508 research outputs found

    On utilizing weak estimators to achieve the online classification of data streams

    Get PDF
    Author's accepted version (post-print).Available from 03/09/2021.acceptedVersio

    Intelligent Learning Automata-based Strategies Applied to Personalized Service Provisioning in Pervasive Environments

    Get PDF
    Doktorgradsavhandling i informasjons- og kommunikasjonsteknologi, Universitetet i Agder, Grimstad, 201

    D4.2 Intelligent D-Band wireless systems and networks initial designs

    Get PDF
    This deliverable gives the results of the ARIADNE project's Task 4.2: Machine Learning based network intelligence. It presents the work conducted on various aspects of network management to deliver system level, qualitative solutions that leverage diverse machine learning techniques. The different chapters present system level, simulation and algorithmic models based on multi-agent reinforcement learning, deep reinforcement learning, learning automata for complex event forecasting, system level model for proactive handovers and resource allocation, model-driven deep learning-based channel estimation and feedbacks as well as strategies for deployment of machine learning based solutions. In short, the D4.2 provides results on promising AI and ML based methods along with their limitations and potentials that have been investigated in the ARIADNE project

    Improved learning automata applied to routing in multi-service networks

    Get PDF
    Multi-service communications networks are generally designed, provisioned and configured, based on source-destination user demands expected to occur over a recurring time period. However due to network users' actions being non-deterministic, actual user demands will vary from those expected, potentially causing some network resources to be under- provisioned, with others possibly over-provisioned. As actual user demands vary over the recurring time period from those expected, so the status of the various shared network resources may also vary. This high degree of uncertainty necessitates using adaptive resource allocation mechanisms to share the finite network resources more efficiently so that more of actual user demands may be accommodated onto the network. The overhead for these adaptive resource allocation mechanisms must be low in order to scale for use in large networks carrying many source-destination user demands. This thesis examines the use of stochastic learning automata for the adaptive routing problem (these being adaptive, distributed and simple in implementation and operation) and seeks to improve their weakness of slow convergence whilst maintaining their strength of subsequent near optimal performance. Firstly, current reinforcement algorithms (the part causing the automaton to learn) are examined for applicability, and contrary to the literature the discretised schemes are found in general to be unsuitable. Two algorithms are chosen (one with fast convergence, the other with good subsequent performance) and are improved through automatically adapting the learning rates and automatically switching between the two algorithms. Both novel methods use local entropy of action probabilities for determining convergence state. However when the convergence speed and blocking probability is compared to a bandwidth-based dynamic link-state shortest-path algorithm, the latter is found to be superior. A novel re-application of learning automata to the routing problem is therefore proposed: using link utilisation levels instead of call acceptance or packet delay. Learning automata now return a lower blocking probability than the dynamic shortest-path based scheme under realistic loading levels, but still suffer from a significant number of convergence iterations. Therefore the final improvement is to combine both learning automata and shortest-path concepts to form a hybrid algorithm. The resulting blocking probability of this novel routing algorithm is superior to either algorithm, even when using trend user demands

    Feasible, Robust and Reliable Automation and Control for Autonomous Systems

    Get PDF
    The Special Issue book focuses on highlighting current research and developments in the automation and control field for autonomous systems as well as showcasing state-of-the-art control strategy approaches for autonomous platforms. The book is co-edited by distinguished international control system experts currently based in Sweden, the United States of America, and the United Kingdom, with contributions from reputable researchers from China, Austria, France, the United States of America, Poland, and Hungary, among many others. The editors believe the ten articles published within this Special Issue will be highly appealing to control-systems-related researchers in applications typified in the fields of ground, aerial, maritime vehicles, and robotics as well as industrial audiences

    Achieving Fair Load Balancing by Invoking a Learning Automata-based Two Time Scale Separation Paradigm

    Get PDF
    Author's accepted manuscript.© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this article, we consider the problem of load balancing (LB), but, unlike the approaches that have been proposed earlier, we attempt to resolve the problem in a fair manner (or rather, it would probably be more appropriate to describe it as an ε-fair manner because, although the LB can, probably, never be totally fair, we achieve this by being ``as close to fair as possible''). The solution that we propose invokes a novel stochastic learning automaton (LA) scheme, so as to attain a distribution of the load to a number of nodes, where the performance level at the different nodes is approximately equal and each user experiences approximately the same Quality of the Service (QoS) irrespective of which node that he/she is connected to. Since the load is dynamically varying, static resource allocation schemes are doomed to underperform. This is further relevant in cloud environments, where we need dynamic approaches because the available resources are unpredictable (or rather, uncertain) by virtue of the shared nature of the resource pool. Furthermore, we prove here that there is a coupling involving LA's probabilities and the dynamics of the rewards themselves, which renders the environments to be nonstationary. This leads to the emergence of the so-called property of ``stochastic diminishing rewards.'' Our newly proposed novel LA algorithm ε-optimally solves the problem, and this is done by resorting to a two-time-scale-based stochastic learning paradigm. As far as we know, the results presented here are of a pioneering sort, and we are unaware of any comparable results.acceptedVersio

    Decentralized and Partially Decentralized Multi-Agent Reinforcement Learning

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Multi-agent systems consist of multiple agents that interact and coordinate with each other to work towards to certain goal. Multi-agent systems naturally arise in a variety of domains such as robotics, telecommunications, and economics. The dynamic and complex nature of these systems entails the agents to learn the optimal solutions on their own instead of following a pre-programmed strategy. Reinforcement learning provides a framework in which agents learn optimal behavior based on the response obtained from the environment. In this thesis, we propose various novel de- centralized, learning automaton based algorithms which can be employed by a group of interacting learning automata. We propose a completely decentralized version of the estimator algorithm. As compared to the completely centralized versions proposed before, this completely decentralized version proves to be a great improvement in terms of space complexity and convergence speed. The decentralized learning algorithm was applied; for the first time; to the domains of distributed object tracking and distributed watershed management. The results obtained by these experiments show the usefulness of the decentralized estimator algorithms to solve complex optimization problems. Taking inspiration from the completely decentralized learning algorithm, we propose the novel concept of partial decentralization. The partial decentralization bridges the gap between the completely decentralized and completely centralized algorithms and thus forms a comprehensive and continuous spectrum of multi-agent algorithms for the learning automata. To demonstrate the applicability of the partial decentralization, we employ a partially decentralized team of learning automata to control multi-agent Markov chains. More flexibility, expressiveness and flavor can be added to the partially decentralized framework by allowing different decentralized modules to engage in different types of games. We propose the novel framework of heterogeneous games of learning automata which allows the learning automata to engage in disparate games under the same formalism. We propose an algorithm to control the dynamic zero-sum games using heterogeneous games of learning automata
    • …
    corecore