339,092 research outputs found

    Reliability-based analysis of recycled aggregate concrete under carbonation

    Get PDF
    Durability represents a crucial issue for evaluating safety and serviceability of reinforced concrete structures. Many studies have already focused on carbonation-induced corrosion of natural aggregate concrete (NAC) structures, leading to several prediction models to estimate carbonation depth. Less research is devoted instead on recycled aggregate concrete (RAC), about which limited experimental works exist aimed at assessing the carbonation coefficient in accelerated tests. Additionally, deteriorating processes are subject to uncertainty, when defining materials, geometry, and environmental actions during the service life of structures. This work presents a reliability-based analysis of carbonation resistance of RACs, using experimental carbonation coefficients derived from the literature, and applied in the full-probabilistic method prosed in fib Bulletin 34. Results demonstrate how aggregates replacement ratio and w/c ratio influence the reliability of RAC carbonation resistance

    Validation of ankle strength measurements by means of a hand-held dynamometer in adult healthy subjects

    Get PDF
    Uniaxial Hand-Held Dynamometer (HHD) is a low-cost device widely adopted in clinical practice to measure muscle force. HHD measurements depend on operator’s ability and joint movements. The aim of the work is to validate the use of a commercial HHD in both dorsiflexion and plantarflexion ankle strength measurements quantifying the effects of HHD misplacements and unwanted foot’s movements on the measurements. We used an optoelectronic system and a multicomponent load cell to quantify the sources of error in the manual assessment of the ankle strength due to both the operator’s ability to hold still the HHD and the transversal components of the exerted force that are usually neglected in clinical routine. Results showed that foot’s movements and angular misplacements of HHD on sagittal and horizontal planes were relevant sources of inaccuracy on the strength assessment. Moreover, ankle dorsiflexion and plantarflexion force measurements presented an inaccuracy less than 2% and higher than 10%, respectively. In conclusion, the manual use of a uniaxial HHD is not recommend ed for the assessment of ankle plantarflexion strength; on the contrary, it can be allowed asking the operator to pay strong attention to the HHD positioning in ankle dorsiflexion strength measurements

    Reliability assessment of cutting tool life based on surrogate approximation methods

    Get PDF
    A novel reliability estimation approach to the cutting tools based on advanced approximation methods is proposed. Methods such as the stochastic response surface and surrogate modeling are tested, starting from a few sample points obtained through fundamental experiments and extending them to models able to estimate the tool wear as a function of the key process parameters. Subsequently, different reliability analysis methods are employed such as Monte Carlo simulations and first- and second-order reliability methods. In the present study, these reliability analysis methods are assessed for estimating the reliability of cutting tools. The results show that the proposed method is an efficient method for assessing the reliability of the cutting tool based on the minimum number of experimental results. Experimental verification for the case of high-speed turning confirms the findings of the present study for cutting tools under flank wear

    Organizational Excellence in Palestinian Universities of Gaza Strip

    Get PDF
    The research aims to identify the organizational excellence in Palestinian universities of Gaza Strip, from the perspective of senior management. The questionnaires were distributed the top senior management in the Palestinian universities, and the study population was (344) employees in senior management in Palestinian universities. A stratified random sample were selected from of employees in the Palestinian universities consist of (182) employees at return rate of (69.2%). SPSS program for analyzing and processing the data was used. The study reached the following results: the senior management agrees largely on the importance of the axis of "Leadership Excellence" and "Excellence service sectors". The senior management agrees moderately about the importance of the axis of the “Knowledge excellence". The study showed that there is a weakness in the employment of scientific research to serve the community, there is weakness in the follow-up of the universities management for the performance of their graduates in the institutions in which they work. Senior management agrees on the importance of the "Organizational Excellence" moderately. The recommendations of study includes: the need to develop principles and fair criteria for the selection of the best candidates for the university and university leaders based on specialization, competence, experience, skills, integrity and not on the basis of favoritism

    Warranty Data Analysis: A Review

    Get PDF
    Warranty claims and supplementary data contain useful information about product quality and reliability. Analysing such data can therefore be of benefit to manufacturers in identifying early warnings of abnormalities in their products, providing useful information about failure modes to aid design modification, estimating product reliability for deciding on warranty policy and forecasting future warranty claims needed for preparing fiscal plans. In the last two decades, considerable research has been conducted in warranty data analysis (WDA) from several different perspectives. This article attempts to summarise and review the research and developments in WDA with emphasis on models, methods and applications. It concludes with a brief discussion on current practices and possible future trends in WDA

    Electricity from photovoltaic solar cells: Flat-Plate Solar Array Project final report. Volume VI: Engineering sciences and reliability

    Get PDF
    The Flat-Plate Solar Array (FSA) Project, funded by the U.S. Government and managed by the Jet Propulsion Laboratory, was formed in 1975 to develop the module/array technology needed to attain widespread terrestrial use of photovoltaics by 1985. To accomplish this, the FSA Project established and managed an Industry, University, and Federal Government Team to perform the needed research and development. This volume of the series of final reports documenting the FSA Project deals with the Project's activities directed at developing the engineering technology base required to achieve modules that meet the functional, safety and reliability requirements of large-scale terrestrial photovoltaic systems applications. These activities included: (1) development of functional, safety, and reliability requirements for such applications; (2) development of the engineering analytical approaches, test techniques, and design solutions required to meet the requirements; (3) synthesis and procurement of candidate designs for test and evaluation; and (4) performance of extensive testing, evaluation, and failure analysis to define design shortfalls and, thus, areas requiring additional research and development. During the life of the FSA Project, these activities were known by and included a variety of evolving organizational titles: Design and Test, Large-Scale Procurements, Engineering, Engineering Sciences, Operations, Module Performance and Failure Analysis, and at the end of the Project, Reliability and Engineering Sciences. This volume provides both a summary of the approach and technical outcome of these activities and provides a complete Bibliography (Appendix A) of the published documentation covering the detailed accomplishments and technologies developed
    • …
    corecore