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Abstract 

This deliverable gives the results of the ARIADNE project's Task 4.2: Machine Learning based 
network intelligence. It presents the work conducted on various aspects of network 
management to deliver system level, qualitative solutions that leverage diverse machine 
learning techniques. The different chapters present system level, simulation and algorithmic 
models based on multi-agent reinforcement learning, deep reinforcement learning, learning 
automata for complex event forecasting, system level model for proactive handovers and 
resource allocation, model-driven deep learning-based channel estimation and feedbacks as 
well as strategies for deployment of machine learning based solutions. In short, the D4.2 
provides results on promising AI and ML based methods along with their limitations and 
potentials that have been investigated in the ARIADNE project. 
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Executive Summary

The present deliverable focuses on the Machine Learning perspectives in D-band wire-
less networks as AI/ML approaches hold the promise to deliver autonomous decision-
making mechanisms in an efficient manner. This is arguably one of the most important
requirements of Beyond5G (B5G) networks, considering the expected demand levels
for low-latency, high bandwidth, continuous and reliable connectivity. Achieving perfor-
mant and adoptable AI/ML outcomes also depends to a large degree on the operator’s
skill, domain and data understanding at the problem solving level as well as at the level
of operationalization of solution. Hence, both of these aspects have been addressed in
this deliverable, where chapters 1-5 focus on problem solving and chapters 6-7 high-
light the broader applicability and deployment of AI/ML models. The remainder of the
document is organized as follows.

Chapter 1 focuses on the radio placement optimization using multi-agent reinforce-
ment learning (MARL) concept. It considers that the radios in a network act as inde-
pendent agents and are working together in a shared environment so as to achieve
a common goal, where the maximization of the total area under radio coverage is the
main aim. An extension of the contribution is included in Chapter 2, which addresses
beamforming optimization for multiple moving user equipments (UEs) in downlink trans-
mission. It mainly focuses on implementing deep reinforcement learning (DRL) for
codebook beam and beam tilt selection at the base station (BS) to serve the UEs. It
also deploys the carrier-aggregation concept into both BS-UEs and BS-RIS-UEs sce-
narios.

Subsequently, Chapter 3 presents a methodology for learning automata (finite state
machines) from labelled symbolic sequences, such as discretized time-series data.
This work addresses a novel technique for learning automata patterns from multivariate
time-series that represents the evolution of the domain in time. This approach was eval-
uated on publicly available ViWi (Vision-aided Wirelesscommunication)/mobility data
and later, the efficacy of this approach was demonstrated and compared to state-of-
the-art automata learning techniques, achieving superior performance in terms of pre-
dictive accuracy (F1-scores) and complexity/interpretability of the learned automata.
Additionally, Chapter 4 describes the system level modeling that refers to a simulated
geographic area where mobile users are modeled as points coming from a uniform
poisson point process (PPP). Access points (AP) are generated from another indepen-
dent and uniform PPP, while obstacles in the area are modeled as rectangles. The goal
is the mapping of the received power of a user from every access point as function of
the time. In order to do so, the position of each user has to be identified relatively to
the serving AP and the obstacles. Sample results of the received power within the
simulated area, are presented at the last part of the chapter.

Moreover, Chapter 5 introduces a model-driven deep learning (MDDL)-based chan-
nel estimation and feedback scheme for wideband high-frequency massive hybrid
multiple-input multiple-output (MIMO) systems, where the angle-delay domain chan-
nels’ sparsity is exploited for reducing the overhead. To further reduce the uplink
channel estimation and downlink channel estimation feedback overhead, only the re-
ceived pilots on part of the subcarriers are fed back to the BS, which can exploit the
MMV-LAMP (multiple-measurement-vectors learned approximate message passing)
network to reconstruct the spatial-frequency channel matrix. Numerical results show
that the proposed MDDL-based channel estimation and feedback scheme outperforms
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the state-of-the-art approaches.
Chapter 6 and Chapter 7 constitutes the last part of the deliverable. Chapter 6

presents applications of THz wireless systems in the beyond fifth generation era and
discusses their enabling technologies and fundamental challenges that can be formu-
lated as AI problems. These problems are related to physical, medium/multiple access
control, radio resource management, network and transport layer. For each of them,
the AI approaches are reported, which have been recognized as possible solutions in
the technical literature, emphasizing their principles and limitations with an objective
to provide an insightful discussion concerning research gaps and possible future di-
rections. Finally, we conclude with Chapter 7, where strategies for the deployment of
AI/ML solutions are presented, highlighting important non functional aspects such as
continuous retraining and collaboration among different ML pipelines that together pro-
vide a high level service. Different emerging and enabling paradigms are presented,
which play a synergetic role in the operationalization and successful adoption of AI/ML
solutions within the centralized, distributed and federated learning schemes.
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Introduction

Focusing on the ARIADNE use cases and system requirements defined in deliverable
D1.1 and based on the conducted research and developed hybrid AI/ML framework
that optimizes resource allocation problems, the present deliverable extends the work
to be composed of a stack of Artificial Intelligence, Machine Learning and model-driven
methods that collectively work to produce both more accurate and more tractable mod-
els. These models could target issues, such as maximization/optimization of energy ef-
ficiency in wireless networks, optimal assignment between receivers and transmitters,
optimal deployment density of base stations or network optimization through reconfig-
urable metasurfaces. The presented work thus delivers high quality solutions to the
problems of interest in ARIADNE.

In this direction, this document is organized under two parts: i) specific problem
solving (chapters 1-5) and ii) broader applicability of AI/ML methods (chapters 6-7). In
the first part, Chapter 1 formulates one of the central design time problems namely the
radio placement optimization, which is addressed using the multi-agent reinforcement
learning (MARL) method. Chapter 2 presents beamforming optimizations for real-time
interaction of mobile UEs with their environment using deep reinforcement learning
(DRL). To identify complex patterns that form in an evolving network, Chapter 3 fo-
cuses on event pattern learning for Complex Event Forecasting (CEF). It introduces a
declarative automata learning technique, based on the problem-solving methodology
of Answer Set Programming (ASP) which can be extended to network scenarios. In
Chapter 4, the system level modeling and simulation of D-band networks is described.
The work aims to model environments realistically such that they contain static ob-
stacles, static access points and mobile users. The delivered models can assist in
proactive handling of connections by helping avoid line of sight blockages as the re-
ceivers move over time in a given environment. The work can be reused to represent
further scenarios as well. Next, Chapter 5, focuses on model-driven deep learning
(MDDL) based channel estimation and feedback scheme for wideband high-frequency
massive hybrid multiple-input multiple-output (MIMO) systems, where the angle-delay
domain channels’ sparsity is exploited for reducing the overhead. In the second part
of this deliverable, Chapter 6 focuses on applications of THz wireless systems in the
beyond fifth generation era and discusses their enabling technologies and fundamental
challenges that can be formulated as AI problems. Finally, Chapter 7 presents some
important non-functional aspects that are necessary to be considered for successful
adoption and operationalization of AI/ML solutions by highlighting strategies for deploy-
ment of AI/ML units as collaborative and reconfigurable pipelines that may be deployed
among central or distributed nodes of the network and can be scaled up or down to
deliver required quality of service.

Deliverable D4.2 and its findings constitute the subsequent activities of Work Pack-
age 4, within the ARIADNE project. The results of deliverable D4.1 are exploited and
extended in deliverable D4.2, towards realizing intelligent D-band wireless systems and
the initial designs of these networks.
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Chapter 1

Radio Placement Optimization Using
Multi-Agent Reinforcement Learning

1.1 Introduction

As wireless telecommunication technology advances towards ever higher frequencies,
signals are more severely affected by blockages and various attenuating effects in the
environment. A Line of Sight (LoS) connection is practically required for a good user
experience on a handset utilizing spectrum from 100 GHz upwards. This places great
importance on physical network design and positioning of the network equipment. Con-
straints on network cell size are placed by the requirement for LoS connection as well
as attenuating effects such as rain that have to be considered when dealing with mil-
limeter wavelength (mmWave) frequencies. This in turn leads to an increase in the
number of required Access Points (AP) to serve the same area and number of users
as on lower frequencies.

Building on our previous work in ARIADNE WP4, we present a formulation of ra-
dio placement optimization as a Multi-Agent Reinforcement Learning (MARL) problem.
Specifically, we consider the radios in a network configuration as independent agents,
working together in a shared environment to achieve a common goal, i.e. to maximize
the total area under radio coverage.

1.2 Methods

This section introduces the main methods used. Section 1.2.1 presents process mod-
els used for modeling single-agent reinforcement learning (RL). Section 1.2.2 describes
multi-agent reinforcement learning and presents a process model suitable for those
scenarios. Section 1.2.3 covers the concept of self-attention and how that is used in
our neural network policy.

For general information about RL, we refer the reader to the ARIADNE deliverable
D4.1.
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1.2.1 Process Models for RL

In single-agent RL the environments are typically assumed to be stationary. That is, the
behavior and dynamics of the environment remain unchanged over time. These kinds
of environments can be modeled as Markov Decision Processes (MDP). A standard
MDP is a tuple of form

(S,A, P,R, γ), (1.1)

where S = {s1, s2, . . . , sN} is a set of possible environment states (state space), A =
{a1, a2, . . . , aN} is a set of possible actions (action space), P is a set of conditional
state transition probabilities P (s′|s, a) : S × A × S → [0, 1] for state transition s → s′,
R(s, a) : S × A→ R is the reward function and γ ∈ [0, 1] is the discount factor. At each
discrete time step t , the environment is in some state s. The agent takes an action a,
which results in new state s′ with the probability P (s′|s, a) and a reward r = R(s, a). At
the next time step t + 1, s′ is assigned to s and the process repeats. The goal of an
agent is to choose actions that maximize its expected future discounted reward at each
time step t:

maxE[
∞∑
t=0

γtR(st, at)] (1.2)

The simple form of MDP is only applicable if state s is fully observable by the learn-
ing agent. As interesting real-life problems are usually not fully observable, a broader
model for the scenario is often needed. In cases where the full observability require-
ment does not hold an extended form of MDP, Partially Observable Markov Decision
Process (POMDP) can be used. It is defined as

(S,A, P,R, γ,Ω, O), (1.3)

where S, A, P , R and γ are equal to their counterparts in MDP, ω = {o1, o2, . . . , oN} is
a set of observations and O is a set of conditional observation probabilities O(s′, a) :
S × A → Ω. In POMDP only the observation o is available to an agent, not the full
state s. The agent thus has to internally maintain a model for what it believes to be the
real state, based on the observations it has seen and the actions it has taken. For an
agent in an POMDP setting, the goal then becomes selecting the actions that maximize
expected future discounted reward given a belief state formed by the agent. Besides
the fact that agent only sees observation o, operation remains identical to MDP case.

1.2.2 Multi-Agent Reinforcement Learning

Multi-agent reinforcement learning is a subfield of reinforcement learning that focuses
on systems with multiple independent learning agents acting in a shared environment.
By interacting with each other and the environment the agents try to achieve some
goal, defined in terms of reward signals. The goals of individual agents may be aligned,
opposed, or a mixture of the two.

Each agent makes a decision on every time step based on its policy. The policy
receives the state of the environment as observed by the agent. It then produces an
action that’s applied to the environment along with actions from all the other agents. An
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individual agent’s policy therefore needs to account for the behavior of other agents as
well as the environment dynamics in general. The behavior of other agents changing as
they learn brings with it complexities not typically present in single-agent RL problems.

We can expand the POMDP definition for multi-agent case as

(S,A, P,R, γ,Ω, N,O), (1.4)

where S is the state space and γ is the discount factor as defined in single-agent
MDP. Each agent i ∈ N := {1, . . . , N} selects an action ai ∈ i at each time step, Ai

being the action space for agent i. A := A1 × . . . × AN is the joint action space for
all agents and the joint action vector is a ∈ A State transition probability function is
P (s′|s, a) : S × A × S → [0, 1], now in terms of the joint action vector. Reward function
is defined as R(s,a, ai, i) : S × A ×N → R for a reward with both components shared
across the agents and per-agent components. Each agent receives an individual partial
observation oN ∈ Ω according to the observation function O(s, i) : S ×N → Ω.

With action space, reward function and observation function conditioned on i, this
model supports any mixture of cooperative and opposing goals and diverse agents with
different observational and operational capabilities. Reward function can emphasize
the value of joint action vector to orient behavior toward group-level goals and vice
versa.

1.2.3 Attention

Attention in artificial neural networks mimics the functioning of attention in animals.
It is a behavioral and cognitive process of focusing selectively on a discrete aspect of
information while ignoring other information. For animals and humans alike, attention is
necessary because there is vastly more information available in any given environment
than can be effectively processed. Specifically concentrating on information that is
relevant for the task or situation at hand allows more effective utilization of cognitive
faculties. [1]

Computational attention has been studied at least from the late 1970s [1], but prac-
tical applications have only started appearing in recent years. Initially shown to out-
perform previously used deep learning models in natural language processing [2] and
image processing [3,4], it has since been shown to also work well in RL applications.

Generally speaking, the operations performed by an attention module could be sum-
marized as weighted averaging. It takes in two arbitrary input sequences X, Y ∈ Rn×din

of n elements with din dimensions in each and uses one to ”attend” to the other, pro-
ducing an output sequence Z ∈ Rn×din.

Our focus is on a special case of attention called self-attention, where X = Y .
Self-attention allows mapping arbitrary input to an output of identical dimensions, with
the mapping being determined by the learned weights. The specific method under
consideration is the Scaled Dot-Product Attention described in [5], which has been
widely adopted to different use cases.

Using the definition of X above, we can define the scaled dot-product attention
function as

Ṽ = Attn(Q,K, V ) = softmax

(
(XWq)(XWk)√

din

)
XWv (1.5)
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where Ṽ ∈ Rn×din is the weighted value matrix or attention matrix and Wq,Wk ∈ Rn×dk

and Wv ∈ Rn×dv are the learned weights used to generate query, key and value matri-
ces, respectively. dk is the dimension for query and key spaces and dv is the dimension
of value space. The use of terms query, key and value is conceptually similar to their
usage in the context of databases. That is, the operation can be thought of as retriev-
ing information from a set of key-value pairs using a query. Using the corresponding
weights, the input sequence is linearly projected to query, key and value spaces. The
attention matrix is summed to the original input, resulting in a modified version where
each token in the sequence is weighted with every other token considered:

Z = Ṽ +X (1.6)

Multi-head attention is another concept presented in [5]. In multi-head self-attention,
the attention function is evaluated h times for the same input, h representing the number
of parallel attention heads. Each attention head has different learned weights for Wq,
Wk and Wv. Resulting h attention matrices are concatenated along the n-dimensional
axis and linearly projected to produce Ṽ . This was found to improve the results over
single-head attention. The reasoning is that multiple different subspaces for represent-
ing the query, key and value allow the model to jointly attend to different representa-
tions, giving it access to more information.

The primary use case of attention in RL is to attend over some preprocessed fea-
tures before they’re further processed into actions. The work in [6] introduced a setup
where attention is applied to a set of feature vectors, each representing features from
a single agents observation. This allows agents to influence each other’s decision,
making and results in improved behavior.

1.3 Placement Optimization as Multi-Agent Reinforce-
ment Learning Problem

For a generic formulation of the radio placement optimization system we consider a
2D environment with a finite grid of square cells. There are N agents representing
the base stations and Reconfigurable Intelligent Surfaces (RISs). Each agent occupies
a discrete position, i.e. one cell on the map. Two agents cannot occupy the same
position. On every timestep t each agent receives an observation o and selects an
action a = π(a, o). The joint action vector a is evaluated by the environment, which
produces the next state s′ and joint reward r = {r1, r2, . . . , rN} where ri is the reward
received by agent number i.

The environment also has radio receivers and blockages that prevent signals from
passing. We do not model individual user terminals; instead we consider the receivers
to represent clusters of users or areas of high expected user density. Each receiver
occupies a single cell. Blockers are rectangular areas that block a direct line of sight
between radios, spanning any number of cells. For a base station or an RIS to be
able to provide coverage, it needs to be next to a blocker (i.e. mounted to a wall or on
the edge of a rooftop). Agents can move on top of the blockers, but will not provide
coverage while they remain there.

All agents have a set of generic movement and rotation actions available. Movement
actions move the agent to one of eight neighboring cells. Rotation actions change the
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orientation of the agent by a fixed amount. Both have a corresponding “do nothing”
action to all other actions. Agent can select “do nothing” for both movement and rotation
to indicate that it considers its current configuration to be the best possible one. When
all agents pick the “do nothing” action at the same timestep, this is interpreted as a
“stop episode” action and the episode will be stopped. Effectively this acts as a voting
mechanism for agents to jointly decide if the configuration is good enough. To prevent
the agents from quitting prematurely and to foster exploration, the stop action can only
be triggered on every 25th timestep.

For each episode in training, the agents, receivers and blockers are randomly placed
on an empty map. Agents take actions on each timestep as described earlier and the
episode progresses until either the last step of the episode has been reached or the
joint “stop episode” action is selected.

Main reward signal comes from the change in relative total coverage over the last
timestep. For instance, if coverage increases from 20% to 30% the corresponding
reward is 0.1. All agents receive the same coverage reward. To encourage agents to
seek locations where they can provide coverage, an additional reward is given for each
agent individually when it moves from an invalid position to a valid one. A penalty of
equal magnitude is given when an agent moves out of a valid position to an invalid one.

1.4 Placement Optimizer Implementation

1.4.1 MARL in RLlib

MARL is behind many of the most publicized achievements of machine learning in re-
cent times including AlphaGo Zero, AlphaStar, OpenAI Five and more. However, MARL
has always been a significant engineering challenge, unlike single-agent reinforcement
learning. Supporting standard APIs for MARL is not abundantly available in many envi-
ronments as easy and extensible as in RLlib. PettingZoo API was first released by RLlib
to demonstrate a general and easy way of using MARL. Prior to PettingZoo, the nu-
merous uses of MARL APIs almost exclusively inherited their design from the two most
prominent mathematical models of games in the MARL literature which were Partially
Observable Stochastic Games (POSGs) and Extensive Form Games (EFGs). Model-
ing multi-agent environments has numerous benefits, it allows for clearer attribution of
rewards to different origins, allowing for various learning improvements. In addition, it
is easy to handle by scaling up number of agents without additional complexity involved
with the implementation.

RLlib supports handling of different algorithms in a simple setting. Multiagent in RL-
lib consists of relevant principles such as policies which are represented as objects
and are considered black boxes. All gradient-based algorithms in RLlib declare a pol-
icy graph that includes a policy model and a policy loss. The policy graph runs in a
distributed framework, collects experiences, and then improves the policy with gradient
updates computed from batches of experiences. RLlib just manages the creation and
execution of multiple policy graphs per environment, adds together the policies using
some policy optimization algorithms.

One main component in reinforcement learning is the environment where the train-
ing happens. A multi-agent environment has multiple acting entities per step. In a
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Figure 1.1: Multi-agent implementation overview for placement optimizer. LSTM state
variables are also inputs to the model but omitted from picture.

multiagent environment in RLlib, an environment can have a varying number of agents
over time, however, the number of distinct policies should be fixed.

1.4.2 Implementation

Figure 1.1 presents the high level structure of the system and the primary neural net-
work blocks of the RL model.

The environment creates multiple agents and the required spaces for them as action
space and observation space, those are then handled through the model under train-
ing. Observations are fed from the environment to the model as a top-down view image
of the map with multiple information layers and a vector of scalar values, containing in-
formation such as whether the radio can provide coverage from its current position or
not. Action space is as shown in Figure 1.2. Radios can do two types of action cat-
egories per step. Those actions are movement and rotation specific, radios can both
move in a 2D-space in all directions and rotate clock and anti-clockwise. Actions are
calculated by the policy, then the environment performs the action operation within the
simulator class.

Simulator is the entity that translates that information to a real-world environment
of training, it retains information of the map information including buildings, blockages,
radios and UEs. It exposes its information externally to the environment and model
level through observation space. Environment also computes rewards and penalties
using simulator functions to determine the coverage values and determine whether
placement of radios was optimal or not.

1.4.3 Policy

Our policy is represented by a neural network. Agents share a single policy model
which has inputs and outputs for each agent, following the general setup presented
in [6].
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Figure 1.2: Actions allowed for agents

Agent observations are processed by encoder networks. The resulting agent-specific
feature vector is fed to each of key, query and value mapper networks. Resulting vec-
tors are combined into key, query and value matrices which go into the attention func-
tion. This produces a matrix, which is split back into vectors that are then added to the
original features and used as inputs into the policy and value functions.

Feature encoders consist of CNN, dense and LSTM layers, with a CNN branch pro-
cessing the map input and dense branch processing the scalar input. Results are con-
catenated and run through an LSTM layer to produce final features with time-domain
information. Attention parameter mappers and different output heads all have a single
dense layer.

1.4.4 Conclusion

This chapter presented our revised approach to automating the placement of base
stations in the context of network design. It introduced the usage of multi-agent rein-
forcement and attention mechanism as enhancements over our base model previously
presented in ARIADNE deliverable D4.1. A derivation of Markov Decision Process
suited for multi-agent scenarios was also presented. Finally, it gave an overview into
our implementation and the technologies used. Results were not included and we plan
to provide them later as part of the next deliverables in this WP.
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Chapter 2

Beamforming Optimization for
Mobility Users based on Deep
Reinforcement Learning

2.1 Introduction

Future wireless networks 5G and beyond 5G (B5G) are expected to meet the massive
demand for data rates especially for the extended reality (XR), augmented reality (AR)
and mixed reality (MR). In order to meet various requirements, the future new radio not
only considers the sub-6 GHz but also takes millimeter-wave (mmWave) band and tera-
hertz (THz) band into implementation. Downlink beamforming technique has attracted
attention from both industry and academic. In most of the actual wireless communica-
tion scenarios, it is impossible to keep users (UEs) from moving. Therefore, the base
stations (BSs) need to have effective mechanism to allocate proper beamforming vec-
tor to the moving UEs. This leads to our motivation to address this research direction in
order to make the UEs’ real time interaction with the environment easy by using deep
reinforcement learning (DRL).

In general, the system capacity of wireless communications is represented by the
weighted sum rate when the UEs have different priority and require different capacity.
The summation of the achievable rate of all UEs can be also the overall throughput
representation of the network. We consider two main scenarios for downlink transmis-
sion in this work (i) the base station serves moving UEs using mmWave and (ii) when
there is blockage between the BS and UEs, we assume that the BS transmit signal to
the reconfigurable intelligent surface (RIS) and then the RIS reflects/refracts signal by
using analog phase shifters towards multiple UEs.

2.1.1 Contributions

• Our work is the first work which proposes a dynamic beamforming optimization
with beam selection from the predefined codebook beam set and beam tilt se-
lection using DRL. Moreover, for the BS-RIS-UEs scenario, we also use DRL to
obtain the codebook beam selection, beam tilt at the BS and the angles at the
RIS phase shifters simultaneously.
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• Our work is a pioneer work to combine a dual-band connectivity and it can be
called as carrier aggregation concept with the codebook beam and beam-tilt se-
lection at the BS. For the BS-RIS-UEs scenario, a dual-band connectivity is firstly
introduced here.

• We use Importance Weighted Actor-Learner Architecture (IMPALA) based based
V-trace actor-critic algorithm for distributed DRL to implement our work. There-
fore, this is the first work to use the IMPALA based distributed DRL in beamform-
ing optimization multi-UE multi-input-single-output (MISO) concept. Our work is
also the first one to implement IMPALA for BS-RIS-UEs scenario.1

2.2 Beamforming Optimization for Moving UEs

We consider downlink scenario where a multi-antenna base station (BS) is transmitting
signal to multiple moving UEs. The UEs are randomly scattered in the service area and
the UEs move in random directions. The BS serves all the UEs with maximum power
all the time. We propose two main scenarios which are (i) The BS serves multiple UEs
and (ii) When there is blockage between the BS to UEs, we deploy RIS to redirect signal
from the BS to UEs. In both scenarios, the BS serve UEs and the BS connect to RIS
using mmWave channel. The channel model is explained in the following subsection.

2.2.1 Channel Model

We consider 28 GHz mmWave channel in our proposed model for comparison with
the 3.5 GHz low frequency band with Rayleigh fading channel. Assuming that Hbk is
mmWave channel, where the line-of-sight (LoS) is the dominant path as the LoS is
highly required as to maintain a stable mmWave link. Let Lbk be the paths for channel
Hbk between BS-b and UE-k, we can write Hbk as [7],

Hbk =

√
Nt

Lbk

(
g1
bkaULA(θ1

bk) +

Lbk∑
n=2

gnbkaULA(θnbk)
)

(2.1)

where θ1
bk and θnbk denote the AoD for LoS and NLoS path. Note that the AoD for

each non-LoS (NLoS) path n is assumed to be uniformly distributed θbk ∈ [0, 2π]. The
transmit array steering of ULA is aULA(θ) ∈ CNt×1. We can write g1

bk = vbkd
−η
bk , where vbk

is random complex gain with zero mean and unit variance, dbk is a distance between
the BS-b and UE-k, the pathloss exponent for LoS is η and for NLoS.

2.2.2 Scenario 1: A Multi-Antenna Base Station Serving Moving
UEs

Considering the system where each BS employs a uniform linear array (ULA) of Nt

antennas. Let K denote the set of UEs, each UE-k ∈ K has single antenna.
1We use the IMPALA based distributed DRL similar to our placement optimization work. More details

could be found in ARIADNE deliverable D4.1.
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Figure 2.1: BS serves moving UEs

In Fig. 2.1, we consider a downlink transmission where a BS transmits signal to UEs
using 28 GHz mmWave band. Each UE moves to random directions with the same or
different velocity. We also deploy a dual-connectivity concept, i.e., when the UEs move
to bad quality signal places, the BS switches the band from mmWave to 3.5 GHz to
serve those UEs.

The received signal at each UE-k from the BS-b can be expressed as,

ybk = Hbkwbkxbk +
K∑

k′=1,k′ 6=k

Hbk′wbk′xbk′ + nbk (2.2)

where Hbk ∈ C1×Nt is the channel vector from the BS-b to UE-k, wbk ∈ CNt×1 and
xbk are the beamforming vector and the transmit data symbol from the BS-b to UE-k,
respectively, and nbk ∼ CN (0, σ2

bk) is the additive Gaussian noise with variance σ2
bk. The

second term in (2.2) represents intracell interference.
We can write the SINR of the UE-k served as,

γbk =
|Hbkwbk|2∑K

k′=1,k′ 6=k |Hbk′wbk′|2 + σ2
bk

. (2.3)

Then, we use the SINR in (2.3) to compute the weighted sum rate of all K UEs as,

C(w) =
K∑
k=1

ωkRk, (2.4)

where Rk is the data rate of the k-th UE, given by Rk = log2(1 + γk). ωk represents
the weight of the signal transmission to each UE. This can be applied when the UEs
have different priority, i.e., some UEs need higher bandwidth and some need lower
bandwidth. Note that when weight ωk = 1 the weighted sum rate equation in (2.4)
becomes sum rate.
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Figure 2.2: RIS serve mobility UEs

2.2.3 Scenario 2: A Single Base Station with RIS Serving Moving
UEs

In Fig. 2.2, we consider a downlink transmission where there is blockage between
the BS and the UEs. The BS connect to RIS using mmWave band and the RIS redi-
rect signal by using analog phase shifters to reflect or refract signal towards the UEs.
When the UEs move away from RIS coverage area to bad quality signal places, the BS
switches the band from mmWave to 3.5 GHz to serve those UEs.

The received signal at the UE-k can be written as,

yk = HH
m,kΦHb,mwkxk +

K∑
k′,k′ 6=k

HH
m,kΦHb,mwk′xk′ + nk (2.5)

where Hm,k is the channel matrix between the RIS-m and UE-k, Hb,m is the channel
matrix between the BS-b and RIS-m. Φ is the analog phase shift arrays with the size
NRIS. The second term of (2.5) is co-channel interference. The SINR at the k-th UE is

γk =
|HH

m,kΦHb,mwk|2∑K
k′,k′ 6=k |HH

m,k′ΦHb,mwk′|2 + σ2
(2.6)

The weighted sum rate can be written as,

C(w,Φ) =
K∑
k=1

ωkRk. (2.7)

In the first scenario in Section 2.2.2, our objective is to find the optimal wk by solving
weighted sum rate maximization problem as max C(w) in (2.4) with respect to wk.
In the second scenario in Section 2.2.3, we obtain the optimal wk and Φ by solving
weighted sum rate maximization problem as max C(w,Φ) in (2.7) with respect to wk

and Φ. We solve the weighted sum rate maximization problems of both scenarios
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using deep reinforcement learning technique under the given particular CSI. Each CSI
is used to construct the start and run the algorithm to obtain two matrices w and Φ
simultaneously.

Note that: in our current training model, we consider only a single BS, a single RIS
and multi-UE scenario. However, our model can be extended for multi-BS multi-UE
scenario, the main change of the received signal at each UE-k will need to include
intercell interference from other BSs.

2.3 Deep Reinforcement Learning Method and Imple-
mentation

The MISO beam-UE pairing selection can be modeled using deep reinforcement learn-
ing. In reinforcement learning, all problems can be framed as markov decision process
(MDP).

2.3.1 Bellman Equations

In this part, we discuss about Bellman equations since the Bellman equations are ab-
solute necessary for trying to solve reinforcement learning problem. In RL, the envi-
ronments are assumed to be stationary and can be framed as MDP. A fundamental
property of all MDPs is that the future states depend on the current state. This is be-
cause the current state is supposed to have all the information about the past and the
present. Hence, the future depends only on the current state.

The MDP involves four sets of components: state (s), actions (a), transition probabil-
ities P (s′|s, a), and reward r(s, a). Solutions of MDP are policies. A policy is a strategy
and a rule specifying what action to execute in every possible state, denoted as π(s).
In order to solve the MDPs, the policies need to be searched to maximize the rewards
obtained by the agents [8]. The sum of rewards, from the state s, is the utility of the
policy Uπ(s).

Uπ(s) =
∞∑
t=0

γtr(st, at), (2.8)

where γ(0 < γ < 1) is a discounted factor. The expected utility following the policy π
from the state s is the state value function Vπ(s) of the policy, which is not random:

Vπ(s) = E[
∞∑
t=0

γtr(st, at)] (2.9)

State-action value function Qπ(s, a), also called Q-value of the policy is the expected
utility of taking action a from state s, then following policy π:

Qπ(s, a) =
∑
s′

P (s′|s, a)[r(s, a, s′) + γVπ(s′)] (2.10)

When it is not in the end state, the value is equal to the Q-value of the policy. This
yields the Bellman equation:

Vπ(s) =
∑
s′

P (s′|s, a)[r(s, a, s′) + γVπ(s′)] (2.11)
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Bellman equation is a recursive equation, as shown. Therefore, to find the optimal
policy, the vale iteration of policy iteration can be utilized. The value iteration is to
get directly at the maximum expected utility. Vopt(s) is assigned as the optimal value
attained by any policy, and Qopt(s) is the optimal Q−value of any policy. At the Bellman
optimality equation, the optimal policy can be written as,

V t
opt(s) = maxa∈Actions

∑
s′

P (s′|s, a)[r(s, a, s′) + γV
(t−1)

opt (s′)] (2.12)

Policy iteration randomly initializes the policy π and then solves the Bellman equation
to get Vπ(s). Then update the policy according to the greedy policy until it converges.

2.3.2 Policy Based Algorithms

By solving the Bellman equation in (2.11) to get the optimal policy in (2.12), it is called
on-policy. Policy-based methods directly search for the optimal policy by maximizing
the agents’expected long-term reward Vπ(s) in (2.9). The policy is parameterized by
a function approximator π(a, s). The policy gradient methods are used to performing
gradient ascent on the objective Vπ(s) in (2.9).

For each gradient update, the agent needs to interact with the environment and
collect trajectories. When computing the gradients for policy updates, the value function
can be used together with the sampled rewards to improve the quality of the updates.
The combination of policy and value functions into one RL agent is called an actor-critic
architecture, where the “critic” estimates the value function and the “actor” updates the
policy distribution in the direction suggested by the critic (such as with policy gradients)
[9]. Both critic and actor functions are parameterized with neural networks.

Due to the lag between when actions are generated by the actors and when the
learner estimates the gradient, we need to decouple actor-learner architecture. Ac-
cordingly, the V-trace which is a novel off-policy actor-critic algorithm has been intro-
duced [10]. The goal of an off-policy RL algorithm is to use trajectories generated by
some policy µ, called the behavior policy, to learn the value function Vπ(s) in (2.9) of
another policy π. Thus in the on-policy case, V-trace reduces to the on-policy n-steps
Bellman update and this property allows one to use the same algorithm for off- and
on-policy data.

The chosen approach for beamforming optimization implementation is a variant of
the actor-critic method based V-trace actor-critic algorithm known as IMPALA [10] 2.

2.4 Implementation of DRL for Beamforming Optimiza-
tion

In deep RL, the neural network are used to approximate the agent’s optimal strategy
or policy. How we model this problem based on deep RL is the key for the problem
formulation. Basically, we need to define the state, action and the reward function.
In our problem, let the state be the UE performance metric (SINR) and UE channel

2We implement the beamforming optimization based Impala similar to our placement optimization
work, more details about V-trace and Impala can be found in [10] and placement optimization work
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Figure 2.3: Illustration of the proposed DRL for beamforming optimization with the
association of state space, environment, and action

condition and the beams/UEs have been selected so far. Given the system’s current
state, the neural network learns to predict either a distribution over actions or the action
expected reward. The observation space or called as state space are fed from the
environment to the long-short-term-memory (LSTM) layers in order to help the neural
network to have memory. The BS can perform codebook selection and tilt selection per
step. The tilt selection can be from −45 degree to 45 degree. Actions are selected by
the policy, which is represented by neural network. Then the environment perform the
action operation.

We show the proposed DRL implementation with association of state space, envi-
ronment and action space in Fig. 2.3.

For the scenario 1 in Section 2.2.2, we define the actions space as beam selection
and beam tilt at the BS in Fig 2.4. The rewards function can be written as weighted
sum rate in (2.4) or the sum of multi-UE data rate when ωk1 = 1 in (2.4).

For the scenario 2 in Section 2.2.3, we define the actions at the BS to be beam
selection and beam tilt towards RIS. The selection of angle of the phase shifters are
the actions at the RIS in Fig. 2.5

At each time transmission time interval (TTI), the BS selects the best beam to allo-
cate to each UE from the predefined beams. In our case, we generate codebook beams
as the predefined beam set at the BS. However, our implementation can be applied to
any predefined beam set, i.e., discrete Fourier transform (DFT) based beamforming
and etc.

2.4.1 Structure of DRL used for the implementation of the beam-
forming optimization algorithm

In the scenario 1 in Section 2.2.2, we use channel coefficients matrix between BS-UEs
to feed into neural network. The neural network learn to predict the action expected
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Figure 2.4: Codebook selection and beam tilt adjustment

Figure 2.5: Codebook selection, beam tilt adjustment and RIS phase shifts selection

reward. Once we obtain the optimal codebook beam and beam tilt, we compute the
SINR and obtain the weighted sum rate accordingly. Similarly as in the scenario 2 in
Section 2.2.3, we use the channel coefficients matrix between BS-RIS and RIS-UEs to
feed into neural network.

Since the BS deploys dual-band connectivity therefore when the UEs move away
from BS and from RIS coverage area, the BS can switch to use 3.5 GHz instead of
using mmWave channel to serve UEs with bad signal quality. Implementation Status :
We are using the channel coefficients as input into neural network in both scenarios.
The implementation is based on the Fig.2.3.
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Figure 2.6: WorkFlow of the model using channel coefficients between BS-UEs as
input for neural network

2.5 Conclusion

In our work, we consider two scenarios which are (i) A single BS serves multiple moving
UEs and (ii) A single BS serves multiple moving UEs through RIS, where there is
blockage between the BS and UEs. In the first scenario, our work is the first work
that implements DRL to select the best beams from the predefined beam set and and
select the beam-tilt angles to allocate to multiple moving UEs. In the second scenario,
our work is the first work that implements the DRL to select the best beams and beam-
tilt angles at the BS and select the phase shifters angles at the RIS simultaneously.

Furthermore, our work is a pioneer work to propose carrier aggregation concept in
these two scenarios. In the first scenario, we implement carrier aggregation concept
such that the BS can serve moving UEs using mmWave, when the UEs move to places
with bad signal quality. The BS can switch the band from mmWave to 3.5 GHz to
serve those UEs. In the second scenario, we propose that the BS serves moving UEs
through RIS using mmWave band, when the UEs move away from the RIS and move to
places with bad signal quality. The BS can switch the band from mmWave to 3.5 GHz
to serve those UEs. Remark: we are working on training the model, we will include the
results in next deliverable under the same work package.

Security: Public Page 29



H2020-2018-2020, ICT – ARIADNE
D4.2: Intelligent D-band wireless systems

and networks initial designs

Chapter 3

Machine Learning Complex Event
Forecasting Patterns

3.1 Introduction

In this chapter we present symbolic learning techniques for the automatic extraction of
automata-based complex event patterns from data. An automaton learnt by the pro-
posed techniques represents a sequential pattern of simple events over time, i.e. time-
stamped pieces of information that represent occurrences within the modeled domain.
This pattern corresponds to a complex event of interest, i.e. a temporal combination of
simple events, that needs to be monitored/traced in a given domain. Using dedicated
complex event forecasting (CEF) techniques, the learnt automaton may be used for
forecasting the complex event occurrence ahead of time, from early signs observed in
the input data stream. Forecast complex events may subsequently be used for timely
drawing insights from the data and implementing proactive measures.

For instance, in ARIADNE CEF techniques are used as a means towards timely
detecting an imminent blockage event before it actually occurs. This information may
subsequently be used for re-allocating the user that is about to be blocked to a different
access point, thus helping to minimize disruption of service incidents.

The presented work is a first step towards the end-goal of event pattern learning
for CEF, where we introduce a declarative automata learning technique, based on the
problem-solving methodology of Answer Set Programming (ASP) [11], which allows to
delegate the automata learning process to highly efficient and optimized off-the-shelf
solvers. We compare our approach to a number of state-of-the-art automata learning
techniques on telecommunications data with the goal being that of learning for blockage
prediction and we demonstrate empirically the superiority of our technique in terms of
predictive accuracy, simplicity and comprehensibility of the learnt automata.

The rest of this chapter is structured as follows: In Section 3.2 we present the nec-
essary background and discuss related work on CEF and machine learning for CEF. In
Section 3.3 we present the proposed automata learning approach, while in Section 3.4
we present a preliminary experimental evaluation. Finally, in Section 3.5 we discuss
current and future work and conclude.
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Figure 3.1: An illustration of the complex event recognition and forecasting tasks (left)
and high-level view of the related machine learning task that we address.

3.2 Background and Related Work

In this section we present the necessary background material on complex event de-
tection and forecasting, machine learning and automata learning techniques. We also
include an extensive presentation of related work on these issues to highlight the dif-
ferences of the techniques developed in ARIADNE with existing methods.

3.2.1 Complex Event Forecasting

Figure 3.1 presents the main tasks that motivate the presented work. The left-hand
side of the figure presents an overview of the complex event recognition and forecast-
ing (CER/F) tasks [12–14], which are essentially concerned with continuously matching
patterns over streams of incoming event-based data. The input to a CER/F system con-
sists of (heterogenous and possibly geographically distributed) streams of so-called
simple events (SEs), which refer to any kind of time-stamped information that repre-
sents an occurrence within the monitored domain. On the output side, the system
recognizes/detects, or even forecasts occurrences of so-called complex events (CEs),
which refer to interesting/critical situations that need to be traced, or forecast ahead
of time. Such situations are defined via a library of CE patterns, which specify spatio-
temporal dependencies and constraints between the input SEs, potentially in addition
to other contextual domain knowledge. On many occasions, such patterns are as-
sumed to be known beforehand, e.g. provided by domain experts. The recognition
task then amounts to efficiently matching such patterns against the streaming input,
and the forecasting task to estimating the likelihood of the completion of such patterns
in the future (a full match), based on early observations (partial pattern matches), while
taking into account estimated statistical properties of the input streams.

There are several learning-related challenges involved in the CEF task. First, if
the CE patterns are known beforehand, statistical learning techniques (typically unsu-
pervised) are required, in order to learn how to generate useful forecasts with these
patterns, i.e. identify the sub-patterns whose matchings over the incoming data may
be used as reliable forecasters of a full pattern match. Existing CEF techniques [14,15]
rely on such estimates of sub-patterns’ statistical support in the incoming data, in order
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to perform forecasting with hand-crafted patterns.
A significantly more challenging ML-related task is learning the actual patterns that

are to be forecast, which are often unknown. The right-hand side of Fig. 3.1 illustrates
the case. Streams of SEs, along with labelled data corresponding to CE occurrences,
or to the validity of forecasts thereof, are passed as input to an ML algorithm, whose
task is to construct a library of accurate and interpretable CE patterns from the training
data. This is essentially a structure learning task, variants of which have been explored
in the literature, to some extent, although none of the existing approaches is appropri-
ate for the CEF task. Existing approaches learn patterns in the form of shapelet com-
binations extracted from time series data, rule-like structures in various event specifi-
cation languages [16–19], or logical theories in temporal formalisms [20–23]. All these
approaches share a key limitation that make them inappropriate for the CEF task. First,
although the learnt rule-like models may be used for detecting event occurrences by
matching the premise of a rule in the input data, using such models for forecasting CEs
ahead of time is less straightforward, since rules point to concurrency, i.e conditions,
expressed in the body of a rule, that occur simultaneously. Rules that express some
sort of sequential conditions need to be converted into some form of automata in prac-
tice, to be operational for CEF, otherwise, such a rule fires only after the sequential
condition is matched in the data (which is useless for forecasting). Second, with the
exception of the shapelet extraction technique, which, however, is limited to time series
data and cannot reason with existing domain knowledge, all other approaches make
the assumption that a known “dictionary” of SEs is available, and moreover, that the in-
put to the learner consists of such SE occurrences, rather than the actual raw sensory
data. Therefore, these techniques assume that some third-party ML tools are in place,
which process the typically unstructured input and extract the (known) SEs of value.

3.2.2 Related Work

In striking contrast to CER (its a posteriori recognition/detection counterpart), the CEF
task has not received significant attention in the literature, despite the fact that “fore-
casting” – in general – has attracted considerable attention in various related research
areas, such as time-series forecasting [24], sequence prediction [25–28], temporal min-
ing [29–32] and process mining [33]. However, the CEF task differs significantly from
all the aforementioned tasks and the need for robust CEF techniques has been ac-
knowledged in the literature, as evidenced by several conceptual proposals [34–36].
We next briefly discuss the limitations of the aforementioned families of approaches
with respect to the CEF task.

Time-series forecasting is an area with some similarities to CEF and a significant
history of contributions [24]. However, it is not possible to directly apply techniques
from time-series forecasting to CEF for the following reasons: (i) Time-series forecast-
ing typically focuses on sequences of (mostly) real-valued variables and the goal is to
forecast relatively simple patterns. On the contrary, in CEF we are also interested in
categorical values, related through complex patterns and involving multiple variables;
(ii) Crucially, techniques for time-series forecasting are unable to incorporate domain
knowledge into the prediction task. Such knowledge, however, is omnipresent in most
event-based applications, and its exclusion from AI-based solutions is not a real op-
tion; (iii) time-series forecasting methods do not provide a language with which we
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can define complex patterns, but simply try to forecast the next value(s) from the input
stream/series. In CER, the equivalent task would be to forecast the next input event(s)
(SEs). This task in itself is not very useful for CER though, since the majority of CE
instances should be ignored and do not contribute to the detection of CEs. CEs are
more like “anomalie” and their number is typically orders of magnitude lower than the
number of SEs. One could possibly try to leverage techniques from SE forecasting to
perform CE forecasting. At every timepoint, we could try to estimate the most proba-
ble sequence of future SEs, then perform recognition on this future stream of SEs and
check whether any future CEs are detected. It has been experimentally observed [14]
that such an approach yields sub-optimal results. It almost always fails to detect any
future CEs. This behavior is due to the fact that CEs are rare. As a result, projecting
the input stream into the future creates a “path” with high probability but fails to include
the rare “paths” that lead to a CE detection.

Another related field is that of prediction of discrete sequences over finite alphabets
and is closely related to the field of compression, as any compression algorithm can be
used for prediction and vice versa [25,27]. The main limitation of these methods is that
they also do not provide a language for patterns, cannot utilize domain knowledge and
focus exclusively on next symbol prediction, i.e., they try to forecast the next symbol(s)
in a stream/string of discrete symbols. As already discussed, this is a serious limitation
for CER. An additional limitation is that they work on single-variable discrete sequences
of symbols, whereas CER systems consume streams of events, i.e., streams of tuples
with multiple variables, both numerical and categorical.

Forecasting methods have also appeared in the field of temporal pattern mining
[29–32]. From the perspective of CER, the disadvantage of these methods is that they
usually target simple patterns, defined either as strict sequences or as sets of input
events. Moreover, the input stream is composed of symbols from a finite alphabet, as
is the case with the compression methods mentioned above.

Lately, a significant body of work has focused on event sequence prediction and
point-of-interest recommendations through the use of neural networks (see, for exam-
ple, [37, 38]). These methods are powerful in predicting the next input event(s) in a
sequence of events, but they suffer from limitations already mentioned above, i.e. they
do not provide a language for defining complex patterns, their focus is thus on SE
forecasting and they cannot utilize domain knowledge. Besides, evidence from related
fields, such as time series forecasting, indicates that statistical methods have often
been proven to be more accurate and less computationally demanding than deep ML
approaches [39].

An additional, crucial limitation of deep learning methods is the opaque, black-box
nature of the learnt models and their brittleness, as demonstrated by extreme sen-
sitivity to hyper-parameters and the fact that deep networks are easily “fooled” by ir-
relevant data characteristics. These limitations make deep models inappropriate for
mission-critical tasks, which are typically involved in CER/F applications. Resorting to
explainable AI (XAI) techniques as a workaround is often not sufficient, since expla-
nations generated by XAI techniques, which, themselves typically rely on ML meth-
ods, are often inaccurate, non-representative of the model’s inner workings, or plain
wrong [40, 41], which generates issues of trust in the explanations and makes XAI a
less reliable tool for trustworthy explainability, pointing to interpretable ML techniques
(i.e. relying on ML methods that learn interpretable models) as a viable alternative. Ad-
ditionally, explanations delivered by XAI techniques are typically convoluted and over-
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focused to low-level details and models’ internals, and omissive of high-level domain-
specific aspects [42]. This makes them potentially useful to trained practitioners (e.g.
data scientists), but less so to non-experts in ML and data science, such as domain an-
alysts. Additionally, deep learning techniques are data-hungry, requiring vast amounts
of training data. In contrast, CE of interest are typically rare, or infrequently observed
in the data, which makes deep learning techniques inappropriate for learning such pat-
terns, and instead calls for techniques (such as those found in the symbolic learning
realm), capable of generalizing adequately from extremely scarce, by highly informative
training data.

Compared to the previous categories for forecasting, the field of process mining
is more closely related to CER [43]. An important difference between CER and pro-
cess mining is that processes are usually given directly as transition systems, whereas
CER patterns are defined in a declarative manner. The transition systems defining pro-
cesses are usually composed of long sequences of events. On the other hand, CER
patterns are shorter, may involve Kleene-star, iteration operators (usually not present
in processes) and may even be instantaneous. A CEF system cannot always rely on
the memory implicitly encoded in a transition system and has to be able to learn the
sequences of events that lead to a (possibly instantaneous) CE. Another important dif-
ference is that process prediction focuses on traces, which are complete, full matches,
whereas CER focuses on continuously evolving streams which may contain many ir-
relevant events. A learning method has to take into account the presence of these
irrelevant events.

3.2.3 The Wayeb Complex Event Forecasting Engine

Wayeb is a CEF engine that relies on symbolic automata to forecast future occurrences
of complex events. It is based on a highly expressive formal language for defining such
patterns in the form of symbolic regular expressions, which are converted to automata
at run-time. This language is based on widely accepted formal computational mod-
els for CER and stream processing [13, 44, 45] and thanks to that language Wayeb
possesses a clear (both declarative and operational), compositional semantics.

The main idea behind symbolic automata is that each transition, instead of being
labeled with a symbol from an alphabet, is equipped with a unary formula from an
effective Boolean algebra [45]. A symbolic automaton can then read strings of elements
and, upon reading an element while in a given state, can apply the predicates of this
state’s outgoing transitions to that element. The transitions whose predicates evaluate
to true are said to be “enabled” and the automaton moves to their target states.

Given a symbolic automaton representing a complex event pattern, Wayeb uses
this automaton to learn a probabilistic model, typically a Markov chain, that encodes
dependencies among the events in an input stream, in terms of statistical correlations
between event occurrences. The probabilistic model is learned from a portion (e.g. ini-
tial segment) of the input stream, which serves as a training set, and it is then used to
derive forecasts about the expected occurrence of the CE encoded by the automaton.
By means of this probabilistic model, Wayeb is able to output forecasts on the occur-
rence of a target complex event in the future (full match of the pattern represented
by the automaton), based on “early signs” observed in the streaming input (partial
matches of the pattern, with a high statistical correlation to a full match, i.e. once such
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partial matches are observed, a full match follows with a high probability). In addi-
tion to the forecast itself, Wayeb also outputs the probability of the future occurrence
and a time interval indicating how “far” into the future the complex event occurrence is
expected.

Learning the probabilistic model of SE dependencies from the input data correspond
to a “parameter learning” task for the automaton at hand. Significantly more challeng-
ing is the “structure learning” task of learning the automaton itself. This is crucial, since
in most event-based applications the interesting CE patterns are not known, or they
are frequently subject to change as the input streaming data evolve over time. Wayeb
operates on hand-crafted patterns, provided by domain experts, which on most occa-
sions are not specified, or, they are only crude approximations of critical situations that
are to be forecast.

The issue that we address in what follows is the structure learning task of automati-
cally extracting such symbolic automata-based patterns from data, in order to use them
with Wayeb for complex event forecasting.

3.2.4 Automata Learning Techniques

Automata learning, also known as automata induction is an active research field with
a long history [46, 47]. The learning setting in most existing approaches is similar: A
sample of labeled (positive/negative) sequences is presented to the learner, which gen-
erates an automaton that accepts the positive and rejects the negative ones. Learning
the minimal, most-compressive automaton (i.e. one with a minimal number of states
and transitions) is a hard computational task and a large family of approaches trade op-
timality for efficiency, aiming to learn a larger automaton that correctly accounts for the
input sequences. The most well-known and frequently used technique in this family of
algorithms is called state-merging and it is adopted by state-of-the-art and widely used
in practice automata induction algorithms such as RPNI (Regular Positive/Negative In-
ference) and EDSM (Evidence-Driven State-Merging) – see [47] for a review of these
algorithms and their many variations over the years.

State-merging algorithms attempt to learn an automaton that is consistent with the
training set (i.e. correctly accepts/rejects positive/negative sequences therein) and is
hopefully compressive enough to generalize well. Such algorithms typically start from
the Prefix Tree Acceptor (PTA) of the training set, a tree whose branches are all pre-
fixes of the positive training sequences (i.e. eventually all positive sequences). State-
merging algorithms work by “folding” a PTA into a smaller graph by merging states that
represent the same mappings from suffixes to labels, using the negative sequences as
a constraint set. An automaton that results from this process is guaranteed to accept all
positive sequences and reject all negative ones. From an efficiency perspective, state-
merging algorithms are effective, since the PTA may be constructed in time polynomial
in the size of the training set and the actual state-merging process is usually realized via
scalable, greedy heuristic techniques. On the other hand, in practice such techniques
often result in large, over-fitted automata that generalize poorly and are hard to inspect
and interpret. An additional reason for this is that almost all existing automata learning
techniques, including the techniques of the state-merging family, aim for automata that
are consistent with the training set, i.e. they accept all positive sequences and reject all
negative ones. This implies that even small amounts of noise in the training data result
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in a disproportional increase in the learnt automata size, which in turn affects the ability
to generalize and results in over-fitted models. In contrast to such heuristic techniques,
our proposed method is guaranteed to learn optimal automata, by jointly optimizing a
training objective that takes into account the training error and the size of the learnt
model. It thus learns much more compressive automata that have better performance
on unseen data, as compared to state-merging techniques. Moreover, while the latter
can only induce deterministic automata, our approach can also learn non-deterministic
ones. This is important, since non-deterministic automata are simpler and thus easier
to learn, while they may be easily converted into equivalent deterministic automata by
standard algorithms.

Another family of automata induction techniques that are closely related to the ap-
proach that we present here are satisfiability (SAT)-based techniques. Such algorithms
translate the automata induction problem into a set of boolean formulae, whose mod-
els (assignments of truth values to the variables of the formulae) may be translated into
automata structures that are consistent with the training set. Our approach is similar in
spirit: We encode the automata induction problem as a logic program whose models
correspond to solutions of the problem (i.e. learnt automata). However, there are a
number of important differences between SAT-based approaches and ours: First, our
approach is significantly simpler and more intuitive to implement. Second, it naturally
supports reasoning, which can be directly incorporated into the automata induction
process. This is important, since it allows to take into account existing domain knowl-
edge, draw inferences and discover relations that are not explicitly present in the input
sequences. In turn, the latter allows for learning symbolic automata, whose transi-
tions are labeled with logical predicates rather that mere symbols, which may signifi-
cantly simplify the learning process and compress the learnt model. Finally, similar to
state-merging algorithms SAT-based techniques for automata induction aim to correctly
account for the entirety of the training data, which may result to over-fitting.

Recently, automata structures are being used in deep reinforcement learning appli-
cations to represent policies [48, 49], which are typically learnt from sequences, using
symbolic automata learning techniques. These policies are used by the deep learning
system as are (instead of having the system learn the policy on its own). This line
of work has demonstrated significant reduction in convergence time, as compared to
blind exploration. Another recently proposed application is using automata learning
as a means towards interpretable early time series classification [50], as opposed to
mainstream deep learning-based techniques (based on e.g. LSTMs), which generate
black-box models. The learning techniques in all the aforementioned applications have
several limitations, including the inability to learn symbolic automata, their limitation
to the uni-variate case (i.e. training examples in these techniques consist of a single
sequence) and their inability to incorporate reasoning with domain knolwedge in the
automata learning process.

3.3 Learning Automata-Based Forecasting Patterns in
Answer Set Programming

Answer Set Programming (ASP). In what follows a rule r is an expression of the
form α ← δ1, . . . , δn, where α is an atom, called the head of r, (den. head(r)) δ′is are
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literals (possibly negated atoms), which collectively form the body of r (den. body(r))
and commas in the bodies of rules denote conjunction. We denote the set of posi-
tive (non-negated) and negative (negated) literals in body(r) by body+(r) and body−(r)
respectively.

A rule is ground if it contains no variables and a grounding of a rule r is called
an instance of r. A (Herbrand) interpretation is a collection of true ground facts. An
interpretation I satisfies an atom α if and only if α ∈ I. I satisfies a ground rule if and
only if satisfying each literal in the body implies that the head atom is also satisfied and
it satisfies a non-ground rule r if it satisfies all ground instances of r. A constraint in
an expression of the form← δ1, . . . , δn, which is syntactic sugar for false← δ1, . . . , δn.
An interpretation I is a model of a logic program Π (collection of rules) if it satisfies
every rule in Π and it is a minimal model if no strict subset of I has this property. An
interpretation I is an answer set of Π if and only if it is a minimal model of the reduct
of Π, i.e. the negation-free, ground program that results by removing from the ground
version of Π all rules with a negated body literal not satisfied by I and removing all
negated literals from the bodies of the remaining rules.

A choice rule is an expression of the form {α} ← δ1, . . . , δn with the intuitive mean-
ing that whenever the body δ1, . . . , δn is satisfied by an answer set I of a program that
includes the choice rule, instances of the head α are arbitrarily included in I (satisfied)
as well. A weak constraint is an expression of the form : ~ δ1, . . . , δn.[w], where δi’s
are literals and w is an integer. The intuitive meaning of a weak constraint c is that
the satisfaction of the conjunction δ1, . . . , δn by an answer set I of a program that in-
cludes c incurs a cost of w for I. Inclusion of weak constraints in a program triggers an
optimization process that yields answer sets of minimum cost.

Answer Set Programming (ASP) [11] is methodology for solving combinatorial opti-
mization problems using the constructs defined above (i.e. facts, rules, logic programs,
(weak) constraints and choice rules). This methodology is fully declarative and it sum-
marized as follows: Given a combinatorial optimization problem P , we first encode it
into a logic program Π in a way that answer sets (models) of this Π correspond to so-
lutions to the original problem P . We then use dedicated, off-the-self tools (answer
set solvers) to compute the answer sets of Π from within which solutions to P may
be extracted. The ASP problem-solving methodology is based on a generate-and-test
approach. In particular, choice rules are responsible for the “generate” part, by non-
deterministically proposing alternative models that could represent viable solutions to
the original problem at hand. Constraints and weak constraints are responsible for the
“test” part, by discarding solutions that violate these constraints. Weak constraints, in
particular, allow for optimization: In contrast to hard constraints, which need to be sat-
isfied at all times, weak constraints may be violated at a price, namely the weight w
associated to the constraint. A cumulative penalty score is associated to an answer set
that violates a weak constraint. This penalty is proportional to the violated constraint’s
weight (multiplied by the number of times that the constraint is violated in the answer
set). The inclusion of weak constraints in a program triggers an optimization process,
which yields an answer set of minimum cumulative penalty (i.e. an answer set that
adheres to the weak constraints in the original program as much as possible).

Our automata learning technique that we present in this section is based on ASP.
In particular, we model the automata learning process as an abductive reasoning task
with regard to a meta-interpreter, i.e. a simple logic program that captures the function-
ality of an automaton. Using the training sequences (the input simulations) as obser-
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vations that need to be explained, we utilize ASP’s generate-and-test problem-solving
strategy to learn compressive automata that discriminate between blockage and non-
blockage incidents by accepting/rejecting the latter.

The input (and hence, training data) that we assume in what follows consists of mul-
tivariate time-series data, representing the evolution through time of different streams
of interest, e.g. consider two streams related to a user’s (x, y)-coordinates over time,
and a third one related to the strength of the received signal in each point in time.
Labeling such multivariate sequences as ones that eventually “lead/do not lead” to a
blockage incident (positive/negative examples respectively), the goal is to learn a sym-
bolic automaton the discriminates between the two as much as possible.

An automaton (finite state machine) is a graph-based structure M described as a
tuple M = 〈Q,Σ, q0, δ, F 〉, where Q is a finite set of states, q0 ∈ Q is the start state, Σ
is a finite set of symbols, δ : Q × Σ → Q is a state transition function and F ⊆ Q is
a set of final states. Given an input sequence x1, . . . , xn, where xi ∈ Σ, an automaton
M transitions through the sequence of states s0, . . . , sn, where si ∈ Q, s0 = q0 and
si = δ(si−1, xi). An automaton M is deterministic if for each state s ∈ Q and each
symbol x ∈ Σ there is at most one transition δ(s, x) and it is called complete if there
is exactly one transition. On the other hand, M is non-deterministic if there may be
multiple transitions from some state with the same symbol. A deterministic automaton
M accepts an input sequence if and only if the last state sn in the state sequence , is
a final state (i.e. sn ∈ F ) and it rejects the sequence otherwise. A non-deterministic
automaton accepts the sequence if some transition sequence results in a final state
and it rejects the sequence if all transition sequences result in a non-final state.

Given a set of training sequences the goal of automata learning task that we address
is to learn an automaton whose size does not exceed a given threshold and which
makes as few mistakes as possible on the training set. Definition 1 provides a more
detailed account of our learning setting.

Definition 1 (Learning Setting). Let S+ and S− be two sets of sequences consisting of
symbols from a fixed alphabet Σ. S+ and S− jointly represent a training set of positive
and negative examples respectively. Let q0 be a fixed state (which denotes a start
state) and N a positive integer that represents a “state budget”. A learner is requested
to learn a transition function δ : Q × Σ → Q, where Q 3 q0 is a set of states, such that
the corresponding automaton M = 〈Q,Σ, q0, δ, F 〉 has the following properties:

1. |Q| ≤ N .

2. M minimizes the training error, defined as the sum of false positive (FP ) and
false negative (FN ) mistakes that M makes on the training set. An FP mistake
corresponds to a negative sequence s ∈ S−, which is accepted by M , while an
FN mistake corresponds to a positive sequence s ∈ S+, which is rejected by M .

Formally, denoting byMN(Σ) the class of automata over alphabet Σ with at most N
states, the training objective pursued by our automata learning framework is:

argmin
M∈MN (Σ)

∑
s∈S+

rejects(M, s) +
∑
s∈S−

accepts(M, s)

 .
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3.3.1 Representing Input and Output

To implement the learning setting of Definition 1 in ASP we use a logic-based rep-
resentation of the input (the sequences in the training set) and the output (the learnt
automata).

Regarding the input, we assume that each training sequence has a unique id and a
label (1 for positive and 0 for negative sequences in S+, S− respectively). We encode
a training sequence as a set of ground facts of the form seq(seqId, x, t), where seqId is
the id of the sequence and x is the symbol at position t in the sequence. We also use
a predicate label/2 to represent the label of the sequence.

Example 1. Logical Representation of the Input Sequences Assume that abbc
is a positive sequence with id id1 and aaa is a negative sequence with id id2, over
alphabet Σ = {a, b, c}. According to the above, the logic-based representation of these
sequences will be respectively:

seq(id1, a, 1). seq(id1, b, 2). seq(id1, b, 3). seq(id1, c, 4). label(id1, 1).

seq(id2, a, 1). seq(id2, a, 2). seq(id2, a, 3). label(id2, 0).

In the multivariate case a training example may consist of multiple sequences, each
representing a “signal” obtained by the evolution of a relevant domain attribute in time.
We can represent such multivariate examples using essentially the same represen-
tation as before, by simply extending the alphabet to account for the different features
that correspond to the sequences in a training example. For instance, assume three se-
quences as per the example given earlier, corresponding to a user’s (x, y)-coordinates
and the signal strength over time.

Example 2. Logical Representation of Multivariate Input Assume that a training
example with id id3 is labeled as positive (i.e. it represents a blockage incident), it
“goes on” for three time steps and consists of the following length-three sequences for
x coordinate, y coordinate and signal strength respectively:
x coord : geb
y coord : cgj
strength : abb

Note that the symbols in these example sequences correspond to value intervals for the
corresponding measurements, which may be obtained by discretizing the sequences.
The logical representation of this simulation is:

seq(id3, x coord(g), 1). seq(id3, x coord(e), 2). seq(id3, x coord(b), 3).

seq(id3, y coord(c), 1). seq(id3, y coord(g), 2). seq(id2, y coord(j), 3).

seq(id3, strength(a), 1). seq(id3, strength(b), 2). seq(id3, strength(b), 3).

label(id3, 1).

Regarding the output of Definition 1, we represent an automaton as a set of ground
facts of the form transition(q1, x, q2), where q1, q2 are states and x is a symbol from
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q0start q1 q2 q3

b, c

a

a

b

c

b

a

c

a

b, c

transition(q0, b, q0). transition(q0, c, q0). transition(q0, a, q1).
transition(q1, a, q1). transition(q1, b, q0). transition(q1, c, q2).
transition(q2, b, q0). transition(q2, a, q1). transition(q2, c, q3).
transition(q3, b, q0). transition(q3, c, q0). transition(q3, a, q1).
start(q0). final(q3).

Figure 3.2: A four-state deterministic automaton over the alphabet Σ = {a, b, c} and its
logical representation. A double circle denotes a final state and commas in transition
labels denote disjunction. Therefore, the automaton in the figure moves e.g. from state
q3 to state q0 upon encountering either a “b”, or a “c”.

inState(Id, q0, 0)← seq(Id, , ).

inState(Id, S2, T + 1)← inState(Id, S1, T), transition(S1, X, S2), seq(Id, X, T).

accepted(Id)← inState(Id, S, T), end(Id, T), final(S).

Table 3.1: An automata interpreter.

the alphabet. The interpretation of this representation is that the automaton moves
from state q1 to state q2 upon encountering the symbol x. We also use the predicates
start/1 and final/1 to represent start and final states.

Example 3. Logical Representation of Automata Figure 3.2 illustrates an example
automaton and its logical representation using the transition/3, start/1 and final/1
predicates.

3.3.2 Abductive Automata Learning

The main idea towards realizing the learning setting of Definition 1 in ASP is to use
abduction with respect to an automata interpreter. The latter is a logic program that de-
scribes the functionality of an automaton. Abduction is a form of explanatory reasoning
that seeks to generate explanations for a set of observations, subject to a number of
constraints, which restrict the space of possible explanations. In logic programming
(and hence in ASP) such explanations are derived from a given logic program that
represents some background knowledge and are given in terms of a set of prede-
fined domain predicates (referenced in the background knowledge), called abducible
predicates. In our case, the observations that are to be explained are the training se-
quences, the background knowledge used to derive explanations from is the automata
interpreter and the abducible predicate is the transition/3 predicate that is used to
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q0start q1 q2 q3
x coord(g) y coord(g) strength(b)

transition(q0, x coord(g), q1). transition(q1, y coord(g), q2).
transition(q2, strength(b), q3). start(q0). final(q3).

Figure 3.3: An example automaton, and its logical representation, accepting the multi-
variate simulation of Example 2.

encode an automaton in a logical form. Let us precede a more detailed account of the
approach by a formal definition of abduction.

Definition 2. (Abductive Task) An abductive task is defined as a tuple 〈B,G,A〉,
where B is a logic program that represents some domain knowledge, G a set of obser-
vations, often called “goals” in the form of a set of logical facts and A a set of predicate
signatures called abducible predicates. A predicate signature is an expression of the
form p/n, where p is a predicate symbol and n is an integer that denotes p’s arity. Given
an abductive task, an abductive solution to the task is a set of ground logical facts ∆,
each with a signature from A, such that B ∪∆ � G.

Table 3.1 presents an automata interpreter that will play the role of the background
knowledge B from Definition 2. Recall that variables start with an upper-case letter.
The interpreter in Table 3.1 defines what an automaton does when it processes a se-
quence. The inState(Id, S, T ) predicate states that the automaton is in state S at step
T of processing the sequence Id. The first rule in Table 3.1 simply states that for all
sequences the automaton is at state q0 at step 0 (i.e. q0 is always assumed to be the
start state).

The second rule states that while processing the sequence Id, the automaton moves
to state S2 at step T + 1 if it was in state S1 in the previous step (T ) and there is a
transition from S1 to S2, which uses a symbol X appearing in the sequence in position
T . Finally, the third rule dictates that a sequence is accepted if the automaton is in
a final state when it reaches the end of the sequence (the meaning of the end(Id, T )
predicate is that at step T of processing the sequence Id the automaton reads the last
symbol in the sequence). Note that via a closed world assumption, any sequence that
is not accepted is assumed to be rejected.

The interpreter works in the multivariate case as well, where a single training ex-
ample consists of multiple sequences. In this case an automaton transitions between
states using symbols from different sequences of the same example/instance, which
represent domain feature signals. The automaton accepts the example if it reaches the
end of at least one of the sequences in the example, while being in a final state. The
intuition here is that in the multivariate case an automaton represents a sequential pat-
tern of the features, which need to be observed in a particular order, so as to classify
the instance as positive (respectively, for the automaton to accept the instance).

Example 4. Processing Multivariate Instances Consider the multivariate simulation
from Example 2 and the automaton M in Figure 3.3. Given the automata interpreter
from Table 3.1 it can be seen that M accepts this example. Indeed, M is in state q0

at time 1 (via the first interpreter rule) and it moves to state q1, using the second inter-
preter rule and the facts transition(q0, x coord(g), q1) from the structural description
of M and seq(id3, x coord(g), 1) from the example description (see Example 2). From
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these two facts and the second interpreter rule the fact inState(id3, q1, 2) may be de-
rived. Subsequently, and in a similar fashion, M moves to state q2 using the facts
transition(q1, y coord(g), q2) and seq(id3, y coord(g), 2). Finally, M moves to state
q3, again using the second interpreter rule and the facts
transition(q2, strength(b), q3) and seq(id3, strength(b), 3), from which the fact
inState(id3, q3, 4) is derived. Since at time point 4 all sequences in the multivariate
example have ended and q3 is a final state, the third interpreter rule yields the fact
accepted(id3).

Note that the automaton in Figure 3.3 represents a hypothetical, multi-feature se-
quential pattern that may be observed in a real-life scenario and could allow to discrim-
inate between blocking (positive examples) and non-blocking incidents (negative ex-
amples). According to this pattern, an example is classified as interesting if a value of g
for the user’s x-coordinate is observed, followed by an equal value for her y-coordinate,
followed by a value of b for signal strength.

Let us now return to the abductive task that lies at the core of our learning setting.
Note that, as shown in action is Example 4, the automata interpreter links the seq/3
predicate, which is used to encode the input sequences, with the transition/3 pred-
icate, which is used to encode an automaton. This allows to use the interpreter as
background knowledge that may be reasoned upon, in order to abductively derive an
automaton (a collection of transition/3 facts) that explains the input sequences. The
latter are treated as observations (as in Definition 2) and the abductive explanations
that are derived are subject to a number constraints related to the sequences’ accep-
tance/rejection by the abductively-generated automaton. Definition 3 makes this setting
clearer.

Definition 3 (Abductive Automata Learning). LetA be an abductive taskA = 〈B,G,A〉
as in Definition 2 where:

• B is the interpreter from Table 3.1 in addition to a set of facts representing a
training set of labeled input sequences S+ ∪ S− in logical form, as described in
Examples 1 and 2.

• G is the set of facts {accepted(id1), . . . , accepted(idn)} where idi is the is of a
sequence in S+ and n = |S+|.

• A = {transition/3, final/1}.

Note that from the definition of the abductive task A above, it follows that a solution
∆ to this task represents the structural description (i.e. the transition function and the
set of final states) of an automaton that accepts all positive sequences in the training
set, since from definition 2 we have that the abductive solution ∆ has the property of
B ∪ ∆ � G. Additionally, this automaton rejects all negative sequences in the training
set, since via closed world assumption accepted(idi) should be false for each idi ∈ S−.

The abductive learning setting described above is straightforward to represent in
ASP and learn the required automaton (i.e. find a solution to the abductive task),
by using an off-the-self solver, such as Clingo1. This is because abduction naturally
fits ASP’s generate-and-test problem solving methodology: Generate instances of the
abducible predicates and test the candidate solutions against constraints derived from

1https://potassco.org/clingo/
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inState(Id, q0, 0) : - seq(Id, , ).

inState(Id, S2, T+ 1) : - inState(Id, S1, T), transition(S1, X, S2), seq(Id, X, T).

accepted(Id) : - inState(Id, S, T), end(Id, T), final(S).

state(q0). state(q1). state(q2). start(q0).

positive(SeqId) : - label(SeqId, 1).

negative(SeqId) : - label(SeqId, 0).

Generate automata:

{ transition(S1, X, S2) } : - state(S1), state(S2), symbol(X).

{ final(S) } : - state(S).

Test the performance of the generated automata:

: ~ accepted(SeqId), negative(SeqId). [1@0, SeqId]

: ~ not accepted(SeqId), positive(SeqId). [1@0, SeqId]

Minimize the size of the learnt automaton as much as possible:

: ~ transition(S1, X, S2). [1@0, S1, S2, X]

Table 3.2: A complete ASP program for learning automata with at most three states
that minimize the training error.

the goals in the abductive task. The generate part of this process is implemented
by appropriate choice rules. The test part is implemented via ASP constraints. In
particular, using weak constraints allows to realize the learning setting of Definition 1,
i.e. learn an automaton with at most N states, for a given N , that minimizes the training
error.

Table 3.2 presents an example of a complete program that may be used with Clingo
for learning an optimal automaton with at most three states. The choice rules in the
“generate” part of the program generate candidate solutions, while the weak constraints
in the “test” part of the program are responsible for dismissing sub-optimal automata.
Finally, the last weak constraint reduces the size of the learnt automaton as much as
possible, by dropping redundant transitions (and states referenced therein). Therefore,
the program in Table 3.2 generates automata with at most three states (and it may
be adapted to any “state budget” N ). Additionally, The learnt automata minimize the
training error as defined in Definition 1, since the weak constraints minimize the sum of
false positive and false negative mistakes.

Table 3.3 illustrates our abductive, ASP-based automata learning technique on a
toy dataset consisting of a single pair of examples, one positive and one negative.
The sequences in these examples consist of initial segments (first ten points) of two
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(a) A training set consisting of two examples.

Positive example: Negative example:

x coords: eeeedcbbbb x coords: eecdbbbbbb

y coords: aabbbcccdd y coords: aabbbbcccc

signal strength: bbbcdghhhhh signal strength: bbbcfghhhh

(b) An optimal answer set generated from the training set and the program in Table 3.2:

transition(q0, x coord(e), q0).transition(q0, strength(d), q1).transition(q1, strength(h), q2).

transition(q1, y coord(c), q1).final(2).

(c) A graphical representation of the corresponding automaton:

q0start q1 q2

x coord(e)

strength(d) strength(h)

y coord(c)

(d) A more compressed automaton learnt from the same training set using extra domain knowl-
edge (see Example 5):

q0start q1

at most(y coord(c))

at least(y coord(d))

Table 3.3: Automata learning example.

actual The sequences in these examples consist of initial segments (first ten points)
of two actual examples from a blockage prediction data set2, which are deliberately
shortened for illustration purposes. Table 3.3 (c) also presents a three-state automaton
that is learnt from this training set, which accepts the positive and rejects the negative
example.

Combining Automata Learning with Reasoning

An important feature of our proposed ASP-based technique is that it allows to integrate
reasoning with arbitrary domain knowledge into the automata learning process. This
is important, since it makes it possible to infer, at learning time, relations between the
various domain features, which are not directly observable in the input data, and use
such relations in the automata construction process. In turn, this may significantly
simplify the learning process and further compress the learnt automata, making them
more interpretable and accessible to domain experts, while potentially increasing their
generalization abilities. We illustrate the case by means of an example.

Example 5. Combining Automata Learning with Reasoning We will use the do-
main of blockage prediction to provide an example of combining automata learning

2https://viwi-dataset.net
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with reasoning. Since the feature values in the domain are real numbers (discretized
into symbols) it is plausible to assume that reasoning with the ordering of these values
may have some merit in terms of compressing the learnt automata. To provide some
intuition, note that a single transition in a learnt automaton may be executed upon the
occurrence of more than one symbols in the alphabet, which, in the representation of
the automaton are treated as a disjunction. For example moving from state q3 to state
q0 in the automaton of Figure 3.2 is possible either after observing a “b” or a “c”. Sim-
ilarly, in the blockage domain, moving from some state qm to another state qn may be
possible after observing multiple different values for some feature, e.g. “a”, “b”, or “c”
for e.g. the user’s (x, y)-coordinates, or the signal strength at some time point, which
correspond to three different transitions in the automaton:

transition(qm, x coord(a), qn). transition(qm, y coord(b), qn).
transition(qm, strength(c), qn).

Since these values (“a”,“b”,“c”) correspond to numerical intervals (i.e. ranges of val-
ues), they are naturally comparable to each other and their lexicographic ordering cor-
responds to the actual ordering of the corresponding value ranges. Therefore, it is pos-
sible to replace x coord(a), x coord(b), x coord(c) with a single predicate at most(c)
which is true whenever a value that is less than or equal to “c” is observed for the user’s
x-coordinate (a similar at least/1 predicate with the obvious meaning may be also de-
fined). The automata learning program in Table 3.2 may be easily modified to take into
account this simple reasoning with the ordering of the observed values. Table 3.3 (d)
shows a automaton that is learnt with such a modification from the toy training set. Ob-
serve that the automaton is simpler and more compressed that the one presented in
Table 3.3 (c), while it still correctly discriminates between the positive and the negative
examples in the training set.

3.4 Preliminary Results

To perform an empirical assessment of our automata learning technique in the telecom-
munications domain, while the actual ARIADNE mobility data were under preparation
we used a publicly available data set as a surrogate. The ViWi (Vision-aided Wireless
communications) data set3 that we used consists of matlab-generated simulations of
blockage incidents involving mobile objects, such as vehicles and static base stations.
To derive a first, proof-of-concept evaluation of our technique we used one scenario
from the ViWi data set, namely the “co-located camera scenario with blocked view”4.
Figure 3.4 illustrates the simulation setting.

It is an outdoor scenario depicting a car driving through a city street (across five dif-
ferent trajectories) with two stationary buses. It involves a single Base Station equipped
with a mmWave antenna and 3 cameras. The BS is set at 5 meters high and in the
middle of the street. The car goes through one of five trajectories, each of which is
90 meters long and has 1000 equally spaced points (0.089 m). Hence, they, all to-
gether, create a 5000-point user grid. A blockage incident occurs when a car moves

3https://viwi-dataset.net/
4https://viwi-dataset.net/scenarios.html
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Figure 3.4: An illustration of the “co-located camera scenario with blocked view” from
the ViWi data set.

in a way that a bus blocks its signal from the base station. The inclusion of cameras
in the simulation is related to the fact that this dataset has been created as a test-bed
for methods that learn to detect blockage incidents using computer vision methods, i.e.
trained models that detect blockages from video feeds (which are supposed to be pro-
vided from mounted traffic inspection cameras). We do not concern ourselves with the
vision aspects of the use-case. Instead, we attempted to learn automata that discrimi-
nate between blockage/non-blockage incidents using the evolution of the car’s position
and signal strength over time, which are also provided in the data set.

As in the blockage-related examples provided in the previous sections of this chap-
ter, the training data consists of “routes”/trajectories that lead to a blockage incident
and others that do not. An example consist of a trajectory, described by the car’s (x, y)-
coordinates over time and its signal strength. We generated a training set consisting
of 500 positive and 1000 negative examples from the car’s trajectories in the data set,
where a positive (resp. negative) example represents a (sub-)trajectory where the car
gets blocked (resp. non-blocked) at least once over its route. Note that in one such
training sub-trajectory several blockage incidents may occur. For instance, in its start-
ing point a training trajectory might already be blocked (i.e. somewhere behind the first
bus), it then gets unblocked as it moves away from the bus and gets blocked again as it
gets behind the second bus. Each example in the data set consists of three sequences
corresponding to three features, the car’s x and y coordinates and its signal strength.
Each sequence in an example has length 100 (i.e. it sequence references values for
the corresponding feature from 100 consecutive time points).

To discretize the numerical data we used the SAX algorithm5, a state-of-the-art tool
for converting numerical sequences into symbolic ones, by associating each value in
the original sequence to a symbol that represents a value range/interval. The gran-
ularity of the discretization (i.e. the number of different symbols that will be used,
and therefore, the length of the value range that corresponds to each symbol) is user-
defined. A larger number of symbols represents a discretization that is closer to the
original numerical sequence (but also, a symbolic sequence that is more complex and
difficult to handle). For this experiment we used an alphabet size (number of different
symbols in the discretization process) of 20.

We compared out ASP-based automata learning technique with two state-of-the-
5https://jmotif.github.io/sax-vsm_site/morea/algorithm/SAX.html
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q0start q1 q2

at most(x coord(f)) at least(x coord(k))

at most(strength(b))

at least(x coord(j)) at most(strength(g))

Figure 3.5: An indicative symbolic automaton learnt with Abductive Automata Learning
from the ViWi data set. This automaton achieves an average F1-score of 0.983 on the
testing set.

art, widely-used in practice automata learning methods, namely RPNI (Regular Posi-
tive/Negative Inference) and EDSM (Evidence-Driven State Merging). Both these al-
gorithms rely on the state-merging techniques for automata learning (see also Section
3.2 for a brief description of the technique), which trades quality/optimality of the learnt
automata for efficiency. Both RPNI and EDSM are implemented in the learnlib toolkit67,
a highly-optimized toolkit for automata learning, containing implementation for several
classical automata induction algorithms, with RPNI and EDSM being the state-of-the-
art. An important disadvantage of both RPNI and EDSM is that, similarly to almost
all existing automata learning techniques, they cannot handle multi-variate sequences.
For this experiment we used each one of the three features in isolation to learn au-
tomata with RPNI and EDSM and report the best results, which were obtained by using
the signal strength feature for training.

The goal was to learn patterns for blockage incidents with each of the three al-
gorithms being compared. For this comparison we used a five-fold cross-validation
process with 80%/20% training/testing splits respectively and measured the F1-scores
of the learnt automata in the testing set, in addition to their size (number of states and
transitions in an automaton), as well as training times for each algorithm being com-
pared. Table 3.4 presents the results in the form of average values for each statistic,
obtained from the cross-validation process.

F1-score on test set # states # transitions Training time (sec)

ASP 0.988 3 6 13.234

RPNI 0.734 17 162 1.332

EDSM 0.702 19 182 0.987

Table 3.4: Table to test captions and labels.

Table 3.4 presents the results from the comparison while Figures 3.5 and 3.6 present
two indicative automata learnt from the ViWi dataset with the ASP-based abductive
automata learning technique and RPNI respectively. The results indicate that our ap-
proach clearly outperforms the state-merging-based ones in terms of predictive accu-
racy, simplicity and interpretability of the learnt patterns. This is due to the fact that the

6https://learnlib.de/
7https://github.com/LearnLib/learnlib
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Figure 3.6: An indicative symbolic automaton learnt with RPNI from the ViWi data set.
This automaton achieves an average F1-score of 0.712 on the testing set.

ASP technique can be guided to learn near-optimal automata, in contrast to RPNI and
EDSM which learn using sub-optimal heuristics. Additionally, the ASP-based technique
incorporates reasoning with domain knowledge into the automata learning process.
This makes it possible to learn symbolic automata, which are much more compres-
sive, expressive and interpretable. In turn, the simplicity of the ASP-learnt patterns
is reflected to their predictive performance, as compared to that of the state-merging
algorithms. The trade-off is that the ASP-based technique is significantly less efficient
than its competitors. This is expected, since as mentioned earlier efficiency is the main
goal of RPNI and EDSM. Improving the efficiency of our proposed approach using in-
cremental and online learning techniques, while preserving comparable quality of the
learnt automata is part of our future work.

3.5 Conclusion and Future Work

There are several points of focus regarding current and future work in ARIADNE. The
two immediate goals are (i) to asses the performance of our automata learning tech-
nique on the actual ARIADNE mobility data, which have recently been made available
and (ii) use the learnt patterns for complex event forecasting with Wayeb, NCSR’s fore-
casting engine outlined in Section 3.2. The latter, in particular, involves the crucial step
of modifying our automata learning technique to make the forecasting performance,
rather than the current recognition/detection performance, the main training objective
that guides the search for high-quality automata patterns. This will allow to learn pat-
terns particularly tailored for forecasting complex events, rather that detecting them a
posteriori.
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Chapter 4

System Level Simulation Model for
Proactive Handover and Efficient
Resource Allocation in D-band
Networks

4.1 Introduction

This chapter focuses on system level simulation and modeling of D-band networks in
realistic environments within the concept of ARIADNE. Particularly, a geographic area
is demonstrated, where static obstacles are placed in predefined coordinates together
with static access points and mobile users. The placement of the access points and
the initial placement of the users are defined by stochastic geometry tools. Then, two
mobility models have been used for the incorporation of time evolution in the simula-
tions and suitable path loss models are applied. The received power of the users is
mapped as function of time and D-band wireless links are identified as LOS, partially
or totally blocked. The composite information can be used for various investigations, as
for example to detect forthcoming blockage incidents before they actually occur. These
blockage forecasts could be exploited for proactive handover, which finally leads to
increasing network’s reliability, as outage events are prevented. Specifically, the gen-
erated data will subsequently be used by AI-based techniques for blockage forecasting
and proactive handover, while they will also be used to assess the efficacy of the re-
source allocation techniques (users-to-access points assignment) in dynamic settings.
In general, the parameters of the simulations can be adjusted in order to demonstrate
several scenarios under ARIADNE use cases. For example, we can assume that all
users in the simulated area move towards a specific point, which is a hotspot (e.g. a
data kiosk – Scenario 2.2 – Deliverable 1.1). Also, we could adjust the dimensions
of the geographic area and the density of the users and the access points, so that
they correspond to an indoor environment (Scenario 2.1 – Deliverable 1.1), to an ur-
ban, suburban or rural environment etc. Moreover, we can demonstrate simpler cases
regarding the mobility of transmitters (Tx) and receivers (Rx), respectively. Such an ex-
ample is the case of outdoor backhaul/fronthaul networks of fixed topology (Use Case
1 – Scenarios 1.1 and 1.2 – Deliverable 1.1).
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4.2 Deployment of Mobility Models

In this section, we describe in detail the mobility models that will be used for the system
level simulations. These are the Pursue Mobility Model and the Obstacle Mobility Model
and they are exploited in the simulations, as they give realistic movement features to
the users.

4.2.1 Pursue Mobility Model

In this model, the member nodes of a group try to catch a target node (logical center)
and finally, the member nodes converge on the target node (Fig. 4.1 [51]). The target
node usually moves according to the Random Waypoint model [51]. However, the
target node is considered to be a stable point in the cases that we will examine. We
make this assumption in order to demonstrate in a realistic way the traffic conditions
around a hotspot (such as a bus station, a mall area etc.).

Figure 4.1: Pursue Mobility Model.

4.2.2 Obstacle Mobility Model

In this model, each node moves around the obstacles of the simulation environment fol-
lowing a recursive process in order to reach its destination (Fig. 4.2 [52]). Specifically,
if there is an unobstructed line connecting the node with the destination point, the node
follows this direct line to get to the desired destination. On the other hand, if the line in-
tersects with an obstacle, the node sets as its next intermediate destination, the vertex
of the obstacle’s edge that is directly visible and closest to the destination and repeats
the same process all over again with starting point its initial position and destination the
chosen vertex. This is repeated until an unobstructed direct line is found between the
node and the current destination. The whole process is recursively executed until the
destination is reached [52].

4.3 Deployed System Level Simulation Model

The system level simulation model which has been developed, consists of the follow-
ing. Firstly, there is a simulated geographic area, which is considered as a square
with dimensions 30m× 30m. Then, we assume the presence of mobile users, who are
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Figure 4.2: Obstacle Mobility Model.

modeled as points coming from a uniform Poisson Point Process (PPP) with density
λuser. Secondly, four obstacles are set in the area, which are modeled as rectangular
parallelepipeds with dimensions 5m × 4m × 5m. They are located uniformly and sym-
metrically in the simulated area. Finally, there is a number of access points, which also
come from another independent and uniform PPP with density λAP . They are placed
at a height of 2m from the ground.

In order to involve time evolution in the simulations and describe the mobility of the
users in a realistic way, we exploit the two mobility models that were described in the
previous section, namely the Pursue Mobility Model and the Obstacle Mobility Model.
In the Pursue Mobility Model, the member nodes of a group of mobile nodes try to catch
a target− point. Specifically, they converge on this target− point, which is assumed to
be stable (e.g. a hotspot). In the Obstacle Mobility Model, the movement of a mobile
node takes into account the obstacles of the environment. These affect the movement
pattern of the nodes. Specifically, a node has to change its trajectory when encounters
an obstacle. A simulation session of duration T consists of a number of successive
time slots. Each of them has duration dt. The velocity V of a user is constant during a
specific time slot and its value is a random variable, which is uniformly distributed over
the interval [0, Vmax]. Vmax is the maximum allowable value of user’s velocity. Thus,
the displacement dS of a user during a time slot is: dS = V × dt. The direction of
dS is determined by the relevant mobility models. Such examples are depicted in Fig.
4.3, 4.4 and 4.5, while the corresponding simulation parameters are shown in Table
4.1. Specifically, the top view of the simulation area is depicted and users’ trajectories
are represented by successive dots of a specific color for each user. The biggest dot
corresponds to the first time slot of the simulation, while the smallest one corresponds
to the last time slot.

It is noted that the values of the above parameters can change accordingly, in order
to study several ARIADNE use cases and demonstrate their respective scenarios, such
as indoor or outdoor environments, heavy traffic conditions, P2P backhaul/fronthaul
links, V2V and V2X links etc. Moreover, the use of uniform PPPs (stochastic geom-
etry) for the access points and users’ initial place provides us with an analytical tool
towards the performance evaluation of D-band networks, which ensures a great de-
gree of randomness in our study, despite the deterministic placement of the obstacles
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in the simulation field.
Finally, we have to mention that each mobile user is allocated to the nearest LOS

access point during the first time slot of the simulation and remains allocated to the
same access point until the end of the simulation, independently of the condition of the
link between user and serving access point (LOS or not) during the next time slots. Of
course, this policy can be modified depending on the scope of the simulation scenarios.

Table 4.1: Simulation parameters for Fig. 4.3, 4.4, 4.5.

Figure 4.3 Figure 4.4 Figure 4.5

λuser(m
−2) 0.002 0.005 0.015

λAP (m−2) 0.005 0.01 0.001

target− point coordinates (m) (−2, 3) (0, 0) (−5,−10)

dt(sec) 0.25 0.5 0.1

T (sec) 100 150 80

Vmax(m/sec) 0.4 0.5 0.6

Figure 4.3: Indicative Simulation: λuser = 0.002m−2, λAP = 0.005m−2, target − point =
(−2, 3), dt = 0.25sec, T = 100sec and Vmax = 0.4m/sec.
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Figure 4.4: Indicative Simulation: λuser = 0.005m−2, λAP = 0.01m−2, target − point =
(0, 0), dt = 0.5sec, T = 150sec and Vmax = 0.5m/sec.

Figure 4.5: Indicative Simulation: λuser = 0.015m−2, λAP = 0.001m−2, target − point =
(−5,−10), dt = 0.1sec, T = 80sec and Vmax = 0.6m/sec.
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4.4 Path Loss Modeling

The next stage is the estimation of the received power of each user from every access
point, for every time slot of the simulation. The goal is the mapping of the received
power of a user from every access point as function of the time. For that purpose, we
make use of Friis equation:

PR = PT +GT +GR + 20log
λ

4π × d0

− 10n× log d
d0

(4.1)

where PR is the received power (in dBm), PT is the transmitted power (in dBm), GT and
GR are the gains of the Tx and Rx antennas, respectively (in dBi), λ is the free space
wavelength (in m), n is the Path Loss Exponent (PLE), d0 is the reference distance (in
m – usually d0 = 1m) and d is the distance between Tx and Rx (in m).

The challenge of using this equation, is the selection of the appropriate value of Path
Loss Exponent for every case. Finally, for an urban microcell or a small-cell environ-
ment at 142GHz, we can choose the PLE values to be [53]: n = 2.1 for LOS links (Non
Blocked Channel) and n = 3.1 or 3.6 for Non-LOS links (Partially Blocked Channel). If
the wireless channel between a user and an access point is totally blocked, we assume
the received power of a user to be equal to the default noise level.

4.5 Partial and Total Blocking of users

A channel is considered as partially blocked, if the line sector between a user and an
access point is close to a vertex of an obstacle, that is r ≤

√
dλ
4

, where r is the distance
between the line sector and the vertex. Then,we distinguish two cases:

i) The line sector does not intersect with the obstacle.
ii) The line sector intersects with the obstacle and the intersected sides of the obsta-

cle are adjacent.
In above case i) we choose the PLE to be n = 3.1, while in case ii) we set the PLE to

be n = 3.6. It is noted that the distance
√

dλ
4

is the maximum radius of the first Fresnel
zone, which corresponds to the middle point of the line sector between the user and
the access point. However, in the above approach we assume that condition r >

√
dλ
4

has to be verified along the whole line sector in order to consider the channel as LOS.
This assumption is simpler than the required condition of Fresnel’s Law, where the
unobstructed area has to be an ellipsoidal and hence, it is easier to be implemented in
the simulations. Nevertheless, it is a stricter condition.

In any other case, where the line sector intersects with an obstacle, the channel is
considered as totally blocked, while it is considered as LOS, if it is free of obstacles
(n = 2.1). All of the above cases are depicted in Fig. 4.6 for a specific time slot.

Finally, we have to mention the following assumption that has been made regarding
the wireless channel blocking. Specifically, if the line sector between a user and an
access point is close to two vertices of two different obstacles (r ≤

√
dλ
4

), respectively,
then the wireless link is considered to be totally blocked (Fig. 4.7). Therefore, the
received power of the user is equal to the default noise level.
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Figure 4.6: LOS, partially blocked and totally blocked wireless links.

Figure 4.7: Totally blocked wireless link due to the partial blockage caused by two
vertices of two different obstacles.

4.6 Received Power Data

An indicative simulated scenario of user’s received power is depicted in Fig. 4.8 and
Fig. 4.9. Specifically, the top view of the simulated geographic area is depicted in Fig.
4.8, where there are three access points and one user. Time slot duration is dt = 0.1sec.
The blue line depicts user’s trajectory. The dot on the left side of the line corresponds
to the initial place of the user at the first time slot of the simulation. The power that the
user receives from every access point as function of time, is mapped in Fig. 4.9. The
carrier frequency is considered as f = 142GHz.

Moreover, in this scenario we assume that the transmitted power is PT = 0dBm
and the gains of the user and the access points antennas are GT = GR = 27dBi.
The received power from Access Point 1 (blue curve) is approximately constant around
−40dBm for every time slot of the simulation, as the link between user and Access
Point 1 is always LOS. On the other hand, the received power from Access Point 3
(yellow curve) is −130dBm (which is assumed to be the default noise level) for the
whole duration of the simulation, as this link is totally blocked for every time slot of the

Security: Public Page 55



H2020-2018-2020, ICT – ARIADNE
D4.2: Intelligent D-band wireless systems

and networks initial designs

simulation.
However, the most interesting case is the time evolution of the received power from

Access Point 2 (orange curve). During the first time slots of the simulation, the link is
LOS. In the middle of the simulation, the link gets partially blocked, as there is an abrupt
decrease of the received power. Finally, the specific link becomes totally blocked, as
the received power is equal to the default noise level during the last time slots of the
simulation.

Figure 4.8: Indicative Simulation for three access points and one user.

Figure 4.9: Received Power vs Time (three access points, one user).
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Another interesting example of a user’s received power is the following. Specifically,
the top view of the simulated geographic area is depicted in Fig. 4.10, where there are
two access points and one user. In this case, the time slot duration is dt = 0.5sec. The
black line depicts user’s trajectory. This line is not straight, as it was in the previous
example, because there is an obstacle between the initial place of the user and his
destination. The dot on the right side of the line depicts the initial place of the user at
the first time slot of the simulation. The power that user receives from every access
point as function of time is mapped in Fig. 4.11.

In this scenario, we assume again that the carrier frequency is f = 142GHz, the
transmitted power is PT = 0dBm and both gains of the user and the access points
antennas are GT = GR = 27dBi. The received power from Access Point 1 (blue
curve) fluctuates around −40dBm for the first time slots of the simulation, as the link
between user and the specific access point is LOS during this time interval. However,
the wireless link gets totally blocked in an abrupt way during the last time slots of the
simulation. Specifically, the received power from this access point becomes equal to
−155dBm, which is the default noise level in this example. This transition, where partial
blockage of the link does not occur, could be explained by the longer duration of the
time slots (dt = 0.5sec) compared with the previous simulation (where dt = 0.1sec), as
well as the geometric features of user’s trajectory.

The received power from Access Point 2 (orange curve) is equal to the default noise
level during the first time slots of the simulation (−155dBm), as this link is totally blocked
during these time slots, but becomes LOS until the end of the simulation. The transition
from a totally blocked link to a LOS link is abrupt again for the same reasons (longer
time slot and geometric features of user’s trajectory).

In conclusion, the transitions from the LOS state to the totally blocked state of a link
can happen either in a smooth manner or in a more sharp way. In the case of the
smooth transition, the wireless link is partially blocked during some time slots between
the LOS and the totally blocked state, while in the case of the abrupt transition, there is
not any time slot where the channel is partially blocked.

4.7 Conclusions

In this chapter, we examined proactive handover methods for blockage avoidance that
are applied to D-band communications. We have described a system level simulation
model, which incorporates the presence of rectangular parallelepiped obstacles in the
simulation area, time evolution by using appropriate mobility models for the users and
mapping of the received power of a user as function of time. Our main purpose is
the simulation and the forecasting of blockage incidents for proactive handover and the
efficient allocation of D-band network resources.
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Figure 4.10: Indicative Simulation for two access points and one user.

Figure 4.11: Received Power vs Time (two access points, one user).
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Chapter 5

Model-Driven Deep Learning Based
Channel Estimation and Feedback for
High-Frequency Massive Hybrid MIMO
Systems

5.1 Introduction

Communication at high frequencies (millimeter-wave, sub-terahertz and terahertz) has
been widely recognized as a key technology in future wireless communication sys-
tems, since the abundant bandwidth resources can significantly increase the through-
put [54, 55]. Moreover, to mitigate the severe propagation losses in the high fre-
quencies, massive multiple-input multiple-output (MIMO) is usually adopted to per-
form beamforming [56,57]. However, the fully-digital massive MIMO architecture gives
rise to an unaffordable hardware cost and power consumption, where a dedicated ra-
dio frequency (RF) chain is required for each antenna. In order to circumvent the
technical hurdle and facilitate the deployment of massive MIMO systems at high fre-
quency in practice, the phase shift network (PSN) based hybrid MIMO architecture has
been widely adopted to achieve a large array gain with a much smaller number of RF
chains [58–60].

To fully capitalize on the large spatial degrees of freedom in massive MIMO sys-
tems at high frequency, channel state information (CSI) at the BS is essential, since
beamforming, signal detection, and interference alignment heavily rely on accurate
CSI at the BS [61]. As for time-division duplexing (TDD) systems, estimating the high-
dimensional uplink massive MIMO channels at high frequencies from limited number
of RF chains at the BS suffers from an excessively high pilot overhead [62]. As for
frequency-division duplexing (FDD) systems, the downlink high-dimensional channel is
first obtained at the users using very few RF chains, and is then fed back to the BS. In
this case, the prohibitively high channel estimation and feedback overhead problem is
more severe [63].
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5.1.1 Related Work

To this end, by exploiting the sparsity of massive MIMO channels in the angle-domain
and/or delay-domain, several low overhead channel estimation and feedback solutions
have been proposed [61–67]. Specifically, by exploiting the temporal correlation of
time-varying channels, the authors of [61] proposed a differential channel estimation
and feedback scheme for FDD massive MIMO systems with reduced overhead, and a
structured compressive sampling matching pursuit (S-CoSaMP) algorithm to acquire a
reliable CSI at the BS. In [63], the authors proposed a spatially common sparsity based
adaptive channel estimation and feedback scheme for FDD massive MIMO systems,
which adapted the training overhead and pilot design to reliably estimate and feed back
the downlink CSI with reduced overhead. Moreover, by introducing an enhanced New-
tonized orthogonal matching pursuit (eNOMP) algorithm, the authors of [64] proposed
an efficient downlink channel reconstruction-based transceiver for FDD massive MIMO
systems. However, these schemes [61,63,64] were mainly proposed for low-frequency
massive MIMO systems using a fully-digital array.

As for the hybrid MIMO at high frequencies, by exploiting the channel sparsity in
both angle and delay domains, a closed-loop sparse channel estimation scheme for
TDD systems was proposed in [65], which utilized ESPRIT-type algorithms to acquire
super-resolution estimates of the angle of arrivals/departures (AoAs/AoDs) and of the
delays of multipath components with low overhead. In [62], two high-resolution chan-
nel estimation schemes based on the ESPRIT algorithm were proposed for broadband
massive MIMO systems at high frequencies. By exploiting the high frequency channels’
sparsity, the authors of [66] proposed a compressive sensing (CS) greedy algorithm
based channel estimation solution for reducing the channel estimation overhead. Addi-
tionally, by exploiting the 3-D clustered structure exhibited in the virtual AoA-AoD-delay
domain, an approximate message passing (AMP) with the nearest neighbor pattern
learning algorithm was proposed to estimate the broadband massive MIMO-OFDM
channels in [67]. Although the overhead is reduced, the computational complexity of
ESPRIT techniques [62, 65] and greedy algorithms [66] can be prohibitively high due
to the matrix inversion and singular value decomposition (SVD) operations. Besides,
although AMP algorithms based solutions [67] can reduce the computational complex-
ity, they heavily rely on a priori models, which would lead to performance degradation
since a priori models may not always be consistent with the actual systems.

5.1.2 Motivations

Recently, the successful application of deep learning in various fields, particularly in
computer science, has gained major attention in the communication community, and
has promoted an increasing interest in applying it to address communication and sig-
nal processing problems [68–71]. The deep learning based intelligent communication
paradigm has attained manifold accomplishments, including channel coding [72], ran-
dom access [73], beamforming design [74–78] activity and signal detection [79, 80],
autoencoder-based end-to-end communication system [81], CSI feedback [82–84], and
channel estimation [60, 85, 86], etc. To be specific, pure data-driven deep learning
based solutions often employ deep neural networks (DNNs), including fully-connected
neural networks and/or convolutional neural networks (CNNs), as a black box to de-
sign communication signal processing modules without any a priori model information.
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Moreover, a large amount of training data samples are required to optimize the neural
network through a customized loss function and learning strategy.

In particular, in order to overcome the high-computational complexity and fully exploit
the spatial information, the authors of [75] proposed a deep-learning-enabled massive
MIMO framework for effective hybrid precoding for high frequencies, in which each
selection of precoders for obtaining the optimized decoder is regarded as a mapping
relation in the DNN. In addition, the authors of [77] proposed a DNN-based approach
for channel sensing and downlink hybrid analog-digital beamforming, which was gener-
alizable for any numbers of users by decomposing the deep learning architecture into
multiple parallel independent single-user DNNs. By considering the multiuser channel
estimation and feedback problem as a distributed source coding problem, the authors
of [78] proposed a joint design of pilots and a novel DNN architecture, which mapped
the feedback bits from all the users directly into the precoding matrix at the BS. By ex-
ploiting an unsupervised ML model, i.e., an autoencoder, the authors of [76] presented
a linear autoencoder-based beamformer and combiner design, which maximizes the
achievable rates over a high frequency channel. Moreover, in order to address the
overwhelming feedback overhead of FDD massive MIMO systems, the authors of [82]
proposed a CS-ReNet framework, where the CSI was first compressed at the users
based on CS methods and then reconstructed at the BS using a deep learning-based
recovery solver. However, in practical scenarios, there exists various interference and
non-linear effects. Therefore, the authors of [84] designed a deep learning-based de-
noising network, called DNNet, to improve the performance and robustness of channel
feedback. Additionally, by exploiting the spatial, temporal, and frequency correlations,
the authors of [60] employed a CNN to address the channel estimation problem for
massive hybrid MIMO systems at high frequencies. However, the performance of those
data-driven approaches heavily depends on the quantity and quality of the training data
samples, but good data sets are usually difficult to be obtained in practice and practical
issues such as training over-fitting could degrade the capability of the system to gen-
eralize. In addition, data-driven approaches lack interpretability and trustability that are
major strengths of model-driven signal processing. Moreover, compared with conven-
tional model-based methods, model-driven approaches have better denoising capabil-
ities by utilizing the powerful data processing capabilities and denoising capabilities of
neural networks.

Therefore, different from pure data-driven and conventional model-based approa-
ches, model-driven deep learning (MDDL)-based approaches construct the network
structure by exploiting a priori knowledge from known physical mechanisms, such as
well-developed channel models and transmission protocols. Note that the MDDL-
based approaches retain some of the advantages of conventional model-based iter-
ative methods, which includes exploiting some a priori information to be trained with
fewer trainable parameters and with less data samples, e.g., the structured sparsity
of the high frequency channels can be exploited. Moreover, they can further retain
the learning ability of deep learning methods and avoid the performance degradation
caused by the mismatch between the predetermined parameters (based on an as-
sumed model) and the true optimal parameters (based on empirical data samples).
By leveraging some a priori information, model-driven methods require fewer parame-
ters to be learned and less samples for training as compared to pure data-driven deep
learning solutions [87–91]. Specifically, the authors of [88] proposed an MDDL-based
downlink channel reconstruction scheme for FDD massive MIMO systems, where a

Security: Public Page 61



H2020-2018-2020, ICT – ARIADNE
D4.2: Intelligent D-band wireless systems

and networks initial designs

powerful neural network, named You Only Look Once (YOLO), was introduced to en-
able a rapid estimation process of the model parameters. Moreover, [91] proposed a
novel AMP-based network with deep residual learning, referred to as LampResNet, to
estimate the beamspace channel for massive MIMO systems at high frequencies.

5.1.3 Our Contributions

This chapter proposes an MDDL-based channel estimation and feedback scheme for
wideband massive hybrid MIMO systems at high frequencies, where the angle-delay
domain channels’ sparsity is exploited for reducing the overhead. First, we consider
the uplink channel estimation for TDD systems. To reduce the uplink pilot overhead for
estimating the high-dimensional channels from a limited number of RF chains at the
BS, we propose to jointly train the PSN and the channel estimator as an auto-encoder.
Particularly, by learning the integrated trainable parameters from data samples and ex-
ploiting the channels’ structured sparsity from an a priori model, the proposed multiple-
measurement-vectors learned approximate message passing (MMV-LAMP) network
with the devised redundant dictionary can jointly recover multiple subcarriers’ channels
with significantly enhanced performance. Moreover, we consider the downlink channel
estimation and feedback for FDD systems. Similarly, the pilots at the BS and channel
estimator at the users can be jointly trained as an encoder and a decoder, respectively.
Besides, to further reduce the channel feedback overhead, only the received pilots on
part of the subcarriers are fed back to the BS, which can exploit the MMV-LAMP net-
work to reconstruct the spatial-frequency channel matrix. Simulations are conducted
to demonstrate the effectiveness of the proposed MDDL-based channel estimation and
feedback scheme over the conventional approaches.

The main contributions of this chapter are summarized as follows:

• Operations in the complex domain are well supported by most deep learning
frameworks. However, the beamforming/combining matrix is a complex-valued
matrix and satisfies the constant modulus constraint due to the RF PSN adopted
in the hybrid MIMO architecture. To this end, we design a novel fully-connected
channel compression network (CCN) as the encoder to compress the high di-
mensional channels, and the network parameters are defined as the real-valued
phases of the PSN (i.e., beamforming/combining matrix in channel estimation).

• To reliably reconstruct the channels from the compressed measurements, we
propose a channel reconstruction network (CRN) based on a developed MMV-
LAMP network with the devised redundant dictionary as the decoder, which can
exploit the a priori model and learn the optimal parameters from data to jointly
recover multiple subcarriers’ channels with significantly enhanced performance.

• To effectively estimate the channels from compressed feedback signals, a feed-
back based channel reconstruction network (FCRN) is proposed. The FCRN con-
sists of a feedback reconstruction sub-network (FRSN) and a CRN. The FRSN is
based on the MMV-LAMP network and can exploit the delay-domain sparsity of
the channels to reliably reconstruct the compressed channel.

• Due to the mismatch between continuous AoAs/AoDs and the limited angle reso-
lution of spatial-angular transform matrix, the resulted power leakage can weaken
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the channel sparsity represented in the angle domain. Hence, by quantizing the
angles with a finer resolution, we design a redundant dictionary to further improve
the sparse channel estimation performance.

• To evaluate the superiority of the proposed solution that jointly trains the pilots
and channel estimator, we further consider scenarios with fixed scattering envi-
ronments. Simulation results verify that, by learning the characteristics of the data
samples with fixed scattering, the optimized CCN and MMV-LAMP network can
well match the channel environments with improved performance.

Notations: Throughout this chapter, scalar variables are denoted by normal-face
letters, while boldface lower and upper-case symbols denote column vectors and ma-
trices, respectively. Superscripts (·)T, (·)∗ and (·)H denote the transpose, conjugate and
Hermitian transpose operators, respectively. ‖a‖0 and ‖A‖F denote the `0-norm of a
and the Frobenius norm of A, respectively. [a]m and [A]m,n are the m-th element of a
and the m-th row and the n-th colomn element of A, respectively. A(m, :) and A(:, n)
denote the m-th row vector and the n-th colomn vector of A, respectively. A|Ω denotes
a sub-matrix by selecting the rows of A according to the ordered set Ω and {Ω}m is
the m-th element of the set Ω. ej[Ξ] denotes a complex matrix with its element being[
ej[Ξ]

]
m,n

= ej[Ξ]m,n, and Ξ is a real matrix. Finally, ∂(·) is the first-order partial derivative

operation.

5.2 System Model

Consider a massive MIMO system that operates at high frequencies and uses hybrid
beamforming, where the BS is equipped with a uniform linear array (ULA) and com-
prises NBS antennas and NRF RF chains, and the U users have a single-antenna. At
the BS, the PSN is employed to connect a large number of antennas with a much fewer
number of RF chains (i.e., NBS � NRF), and orthogonal frequency division multiplexing
(OFDM) with K subcarriers is adopted to combat the frequency selective fading of the
high frequency channels.

5.2.1 Uplink Channel Estimation for TDD Systems

Firstly, we consider the uplink channel estimation for TDD systems. The uplink channel
estimation stage includes Q OFDM symbols (i.e., Q time slots) dedicated for channel
estimation. For a certain user1, in order to estimate the k-th subcarrier’s channel, the
received baseband signal vector y′UL [k, q] ∈ CNRF×1 at the BS in the q-th time slot can
be expressed as

y′UL [k, q] = FH
UL [q] hUL [k]x [k, q] + n̄′UL [k, q] , (5.1)

where 1 ≤ q ≤ Q, 1 ≤ k ≤ K, FUL [q] ∈ CNBS×NRF denotes the uplink combining matrix
at the BS, hUL [k] ∈ CNBS×1 is the uplink k-th subcarrier channel, x [k, q] ∈ C is the

1Consider the uplink multi-user channel estimation, if U users adopt mutually orthogonal pilot signals,
the pilot signals associated with different users can be distinguished and then respectively processed.
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transmitted pilot symbol, and n̄′UL [k, q] ∼ CN (0, σ2
nINRF) is the effective noise modeled

at the receiver (front-end) level.
Then, the received baseband signal is post-processed by multiplying it by x∗ [k, q],

i.e.,

yUL [k, q] = y′UL [k, q]x∗ [k, q] = FH
UL [q] hUL [k] + nUL [k, q] , (5.2)

where we assume that x [k, q]x∗ [k, q] = 1 and nUL [k, q] = n̄′UL [k, q]x∗ [k, q]. Note
that, due to the constant modulus constraint of the adopted fully-connected RF PSN
at the BS, the uplink combining matrix FUL [q], ∀q, can be expressed as

[
FUL [q]

]
m,n

=
1√
NBS

ej[ΞUL]m,n for 1 ≤ m ≤ NBS, 1 ≤ n ≤ NRF, and [ΞUL]m,n denotes the phase value con-

necting the m-th antenna and the n-th RF chain2. By collecting yUL [k, q] for 1 ≤ q ≤ Q
together, the aggregate received signals yUL [k] ∈ CM×1 (M = QNRF) can be written as

yUL [k] = FH
ULhUL [k] + nUL [k] , (5.3)

where yUL [k] =
[
yT

UL [k, 1] , · · · ,yT
UL [k,Q]

]T, FUL =
[
FUL [1] , · · · ,FUL [Q]

]
∈ CNBS×M ,

and nUL [k] =
[
nT

UL [k, 1] , · · · ,nT
UL [k,Q]

]T ∈ CM×1. Finally, by stacking yUL [k] from all
subcarriers, the received signals yUL [k] for 1 ≤ k ≤ K can be further expressed as

YUL = FH
ULH

sf
UL + NUL, (5.4)

where YUL =
[
yUL [1] , · · · ,yUL [K]

]
∈ CM×K , Hsf

UL =
[
hUL [1] , · · · ,hUL [K]

]
∈ CNBS×K

denotes the uplink spatial-frequency domain channel matrix, and have introduced the
notation NUL =

[
nUL [1] , · · · ,nUL [K]

]
∈ CM×K .

5.2.2 Downlink Channel Estimation and Feedback for FDD Sys-
tems

Moreover, we consider the downlink channel estimation and feedback for FDD sys-
tems. Specifically, the downlink pilot signals transmitted by the BS can be denoted as
fDL [q] s [k, q] ∈ CNBS×1 for 1 ≤ q ≤ Q, where fDL [q] is the RF pilot signal and s [k, q]
is the baseband pilot signal. Mathematically, the received signal in the q-th time slot
associated with the k-th subcarrier at the user can be written as

y′DL [k, q] = hT
DL [k] fDL [q] s [k, q] + n̄DL [k, q] , (5.5)

where hDL [k] ∈ CNBS×1 is the downlink k-th subcarrier’s channel, and n̄DL [k, q] is the
complex noise. Similar to (5.2), the received signal can be further post-processed to
obtain

yDL [k, q] = y′DL [k, q] s∗ [k, q] = hT
DL [k] fDL [q] + nDL [k, q] , (5.6)

2Note that changing the phase values of the PSN does not require a re-synchronization of the whole
system. This is because: i) The phase values of the phase shifts will be changed in the guard interval
before each pilot OFDM symbol; ii) The synchronization of frame and symbol can be obtained based on
the preambles transmitted before the pilot symbols; iii) When to adjust the phase shifts can be exactly
calculated according to the synchronization information and the predefined signal frame structure, and
the adjustment of the phase shifts can be controlled according to the system clock.
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where we assume that s [k, q] s∗ [k, q] = 1 and nDL [k, q] = n̄DL [k, q] s∗ [k, q]. Similarly,
due to the constant modulus constraint of the adopted RF PSN, the RF pilot signal
fDL [q], ∀q, can be expressed as

[
fDL [q]

]
m

= 1√
NBS

ej[ΞDL]m for 1 ≤ m ≤ NBS, and [ΞDL]m

denotes the phase value connecting the m-th antenna and the activated RF chain. By
collecting the received signals from Q time slots, the aggregate received signals can
be expressed as

yDL [k] = FT
DLhDL [k] + nDL [k] , (5.7)

where yDL [k] =
[
yDL [k, 1] , · · · , yDL [k,Q]

]T ∈ CQ×1, FDL =
[
fDL [1] , · · · , fDL [Q]

]
∈ CNBS×Q,

and nDL [k] =
[
nDL [k, 1] , · · · , nDL [k,Q]

]T ∈ CQ×1. Similar to (5.4), we can collect yDL [k]
for 1 ≤ k ≤ K from K subcarriers to obtain

YDL = FT
DLH

sf
DL + NDL, (5.8)

where Hsf
DL =

[
hDL [1] , · · · ,hDL [K]

]
∈ CNBS×K denotes the downlink spatial-frequency

domain channel matrix, YDL =
[
yDL [1] , · · · ,yDL [K]

]
∈ CQ×K , and we introduce the

notation NDL =
[
nDL [1] , · · · ,nDL [K]

]
∈ CQ×K .

5.2.3 Channel Model

According to typical high frequency channel models [54, 60, 62, 63, 65], the downlink
delay-domain continuous channel vector hDL(τ) ∈ CNBS×1 can be expressed as

hDL(τ) =

√
NBS

L

L∑
l=1

βlp(τ − τl)a(ϕl), (5.9)

where βl ∼ CN (0, σ2
α) and τl denote the propagation gain and delay corresponding

to the l-th path, respectively, p(τ) is the pulse shaping filter, and ϕl is the angle-of-
departure (AoD) of the l-th path at the BS. Moreover, the frequency-domain channel
hDL [k] at the k-th subcarrier can be expressed as

hDL [k] =

√
NBS

L

L∑
l=1

βle
−j 2πkfsτl

K a(ϕl), (5.10)

where fs is the system sampling rate.
Since the BS is equipped with an ULA, the corresponding array steering vector

a(θ) ∈ CNBS×1 can be written as

a(θ) =
1√
NBS

[
1, e−j 2πd

λ
sin(θ), · · · , e−j 2πd

λ
(NBS−1) sin(θ)

]T
, (5.11)

where λ is the carrier wavelength, and d is the adjacent antenna spacing usually satis-
fying d = λ/2.

5.3 MDDL-Based TDD Uplink Channel Estimation

In this section, we first propose an improved frame structure design for optimizing the
channel estimation duration. Secondly, we propose to jointly train the RF PSN and the
channel estimator as an auto-encoder. Finally, we develop an MMV-LAMP network,
which can both exploit the structured sparsity from an a priori model and adaptively
learn the trainable parameters from the data samples.
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5.3.1 The Proposed Transmit Frame Structure Design

The proposed frame structure is illustrated in Fig. 5.1, where the cyclic prefix (CP)-
OFDM is employed to combat the time dispersive channels and the time-frequency
radio resources can be divided into multiple resource elements to convey the pilot sig-
nals and payload data. Specifically, a frame comprising T time slots is divided into
two phases in the time domain, where the first Q time slots (i.e., pilot phase) are used
to transmit pilot signals and the remaining (T − Q) time slots (i.e., data transmission
phase) are reserved only for payload data transmission. In the pilot phase, we denote
the OFDM’s DFT length as PL = Ncp, where Ncp is the length of CP. Therefore, the sub-
carrier spacing is Bs/PL and each CP-OFDM symbol duration is (Ncp + PL)/Bs, where
Bs is the system bandwidth. On the other hand, in the data transmission phase, we
consider the OFDM symbol’s DFT length is DL � PL and thus each CP-OFDM symbol
duration is (Ncp +DL)/Bs.

5.3.2 The Developed MMV-LAMP Network

In this section, we will detail the developed MMV-LAMP network. Without loss of gen-
erality, we consider a typical MMV CS problem

Y = AX + N, (5.12)

where Y ∈ CM×K is a noisy measurement, A ∈ CM×N is a measurement matrix,
X ∈ CN×K is a sparse matrix whose columns

{
X(:, i)

}K
i=1

share a common sparsity,
and N ∈ CM×K is the additive white Gaussian noise (AWGN).

To solve the MMV CS problem in (5.12) efficiently, the developed MMV-LAMP net-
work has two features: i) it fully exploits an a priori model, i.e., the structured sparsity of
X; ii) by integrating the trainable parameters into the unfolded iterations of conventional
AMP algorithms, it can adaptively learn and optimize the network from data samples.
Specifically, as for the t-th layer (1 ≤ t ≤ T ) of the developed MMV-LAMP network, the
key procedure includes

Rt = X̂t−1 + BVt−1, (5.13a)

X̂t = η(Rt;θ, σt), (5.13b)

Vt = Y −AX̂t + btVt−1, (5.13c)

where V0 = Y, X̂0 = 0, and

σt =
1√
MK

‖Vt−1‖F , (5.14)

btI =
1

M

N∑
j=1

∂
[
η(Rt;θ, σt)

]
j

∂
[
Rt(j, :)

] . (5.15)

Note that, the residual Vt in (5.13c) includes the “Onsager correction” term btVt−1,
which is introduced into the conventional AMP algorithms to accelerate the conver-
gence [89]. Moreover, the shrinkage function η(·; ·) can be expressed as[

η(Rt;θ, σt)
]
j

=
rt,j

πt

[
1 + exp(ψt −

rH
t,jrt,j

2σ2
t πt

)

] , (5.16)
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Figure 5.1: The proposed frame structure for the communication transmission.

where rt,j = Rt(j, :) denotes the j-th row of the Rt, πt and ψt are respectively given by

πt = 1 +
σ2
t

θ1

, (5.17)

ψt = K log(1 +
θ1

σ2
t

) + θ2. (5.18)

Note that, different from the learned denoising-based approximate message passing
(LDAMP) network [36], where the authors replaced the denoiser module Dσ̂l(·) in the
DAMP algorithm with the denoising convolutional neural network (DnCNN), we derive
the shrinkage function η(·; ·) in detail, which plays the role of the nonlinear activation
function in deep learning. Moreover, instead of processing the element r in the ex-
isting MDDL-based scheme [89–92], the developed MMV-LAMP network processes
the row vector rj for 1 ≤ j ≤ N by fully exploiting the structured sparsity of X from
the a priori model. The derivation of the developed MMV-LAMP network is shown in
Appendix. Additionally, in order to avoid the performance degradation caused by the
mismatch between the continuous angles and the discrete dictionary, we integrate the
redundant dictionary into the CRN (i.e., the decoder) to improve the channel estimation
performance.

Fig. 5.2 illustrates the t-th layer architecture of the developed MMV-LAMP network.
In Fig. 5.2, the inputs are X̂t−1 ∈ CN×K , Vt−1 ∈ CM×K , and Y ∈ CM×K , where X̂t−1 and
Vt−1 are the outputs of the previous (t− 1)-th layer, and Y is the noisy measurement in
(5.12). Moreover, at the network training stage, we define B ∈ CN×M and θ = {θ1, θ2}
as the trainable parameters of the MMV-LAMP network, which are identical for all T
layers.

5.3.3 MMV-LAMP Network Based Uplink Channel Estimation

The block diagram of the proposed MMV-LAMP network based uplink channel esti-
mation scheme is depicted in Fig. 5.3, which contains the CCN and CRN. The CCN
corresponds to the combining matrix FH

UL (encoder) in (5.4), and the CRN corresponds
to the channel estimator (decoder) at the BS. Specifically, the input and output of the
CCN are the uplink spatial-frequency domain channel matrix Hsf

UL and the noiseless pi-
lot signals received at the BS. Note that the parameters of the CCN {ΞUL} corresponds
to the phase values of the combining matrix FH

UL in (5.4). Moreover, the CRN consists of
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B A

Figure 5.2: The t-th layer architecture of the developed MMV-LAMP network with the
trainable parameters {B,θ}.

Figure 5.3: The block diagram of the proposed MDDL-based uplink channel estimation
solution, which includes a CCN and an MMV-LAMP network based CRN.

T layers and each has the same network structure and trainable parameters {BUL,θUL}
as shown in Fig. 5.2, whose output is the estimated angle-frequency domain channel
matrix Ĥaf

UL. At the offline training stage, we jointly train the overall network parameters
{ΞUL,BUL,θUL} as an auto-encoder in an end-to-end approach. Finally, the estimated
spatial-frequency domain channel matrix Ĥsf

UL can be obtained by multiplying a devised
redundant dictionary matrix.

Fully-Connected CCN

Consider the formula YUL = FH
ULH

sf
UL + NUL in (5.4), in order to mimic the linear com-

pressibility process of high-dimensional channels, the combining matrix FUL can be
well modeled as a CCN realized by a fully-connected layer without biases and a nonlin-
ear activation function. Note that the combining matrix FUL is a complex-valued matrix
and satisfies the constant modulus constraint due to the RF PSN adopted in the hybrid
MIMO architecture, and the expression of the combining matrix FUL is given by

FUL =
1√
NBS

exp(jΞUL) =
1√
NBS

[
cos(ΞUL) + j sin(ΞUL)

]
, (5.19)

where j =
√
−1 and [ΞUL]m,n ∈ [0, 2π). As it is well known that complex-valued outputs

are not well supported by most deep learning frameworks (e.g., Tensorflow, Pytorch),
it would be difficult to directly train the complex-valued combining matrix FUL. Hence,
for the fully-connected CCN, we choose to train the real-valued phases of PSN {ΞUL},
in other words, we define the real-valued phases of PSN as the real-valued trainable
parameters of the fully-connected CCN. Moreover, the structure of the proposed fully-
connected CCN is shown in Fig. 5.4, where the trainable parameter of the CCN is
{ΞUL} and the corresponding weight matrix of the CCN is exp(jΞUL)/

√
NBS. Hence, the

parameters of the fully-connected layer are regarded as the phases of PSN and can be
learned at the deep learning training stage.
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Figure 5.4: The proposed fully-connected CCN with the trainable parameters {ΞUL},
which correspond to the combining matrix FH

UL.

CRN Based on MMV-LAMP Network

First, we detail the devised redundant dictionary matrix. Specifically, massive MIMO
channels are sparse in the angle-domain, and the accuracy of CRN depends heavily
on their sparsity, which may be weakened by the power leakage [66]. Therefore, we
design a redundant dictionary matrix D with a finer angular resolution to transform the
spatial-frequency domain channel matrix Hsf into the angle-frequency domain channel
matrix Haf, which can be expressed as

Hsf = DHHaf, (5.20)

where the redundant dictionary matrix D ∈ CG×NBS consists of G column vectors a(φg)

for 1 ≤ g ≤ G, i.e., D =
[
a(φ1), a(φ2), · · · , a(φG)

]T, with a(φg) the corresponding ar-
ray steering vector in (5.11), where the sine function in the array steering vector is
defined as sin(φg) = −1 + 2(g − 1)/G by quantifying the range of AoDs into G grids
for g = 1, 2, · · · , G. Therefore, estimating Hsf

UL in (5.4) is equivalent to estimating Haf
UL

represented in the angle-domain redundant dictionary D, i.e.,

YUL = FH
ULD

HHaf
UL + NUL = AULH

af
UL + NUL, (5.21)

where AUL = FH
ULD

H is the effective measurement matrix. It’s worth noting that the
k-th column of Haf

UL, i.e., Haf
UL(:, k) is a sparse column vector, meanwhile,

{
Haf

UL(:, k)
}K
k=1

share the common sparsity [63]. Consequently, the sparse channel estimation problem
can be formulated as an MMV sparse matrix recovery problem in CS. Noth that, given
the received signals, the channel matrix Haf

UL can be estimated by solving the following
optimization problem

min
Haf

UL

 K∑
k=1

∥∥∥Haf
UL(:, k)

∥∥∥2

0

1/2

(5.22)

s.t.
∥∥∥YUL −AULH

af
UL

∥∥∥
F
≤ δ,

and
{
Haf

UL(:, k)
}K
k=1

share the common sparse support set,

where
∥∥Haf

UL(:, k)
∥∥

0
is the number of non-zero elements of Haf

UL(:, k) and δ is the error
tolerance parameter. By replacing the l0-norm with the l1-norm, various CS algorithms
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T

Figure 5.5: The proposed CRN based on MMV-LAMP network with the trainable pa-
rameters {BUL,θUL} .

Figure 5.6: MMV-LAMP network based CRN

can be utilized to solve the problem, such as the simultaneous orthogonal matching
pursuit (SOMP) algorithm [93], the MMV-AMP algorithm [94], and the proposed MMV-
LAMP algorithm. However, these greedy CS algorithms cannot achieve satisfactory
channel estimation accuracy.

To efficiently solve the MMV CS problem in (5.22), we further develop an MMV-LAMP
network with T layers as illustrated in Fig. 5.5 and summarized in Algorithm 5.6, which
can reconstruct the high-dimensional angle-frequency domain channel matrix Ĥaf

UL from
the low-dimensional received signals YUL. Specifically, the input is the received signals
YUL and the output of the t-th layer is the estimated angle-frequency domain channel
matrix Ĥaf

UL,t. In addition, the initial values Ĥaf
UL,0 and V0 are denoted as Ĥaf

UL,0 = 0 and
V0 = YUL, respectively.

As for the t-th layer, the trainable parameter {BUL} is denoted as

BUL = Re {BUL}+ j Im {BUL} , (5.23)

where Re {BUL} and Im {BUL} denote the real and imaginary parts of the trainable pa-
rameter BUL, respectively. In other words, in order to achieve mathematical complex-
valued processing in the MMV-LAMP network, we define two real-valued trainable
parameters Re {BUL} and Im {BUL} to form the complex-valued trainable parameters
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{BUL}. Finally, the final estimated spatial-frequency domain channel matrix based on
the output of the T -th layer is given by

Ĥsf
UL = DHĤaf

UL,T . (5.24)

Learning Strategy

Inspired by the auto-encoder, we propose a novel layer-by-layer learning strategy to
jointly train the CCN (encoder) and CRN (decoder). Specifically, at the offline training
stage, we first generate the training data set

{
Hsf,n

UL

}Ntrain

n=1
according to (5.10), where

Ntrain is the number of channel samples in the training set, and Hsf,n
UL is not only the

input of the CCN, but also the corresponding target output. In order to jointly optimize
the trainable parameters of the CCN and CRN, i.e., {ΞUL,BUL,θUL}, we define the nor-
malized mean square error (NMSE) between the target value Hsf,n

UL and the estimated
spatial-frequency channel matrix of the t-th layer MMV-LAMP network Ĥsf,n

UL,t = DHĤaf,n
UL,t

as the loss function of the t-th layer 3, i.e.,

LUL,t

({
ΞUL,BUL,θUL

}
t

)
=

N∑
n=1

∥∥∥Ĥsf,n
UL,t −Hsf,n

UL

∥∥∥2

F∥∥∥Hsf,n
UL

∥∥∥2

F

=
N∑
n=1

∥∥∥DHft(H
sf,n
UL ,

{
ΞUL,BUL,θUL

}
t
)−Hsf,n

UL

∥∥∥2

F∥∥∥Hsf,n
UL

∥∥∥2

F

, (5.25)

whereN is the number of data samples in each batch of the training set, Hsf,n
UL is the n-th

uplink spatial-frequency domain channel sample, and Ĥaf,n
UL,t = ft(H

sf,n
UL , {ΞUL,BUL, θUL}t)

is the output of the t-th layer MMV-LAMP network. Note that ft(·, ·) indicates the
proposed uplink channel estimation solution including the CCN and CRN, where the
CRN is iterated t times in the t-th layer, i.e., we have the following definition ft(·, ·) =
fCRN(· · · fCRN(fCCN(Hsf,n

UL ,ΞUL),BUL,θUL),BUL,θUL).
The proposed novel layer-by-layer learning strategy is summarized in Algorithm 2,

and the Adam algorithm with the learning rate 0.001 is adopted [95]. Specifically,
for the 1-st layer, the input data is the target data Hsf

UL and the output is Ĥsf
UL,1 =

DHfCRN(fCCN(Hsf
UL,ΞUL),BUL,θUL), where fCCN(·, ·) and fCRN(·, ·, ·) denote the proposed

CCN and CRN structure, respectively. Therefore, we aim to optimize the 1-st layer’s
trainable parameters {ΞUL,BUL,θUL}1 by minimizing the loss function of the 1-st layer
LUL,1

(
{ΞUL,BUL,θUL}1

)
. For the 2-nd layer, the input data is Hsf

UL, but the output is
Ĥsf

UL,2 = DHfCRN(fCRN(fCCN(Hsf
UL,ΞUL),BUL,θUL),BUL,θUL). The trainable parameters

and the loss function of the 2-nd layer are {ΞUL,BUL,θUL}2 and LUL,2
(
{ΞUL,BUL,θUL}2

)
,

respectively. The initial values of the 2-nd layer’s trainable parameters {ΞUL,BUL,θUL}2

are the obtained parameters {ΞUL,BUL,θUL}1 from the 1-st layer’s training. Similarly,
for T -th layer, the input data is still the target data Hsf

UL, and the output is Ĥsf
UL,T ,

3The ultimate goal of the proposed MDDL-based channel estimation scheme is to obtain better NMSE
performance, hence, we choose the NMSE rather than the MSE as the loss function.
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Figure 5.7: The block diagram of the proposed MDDL-based downlink channel estima-
tion and feedback solution, where the green and yellow block diagrams represent that
the modules are processed at the users and the BS, respectively.

Figure 5.8: Learning strategy to jointly train CCN’s parameters {ΞUL} and CRN’s pa-
rameters {BUL,θUL}

where Ĥsf
UL,T = DHfCRN(· · · fCRN(fCCN(Hsf

UL,ΞUL),BUL,θUL),BUL,θUL). The trainable
parameters and the loss function of the T -th layer are {ΞUL,BUL,θUL}T as well as
LUL,T

(
{ΞUL,BUL,θUL}T

)
, respectively. Note that, the initial values of the T -th layer’s

trainable parameters are the obtained parameters {ΞUL,BUL,θUL}T−1 from the (T − 1)-
th layer’s training. In other words, the proposed layer-by-layer training strategy com-
bines both the conventional layer-by-layer and all-layer training strategy. Consider the
t-th layer training (1 ≤ t ≤ T ), we adopt the all-layer training strategy, i.e., the train-
able parameters {ΞUL,BUL,θUL}t are jointly optimized; while from the perspective of T
times training with the increasing layer number t, it is a modified kind of layer-by-layer
training strategy. After the trainable parameters {ΞUL,BUL,θUL}T of the T -th layer are
optimized, we can obtain the complex-valued PSN and the MMV-LAMP network simul-
taneously, which can be adopted to design the combining matrix FH

UL and the channel
estimator at the online channel estimation stage.

5.4 MDDL-Based FDD Downlink Channel Estimation and
Feedback

In this section, we first extend the proposed MDDL-based TDD uplink channel es-
timation scheme to the FDD downlink channel estimation. Moreover, since the up-
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T

T
T

Figure 5.9: The proposed FRSN based on MMV-LAMP network with the trainable pa-
rameters {B′,θ′}.

link/downlink channel reciprocity does not hold in FDD systems, we further propose an
MMV-LAMP network based channel feedback solution, whereby the channels’ delay-
domain sparsity is exploited for reducing the feedback overhead. As shown in Fig. 5.7,
the block diagram of the proposed downlink channel estimation and feedback solution
contains a CCN at the BS, a feedback compression network (FCN) at the users, and a
FCRN at the BS, where the FCRN further consists of a FRSN and a CRN (this CRN is
the same as that in Fig. 5.3).

5.4.1 MMV-LAMP Network Based Downlink Channel Estimation

Similar to Section 5.3, estimating the Hsf
DL in (5.8) is equivalent to estimating Haf

DL rep-
resented in the angle-domain redundant dictionary D, i.e.,

YDL = FT
DLD

HHaf
DL + NDL = ADLH

af
DL + NDL, (5.26)

where ADL = FT
DLD

H ∈ CQ×G is the measurement matrix in CS. We can observe that
(5.21) and (5.26) share a similar expression, hence, the proposed MMV-LAMP network
for uplink channel estimation scheme at the BS can be used for the downlink channel
estimation at the users.

Specifically, at the downlink channel estimation stage, the input of the CCN is the
downlink spatial-frequency domain channel matrix Hsf

DL and the output is the received
signals YDL at the user. Similar to Section 5.3, the trainable parameters of the CCN
can be regarded as the real-valued phases of PSN, and the corresponding expression
of the complex-valued beamforming matrix FDL is given by

FDL =
1√
NBS

ej[ΞDL] =
1√
NBS

[
cos(ΞDL) + j sin(ΞDL)

]
. (5.27)

On the other hand, for the CRN at the users, we replace the inputs YUL and AUL with
YDL and ADL, respectively, and the other terms are the same as in the Algorithm 5.6.
As for the learning strategy, we train the trainable parameters {ΞDL,BDL,θDL} in the
downlink channel estimation based on Algorithm 5.8 by replacing the inputs AUL and
{ΞUL,BUL,θUL} with ADL and {ΞDL,BDL,θDL}, respectively.

5.4.2 MMV-LAMP Network Based Channel Feedback

Given the received signal YDL in (5.8) at the users, the received signals can be rewritten
as

YT
DL = Hfs

DLFDL + NT
DL = Hfreq

DL + NT
DL, (5.28)
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Figure 5.10: MMV-LAMP network based FRSN

Figure 5.11: Learning strategy to train FRSN’s parameters {B′,θ′}

where Hfs
DL = (Hsf

DL)T ∈ CK×NBS denotes the frequency-spatial domain channel matrix
and Hfreq

DL = Hfs
DLFDL ∈ CK×Q is a frequency-domain channel matrix after spatial-domain

compression.
In order to accurately acquire the CSI at the BS with reduced feedback overhead,

we propose an FCN and an FCRN based on an MMV-LAMP network with two stpdf.
In the first step, by exploiting the channels’ delay-domain sparsity, we compress the
received pilots at the users by only feeding back the received pilot signals on part of K
subcarriers. In the second step, the compressed feedback signals received at the BS
are regarded as the input of the FRSN to reconstruct the frequency-domain channel
matrix Ĥfreq

DL , which is then input to the CRN (can be well trained at the uplink channel
estimation stage), so that the spatial-frequency domain channel matrix Hsf

DL is finally
reconstructed at the BS.
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Feedback Compression Network at Users

To reduce the channel feedback overhead at the users, we compress the dimension-
ality of the received pilot signals by exploiting the channels’ delay-domain sparsity.
Specifically, we transform the frequency-spatial domain channel matrix Hfs

DL into the
delay-spatial domain channel matrix Hds

DL via a DFT matrix U ∈ CK×K , and (5.28) can
be expressed as

YT
DL = UHds

DLFDL + NT
DL = UHdelay

DL + NT
DL, (5.29)

where Hdelay
DL = Hds

DLFDL ∈ CK×Q is a delay-domain channel matrix after spatial-domain
compression. The compressed pilot signals fed back to the BS can be expressed as

ỸDL = YT
DL

∣∣∣
Ω

= ŨHdelay
DL + ÑDL, (5.30)

where Ũ = U|Ω ∈ CKc×K is a partial DFT matrix, ÑDL = NT
DL

∣∣
Ω

, and the i-th element
of the set {Ω}i for 1 ≤ i ≤ Kc is randomly selected without repeating [96].

Feedback Based Channel Reconstruction Network at BS

The FCRN consists of an FRSN and a CRN. Different from the MMV-LAMP network
with T layers used in CRN, we just need to train the FRSN based on an MMV-LAMP
network with T ′ layers to obtain the channel matrix Ĥfreq

DL , which is illustrated in Fig. 5.9
and summarized in Algorithm 5.10. Specifically, the input is the feedback pilot signals
ỸDL, and the initial values Ĥdelay

DL,0 and V0 of Algorithm 5.10 are denoted as Ĥdelay
DL,0 = 0

and V0 = ỸDL, respectively. In FRSN, the measurement matrix is the partial DFT matrix
Ũ and the trainable parameters are {B′,θ′}. After the BS receives the compressed
feedback signals ỸDL in (5.30), we first exploit the proposed FRSN to reconstruct the
channel matrix Ĥfreq

DL = UĤdelay
DL,T ′, which is then passed to the CRN to reconstruct Ĥsf

DL
based on MMV-LAMP network.

Moreover, the training strategy of the trainable parameters {B′,θ′} of the FRSN
is summarized in Algorithm 5.11, where the corresponding loss function of t-th layer
(1 ≤ t ≤ T ′) is given by

L′t

({
B′,θ′

}
t

)
=

N ′∑
n=1

∥∥∥Ĥfreq,n
DL,t −Hfreq,n

DL

∥∥∥2

F∥∥∥Hfreq,n
DL

∥∥∥2

F

=
N ′∑
n=1

∥∥∥Uf ′t(Ỹn
DL,
{
B′,θ′

}
t
)−Hfreq,n

DL

∥∥∥2

F∥∥∥Hfreq,n
DL

∥∥∥2

F

, (5.31)

where N ′ is the number of data samples in each batch of the training set, and f ′(·, ·)t
denotes the MMV-LAMP network based FRSN. Specifically, we first generate the train-
ing data set

{
Hfreq,n

DL

}N ′
n=1

according to (5.28). Then, for the t-th layer, we aim to opti-
mize the trainable parameters {B′,θ′}t by minimizing the loss function of the t-th layer
L′t(
{
B′,θ′

}
t
) for 1 ≤ t ≤ T ′. Finally, after the trainable parameters {B′,θ′}T ′ of the T ′-th
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layer are optimized, we can obtain Ĥdelay
DL and Ĥfreq

DL = UĤdelay
DL . Also, we can find that

Hfreq
DL in (5.28) can also be expressed as

(Hfreq
DL )T = FT

DLH
sf
DL = FT

DLD
HHaf

DL = ADLH
af
DL, (5.32)

which indicates that we can exploit the following CRN to reconstruct the final estimation
Ĥsf

DL.

5.5 Simulation Results

In this section, we provide numerical results to verify the effectiveness of the proposed
MDDL-based channel estimation and feedback scheme. First, we elaborate the im-
plementation details and parameters adopted in our simulations setting. Then, since
the TDD uplink channel estimation and FDD downlink channel estimation share the
same processing mechanism, we take the downlink channel estimation and feedback
for FDD systems as examples to evaluate the performance. Finally, we investigate the
performance of the proposed MDDL-based scheme in scenarios with fixed scattering
environments, which is discussed in more detail next.

5.5.1 Simulation Setup

In our simulations, we consider that the BS is equipped with an ULA with NBS = 256
and NRF = 4 RF chains. The number of OFDM subcarriers in the channel estimation
phase is set to K = 64. The redundant dictionary with an oversampling ratio G/NBS = 4
is considered, i.e., the quantized angle grids G is set to 1024. In addition, the exper-
iments are performed in PyCharm Community Edition (Python 3.6 environment and
Tensorflow 1.13.1) on a computer with dual Intel Xeon 8280 CPU (2.6GHz) and dual
Nvidia GeForce GTX 2080Ti GPUs.

The proposed MMV-LAMP network based CRN is composed of T = 5 layers, where
each layer has the same network structure with the trainable parameters {ΞDL,BDL,θDL}.
While the proposed MMV-LAMP based FRSN is composed of T ′ = 2 layers, where the
trainable parameters are {B′,θ′}. For the training of MMV-LAMP network, we gen-
erate a training set including Str = 5000 spatial-frequency domain channel samples
according to the channel model in (5.10), so that the dimension of the input channel
samples is (Str, NBS, K). Similarly, the parameters of the validation set and the test set
are Sva = 2000 and Ste = 1000, respectively. We choose the NMSE as the metric for
performance evaluation, which is defined as

NMSE(H, Ĥ) = 10log10(E


∥∥∥H− Ĥ

∥∥∥2

F∥∥H∥∥2

F

). (5.33)
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Figure 5.12: NMSE performance comparison of different channel estimation schemes
versus SNRs.

5.5.2 MDDL-Based FDD Downlink Channel Estimation

As shown in Fig. 5.12 4, we plot the NMSE performance NMSE(Hsf
DL, Ĥ

sf
DL) of the dif-

ferent schemes as a function of signal-to-noise ratio (SNR), including the proposed
MDDL-based channel estimation scheme using the MMV-LAMP network, the data-
driven deep learning based channel estimation scheme [86], the LAMP-based channel
estimation scheme [89], and two model-based channel estimation schemes using the
MMV-AMP algorithm [94] and the SOMP algorithm [93]. The number of propagation
paths is L = 8. Note that the AMP-based channel estimation scheme requires the
measurement matrix’s elements to be independent identically distributed, so we don’t
consider the redundant dictionary matrix (i.e., G = NBS = 256).

We can observe that the proposed channel estimation scheme outperforms the
other channel estimation schemes even with a smaller pilot overhead. This observa-
tion indicates that the proposed channel estimation scheme can achieve better NMSE
performance while keeping the pilot overhead to a low level. This is because the net-
work architecture (i.e., the cascaded CCN and MMV-LAMP-based CRN) of the MDDL-
based approach is constructed based on known physical mechanisms and some a
priori model knowledge, which can reduce the number of trainable parameters to be
learned and can fully take advantage of both model-based algorithms and deep learn-
ing methods. We also observe that the proposed channel estimation scheme can sig-
nificantly improve the NMSE performance in the low SNR regime compared with other
channel estimation schemes. Therefore, the proposed scheme can reliably reconstruct
the high-dimensional channel with a much reduced pilot overhead.

To clearly present the percentage of the reduced pilot overhead compared to state-
of-the-art algorithms, we compare the proposed scheme with four state-of-the-art al-
gorithms at SNR=0 dB and SNR=5 dB, as shown in Table 5.1. We can observe that

4This simulated results for {M = 40, Q = 10, NRF = 4} are equivalent to the uplink channel estimation
results for {M = 40, Q = 40, NRF = 1}, {M = 40, Q = 20, NRF = 2}, and {M = 40, Q = 5, NRF = 8}, as
long as M = QNRF.
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Figure 5.13: NMSE performance comparison of the proposed scheme versus the num-
ber of multipath L.

Table 5.1: NMSE in dB

Channel Estimation Schemes
SNR=0dB SNR=5dB

Q=40 Q=80 Q=40 Q=80

MMV-AMP 1.15 -0.31 -0.37 -7.62

LAMP -1.37 -3.13 -2.73 -5.61

Data Driven Deep Learning -2.02 -4.49 -3.72 -8.16

SOMP -3.14 -4.39 -6.82 -8.48

Proposed -6.06 -9.21

the proposed scheme with Q = 40 outperforms the MMV-AMP algorithm, the LAMP
network, and data driven deep learning methods with Q = 80 in the whole range of
SNR. Therefore, we conclude that the proposed scheme can reduce the pilot overhead
by at least 50% while achieving the same or even better channel estimation NMSE
performance.

We further investigate the robustness of the proposed channel estimation scheme
as a function of the number of multipath L in Fig. 5.13. Note that the proposed MMV-
LAMP based CRN is trained during the offline training stage, which is based on the
channel samples with L = 8 multipath components. However, at the online estimation
stage, we observe that the proposed scheme can be robustly adopted to estimate
multipath channels with L 6= 8, without having to retrain the entire network architecture.
In Fig. 5.14, we show the NMSE performance of the proposed scheme when it is
trained based for different SNR values. For example, the setup denoted by “Proposed,
SNR=-10dB, G = 1024, Q = 40” means that the proposed scheme was trained at the
SNR=-10dB, but tested in the whole SNR range, and the setup denoted by “Proposed,

Security: Public Page 78



H2020-2018-2020, ICT – ARIADNE
D4.2: Intelligent D-band wireless systems

and networks initial designs

-10 -5 0 5 10
SNR [dB]

-14

-12

-10

-8

-6

-4

-2

0

N
M

SE
 [d

B]

Proposed, SNR=-10dB,  G=1024,  Q=40
Proposed, SNR=-5dB,  G=1024,  Q=40
Proposed, SNR=0dB,  G=1024,  Q=40
Proposed, SNR=5dB,  G=1024,  Q=40
Proposed, SNR=10dB,  G=1024,  Q=40
Proposed,  G=1024,  Q=40

Figure 5.14: NMSE performance comparison of the proposed scheme trained at the
different SNRs.

G = 1024, Q = 40” means that the proposed scheme was trained and tested for the
same values of SNR. We can observe that the proposed scheme trained at SNR=-5dB
is robust in the low SNR regime, and the NMSE performance is deteriorated just at
SNR=10dB. Therefore, the proposed MMV-LAMP based channel estimator enjoys a
better robustness and generalization capability to different channel conditions.

As for the number of antennas NBS, we further investigated the channel estimation
NMSE performance with NBS = 128 in Fig. 5.15. Specifically, since the dimension of
the beamforming/combining matrix is related to the number of antennas, changing the
number of antennas requires retraining the CCN and CRN. In order to meet the same
compression ratio, i.e., Q/NBS = 40/256, the adopted pilot overhead is Q = 20. We can
observe that the proposed channel estimation scheme outperforms the other channel
estimation schemes in this case.

As for the different numbers of subcarriers K, as shown in Fig.5.16, we have inves-
tigated the channel estimation NMSE performance with K = 64, 128, 256, 512. Specifi-
cally, since the proposed channel estimation scheme was trained under the number of
subcarriers K = 64, we divide the subcarriers evenly into multiple sub-groups (each
sub-group has 64 subcarriers) to directly apply the trained channel estimation network.
For instance, for the number of subcarriers K = 128, we divide the subcarriers into
128/64 = 2 sub-groups, i.e., the subcarrier indices of each sub-group are respectively
{1, 3, 5, · · · , 127} and {2, 4, 6, · · · , 128}. We can observe that the proposed scheme
trained with 64 subcarriers can be effectively applied to the case K = 128, 256, and
512, which further proves the robustness of the proposed scheme.

As mentioned above, we design a redundant dictionary matrix to combat the power
leakage problem by quantizing the angles with a finer resolution. Therefore, in Fig.
5.17, we also compare the performance of the proposed MMV-LAMP based channel
estimator without using redundant dictionary matrix, i.e., G = NBS = 256, to demon-
strate the effectiveness of the redundant dictionary matrix. We can find that the pro-
posed MMV-LAMP based and the SOMP-based channel estimators can improve the
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Figure 5.15: NMSE performance comparison of different channel estimation schemes
versus SNRs.

sparse channel estimation performance by utilizing the redundant dictionary matrix to
cope with the power leakage problem.

Note that the effectiveness of the proposed MMV-LAMP based channel estimator for
OFDM systems is based on a training dataset based on multi-carrier channel samples,
which consist of the channels of all subcarriers from different channel realizations. To
verify the training effectiveness of multi-carrier channel samples, we further compare
the performance of the proposed scheme based on single carrier channel samples, as
shown in Fig. 5.18. We can observe that the proposed MMV-LAMP based channel
estimator trained by multi-carrier channel samples can exhibit more excellent perfor-
mance.

We further investigate the computational complexity. In the case of offline training,
specifically, the computation complexity is not a major concern, because the required
time is usually not strictly limited. Moreover. we discuss the computational complexity
of the different channel estimation schemes as follows.

• As for the data driven deep learning based channel estimation scheme, its main
stpdf in testing stage include: i) two fully-connected operations with computa-
tional complexity O(2MG); ii) Nre convolutional operations with computational

complexity O(Gβ2
Nre∑
i=1

ni−1ni), where β is the side length of the convolutional fil-

ters, ni−1 and ni denote the numbers of input and output feature maps of the
i-th convolutional layer (1 ≤ i ≤ Nre), respectively. Therefore, the computa-
tional complexity of the data driven deep learning based channel estimation is

O(2MG+Gβ2
Nre∑
i=1

ni−1ni).

• The proposed channel estimation scheme is developed from the MMV-AMP al-
gorithm, which mainly requires matrix multiplication operations, Therefore, the
MMV-AMP algorithm, the LAMP network, and the proposed MMV-LAMP network
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Figure 5.16: NMSE performance comparison of the proposed scheme versus the num-
ber of subcarrier K.

share similar computational complexities, i.e., O(MNBSK + TMGK) in the case
of K subcarriers.

• As for the SOMP algorithm, we denote the number of iterations as I and its main
stpdf include: i) correlation operation with computational complexity O(MG2KI);
ii) project subspace operation with computational complexityO(1

4
I2(I + 1)2+1

3
MI(I+

1)(2I + 1) + 1
2
MKI(I + 1)); iii) update residual operation with computational

complexity O(1
2
ρNBSKI(I + 1)). Therefore, the computational complexity of the

SOMP algorithm is O(MG2KI +1
4
I2(I + 1)2 +1

3
MI(I + 1)(2I + 1) + 1

2
MKI(I +

1) + 1
2
ρNBSKI(I + 1)).

Finally, we provide the computational complexity analysis of the different channel esti-
mation schemes as shown in Table 5.2.

5.5.3 Channel Estimation Under Non-Ideal Hardware Constraints

In practical systems, the phase of each combining and beamforming matrix coefficient
is not a continuous value. Therefore, we further investigate the performance of the
proposed MDDL-based channel estimation scheme under the constraint of PSN with
a finite phase resolution. Specifically, after the offline training, the CCN including the
continuous complex-valued combining matrix FUL = 1√

NBS
exp

[
j(ΞUL)

]
in (5.19) and the

beamforming matrix FDL = 1√
NBS

exp
[
j(ΞDL)

]
in (5.27) are quantized to the elements in

the set ∆ according to the minimum Euclidean distance criterion. That is to say, after
quantization, we have {ΞUL,ΞDL} ∈ ∆, and ∆ is the quantized phase set of the PSN
whose resolution is Bps, given by

∆ =

{
0,

2π

2Bps , 2 ·
2π

2Bps , · · · , 2π −
2π

2Bps

}
. (5.34)
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Figure 5.17: NMSE performance comparison of the proposed MDDL-based channel
estimation scheme versus SNRs, where the effectiveness of the devised redundant
dictionary matrix.

The network architecture and training strategy of the CRN remains unchanged5. As
shown in Fig. 5.19, we plot the NMSE performance NMSE(Hsf

DL, Ĥ
sf
DL) of the proposed

channel estimation scheme as a function of the SNR, where the resolution of the PSN
is set to Bps = 2, 3 bits. We observe that the proposed MMV-LAMP based channel
estimator works well in the case of 3-bit quantization and suffers from a little loss in
the case of 2-bit quantization. This observation further demonstrates the robustness of
the proposed MMV-LAMP based channel estimator under non-ideal PSN with limited
resolution.

Moreover, considering the limited resolution of the analog-to-digital converter (ADC)
at the BS, the downlink received signals are first quantized by the ADC in the time
domain, so the received frequency-domain pilot signals after time-domain quantization
can be expressed as

Yquan
DL = λquan(YDLU)UH, (5.35)

where YDLU and λquan(YDLU) are the received time-domain signals before the ADC
and after the ADC, respectively, and λquan(·) is the complex-valued quantization func-
tion. This quantization function is applied to the received signals element-wise, and
the real and imaginary parts are quantized separately. Here, we consider a uniform
codebook for quantization as

C =

{
−2B

adc − 1

2
, · · · , 2B

adc − 1

2

}
, (5.36)

5Since the quantized phase shifters will result in non-differential gradients, it is not feasible to directly
use the Adam algorithm. To avoid this challenge, we consider a simple method that the offline training
is performed by assuming the infinite precision phase resolution. At the online test stage, the com-
bining/beamforming matrix are quantized according to the minimun Euclidean distance criterion. Note
that the authors of [76] proposed a sub-optimum quantization method to solve this issue, which may be
integrated into the proposed scheme for better performance in our future work..
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Figure 5.18: NMSE performance comparison of the proposed MDDL-based channel
estimation scheme versus SNRs, where the effectiveness of the proposed scheme
using multi-carrier channel samples to train.

where Badc is the number of quantization bits, = [ymax − ymin]
/

2B
adc, ymax and ymin are

the maximum and the minimum real value of both the real and imaginary parts of YDLU,
respectively. Specifically, we first train the CCN’s parameters {ΞDL} and CRN’s param-
eters {BDL,θDL} based on the ADC with infinite resolution, then we adopt the above
quantization method to obtain the quantized frequency-domain signal Yquan

DL . Finally,
we input the quantized Yquan

DL directly into the previously trained CRN to reconstruct the
channel matrix Ĥsf

DL.
As shown in Fig. 5.20, we plot the NMSE performance NMSE(Hsf

DL, Ĥ
sf
DL) of the

proposed channel estimation scheme as a function of the SNR, where the number of
quantization bits is set to Badc = 2, 3. We observe that the performance of the MMV-
AMP-based and the SOMP-based channel estimation schemes degrade. However, the
proposed channel estimation scheme can still work even in the low SNR regime. Con-
sidering that the SNR is usually low in most systems that operate at high frequencies
at the channel estimation stage, the proposed scheme is effective in estimating the
channels with non-ideal ADC at the receiver.

5.5.4 MDDL-Based FDD Downlink Channel Feedback

In this section, we investigate the channel reconstruction performance NMSE(Hsf
DL, Ĥ

sf
DL)

of the proposed channel feedback scheme. Specifically, as shown in Fig. 5.4, the CCN
at the BS is the same as that used at the downlink channel estimation stage, then
the noisy frequency-domain received signal YT

DL is obtained at the user. Moreover, in
order to compress the feedback overhead, the user only feeds YT

DL on Kc of K subcar-
riers back to the BS. Finally, the BS exploits the proposed MMV-LAMP based FRSN
and the CRN to recover the spatial-frequency domain channel matrix Ĥsf

DL. In addition,
we define the feedback compression radio as ρ = Kc/K. As shown in Fig. 5.21, we
can observe that the proposed MMV-LAMP based FCRN (including the FRSN and the
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Table 5.2: Computational Complexity of Different Channel Estimation Schemes

Schemes Complexity

Data driven deep learning O(2MG+Gβ2
Nre∑
i=1

ni−1ni)

SOMP
O(MG2KI +1

4
I2(I + 1)2

+1
3
MI(I + 1)(2I + 1)

+1
2
MKI(I + 1) + 1

2
ρNBSKI(I + 1))

LAMP O(MNBSK + TMGK)

MMV-AMP O(MNBSK + TMGK)

Proposed O(MNBSK + TMGK)

following CRN) with ρ = 0.25, i.e., Kc = 16, even outperforms the SOMP-based chan-
nel feedback scheme with ρ = 0.5, i.e., Kc = 32. Therefore, the effectiveness of the
proposed MDDL-based channel feedback scheme is verified.

5.5.5 Channel Estimation Based on Fixed Scattering Environments

In this section, the TDD uplink channel estimation NMSE performance NMSE(Hsf
UL, Ĥ

sf
UL)

is investigated. To evaluate the superiority of the proposed learning strategy that jointly
trains the pilots and channel estimator, we consider the scenario with fixed scattering
environments. The fixed scattering environment is shown in Fig. 5.22, in which the
positions of the BS, the user, and the scatterers are marked by blue, red, and green,
respectively. The red solid line represents the line-of-sight (LoS) link between the BS
and the user, and the black dotted line indicates the non-line-of-sight (NLoS) link via
the scatterer. Note that for the sake of simplifying the channel generation, we only
consider a single-bounce NLoS channel model. As for the array setting, we take the
BS side as an example, i.e., the bold blue solid line represents the antenna array of the
BS, whose normal direction is marked as the black arrow. The antenna array setting at
users is the same as the BS.

Next, we describe how to generate the channel samples based on the fixed scatter-
ing environment. Specifically, as shown in Fig. 5.22, the scenario consists of a BS and
a number of users geographically distributed in a certain outdoor environment, in which
the scatterers are randomly distributed. For the given fixed scattering environment, we
can generate the channel samples based on the channel parameters (including the
AoAs/AoDs, path loss), which can be calculated based on the geometric characteris-
tics between the BS and the user. More specifically,

• AoAs/AoDs: As for the uplink channel estimation, the AoA φBS at the BS is the
angle relative to the horizontal axis. For the user, the AoD φUE at the user follows
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Figure 5.19: NMSE performance comparison of the proposed MDDL-based channel
estimation scheme versus SNRs, where phase shift quantization.

the uniform distribution [0, 2π), which is defined as the angle between the normal
direction of the user array and the horizontal axis.

• Path loss: Taking the NLoS link as an example, the large-scale fading gain Gl

can be modeled based on the free-space path loss of Friis’ formula as

Gl = 20log10(
4πdl,1
λc

) + 20log10(
4πdl,2
λc

) +Gs, (5.37)

where dl,1 (dl,2) denotes the communication distance between the user and the
l-th scatterer (the l-th scatterer and the BS), λc is the carrier wavelength, and Gs

denotes the path loss via the l-th scatterer.

Based on the fixed scattering environment discussed above, we generate 10000
channel samples, named as fixed scattering environment (FSE) data set, by consid-
ering a randomly distributed user location and normal direction of the user array. In
simulations, we divide the 10000 channel samples into 8000, 1000, and 1000, corre-
sponding to the training, validation, and test sets, respectively.

As shown in Fig. 5.23, the uplink channel estimation performance NMSE(Hsf
UL, Ĥ

sf
UL)

of the different schemes is shown as a function of the SNR, including the proposed
scheme trained by using the FSE data set, the proposed scheme trained in Section
V-B (i.e., not trained with the FSE data set), and the SOMP algorithm using random
combining matrix, where we consider G = 1024, Q = 40. Note that, at the NMSE
performance evaluation phase, the input channel samples for these schemes come
from the test set of the FSE data set. We can observe that the proposed channel
estimation scheme (including the combining matrix FH

UL and the MMV-LAMP network
based channel estimator) trained with FSE data set can effectively learn the channel
environment characteristics using less pilot overhead. Moreover, we can utilize the
trained combining matrix FH

UL in the uplink as the beamforming FT
DL in the downlink

channel estimation for improving the receive SNR at the users as verified in Fig. 5.24.
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Figure 5.20: NMSE performance comparison of the proposed MDDL-based channel
estimation scheme versus SNRs, where analog-to-digital converter (ADC) quantiza-
tion.

Fig. 5.24 depicts the received SNR distributions at the users using two different
CCN designs in the downlink channel estimation phase. Specifically, “CCN trained by
FSE Data Set” indicates that the BS adopts the beamforming matrix FT

DL or CCN being
the same as the combining matrix FH

UL trained in Fig. 5.23, while “CCN with random
phases” indicates that the phases of the beamforming matrix FT

DL adopted by the BS
are random. In Fig. 5.24, under the fixed scattering environment, we can observe that
more users can achieve a larger received SNR by exploiting the proposed CCN trained
with the FSE data set than the CCN with random phases.

5.6 Conclusions

In this chapter, we have proposed an MDDL-based channel estimation and feedback
scheme for wideband massive hybrid MIMO systems at high frequencies, where the
angle-delay domain channels’ sparsity is exploited for reduced overhead. First, we
have considered the uplink channel estimation for TDD systems. To reduce the uplink
pilot overhead for estimating the high-dimensional channels from a limited number of
RF chains at the BS, we have proposed to jointly train the PSN and the channel estima-
tor as an auto-encoder. Specifically, by exploiting channels’ structured sparsity from an
a priori model and learning the integrated trainable parameters from the data samples,
the MMV-LAMP network with the devised redundant dictionary has been proposed to
jointly recover multiple subcarriers’ channels with significantly enhanced performance.
Moreover, we have considered the downlink channel estimation and feedback for FDD
systems. Similarly, the pilots at the BS and channel estimator at the users can be jointly
trained as an encoder and a decoder, respectively. To further reduce the channel feed-
back overhead, only the received pilots on part of the subcarriers are fed back to the
BS, which can exploit the proposed MMV-LAMP network to reconstruct the spatial-
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Figure 5.21: Channel reconstruction NMSE performance comparison of the proposed
MDDL-based channel feedback scheme versus SNRs.

frequency channel matrix. Further, we consider to generate the data samples from the
scenarios with fixed scattering environments, and optimize the combining/beamforming
matrix and MMV-LAMP network by learning and perceiving the characteristics of the
channel environments for the improved performance. Simulation results have veri-
fied that the proposed MDDL-based solution can achieve a significant improvement in
channel estimation and feedback performance than the conventional schemes.

Appendix

First, we introduce the AMP algorithm. We consider a typical single-measurement-
vector (SMV) CS problem

y = Ax + n, (5.38)

where y∈M×1 is a noisy measurement, A ∈ CM×N represents the measurement matrix
with M � N , x ∈ CN×1 denotes the sparse vector, and n ∈ CM×1 is the AWGN. To
reconstruct the sparse vector x, the AMP algorithm can be given as (see equations
(10)-(12) in [89])

rt = x̂t−1 + AHvt−1, (5.39a)
x̂t = η (rt;θt, σt) , (5.39b)
vt = y −Ax̂t + btvt−1, (5.39c)

where v0 = y, x̂0 = 0. And

σt =
1√
M
‖vt−1‖2, (5.40)

bt =
1

M

N∑
j=1

∂
[
η (rt;θt, σt)

]
j

∂rj
, (5.41)
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Figure 5.22: The schematic diagram of the fixed scattering environment.

where
[
η (rt; θt, σt)

]
j

= η
(

[rt]j; θt, σt

)
, for 1 ≤ j ≤ N . Moreover, we consider the

shrinkage function η (·; ·) that corresponds to MSE-optimal denoisers under zreo-mean
Bernoulli-Gaussian (BG) priors. That is, x̂ = E

{
x| r
}

, where x has the BG prior

p (x; γ, φ) = (1− γ) δ (x) + γN (x; 0, φ) , (5.42)

and r is an AWGN-corrupted measurement of x, i.e.,

r = x+ e for e ∼ N
(
0, σ2

)
. (5.43)

The MSE-optimal denoiser is then (see equation (39) in [89])

x̂ =
r

(1 + σ2

φ
)(1 + 1−γ

γ

N(r;0,σ2)
N(r;0,σ2+φ)

)
. (5.44)

Then, to turn (5.44) into a learnable shrinkage function, i.e., the LAMP algorithm [89],
we set θ1 = φ and θ2 = log 1−γ

γ
and then simplify (5.44) as (see equation (40) in [89])

[η(r;θ, σ)]j =
rj

(1 + σ2

θ1
)(1 +

√
1 + θ1

σ2 exp[θ2 −
r2j

2σ2(1+σ2

θ1
)
])
, (5.45)

where the trainable parameters include θ1 and θ2, i.e., θ = [θ1, θ2].
Finnaly, for the developed MMV-LAMP algorithm, we consider a typical MMV CS

problem
Y = AX + N, (5.46)

where Y ∈ CM×K is a noisy measurement, A ∈ CM×N is a measurement matrix,
X ∈ CN×K denotes the sparse matrix satisfying that its columns

{
X (:, i)

}K
i=1

share the

Security: Public Page 88



H2020-2018-2020, ICT – ARIADNE
D4.2: Intelligent D-band wireless systems

and networks initial designs

-10 -5 0 5 10
SNR [dB]

-20

-15

-10

-5

0

5

10

N
M

SE
 [d

B]

Proposed Scheme Trained by FSE Data Set, G=1024, Q=40
Proposed Scheme Trained in Section V-B, G=1024, Q=40
SOMP Evaluated using FSE Data Set, G=1024, Q=40

Figure 5.23: NMSE performance comparison of different channel estimation schemes
versus SNRs.

common sparsity, and N ∈ CM×K is the AWGN. According to [97], we developed the
MMV-LAMP algorithm as

Rt = X̂t−1 + BVt−1, (5.47a)

X̂t = η (Rt;θ, σt) , (5.47b)

Vt = Y −AX̂t + btVt−1, (5.47c)

where V0 = Y, X̂0 = 0, and

σt =
1√
MK

‖Vt−1‖F , (5.48)

btI =
1

M

N∑
j=1

∂
[
η (Rt;θ, σt)

]
j

∂
[
Rt (j, :)

] . (5.49)

Similarly, we consider the zero-mean BG prior and the MSE-optimal denoiser is then
(see equations (24)-(26) in [97])

x̂ =
r

(1 + σ2

φ
)(1 + 1−γ

γ

N(r;0,σ2IK)
N

(
r;0,(σ2+φ)IK

))
, (5.50)

where x̂ ∈ CK×1. We set θ1 = φ and θ2 = log 1−γ
γ

and then the corresponding shrinkage
function η (·; ·) can be expressed as

[η(Rt;θ, σt)]j =
rt,j

πt[1 + exp(ψt −
rH
t,jrt,j

2σ2
t πt

)]
, (5.51)
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Figure 5.24: The received SNR distributions at the user side using different CCNs.

where rt,j = Rt(j, :) denotes the j-th row of the Rt, πt and ψt are respectively given by

πt = 1 +
σ2
t

θ1

, (5.52)

ψt = K log(1 +
θ1

σ2
t

) + θ2. (5.53)

The trainable parameters of the developed MMV-LAMP network include B and θ, where
θ = [θ1, θ2].
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Chapter 6

A Machine Learning Tutorial

6.1 Introduction

As a response to the spectrum scarcity problem that was created due to the ag-
gressive proliferation of wireless devices and quality-of-service (QoS) and quality-of-
experience (QoE) hungry services, which are expected to support a broad range of
diverse multi-scale and multi-environment applications, sixth-generation (6G) wireless
networks adopt higher frequency bands, such as terahertz (THz) that ranges from
0.1 to 10 THz) [98–101]. In more detail and according to the IEEE 802.15.3d stan-
dard [102, 103], THz wireless communications are recognized as the pillar technolog-
ical enabler of a varied set of use cases stretching from in-body nano-scale, to indoor
and outdoor wireless personal/local area and fronthaul/backhaul networks. Nano-scale
applications require compact transceiver designs and self-organized ad-hoc network
topologies. On the other hand, macro-scale applications demand flexibility, sustainabil-
ity, adaptability in an ever changing heterogeneous environment, and security. More-
over, supporting high data-rate that may reach 1 Tb/s, and energy-efficient massive
connectivity are only some of the key demands. To address the aforementioned re-
quirements, artificial intelligence (AI), in combination with novel structures capable of
altering the wireless environment, have been regarded as complementary pillars to 6G
wireless THz systems.

AI is expected to enable a series of new features in next-generation networks, in-
cluding, but not limited to, self-aggregation, context awareness, self-configuration as
well as opportunistic deployment [104]. In addition, integrating AI in wireless networks
is envisioned to bring a revolutionary transformation of conventional cognitive radio
systems into intelligent platforms by unlocking the full potential of radio signals and
exploiting new degrees-of-freedom (DoF) [105,106]. Identifying this opportunity, a sig-
nificant amount of researchers turned their eyes on AI-empowered wireless systems
and specifically in machine learning (ML) algorithms (see e.g., [107–110] and refer-
ences therein). In more detail, in [107], the authors reviewed the thirty-year history of
ML highlighting its application in heterogeneous networks, cognitive radios, device-to-
device communications and Internet-of-Things (IoT). Likewise, in [108], big data anal-
ysis is combined with ML in order to predict the requirements of mobile users and en-
hance the performance of “social network-aware wireless.” Moreover, in [109], a brief
survey was conducted that summarizes the basic physical layer (PHY) authentication
schemes that employ ML in fifth generation (5G)-based IoT. Finally, in [110], the au-
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thors provided a systematic and comprehensive review of the ML approaches that was
employed to address a number of nano-scale biomedical challenges, including once
that refer to molecular and nano-scale THz communications.

The methodologies, which are presented in the aforementioned contributions, are
tightly connected to the communication technology characteristics and building blocks
of radio and microwave communication systems and networks, which are inherently dif-
ferent from higher frequency bands that can support higher data rates, and propagation
environments with conventional and unconventional structures, like RIS. Additionally, in
order to quantify the AI-approaches efficiency, new key performance indicators (KPIs)
need to be defined. Motivated by this, this chapter focuses on reporting the role of AI in
THz wireless networks. In particular, we first identify the THz wireless systems particu-
larities that require the adoption of AI. Building upon this, we present a brief survey that
summarizes the contributions in this area and focus on indicative AI approaches that
are expected to play an important role in different layers of the THz wireless networks.
Finally, possible future research directions are provided.

Notations: In this paper, matrices are denoted in bold, capital letters, while vectors
in bold, lower case letters. The base-10 logarithm of x is given by log (x). Additionally,
∂f(x1,··· ,xN )

∂xi
stands for the the partial derivative of ∂f(x1, · · · , xN) with respect to xi, with

i ∈ [1, N ]. The operator max (x1, x2, · · · , xN) yields the numerically largest of the xi,
while min (x1, x2, · · · , xN) returns the numerically smallest of the xi. Moreover,

√
x rep-

resents the square root of x. The index of the value of x that maximizes and minimizes
f (x) are respectively given by arg max f (x) and arg min f (x). The expected value of
f(x) is represented as E[·].

6.2 The role of ML in THz wireless systems and net-
works

Together with the promise of supporting high data-rate massive connectivity, THz wire-
less systems and networks come with several challenges. In particular, these chal-
lenges can be summarized as:

• Due to the high transmission frequency, i.e. the small wavelength, in the THz
band, we can design high-directional antennas (with gains that may surpass
30 dBi) with unprecedented low beamwidths, which may be less than 4o1. These
antennas are used to counterbalance the high channel attenuation by establish-
ing high-directional links. On the one hand, high directionality creates additional
DoFs, which, if they are appropriately exploited, they can enhance both dynamic
spectrum access and network densification; thus, boost its connectivity capabil-
ities. In this direction, new approaches to support intelligent interference moni-
toring and cognitive access are required. On the other hand, high directionality
comes with the requirement of extremely accurate beam alignment between the
fixed and moving communication nodes. To address this, beam tracking and
channel estimation approaches of high latency need to be developed, which ac-
count for the latency requirement.

1It is worth noting that in mmW wireless systems, antennas with beamwidths that are in the range of
10o are employed.
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• Molecular absorption causes frequency- and distance-dependent path loss, which
creates frequency windows that are unsuitable for establishing communication
links [111]. As a consequence, despite the high bandwidth availability in the THz
band, windowed transmission with time varying loss and per-window adaptive
bandwidth as well as power usage is expected to be employed. This charac-
teristic is expected to influence both beamforming design as well as resource
allocation and user association.

• The large penetration loss in the THz band, which may surpass 40 or even 50 dB
[112–116], renders questionable the establishment of the non-LoS links. As a
result, blockage avoidance schemes are needed. Note that in lower frequency
bands, such as mmW, the penetration loss is in the range of 20 to 30 dB [117–
119].

• To exploit the spatial dimension of THz radio resources, support MU-connectivity
as well as increase the link capacity in heterogeneous environments of moving
nodes, suitable beamforming and mobility management designs that predict the
number and motion of UEs need to be designed. Moreover, in mobile scenarios,
accurate channel state information (CSI) is needed. In lower-frequency systems,
this is achieved by performing frequent channel estimation. However, in THz
wireless systems, due to the small transmission wavelength, the channel can
be affected by slight variations in the micrometer scale [120]. As a result, the
frequency of channel estimation is expected to be extremely high and the corre-
sponding overhead unaffortable. This motivates the design of prediction-based
channel estimation and beam tracking approaches.

• From the hardware point of view, high-frequency transceivers suffer from a num-
ber of hardware imperfections. In particular, the EVM of THz transceiver may
even reach 0.4 [121]. It is questionable that conventional mitigation approaches
would be able to limit the impact of hardware imperfections. As a result, smarter
signal detection approaches need to be developed. Of note, as stated in [122–
124], in lower-frequency communication systems including mmW, the EVM does
not exceed 0.17.

• THz wireless systems are expected to support a large variety of applications with
diverse set of requirements as well as UEs equipped with antennas of different
gains. To guarantee high availability and association rate that tends to 100%,
association schemes that take into account all together the nature of THz re-
source block, the UEs’ transceivers capabilities, as well as the applications re-
quirements, need to be presented. Moreover, to ensure uninterrupted connectiv-
ity, these approaches should be highly adaptable to network topology changes.
In other words, they should be able to predict network topologies changes and
pre-actively perform hand-overs.

• Conventional routing strategies account neither the communication nodes dis-
tance nor their memory limitations. However, in THz mobile scenarios, where
both the transmission range is limited to some decades of meter and the device
memory is comparable to the packet length, routing may become a complex opti-
mization problem.
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Figure 6.1: ML-based applications to different layers of THz wireless systems and
networks.

• Finally, for several realistic scenarios, the aggregated data-rate of the fronthaul
is expected to reach 1 Tb/s, which is comparable with the backhaul’s achievable
data-rate. This may cause service latency due to data congestion in network
nodes. To avoid this intelligent traffic prediction and caching strategies need to
created to pre-actively bring the future-requested content near the end-user.

The rest of this section is focused on explaining the role of ML in THz wireless sys-
tems and networks by presenting the current state-of-the-art. As illustrated in Fig. 6.1
and in order to provide a comprehensive understanding of the need to formulate ML
problems and devise such solutions, we classify the ML problems into four categories,
namely i) PHY, ii) MAC and RRM, and iii) Network. Of note, this classification is in
line with the open system interconnection (OSI) model. For each category, we identify
the communications and networks problems for which ML solutions have been pro-
posed as well as the needs of utilizing them. Finally, this section provides a review
on the ML problems and solutions that have been employed. Apparently, some of the
aforementioned challenges have been also discussed in lower-frequency systems and
networks. For the sake of completeness, in our literature review, we have also included
contributions that although refer to lower frequency, can find application to THz wireless
systems and networks.

6.2.1 PHY layer

The additional DoFs, which have been brought by the ultra-wide band THz channels
as well as their spatial nature, allow us to establish high data-rate links with limited
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transmission power. Moreover, advances in the fields of communication-components
designs, fueled by new artificial materials, such as reconfigurable intelligent surfaces
(RISs), created a controllable wireless propagation environment; thus, offered new
opportunities in simplifying the PHY layer processes and further increased the sys-
tems DoFs [125]. Finally, the use of direct conversion architectures (DCAs) in both
transceivers created the need to utilize digital signal processing (DSP) algorithms in or-
der to “decouple” the system’s reliability from the hardware imperfection related degra-
dation. The computational complexity of these algorithms increases as the modulation
order of the transmission signal increases. The aforementioned factors create a rather
dynamic high-dimensional complex environment with processes that are hard or even
impossible to be analytically expressed. Motivated by this, the objectives of employing
ML in the PHY layer is to provide adaptability to an ever changing wireless environment
consisted of heterogeneous components (transceivers, RIS, active and passive relays,
etc.) and to countermeasure the impact of transceivers hardware imperfections with
increasing neither the communication nor the computation overheads.

In this direction, several researcher have focused on presenting ML-related solutions
for automatic modulation recognition (AMR) [126–132], channel estimation [133–140],
and signal detection [141–145]. In more detail, AMR has been identified as an im-
portant task for several wireless systems, since it enables dynamic spectrum access,
interference monitoring, radio fault self-detection as well as other civil, government, and
military applications. Moreover, it is considered as a key enabler of intelligent/cognitive
nano- and macro-scale receivers (RXs). Fast AMR can significantly improve the spec-
trum utilization efficiency [146]. However, it is a very challenging tasks, since it depends
to the variation of the wireless channel. This aspires the introduction of intelligence in
this task. In this sense, in [126], the authors employed convolutional NNs (CNNs) and
recurrent NNs (RNNs) in order to perform AMR. As inputs, the algorithms used the in-
phase and quadrature (I/Q) components of the unknown received signal and classified
it to one of the following modulation schemes: binary frequency shift keying (BFSK),
differential quadrature phase shift keying (DQPSK), 16 quadrature amplitude modula-
tion (16-QAM), quaternary pulse amplitude modulation (4PAM), minimum shift keying
(MSK), Gaussian minimum shift keying (GMSK). Moreover, in [127], a deep NN (DNN)
approach was discussed for identifying the received signal modulation in coherent RXs.
The DNN is comprised of two auto-encoders and an output perceptron layer. To train
and verify the ML network, two datasets of numerous amplitude histograms are used.
After training, the network is capable of accurately extracting the modulation format of
the signal after receiving a number of symbols.

Similarly, in [128], the authors presented a DNN approach that is based on RNNs
with short memory and is capable of to exploit the temporal and spatial correlation
of the received samples in order to accurately extract the their modulation type. In
this contribution, as an input, the ML algorithm requires a predetermined number of
samples. Meanwhile, in [129], the authors reported a extreme supervised-learning ML
algorithm capable of accurately and time-efficiently estimating the modulation type of
the received samples. The disadvantage of the aforementioned approaches is that
the training period is large and if the characteristics of channel changes, for example
due to a RIS reconfiguration, a partial blockage phenomenon or the user equipment
movement, the algorithm need to be re-trained.

Additionally, in [130], a semi-supervised deep convolutional generative adversarial
network (GAN) was presented that consists of a pair of GANs that collaboratively cre-
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ate a powerful modulator discriminator. The ML network receives as inputs the I/Q
components of a number of received signal samples and matches them to a set of
modulation formats. The main disadvantage of this approach is its high-computational
resource demands as well as its sensitivity to received signal distribution variations.
To deal with the data distribution variation, Bu et al. [131] introduced an adversarial
transfer learning architecture that exploits transfer learning and is capable of achieving
accuracy comparable to the ones of supervised learning approaches. However, this
approach demands careful handling of former knowledge since there may exist differ-
ences between wireless environments. In [131], the ML algorithm uses as an input the
(I/Q) components of the received signal. Finally, in [132], an expectation maximization
(EM) algorithm was employed in order to perform modulation mode detection and sys-
tematically differentiate between pulse- and carrier-based modulations. The presented
results revealed the existence of a unique Pareto-optimal point for both the SNR and
the classification threshold, where the error probability is minimized.

Another important task in PHY layer is channel estimation and tracking. In par-
ticular, in order to employ high directional beaforming in THz wireless systems, it is
necessary to acquire channel information for all the transmitter (TX) and RX antenna
pairs. The conventional approach that is supported by several standards, including
IEEE 802.11ad and IEEE 802.11ay [147–149], depends on creating a set of transmis-
sion and reception beamforming vector pairs and scanning between them in order to
identify the optimal one. During this process, the access point (AP) sends synchro-
nization signals using all its possible beamforming vectors, while the user equipment
(UE) performs energy detection in all possible reception directions. In the end of this
process, the UE determines the optimal AP beamforming vector and feed it back to the
AP. Next, the roles of the AP and UE interchange in order to allow the AP to identity the
optimal UE beamforming vector and feed it back to it. Notice that in the second phase,
the AP locks its RX to its optimal beamforming vector. Then, channel estimation is
performed using the optimal beamforming pair and a classical DSP technique (e.g.,
minimum least square error, minimum mean square error, etc.). Let us assume that
the AP and the UE respectively have LA and LU available beamforming vectors and
that Na and Ne received signal samples are needed for energy detection and channel
estimation. As a consequence, the latency and power consumption due to channel
estimation is proportionally to LALUNa + LUNa + Ne + 2. This indicates that as the
number of the antennas at TX and RX increases, the number of beamforming pairs
also increases; thus, the training overhead significantly increase and the conventional
channel estimation approach becomes more complex as well as time and power ineffi-
cient.

To better understand the importance of this challenge in THz wireless systems, let
us refer to an indicative example. Assume that we would like to support a virtual real-
ity (VR) application for which the transmission distance between the AP and the UE is
20 m, a data-rate of 20 Gb/s is required with an uncoded bit error rate (BER) in the order
of 10−6. Furthermore, a false-alarm probability that is lower than 1% is required. This
indicates that Na ≥ 100. Let us assume that the transmission bandwidth is 10 GHz, the
transmission power is set to 10 dBm, while the receives mixer convention and miscel-
laneous losses are respectively 8 and 5 dB. Additionally, the RX’s low noise amplifier
(LNA) gain is 25 dB, whereas the RX’s mixer and LNA noise figures are respectively
6 and 1 dB. If the transmission frequency is 287.28 GHz, both the TX and RX need to
be equipped with antennas of 35 dBi gain. Such antennas have a beamwidth of 3.6o;
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hence, LA = LU = 100. Also, by assuming that Ne = 100, the channel estimation
latency becomes equal to approximately 1 ms. Of note, VR requires a latency that is
lower than 1 µs.

To address the aforementioned problem, researchers turned their attention to re-
gression and clustering ML-based methods. Specifically, in [133], the authors em-
ployed a DNN-based algorithm to predict the user’s channel in a sub-THz multiple-
input multiple-output (MIMO) vehicular communications system. The ML algorithm
of [133] takes as input the signals received by a predetermined number of APs and
outputs a vector containing the estimated channel coefficients. Similarly, in [134], the
authors reported a deep learning compressed sensing (DLCS) algorithm for channel
estimation scheme in multi-user (MU) massive MIMO sub-THz systems. The DLCS is
a supervised learning algorithm that takes as input a simulation-based generated re-
ceived signal vector as well as real measurements and performs two functionalities, i.e.
beamspace channel amplitude estimation; and ii) channel reconstruction. The results
indicate that this approach can achieve a minimum mean square error that is compara-
ble with the one of the orthogonal matching pursuit scheme. Likewise, in [135], a man-
ifold learning-extreme learning machine was presented for estimating high-directional
channels. In more detail, manifold learning was employed for dimentionality reduction,
whereas the extreme learning algorithm with one-shot training was employed for chan-
nel state information estimation. Moreover, in [136], the authors presented a Gaussian
process based ML (GPML) algorithm to predict the channel in an unmanned aerial ve-
hicle (UAV) aided coordinated multiple point (CoMP) communication system. The main
idea was to provide real-time predictions of the location of the UAV and reconstruct the
line-of-sight (LOS) channel between the AP and the UAV. Similarly, in [137], a sparse
Bayesian learning algorithm was introduced to estimate the propagation parameters
of the wireless system. Meanwhile, in [138], the authors presented a neural network
(NN)-based algorithm for channel prediction and showed that, after sufficient training,
it can faithfully reproduce the channel state.

Likewise, in [139], a NN-based algorithm, which consists of three hidden layers and
one fully-connected layer, was reported to obtain the beam distribution vector and re-
produce the channel state. The algorithm uses as inputs the (I/Q) components of the
received signal. It is trained offline using simulations and is able to achieve similar
performance in terms of total training time slots and the spectral efficiency with pre-
viously proposed approaches, like adaptive compressed sensing, hierarchical search,
and multi-path decomposition. In order for this approach to work properly, the simu-
lation and real world data should follow the same distribution. Also, the propagation
parameters of both types of data should coincide. Furthermore, in [140], the authors
presented a deep denoising NN assisted compressive sensing broadband channel es-
timation algorithm that exploits the relation of angular-delay domain MIMO channels
in sub-THz RIS-assisted wireless systems. In particular, the algorithm takes as inputs
the received signals at a number of active elements of the RIS and forward them to a
compressive sensing block, which feeds the NN. The proposed approach outperformed
the well-known simultaneous orthogonal match pursuit (SOMP) algorithm in terms of
normalized mean square error (NMSE). The main disadvantage of deep denoising NN
approach is that it is not adaptable to changes in the propagation environment charac-
teristics. Furthermore, in [150], Li et al. reported a deep leaning architecture for chan-
nel estimation in RIS-assisted THz MIMO systems. The idea behind this approach
was to convert the channel estimation problem into the sparse recovery problem by
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exploiting the space nature of THz wireless channels. In this direction, the algorithm
uses received signals that carry pilot symbols for training the (I/Q) components. In
the operation phase, the (I/Q) components of the received signal are used as inputs.
Finally, in [151], the authors employed k-nearest neighbors (kNN) and support vector
classifiers (SVC) to estimate the angle-of-arrival (AoA) in hybrid beamforming wireless
systems.

Signal detection is another PHY layer task. Conventional approaches require accu-
rate estimation of both the channel model and the impact of hardware imperfections
in order to design suitable equalizers and detectors. However, as the wireless envi-
ronment becomes more complex and the influence of hardware imperfections become
more severe, due to the high number of transmission and reception antennas, data de-
tection becomes more challenging. This fact motivates the study of ML-based solution
for end-to-end signal detection, in which no channel and hardware imperfections equal-
ization is required. In this sense, in [141], the authors employed a DNN architecture
for data detection, whereas, in [142], the effectiveness of deep learning for end-to-end
signal detection was reported. Similarly, in [143], the authors presented a deep learn-
ing assisted approach for beam index modulation detection in high-frequency mas-
sive MIMO systems. Additionally, in [144], the authors demonstrated the use of deep
learning assisted soft-demodulator in multi-set space-time shift keying millimeter wave
(mmW) wireless systems. To cancel the impact of hardware imperfections without em-
ploying equalization units, a supervised ML signal detection approach was presented
in [145].

To sum up, PHY-specific ML algorithms usually employ as inputs I/Q components of
the received signal samples. In case of modulation recognition, due to the lack of un-
labeled data for training, unsupervised learning approaches are adopted. On the other
hand, in channel estimation and signal detection, pilot signals can be exploited to train
the ML algorithm. As a consequence, for channel estimation, supervised learning ap-
proaches are the usual choice. In particular, as observed in Table 6.1, both supervised
and unsupervised learning approaches were applied that return classification, regres-
sion, dimensionality reduction and density estimation rules. Interestingly, it is observed
that for signal detection only DNN-based algorithms have been reported. Finally, it is
worth noting that the main requirement for the algorithm selection in most cases was
to provide high adaptation to the THz wireless system. It is worth mentioning that,
for the sake of competence, Table 6.1 includes some contributions that although do
not refer to THz wireless systems, they can be straightforwardly applied to them. For
example, [126, 129] and [130] can be applied to any system that employ I/Q modula-
tion and demodulations approaches, whereas [127] is suitable for the ones that use
coherent RXs. Of note, according to [98], coherence RXs are a usual choice in THz
wireless fiber extenders. Similarly, since an inherent characteristic of THz channels is
the high temporal correlation, the ML methodology presented in [128] is expected to
find application in THz wireless systems. Additionally, despite the fact that the ML algo-
rithms in [133–137, 139, 140, 143, 144] were applied to mmW systems and exploit the
spatio-temporal and directional characteristics of the channels in this band, the same
approach can be used in THz systems that have the similar particularities. Finally, the
ML approach presented in [145] can be applied in any MIMO regardless the operating
frequency.
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Table 6.1: ML algorithm types applied in PHY
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[126] – X X – – – – – – – –

[127] – – – X – – – – – – –

[128] – – – X – – – – – – –

[129] X – – – – – – – – – –

[130] – – – – X – – – – – –

[131] – – – – X – – – – – –

[132] – – – – – – – – – – X

Channel estimation and beam tracking

[133] – – – X – – – – – – –

[134] – – – – – X – – – – –

[135] X – – – – – – – – – –

[136] – – – – – – X – – – –

[137] – – – – – – – X – – –

[138] X – – – – – – – – – –

[139] X – – – – – – – – – –

[140] – – – – – – – – X – –

[150] – – – X – – – – – – –

[151] – – – X – – – – – X –

Signal detection

[141] – – – X – – – – – – –

[142] – – – X – – – – – – –

[143] – – – X – – – – – – –

[144] – – – X – – – – – – –

[145] – – – X – – – – – – –
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6.2.2 MAC and RRM layer

MAC and RRM layers are responsible of providing uninterrupted high quality of expe-
rience (QoE) to mutliple end users. In contrast to lower-frequency communications,
where omni-directional or quasi-omni-directional links are established, in THz wireless
systems both the AP/BS and the UE employ beamforming. As a result, an additional
to time and frequency resource, i.e. space, is created. The optimal exploitation of
the tertiary nature of the channel require the design of beamforming approaches2 and
channel allocation strategies. Moreover, to satisfy the end user’s data rate demands
and to support non-orthogonal multiple access (NOMA), power management policies
are required. Finally, to address the impact of blockage, environmental awareness
need to be obtained by the wireless THz network and proactive blockage avoidance
mechanisms are a necessity. Motivated by the above, the rest of this section discuss
ML-based beamforming designs, channel allocation strategies, power management
schemes and blockage avoidance mechanisms.

Beamforming design is a crucial task for MIMO and MU-MIMO THz wireless sys-
tems. However, conventional beamforming approaches strongly rely on accurate chan-
nel estimation; as a result, their complexity is relatively high. To simplify the beam-
foming design process, a great amount of research effort was put on investigating
ML-based approaches. In more detail, in [153], the authors presented a DNN for de-
termining the optimal beamforming vectors that maximizes the sum rate in a two-user
multiple-input single-output (MISO) wireless system. The ML algorithm uses as in-
puts the real and imaginary part of the complex MISO channel coefficients as well
as the transmitted power. For training the ML model, the cross-entropy is used as a
cost function, which evaluates the errors by calculating the difference between prob-
ability distributions labeled and model outputted data. Three DNN architectures to
approximate the hybrid beamformer’s singular value decomposition, with varying levels
of complexity were discussed in [154]. The architectures take as inputs the real and
imaginary components of the MIMO channel coefficients. The first architecture pre-
dicts a predetermined number of the most important singular values and vectors of a
given channel matrix by employing a single DNN. The second architecture employs k
DNNs. Each of them returns the largest singular value and corresponding right and
left singular vectors of the MIMO channel matrix. The third architecture is suitable for
channel matrices of rank-1 and outputs a predetermined number of singular values
and vectors by recursively using the same DNN. The architectures are trained through
comparison of the extracted channel matrices to the channel matrices extracted by the
ML-models. The proposed ML-based architectures were shown, by means of Monte
Carlo simulations, to improve the system’s date rate by up to 50 − 70% compared to
conventional approaches.

The main disadvantage of the ML-architectures presented in [154] is that they re-
quire a large number of estimations of channel matrices for training, which may gen-
erate an unaffortable latency in a fast changing environment. To counterbalance this,
in [155], an unsupervised K-means algorithm is employed, which exploits the electric-
field response of each antenna element in order to design beam codebooks that opti-

2It is worth noting that in lower-frequency systems, beamforming design has been usually considered
to be part of the PHY layer. However, according to IEEE 802.11.3ay [152], since beamforming manages
the spatial resources of THz systems, although it is conducted at the baseband, part of it belongs to the
PHY, while the other to the MAC layer.
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mize the average received power gain of UEs that are located within a cluster. Although
this approach does not require large training periods, it is sensitive to drastical changes
of the wireless environment, which may arise due to users or scatterers/blockers move-
ment. Meanwhile, in [156], the authors formulated an interference managing problem
by means of coordinated beamforming in ultra-dense networks that aims at “almost
real-time” sum rate maximization. To solve the aforementioned problem, a Q-learning
based ML algorithm was introduced, which only require large scale channel fading
parameters and achieves similar results to the ones of the corresponding analytical ap-
proach that demands full channel state information. Note that the Q-learning algorithm
in [156] takes as input the state of the system, i.e. a logarithmic transformation of the
second-norm of the MIMO channel matrix. Likewise, in [157], the authors reported a
centralized deep learning based algorithm for coordinated beamforming vector design
in high-mobility and high-directional wireless systems. This algorithm uses as inputs
the I/Q components of a virtual omni-directional received signal and extracts a pre-
diction for the optimal beamforming vectors. To train the deep-learning algorithm pilot
symbols are employed, which are exchanged between the UE and basestations (BSs)
within the coherence time. This approach provided high-adaptation with the cost of
creating important overhead due to the message exchange need from/to BSs to/from a
central/cloud processing unit. In [158], a supervised NN was employed, which is based
on singular value decomposition, to design hybrid beamformers in massive MIMO sys-
tems that are capable of mitigating the impact of limited resolution phase shifters. The
proposed approach is executed in a single BS and achieve a higher spectral efficiency
compared with unsupervised learning ones. However, the performance enhancement
demands a relatively high training period.

To address this inconvenience, in [159], the authors presented a reinforcement
learning algorithm to jointly-design the analog and digital layer vectors of a hybrid
beamformer in large-antenna wireless systems. The algorithms take as input the
achievable data rate and returns the phase shifts of each antenna element. The dis-
advantage of this algorithm is that it is unable to achieve the same performance as the
corresponding supervised ML one. Moreover, in [160], the authors studied the use of
extreme learning machine for jointly optimizing transmit and receive hybrid beamform-
ing in MU-MIMO wireless systems. The algorithm requires as inputs the real and imag-
inary parts of the MIMO channel coefficients and returns the an optimal beamforming
vectors estimation. As a training cost function the difference between the targeted and
achievable SNR is used. In [161], the extreme learning and NNs were employed in
order to extract the transmit and receive beamforming vectors in full-duplex massive
MIMO systems.

In [162], a CNN with quantized weights (Q-CNN) algorithm was utilized as a solu-
tion to the problem of jointly designing transmit and receive hybrid beamforming vec-
tors. As input, the real and imaginary components of the MIMO channel matrix is
used. Q-CNN has limited memory and low-overhead demands; hence, it is suitable
for deployment in mobile devices. Furthermore, in [163], three NN-based approaches
for designing hybrid beamforming schemes were reported. The first one is based on
mapping various hybrid beamformers to NNs and thus transforming the beamforming
codeword design non-convex optimization problem into a NN training one. The sec-
ond approach is an extension of the first one that aims at optimizing the beam vectors
for the case of MU access. In comparison to the aforementioned approach, the third
one takes into account the hardware limitations, namely low-resolution phase shifters
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and analog-to-digital converters (ADCs). Simulation results revealed that the proposed
approaches outperform analytical ones in terms of BER. All the aforementioned ap-
proaches in [163] require as input the MIMO channel matrix. In [164], the authors
presented a support vector machine (SVM) algorithm for analog beam selection in hy-
brid beamforming MIMO systems that uses as inputs the complex coefficients of the
channel samples. This approach provides near-optimal uplink sum rates with reduced
complexity compared to conventional strategies. On the other, it requires sufficient
training data that leads to high training periods, when the characteristics of the wire-
less channel changes.

To countermeasure the aforementioned problem, unsupervised learning approaches
were employed in several works [165–167]. In more detail, in [165], an autoencoding-
based SVD methodology was used in order to estimating the optimal beamforming
codes at the TX and RX, while, in [166], Lin et al. introduced a deep NN architecture
for beamforming design that outperforms several previously presented deep learning
approaches. Additionally, in [167], a ML-based clustering strategy with feature selec-
tion was employed to design three dimensional (3D) beamforming. In particular, the
algorithm has three steps. In the first step, it uses pre-collected data in order to obtain
a set of eigenbeams, while, in the second one, the aforementioned sets are used to
estimate the channel state information, which in the third step is feed to a Rosenbrock
search engine. The two first steps are executed offline, whereas, the third one is an on-
line process. As the number of antenna elements increases, the size of the eigenbeam
vector set also increases; thus, the practicality of this approach may be questionable
in massive MIMO systems. All the aforementioned ML algorithms employ as input the
MIMO channel matrix.

ML was also employed to optimize the beamforming vectors of relaying and re-
flected assisted high-directional THz links. For example, in [168], Li et al. presented
a cross-entropy hybrid beamforming vector estimation deep reinforcement learning-
based scheme for unmanned aerial vehicle (UAV)-assisted massive MIMO network.
The deep reinforcement learning method was employed in order to minimize the AP
transmission power by jointly optimizing the AP and RIS active and passive beamform-
ing vectors. Finally, in [169], Liu et al. used Q-learning in order to jointly designing the
movement of the UAV, phase shifts of the RIS, power allocation policy from the UAV to
mobile UEs, as well as determining the dynamic decoding order of a NOMA scheme,
in a RIS-UAV assisted THz wireless system. Both the ML algorithms utilized in [168]
and [169] use as input the the estimated channel coefficient matrix.

Another challenging and important task in THz wireless networks is channel alloca-
tion. Of note, in this band, the radio resource block (RRB) has three dimensions, i.e.,
time, frequency, and space. As a result, the additional DoF, namely space, creates a
more complex resource allocation problem. Aspired by this fact, several contributions
studied the use ML approaches in order to design suitable resource allocation poli-
cies. Indicative examples are in [170–175]. In particular, in [170], a centralized NN
was employed to return the channel allocation strategy that minimizes the co-channel
interference in an ultra-dense wireless network. The NN takes as input a binary matrix
that contains the user-channel association and estimates the up-link SINR. In [172], a
centralized supervised cluster-based ML interference management channel allocation
that takes into account the time-varying network load was introduced. As inputs to
the algorithm, the RRB allocation data, the acknowledgement (ACK) and the negative
acknowledgement (NACK) data collected from the network are used. The algorithm
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outputs an estimation of the interference intensity.
To deal with the ever changing topology and time-varying channel conditions of ultra-

dense mobile wireless networks, in [171], a deep Q-learning model was presented that
uses quantized local AP and UE channel state information to cooperatively allocate the
channels in a downlink scenario. The algorithm is self-adaptive and does not require
any training. Additionally, in [173], a DNN was used that takes as inputs the chan-
nel state information and returns the spatial resource block (i.e. beam) allocation in
massive MIMO wireless systems. Moreover, in [174], a deep learning approach was
proposed for channel and power allocation in MIMO-NOMA wireless systems that aims
at maximizing the sum data rate and energy efficiency of the overall network. The ap-
proach uses as inputs the channel vectors, precoding matrix and the power allocation
factors. Finally, in [175], a feedforward NN that takes as inputs the uplink channel state
information and returns a channel allocation strategy in a rank and power constrained
massive MIMO wireless system, was employed.

For multi-antenna THz transceivers, the hardware complexity and power manage-
ment become a burden toward practical implementation [176]. To lighten the power
management process, several researchers turned their eyes on ML. For instance,
in [119], the K-means algorithm was employed to cluster the users of a NOMA-THz
wireless network and to maximize the energy efficiency by optimizing the power allo-
cation. The K-means algorithm in [119] requires as inputs the number of clusters and
set of users as well as the channel vectors and outputs the UE-AP association ma-
trix. Moreover, in [177], Kwon et al. reported a self-adaptive DRL deterministic policy
gradient-based power control of BS and proactive cache allocation toward BSs in dis-
tributed Internet-of-vehicle (IoV) networks. In [177], the system’s state that is the input
of the DRL, takes into account the available and total buffer capacity of each BS, the av-
erage e quality state of the provisioned video at each UE. Meanwhile, in [178], a trans-
fer learning approach that is based on the Q-learning algorithm, was used to allocate
power in MU cellular networks, in which each cell has different user densities. Similarly,
Q-learning was employed in [179] to develop a self-organized power allocation strategy
in mmW networks. Finally, in [180], Zhang et al. presented a semi-supervised learning
and DNN for sub-channel and power allocation in directional NOMA wireless THz net-
works. The algorithm requires as inputs the set of users and their channel vectors as
well as a predetermined number of clusters.

Another burden that THz wireless system face is blockage. Sudden blockage of the
THz LOS path cause communication interruptions; thus, creates a detrimental impact
on the system’s reliability. Further, re-connections to the same or other BS/AP de-
mands high beam training overhead, which in turn result to high latency. To avoid this,
some contributions discuss the use of ML in order to predict dynamic (moving) obsta-
cles position and their probability to block the LOS between the AP/BS and UE in order
to proactively hand-over users to other AP/BS. Towards this direction, in [181], a rein-
forcement learning algorithm was used to create a proactive hand-off blockage avoid-
ance strategy. The state of the system that is defined by the beam index of each AP/BS
at every time step is used as an input to the reinforcement learning agent. Moreover,
in [182], NN and CoMP clustering was employed to predict the channel state and avoid
blockage. In the scenario under investigation, the authors consider dynamic blockers
(i.e. cars) that perform deterministic motion. The presented algorithm use as inputs the
UE location as well as the system’s clock time. Similarly, in [183], stochastic gradient
descent (SGD) was employed to design outage-minimization robust directional CoMP
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systems by selecting communication paths that minimize the blockage probability. In
this direction, the algorithm uses as inputs an initial estimation of the beamforming
vector as well as the channel state information and returns the optimized beamforming
vector. Finally, in [184], a DNN was employed to provide environmental awareness
to an RIS-assisted wireless sub-THz network that performs beam switching between
direct and RIS-assisted connectivity in order to avoid blockage. The inputs of the algo-
rithm in [184] are the network topology and the links line-of-sight conditions.

According to Table 6.2, supervised, unsupervised, and reinforcement learning were
employed to solve different problems in MAC layer. In particular, for beamforming de-
sign, where the main requirement is adaptation to the ever changing propagation en-
vironment, unsupervised learning was used to cluster UEs, supervised learning was
applied to design appropriate codebooks, and reinforcement learning was employed
for beam refinement and fast adaptation. As a consequence, reinforcement learning
approaches are attractive for mobile and non-deterministic varying wireless environ-
ments. On the other hand, supervised learning approaches are more suitable for static
environments or environments that change in deterministic way. A key requirement that
supervised learning approaches have is the need to be training through a set of channel
or received signal vectors that are accompanied by an achievable performance indica-
tor. The indicator can be the data-rate, outage probability or any other KPI of interest.
Likewise, unsupervised clustering and supervised learning were used for channel allo-
cation, which was performed based on the UE communication demands. Due to lack
of extensive training data sets and need of adaptation, unsupervised and reinforce-
ment learning approaches were employed for power management. Finally, supervised
and reinforcement learning were used to provide proactive policies for blockage avoid-
ance based on statistical or instantaneous information, respectively. Of note, some
of the contributions in Table 6.2 refer to wireless systems that employ the same tech-
nological enablers as THz communications without specifying the operating frequency
band. Indicative examples are [153, 154, 156, 158, 162, 166, 169] that discuss ML ap-
proaches for beamforming design in analog and hybrid beamforming systems, as well
as [170–173, 175], which present ML-based channel allocation approaches for ultra-
dense networks in which the communication channels are high directional. Apparently,
the aforementioned approaches are suitable for THz wireless deployments.
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Table 6.2: ML algorithm types applied in MAC
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Beamforming design

[153] – X – – – – – –

[154] – X – – – – – –

[155] – – X – – – – –

[156] – – – X – – – –

[157] – X – – – – – –

[158] X – – – – – – –

[159] – – – – X – – –

[160] X – – – – – – –

[161] X – – – – – – –

[162] – – – – X – –

[163] X – – – – – – –

[164] X – – – – – – –

[165] – – – – – – X –

[166] – X – – – – – –

[167] – – X – – – – –

[168] – – – – X – – –

[169] – – – X – – – –

Channel allocation

[170] X – – – – – – –

[172] – – X – – – – –

[171] – – – X – – – –

[173] – X – – – – – –

[174] – X – – – – – –

[175] X – – – – – – –
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Power management

[119] – – X – – – – –

[177] – – – – X – – –

[178] – – – X – – – –

[179] – – – X – – – –

[119] – X – – – – – –

Blockage avoidance

[119] – X – – – – – –

[181] – – – X – – – –

[182] X – – – – – – –

[183] – – – – – – – X

[184] – X – – – – – –

6.2.3 Network layer

The ultra-wideband extremely directional nature of the sub-THz and THz links in com-
bination with the non-uniform UE spatial distribution may lead to inefficient user associ-
ation, when the classical minimum-distance criterion is employed. Networks operating
in such frequencies can be considered noise- and blockage-limited, due to the fact that
high path and penetration losses attenuate the interference [98,185]. Hence, user as-
sociation metrics designed for interference limited homogenous systems are not well
suited to sub-THz and THz networks [186]. As a result, user association should be de-
signed to meet the dominant requirements of throughput and guarantee low blockage
probability. Another challenge that user association schemes need to face is the user
orientation, which is observed to have a detrimental effect on the performance of THz
wireless systems [187,188].

Scanning the technical literature, we can identify several contributions that employ
ML for user association in sub-THz and THz wireless networks [189–197]. In more
detail, in [189], the authors employed multi-label classification ML that takes as input
both topological as well as network characteristics and returns a user association pol-
icy that satisfy users’ latency demands. Meanwhile, in [190], the authors presented
an online deep reinforcement learning (DRL) based algorithm for heterogeneous net-
works, where multiple parallel DNNs generate user association solutions and shared
memory is used to tore the best association scheme. Moreover, in [191], Khan et al.
introduces a federate learning approach to jointly minimize the latency and the effect
of model accuracy losses due to channel uncertainties.The inputs of the ML algorithm
presented in [191] are the device association and the resource block matrices, while the
output is the resource alocation matrix. Likewise, in [192], a deep gradient reinforce-
ment learning based policy was presented as a solution to the joint user association
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and resource allocation problem in mobile edge computing. The reinforcement learning
agent of [192] takes as input the system state that is described by the current backhaul
and resource block usage.

In [193], two clustering approaches, namely least standard deviation user clustering
and redistribution of BSs load-based clustering were presented that take into account
the characteristics of both radio frequency (RF) and THz as well as the traffic load
across the network in order to provide appropriate associations in RF and THz het-
erogeneous networks. Furthermore, in [194], a transfer learning methodology was
employed for inter-operator spectrum sharing in mmW cellular networks. The afore-
mentioned methodology takes as input the network topology, the association matrix,
the coordination matrix, the effective channels and outputs approximate the achievable
data-rate. In [195], an asynchronous distributed DNN based scheme, which takes as
inputs the channel coefficient matrix, was reported as a solution to the joint user as-
sociation and power minimization problem. In [196], Elsayed et al. reported a transfer
Q-learning based strategy for joint user-cell association and selection of number of
beams for the purpose of maximizing the aggregate network capacity in NOMA-mmW
networks. Finally, in [197], the authors exploited distributed deep reinforcement learn-
ing (DDRL) and the asynchronous actor critic algorithm (A3C) to design a low complex-
ity algorithm that returns a suboptimal solution for the vehicle-cell association problem
in mmW. The DDRL takes as input the current state of the network that is described by
a set of a predetermined number of channel observation, the current achievable and
required data rates.

After associating UEs to APs, uninterrupted connectivity needs to be guaranteed.
However, the network is continuously undergoing change; thus, its management should
be adaptive as well. This is where the conventional heuristic based exploration of state
space needs to be extended to support UE mobility in an online manner. Aspired
by this, several contributions presented ML-based mobility management solutions that
aim at accurately tracking the UE and proactively steering the AP and UE beams [198,
199] as well as performing hand-overs between beams and APs/BSs [200,201]. In par-
ticular, in [198], a RNN with a modified cost function that takes as input the observed
received signal as well as the previous AoA estimation, was employed to track the AoA
in a mmW network. The proposed approach was shown to outperform the correspond-
ing Kalman-based one in terms of accuracy. Moreover, in [199], a long short term
memory (LSTM) structure was designed to prevent the user position in order to proac-
tively perform beam steering in mmW vehicular networks. The structure uses as input
the estimated by the BS channel vector. Additionally, in [201], the authors employed
kNN to predict handover decisions without involving time-consuming target selection
and beam training processes in mmW vehicle-to-infrastructure (V2I) wireless topolo-
gies. Finally, in [202], centralized Q-learning was employed that takes into account the
current received signal strength in order to provide real-time controlling capabilities to
the hand-over process between neighbor BS in directional wireless systems.

Another challenging task of THz wireless networks is routing. The limited trans-
mission range in combination with the transmission power constraints and memory
limitations of mobile devices render conventional routing strategies that are employed
in lower-frequency networks unsuitable for THz ones. Motivated by this, in [203], the
authors presented a reinforcement learning routing algorithm and compared it with NN
and decision tree-based solutions. The results showed that the reinforcing learning ap-
proach not only provides on-line routing optimization suggestions but also outperforms
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the NN and decision tree ones. To the best of the authors knowledge, the aforemen-
tioned contribution is the only published one that discuss ML-based routing policies in
high-frequency wireless networks.

To create a fully automated THz wireless network or even integrate THz technologies
into current cellular networks, one of the essential problems that a network manager
need to solve is traffic clustering. An accurate traffic clustering allows the detection
of suspicious data and can aid in the identification of security gaps. However, as the
diversity of the data increases, due to their generation for different type of sources, e.g.,
sensors, artificial/virtual reality devices, robotics, etc, traffic clustering may become a
difficult task. Additionally, labeled samples are usually scarce and difficult to obtain.

To address the aforementioned challenges, several researchers turned their eye to
ML. In particular, in [204], Noorbehbahani et al. presented a semi-supervised method
for traffic classification, which is based on x-means clustering algorithm and a label
propagation technique. This approach takes as input network traffic flow data. It was
tested in real-data and achieved 95% accuracy using a limited labeled data. Similarly,
in [205], the authors reported a semi-supervised classification method that exploits
both labeled and unlabeled samples. This method combines offline particle swarm
optimization (PSO) to cluster the labeled and unlabeled samples of the dataset with a
mapping approach that enables matching clusters to applications.

In [206], Wang et al. applied K-means algorithm that takes into account the corre-
lations of network domain background information and transforms them into pair-wise
must-link constraints that are incorporated in the process of clustering. Experimental
results highlighted that incorporating constraints in the clustering process can signifi-
cantly improve the overall accuracy. Furthermore, in [207], Liu et al. employed feature
selection to identify optimal feature sets and log transformation to improve the accu-
racy of K-means based network traffic classification. Another use of K-means was
presented in [208], where the authors used it to detect networks cyber-attacks. In par-
ticular, the K-means in [208] takes as input network traffic-related data and identifies
irregularities. Moreover, a network traffic feature selection scheme that provides accu-
rate suspicious flow detection was reported in [209], whereas, in [210], random forest
was employed to perform the same task. Also, Bayesian ML was used to [211], which
take as input transport control protocol traffic flaws in order to identify internet traffic.
Although, this approach does not require access to packet content, it demands a sig-
nificant set of training data. To deal with the lack of training data, in [212], the authors
presented an unsupervised random forest clustering methodology for automatic net-
work traffic categorization. Meanwhile, in [213], the performance of EM and K-means
based algorithms for network traffic clustering were compared and it was shown that
K-means outperforms EM in terms of accuracy. In addition, in [214], the authors eval-
uated and compared the effectiveness of a number of supervised, unsupervised and
feature selection algorithms in real-time traffic classification problem, which takes as
input network’s statistical characteristics. Naive Bayes, Bayesian networks, multilayer
perception, decision trees, K-means, and best-first search were among the algorithms
that their performance were quantified. The results revealed that in terms of accu-
racy decision trees outperforms all the aforementioned algorithms. Finally, in [215],
the authors combined LSTM with CNN in order to develop a two-layer convolution
LSTM mechanism capable of accurately clustering traffic generated by different ap-
plication types.

Table 6.3 connects the published contributions to the ML algorithms that was applied
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in the network layer. Note that some of the contributions in these table does not ex-
plicitly refer to THz networks, however, the presented algorithms can find applications
to THz wireless systems, due to system and network topologies commonalities. For
example in [190], the ML approach can be used in any heterogeneous network that
consists of macro-, pico- and femto-cells. Notice that femto cells can be established
in the THz band. Similarly, the contributions in [191, 192, 195, 204, 205, 207] and [208]
can be applied in any femto-cell network that support high data traffic demands, such
as the THz wireless networks, independently from the operation frequency. More-
over, [194, 196–199, 201, 209–212] and [214] refer to mmW networks that support
data-rates in the order of 100 Gb/s in 60 GHz. In such networks, both the AP and UEs
employ high-gain antennas. Notice that THz wireless network are also designed to
support data-rates in the order of 100 Gb/s and establish high directional links in order
to ensure an acceptable transmission range. Thus, the aforementioned contributions
can be adopted to THz wireless networks.

From Table 6.3, we observe that based on the network nature, i.e. fixed or mo-
bile topology, supervised and reinforcement learning approaches are respectively em-
ployed for user association. Additionally, when the network had prior knowledge of
the UE possible direction supervised learning approaches were employed for mobility
management. On the other hand, in problems in which the UE motion is stochastic, re-
inforcement learning mechanisms were adopted. For routing, where accuracy plays an
important role and no instantaneous adaptation is required, supervised learning was
used. Finally, for traffic clustering both supervised and unsupervised learning were
employed. In more detail, unsupervised learning seems an attractive approach when
searching for data irregularities.

Security: Public Page 109



H2020-2018-2020, ICT – ARIADNE
D4.2: Intelligent D-band wireless systems

and networks initial designs

Table 6.3: ML algorithm types applied in network layer
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User association

[190] – – – – – – – – – – – – X – –

[191] X – – – – – – – – – – – – – –

[192] – – – – – – – – – – – – X – –

[193] – – – – – – – X – – – – – – –

[194] – – – – – – – – – – – – – X –

[195] – X – – – – – – – – – – – – –

[196] – – – – – – – – – – – – – X –

[197] – – – – – – – – – – – – X – X

Mobility management

[198] X – – – – – – – – – – – – – –

[199] X – – – – – – – – – – – – – –

[201] – – X – – – – – – – – – – – –

[202] – – – – – – – – – – – – – X –
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Routing

[203] X – – X – – – – – – – – – – –

Traffic clustering

[204] – – – – – – – – X – – – – – –

[205] X – – – – – – – – – – – – – –

[206] – – – – – – – X – – – – – – –

[207] – – – – – – – X – – – – – – –

[208] – – – – – – – X – – – – – – –

[209] – – – – – – – – – X – – – – –

[210] – – – – X – – – – – – – – – –

[211] – – – – – – X – – – – – – – –

[212] – – – – X – – – – – – – – – –

[213] – – – – – – – X – – X – – – –

[214] – – – X – X X X – – – X – – –

[215] X – – – – – – – – – – – – – –

Security: Public Page 111



H2020-2018-2020, ICT – ARIADNE
D4.2: Intelligent D-band wireless systems

and networks initial designs

Machine
learning

(ML)

Supervised
Learning

Unsupervised
Learning

Reinforcement
Learning

Transfer
Learning

Regression

Classification

Neural networks
(NNs) Deep

NNs/learning
Trees

Naive Bayesian
classifier

Q-
Learning

Actor-critic
learning

Multi-armed
bandit
realing

Joint utility and strategy
estimation based

learning
Deep

Reinforcement
Learning

Real-time adaptation

Clustering

K-
means

Dirichlet
processes

Spectral
clustering

Principle
component

analysis

Dimensionality
reduction

Auto-associative
NN

Local linear
embedding

ISOMAP

Density estimation

Support vector
machine

Binary decision
tree

Boltzmann
machine
Deep

Boltzmann
machine

Kernel
density

Gaussian
mixtures

Auto-
encoder

Type

Objective

Algorithm

Sub-category

Figure 6.2: Types of ML algorithms.

6.3 A Methodology to Select a Suitable ML Algorithm

As illustrated in Fig. 6.2, ML can be classified into four categories, namely i) supervised,
ii) unsupervised, iii) reinforcement, and iv) transfer learning. In what follows, we report
the main features of each category and revisit indicative ML algorithms emphasizing
their operation, training process, advantages and disadvantages.

6.3.1 Supervised learning

Supervised learning focuses on extracting a mapping function between the input and
output values based on a labeled dataset. As a consequence, it can be applied as
a solution to regression and classification problems. In more detail, in this paper, the
following supervised learning algorithms are discussed.

• NNs: are computing machines inspired by biological NN. In more detail and as
illustrated in Fig. 6.3, they consist of three types of layers, namely input, hidden,
and output. Each layer has a certain number of nodes that are called neurons
and process their input signal. A neuron in layer k implements a linear or non-
linear manipulation, called activation function, of the input data and forwards its
output to a number of edges, which connects neurons that belong to layer k with
the ones of layer k + 1. In more detail, let

xk =
[
xk1, x

k
2, · · · , xkl

]T
(6.1)
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Figure 6.3: General NN structure.

being the input vector of the k−th layer of the NN, and

wk,n =
[
w

(k,n)
1 , w

(k,n)
2 , · · · , w(k,n)

l

]T
(6.2)

being the weight vector of the n−th node of the k−th layer, then the output of this
node would be

yk,n =
l∑

i=1

w
(k,n)
i f(xki ) + b, (6.3)

or equivalently

yk,n =
(
wk,n

)T
f(xk) + b, (6.4)

where f (·) stands for a mapping function and b is a constant. Of note, if f (xk) =
xk, then the mapping is linear; otherwise, the mapping is characterized as non-
linear and usually returns a high-dimensional representation of xk.

The learning process aims at finding the optimal parameters wk,n so that

ŷk,n = f
(
xk; wk,n

)
(6.5)

to be as close as possible to the target yk,n. To achieve this a cost/error function
J
(
wk,n

)
is defined and minimized, i.e.,

∂J
(
wk,n

)
∂wk,n

= 0. (6.6)

The analytical differentiation of (6.6) is usually impossible; thus, numerical opti-
mization methods are applied. The most commonly used methods are gradient
descent as well as single and batch perceptron training [216].

• DNNs: are NNs with multiple hidden layers that, as depicted in Fig. 6.4, commonly
employs tanh, sigmoid or rectified as an activation function. A DNN is segmented
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Figure 6.4: Three indicative examples of commonly used activation functions.
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Figure 6.5: RNN structure.

into two phases, i.e. training and execution. Training phase employs labeled data
in order to extract the weights of all the activation functions of the DNN. Usually,
the SGD with back-propagation algorithm is employed for this task. In general, as
the number of hidden layers increases, the number of training data that is requires
increases; however, the classification or regression accuracy also increases. In
the execution phase, the DNN returns proper decisions based on its inputs, even
when the input values have not been within the training data set. As a result, the
main challenge of DNN is to optimally select its weights [217].

The special types of DNNs have been extensively used in THz wireless systems
and networks, namely CNN, and RNN.

RNN can be used for regression and classification. In contrast to conventional
DNNs and as illustrated in Fig. 6.5, it allows back-propagation by connecting
neurons of layer k, with the ones of previous layers. In other words, it creates
a memory that enables future inputs to be inherited by previous layers [218]. As
a result, fewer tensor operations in comparison to the corresponding DNN need
to be implemented, which is translated into lower computational complexity and
training latency. Building upon this advantage, RNNs have been widely used for
a large variety of applications ranging from automation modulation recognition,
where channel correlation was discovered by exploiting the recurrent property,
to traffic prediction, in which the data spatial-temporal correlation may play an
important role.

Finally, CNNs have been employed as solutions to several THz wireless networks
problems from AMR to traffic prediction. Their objective is to identify local cor-
relations within the data and exploit them in order to reduce the number of pa-
rameters as we move from the input to the output through the hidden layers. In
this type of networks, a hidden layer may play the role of a convolution, a recti-
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fier linear unit (RELU), a pooling, or a flattening layer [219]. Convolution layers
are used to extract the distinguished feature of each sample, while RELUs im-
pose decision boundaries. Likewise, pooling layers are responsible for spatial
dimensions down-sampling. Last, flattening is used to reorganize the values of
high-dimensional matrices into vectors.

• SVM: can be employed as a solution for both high-dimensional regression and
classification problems by mapping the original feature space into a higher-
dimensional one, in which their discriminability is increased [220]. In other words,
SVM aims at creating a space in which the minimum distance between nearest
points are maximized. In this direction, let us describe the new space as a lin-
ear transformation of the original one, which can be described according to the
following kernel function:

btx̂ + c = 0, (6.7)

where b and c are SVM optimization parameters, while x̂ are the labeled sam-
ple that belongs to the set of X = [x1,x2, · · · ,xM ], with the lowest separation
distance. Note that xm, with m = 1, 2, · · · ,M , contains the N features of the
n−th labeled sample. Then, their separation of the training samples can be ex-
pressed as

sm = lm
(
btxm + c

)
, (6.8)

where lm is the label of the m−th class. As a consequence, the optimization
problem that describes SVM can be formulated as

maxb,c minm=1,2,··· ,M
lmsm

||b||
s. t. C1 : sm ≥ minm=1,2,··· ,M sm, m = 1, 2, · · · ,M

C2 :
∣∣|b|∣∣ = 1

(6.9)

This problem may return a non-linear classification or regression of the original
space. Another weakness is that training an SVM model is computationally ex-
pensive especially as the training data size increases. In practice, it can take long
time to train an SVM model as the number of dimensions (features) increase in
a dataset and the problem is exacerbated with increase in datapoints beyond a
few hundreds of thousands. SVM has been extensively used for traffic clustering.
The main challenge is the optimal selection of the kernel function. This function
may be a linear, a polynomial, a radial, or an NN one. To device a suitable kernel
function, we usually apply inner product operations between input samples over
the Hilbert space in order to extract feature mappings.

• KNN: A widely-used algorithm for classification is KNN. KNN consists of three
steps, namely i) distance calculation, ii) neighbor identification, and iii) label vot-
ing. To provide a comprehensive understanding of KNN, let us define a set of N
training samples as T =

{
(x1, l1) , (x2, l2) , · · · , (xN , lN) ,

}
, with xi =[

xi,1, xi,2, · · · , xi,M
]
, i = 1, 2, · · · , N , being the samples of a class with label li,

while xi,m, m = 1, 2, · · · ,M are M discrete features. Likewise, let us also de-
fine an unlabeled sample as x̃ = [x̃1, x̃2, · · · , x̃M ], where x̃m with m = 1, 2, · · · ,M
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Figure 6.6: An indicative example of a decision tree.

standing for the m−th feature of the unlabeled sample x̃. During the first step,
the Euclidean of the Manhattan distance between x̃ and xi is evaluated for all
i = 1, 2, · · · , N , according to

di =


√∑M

m=1

(
x̃m − xi,m

)2
, Euclidean distance∑M

m=1

∣∣x̃m − xi,m∣∣ , Manhattan distance
. (6.10)

In the second step, the K most similar labeled samples, i.e., with the lowest dis-
tance from x̃, are identified. These samples are called “K nearest neighbors”. In
the final step, a majority rule is applied which classify x̃ to the class in which the
majority of the K nearest neighbors belongs to.

In THz wireless systems, KNN has been employed for channel estimation and
beam tracking as well as mobility management purposes. Its main challenge is to
appropriately select K. On the one hand, a large K can aim at counterbalancing
the negative impact of noise. On the other hand, it may fuzzify the boundary of
each class. This calls for heuristic approaches that returns approximations for K.

• Decision trees: are considered one the most attractive ML approach for both re-
gression and clustering, due to their simplicity and intelligibility. They are defined
by recursively segmenting the input space in order to create a local model for
each one of the resulting regions. To provide a comprehensive understanding of
decision trees operation, we consider an indicative tree that is depicted in Fig. 6.6.
We represent the target values by the tree’s leaves, while branches stand for ob-
servations. In more detail, the first node checks whether the observation X1 is
lower or higher than the threshold x1. If X1 ≤ x1, then, we check whether the
observation X2 is lower or higher than another threshold x2. If both X1 ≤ x1

and X2 ≤ x2, the decision tree returns the target value T1. On the other hand,
if X1 ≤ x1 and X2 < x2, the target value T2 is returned. Similarly, if X1 > x1,
the decision tree checks whether X2 is lower than the threshold x3. If a positive
answer is returned, the target value is set to T3, otherwise, it checks whether X1

is lower or higher of x4. If it is lower, the target value T4 is returned; otherwise, T5

is returned.
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In general, the decision tree model can be analytically expressed as

g(x) =
M∑
m=1

rmδ (X ∈ Rm) , (6.11)

where δ (·) is an indicator function that is defined as

δ (X ∈ Y) =

 1, X ∈ Y

0, otherwise
. (6.12)

Moreover, Rm stands for the m−th decision region, and rm represents the mean
response of this region. Finally, M represents the total number of regions. From
(6.11), it becomes evident that training a decision tree network can be translated
into finding the optimal partitioning, i.e., the optimal regions Rm with m ∈ [1,M ].
This is usually an NP hard optimization problem and its solution require the im-
plementation of greedy algorithms.

Although decision trees are easy to implement, they come with some fundamental
limitations. In particular, they are have lower accuracy in comparison with NNs
and DNNs. This is due to the greedy nature of the training process. Another
disadvantage of decision trees is that their sensitive to changes to the input data.
In other words, even small changes to the inputs may greatly affect the structure
of the tree. In more detail, due to the hierarchical nature of the training process,
errors that are caused at the top layers of the decision tree affect the rest of its
structure.

• Random forests3: improve the accuracy of decision trees by averaging several
estimations. In more detail and as illustrated in Fig. 6.7, instead of training a
single tree, random forest methodology is based on training N different trees
using different sets of data, which are randomly chosen. The outputs of the N
trees are averaged; hence, the random forest model can be described as

g(x) =
1

N

N∑
n=1

gn(x), (6.13)

with gn (·) standing for the n−th tree model.

The main challenge of random forests is to guarantee that the trees operate as
uncorrelated predictors. To achieve this, the training data is randomly divided
into subsets, where each subset is used to train a tree”. It is very confusing
to say “input variable subsets”. Basically, one of the ideas behind the random
splits of training data into subsets is that it makes the model resilient to outliers
and overfitting. For example, if there is an outlier in one or more subsets, the
model’s accuracy is not skewed due to it, as this is an ensemble model and the
outcome reflects joint decision of all trees, and since different trees have “seen”
different distributions in data (due to random subsetting), it is expected to handle
overfitting better. This indicates that there exists a trade-off between the accuracy

3It is worth-noting that random forest is implementing a technique which is called bagging.
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Figure 6.7: An indicative example of a random forest.

and training latency/overhead. In more detail, as the number of trees increases
and thus the accuracy of the random forest improves, the training set need to be
lengthen. Therefore, both the training latency and the overhead in the network
increases. Another disadvantage of random forests is the interpretability of the
model is not as simple in comparison with singular or non-ensemble model such
as a decision tree.

• Naive Bayesian classifier : aims at choosing the class that maximizes the posteri-
ori probability of occurrence. In particular, let us define the vector x ∈ {1, · · · , R}S,
where R stands for the number of values for each feature, while D represents the
number of features. Naive Bayesian classifier assigns a class conditional prob-
ability, p

(
Ct |x

)
for each possible class Ct with t ∈ [1, T ]. Of note, T stands for

the number of different classes. By applying the Bayes’ theorem, we can express
p
(
Ct |x

)
as

p
(
Ct |x

)
=
p (Ct) p

(
x |Ct

)
p (x)

. (6.14)

Moreover, by “naively” assuming that, for a given class label Ct, the features are
conditionally independent, p

(
x |Ct

)
can be obtained as

p
(
x |Ct

)
=

S∏
s=1

p
(
xs |Ct

)
. (6.15)

Here, conditional independence means that the algorithm treats all features as
equally important and statistically independent of each other. This may appar-
ently seem counter-intuitive as several features may indeed have some form of
correlation. However, this “naive” assumption can often lead to good predictive
accuracy due to the emphasis on evidence observed in the form of conditional
probability of features, for a given outcome class of the predicted (target) vari-
able. The independence assumption weakens the explainability of the predictions
made by the Naive Bayes classifier but at the same time, the algorithm is very ef-
ficient to train because probabilities in (6.15) can be measured in a single data
scan of the training dataset.
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Figure 6.8: Indicative hidden variable models.

Based on (6.14) and (6.15), a class label can be assigned according to

c̃ = arg max
t∈[1,T ]

p (Ct)
S∏
s=1

p
(
xs |Ct

)
. (6.16)

Note that based on the type of each feature, Us,t = {xs |Ct} may follow a Gaus-
sian, Bernoulli, multinoulli well-defined distribution. Likewise, from (6.16), it be-
comes evident that the training problem is converted to a maximum likelihood
one, which may generate overfitting issues and compromise the accuracy of the
naive Bayes model.

6.3.2 Unsupervised learning

Supervised learning highly depends on the existence of labeled datasets for training.
However, in several practical scenario, no such datasets are available. In this case,
unsupervised learning can be applied. Unsupervised learning aims at extracting data
unknown features and identify the relationship between them and the system response.
In more detail, unsupervised learning algorithms search for four types of relationships,
namely: (i) many-to-many; (ii) one-to-many; (iii) many-to-one; and (iv) one-to-one. This
is graphically presented in Fig. 6.8, where ym1, · · · , ymL denotes L hidden variables and
zm1, · · · , zmK are K known ones, with K >> L. These types of relationships can be
used for clustering, density estimation, and dimensionality reduction. In more detail,
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in THz wireless systems and networks the following clustering approaches have been
employed.

• EM: is a low-complexity iterative algorithm that aims at identifying maximum likeli-
hood estimates of parameters by means of iteration between two phases, namely
E and M. During the E phase, it infers the missing values, for a given set of pa-
rameters, while, in the M phase, it optimizes the parameters for a fixes “filled in”
data set. In more detail, in the i−th iteration, at the E phase, EM computes an
auxiliary function for the expectation of the log-likelihood using the parameters
estimations of the i− 1 iteration, which can be expressed as

F
(
θi−1 |θi

)
= EZ|Y,θi

[
log
(
p
(
Y,Z |θi−1

))]
, (6.17)

where Y and Z are respectively the set of known and hidden variables, whereas,
θi is the set of the unknown parameter at the i−th iteration. In the M phase, the
parameters that maximize the expected log-likelihood are determined based on
the following formula:

θ̃i = arg max
θi
F
(
θi−1 |θi

)
. (6.18)

This process stops when parameters convergence is achieved.

The EM approach can be used to parameter estimation problems that are based
on popular statistics models, like mixture Gaussian, hidden Markov, etc. However,
it has an important disadvantage. It cannot guarantee convergence to a global
optimum and not to a local one. As a result, it usually achieves poor performance
in high-dimensional problems.

• K-means: The objective of K-means is to partition M unlabeled samples into K
clusters, such as each sample to belong to exactly one cluster, based on their
similarity in terms of distance. In order to achieve this a two step approach is
followed, according to which, each training sample is assigned to one of the K
clusters based on its distance from the cluster center4, i.e., as a solution to the
following optimization problem:

C∗ = arg min
c

K∑
l=1

∑
x∈ck

∣∣|x− µk|∣∣2 , (6.19)

where C∗ is the optimal cluster segmentation, x is the set of samples and µk is
the mean of the samples that belongs in the cluster ck. Then, the cluster center
is updated, based on the new samples that are included or the ones that was
removed from each cluster. This process is reaped until convergence is achieved.
A graphical representation of the K-means algorithm is depicted in Fig. 6.9.

From (6.19), it becomes evident that the clustering optimization problem is a NP-
hard one. As a result, a heuristic algorithm needs to be employed in order to
solve it. However, such algorithms cannot guarantee convergence in a global

4Note that as the cluster of the center, most K-means implementations use the mean of the samples
that belong in the same cluster.
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Figure 6.9: K-means algorithm.

optimum. Its result is tightly connected to the initial cluster selections as well as
their centers. Despite this disadvantage, it has been used as a solution to a wide
range of problems spanning from beamfoming design to caching.

Feature selection or dimensionality reduction can be seen as a preprocessing phase
of ML, since it enables the elimination of correlated features by means of feature trans-
formation. In this direction, the following feature selection/dimensionality reduction ap-
proaches have been employed in THz wireless systems and networks:

• Principle component analysis (PCA): implements an orthogonal transformation in
order to convert potential correlated features of a dataset into uncorrelated ones
that are called principle components. The operation pillar of PCA is based on
the dogma that the first principle component has larger variance than the second,
which in turn has larger than the third, and so on. As the variance decreases, the
amount of the encaptulated information of the original features decreases, given
that the original feature has a considerable correlation. Motivated by this, PCA
aims at solving the following maximization problem:

v∗ = max
v

1

N

N∑
n=1

(
ytnv

)2
, (6.20)

or equivalently

v∗ = max
v

vtnGv, (6.21)

where G stands for the covariance matrix of the training dataset that can be
expressed as

G =
1

N

N∑
n=1

yny
t
n, (6.22)

while yn represent the n−th training dataset, and v is a unit vector.

Notice that the solution of (6.21), is the eigenvectors v1, · · · ,vK of G, with K <
M , where M the number of the original features. As a result, the dimensionality
reduction can be mathematically written as

zn = [v1, · · · ,vK ]t yn. (6.23)
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Figure 6.10: The autoencoder’s structure.

• Auto-encoder : is a feed-forward NN that it is trained to predict its inputs. As
a consequence, the number of inputs is the same as the one of the outputs.
As depicted in Fig. 6.10, the auto-encoder is a three-layer network that can be
described as [221]

z̃ = g
(
Wt (Wz + c) + b

)
, (6.24)

where W, b, and c are auto-encoder’s parameters, while g stands for an activa-
tion function vector. Finally, z and z̃ are N−dimensional vectors that contains the
auto-encoder’s inputs and outputs.

The first layer of the auto-encoder is a bottleneck one that is responsible for
preventing the system from learning a trivial identity mapping. The connection
weights between the first and the second as well as the second and the third
layer are shared, i.e., W and Wt. Note that the objective of the training phase of
the auto-encoder is to select a suitable W in order to minimize the input-output
error. This is usually performed by feeding inputs and outputs in the training al-
gorithm. Finally, the hidden nodes are used to capture the most relevant dataset
aspects.

In comparison with PCA, auto-encoder is capable of performing not only linear
but also non-linear transformations. However, since a greedy algorithm is usually
employed for its training, it is also sensitive to fitting errors. As a result, an impor-
tant task for using auto-encoders is to appropriately select the activation function
to be employed.

• ISOMAP: also called manifold learning, is a non-linear dimensionality reduction
approach that is build upon the principle of preserving the geodesic distances5 of
the lower-dimension [222]. In more detail, its implementation follows four stages.
In the first stage, the neighbors of each points are determined. In particular,
for each pair of points i, j, the input space distance dX (i, j), is calculated. Points
that have an input distance lower than a predetermined fixed radius, ε, are consid-
ered neighboring points. Building upon the first stage, the second one generates
neighborhood graph that connects each point with its neighbors. Then, in the third

5Note that the geodestic distance is the distance between two points following the available/possible
path that connects them.
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stage, the shortest path between two nodes of the neighborhood graph is evalu-
ated, according to the Dijkstra’s or Floyd-Warshall algorithm [223]. Towards this
direction, the geodesic distance, dG(i, j, between all pair of point on the manifold
is calculated as

dG (i, j) = min
(
da (i, j) , da (i, k) + da (k, i)

)
(6.25)

for each k ∈ [1, N ] were N stands for the total number of points. Moreover,
da (m,n) is an auxiliary variable that can be defined as

da (i, j) =

 dX (i, j) , for (i, j) ∈ A

∞ for (i, j) 6∈ A
, (6.26)

with A being the set of neighboring points. Finally, in the forth stage, the lower-
dimensional embedding, yi, is extracted by minimizing the embedding cost func-
tion

Jc(j) =
N∑
i=1

(∣∣|yi − yj∣∣ | − dG (i, j)
)2

. (6.27)

This approach finds several applications in identifying non-linear correlated hid-
den variables, such as traffic clustering. However, it comes with an important
disadvantage. In general, it is topologically unstable [224]; thus, it should only be
applied after extensive pre-processing of the data [225].

For density estimation the Boltzmann machine is usually used. Boltzmann ma-
chines: are employed to discover hidden features, which denote complex regulations
in the training dataset. As a result, they can be used to extract the stochastic dynam-
ics of datasets. Regarding its structure, as presented in Fig. 6.11, it can be seen as
a network, in which its units are bidirectionally symmetrically connected to each other
with fixed weights and return stochastic binary decisions, i.e., 0 or 1. A unit can be a
visible or a hidden node of the network. Notice that we can interact only with visible
units. A unit that returns a state 0 indicates that the system rejects a hypothesis, while
in state 1, it accepts it. The weight on a connection stands for a pairwise constraint be-
tween two hypotheses. In particular, positive weights refers to hypotheses that support
each other, i.e., if one is accepted, the other should also be accepted, while negative
ones indicate that only one of the two hypothesis can be accepted. The objective of a
Boltzmann machine is to minimize its global state, which is defined as [226]

E = −
∑
i<j

wijsisj +
∑
i

θisi, (6.28)

where wij is the i, j connection weight, si and sj respectively stand for the i−th and
j−th units states, and θi represents a threshold. To achieve this, we usually employ
heuristic algorithms. As a consequence, Boltzmann machines suffer from performance
degradation when the network is scaled up in size.

Finally, a special ML framework that can be used for both supervised and unsuper-
vised learning is GAN [227]. GANs are usually used to generate new data that have
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Figure 6.11: The Boltzmann machine’s structure.

the same statistics as the training ones [228]. As shown in Fig. 6.12, they consist of
two networks, a generator and a discriminator. The generator produces new samples
after providing an estimation of the dataset distribution, while the discriminator com-
pares the generated samples distribution to the one that arises by the unlabeled data.
The generator’s distribution, pZ(z), over data z is defined by introducing a prior on input
samples distortion, which is distributed according to pN(n), and a mapping to the data
space, which is represented by H

(
n |θ

)
, where H describes a multi-layer preceptor

(MLP) with parameters θ. The discriminator that follows utilizes another MLP, which we
denote D

(
z |θD

)
with parameter θD, that outputs a scalar that indicates the probability

that the training samples and the data generated by H are labeled correctly. In this
direction, the generator is trained in order to minimize the term

FH = log

(
1−D

(
H
(
n |θ

)))
, (6.29)

whereas the discriminator aims at maximizing the term

FG = log
(
H(z)

)
. (6.30)

In other words, a two-players min-max game is formulated, which can be solved by
employing iterative numerical methods.

In THz wireless systems, GANs have been applied as the solution to AMR problems,
due to their capability to predict the different versions of the received signal, when a
specific symbol is transmitted. However, it comes with some disadvantages. First of
all, the training phase may be unstable, if not considerable amount of time is not spend
in this phase. Moreover, to deal with training instability, visual examination may be
needed in each step; this creates an important workload to the ML designer. Finally, it
has no density estimation capabilities. This indicates that it cannot be used for anomaly
detection.
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Figure 6.13: Reinforcement learning structure.

6.3.3 Reinforcement and transfer learning

This section is devoted to reporting the reinforcement and transfer learning approaches
that have been employed in THz wireless systems and networks with emphasis to their
operation principles, applications and challenges. In this direction, in Section 6.3.3, re-
inforcement learning approaches are documented, while, in Section 6.3.3, the transfer
learning ones are reported.

Reinforcement learning

As illustrated in Fig. 6.13, the fundamental idea of reinforcement learning is to resemble
the trail and error process by employing an agent that continuously interacts with the
environment [229]. In more detail, an agent sense the environment state and applies
an action that affect the environment. As a response, the environment returns a quan-
tified reward. Of note, the environment stage is influenced by two factors, namely i) the
environment itself; and ii) the agent’s action. Similarly, the award is evaluated based on
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its impact to the environment and the action of the reinforcement learning method. As
a result, reinforcement learning approaches allows real or almost-real time interactions
to environmental changes. This characteristic is a key requirement in several system
and network operation processes in all the OSI layers. Thus, they have extensively
adopted as solutions to a wide range of problems, such as beamforming design, power
management, blockage avoidance, user association, mobility management, caching,
and computational offloading. Likewise, in contrast to conventional optimization ap-
proaches that focuses on immediate reward maximization, reinforcement learning aims
at long-term reward. This is achieved by taking into account in the optimization process
both the immediate and the future reward; thus, allowing intelligent prediction of the fu-
ture system’s state. The following reinforcement learning algorithms have been applied
in THz wireless systems and networks:

• Q-learning: or as alternatively called temporal-difference learning, is a commonly
adopted model-free reinforcement learning approach capable of directly acquiring
knowledge from raw experience without requiring either an environmental model
or a delayed reward system. Its interaction with the environment is based on a
state-action value function that is called Q-function, which is continuously updated
in order to achieve maximization by means of selecting an appropriate action, i.e.,

A∗ = arg max
A∈A

Q (S,A) , (6.31)

where S stands for the system state, A represents the selected action among the
available ones that are included in the set A. Moreover, Q (·, ·) is the Q-function,
which is updated, according to [230], as

Q̂ (S,A) = (1− c)Q (S,A) + c

(
r + dmax

A∈A
Q
(
S
′
, A
))

. (6.32)

In (6.32), c and d respectively denote the updated weight and the discount factor,
while r is a constant.

• Deep reinforcement learning: or deep Q-learning is usually applied in problems
in which the dimensions of the state and action spaces are quite large. In these
scenarios, the use of a Q-function as a table that contains values for each state
and action is deemed impractical. To address this issue, we train a NN with
parameters θ, which is responsible for the estimation of the Q values through a
Q-function approximation, i.e., QN (S,A; θ) ≈ Q (S,A). The training phase aims
at minimizing in each step i a loss function that can be expressed as

Li (θi) = ES,A,r,S′ |ρs

[(
T
(
S, S

′
, A,A

′
, r; θi, θi−1

))2
]
, (6.33)

where

T
(
S, S

′
, A,A

′
, r; θi, θi−1

)
= r + dmax

A′
QN

(
S
′
, A
′
; θi−1

)
−QN (S,A; θi) (6.34)

stands for the temporal difference, while ρs represents the system’s behavior dis-
tribution.
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Figure 6.14: A3C structure.

• A3C: is another reinforcement learning approach that, as presented in Fig. 6.14,
is composed by three units, namely actor, critic, and environment. The actor
makes an initial action selection A from the set of available actions A, based on
a current policy or strategy. Next, the critic computes the new state value, which
was extracted due to the environment variation, and updates the a time difference
error (TDE). The new TDE is fed to the actor, which create a revised policy and/or
strategy. The policy update is usually based on a Boltzmann distribution. The
A3C is going to converge to an optimal state, after revisiting each action for each
state by infinite times [231].

Reinforcement learning faces an important challenge. In more detail, the method-
ology to design the optimal state, action, reward/cost in different that enables conver-
gence into optimal system performance depends on the scenario under investigation.
As a consequence, in low-dimension state-action spaces in which all the space-action
pairs can be documented into Q-value tables and explored by the reinforcement learn-
ing algorithm, a near-optimal solution can be rapidly identified. However, as the state-
action space dimension increase, the reinforcement learning algorithm performance
degrades, since several state-action pairs may remain unexplored. To counterbalance
this, deep reinforcement learning is adopted. However, this approach comes with the
training latency of NNs.

Transfer learning

To avoid training latency, the concept of transfer learning was born, according to which
knowledge from a specific domain can be used to speed up the learning process.
In more detail, the aforementioned knowledge can be represented as Q-values of
Q-learning and A3C algorithms, or NN weights in deep reinforcement learning ap-
proaches. The Q values and weights may have been learned by an agent in a former
and similar environment [232].

Transfer layer have enabled several operation in wireless THz systems that vary from
beamforming design to computational offloading. However, it comes with an important
drawback. If the difference between former and current tasks and environments are
important, the knowledge that is transferred will cause a negative impact to the system
performance [233].
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6.3.4 Conclusions

This section provides a systematic methodology that can be used to select the appro-
priate family of algorithms in order to solve a ML problem. In this direction, the first
step is to categorize the problem under investigation. This can be achieved by exam-
ining the type of the input data and the expected outcomes. In more details, if labeled
input data are provided, a supervised learning ML strategy can be selected. On the
other hand, if the input data are unlabeled, unsupervised ML algorithms should be em-
ployed. Finally, if no data exists and the model need to interact with the environment,
reinforcement or transfer learning algorithms should be applied, based on the absence
or existence of simulation data.

Next, the outputs should be examined in order to identify the category of the prob-
lem that we want to solve. In particular, if the output data of the ML algorithm is a
number, the problem is a regression one. Regression is usually used for AMR, beam
training, signal detection, beam tracking, beamforming design, blockage avoidance,
mobility management, and traffic prediction. Additionally, if the output of the model is a
class and the number of the expected classes is predefined, then the problem is a clas-
sification one. An indicative example of a classification problem is user association. In
both cases of regression and classification, NNs, DNN, naive Bayes, decision trees or
random forests will be applied. To choose between the aforementioned algorithms, we
should first examine the variation of the input data. If they have a small variation and
low-latency or interpretability are key requirements, decision trees will most likely be
used. This is the reason why decision trees are attractive approaches for routing prob-
lems. On the other hand, if they have small variation but the latency and interpretability
existence are not the main requirements, a random forest will be applied. On the con-
trary, if the input data have a relatively large variation, naive Bayes or NNs/DNNs will
be employed based on whether they follow or not a well-known distribution.

On the other hand, if the objective of the problem is to categorize data into an initially
unknown-number of classes, it’s a clustering problem. Indicative examples of such
problems are traffic clustering, caching, and computational offloading. These problems
can be solved by employing k-Means, k-Median, EM and hierarchical clustering. k-
Means and k-Medians are usually selected in high-dimensional problems, while EM
and hierarchical clustering in low-dimensional problems.

Another objective of ML problem is to improve the system and/or network perfor-
mance. Such problems belong to the optimization category and are usually multi-
variate ones. In THz wireless systems and networks, several researchers have em-
ployed gradient descent and reinforcement/transfer learning algorithms, either to pre-
dict the optimal operation point or to correct it. Similarly, recommendation problems are
the ones that return options based on the history of actions and are usually solved by
employing reinforcement/transfer learning algorithms. Reinforcement/transfer learning
provides high-adaptability to environmental changes and requires no training. There-
fore, they are suitable for problems that require fast adaptation, like channel allocation,
power management, blockage avoidance and user association in mobile THz wireless
networks, as well as computational offloading.

Finally, if the goal is to obtain insight from data for pattern recognition or anomaly
detection, then dimensional reduction or feature selection algorithms can be applied,
such as PCA, auto-encoder or ISOMAP. PCA is usually applied if the data are linearly
correlated. On the other hand, auto-encoder and ISOMAP achieve acceptable per-
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formance in non-linear correlated datasets. These algorithms can find application in
beamforming design and traffic clustering.
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Chapter 7

Strategies for Deployment of AI/ML
Solutions in Beyond 5G Applications

7.1 Introduction

B5G systems are expected to satisfy an ever increasing data connectivity, data-rate
and throughput demands. AI/ML methods are positioned to play a central role to enable
the functional and non functional demands expected in these systems. AI/ML would
be integrated in various layers of the network management stack. In this chapter, we
present an overview of deployment strategies, part of which are published in recent
journal article [234], that must be considered before AI and/or ML based models are
operationalized. Here, operationalization refers to the deployment of a well-trained and
tested AI/ML model in production to help automate decision making in real time. This
stage is usually preceded by staging, where the models are observed in production
settings and monitored but do not drive the decision making process.

Deployment of AI/ML models needs to take into consideration non-functional con-
cerns more than mere application of the model to get predictions. We sketch out two
parallel formations have to be put in place for deployment. First, the performance in
terms of accuracy and response time is to be continually monitored, and secondly, for
recurring and adaptive problems, models may need to be updated or retrained at regu-
lar intervals, on new training data that may have become available over time. It should
be noted that this data may become available on the periphery or edges of the network,
and may need to be transmitted to central node or processed directly at the edge.

On the one hand, the AI/ML model deployment shares some commonalities with
how the software components in an information technology (IT) system are updated
e.g., following blue green deployment mechanism, but also some major differences
exist, in that the deployment of AI/ML models usually follows a “primary-secondary”
(sometimes referred to as “primary-challenger”) dual models. The primary model is
the one being used for automated decision making, whereas the challenger is used
as a stand-by if at any point in time, the functional performance (e.g., accuracy) of the
primary drops significantly lower than the secondary model’s performance. This also
helps as a counter measure to drift or shift of concept phenomenon that is observed
in ML systems when the data gradually exhibits different distributions unlike what the
models are originally trained on. Finally, the models may need to be scaled up when
the overall management function faces an increased demand for connectivity, hand-
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over or adaptation scenarios. For instance, a large amount of UEs approach an area
which is governed by a few APs, or the data-rate demand increases significantly due
to a major event. In such scenarios, horizontal scaling of the model plays an effective
role to continue to deliver QoS levels expected by the users and hence, infrastructure
resources need to be managed for automatic scaling of models on end device, base
station or the relevant layer of network architecture that may be hosted partially or fully
in cloud.

The layout of this chapter is as follows. Firstly, we distinguish the centralized and
distributed ML deployments. We then present a short scenario to highlight how ITU-T
standardization guideline can be used to deploy ML pipelines in future networks. We
further present a short summary of popular methods and synergies among emerg-
ing paradigms like distributed ML, cloud computing and federated learning that enable
complex scenarios for training and deployment of AI/ML models for scalable consump-
tion and upgrade. Lastly, we present an initial assessment of the promising role of
online optimizations that can serve to solve recurring and adaptivity requirements such
as for UE-to-AP assignments in a dynamic on the fly fashion within an evolving network.

7.2 Centralized and Distributed ML Deployments

When AI/ML models are to be consumed in a distributed setting, it becomes important
to consider topological and resource-constrained aspects of various components of the
wireless networks. Some of these are more central and resource-rich such as the APs,
while other elements such as the RIS, passive elements such as metasurface reflec-
tors, or consumer devices such as UEs or IoT sensor devices are distributed and may
find themselves at edges of the network while also being resource-constrained. Hence,
future wireless networks present a distributed system which can benefit from various
development and deployment capabilities seen in the broader field of Distributed ML,
where the models may be developed, updated or deployed at any of the cited entities.

7.3 Deployment Units and Deployment Enabling
Paradigms

In B5G/6G networks, AI is expected to be used across the network components, from
the core to the terminals (UEs), and at all communication layers, from the physical layer
(L1) to the application layer (L7). With this broad perspective in mind, the long-term
management and sustainability of AI/ML capability necessitates the identification of a
deployment unit. The concept of pipelines arises as a modular, flexible, and reusable
implementation unit for ML and its associated data processing requirements, using
some well-established methods from the field of data science.

7.3.1 ITU-T standardization guideline for deploying ML in future
networks

The ITU-T standardization body’s Focus Group FG-ML5G have recognized this po-
tential of ML and extract, transform, load (ETL) pipelines and developed a technical
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Figure 7.1: Reference pipeline processes illustrating cross layer deployment, connec-
tivity and coordination

specification codenamed Y.3172, entitled “Architectural framework for ML in future net-
works including IMT-2020” [235]. This specification provides guidelines on training,
deployment and orchestration aspects centered around the notion of ML/ETL pipelines
that are bundled as cloud computing containers. Harnessing cloud computing tech-
niques, the pipeline containers may be exposed as REST web-services and deployed
at the core or edges of the network. In this way, complex interactions can be real-
ized among distributed components of the network from whom data can be collected
widely and frequently, while complex data processing tasks such as model training or
updates, can be triggered on infrastructure nodes that possess better resource capac-
ity. The objective of this synergy with cloud computing is to deliver the expected QoS
for connectivity, adaptation and other low-latency requirements of THz systems. In Fig.
7.1 we depict this concept diagrammatically.

As exemplified in Fig. 7.1, a pipeline process is a set of operations, arranged as
nodes, which ingest data, transform or pre-process it, and may trigger local or remote
training, retraining or updating of ML models (by invoking externally deployed pipeline’s
endpoint). It may also conditionally employ predictions from ML models for newly arriv-
ing data to adapt connectivity in an evolving network environment, or interfacing with
optimization components in real-time. Predictions may be a classification score, regres-
sion value, or a decision artefact e.g., a schedule, resource allocation plan or an advice,
which is returned to the invoking component to take automated action. Outcomes can
also be stored in a data sink for later reuse. Pipeline processes may be invoked on
demand or scheduled fashion either offline or online scenarios. Such pipeline-based
distributed AI/ML pipelines also integrate disparate B5G network functions that need to
cooperate or coordinate with each other to achieve cross-layer decision making.

As recognized and advocated in Y.3172 and related specifications by ITU-T FG-
5GML as well its predecessor focus group on autonomous networks (FG-AN), en-
abling AI/ML in future wireless networks would require synergies with cloud computing
paradigm. This synergy is essential to realize effective deployment, adoption and con-
tinuous upgrade of AI/Ml models by utilizing compute and storage capabilities of the
cloud in scalable fashion. These specifications also highlight the challenges and op-
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portunities by exploiting pipelines to loosely interface data from different upstream and
downstream layers of the network. This fusion of data can be exploited for instance
in UE-to-AP assignment predictions, which usually consume link level properties of
the network including location, topology, resource requirements of UEs and resource
capacity of APs, to optimally assign a UE to the best AP having minimal LoS block-
ages or interference. With the overlay of interacting pipelines, such connectivity can be
effectively established by consuming data upstream from lower layers of the network
and vice versa. Such interactive constellations to fuse and merge data from different
network components and layers holds promising opportunities for AI/ML to tackle hard
problems under more realistic settings such as by enabling cross-layer collaboration.

The emerging paradigm of edge computing raises similar cross-layer deployment
challenges. The fast-growing Internet-of-Things (IoT) industry is expected to adopt
edge computing and would arguably be one of the biggest beneficiaries of B5G based
communications. The primary challenge is to find effective mechanisms to process
massive volumes of data created by a large number of sensors or end devices. How-
ever, adopting edge computing in relevance to machine learning demands resolution of
standard issues such as training models on partial or local data, deploying and updat-
ing collaborative processes at the network’s core and edge - all of which remain topics
of active research and investigations within the field of distributed machine learning.

7.3.2 Distributed ML

Distributed ML aims at establishing mechanisms to train ML models in a collabora-
tive fashion, with the objective to harness distributed compute infrastructure. Some
components of this infrastructure may be small devices with limited system and com-
munication resources, while others may be resource-rich, such as cloud-based virtual
machines or containers that can be scaled horizontally and vertically.

In [236], some ideas were presented to train a deep neural network (DNN) model
comprising a hierarchy of distributed compute nodes. These include end devices, edge
nodes and a cloud node. A DNN is trained and maintained at each layer. The end de-
vices and edge nodes have fewer neural network (NN) layers, while the network in the
cloud has more NN layers. Using this architecture, a multi-sensor multi-camera surveil-
lance application deployed at various end nodes is able to efficiently perform inference
with required accuracy. To limit the communication latency between the end device
(or edge node) and the cloud, aggregate data is sent to the cloud node for inference
only when the end devices cannot reach a high degree of classification confidence. In
comparison to the alternative option when all raw data from end (sensor) devices were
to be sent to the central cloud node, the presented approach is 20 times faster. While
this strategy seems to hold good promise for sensor fusion based applications, its ap-
plicability in IoT-based or communication-intensive systems remains disputed because
the models at end devices are rather limited NN models and may need to rely on the
central NN model more frequently.

7.3.3 Federated Learning

Federated learning makes use of decentralized infrastructure to train a shared machine
learning model with the help of potentially resource restricted end devices distributed at
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network edges. These nodes collaborate with a centralized node that serves as a core.
In federated learning, end devices or edge nodes train and maintain local machine
learning models utilizing the device’s regularly available (or created) batches of data.
The intricacy and capability of local models are limited by the end device’s resources.

Infrequently, a summary of local model’s parameters e.g. weights or coefficients are
securely transmitted to the core node which updates a consolidated machine learn-
ing model. Hence, the consolidated model is a result of joint but disparate training
conducted at potentially millions of end nodes. This approach retains data and the
inference (application of prediction model) only at the end nodes so the communica-
tion overhead to transfer all raw data to the core is avoided, while also preserving the
privacy and confidentiality of local data.

In [237], Google researchers introduced federated learning for a query suggesting
application that is installed on mobile applications. The work presents proposals to
train a miniature version of tensor flow based model on mobile devices that consumes
minimum energy and minimally interferes with the user experience. Additionally, sev-
eral technical challenges to achieve federated learning are highlighted. A fundamental
challenge is to update the shared model. In [238], the same team presented their
solution in the form of a federated averaging algorithm that combines local stochas-
tic gradient descent (SGD) based updates of local model with a server that performs
model averaging on the shared model. However, to ensure the integrity of the con-
solidated (shared) model, these updates are governed through a Secure Aggregation
protocol that only performs cryptographically-secured model updates after a sufficient
number (hundreds or thousands) of end devices share their updates i.e. an aggregate
data structure must be assembled first. This helps i) to prevent local phenomenon
such as concept drift which happens when distributions of data start exhibiting gradual
or abrupt differences, ii) to tackle corner cases such as anomalous data collection or
existence of outliers, which can negatively skew the parameters of the consolidated
model and iii) to preserve privacy of the local model parameters which are shared in
cryptographically secured format [239]. The updated shared model is made available
to selected end devices, which test the model on locally available data, after which the
shared model is updated on all end devices.

The cited solutions are applicable in many other domains as well, e.g., IoT where
heterogeneous sensor devices can federate, autonomous driving where a large fleet
of vehicles can federate or network industries where multiple sensors or devices com-
municate e.g., railways, airlines, gas networks and power grids. However, future B5G
networks with dense topologies containing a potentially large number of UEs and APs
located within a small geographical area, may especially find various use cases for fed-
erated learning. To summarize, federated learning can be beneficial in many industry
verticals, where general-purpose privacy-aware pattern recognition takes precedence
over personalized pattern recognition. However, federated learning has yet to mature
in terms of widely available deployment and orchestration tooling that can be applied
in a variety of domains and applications.

7.4 Online Optimizations in B5G

Another promising but under-explored approach for a deploy-able solution to a chang-
ing problems lies in online optimizations. The basic concept is that, given a recurring
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optimization problem such as the joint UE-to-AP association and resource allocation
problem, the problem instance is fed to a solver which solves it in a continuous fash-
ion, while taking into consideration any trigger events that may change the problem
instance being solved.

This approach offers several benefits. Firstly, a best solution can be fetched within
a desired time period after a change event is triggered, e.g., after new UEs appear in
the network or locations of UE(s) change due to user mobility. Secondly, the network
assignments can be consolidated for optimal resource usage at frequent intervals, in
what can be referred to as ’resource consolidation’. Thirdly, a set of best solutions
retrieved from the solver at regular intervals or after a change event is triggered, can be
labelled (see for reference: ARIADNE deliverable D4.1, chapter 4) to generate training
datasets for ML. These situation-rich training datasets can be used in parallel to update
the ML model from time to time, where the ML model aims to predict the assignment
and resource allocation as a secondary solution.

Hence, online optimizations can provide just-in-time solutions as well as frequent
snapshots of the network, which are leveraged for (re)training of the ML predictive
models in a hybrid scheme, until the ML model achieves the desired predictive quality
and stability - at which point, online predictions can replace online optimizations.

7.5 Conclusion

This chapter summarized deployment strategies for the adoption of ML based solutions
in future B5G wireless networks. The chapter presented enabling paradigms, technolo-
gies and also presented some challenges and obstacles that could be tackled with the
centralized and distributed deployments. Certain principles and limitations observed
in the state of art were highlighted as these provide guidelines in selecting appropri-
ate deployment strategies. Last but not least, promising research directions like online
optimizations were briefly addressed as a potential dual solution to just-in-time solv-
ing of recurrent optimization problems as well to generate and retrain ML models post
deployment.
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Summary of Conclusions

This deliverable presented work that extended the initial results shared in the deliver-
able D4.1 by addressing machine learning based network intelligence for problems of
interest in ARIADNE. It focused on optimization of radio elements placement, beam-
forming for mobile UEs, channel estimation and feedbacks in massive MIMO systems
as well as complex event recognition techniques that can assist in forecasting complex
events in an evolving network. Moreover, system level modeling was described which
was used to generate synthetic data to be exploited by AI/ML frameworks and tools.
Additionally, machine learning algorithms and deployment strategies were analyzed
within the light of state of the art, where emerging synergies of enabling paradigms
were highlighted.

To summarize, Chapter 1 introduced the formulation of radio placement optimization
as a multi-agent reinforcement learning (MARL) problem, where the agents represent
base stations and the RISs, while the radio receivers face blockages. Moreover, the
implementation of the multi-agent environment was described together with the im-
plementation of the multi-agent policy as neural network. Chapter 2 introduced the
innovative approach of dynamic beamforming optimization using deep reinforcement
learning (DRL), including a BS-RIS-UE scenario. This is the first work of its kind that
used IMPALA framework for distributed DRL to provide beamforming optimization in
a MISO multi-UE case as well as in the BS-RIS-UE scenario. Chapter 3 presented
an empirical assessment of automata learning technique in the telecommunications
domain using publicly available data and compared the preliminary results of current
recognition/detection performance for forecasting complex events. The performance
demonstrated superiority of proposed technique in terms of predictive accuracy, sim-
plicity and comprehensibility of learned automata. Chapter 4 described the system
level modeling with mobile users that can simulate various ARIADNE scenarios and
test-cases. A first set of simulation data included received power, which is planned to
be used as input to complex event forecasting techniques towards proactive handover
for blockage avoidance. Subsequently, in Chapter 5 an MDDL-based channel estima-
tion and feedback scheme was presented for wideband high frequency massive hybrid
MIMO systems, achieving reduced overhead. First, for the uplink channel estimation
of TDD systems, joint training of the phase shift network and the channel estimator
was proposed as an auto-encoder. Specifically, an MMV-LAMP network was applied
to recover multiple subcarriers’ channels. Moreover, downlink channel estimation and
feedback of FDD systems were considered where the pilots at the BS and channel
estimator at the users can be jointly trained as an encoder and a decoder, respectively.
Only the received pilots on part of the subcarriers were fed back to the BS, while the
proposed MMV-LAMP network efficiently reconstructed the spatial-frequency channel
matrix. The simulation results verified that the proposed MDDL-based solution out-
performs conventional schemes. Lastly, Chapter 6 and Chapter 7 focused on critical
operations and techniques based on AI/ML methods that are enabling innovative ap-
plications and services in B5G wireless networks, ranging from PHY to the network
layer. Successful transformation and integration of these layers with AI/ML will heav-
ily rely on their formulation as ML problems and thus, a comprehensive review was
presented on how to select the appropriate family of algorithms in order to solve the
problems depending on the type of input data and the expected outcomes. Finally,
some deployment strategies have been highlighted that stem from the non-functional
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and operational concerns to manage AI/ML pipelines, which collaboratively solve static,
dynamic and recurrent problems in future networks, and can be deployed in centralized
or distributed constellations.

All the above activities are in-progress in terms of theoretical studies, AI/ML algo-
rithms implementation, simulation platforms and tools. The work on beamforming opti-
mization will continue based on deep learning methods for channel estimation as well
as joint optimization with RIS phase shifting. To that end, channel coefficients will be
generated by ray-tracing simulations. Radio placement optimization results based on
reinforcement learning, will become available for RIS-aided networks. Moreover, sys-
tem level simulation data will be generated to be used as input to complex event fore-
casting methods, while metaheuristics optimization together with ML modeling work
will be continued for resource allocation optimizations. New simulation scenarios will
be investigated to include RISs. Proactive handover, user-AP assignment, capacity
outage are some of the problems that will be studied in order to evaluate the benefits
of RISs and AI/ML techniques. Finally, within WP4 activities, the partners will collec-
tively select the test cases and the tools that will be used for the system level software
demonstration in T5.3.
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