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Abstract—In this paper1, we consider the problem of Load
Balancing (LB), but unlike the approaches that have been
proposed earlier, we attempt to resolve the problem in a fair
manner (or rather, it would probably be more appropriate to
describe it as an ε-fair manner, because although the LB can,
probably, never be totally fair, we achieve this by being “as
close to fair as possible”). The solution we propose invokes
a novel stochastic Learning Automata (LA) scheme, so as to
attain a distribution of the load to a number of nodes, where
the performance level at the different nodes is approximately
equal, and where each user experiences approximately the
same Quality of the Service (QoS) irrespective of which node
he is connected to. Since the load is dynamically varying,
static resource allocation schemes are doomed to under-
perform. This is further relevant in cloud environments,
where we need dynamic approaches because the available
resources are unpredictable (or rather, uncertain) by virtue
of the shared nature of the resource pool. Further, we prove
here that there is a coupling involving the LA’s probabilities
and the dynamics of the rewards themselves, which renders
the Environments to be non-stationary. This leads to the
emergence of the so-called property of “stochastic dimin-
ishing rewards”. Our newly-proposed novel LA algorithm
ε-optimally solves the problem, and this is done by resorting
to a two-time scale based stochastic learning paradigm. As
far as we know, the results presented here are of a pioneering
sort, and we are unaware of any comparable results.

Index Terms—Continuous Learning Automata, Resource
Allocation, Fair Load Balancing.

I. INTRODUCTION

In this paper, we consider the problem of Load Bal-
ancing (LB), which is extremely pertinent in today’s
highly-connected world. To put the problem in the right
perspective, we observe that, unarguably, computers
and information technology, have experienced enormous
growth and development over the past three decades.
This unalterable trend has profoundly affected societies
worldwide, in every sense of the word. Products and
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services that were traditionally delivered through other
means are, currently, online services.

Unlike the scenario a few decades ago, where one
“connected” directly to an institution’s machine, most of
these services are now being executed on the internet.
Since more than 50 billion devices will be connected
to the Internet by 2020 [28], one understands that the
traditional model of having in-house computers and
resources is not going to be a sustainable and viable
option. Rather, to cope with the sheer increase in the
number of users and devices interacting with the ma-
chines, and the respective services delivered online,
government and business institutions are reducing their
investments in on-premise IT infrastructure. Indeed, to
mitigate the super-exponential increases in the corre-
sponding communication and computational costs, they
are moving to, and increasing their spending on, cloud-
based services [33]. In this context, we mention that the
National Institute of Standards and Technology (NIST)
defines “cloud computing” as a model for enabling
ubiquitous, convenient, on-demand network access to a
shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with mini-
mal management effort or service provider interaction
[19]. Clearly, one has to now consider how all these
services can be distributed over the cloud of computers.
This, precisely, involves the problem of LB.

LB, like many other related problems [13], many in-
stances of LB are considered NP-Hard problems [31].
Thus, we will never be able to solve the problem so as
to allocate the resources in a perfectly-balanced man-
ner. Unlike the approaches that have been proposed
in the literature [11] such as Round Robin, Weighted
Round Robin, Power of two choices, Least Connection,
Weighted Least Connection etc..., we attempt to resolve
the problem in an “almost fair” manner, and we shall
refer to such an allocation as as an ε-fair balance. In
other words, we attempt to achieve this by being “as
close to fair as possible”. While one can attempt to do
this intelligently using any of the available AI-based
paradigms, the solution we propose invokes a novel
stochastic Learning Automata (LA) scheme. Our LA-
based solution distributes the load to a number of nodes,
where the performance level at the different nodes is
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approximately equal, and where each user experiences
approximately the same Quality of the Service (QoS)
irrespective of the node he is connected to. Although
LA has been applied classically to solve many resource
allocation problems including load balancing, to the best
of our knowledge the current work is distinct in two
aspects. First, to the best of our knowledge, there is no
theoretical analysis of any load balancing algorithm in
the field of LA. Load balancing induces usually dynamic-
ity of the environment as the LA actions will continously
alter the load distribution and consequently render the
environment non-stationary. Thus, such settings deviate
from the classical multi-armed bandit settings where the
environment is rather static and the reward distribu-
tion is not influenced by the actions of the LA. The
analysis of such cases is much more involved than the
stationary cases. Please note that, probably, the most
notable example of a theoretical treatment is due to
[31], [47] where the load balancing problem is mapped
into a coordinated strategic game. Second, the success
of adopting an LA for solving a rea-life problem is
dependent on an appropriate choice, or more precisely,
an appropriate engineering of the reward function. Most
of the engineerred reward functions in the context of
LA-based load balancing solutions rely on ”the response
time” of a server solely. In this paper, we used a modified
version of the reward that can infer fairness based on a
dynamic comparison threshold.

How then should a cloud-based service model differ
from a more traditional model? From the reported liter-
ature [12], we submit that a cloud-based infrastructure
should make it easy for a customer to request a resource,
and to have that resource provisioned and ready for use,
in minutes, rather than days or weeks. The ability to
scale the available resources on demand, with little or
no downtime, is another factor which makes the cloud
preferable over traditional enterprise data centers.

The cloud-based computing paradigm has trans-
formed the IT industry profoundly, paving the way to
foster new concepts such as DevOps, and microservices.
However, to stay competitive and to also ensure cus-
tomer satisfaction, companies offering online services
aim to quickly deliver new features to their customers.
Developing and deploying software as a monolithic
application does not fully take advantage of the benefits
of a “cloud computing” paradigm, and many companies
are considering migrating towards microservices [7] and
a Cloud-Native Application approach.

While having many benefits, cloud computing still has
some challenges when it comes to offering an optimized
system, and a fair allocation of resources. Available cloud
models do not adequately capture uncertainty, non-
homogeneity, and dynamic performance changes that are
inherent to non-uniform and shared infrastructures [41].
One of the viable ways to address challenges related
to dynamic performance changes associated with any
uncertainties in the load distribution, is to employ a LB
technique.

LB is the process of distributing workloads fairly
among multiple hosts. The major advantage of deploy-
ing a LB solution is to be able to handle more traffic
than a single host can tackle. Another advantage of LB
is that such a system offers high availability such that if
one service fails, others are available to ensure that the
application stays up and running.

In order to achieve an optimal distribution of work-
loads to any numbers of hosts, several algorithms have
been developed throughout the years. LB algorithms are
mainly classified as being static or dynamic.

Static LB schemes assume that the information gov-
erning the LB-oriented decisions are known in advance
[32]. The LB decisions are made deterministically or
probabilistically when the system starts or boots, and
remain constant during runtime. Every time the system
restarts, the same values gets loaded. Static LB algo-
rithms are mostly suitable for stable environments with
homogeneous systems.

The nature of a data center or of a cloud implicitly re-
quires dealing with a mixture of stochastic processes [40].
In contrast to static algorithms, dynamic LB algorithms
do not require prior knowledge or configuration of the
system. To make more fair load distribution decisions,
dynamic LB algorithms monitor the current runtime
state of the system, and adapt to changing loads. The
experiments that we report tacitly imply that the servers
are not homogenous, as they need not necessarily be
homogenous specially in cloud environment. Indeed,
one of the reasons for this is the types of hardware
used for the servers may be different as well as the
unpredictability of the resources in a cloud environment.
ANIS TO JOHN:I CORRECTED THE TEXT HERE THAT
YOU HAD IT IN RED COLOR AND CHANGED IT TO
BLUE. THE SERVERS ARE NOT HOMOGENEOUS IN
OUR EXPERIMENTS BCS THEIR SERVICE RATES ARE
DIFFERENT.

A. Distinctive Properties of Our Solution
Without going into any details of the arguments pre-

sented in the body of the paper, it is prudent to mention
the distinctive properties of our proposed solution when
it concerns the learning mechanism itself, and the associ-
ated analysis. In all brevity, they can be listed as below:

1) By virtue of the “fair balance” paradigm, the learn-
ing algorithm initiated by the LA proposed here
is distinct from all the families of LA described in
the LA-based load balancing literature such as [23].
This includes those from the previously-reported
families of fixed structure, variable structure, dis-
cretized and estimator-based LA.

2) To achieve a fair load balance, we encounter an
irony. Thus is, indeed, the fact that the more often
an “action” is chosen, the likelihood of the LA
choosing it even more, must subsequently decrease.
In other words, the rewards that are received for
any action must decrease as the action is cho-
sen more frequently. This is contrary to what the
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properties of absolute expedience and ε-optimality
entail, especially since, in these cases, the LA aim to
converge to an absorbing barrier in the probability
space. To the best of our knowledge, LA which
possess the phenomenon mentioned here have not
been proposed in the literature.

3) Our solution is characterized by the amazing prop-
erty that as any specific pi(t) increases, the cor-
responding reward probability of the action in
question, decreases. We refer to this phenomenon
as the “stochastic diminishing return property”.
Informally, this means that the more an action is
chosen, the less it will be rewarded. This involves
the two-time scale LA with barriers, as we shall
explain presently, and also facilitates fair LB.

4) The analysis methods we use here are both distinct
and unique. The mathematical techniques used
for the various families of LA described in the
literature are each distinct in their own right. The
methodology for the family of Fixed Structure
Stochastic Automata (FSSA) involves formulating
the Markov chain for the LA, computing its equilib-
rium probabilities, and then computing the asymp-
totic action selection probabilities. The proofs of
convergence for Variable Structure Stochastic Au-
tomata (VSSA) involve the theory of small-step
Markov processes, distance diminishing operators,
and the theory of regular functions. The proofs for
discretized LA involve the asymptotic analysis of
the Markov chain that represents the LA in the
discretized space, whence the total probability of
convergence to the various actions is evaluated.
The proof of Estimator/Pursuit algorithms con-
cerns two intertwined phenomena, i.e., the conver-
gence of the reward estimates and the convergence
of the action probabilities themselves. The proof
methodology considered in this paper utilizes the
theory of small-step Markov processes and distance
diminishing operators, but unlike the existing LA,
they do not converge to absorbing barriers but
fixed-points in the corresponding probability vec-
tor space.

5) Historically, the metric for analyzing LA has gen-
erally been ε-optimality and Absolute Expedience.
Indeed, the concept of the Lypanuov stability of
an LA solution has been rarely used with few
exceptions [9]. This is, indeed, the metric that we
have invoked.

B. Contributions of the Paper

The contributions of this paper can be summarized as
follows:

• We present an LA solution for ensuring fairness of
load distribution in the field of LB.

• We present deep theoretical results that prove the
convergence of our scheme.

• We use some of the most recent advances in the
field of LA which combines the time-separation
paradigm and the phenomenon of artificial barriers,
introduced by Yazidi and Hammer in [51] and [52]
respectively.

• We prove that the equilibrium point which the
algorithm converges to is asymptotically Lyapunov
stable. The concept of the Lypanuov stability of an
LA solution has been rarely used, except for a very
few reported results [9].

• We provide some experimental results that confirm
and justify our theoretical assertions.

C. Organization of the Paper

The paper is organized as follows. The background
and related work is first presented in Section II. In
Section III, we give an introduction to the theory of
LA which is central to this paper. Section IV includes
the details of our proposed solution, where we present
the scheme itself in Subsection IV-C, and report the
theoretical results proving its convergence to an optimal
equilibrium, in Subsection IV-D. Thereafter, in Section
V, we include the results of rigorous simulations that
confirm the theoretical results. Section VI concludes the
paper.

II. BACKGROUND AND RELATED WORK

Historically, LB and task scheduling have been two
closely-related research areas that have been widely
investigated. However, the literature that reports the use
of stochastic LA to achieve these, has been limited.

A stochastic LA model for the decentralized control
of job scheduling in distributed processing systems was
presented by [22]. The algorithm proposed by these
authors operates with absolutely no prior knowledge
about the job, but rather adapts to the changing loads
of the hosts. The aim of the proposed algorithm was to
provide load balanced jobs to a number of hosts, and to
improve the response time while achieving this.

To minimize the response time, a heuristic LB scheme
based on the concept of a stochastic LA was imple-
mented by the author of [15]. Depending on the status
of the current load distribution, a new task would be
scheduled to be executed either locally or on a remote
host. The paper employed a learning scheme with a
reward constant A of 0.25 and a penalty constant B of
0.3. Although many fine details were not reported in the
paper, the author claimed to also have examined other
influences on different numbers of automaton states, and
the behavior of the scheduler under different network
sizes.

The authors of [23] presented a framework based on
LA that is capable of addressing some of the challenges
and demands of various cloud applications. The pro-
posed framework analysis invoked various performance
metrics such as response time, parallel execution speed,
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and job priority. These metrics were then used to select
the appropriate resources, using LA.

A Cost Aware S-model Reward Epsilon-Penalty (CA-
S) method was proposed in [46]. The authors employed
a LA-based solution that sought to reduce the aver-
age cost in serving web requests with replicated web
servers, deployed in different geographical regions. To
minimize the cost, the LA made routing decisions for
each incoming request by assessing response times and
energy prices at the different server locations through
action selection probabilities. The paper reported very
promising experimental results by using the proposed
CA-S method. These results demonstrated that the total
average cost of serving web responses could be reduced
up to 33% when compared to the minimum cost flow
dynamic server selection algorithm, and up to 49.2%
compared to the traditional Round-Robin method.

The problem of optimal priority assignment among
two streams of jobs with unknown characteristics, each
with a random service time and a random arrival time,
was addressed in the doctoral thesis of Meybodi [20]. A
threshold was computed which was the average service
time taken over both streams, and the response time of a
served dispatched request from the chosen stream by the
LA was compared to that threshold for the inferred LA
response. This idea of using response time-based thresh-
old in a queuing system as a mechanism for inferring
the response of LA to constitute the rewards/penalties
appeared also in [3]. Similarly, in our current work we
resort to a dynamic threshold computed using a type
of moving average, in contrast to a stationary type of
estimator found in the seminal work of Meybodi [20]
and Meybodi and Lakshmivarhan [21]. Apart from the
queuing system model, our paper is different from the
work in [20]. Indeed, the LA proposed by Meybodi
was absorbing because the optimal solution was to be
exclusively chosen from one of the priority streams.
Furthermore, the dynamics of the reward probabili-
ties addressed here are much more complicated in our
problem setting. An alternative solution to the priority
assignment problem based on FSSA was proposed by
Srikantakumar [14]. The problem was revisited recently
using the theory of Petri Nets and LA in [43], [44]. But
as our model and solution are distinct, in the interest
of brevity, we shall not expand on these papers any
further. Finally, we emphasize that although LA has been
applied in few instances in the litterature for solving load
balancing problems, we are not aware of any theoretical
treatments of the problems. The theoretical analysis is
for this type of LA applications is intrinsically hard
due the dynamic nature of the environment as the
reward dynamics are coupled with the action changes.
LA algorithms in this direction are rather presented as
heuristics with no theoretical guarantees. The only may
be attempt to cast an LA-based load balancing algorithm
into a theoretical framework was done in a series of work
by the same research group [31], [47] where the load
balancing problem is mapped into a coordinated game.

III. STOCHASTIC LEARNING AUTOMATA

We shall now proceed to present a brief overview of
LA [1], which is the toolkit we will use to solve the
problem.

In psychology, learning is characterized as the act
of modifying one’s behavior as a result of acquiring
knowledge from past experience. In the field of automata
theory, an automaton can be described as a self-operating
machine or control mechanism consisting of a set of
states, a set of outputs or actions, an input, a function
that maps the current state and input to the next state,
and a function that maps a current state (and input) to
the current output.

The term Learning Automata (LA) was first presented
in the survey paper by Narendra and Thathachar (cited
in [1]). LA are well suited for systems with noisy
and incomplete information about the Environment in
which they function [1], [16], [26], [27], [29], [34]. The
Environment is generally stochastic and the LA lacks
prior knowledge as to which action is the optimal one.
Stochastic LA, which are probabilistic finite state ma-
chines, attempt to solve this problem by choosing an
initial action randomly, and then updating the action
probabilities based on the response received. The action
chosen is dependent on the action probability distribu-
tion vector, which, in turn, is updated based on the
reward/penalty input that the LA receives from the
random Environment. This process is repeated until the
optimal action is, hopefully, achieved.

The research on LA is comprehensive and over the
past decades, several classes have been proposed. LA are
mainly categorized as being Fixed Structure Stochastic
Automata (FSSA) or Variable Structure Stochastic Au-
tomata (VSSA). In FSSA, the mapping between transition
and output functions is time invariant. Initial research
into LA was mainly focused on FSSA. Tsetlin, Krylov,
and Krinsky [42] demonstrated several models of this
class of automata. Gradually, research into LA advanced
towards VSSA. LA schemes in this category possess tran-
sition and output functions which evolve as the learning
process proceeds [30]. In VSSA, the state transitions or
the action probabilities are updated at every time step.
This class of automata was introduced by Varshavskii
and Vorontsova in the early 1960’s [45].

LA can further be classified as either ergodic or en-
dowed with absorbing barriers based on their Marko-
vian properties. In an ergodic LA system, the final steady
state is independent of the initial state. As opposed to
this, for LA with absorbing barriers, the steady state
depends on the initial state and once the LA has con-
verged, it will be locked into a so-called absorbing
barrier. Furthermore, while ergodic VSSA are suitable for
non-stationary environments, absorbing barrier VSSA
are preferred in stationary environments. As opposed to
these, a unique property of the work in [53] is that the
action with the highest probability may not be the same
one being chosen most frequently.
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Stochastic LA had been utilized in many applications
over the years. Recent applications of LA include re-
source usage prediction algorithm for cloud comput-
ing environment [35], channel selection in cognitive
radio/dynamic spectrum access for WiMAX networks
[24], distributed network formation [6], solutions to the
single elevator problem [10], efficient decision making
mechanism for stochastic nonlinear resource allocation
[52], dynamic cost-aware routing of web requests [46],
learning periodic spatio-temporal patterns [50], content
placement in cooperative caching [49], resource selection
in computational grids [8], determining proper subset
size in high-dimensional spaces [38] and image segmen-
tation [37], to mention a few.

IV. LA LOAD BALANCING MODEL

In this section we present our LA model for LB, as well
as the theoretical proofs for the solution’s convergence.

A. Model
We consider a scenario where we have a set of r

servers. Each server is modelled as an M/M/1 queue,
which means that arrivals are modelled by a Poisson
process with some intensity λi, and the job service times
have an exponential distribution with a service rate µi.

In our model, we assume that an LA is responsible
for dispatching the request. The LA sends the request
to server i with probability pi(t). We will later define
the update equations for the LA. However, for the sake
of simplicity, we shall give first the overall idea for the
different updates involved here at the two time scale,
and subsequently, in the next section, we shall delve into
the LA’s detailed update equations.

By virtue of the M/M/1 queue, the mean-response
time at server i is:

MRTi(t) =
1

µi − λi(t)
, (1)

where λi(t) is the average arrival rate at server i. If the
{pi} are constant or vary slowly over time, then λi(t)
can be approximated using λi(t) = pi(t)λ, which is a
consequence of the M/M/1 queue model [17].

Let si(t) be the instantaneous response time of server i
at time t. In order to estimate the average response time
of each server (i.e., ŝi ), we merely use the exponential
moving average approach with learning parameter α.
The parameter α is the learning parameter of the scheme,
and is similar to the parameter used in any learning
algorithm. It is a hyper-parameter determined by a “rule
of thumb” or trial-and-error for the particular setting. A
larger value of α implies a larger step away from the
current value, and vice versa. This, in turn, illustrates
the speed-accuracy dilemma of the estimate.

Let ŝi(t) be the estimate of the average response time
of server i.

Once the action i is polled, i.e., the request is dis-
patched to server i, the estimate ŝi(t+ 1) of the average

is immediately updated using an adaptive estimator,
namely, the exponential moving average given by:

ŝi(t+ 1) = ŝi(t) + α(si(t)− ŝi(t)). (2)

The average response time for the other severs (ac-
tions) are left unchanged. In other words:

ŝj(t+ 1) = ŝj(t) for j 6= i, j ∈ [1, n]. (3)

We now consider how the corresponding rewards and
penalties are constructed. If action i is chosen, the reward
or penalty is constructed as below using some type of
dynamic threshold:
• Reward if ŝi ≤ 1

r

∑r
k=1 ŝk

• Penalty if ŝi > 1
r

∑r
k=1 ŝk.

With these definitions as a back-drop, we are able to
formally present the steps of our algorithm.

B. Initialization Criteria
Without any knowledge of ŝi, which is estimated using

an exponential moving average as per Eq. (2), we have
opted to initialize ŝi to a random low value of response
time close to zero. As in any exponential moving average
scheme, the value what we use for this initialization is
not critical. In our experiments, we assigned this value as
ŝi(0) for all the r servers. This is in line with the spirit of
what is done in LA, where the initialization is achieved
by values that are equal. In fact, without the accurate
knowledge of initial LA’s action probability, the initial
probability for each action i is usually set to (pi(0) = 1

r ).
In our case, we have also verified experimentally that
the initial value of ŝi does not have any effect on the
long term convergence behavior of the scheme which is
an observation consistent with the behavior of the expo-
nential moving average schemes, which are ergodic by
nature. However, in real life settings, the experimenter
might assign an initial value of ŝi that is more informed
based on an a priori knowledge of server i. In this case,
one might also alter the initial LA probabilities so as to
move away from the uniform distribution, i.e., pi(0) = 1

r .

C. Details of our Solution: Two-time Scale LA with Barriers
The first step in our solution process is to see how

we can transform the Markov process given by the
probability space from being absorbing, into being er-
godic. The reader who is aware of the field of Markov
Chains will immediately recognize that this is, actually,
the converse of what the literature [5], [39]2 reports when
an ergodic chain in rendered artificially absorbing, as
in the families of Artificially Absorbing Discretized LA
such as the ADLRP and ADLIP [30]. Rather than use
the actual limits of the probability space to be zero and

2The projection method is a classical method in constrained op-
timization [5] that ensures that the solution is mapped back in the
feasible search space whenever it falls outside it. The relative reward
LA devised [39] adopts artificial barriers for more than 2 actions using
the projection method.
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unity, we work with the constraint that no probability
value can take on a value below a pre-specified lower
threshold of pmin, or a value above a pre-specified upper
threshold of pmax [51]. The action-choosing probability
values, which traditionally move proportionally towards
zero and unity for the LRI scheme, for example, are now
made to move towards the respective values of pmin
and pmax respectively. Interestingly enough, this minor
modification renders the scheme to be ergodic, making
the analysis also to be correspondingly distinct from that
of the LRI and similar schemes.

To achieve this, we enforce a minimal value pmin,
where 0 < pmin < 1 for each selection probability xi,
where 1 ≤ i ≤ r and r is the number of actions. As a
result, the maximum value any selection probability pi,
where 1 ≤ i ≤ r, can achieve is pmax = 1 − (r − 1)pmin.
This happens when the other r − 1 actions take their
minimum value pmin, while the action with the highest
probability takes the value pmax. Consequently, pi, for
1 ≤ i ≤ r, will take values in the interval [pmin, pmax].

To proceed with the formulation, let α(t) be the index
of the chosen action at time instant t. Then, the value
of pi(t) is updated as per the following simple rule (the
rules for other values of pj(t), j 6= i, are analogous):

pi(t+ 1) ← pi(t) + θ(pmax − pi(t))
when α(t) = i and vi = 1

pi(t+ 1) ← pi(t) + θ(pmin − pi(t))
when α(t) = j, j 6= i and vi = 1,

where θ is a user-defined parameter 0 < θ < 1, typically
close to zero. Further, vi is a reward function indicator
defined by:

• vi = 1, reward, if the instantaneous response of the
chosen server is under the running moving average
of the mean response time si ≤ 1

r

∑r
k=1 ŝk

• vi = 0, penalty, if the instantaneous response of the
chosen server exceeds the running moving average
of the mean response time, ŝi > 1

r

∑r
k=1 ŝk.

In our algorithm, we avoid using a classical projec-
tion method to map the solution to our feasible space,
meaning all components of the probability vector are
within the interval [pmin, pmax]. Projection methods were
used in the field of LA for enforcing artificial barriers. A
prominent example is due to Simha and Kurose [39] who
tackle a number actions r > 2, which is a more challeng-
ing scenario than the 2 actions scenario. However, our
approach does not involve projection methods as the up-
date equations will always ensure that the probabilities
will be in our feasible space. Furthermore, in contrast
to projection methods, our LA update methodology
naturally ensures that the probability vector will always
sum to 1 in a manner than can be seen as a generalization
of the Linear Reward Inaction LA. The classical Linear
Reward Inaction LA can be seen as an instance of our
algorithm with pmax = 1.

Let the average of all the instantaneous response times
of all the nodes at time t be given by ŝ(t) defined by:

ŝ(t) =
1

r

r∑
k=1

ŝk(t). (4)

We also introduce the following notation:

Di(t) = Prob(si(t) ≤ ŝ(t)), (5)

where ŝ(t) is given by Eq.(4).

A consequence of these assignments is a scheme for-
malized by the pseudo-code given in Algorithm 1. The
algorithm proceeds as follows in a loop. Each time a
request is received, the LA probability vector is used to
choose a server by polling an action, which corresponds
here to a server among the r severs. The server choice
corresponds to step 1 in the pseudo-code given in Al-
gorithm 1. Once the server is chosen, the instantaneous
response time of the chosen server for that requested is
observed. Then, in step 2, based on this observation we
update the average response time of the chosen server of
the pseudo-code using exponential moving average. The
estimates for the other ”unchosen” servers will be kept
unchanged. In step 3, the chosen action receives a reward
or penalty by comparing the estimated response time of
the chosen server to a dynamic threshold: the mean of
the individual average response times of the r servers.
In step 4, we operate with the same rules of the classical
Linear Reward-Inaction LA but with the exception of
accommodating artificial barriers. If the chosen action
resulted in a reward, its probability is increased, while
the probabilities the rest of the r−1 actions are decreased.
However, if the chosen action results into a penalty, the
probability vector is kept unchanged as per the Linear
Reward-Inaction LA philosophy.

With these definitions in place, we are in a position
to analyze the scheme and give the theoretical results.
This is done in the next section. We show that as pi(t)
increases this quantity, Prob(si(t) > ŝ(t)), decreases. This
is an extremely interesting observation because the latter
quantity is, quite simply, the reward probability when
choosing action i. This is referred to as the “stochastic
diminishing return” property, which, informally, means
that the more an action is chosen, the less its reward will
be. Thereafter, we will prove the scheme’s convergence.



7

Algorithm 1 The Two-Time Scale based Learning Au-
tomata Solution

Loop
1. Poll an action at time instant t according to the
probability vector [p1, p2, . . . , pr].
2. Updating the response time estimates.
• Update the response time of the chosen action:

ŝi(t+ 1) = ŝi(t) + α(si(t)− ŝi(t))

• The response estimates for the other actions are
kept unchanged, and so,

ŝj(t+ 1) = ŝj(t) for j 6= i, j ∈ [1, r]

3. Environment response: Reward/Penalty.
• vi = 1 (Reward) if ŝi ≤ 1

r

∑r
k=1 ŝk;

• Otherwise, vi = 0 (Penalty).
4. Let α(t) be the index of the chosen action at time
instant t. The value of pi(t) is updated as per the
following simple rule below, (where the update rules
for other values of pj(t), j 6= i, are similar.):

pi(t+ 1) ← pi(t) + θ(pmax − pi(t))
when α(t) = i and vi = 1

pi(t+ 1) ← pi(t) + θ(pmin − pi(t))
when α(t) = j, j 6= i and vi = 1.

D. Theoretical analysis

In this section we shall investigate and analyze the
asymptotic behavior of our LA based two-time scale sep-
aration solution with artificial barriers. We shall analyze
our scheme in terms of both its convergence and stability.

Theorem 1. For a sufficiently small α and for θ << α, ŝi(t)
can be approximated by MRTi(pi(t)) = 1

µi−λipi(t) for all
1 ≤ i ≤ r.

Proof. We will prove that for 1 ≤ i ≤ r , ŝi(t) converges
to s̄i(pi(t)) where s̄i denotes the MRTi.

The proof is based on the theory of stochastic approxi-
mation [2]. Since θ is much smaller that α, the pi’s evolve
at a slower time scale compared to the ŝi’s, which, in
turn, guarantees the two-time scale separation. Using the
notation that α(t) = i means that action i is chosen at
time t, we can write:

ŝi(t+M) = ŝi(t)+α

M−1∑
k=0

I{α(t+k+1)=i}(si(t+k)−ŝi(t+k))

As per the theory of small step processes, we can
assume that whenever α is small enough, the vector
[ŝ1(t), ŝ2(t), ...., ŝr(t)] remains almost unchanged in the
discrete interval {t, t+ 1, . . . , t+M}. Thus, we can write
the following approximate equations for 1 ≤ i ≤ r:

ŝi(t+M) ≈ ŝi(t) +Mα(Ri(t,M)−Qi(t,M)ŝi(t)).(6)

For i ∈ [1, r], when the values of the estimates
{ŝ1(.), ŝ2(.), . . . , ŝr(.)} are respectively considered fixed
at {ŝ1(t), ŝ2(t), . . . , ŝr(t)}, and M is large, we now ap-
proximate the quantities:

Ri(t,M) =

∑M−1
k=0 I{α(t+k+1)=i}si(t+ k)

M
,

as well as

Qi(t,M) =

∑M−1
k=0 I{α(t+k+1)=i}

M
.

The probability vector p1(.), p2(.), . . . , pr(.), too, can be
regarded to be essentially constant in the interval {t, t+
1, . . . , t+M}, because we have affirmed that pi evolves
at slower time scale compared to ŝi. Note that the fact
that θ is much smaller than α permits the separation in
this time scale.

Now, assuming that M is large enough such that the
law of large numbers is in effect, the average

Qi(t,M) =
∑M−1
k=0 I{α(t+k+1)=i}

M ,

which is the fraction of time the action i was chosen in
the interval [t, t+M ], converges to pi(t).

By reckoning the actions’ probabilities to be fixed,
the response time processes si(.), can converge to a
stationary distribution, with the mean being denoted by
s̄i(pi(t)).

Further, the quantities:

Ri(t,M) =
∑M−1
k=0 I{α(t+k+1)=i}si(t+k)

M

can be approximated by pi(t)s̄i(pi(t)).
Employing the approximations as described above,

we notice from Eq. (6), that the evolution of the vec-
tor [ŝ1(.), ŝ2(.), . . . , ŝr(.)] reduces to the following ODE
system when α is sufficiently small:

ŝi(t)

dt
= pi(t).(s̄i(pi(t))− ŝi(t)). (7)

One observes that Eq. (7), reduces to having
the running response time estimates, given by
[ŝ1(.), ŝ2(.), . . . , ŝr(.)], converging to a steady state
vector [s̄1(p1(t)), s̄2(p2(t)), s̄r(pr(t))], whenever α tends
to 0.

We now invoke the properties of the M/M/1 queue
model, aluded to above. As per the properties of the
M/M/1 queue model, we know that:

s̄i(pi(t)) = MRTi(pi(t)) =
1

µi − λipi(t)
. (8)

This, indeed, concludes the proof.

In the next theorem, we shall prove the diminishing
property of our designed feedback mechanism. In fact,
our reward is defined by the fact that the instantaneous
response time observed when we choose a server is
smaller than ŝ(t), which is the arithmetic mean of ŝi(t)
for 1 ≤ i ≤ n, where ŝi(t) is the running estimate (i.e.,
the exponential moving average) of the response time at
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server i. Using the notation of Eq. (5), we will show that
the reward probability decreases as we increase pi.

Theorem 2. Di(t) is monotonically strictly decreasing as a
function of pi.

Proof. We consider the reward probability Di(t) =
Prob(si(t) ≤ ŝ(t)) where ŝ(t) is given by Eq.(4).

As a consequence of the previous result from Theorem
1, if the ŝi’s evolve at a slower time scale than the pi’s, we
can approximate ŝ(t) by the sum of the mean response
times of each server, i.e., sum of MRTi(t), 1 ≤ i ≤ r. In
other words ŝ(t) ≈

∑r
k=i s̄i(pi(t))

r =
∑r
k=iMRTi(pi(t))

r .
The probability that the response time of server i, si(t)

exceeds ŝ(t) is [36]:

Di(t) = Prob(si(t) ≤ ŝ(t)) = 1− exp(−ŝ(t)(µi − λi(t))).
(9)

We need to show that as pi(t) increases, this quantity
decreases. To achieve this, consider dDi(t)

dpi
given by:

dDi(t)
dpi

= δDi(t)
δpi

+
∑r
j=1
j 6=i

δDi(t)
δpj

δpj
δpj

.

In order to apply the chain rule for the derivation, we
resort to a subtle mathematical trick similar to the one
used in [18], [48]. We define arbitrary constants bj ≥ 0
for j 6= i, whence, following a derivation similar to the
one in [18], [48], we have:

p1 = b1pi, p2 = b2pi, . . . pr = brpi, with bj ≥ 0 for j 6= i.

Consequently,

p1 =
b1(1− pi)∑

m bm
(10)

. . . = . . .

pj =
bj(1− pi)∑

m bm
. . . = . . .

pr =
br(1− pi)∑

m bm

Now, since
∑
m pm = 1, we can obtain:

dpj
dpi

=
−bj∑
m6=j bm

< 0 for all j 6= i.
Considering the expression for Di(t) we see that:

Di(t) = 1− exp(−ŝ(t)(µi − λi(t))

= 1− exp(−µi − λi(t)
r

∑
k

1

µk − λk(t)
)

= 1− exp(−1

r
−

r∑
k=1
k 6=i

1

r(µk − λpk(t))
).

This expression is independent of pi, which implies that
δDi(t)
δpi

= 0 . Consequently, δDi(t)
δpi

reduces to dDi(t)
dpi

=∑r
j=1
j 6=i

δDi
δpj

δpj
δpi

.

Algebraic simplification leads to:
δDi
δpj

= λ
r(µi−λpi(t))2 exp(−ŝ(t)(µi − λi(t))).

Furthermore, since dpj
dpi

< 0, δDi(t)δpi
=

∑r
j=1
j 6=i

δDi
δpj

dpj
dpi

< 0,

since all the terms in the above sum are strictly negative.

Hence the theorem!

Theorem 3. For a sufficiently small pmin approaching 0,
the system of update equations characterizing the LA has a
unique fixed point equilibrium.

Proof.

E[pi(t+ 1)− pi(t)|p(t)] = piDi(pi)[θ(1− pi)]

+

r∑
j=1
j 6=i

pjDj(pj).[θ(pmin − pi)].

Then:

E[pi(t+ 1)− pi(t)|p(t) = p] = (11)
piDi(pi).[θ(1− pmax + 1− pi)]

+

r∑
j=1
j 6=i

pjDj(pj)[θ(pmin − pi)]

= piDi(pi).[θ(1− pmax +

r∑
j=1
j 6=i

pj)]

+

r∑
j=1
j 6=i

pjDj(pj)[θ(pmin − pi)].

(12)

By taking into account the fact that 1 − pmax = (r −
1)pmin, Eq. (12) can be simplified (after some algebraic
manipulations) and written as:

E[pi(t+ 1)− pi(t)|p(t) = p] =

θ

r∑
j=1
j 6=i

pipj(Di(pi)−Dj(pj))

+ θpmin(

r∑
j=1
j 6=i

pjDj(pj))

− θ(r − 1)pminpiDi(pi)

= θ

r∑
j=1
j 6=i

pipj(Di(pi)−Dj(pj))

+ θpmin

r∑
j=1
j 6=i

(pjDj(pj)− piDi(pi))

≈ θwi(p),

where wi(p) is defined by wi(p) =
∑r
j=1
j 6=i

pipj(Di(pi) −

Dj(pj)).
For small values of pmin, i.e., as pmin → 0, we can

approximate E[pi(t+ 1)− pi(t)|p(t) = p] by:

E[pi(t+ 1)− pi(t)|p(t) = p] = θwi(p). (13)
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We can thus write:

dpi(t+ 1)

dt
= θwi(p). (14)

Using the above result, we shall now proceed with the
details of the proof.

a) Existence and Uniqueness:: We will show that
w(p) = (w1(p), w2(p), ..., wr(p)) has a unique zero in the
neighborhood of p∗ = (p∗1, ..., p

∗
r), which means that we

have a fixed point.
The above assertions imply the system of r equalities:

∑r
j=1
j 6=1

p1pj(D1(p1)−Dj(pj)) = 0∑r
j=1
j 6=2

p2pj(D2(p2)−Dj(pj)) = 0

...∑r
j=1
j 6=r

pnpj(Dr(pr)−Dj(pj)) = 0.

⇔



p1

∑r
j=1
j 6=2

pj(D1(p1)−Dj(pj)) = 0

p2

∑r
j=1
j 6=2

pj(D2(p2)−Dj(pj)) = 0

...
pn

∑r
j=1
j 6=r

pj(Dr(pr)−Dj(pj)) = 0.

The reader should observe that a crucial concept in our
approach is that we are using the barrier pmin, which
ensures that p1 6= 0, p2 6= 0...pr 6= 0 . We can thus
confidently divide the first equation by p1, the second
equation by p2 and so on, yielding:

⇔



∑r
j=1
j 6=1

pj(D1(p1)−Dj(pj)) = 0

...∑r
j=1
j 6=2

pj(D2(p2)−Dj(pj)) = 0

...∑r
j=1
j 6=r

pj(Dr(pr)−Dj(pj)) = 0.

After invoking some algebraic manipulations, we ob-
tain that:

⇔



D1(p1) =
∑r
j=1 pjDj(pj)

...
D2(p2) =

∑r
j=1 pjDj(pj)

...
Dr(pr) =

∑r
j=1 pjDj(pj),

which guarantees that D1(p1) = D2(p2) = . . . =
Dr(pr).

Now we will show that the solution is unique.
b) Uniqueness:: The uniqueness of p∗ is proven by

contradiction. Suppose there exists q∗ = (q∗1 , q
∗
2 , ..., q

∗
n)

that is a zero of w(q) such that q∗ 6= p∗.

Without loss of generality since p∗ and q∗ are two
probability vectors such that p∗ 6= q∗, we can confidently
affirm that they have at least two components i and
j such that p∗i > q∗i and p∗j < q∗j . Observe that the
result is general, and that it applies for any two distinct
probability vectors. Intuitively, this means that if we
increase any one component of a probability vector, we
should decrease another component so as to ensure that
the sum of the components is unity.

Suppose now that p∗i > q∗i . Then, by invoking the
monotonicity of the function Di(.), we obtain that
Di(p

∗
i ) < Di(q

∗
i ). On the other hand, the condition

p∗j < q∗j implies that Dj(p
∗
j ) > Dj(q

∗
j ), where this is

obtained by virtue of the monotonicity of Dj(.). But
since p∗ and q∗ are equilibrium points, we know that
Di(p

∗
i ) = Dj(p

∗
j ) and that Di(q

∗
i ) = Dj(q

∗
j ). This forces

a contradiction since it is impossible to simultaneously
maintain that : Di(p

∗
i ) < Di(q

∗
i ) which is equivalent to

Dj(p
∗
j ) < Dj(q

∗
j ) and Dj(p

∗
j ) > Dj(q

∗
j ).

Therefore p∗ is unique.

Theorem 4. The equilibrium point to which the algorithm
converges, is asymptotically Lyapunov stable.

Proof. Consider the following Lyapunov function:

V (p(t)) =

r∑
k=i

∫ pt

0

Dk(z)dz.

Consider now its derivative:

dV (p(t))

dt
=

r∑
i=1

dV (p(t))

dpi

dpi
dt
. (15)

It is easy to note that by virtue of the integral deriva-
tion, dV (p(t))

dpi
= Di(t). Furthermore, according to Eq. (14),

dpi
dt = θwi(p).

Thus
dV (p(t))

dt
= θ

r∑
k=1

Dk(t)wk(p), (16)

where wi(p) is defined by wi(p) =
∑r
j=1
j 6=i

pipj(Di(pi) −

Dj(pj)). Therefore,

dV (p(t))

dt
= θ

r∑
i=1

Di

r∑
j=1

pipj(Di −Dj)

= θ

r∑
i=1

r∑
j=1

pipj(D
2
i −DiDj)

= −θ
2

r∑
i=1

r∑
j=1

pipj(Di −Dj)
2

Therefore dV (p(t))
dt ≤ 0.

Observe though that the Lyapunov function must be
zero at its equilibrium point, and thus: dV (p(t))

dt = 0. This,
in turn, means that for every i, j, we have p∗i p

∗
j (D

∗
i −

D∗j )2 = 0. However, since p∗i > pmin and p∗j > pmin, the
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equality D∗i (p∗i ) − D∗j (p∗j ) = 0 must necessarily be true,
and consequently for all i, j

D∗i (p∗i ) = D∗j (p∗j ) = 0.

The result follows, since by Lyapunov theorem, we
have shown that p∗ is an asymptotically Lyapunov stable
equilibrium point of the scheme.

E. Summary outlining of the theoretical results
In the first theorem, Theorem 1, we show that by

imposing a two-time scale separation where we slowly
update the LA probabilities, while we update the re-
sponse times in faster scale we are able to approximate
the estimated response times at each server. For any
probability vector that is slowly varying, the response
time estimates converge to a steady state depending on
the probability vector given by Eq. (8). Once we have
characterized the response times, we can analyze the
behavior of the reward probabilities of our LA. This
is treated in Theorem 2 where we show an intuitive
property which states that the reward probability of an
action is monotonically strictly decreasing as a function
of its respective action probability. The next theorem:
Theorem 3 characterizes the fixed point of the LA update
equations. The artificial barriers as well as the monoticity
of the reward functions yield a unique fixed point.
Interestingly, the fixed point achieves fairness as the
reward probabilities of the action are ”equalized”, thus,
the LA will be indifferent between the choices of the
servers at this point. The last theorem, Theorem 4 shows
the algorithm converges to is asymptotically Lyapunov
stable by defining an appropriate Lyapunov function.

V. EXPERIMENTAL VERIFICATION

In this section, we will briefly confirm that the theo-
retical results that were derived in the previous section,
hold true. To achieve this, we conducted two types of
experiments. The intent of the first set of experiments
was to prove the claims for a small-scale system, namely,
for one with only three servers. The second, and more
extensive testing, involved a larger pool of servers, i.e.,
15. Clearly, such a setting is well in-line with real-life
load balancing problems. Furthermore, we tested both
of the scenarios on two types of environments, namely,
static and dynamic. For the dynamic case, we report
experiments where we either changed the serving rates
of the services or the arrival rate of the requests.

A. Experiments with three servers
1) Static environment with 3 servers: In this first set of

experiments, we simulated three servers characterized
by the parameters µ1 = 50, µ2 = 33.33 and µ3 = 25
respectively. We assumed that the total arrival rate was
λ1 + λ2 + λ3 = 50. Further, we used pmin = 0.01. For the
time scale separation, we used two values θ = 0.001 for

Fig. 1. Evolution of the action selection probabilities in a static
environment.

Fig. 2. Evolution of the response times of the different servers in a
static environment.

updating the LA action probabilities, and α = 0.01 for
the estimation of the response times. The intention of our
experiments was to observe the action probabilities and
the corresponding response times, when the protocol
was tested for 9,000 iterations, for an ensemble of 1000
experiments.

The evolution of the probability and response time are
plotted in Figure 1 and Figure 2 respectively. Interest-
ingly, from Figure 2, we observed that the response time
was equalized on the different servers. The results are
quite amazing because even though the corresponding
action probabilities converged to different values, the
composite effect of the convergence was to make the
overall response times to be almost equal.

2) Dynamic serving rates with 3 servers: To investigate
the performance of the scheme for time-varying systems,
we also ran another experiment where we dynamically
shuffled the serving rates of the three servers every 5,000
iterations. In this case, the experiments were run for
15,000 iterations and the number of experiments (over
which the ensemble average was obtained) was 1000.
We again observed that the system stabilized after some
time and that it was again capable of equalizing the
response times. Figure 3 and Figure 4 respectively depict
the evolution of the action probabilities of each server,
as well as the evolution of the estimated response times.
Clearly, the results demonstrated that even though the
corresponding action probabilities converged to com-
pletely different values, the overall effect of the scheme’s
convergence was to make the overall response times to
be almost equal.
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Fig. 3. Evolution of the action selection probabilities in an environment
with dynamic serving rates.

Fig. 4. Evolution of the response times of the different servers in an
environment with dynamic serving rates.

The power of the scheme to balance the loads in an
ε-optimal manner is obvious!

3) Dynamic arrival rate with 3 servers: In real-life sce-
narios, it is more common that the arrival rate of the traf-
fic changes over time, while the serving rate is usually
stable over time. This is because the latter is an intrinsic
characteristic of the server, and does not, usually, change
due to extrinsic factors related to the environment3. In
our simulations, we adjusted the arrival rate every 6,000
iterations. We started with a total arrival rate of 50,
and after the first switch this number was increased to
60. It was then lowered to 54 after the second switch.
Figure 5 and Figure 6 report respectively the evolution of
the probabilities and the evolution of the response time
estimates for this dynamic environment characterized
by varying arrival rates. One should observe that our
scheme is able to equalize the response times of the
servers after around 3,000 iterations.

3The serving rate of a server might degrade slightly over time due to
hardware issues. It is also possible to upgrade the servers for improved
performance. However, such changes are beyond the scope of this
work and are still rare within the life-time of a server.

Fig. 5. Evolution of the action selection probabilities in a environment
with varying arrival rates and with 3 servers.

Fig. 6. Evolution of the response times of the different servers in a
environment with varying arrival rate with 3 servers.

B. Larger Scale Experiments
1) Static environment with 15 servers: In the second set

of experiments, we increased the number of servers to 15
as per the following parameters: 5 servers with µ = 50,
5 servers with µ = 60 and 5 servers with µ = 80. We
assumed that the total arrival rate was λ = 350. Figure
7 and Figure 8 illustrate respectively the evolution of
the probabilities and the evolution of the response time
estimates for a static environment. When it comes to the
parameters of the algorithm, we use the same tuning
parameters as in the previous experiment involving 3
servers, i.e., θ = 0.001 and α = 0.01. Interestingly, even
though the environment was intrinsically more challeng-
ing than the case of having three servers, we observed
that our scheme was able to stabilize the response times
of the 15 servers after around 5,000 iterations.

Fig. 7. Evolution of the action selection probabilities in a static
environment with 15 servers.

2) Dynamic serving rates with 15 servers: In order to
test the adaptivity of our scheme in a large scale set-
tings, we executed a “switch” in the environment by
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Fig. 8. Evolution of the response times of the different servers in a
static environment with 15 servers.

modifying the serving rates every 30,000 iterations. The
switch was a right-circular shift of a single position of
the serving rate vector. For example, before the first
switch, the serving rate vector of the 15 servers was
(µ1 =50, µ2 =60, µ3 =80, µ4 =50,µ5 =60, µ6 =80, . . .,
µ13 =50,µ14 =60,µ15 =80) respectively, and after the first
switch, the serving rates became (60, 80,50,. . ., 60, 80, 50).
Figure 9 and Figure 10 respectively depict the evolution
of the action probabilities of each server, as well as the
evolution of the estimated response times.

However, with such a large number of servers, it is
clear that we could run into stability issues of the queues
whenever the arrival rate at a given server became
higher than its serving rate as a consequence of the shift
in the serving rates. Formally, this instability can be seen
to be a consequence of violating the condition µi−λi > 0
where λi = λpi. For instance, this happens after the
first switch, as we can easily observe. Consider, in this
case, the third server. Before the switch, p3 stabilized
to 0.152 while the processing rate was as high as 80.
Abruptly, however, after the switch in the serving rates,
the same server, i.e., 3, obtained a new processing rate 50
which was much lower than before while p3 was 0.152.
This, clearly, led to a queue instability, since in this case
µ3−λ3 = 50−350×0.152 = −3.2 < 0, because the server
was receiving more traffic than it could serve, which it
clearly, could not handle.

Fig. 9. Evolution of the action selection probabilities in a dynamic
environment with dynamic serving rates and with 15 servers.

Fig. 10. Evolution of the response times of the different servers in a
dynamic varying environment with dynamic serving rates and with
15 servers.

3) Dynamic arrival rate with 15 servers: In order to test
the adaptivity of our scheme when facing changes in the
arrival rate, we executed an environment switch every
30,000 iterations. We started with an arrival rate of 350,
and after the first switch we dropped it to 280, and then
we invoked a further drop to 252.

Figure 11 and Figure 12 respectively depict the evolu-
tion of the action probabilities of each server, as well as
the evolution of the estimated response times.

Fig. 11. Evolution of the action selection probabilities in a dynamic
environment with varying arrival rate and with 15 servers.

Fig. 12. Evolution of the response times of the different servers in a
dynamic environment with varying arrival rate and with 15 servers.

C. Comparison results in terms of fairness
In this paper, we claimed that our algorithm is fair

in the sense that the response times from the different
servers are equalized, and thus a client will experience
in average the same QoS measured in terms of average
response time independently of the chosen server. It
is not out place to compare the presented algorithm
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to other load balancing algorithms in the literature in
terms of fairness. To this end, we resort to 3 commonly
deployed load balancing algorithms: Round Robin (RR),
Weighted Round Robin (WRR), Power of 2 choices (Po2)
algorithm [25]. When it to comes to WRR, each server’s
weight is proportional to the service rate of the server.
The fairness will be measured utilizing the Jain’s fairness
index [4], using the formula:

JFI =
(
∑r
i=1 ŝi(t))

2

r
∑r
i=1 ŝi(t)

2
(17)

If the estimated response times of the different servers
are equalized, the JFI will be equal to unity, its max
value. The JFI by definition ranges between zero and
one. In Figure 13, we report the ensemble average over
1000 experiments of the fairness index (JFI) for our LA
algorithm against the aforementioned comparison algo-
rithm for the case of 3 servers. The environment is static
and the settings of the environment are the same settings
as in Section V-A1. From Figure 13 we see that our LA
algorithm achieves the highest JFI followed by the WRR.
Please note that the WRR operates with extra knowledge
than the LA algorithm as it assumes full knowledge of
the servers serving rates to define its weights. Thus, we
state that the LA algorithm is a superior solution in the
sense that its achieves almost optimal JFI value, around
unity, with little information, meaning no knowledge of
the serving rates of the servers. Similarly, we conduct
an experiment with 15 servers using the same settings
as in Section V-B1. Figure 14 illustrates the behavior of
our LA algorithms versus the state-of-the-art comparison
algorithms. We observe similar remarks to those of the
case of 3 servers reported in Figure 13. In fact, the LA
algorithms is the most superior algorithm in terms of
JFI followed by WRR. However, the Po2 achieves the
lowest performance which was not the case when we
used 3 servers (namely Figure 13). The main reason is
that, as the number of servers increases, the Po2 will by
definition select among two random servers among 15
servers, which gives it a limited view of the environment
composed of a high number of servers, in this case 15,
and consequently leads to poor performance.

Fig. 13. Fairness comparison of the different load balancing algorithms
in a static environment with varying arrival rate and with 3 servers.

Fig. 14. Fairness comparison of the different load balancing algorithms
in a static environment with varying arrival rate and with 15 servers.

VI. CONCLUSION

With the proliferation of network-based services, and
the increasing popularity of the cloud, approaches that
allow fair Load Balancing (LB) are becoming more im-
portant than before. Cloud computing is characterized
by the volatility of resources, and the variability that
makes static LB approaches inefficient. In this paper, we
presented a dynamic LB approach that aspires to achieve
“almost optimal” fairness between different servers in
terms of a QoS-based metric. We have used the theory of
Learning Automata (LA) to deal with the problem, and
have designed a sophisticated LA which combined the
time-separation paradigm and the concept of “artificial”
ergodic (i.e., non-absorbing) barriers, which was recently
introduced by Yazidi and Hammer in [51] and [52]
respectively. In contrast to classical LA, the Environment
considered was modeled to be non-stationary, and the
reward probabilities were shown to be characterized by
a law of diminishing returns.

As a future research endeavor, we intend to implement
our solution in a real-life cloud setting, and to test its
efficiency and fairness when compared to other classical
approaches.
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