh(y) + iφh(x)φg(y) + jφg(x)φh(y) + kφg(x)φg(y)

fqA1
(x, y) = ψH(x, y) = ψh(x)φh(y) + iψh(x)φg(y) + jψg(x)φh(y) + kψg(x)φg(y)

fqA2
(x, y) = ψV (x, y) = φh(x)ψh(y) + iφh(x)ψg(y) + jφg(x)ψh(y) + kφg(x)ψg(y)

fqA3
(x, y) = ψD(x, y) = ψh(x)ψh(y) + iψh(x)ψg(y) + jψg(x)ψh(y) + kψg(x)ψg(y)

(11)

Chan et al.’s QWT function has four arguments: the image to be analysed, the

level of analysis required J and four pairs of filter coefficients, two pairs Faf{1}

Lo and Hi and Faf{2} Lo and Hi for the first level and two pairs af{1} Lo and

Hi and af{2} Lo and Hi for subsequent levels. It returns the wavelet coefficients

for each of levels 1 to J and the scaling coefficients at level J + 1.

The way this function works is to use one filter on each column and downsam-

ple the columns by two and then use another filter on each row and downsample

the rows by two.
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For the four scalar terms in equations (11), Faf{1} (af{1} from level 2

onwards) filters are used in the order Lo1-Lo1, Lo1-Hi1, Hi1-Lo1, Hi1-Hi1.

The i-terms use Faf{1} and Faf{2} (af{1} and af{2} from level 2 onwards)

respectively in the order Lo1-Lo2, Lo1-Hi2, Hi1-Lo2, Hi1-Hi2, the subscript

indicating the source of the filter.

The j-terms use Faf{2} and Faf{1} (af{2} and af{1} from level 2 onwards)

respectively in the order Lo2-Lo1, Lo2-Hi1, Hi2-Lo1, Hi2-Hi1.

The k-terms use Faf{2} (af{2} from level 2 onwards) respectively in the

order Lo2-Lo2, Lo2-Hi2, Hi2-Lo2, Hi2-Hi2.

Chan et al. do not actually mention anything in their articles about the filters

they used, although they do say in the comments on their code that the Faf

filters are “Farras filters organized for the dual-tree complex DWT” and that

the af filters are “Kingsbury Q-shift filters for the dual-tree complex DWT”.

Each one consists of 10 coefficients, including a few zeros.

Xu et al. (2010) “traced the evolution of the QWT”, from Bülow’s quater-

nionic Gabor filter via Bayro-Corrochano’s QWT to Chan et al.’s QWT. They

considered some potential applications in: image registration using a windowed

quaternion Fourier transform; image fusion using Chan et al.’s QWT; and colour

image recognition using quaternionic Gabor filters.

4.5. Other novel QWTs

He and Yu (2004) studied the theory of continuous wavelet transforms on the

space of square-integrable quaternion-valued functions. Their QWT looks very

much like the real/complex one in equation (4), except with a quaternion-valued

function and wavelet.

Peng and Zhao (2004) succeeded in designing three symmetric quaternion

scaling filters but as shown by Ginzberg (2013, pp. 130/1), these filters were in

fact trivial, meaning that they could be decomposed into independent complex
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Table 1: Summary of research by application which has used the QWT formulation of Chan
et al. (2008).

Application Research articles

Image disparity
and optical flow

Chan et al. (2008), Wang et al. (2011), Wang et al.
(2013), Kumar et al. (2014)

Edge geometry Chan et al. (2008)

Texture recognition
Soulard and Carré (2010a), Sathyabama et al. (2011),
Sathyabama (2011), Soulard and Carré (2011), Gai et al.
(2013c), Li et al. (2013)

Image coding Soulard and Carré (2010b)

Feature extraction
and object
recognition

Gai et al. (2011), Li et al. (2012), Gai et al. (2013b),
Gai et al. (2013a), Greenblatt et al. (2013), Priyad-
harshini and Arivazhagan (2014), Sangeetha et al.
(2014), Katunin (2014), Shen et al. (2014), Mosquera-
Lopez et al. (2014), Gai and Luo (2014)

Speckle reduction Jin et al. (2012), Liu et al. (2012a), Wu et al. (2013)

Image denoising
Yin et al. (2012), Kadiri et al. (2012), Kadiri et al.
(2014), Gai et al. (2014), Yu et al. (2014), Gai and Luo
(2015)

Image fusion
Liu et al. (2012b), Liu et al. (2013b), Liu et al. (2014),
Yin et al. (2014), Geng et al. (2015)

Scale saliency Le Ngo et al. (2013a), Le Ngo et al. (2013b)

Image metrics
Liu et al. (2013a), Traoré et al. (2014), Traoré et al.
(2015)

Watermarking Lei et al. (2014), Lei et al. (2015)

or real filters.

Shi (2005, pp. 49-51) developed a Haar QWT for colour images represented

as arrays of pure quaternions or vector images. This seems to be the earliest
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QWT for such images and we explain this representation further in section

5.4. His equations did not convey exactly what we believe he meant, so we have

adjusted them slightly to make them clearer. In 1-D, we start with a quaternion

signal Q(r) of length 2N , say. Then for r ∈ N , we find sums and differences

divided by 2:

QL(r) =
Q(2r) +Q(2r − 1)

2

QH(r) =
Q(2r)−Q(2r − 1)

2
.

In wavelet terminology, QL(r) is the approximation and QH(r) is the detail. If

N is a power of 2, this can be repeated with QL(r) as the signal, and so on.

Finding the sums and differences of pairs of pixels along the rows and columns

of a quaternion colour image would hence implement a 2-D Haar QWT.

For perfect reconstruction in 1-D, we have

Q(2r) = QL(r) +QH(r)

Q(2r − 1) = QL(r)−QH(r),

which is easily extended to 2-D. As Shi admits, his 2-D “QWT” would be

equivalent to three separate monochrome 2-D DWTs and would not therefore

be truly quaternionic.

Carré and Denis (2006) also thought of trying to develop a QWT for use

with vector images. They considered the two-channel filter bank with perfect

reconstruction in Fig. 2, but with quaternion input and output and quaternion

coefficients. They found that the conditions on the filters for perfect recon-

struction are exactly the same as for filter banks with real coefficients, except

that the order of the elements is important. The only example they tried was a

Shannon QWT, for which the filter coefficients turned out to be real. This was

a conference paper and there does not appear to have been a follow-up journal
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paper.

Zhao and Peng (2007) define a continuous quaternion wavelet ψ ∈ L2(R2,H)

as

ψa,θ,b(x) = a−1ψ
(
a−1r−θ(x− b)

)
r−θ(x) = (x1 cos(θ)− x2 sin(θ), x1 sin(θ) + x2 cos(θ)) ,where

0 6 θ 6 2π, a > 0, b ∈ R2.

They then define their QWT as

Wψ : L2
(
R2,H

)
→ L2

(
IG(2),H, a−3dadθdb

)
f(x) 7→Wψ(a, θ, b) = C

− 1
2

ψ 〈ψa,θ,b, f〉

= C
− 1

2

ψ

∫
R2

ψa,θ,b(x)f(x)dx, (12)

where

IG(2) = {(a, rθ, b) , a > 0, θ ∈ [0, 2π], b ∈ R2
}

and Cψ =

∫
R2

|ψ̂(ξ)|2

|ξ|2
dξ.

Thus the signal is decomposed by rotated as well as scaled and translated copies

of the mother wavelet. This vector QWT will be recognised as one possible

generalisation of that in equation (4) to more than one dimension. This QWT

apparently first appeared in Zhao and Peng (2001).

Bahri et al. (2011) define their 2-D continuous QWT as:

Tψ : L2
(
R2,H

)
→ L2

(
R2,H

)
f 7→ Tψf(a, θ, b) = 〈f, ψa,θ,b〉L2(R2,H)

=

∫
R2

f(x)
1

a
ψ

(
r−θ

(
x− b
a

))
dx, (13)
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where

r−θ(z) = (z1 cos(θ) + z2 sin(θ),−z1 sin(θ) + z2 cos(θ)) , 0 6 θ 6 2π.

This QWT at first sight appears to be very similar to Zhao and Peng’s in

equation (12): the differences are that Bahri et al. have the opposite sign of θ

compared with Zhao and Peng, so that in the terminology used above rθ(z) =

r−θ(x), they do not have the normalisation constant C
− 1

2

ψ and have the opposite

order of terms in their integrand. Bahri et al.’s QWT is in fact completely

different from Zhao and Peng’s, due to the non-commutativity of quaternions.

They also give an inverse transform, unlike Zhao and Peng, which takes the

form of an integral w.r.t. a, θ and b.

Although Bahri et al. do not cite Zhao and Peng (2007), they do cite Zhao

and Peng (2001), which also appears in the references of Bahri (2011), Bahri

et al. (2012) and Bahri et al. (2014). In the last of these, the authors define a

quaternion Fourier transform as

Fq[f(x)](ω) = f̂(ω) =

∫
R2

f(x) exp(−µ[ω . x])dx,

where µ = (i + j + k)/
√

3. They then use this to rewrite equation (13) as

Tψf(a, θ, b) =
1

(2π)2

∫
R2

af̂(ω) exp(−µ[ω . b])ψ̂(ar−θ(ω))dω.

They go on to establish some theorems involving this formulation of their 2-D

QWT.

A signal with vector-valued samples can be processed using matrices as fil-

ter coefficients: this is an alternative representation of hypercomplex algebras

which is mathematically more general. A convolution consists of multiplying

the signal samples (vectors) by the filter coefficients (matrices of compatible

dimension), yielding modified signal samples (vectors). Given this way of rep-
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resenting and thinking about vector signal processing, it is natural to consider

wavelet transforms with matrix coefficients. Xia and Suter (1996) introduced

vector-valued wavelets, as they called them, for the analysis of vector-valued

signals. Their MRA is similar to that in subsection 2.5, except that L2(R) is

replaced by L2(R,CN×N ). Matrix valued wavelets (MVAs), as they are most

commonly called, have since been studied in their own right. He and Yu (2005)

appear to have been the first to consider quaternion MVWs and an associated

quaternion-valued MRA analysis, using the 2×2 complex matrix representation

of quaternions. However, they tried to design filters in the frequency domain

and forgot the noncommutativity of matrix multiplication per Ginzberg (2013),

resulting in their method only working for trivial scaling and wavelet filters.

Bahri (2010) did something very similar to He and Yu with 2× 2 complex ma-

trices and did not notice a similar noncommutativity problem, also per Ginzberg

(2013).

Ginzberg and Walden (2013) constructed some novel families of non-trivial

2×2 and 4×4 MVWs. As per Ginzberg (2013, p. 122), “We define an n×n MVW

to be trivial if it can be decomposed into independent lower-dimensional MVWs

(in some appropriate orthogonal basis of Rn). Every MVW is then composed of

one or more non-trivial MVWs”. They went on to construct a 4× 4 non-trivial

symmetric quaternion wavelet with compact support, specifically a length 10

Daubechies quaternion scaling filter together with the corresponding wavelet

filter. Daubechies wavelets are characterised by maximal vanishing moments

for a given length of filter: the low- and high-frequency passbands can be made

as flat as one wishes by increasing the lengths of the filters. Their method of

construction for the scaling filter was to derive and solve the following set of
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design equations:

9∑
k=0

Hk =
√

2 I4,

9∑
k=0

(−1)k kdHk = 04 for d = 0 . . . 4,

8−2m∑
k=0

HkH
T
k+2m = δm,0 I4 for m = 1 . . . 4,

where the Hk were each 4× 4 matrix representations of quaternions with four

unknowns appearing four times.

The solutions of these equations in terms of the equivalent quaternions are:

h0 = h9 =

√
35

256
i,

h1 = h8 =
1

256

(
−5
√

2 +
√

35 k
)

h2 = h7 =
1

256

(
−7
√

2− 7
√

35 i + 3
√

35 k
)

h3 = h6 =
1

256

(
35
√

2− 5
√

35 i +
√

35 k
)

h4 = h5 =
1

256

(
105
√

2 + 11
√

35 i− 5
√

35 k
)
.

Ginzberg then used a function he wrote using functions from the mw toolbox

for MATLAB R© by Keinert (2004) to find the corresponding wavelet filter coef-
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ficients as:

g0 = −g9 =
1

24576

(
89
√

35 i + 35
√

2 j− 35
√

35 k
)

g1 = −g8 =
1

24576

(
−480

√
2 + 35

√
35 i− 175

√
2 j + 79

√
35k

)
g2 = −g7 =

1

3072

(
84
√

2− 91
√

35 i + 35
√

2 j +
√

35 k
)

g3 = −g6 =
1

256

(
35
√

2 + 5
√

35 i−
√

35 k
)

g4 = −g5 =
1

12288

(
−5040

√
2 + 577

√
35 i− 245

√
2 j + 5

√
35 k

)
.

In the above equations we have swapped Ginzberg’s G’s with H’s and g’s with

h’s to match our convention of using H for low-pass filters and G for high-pass

filters.

This is as far as Ginzberg took his QWT: he only found the filter coefficients

for the analysis side of a quaternion QMF, but not those for the synthesis side.

Guo et al. (2012) define their quaternion curvelet transform in virtually the

same way as Bahri et al. define their 2-D QWT and use it in colour image

fusion. They recognise that treating the R, G and B channels holistically as

described in section 5.4 reduces blur, preserving the greatest amount of colour

information, and use colour images represented as pure quaternions but do not

describe exactly how they evaluate their transform. However, Pang et al. (2012),

which has two authors in common with Guo et al. (2012), do explain how their

QWTs are computed. They use low- and high-pass decomposition filters φd and

ϕd and low- and high-pass reconstruction filters φr and ϕr, which they define
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as:

φd =
[
0.0000 −0.1768 0.3536 1.0607 0.3536 −0.1768

]
exp(µπ/4),

ϕd =
[
0.0000 0.3536 −0.7071 0.3536 0.0000 0.0000

]
exp(µπ/4),

φr =
[
0.0000 0.3536 0.7071 0.3536 0.0000 0.0000

]
exp(µπ/4),

ϕr =
[
0.0000 0.1768 0.3536 −1.0607 0.3536 0.1768

]
exp(µπ/4),

where µ = (i + j + k)/
√

2, although presumably
√

2 should read
√

3. Guo

et al. do not explain where these filter coefficients come from. They report an

improvement on previous methods of colour image fusion.

Hogan and Morris (2012) developed some theory for quaternionic signals

using the Clifford-Fourier transform of Brackx et al. (2006) for C`(0, 2), which

is a quaternion Fourier transform (QFT). They used this QFT in the proof

of a quaternionic analogue of the QMF condition: a quaternionic orthonormal

scaling function must necessarily satisfy this. They went on to find conditions

to be satisfied by the corresponding quaternion wavelet functions. These con-

ditions can be expressed as a matrix equation and they found an equivalent

system of quadratic equations that it would be possible to solve numerically.

They then found conditions that would be sufficient to guarantee a quaternion

scaling function would have compact support. They were not, however, able to

actually construct a quaternion wavelet basis from a QFT series and conclude

that their theory must be incomplete. They were, however, able to construct a

quaternionic biorthogonal wavelet basis and give an example of such a wavelet

basis and illustrate the resulting wavelets. Much of this article also appeared,

in a slightly expanded form, in Morris (2014, pp. 63-121).

4.6. The monogenic approach

In this section we have so far confined ourselves just to QWTs that were

so-named by those who introduced them. Although not “officially” QWTs,
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monogenic wavelet transforms (MWTs) are related and therefore warrant a

brief mention.

Olhede and Metikas (2009) devised a 2-D version of the 1-D analytic wavelet,

using the work of Chan et al. (2004a) and the dual-tree CWT of Selesnick et al.

(2005), and named it the “monogenic wavelet”. This involved generalising the

1-D analytic signal to the 2-D monogenic signal (see e.g., Felsberg and Sommer

(2001)). Olhede and Metikas defined the monogenic extension of any real-valued

mother wavelet ψ(x) as

ψ+(x) =Mψ(x) = ψ(x) +Rψ(x) = ψ(x) +
(
iψ(1)(x) + jψ(2)(x)

)
,

where ψ(1) = R1ψ, ψ(2) = R2ψ and R is the Riesz transform; the i and j are

two of the three quaternion basis elements. They went on to study variations

of this wavelet and the associated MWTs. These MWTs were intended for use

with monochrome images. Along the same lines, Unser et al. (2009) used two

parallel filter banks to implement multiresolution monogenic analysis.

Soulard and Carré have made a number of contributions to this area in recent

years, extending the monogenic idea to colour images. In Soulard et al. (2013)

they define their tensor-based colour MWT for each scale i as

cM (k) =
[
cRi,k, c

G
i,k, c

B
i,k,Ni,k

]
,

where

cCi,k =
(
ψi ∗ sC

) (
2−(i+1)k

)
and dCi,k =

(
R
(
ψi ∗ sC

)) (
2−(i+1)k

)
with signal s, C ∈ {R,G,B} and Ni,k =

√∣∣∣dRi,k∣∣∣2 +
∣∣∣dGi,k∣∣∣2 +

∣∣∣dBi,k∣∣∣2.

The monogenic approach actually offers the potential for generalisation to

more than four dimensions, whereas QWTs are limited to four.
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5. Discussion

We have seen in the previous sections, several possible approaches to wavelet

transforms for quaternionic (i.e., not real-valued) signals and we now consider

the ramifications of these ideas and how they relate to each other. We also

consider how classical filter theory can be extended to complex and vector-valued

wavelets and this leads us to the question of what makes a truly quaternionic

wavelet.

5.1. Short Time Fourier Transform approaches

The STFT approach developed from Gabor’s ideas is a form of wavelet

transform, but it is based on Fourier transforms, which use sinusoidal basis

functions. This type of wavelet transform is not based on basis functions with

finite support. As we have seen, there are wavelet transforms based on wavelets

which do have finite support and we make a distinction between the two in what

follows.

It is not surprising that the STFT-based approach to defining wavelet trans-

forms has been adopted by many researchers to provide quaternion STFT/wavelet

transforms. The Fourier transforms needed already existed (including numerical

implementations) and the use of Gaussian or other window functions presented

no problems because they are real-valued.

5.2. Generalising classical wavelets

Turning to the more difficult problem of generalising classical wavelet trans-

forms based on wavelets with finite support (e.g., Haar, Daubechies), there are

significant research questions still to be studied. This can be seen even in the

complex case. Putting aside the dual-tree approaches to wavelets as not being

truly complex, let us consider the complex case in some detail, partly for its

own sake, and partly because it provides a simpler model to work with initially

than the quaternions. Consider a complex signal and a truly complex discrete
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wavelet transform. Referring to Fig. 2, an immediate problem is how to define

analysis and synthesis filters which process complex signals (and which there-

fore presumably must have complex filter coefficients). We do not know of any

significant theoretical work done on the concept of frequency response for such

filters, let alone design methods, nor on the frequency content of a signal. As

an example of the problems here, consider how the classical Fourier transform

represents a real signal using positive and negative frequency complex exponen-

tials, whose imaginary parts cancel out. What is a negative frequency? In the

real case it appears to be a mathematical artefact due to the use of complex

exponentials, but in the complex case it is simply explained: a negative fre-

quency exponential rotates in the complex plane in the negative sense (that is

clockwise, by mathematical convention), whereas a positive frequency exponen-

tial rotates in the positive sense. Now, a complex signal can clearly have both

positive and negative frequency content (being composed of exponentials rotat-

ing in either sense) and a Fourier transform of a complex signal will, in general,

have no conjugate symmetry, unlike the real case. We believe that the concept

of frequency response needs to represent the response of a filter to positive and

negative frequencies independently.

5.3. Filter theory, etc

Noting that there is a gap in knowledge in the area of complex filter theory,

we then note that the same gap occurs with vector-valued signals, whether rep-

resented by quaternions or by vectors in the linear algebra sense or by elements

of other hypercomplex algebras. We know that oscillation at a single frequency

in a vector-valued signal is confined to a planar ellipse, regardless of the di-

mensionality of the vector space (Sangwine, 2016), but we do not know how

to design filters to handle such signals, even for such apparently simple tasks

as separation of oscillations in different planes or in different senses of rotation
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(polarization). The problem becomes even harder if we consider a modulated

ellipse, as described by Lilly (2011). We have seen in section 4.5 that Carré and

Denis attempted to generalise the classical QMF representation of a DWT to

a QWT by using filter banks with quaternion-valued coefficients, but did not

actually demonstrate a filter with quaternion coefficients. Ginzberg and Walden

overcame the problem by using the matrix representation of quaternions.

5.4. What makes a QWT truly quaternionic?

The majority of the QWTs we have looked at could have been implemented

using DWTs or CWTs without reference to quaternions, so should these ones

really be called QWTs? Alfsmann et al. (2007) give the main reason for the use

of hypercomplex algebras in signal processing:

The holistic, compact processing of vector-valued signals that are a

function of one or more independent parameters (e.g., time, location,

physical quantities). Here, the dimension of the algebra must be

chosen in compliance with the dimension of the signal vector. This

means that each vector-sample is treated as a whole rather than

treating its components separately. Classically, the reason for this is

that the sample as a whole conveys information (direction in vector

space) that is lost if the components of the sample are processed

independently. [our emphasis].

We contend that the “quaternion” in “QWT” should refer to a (pure or full)

quaternion-valued signal. In colour image processing this would mean that the

proportions of the three primary colours of each pixel would be the factors mul-

tiplying a quaternion’s three imaginary parts. In RGB colour space, these would

be the co-ordinates of the end of each pixel’s colour vector. This representation

would thus not lose the potentially useful information that might be contained

in the correlation between different primary colours in an individual pixel.
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Instead of treating each primary colour separately as illustrated diagram-

matically in Fig. 9a, a true QWT should treat each pixel holistically rather as

in Fig. 9b, where each of R′, G′ and B′ depends on all of R, G and B. This is

what the quaternion Fourier transform of Ell and Sangwine (2007) achieves.

B

G

R R′

G′

B′

FR

FG

FB

(a) Colour image processing with each
primary colour processed separately.

B

G

R R′

G′

B′

FRGB

(b) Processing of colour images
represented as quaternions.

Figure 9: Diagrams illustrating the essential difference between “conventional” colour image
processing and with quaternion or vector images.

6. Conclusion

We have seen how real discrete wavelet transforms (DWTs) came about and

how dual-tree complex wavelet transforms (CWTs) were introduced to try to

overcome the problems of the former, namely oscillations around discontinuities,

shift variance, aliasing and lack of directionality. We saw then that the original

so-called quaternion wavelet transforms (QWTs) were really DWTs or CWTs

in disguise: they had real filter coefficients and were designed for real signals.

As such, they would not cope with quaternion signals and to call them QWTs

was, in our opinion, technically incorrect. In recent years, a few researchers have

envisioned the development of a true QWT, one that was not equivalent to sev-

eral separate DWTs or CWTs in parallel. In particular, Carré and Denis (2006)

apparently understood the problem, but their QWT had real filter coefficients

and so was equivalent to three separate DWTs; Hogan and Morris (2012) had

some success with implementing a biorthogonal QWT which was truly quater-

41



nionic; and Ginzberg and Walden (2013) and Ginzberg (2013) introduced a true

quaternion matrix valued wavelet, which has the significant advantage of being

based on well-known matrix algebra.
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