

Modeling and Analysis of
Sampled-Data Cyber-Physical

Systems

Using Hybrid Automata with Clocked
Linear Dynamics

Viktorio S. el Hakim

Members of the graduation committee:

Prof. dr. ir. M. J. G. Bekooij University of Twente (promotor)
Prof. dr. M. Huisman University of Twente
Dr. ir. R. Langerak University of Twente
Prof. dr. A. Remke University of Münster
Prof. dr. E. Ábrahám RWTH Aachen University
Dr. ir. T. Dang Verimag, CNRS (research director)
Prof. dr. J. N. Kok University of Twente (chair and secretary)

Faculty of Electrical Engineering, Mathematics and Computer
Science, Computer Architecture for Embedded Systems (CAES)
group.

This research has been conducted within the ITEA 3 ASSUME
project (project number 14014).

Copyright© 2021 Viktorio S. el Hakim, Enschede, The
Netherlands. This work is licensed under the Attribution-
NonCommercial 4.0 International (CC BY-NC 4.0), see https:
//creativecommons.org/licenses/by-nc/4.0/deed.en_GB

This thesis was typeset using LATEX, TikZ, and LibreOffice
Draw.

This thesis was printed by Ridderprint, The Netherlands.

Cover design by Ha Thu (Iris) Nguyen.

ISBN 978-90-365-5199-1
ISSN
DOI 10.3990/1.9789036551991

Modeling and Analysis of Sampled-Data
Cyber-Physical Systems

Using Hybrid Automata with Clocked Linear
Dynamics

DISSERTATION

to obtain
the degree of doctor at the University of Twente,

on the authority of the rector magnificus,
prof. dr. ir. A. Veldkamp,

on account of the decision of the Doctorate Board
to be publicly defended

on Friday 25 June 2021 at 16.45 hours

by

Viktorio Semir el Hakim

born on the 30th of September, 1991
in Sofia, Bulgaria

This dissertation has been approved by:

Prof. dr. ir. M.J.G. Bekooij (promotor)

Copyright© 2021 V. S. el Hakim, The Netherlands.

ISBN 978-90-365-5199-1

“There is geometry in the humming of the strings.
There is music in the spacing of the spheres.”

— Pythagoras

Abstract

Cyber-physical systems are computer systems which pervasively control and

interact with other physical systems, and their environment, by means of

computation and software. And, ranging from intelligent household appliances

to autonomous vehicles, cyber-physical systems have recently become an

ubiquitous part of our daily lives. Indeed, the gap between the physical and

the virtual has substantially narrowed as of late, in large part due to the

rapid growth of powerful low cost computing devices in a small form factor.

The key process that enables the software to interact with the physical

environment is sampling and actuation. Sampling is the act of measuring

the state of a physical system using sensors, and converting the collected

measurements into digital data that a computer uses to make calculated

decisions. On the other hand, actuation is the realization of these decisions

into physical signals and actions using actuators and transducers, which drive

the system towards a new desired state. As such, cyber-physical control

systems which emphasize the role of sampling and actuation as an interface

between the physical and the virtual are often called sampled-data systems.

In such systems, sensors and actuators are repeatedly triggered at discrete

moments in time. This results in loss of information, because physical processes

encountered in nature are evolving continuously in time. As a consequence,

the mechanism by which sampling and actuation is enacted in a sampled-

data system can have a profound impact on its performance, safety and

design. Ideally, sampling would be periodic, such that the sampling moments

are uniformly spaced, because this simplifies the analysis and design cycle.

Additionally, the sampling period would ideally be as small as possible, so

that the side effects of discretization are reduced.

However, in practice this is rarely the case. The first reason for this is

due to resource constraints, such as limited computing power, low energy

requirements, etc., which define a fixed lower bound on the sampling period.

The second reason is due to the varying processing time of the control

algorithms, which introduces jitter in the sampling and actuation moments,

causing them to deviate from the design specification. Therefore, to ensure

that periodic sampling is enforced and that jitter is reduced to a minimum,

i

ii

one needs to choose a period larger than the upper bound on the processing

time.

Unfortunately, an estimate of the bound is usually very loose when the

control software is implemented on a multiprocessor system with shared

memory and caches, and/or when data is transferred between computing

nodes over a (wireless) network. This can result into the selection of an

unbearably large period, which typically degrades the control performance,

and can even destabilize the system.

Alternatively, one can drop the requirement of absolute periodicity, and

allow a reasonable amount of sampling and actuation time uncertainty into the

system. As a result, the control performance may be drastically improved, an

observation we demonstrate in this thesis. However, the dynamical behavior

of the sampled-data system becomes much harder to analyze, because the

analysis relies on algebraic models that are very hard to evaluate for aperiodic

sampling and actuation. These models are also isolated in the sense that they

do not fully capture the nuanced relationship between computation, dynamics

and control.

In this thesis we propose a new model class for sampled-data systems,

namely Hybrid Automata with Clocked Linear Dynamics (HA-CLD), which

addresses this fundamental modeling and analysis issue. The first key property

that makes this model class useful for analysis, is that the temporal behavior is

explicitely defined using so-called clock variables. These evolve independently

of so-called nonclock variables that represent the dynamical state of the system.

The temporal behavior can thus be evaluated in isolation using decidable

analysis techniques, separately from the dynamical behavior of the system.

As a result, we will show that this property enables stability verification of a

system’s dynamical behavior, jointly with the temporal behavior, using the

so-called reachability analysis, a systematic model-checking approach.

Secondly, this HA-CLD model class enables the use of more accurate and

efficient reachability algorithms compared to other more general reachability

analyzers. We present such an algorithm in this thesis, which capitalizes on

the restricted syntax of these models. Concretely, key operations involved

in the construction of the reachable set can be performed more efficiently,

because of the syntactic variable separation into clock and nonclock variables,

and because the so-called guards and invariants are box constraints defined

only for clocks.

Lastly, we address the topic of set aggregation in reachability analysis,

which is a technique applied in reachability algorithms to control the exponen-

tial growth of reachable sets by overapproximating them with a smaller number

iii

of sets. Specifically, we propose a decomposed aggregation approach, where

sets are aggregated in lower dimensional subspaces at a lower computational

cost, and at the expense of higher overapproximation error. We also make a

key observation that the choice of subspace basis that reduces this error even

depends on the dynamics of the model. As such, we exploit this observation

to derive such an optimal basis using an evolutionary algorithm. While this

aggregation approach targets a more general class of hybrid automata, it is

particularly suitable for HA-CLD due to the separation of variables.

Samenvatting

Cyber-fysieke systemen zijn computersystemen die met fysiek hardware inter-
acteren. In veel geval regelen deze computersystemen het gedrag van fysieke
hardware. Cyber-fysieke systemen zijn een alom vertegenwoordigd onderdeel
geworden van ons dagelijks leven, en omvatten zowel vele huishoudelijke ap-
paraten als ook autonome voertuigen en klimaatbeheerssystemen. De enorme
groei van deze systemen is mede veroorzaakt door het beschikbaar komen van
goedkope doch krachtige computerapparatuur met een kleine vormfactor.

Interactie met de fysieke werkelijkheid vindt plaats door deze te bemonste-
ren en te actueren. Bemonsteren is het meten van de toestand van het fysiek
system met behulp van sensoren en het omzetten van de gemeten waarden in
digitale data. Op basis van deze digitale data berekend software beslissingen.
Deze beslissing worden naar actuatoren gestuurd die deze omzetten in fysieke
signalen die het fysieke system naar de nieuwe gewenste toestand sturen. Het
bemonsteren en actueren vormt dus de interface tussen het cyber gedeelte en
het fysieke gedeelte van een cyber-fysiek regelsysteem.

Aangezien het bemonsteren en actueren op discrete tijdstippen plaats-
vindt, gaat dit gepaard met informatie verlies aangezien fysieke processen
continu in de tijd evolueren. Als gevolg hiervan kan bemonstering en actuatie
een diepgaande invloed uitoefen op het gedrag, prestatie, en veiligheid van
een cyber-fysiek systeem. In het ideale geval is de bemonstering periodiek,
zodat de momenten van bemonstering uniform verdeeld zijn. Dit periodiek be-
monsteren vereenvoudigd significant de analyse van een cyber-fysiek systeem.
Bovendien moet de bemonsteringsperiode oneindig klein zijn om bijwerkingen
van discretisatie volledig te voorkomen. Echter dit is in de praktijk niet
mogelijk omdat de maximale rekenkracht en energieverbruik van het com-
putersysteem van een cyber-fysiek systeem een ondergrens bepaald op de
bemonsteringsperiode. Een andere complicatie is dat variatie in de rekentijd
van de regelsoftware een afwijking in de bemonsteringsmomenten ten opzichte
van de momenten bij periodiek bemonsteren kan veroorzaken. Om deze afwij-
king te voorkomen moet de bemonsteringsperiode groter gekozen worden dan
de maximale rekentijd. Helaas zijn schattingen van de maximale rekentijd
vaak onvermijdelijk zeer pessimistisch indien er gebruik gemaakt wordt van

v

vi

moderne multiprocessor computersystemen met een gedeeld geheugen en
caches. Dit is ook het geval indien data wordt gecommuniceerd via draadloze
netwerken. Een consequentie is dat dit kan resulteren in de selectie van
een onwerkbare lange periode die de prestatie van het regelsysteem extreem
verslechterd en zelfs instabiel kan maken.

Als alternatief kan men de eis van periodiciteit van bemonsteren en
actueren laten vervallen en een redelijke hoeveelheid onzekerheid in de
bemonsterings-, en actuatiemomenten toestaan. Als gevolg hiervan kunnen de
regelprestatie drastisch verbeteren, wat we in dit proefschrift demonstreren.
Echter het dynamische gedrag van zo’n cyber-fysiek systeem is veel moeilijker
te analyseren omdat de analyse traditioneel berust op algebräısche modellen
en analyse methode die erg moeilijk in te zetten zijn in het geval aperiodieke
bemonstering en actuatie. Deze modellen zijn ook gewoonlijk lokaal in de zin
dat ze niet het gedag van het volledige cyber-fysieke systeem beschrijven.

Om het gedrag van een cyber-fysieke systeem volledig te beschrijven
maken we in dit proefschrift gebruik van zogeheten Hybrid Automata in plaats
van algebräısche modellen. We identificeren een subklasse van deze Hybrid
Automata, die we Hybrid Automata with Clocked Linear Dynamics (HA-
CLD) genoemd hebben, die geschikt is om een praktisch relevante klasse van
cyber-fysieke systemen te beschrijven maar tevens eigenschappen heeft die
analyse vereenvoudigen.

Een belangrijke eigenschap van HA-CLD is dat het temporele gedrag
volledig gedefinieerd wordt door klok variabelen. De waarden van deze
klokvariabelen evalueren volledig onafhankelijk van de andere (niet klok)
variabelen. Het gevolg hiervan is dat bepaling van het exacte temporele
gedrag een beslisbaar en dus een berekenbaar probleem is, wat niet het
geval is voor de meer generieke hybrid-automata. Door het tevens alleen
toestaan van lineair dynamisch gedrag heeft dit als praktisch consequentie
dat de stabiliteit bepaald kan worden en dus gegarandeerd kan worden. Dit
wordt gedaan door gebruik te maken van zogeheten modelcheck methodes die
bereikbaarheidsanalyse van systeem toestanden uitvoeren.

Een andere belangrijke eigenschap van HA-CLD is dat het efficiëntere en
nauwkeurigere bereikbaarheidsanalyse mogelijk maakt. Om dit aan te tonen
presenteren we in dit proefschrift een algoritme voor bereikbaarheidsanalyse
dat de eigenschappen van HA-CLD benut. We vergelijken de resultaten verkre-
gen met ons algoritme met toonaangevende algoritmes die deze eigenschappen
niet uitbuiten. De verbeterde efficiëntie is het gevolg van dat grenzen op waar-
den in een discrete toestand alleen voor klokvariabelen gedefinieerd kunnen
worden in het HA-CLD model. We laten zien dat dit ook het bepalen van de
bereikbare toestanden en de waarden van de andere variabelen vereenvoudigd.

vii

Ten slotte introduceren we een nieuw beter schaalbaar algoritme voor het
groeperen van verzamelingen van bereikbare waarden en toestanden gedurende
modelchecking. Tevens houdt ons algoritme rekening met de dynamiek van het
systeem. Het door ons voorgestelde algoritme maakt gebruik van projecties
in een lagere deelruimte. Welke deelruimte gekozen wordt is afhankelijk van
de dynamiek van het systeem. We laten zien dat het kiezen van de juiste
deelruimte resulteert in een hogere nauwkeurigheid, een sneller convergentie,
en minder iteraties van het analyse algoritme. Voor de selectie van de basis van
de deelruimte maken we gebruik van een evolutionair algoritme. Terwijl deze
groeperingsmethode toegepast wordt in een model checker voor de algemene
klasse van hybrid automata, is hij in het bijzonder geschikt voor HA-CLD
ten gevolge van het expliciet scheiden van de klokvariabelen van de andere
variabelen.

Acknowledgements

They say that every story has a beginning and an end. Yet, mine seemed
endless as I was writing the chapters of this thesis. Indeed, it has been a long
journey: full of excitement, joy, frustration, friendships, and love. It had its
ups and downs, like a wave in the sea. And yet, I enjoyed every bit of it: the
challenges that I have faced, the friendships that I have made, the countries
that I have traveled to, and the cultures that I have experienced.

First, I would like to express my utmost appreciation and gratitude towards
my supervisor, Marco Bekooij. I remember the time when I first followed
his courses on real-time systems, which at the time I found to be some of
the most interesting ever. Subsequently, this prompted me to also do my
master thesis under his supervision on the same topic. It was during this
time that I was so impressed by the work done by his PhD students, which
instantly made me want to follow in their footsteps: and so I did. Always the
pragmatist, Marco has come up with interesting ideas that challenged me to
produce quality work. At the same time, he was strict and precise, as I came
to experience through his detailed feedback. And yet, he has always given me
plenty of room for self development, and to come up with ideas of my own.
Dear Marco, I thank you for the given opportunity, for sharing your wisdom,
for pushing me to produce quality work, and giving me the support when I
got stuck!

Furthermore, I would like to thank the graduation committee for reviewing
this work, and for their feedback to improve it further. Most importantly, I
would like to extend my gratitude towards Erika Ábrahám, and Thao Dang,
whom I had to pleasure to meet, and follow lectures from, at HSSCPS 2018.
It was indeed this summer school that got me to appreciate the subject of
hybrid systems even further. Also, I would like to thank Marieke Huisman,
and Anne Remke for their outstanding work in the field of formal methods
that got me inspired to pursue this path.

A good company of friends and colleges is a key piece of the PhD puzzle,
which is why I would like to thank all of the people I interacted with on the
fifth floor of Zilverling (and especially the CAES group). However, one person
in particular that I would like to extend my utmost respect and appreciation

ix

x

to is Fatjon Seraj. Fatjon, your wisdom and experience have helped me
numerous times to overcome the challenges of academia, and survive this wild
jungle, all while being one of the few to show interest in my work. And yet,
apologies are also in order for never fulfilling my promise of gifting you that
whiskey. Hopefully, when we meet again in the future, I will be able to deliver.
Also, a successful coffee break is never truly successful without my ”balkan”
gang, consisting of Oğuz, Baver, and Konstantinos. Guys, your company and
friendship kept me sane, and for that, I thank you! I would also like to thank
Alexander Belov for hanging out during the first years of my PhD. Last but
not least, I would like to thank the CAES secretaries Nicole and Marloes,
who were always providing me with assistance whenever possible.

One of the most important things in life is family, who will always offer
you love and support no matter what. To this end, I owe everything to my
mother Stella, and my father Semir. Mom, dad, I wouldn’t have become what
I am today without your patience, support, and unconditional love - you are
the best! Also, to my little sister, Epiphany, with whom I shared so many
precious memories - you mean a lot to me! Finally, I would like to thank my
grandparents Katja, Valentin, Mohamed, and Julia, who watched and helped
me grow into what I am today. Especially grandpa Valentin, who to this day
still remains a role model engineer that I aspire to be. Обичам ви!

It is also said, that behind every successful man stands a strong, indepen-
dent, and successful woman. This could not be more true, as I come to realize
when I shared my life with Ha Thu (Iris) Nguyen. Iris, you are the best! You
stood next to me when I felt alone, you cooked some of the most amazing
Vietnamese food that one can imagine, and you helped me go, and explore
the world - a feat that I can hardly imaging to do alone. Not to mention that
you designed one of the best thesis covers ever. And for that, I will forever
be in your debt! Anh yêu em!

Contents

1 Introduction 1
1.1 Cyber-Physical Systems . 3
1.2 Sampled-Data Systems . 8
1.3 Hybrid systems . 12
1.4 Problem statement . 17
1.5 Key contributions . 18
1.6 Outline . 20

2 Background 23
2.1 Control systems: a retrospective 23
2.2 Model checking of Cyber-Physical System (CPS) 33
2.3 Sampled-Data feedback control of Linear Time Invariant (LTI)

systems . 37
2.4 The Hybrid Automaton (HA) model and its semantics 41

3 State Estimation in Self-Timed Control of Sampled-Data
Systems (SDS) 47
3.1 Related work . 50
3.2 Basic idea . 51
3.3 Execution time analysis . 55
3.4 The Kalman Filter (KF) estimator under aperiodic Sampling

and Actuation (S/A) . 58
3.5 Estimation for Self-timed Control 60
3.6 Case study . 62
3.7 Conclusion . 68

4 Stability Verification of Aperiodic SDS Using HA-CLD 71
4.1 Related Work . 73
4.2 Basic Idea . 74
4.3 Modeling aperiodic systems 78
4.4 Semantics and analysis of HA-CLD 81
4.5 Case study . 85

xi

xii CONTENTS

4.6 Conclusion . 88

5 Reachability Analysis of HA-CLD 89
5.1 Related Work . 91
5.2 Basic Idea . 92
5.3 Continuous-time forward reachability 99
5.4 Reachability algorithm for HA-CLD 104
5.5 Case study . 108
5.6 Conclusion . 115

6 Decomposed Aggregation for Hybrid Automaton with Lin-
ear Dynamics (HA-LD) 117
6.1 Related work . 120
6.2 Basic idea . 121
6.3 Decomposed aggregation and subspace identification 125
6.4 Case study . 134
6.5 Conclusion . 140

7 Conclusion 143
7.1 Summary . 144
7.2 Contributions . 147
7.3 Future directions . 149

A Mathematical preliminaries 151
A.1 Vector spaces . 151
A.2 Geometry . 154
A.3 Linear Dynamical Systems . 159

Notation 163

Abbreviations 167

Bibliography 169

Publications 181

1

Introduction

The prevalence of embedded computer systems in our everyday lives has
substantially increased over the years. From mere household appliances, such
as dishwashers and microwave ovens, to safety-critical systems, such as cars,
planes and medical equipment, computers can be found everywhere pervasively
interacting with the physical environment and performing autonomous tasks
to improve the quality of our daily lives. In fact, it would be really hard
nowadays to find any such systems that do not contain at least some form
of software programmable components. This rapid growth is largely due,
but not restricted, to the advancement of low-cost programmable devices,
low-cost sensors and actuators, modern software engineering methodologies,
and the recent accumulation of large amounts of data. The key benefits
that motivate the inclusion of software in everyday machinery are safety,
maintenance, flexibility, versatility and precision. Recent trends show that
connectivity also plays a very important role, which would not be possible
without some form of a software-defined communication protocol. Efficiency
has also become an important trend as of late, evidently due to the recent
popularity of electric vehicles, improved substantially by cleverly designed
software.

One of the major industries that greatly benefited from these rapid tech-
nological (and theoretical) advancements in embedded systems and software
is the automotive industry. Indeed, over the years cars have undergone drastic
transformations from being purely mechanical, hardware-driven machines
to predominantly software-driven. In fact, the control software of a typical
modern car can consist of over 150 million lines of code [Bur+18], while the
number of embedded Electronic Control Units (ECUs) is increasing expo-
nentially over the years, estimated at over a 100 as of 2010 [EJ09]. Among

1

2 1. Introduction

the subsystems that these computing units are responsible for are electronic
airbags, navigation, adaptive cruise control, automatic breaking and parking,
and other driver assistance systems. While most of these are designed to
bring more comfort to the driver, their primary objective is to ensure the
safety of the passengers, and improve the quality of driving on the road. It
is expected that the introduction of such autonomous features to vehicles
would reduce traffic congestion and car accidents by a large margin [GYA02;
JMH01], highlighting the importance of embedded systems in automobiles.

However this increasing trend of software integration and development in
safety-critical systems has inadvertently introduced many challenges to their
design and certification. Perhaps the biggest challenge is the management,
analysis and verification of the software, whose complexity has grown substan-
tially over the years as evidenced in cars. This increased complexity prevents
any sort of quantitative and exhaustive analysis within a reasonable time.
Additionally, the development of fault-tolerant embedded control software
requires expertise from many different engineering domains, and so the effec-
tive communication among engineers is key. In car design and manufacture
for example, a team of engineers is assigned for the design of each ECU,
depending on the desired functionality it is supposed to fulfill. But making
each sub-system work in unison requires the active collaboration between
teams, a feat that is very difficult to achieve effectively. At the same time
manufactures are pushed by deadlines to release products that are not fully
tested, and as a result, exhibit faulty behaviors that are often fatal to human
life. To put this in perspective, two fatal accidents have occurred recently
involving the Boeing 737 MAX plane, and are largely attributed to software
faults in the Maneuver Characteristics Augmentation System (MCAS) and
faulty sensors, as opposed to mechanical failures. Similarly, the number of
recalls and crashes of electric vehicles is also quite large, again due to software
errors.

An emerging design approach that tries to address the above mentioned
issues, and improve the software verification process is the so-called model-
driven design [Ber+19]. Here, computational models of the software are
derived, and are exhaustively analyzed using formal methods to detect faults
early on. The key difference with traditional unit testing and debugging, is
that formal specification and verification of the software is much more rigorous
and to a large degree automatic. As a direct consequence, costs and time
required for testing are substantially reduced. Recently the methodology has
also transcended beyond code analysis, motivated by the fact that the physical
environment and hardware also play a key role in the correct operation of
the software. This has encouraged scientists and engineers from the various

1.1. Cyber-Physical Systems 3

fields to join forces and invest a considerable research effort, that has evolved
into a new emerging field of the so-called Cyber-Physical Systems (CPSs),
termed this way to emphasize the ubiquitous interaction of the software with
the physical environment. This research focuses on the modeling and analysis
of Sampled-Data Systemss (SDSs), which is a class of CPS where the main
design concern is their control performance.

The rest of this chapter is organized as follows. In Section 1.1 we define
CPS and provide an example, demonstrating its typical design flow. In the
section we also discuss two very important design principles, namely the
abstraction principle and the separation of concerns principle. In Section 1.2
we talk about SDS and elaborate further on the involved design and analysis
challenges. Section 1.3 introduces the hybrid dynamical system model, and
its application to the analysis of CPS. Here, we also describe popular classes
of hybrid systems, and their modeling expressiveness and complexity. The
research problem and contributions of this work are discussed in Section 1.4
and 1.5, respectively. Finally, in Section 1.6 we present a summary and outline
of the rest of the chapters in this thesis.

1.1. Cyber-Physical Systems

There are many different definitions of a CPS used throughout academic and
engineering circles, which depend on the particular design and analysis aspects
of interest. In this section we provide one such definition. Additionally, we
discuss two important principles that facilitate the design of CPS, and SDS
in particular. These principles have historically guided engineers through the
design and analysis of systems by using approximations of the real world.

1.1.1. Definition

While there are several definitions of a CPS, each definition agrees that a
Cyber-Physical System is a collection of distributed virtual and physical
processes which interact with each other in order to accomplish a set of goals
and desired behaviors. Specifically, it is the set of virtual, software-defined
components (the cyber part), that actively work to accomplish the specified
goals, by controlling external processes in the physical environment (the phys-
ical part) and performing high-level decision making. The interface between
the software and the physical systems is realized using hardware components
in the form of sensors, actuators and computer networks. Communication
between components on the other hand is established by a complex communi-
cation protocols. Here, analysis of CPS is performed to verify that the CPS
satisfies a set of performance criteria and safety requirements. During the

4 1. Introduction

design phase on the other hand, the parameters and software are configured
so that the CPS will adhere to the requirements. It is not unusual that
requirements are revised during the design phase, in case that it is not feasible
to satisfy all of them, and the whole process is repeated until a compromise is
reached. It is also the case that the models used for analysis are also changed,
if they don’t capture sufficient information about the problem.

1.1.2. Motivating example

As a motivating example consider a platooning application, where an au-
tonomous vehicle needs to follow a target within a certain distance. We
assume that the hardware platform is fixed, and cannot be changed, i.e. the
physical design and layout is complete. The sensors used to track the target
are a camera, and a range detector such as RADAR. The robot is driven by
two motor actuators.

The first objective is to design an algorithm and model that detects and
tracks the target, which is a task that falls within the fields of machine
learning and computer vision. Here, the designer is less concerned about
the physical properties of the system and implementation details, and more
concerned with how the target is represented, and its motion. As such, it
is assumed that the controller functions optimally, and that the hardware
provides sufficient resources to implement these algorithms. By excluding
these variables and parameters, an abstract motion model for the target can
be derived to evaluate and tune the parameters of the tracking algorithm.
Similarly, a representation model, such as an Artifical Neural Network, is also
derived to detect the target. The only properties that are of concern here
are ensuring that the target is detected, and that its relative position and
distance to the robot is accurately estimated.

Next, in order to follow the target a control algorithm needs to be designed.
At this point, in addition to sufficient hardware resources, one can assume
that the tracker and detector are functioning correctly and provide accurate
estimations of the real position of the target, and its distance to the robot.
Thus, the control engineer can now ignore the models of the detector and
tracker by considering their outputs as given, and focus on deriving a model
of the dynamics of the robot. This model is then used to design the control
algorithm, which makes sure that the robot moves towards the target at the
desired distance. Moreover, the controller is designed such that it satisfies
certain performance criteria, such as reducing the time required to reach the
target, minimizing the reaction time, maintaining a stable trajectory, etc.
This is done by applying methods from systems and control theory.

1.1. Cyber-Physical Systems 5

Finally, when it comes to the implementation of the algorithms on the
hardware platform, design and analysis boils down to fitting the software
onto the platform, such that resource utilization is maximized. Moreover, the
implementation must satisfy real-time timing constraints, which means that
the exchange of sensor and actuation data must be done in a timely manner.
Coming back to our example, the tracker and detector need to provide their
outputs to the controller at an expected time instant, before it can produce
an actuation output. At the same time, the controller needs to provide an
actuation to the plant, before the expected sampling moment from the sensors
arrives. Failure to satisfy these deadlines will result in inaccuracies with
respect to the abstractions used to design and analyze the controller, tracker
and detector, leading to reduced control performance, and in the worst case -
hardware failure. Additionally, latency and delays also affect the performance,
and are largely attributed to the hardware. To provide some guarantees
that these timing contracts are respected, the functionality of the software is
completely ignored, and only its temporal execution behavior is considered.
Individual parts of the algorithms are split into tasks, which can be scheduled
on the processor(s). For example, the controller, detector and tracker can
executed as individual tasks. Further splitting into tasks is also performed for
each algorithm to increase its throughput. Then methods from the theory of
real-time systems are used to derive estimates of the execution time bounds of
the tasks, which are subsequently used to derive schedules that map the tasks
onto specific time-slots and processors. Ideally once this mapping process is
complete, the throughput of the algorithms will be maximized, the latency
minimized, and the deadlines will be satisfied on time.

1.1.3. The abstraction principle

The design and analysis of modern CPS is very difficult, because of the
large number of heterogeneous components involved, each requiring its own
insights and knowledge from different engineering domains. As a result,
each component has its own specific model(s). Furthermore, there are many
design criteria that one needs to address in order to ensure performance,
safety, reliability and durability. As such, the design space grows significantly,
and considering all possible behaviors of a CPS simultaneously becomes a
daunting task, due to the many incompatibilities between modeling and design
frameworks.

For this reason, as is common practice, components are designed in an
isolated fashion using abstractions of the real systems. We can define an
abstraction of a real system to be a new model that preserves certain properties
and behaviors of the old model for the purpose of analysis, and excludes the

6 1. Introduction

Figure 1.1: A typical CPS.

rest. Accordingly, the level of abstraction depends on the number of properties
and behaviors preserved from the original model. Refinement is the opposite of
abstraction, where certain behaviors are reintroduced to improve the precision
of the analysis. This methodology allows the isolation of properties and
behaviors that are difficult to handle simultaneously, into distinct abstract
models that can be analyzed and designed with an appropriate framework,
simplifying the analysis, and allowing applying tractable design methods
suited for the particular framework of interest.

1.1.4. The separation of concerns principle

We have shown earlier with our example that each aspect of the system can
be modeled in isolation using separate abstractions. In addition, we showed
a typical incremental approach to design, where in each phase the required
components are designed and analyzed separately from the other within the
modeling frameworks for the aspects of interest. Ideally, one would not need
to worry about the other aspects of the system, and focus on only one specific
component without fear that its design would be influenced by the others.
Specifically, it is safe to assume with a reasonable amount of confidence
that the design decisions for each aspect and component do not result in
requirement violations and performance degradation in others. For example,
in the design of embedded control systems, scheduling and resource allocation
for control tasks is done separately from the design of the control algorithms.

This principle is known as separation of concerns, and is applied in order

1.1. Cyber-Physical Systems 7

to derive abstractions that are easier to analyze and can be used to obtain
satisfactory design parameters of the system in isolation [Sai+18; Arz+00;
Set+96]. Unfortunately, full separation of concerns is not possible and often
abstractions provide very inaccurate solutions to the design problem. In
the worst case, design decisions made for one aspect will result in loss of
performance or violation of requirements in another [SSS12; Set+96; Arz+00].
Such a shortcoming is largely attributed to the oversimplification of the
models and elimination of implicit dependencies between aspects during
separation. By using more expressive models which capture multiple aspects
simultaneously, the risk of oversimplification is reduced. However, the degree
of separation is also reduced, which leads to models that are often very difficult
to analyze.

As far as the design of embedded control systems is concerned, the degree
of separation is dependent on the hardware resources available, the control
algorithms involved, their computational aspects, and the dynamical behavior
of the plant. More importantly, the cyclic design dependency between these
aspects manifests itself via the sampling and actuation mechanism, due to
the nature of the interface between the physical and virtual environment. In
one direction, the execution times of control tasks and their utilization of
available resources (scheduling, network bandwidth, memory, etc) determine
an upper bound on the frequency of measurements that can be received,
and control commands that can be sent to the plant. Moreover, discrete
phenomena directly determine the lengths of subsequent sampling intervals.
In the other direction, control aspects such as the dynamics of the plant and
the control algorithm determine a lower bound on the sampling frequency,
below which the system’s performance is degraded, and becomes unsafe. Thus,
the sampling and actuation mechanism is a deciding factor on the amount
of separation allowed, and the assumptions that can be made to facilitate
isolated abstractions.

A common tactic that facilitates the separation of concerns principle for
control systems and CPS in general, is to enforce a homogeneous sampling and
actuation mechanism, such as periodic sampling [FPW+98; ÅW13; Ste94].
This allows analysis of aspects with domain-specific models and techniques in
isolation, because one can make prior assumptions about the system and its
limits. Specifically, a controller is designed with the guarantee that there are
enough computational resources available to allow its periodic execution with
as small sampling period as possible. At the same time, a task schedule is
derived with the assumption that the controller’s performance is unaffected
by large sampling periods, giving significant leeway to the scheduling and
resource allocation algorithms. However, such a paradigm is difficult to

8 1. Introduction

achieve in practice and isolated analysis with idealized abstractions becomes
harmful to the design process, because they tend to rely on overly pessimistic
assumptions, as we discuss in the next section.

These and other pitfalls prompt engineers and scientists to engage into
interdisciplinary domains, in order to improve the design effort. In turn, new
model-driven analysis and design frameworks are emerging that try to bridge
the gap between abstractions, by incorporating more aspects from each other
via mutual refinement [Ber+19]. In the case of embedded control, new models
of analysis are introduced that jointly incorporate the digital and physical
behavior of the CPS in a consistent mathematical framework. One specific
example is the hybrid system model, which is an emerging class of abstractions
that integrate the fields of computer systems and dynamical systems, and
has recently started playing a very crucial role of modeling and analysis of a
wide range of aspects of CPS. However, due to their increased flexibility and
expressiveness, such models often do not permit tractable analysis methods.
Thus a compromise between the number of physical and digital phenomena
incorporated into the model is often required, in order to maintain feasibility
of solutions, while still maintaining expressiveness.

1.2. Sampled-Data Systems

Having laid out the fundamental practices and principles for CPS design, in
this section we focus the discussion on SDS, and how these principles are
applied to facilitate their design. Specifically, we discuss the aspects and
concerns related to their modeling and analysis, and elaborate further on
the design dependency between control and computational aspects, and the
challenges that they bring with it.

1.2.1. Definition

Sampled-data control CPS [FPW+98; Dul12; Kum+12; BJ15; AKGD15;
AKGD17; VSEH:2; Lem+07; MA10; ZZ12], or SDS for short, are a class
of digital control systems, where the controller is implemented digitally on
a distributed computer system that interacts with the physical process via
a network of sensors and actuators in a closed-loop fashion. The network
may be wireless, wired, on a chip, or a combination of the three. Different
parts of the control software may also be implemented on a single multi-
processor computing platform as individual tasks. A typical abstraction of a
SDS is shown in Figure 1.2. Here, the sensors, actuators and their network
interconnect have been represented as abstract Analog to Digital (A/D) and
Digital to Analog (D/A) interfaces. Specifically, the A/D block represents

1.2. Sampled-Data Systems 9

Figure 1.2: A sampled-data system

the set of sensors that measure physical quantities of the plant through the
signal vector y at specific sampling moments tk, and convert the samples
into a data sequence (yk). The sequence may represent image frames from a
camera, temperature reads, distance measurements, etc. The controller takes
this data, computes estimates that try to infer the true state of the physical
process, and calculates an actuation sequence (uk) according to a control law,
such that the plant can be forced into a desired behavior. This sequence of
commands is provided to the actuators which convert it back into physical
forces and signals that act on the plant via the D/A interface.

1.2.2. Design aspects

There are two main aspects of interest in the design of SDS: 1) control aspects
– ensuring a certain quality of control under various safety and robustness
requirements; and 2) computational aspects – mapping the software onto the
hardware such that its resources are efficiently utilized, and the functionality
of the controller is ensured. Traditionally, this is accomplished in isolation
using: 1) a closed-loop dynamical model to determine the control law required
to drive the plant into a desired stable state; 2) a computational model used
to map the control algorithms onto the hardware, and derive temporal bounds
of the processing execution times. In ideal conditions the two abstractions
can for the most part be assumed mutually exclusive, in the sense that they
don’t share design requirements and parameters. However, this is not the case
in practice, and both models are bound to a cyclic design dependency due to
Sampling and Actuation (S/A). Specifically, determining the parameters and
structure of the control algorithm, such that it forces the plant into an optimal
desired behavior requires that the S/A intervals, i.e. the differences between
S/A instants, be known in advance. However, these intervals depend on many
temporal variables, such as the processing time of the control tasks and the

10 1. Introduction

data transmission delays, which vary over time. Thus, it is impossible to
isolate control and computational aspects of an SDS, without making certain
assumptions about the S/A times.

A commonly applied strategy is to enforce periodic S/A, in which case
all of the sampling intervals can be assumed to be equal to a constant called
the sampling period. This strategy allows analysis of the computational
and control behaviors in isolation using tractable models. Such a strategy
is valid, because it is reasonable to assume, through enforcement of strict
task schedules, that the S/A intervals will not significantly deviate from the
assumed period. The design process can then proceed in one of the following
ways:

1. Design a controller in ideal conditions by selecting a sampling period
that gives the best performing controller, and then try to schedule the
software tasks in a way that guarantees that they finish processing
before the next expected S/A instant.

2. Derive a task schedule that maximizes resource utilization, derive a
total task execution time bound to determine the minimum required
sampling period, and use it to design the controller.

In the first case it may happen that the sampling period used is too small,
and a feasible schedule that satisfies the timing requirements cannot be
derived. In the second case it may happen that the minimum sampling period
possible given the optimal schedule is too large to ensure stable and robust
control performance. Thus, several design iterations are performed until both
abstractions satisfy their respective requirements. Typically, temporal bounds
and schedules of the system are derived first by using concurrent models of
computation, such as Synchronous Data Flow Graphs (SDFGs) [SB00; KB16],
and are used afterwards to design and analyze the controller separately. This
in turn is done using classical techniques from control theory, such as Common
Quadratic Lyapunov Function (CQLF), Linear Matrix Inequalities (LMIs),
etc [MA10; ZZ12; Kum+12].

1.2.3. Challenges

While enforcement of periodic sampling and actuation has been adopted as the
standard design principle for SDS, it does have some important limitations.
In particular, if the variations in processing time, processor workload, data
transmission delay, and other similar disturbances become large, then the
sampling period that must be enforced also becomes unreasonably large. Even
worse, sporadic data losses during transmission over a network also introduce
an additional level of uncertainty that is not accounted for. In either case,
the isolated models become much less useful, because the effect of the varying

1.3. Hybrid systems 11

Figure 1.3: The tradeoff between scheduling and control performance.

sampling intervals cannot be accurately captured by either the dynamic
control model or the computational model. The consequence is that the
design requirements may never be satisfied by either model, which forces the
designer to rethink the control software, or use more expensive hardware. This
tradeoff between control performance and scheduling is visually illustrated
in Figure 1.3. Because a large sampling period will certainly deteriorate
the performance of the controller, one has to settle with a smaller period
and accept the variations in the S/A intervals. In practice however, it is
often the case that temporal disturbances do not significantly deteriorate the
controller performance, and soft real-time scheduling is sufficient [Set+96;
FP18; LP15; SSS12]. In fact, enforcing strict conformance of the tasks to the
derived task schedule, the so-called hard real-time scheduling, can be actually
more harmful to the control performance than useful, leading to deteriorated
control behavior [Cer01; Arz+00; Gos+13; SSS12]. Unfortunately, isolated
models cannot be used to decisively evaluate the performance under aperiodic
S/A.

In such cases, there is a need for more expressive models that can capture
this tight temporal dependency between the computational and control aspects
of the system. Using such models one can then determine the extent to which
these temporal disturbances in the form of S/A jitter affect the performance,
and obtain a more realistic solution to the design problem. This is because
the focus is turned more on the controller design, rather than satisfying the
temporal requirements. Specifically, instead of choosing a sampling period
that guarantees enough processing time for the control tasks, one can instead
use an estimate of the expected S/A interval, leading to the notion of an
average sampling period that is in general much smaller than the pessimistic
upper bound required by traditional techniques.

12 1. Introduction

1.3. Hybrid systems

In this section we discuss hybrid dynamic system models (or simply hybrid
systems) [DS+09; Lyg04], which are used to fill the modeling gaps of isolated
CPS models, discussed in the previous sections. In particular, we focus on
Hybrid Automata (HAs) [Hen+95; Lyg04; Fre+11], because of their ability to
capture event-driven and time-driven behaviors of the system simultaneously.
We also discuss other hybrid systems in the form of switched systems and
Piecewise-Affine (PWA) systems, popular in the control theoretic circles.

1.3.1. Introduction

Hybrid systems are emerging dynamic system models for CPS, of which HA
are a prime example, that incorporate continuous and discrete dynamics into
their semantics. Specifically, such models allow incorporating both event-
driven and time-driven mechanisms of evolution of the system’s state, which is
both discrete and continuous. As such, hybrid system models are very general
and expressive with respect to the properties and behaviors of CPS that
can be captured within. This key property allows practitioners from various
engineering disciplines to work within a unified framework when designing
and analyzing CPS. The other key property is that hybrid system models
are more accurate from a modeling perspective, due to the reduced level of
abstraction, and hence the recent rise of research interest.

However, a major drawback of hybrid systems that prohibits their use
in industry, is that as of now the general theory is still very immature when
compared to classical, isolated models [DS+09]. In addition, software tools
for the design and analysis of hybrid systems are still in very early stages
of development, and thus a long way from industrial adoption. These and
other shortcomings are largely due to the inherent complexity of the analysis
for such models, and the lack of consistent analytical solutions. Indeed, the
prospect of more expressiveness and generality that hybrid systems aim to
deliver can be a double edged sword. Nevertheless, hybrid systems comprise
a very vibrant field of research, with new ideas and solutions being actively
developed. Below we discuss some state-of-the-art approaches and models
with reduced expressiveness in order to allow tractable analysis, based on the
abstraction principle.

1.3.2. Hybrid Automata

Hybrid Automata (HAs) [Hen+95; Lyg04; Fre+11] are a class of hybrid
systems that fuse the semantics of transition systems with dynamical system

1.3. Hybrid systems 13

semantics. More precisely, HA are graph models operating over a continuous
state-space X , which is a vector space (see Definition A.1.1), and its set
of nodes Q represent the discrete state-space. A node q ∈ Q is also called
mode (or location), and each mode is equipped with a continuous-time tran-
sition relation that determines the evolution of the state while that mode
is active. Most commonly, the state evolves according to ẋ = fq(x), where
f : Q×X → X is a vector field. Additionally, each mode is also equipped
with a so-called invariant predicate expression I(q) on the continuous state,
which allows smooth evolution in the mode as long as its invariant is satis-
fied. If the state no-longer satisfies the invariant, then the automaton must
transition to another mode. If no such transition exists, the automaton is
said to be blocked, and not further state evolution can occur. The set of
edges E ⊂ Q×Q represent discrete transitions between the modes, and each
transition e ∈ E is equipped with a so-called reset map, and a guard predicate
expression G(e). A transition is not allowed to take place, unless its guard
predicate is satisfied by the state, in which case the automaton may transition
to a new mode. Upon transitioning, the reset map instantaneously assigns a
new value to the state variable, which introduces a discontinuity to its smooth
trajectory.

The classic example of a HA is the bouncing ball model, shown in Fig-
ure 1.4a, which contains one mode flying with a single transition to itself.
The model represents a ball that is dropped from an initial distance d0 from
the ground. There are two continuous state variables, namely the vertical
distance d between the ground and the ball, and its vertical velocity v. By
the Newtonian dynamics, ẋ = v and v̇ = −g, where g is a gravitational
constant. The invariant d ≥ 0 ensures that the ball stays above the ground
and doesn’t go through. The transition represents a jump up of the ball, and
is enabled whenever d ≤ 0, which is the event of the ball reaching ground.
Upon transitioning, the map v := −Kv, 0 < K ≤ 1 resets the velocity to a
new positive value, which makes the ball go up. Specifically, the automaton
is allowed to transition back into its flying mode, which allows the state
variables to evolve continuously again. In this case, the ball reaches a certain
height and starts falling again, repeating the process indefinitely. The distance
trajectory of the ball with respect to time is shown in Figure 1.4b, and the
velocity in Figure 1.4c.

HA are a very generic class of models, because they allow many different
system semantics simultaneously. This great modeling power comes at the
expense of reduced number of analytical properties, and increased computa-
tional complexity of computer-aided analysis. In fact, most of the verification
problems of HA are undecidable [Hen+95]. However, there are subclasses of

14 1. Introduction

(a)

(b) Distance (c) Velocity

Figure 1.4: The bouncing ball model (a), and its state-variable trajectories (b),
(c)

HA with a more restricted syntax that are more tractable for computer-aided
analysis and verification. We review some of these below.

1.3.3. Subclasses of HA

The first important subclass that is frequently encountered in practice is
the so-called Hybrid Automaton with Linear Dynamics (HA-LD). Here, the
continuous dynamics are linearly defined, i.e. the vector field for each mode
q is fq(x) = Aqx, where Aq is a matrix. The reset map is similarly defined,
with Re(x) := Jex and Je a matrix. The invariant I(q) and transition guard
G(e) are polyhedral sets, defined by a set of LMIs. These models are still
very difficult to analyze, and many fundamental properties, such as their
stability, cannot be verified conclusively. Nevertheless, there are efficient
approaches that have be developed to compute the so-called reachable set of
states of a HA-LD, such as SpaceEx [Fre+11], Flow∗ [CÁS13], HyLaa [BD17],
Ariadne [Ben+08], HyPro [Sch+17] and others.

Another very popular subclass are Timed Automata (TA), which are
HA-LD with so-called clock variables that evolve in every mode with a
constant rate according to ċ = 1. Additionally, guards and invariants are

1.3. Hybrid systems 15

Figure 1.5: Model hierarchy of models with respect to expressiveness vs.
complexity.

restricted to simple box polyhedra with integer constraints. In the box
polyhedron each inequality is restricted to one clock variable. Finally, each
reset map is allowed to set a clock variable to an integer constant. Because
of these restrictions, the reachability problem for HA has been proven to be
decidable [AD94; Hen+95], and so they have become a very powerful formalism
for the modeling and analysis of real-time systems and network protocols,
using tools such as Uppaal [Ben+95]. However, they are considerably less
expressive than HA-LD, and less useful for analysis of SDS, because they
don’t capture the dynamical behavior of physical processes and the controller.

Hybrid Automaton with Clocked Linear Dynamics (HA-CLD) are a new
sub-class of models that we introduce in this thesis, and which extend TA
by including additional non-clock state variables that have linearly defined
dynamics in each mode, and are reset by a linear map. However, guard
and invariant expressions are not allowed to contain non-clock variables. As
such, HA-CLD are suitable for modeling and analysis of SDS by leveraging
the properties of TA to model computational aspects, while simultaneously

16 1. Introduction

incorporating the physical state evolution of the plant, and the discontinuous
control law updates of the controller. Unfortunately, due to the inclusion
of non-constant dynamics, the reachability problem of HA-CLD is undecid-
able [Hen+95]. However, analysis of their temporal behavior is still decidable
by excluding the non-clock dynamics from a model. Additionally, as will
become apparent later on in the thesis, their restricted syntax allows their
stability verification using reachability analysis, which can be performed much
more efficiently than for HA-LD.

A summary of sub-classes and their place in the model hierarchy with
respect to modeling power vs. tractability is shown in Figure 1.5.

1.3.4. Other models

Switched systems [DS+09; MKA08] are a hybrid dynamical system model
which is popular among control theorists and engineers. It is an extension
of classical LTI/Linear Time Variant (LTV) systems, where the system’s
parameters are allowed to switch based on a discrete switching function.
Specifically for LTI, the state of the system evolves according to ẋ = Aqx
or xk+1 = Aqxk, where q : T×X → Q is the switching function over the
time-set T and the state-space X , and Q is a finite indexing set. Aq is a matrix
that encodes the parameters of the system for different discrete states in Q.
Switched systems are an attractive formalism for CPS, because they can be
analyzed and designed with traditional approaches from control theory, such as
CQLFs [SN03; Sho+07], LMIs [MKA08], Joint Spectral Radius (JSR) [Har02].
However, one of their downside is that these techniques are only applicable
under very strict conditions, such as requiring that the matrices Aq be
commutative [Lyg04]. As a result, the problem of verifying stability is in
general undecidable [DS+09]. Another downside, is that these models do
not allow discontinuous jumps in its syntax, which is an important feature
that is required when analyzing SDS. In contrast, HA allow this semantic
through the use of transitions equipped with guards and reset maps. A
key difference with our HA-CLD model in particular, is that the temporal
behavior of switched systems is implicitly defined, so it is difficult to isolate,
and therefore its analysis is also an undecidable problem.

PWA [DS+09; Chr07; MA10] systems are another popular model that
is similar to switched systems. Here, the dynamics are linear or affine, and
switching is entirely driven by the state. Specifically, the state-space X is
partitioned into a disjoint set of polyhedral regions P1, . . . ,Pm ⊂ X and the
parameter matrices Aq switch depending on the particular region Pq the state
resides in, i.e. ẋ = Aqx ⇐⇒ x ∈ Pq. Because of their similarity to switched
systems, they suffer from the same drawbacks.

1.4. Problem statement 17

1.4. Problem statement

To summarize, traditional design methods for SDS rely on models that capture
the control and temporal behaviors in isolation. In particular, periodic S/A
is enforced in order to facilitate their analysis using isolated abstractions
of the closed-loop dynamics, and the execution of the control tasks. The
advantage of this approach is that these isolated models allow the application
of tractable design and analysis methods from computer science and control
theory. The disadvantage is that if the S/A intervals deviate significantly from
the nominal sampling period, then isolated models become proportionally less
useful, because they can’t capture the effects of temporal disturbances on the
control performance. The result is a system that may not adequately satisfy
the safety and performance requirements.

To address this problem, we introduce a hybrid system model in the
form of Hybrid Automaton with Clocked Linear Dynamics (HA-CLD), which
facilitates partial separation of concerns in the analysis and design of embedded
control systems, and specifically SDS. More precisely, our model directly
captures the dependency from computational to control aspects, discussed
earlier, and thus allows more accurate assessment of the control performance
under varying S/A. However, our model does not capture the other direction
of the dependency, and so the temporal behavior can still be analyzed in
isolation with tractable model-checking techniques.

Since this model is more expressive, it requires new methods to analyze
its behavior and verify its stability. We address this problem by presenting a
theorem that allows (asymptotic) stability verification of SDS using HA-CLD.
This is possible, because their syntax is restricted and simplified compared to
the more general HA-LD class, due to the partial separation of concerns.

While the HA-CLD model is more restrictive than HA-LD, it is still dif-
ficult to analyze with state-of-the-art tools, such as SpaceEx. Specifically,
such tools are not efficient and accurate in this regard, because they are
designed to handle the general case, and identifying syntax dependent algo-
rithmic optimizations automatically is difficult. We tackle this problem by
presenting a new reachability analysis algorithm that takes advantage of the
simplified syntax of HA-CLD to perform certain operations more efficiently
and accurately.

The fourth final problem that is addressed in this thesis concerns the
aggregation of sets in the reachability algorithm for HA-LD. In short, aggre-
gation is used in reachability algorithms to control the growth of sets, which
results in exponential run-time. Aggregation hasn’t been paid much attention
to in the research community, due to its inherent difficulty and heuristic

18 1. Introduction

nature. The key problem that we attempt to address is how to control the
trade-off between computational complexity of the aggregation method, and
the introduced overapproximation error.

1.5. Key contributions

The key contributions of the work presented in this thesis are:

1. A state-estimation algorithm based on Particle Filters (PFs) [VSEH:1]
for aperiodic SDS with self-timed control, that is more robust to sampling
time uncertainty. (Chapter 3)

2. Introduction of the HA-CLD [VSEH:2] model for specifying aperiodic
SDS, which captures the interaction between the temporal and physical
behaviors of the system that is often omitted in isolated models, and
which enables stability verification using more computationally efficient
reachability analysis algorithms. (Chapter 4)

3. A theorem that allows algorithmic stability verification of SDS using
reachability analysis for HA-CLD [VSEH:2], which does not require an
explicitly defined Lyapunov function. (Chapter 4)

4. A numerical reachability analysis algorithm for HA-CLD [VSEH:3] that
exploits their syntax and properties to compute the reachable set of
states more accurately, and with improved computational efficiency
compared to approaches that target the more general HA-LD class,
such as SpaceEx. (Chapter 5)

5. A subspace identification algorithm for decomposed aggregation of sets
in the reachability analysis of HA-LD [VSEH:4], based on Sequential
Monte Carlo (SMC) optimization, that takes the continuous dynamics
into account in order to derive aggregates that contract faster, such
that the overapproximation error is reduced, and a fixed point is found
earlier. (Chapter 6)

We discuss these in more detail in the next subsections.

1.5.1. State-estimation in self-timed control

Our first contribution is a self-timed control strategy for SDS, where we
assume that the processing algorithms as mapped as tasks on a multiprocessor
platform with shared memory and caches. The key idea of the approach is
to allow free-running execution of the control tasks in the target SDS. More
precisely, we assume that S/A is not periodic, and the control loop is executed
on a multiprocessor system so that the decision, control and sensor data
processing tasks do not adhere to a strict periodic schedule. Instead, new
iterations of task executions and S/A moments are event-triggered (event-

1.5. Key contributions 19

driven), where the triggering event is the finish time of the control task. As
a consequence, S/A is dictated by the tasks’ execution times and becomes
aperiodic, however the average sampling period is significantly lower compared
to the period derived from the so-called Worst-Case Execution Time (WCET)
estimate of the upper bound on the execution times. As such, the approach
addresses the fundamental problem of selecting the S/A period of periodically
driven control systems. The problem of reducing state estimation and control
error, which is due to the measurement instances deviating from the expected
instants, is addressed by utilizing the SMC algorithm, also known as PF, to
estimate the correct measurements using probabilistic models of the execution
times.

1.5.2. Hybrid Automaton with Clocked Linear Dynamics

The first contribution is the modeling and analysis of SDS using HA. Specifi-
cally, we study the properties of the so-called Hybrid Automaton with Clocked
Linear Dynamics models, a subclass of HA with a restricted syntax, which are
suitable for modeling and analysis of sampled-data systems. The key property
of these models is that the temporal and discrete event behavior is explicitly
specified using the so-called clock variables, similarly to TA models. However,
HA-CLD also allow including the physical and control dynamics of a CPS
in the form of non-clock variables. As such, HA-CLD are more tractable for
analysis compared to HA-LD, and yet more expressive than TA. The idea is
that the temporal and control behaviors can still be studied in isolation to
derive preliminary parameters of the software, which are subsequently used
to derive a HA-CLD model that provides a more accurate assessment of the
control performance.

1.5.3. Stability verification using reachability

Second on the list of contributions is a stability verification theorem for
SDS. In particular, we show and prove that by modeling such CPS using
HA-CLD, then reachability analysis techniques can be used to verify their
(asymptotic) stability. The key property that we exploit is that the discrete
event behavior of a HA-CLD model is not driven by non-clock variables,
because switching between modes is determined by the clock variables. As a
consequence time-driven events are explicitly encoded in the model, which
is not the case for general HA, and thus allowing verification of stability
through reachability. However, our approach cannot be used to prove that a
system is not stable. Specifically, reachability analysis can still conclude that

20 1. Introduction

the system is not stable, even if that is not the case in reality, because the
reachability problem of HA-CLD relies on overapproximations.

1.5.4. Reachability of HA-CLD

The third contribution is a numerical reachability analysis approach for
HA-CLD models. Here we exploit the syntax and properties of the model,
in order to improve the accuracy and accuracy of the reachability algorithm,
while reducing its computational complexity. Specifically, we exploit that
clock variables have simple dynamics, independent of the non-clock variables.
This allows computing the reachable sets more accurately and independently
for a reduced computational cost. An additional property that we exploit is
that guards and invariants are only defined for clock variables, which greatly
simplifies computing their intersection with the reachable set of the clock
variables. By reducing the discretization time-step sufficiently enough, these
intersections can even be ignored, without introducing too much error.

1.5.5. Set aggregation of reachable sets

Our fourth contribution is about a very important problem in reachability
analysis for any HA model. Specifically, we present an aggregation heuristic,
which is used to control the exponential growth of sets that prevent the
termination of the algorithm within a reasonable amount of time. This
growth is largely attributed to the discretization and overapproximation of
the continuous-time reachable set, i.e. the set of trajectories also known as a
flowpipe. In order to reduce the number of sets, they are aggregated into a
smaller number of sets, which often overapproximate the original ones. The
key issue here is that tractable aggregation techniques often exacerbate this
overapproximation to the point that it becomes harmful for the reachability
algorithm. Accurate, or even exact aggregation techniques on the other
hand are often intractable. Thus, in order to compromise between accuracy
and tractability, we utilize decomposed aggregation techniques. We also
present a dynamics aware subspace identification technique that reduces
overapproximation error due to the decomposition.

1.6. Outline

The rest of the thesis is organized as follows:

We begin Chapter 2 with a retrospective on digital control systems, and
discuss standard techniques for their analysis and design. In particular, we
focus on traditional design and analysis approaches for SDS in an attempt to

1.6. Outline 21

familiarize the reader with the associated modeling challenges that we address
in this research. Specifically, we list several important design aspects that
cannot be accurately captured by traditional periodic sampling models, and
as a result lead to poor controller design, a shortcoming that we demonstrate
with a realistic practical example. We then proceed with exposing the reader
to formal model checking as an alternative analysis tool for CPS that we apply
to SDS in this work. Here, we use the opportunity to formally define the
general HA model and its reachability problem, which we investigate further
in Chapters 4-6. We finish the chapter with a section on linear dynamic
system definitions and theory, which we heavily rely on in the other chapters.

Having fleshed out key notions and theory for the design and analysis of
SDS, in Chapter 3 we address the challenge of state estimation in aperiodically
sampling controllers, implemented on a multi-processor platforms with shared
memory. We begin with discussing the influence of a typical task schedule
on the S/A instants, and how deviations from the ideal model that assumes
periodic sampling leads to measurement estimation errors. We then present a
free-running task execution approach, and its benefits over strictly periodic
models. To account for the measurement error due to sampling jitter, we
present a state-estimator based on PFs. Finally, we show in our case study with
a motor control application, that free-running execution of tasks can be very
beneficial for feedback control of SDS, and that our algorithm considerably
reduces the estimation error due to sampling jitter. However, due to the
aperiodic sampling it becomes very difficult to verify the control performance
of free-running controllers with traditional techniques and models.

To address this problem, in Chapter 4 we introduce the HA-CLD model
for the modeling and stability verification of aperiodic SDS. We start with
describing the general setup of SDS and typical modeling frameworks. Next
we formally define the HA-CLD model and show how it can be used to
effectively describe the hybrid dynamic evolution of the system under aperiodic
sampling. Specifically, we show how the interaction between the task schedule
and the control behavior via S/A is captured more naturally, by utilizing
accurate workload characterizations. Next, we formulate and prove the key
theoretical result that allows the stability verification of SDS using reachability
analysis of HA-CLD with state-of-the-art model checkers, such as SpaceEx.
Finally, we use SpaceEx and MATLAB to verify the stability of the SDS
presented in Chapter 3 under different processor workload characterizations.
Here, we also show that state-of-the-art model checkers suffer from increased
overapproximation error when analyzing HA-CLD, and therefore a more
specialized and computationally efficient approach is required that exploits
the properties and syntax of HA-CLD.

22 1. Introduction

Such an approach is presented in Chapter 5, where we introduce a com-
putationally efficient reachability analysis algorithm for HA-CLD. We first
discuss how model checkers that are designed to target generic HA do not
make important simplifications and exploit the syntax of the HA-CLD model
that can lead to more accurate and computationally efficient reachability
analysis. We then discuss these properties and how they are exploited in our
reachability algorithm. In particular, we present reachability techniques based
on subspace projections of sets and separation of variables to compute tighter
flowpipes, set intersections and set aggregations more efficiently for HA-CLD.
Finally, we evaluate our approach on two practical SDSs that include sensor
delay and data packet loss, respectively, and show that it outperforms SpaceEx
with respect to overapproximation error and number of iterations needed to
find a fixed point. We also show that tighter aggregation is required in order
to reduce the overapproximation error, and that aggregation techniques used
in SpaceEx based on template polyhedra, while tractable, are not sufficiently
tight. On the hand, convex hull based aggregation, used in our approach, is
not tractable for highly dimensional systems.

We address this with our novel method for set aggregation in the reacha-
bility analysis of the more general HA-LD model in Chapter 6. We start with
a discussion on the importance of set aggregation in reachability problems
and the tradeoff between computational efficiency and overapproximation
error. We then outline the advantages of decomposed aggregation approaches
using subspace projections of sets, with respect to controlling this trade-
off. In particular, we demonstrate that the selection of subspaces and their
basis has a great influence on the contraction rate of the flowpipes, and
that it is highly dependent on the system dynamics. With this in mind,
we then present a dynamics-aware subspace identification algorithm, using
evolutionary optimization, for decomposed aggregation using convex hulls
and template polyhedra. We finally compare our approach with the popular
Principal Component Analysis (PCA) subspace identification algorithm, and
show that while PCA is tractable, it does not guarantee that the reachable
set contracts faster, or that it contracts at all.

Our conclusions of this research can be found in Chapter 7, in which we
summarize the key contributions and insights of the work presented in this
thesis, and discuss future directions.

2

Background

In this chapter we lay out definitions and theory in the fields of dynamical
systems and control, SDS, model checking and hybrid automata. We begin
the chapter in Section 2.1 with a retrospective on control systems where we
lay out some basic concepts and design practices, and their shortcomings
with respect to SDS. We end the section with a practical example, where we
demonstrate these shortcomings, and highlight the need for more expressive
models and alternative verification strategies. Subsequently, we carry this
discussion over to Section 2.2, where we cover model checking and its role as
an alternative method to assess and verify the dynamical behavior of SDS.
Here, we cover the basics of model checking and reachability analysis, as well
as the challenges involved. We also describe the reachability problem of linear
systems, since it plays a pivotal role in the construction of reachable sets for
hybrid systems. In Section 2.3 we describe the time-driven models and control
structure of closed-loop aperiodic and periodic SDS. We finish the chapter
with Section 2.4 by going beyond the basic description of HA provided in
Section 1.3, and formally defining the syntax of the model, its semantics and
its reachability problem.

2.1. Control systems: a retrospective

In a broad sense, a control system consists of two subsystems: a plant and a
controller. The plant is often an untamed physical process, such as a chemical
reaction, or a virtual process, such as the stock market, and the controller
is an intelligent system which steers the plant in a controlled manner via
actuation. Specifically, the main task of the controller is to force the plant into
a desired behavior, such that it accomplishes certain goals while satisfying

23

24 2. Background

a set of requirements. A behavior of the system is a specific set of all of
the possible state trajectories that it can evolve into from some given initial
conditions. The subset of trajectories that satisfy the control criteria is then
called the desired behavior. In a nutshell, a control system is the combined
effort of the controller and plant to ensure that it reaches a certain region of
states along a desirable trajectory. Additionally, the controller also tries to
keep the state of the plant in the desired region, from which the plant may
naturally start slipping away due to its own unstable dynamics, or due to
the influence of various disturbances from the environment. A well-designed
controller achieves this by constantly providing specific actuation signals to
the plant according to a so-called control law, such that the desired behavior
is achieved. As such, the design of a control system requires a model of both
the plant and controller, so that the system’s behavior can be analyzed to
properly adjust the controller’s parameters and control law, and that the
desired behavior is achieved upon deployment.

2.1.1. A simple example of control

A simple daily-life example of a control system is an oven that heats up a
meal. Here, we can consider the meal as the plant, the oven with its heating
element and dials as the actuator, and the human operator as the controller.
Furthermore, we can take the temperature (and in some cases texture color)
of the meal as its state. In this case, a desired state region is one where the
meal is neither cold, nor too hot, and certainly not burned once it comes out
of the oven. Additional requirements come in the form of personal preferences.
For example if we are preparing a pizza, we may also want a crunchy crust
with a nice brown color. We also want to prepare the meal quickly, which
means that we want the current temperature to follow the shortest state
trajectory that leads to the desired temperature. To achieve this, one needs
to tune the temperature and time dials of the oven, so that when the timer
runs out one is left with a properly cooked meal.

Typically, the choice of these input parameters is done in a heuristic
manner, based on a fixed table of carefully selected times and temperatures
for various ovens provided by the meal’s producer, or on cooking experience.
Such a control mechanism is known as feedforward (open-loop) control, where
the controller in the form of the oven’s operator provides commands to the
oven according to a predefined set of rules, which are based on preliminary
knowledge of the typical expected behaviors of the plant, i.e. the meal. For
example, we know based on empirical evidence that a pizza requires around
10-15 minutes to prepare in an oven preheated to 220◦C.

2.1. Control systems: a retrospective 25

Alternatively, one may also decide to constantly monitor the meal, by
observing its texture color, and in response adjust the temperature and time
as they see fit, until they deem it ready for consumption. Such type of control
is known as feedback (closed-loop) control, where the controller relies on
measurements of the plant’s states via sensors. In this case the sensors are
our eyes, and we use them to indirectly measure the temperature and judge
“readiness” via the color of the texture.

2.1.2. Feedforward vs. feedback control

The advantages and disadvantages of both control mechanisms highly depend
on the type of plant, its predictability and the severity of reaching an unwanted
state. Taking our simple example into consideration an obvious advantage
of feedforward over feedback control, is that one does not need to constantly
monitor the meal. This saves us time and allows us to do something else while
waiting. It’s also a relatively simple strategy, since we only need to setup the
oven once by looking up a table. In the broader context, feedforward control
is typically less costly and occasionally saves energy. However, a drawback
of this type of control is that it is predicated on a precise fixed model of
the controlled process and its environment, i.e. we know with a great deal
of certainty that our meal will not suddenly escape from the oven, or that
the oven will suddenly malfunction. Such certainty is not always guaranteed
in general, and in these cases feedback control is not only desirable, but
mandatory, because the system can adapt to unpredictable external stimuli
from the environment.

As another example consider a person (the controller) riding a bicycle (the
plant). By itself, a bicycle cannot move or stand straight, unless the cyclist
starts pushing the pedals and steering the handlebars accordingly. At this
point the controller tries to ensure that all of the unstable behaviors of the
bicycle, such as falling or hitting an obstacle, are avoided under the influence
of external phenomena, such as wind and unevenness of the road. The control
is largely handled by our internal motor, balancing and vision systems, which
we constantly employ to monitor the bicycle and the surrounding environment,
and so adjust the balance and velocity accordingly to avoid falling. Failure
to do so, i.e. by closing our eyes or going too slow for a specific time frame,
will almost surely result into an accident. Thus, we need sensory feedback in
order to control such a system.

Unfortunately, feedback systems tend to be sensitive to sudden changes
and introduce instability due to delayed responsiveness of the controller. The
performance is further degraded if the quality and availability of measurements
is low. Going back to the bicycle example, it can happen that the cyclist

26 2. Background

enters in a situation where he rapidly oversteers the handlebars left and right,
resulting in an oscillatory behavior that eventually leads to loss of control. This
situation is usually triggered by the slow responses of the cyclist to obstacles
which are not immediately observed, such as sharp corners, incoming cars,
etc. A similar situation is also observed in digital control systems, because
sensor data is provided in samples taken at specific moments in time, rather
than continuously, and no other information is available in between samples.
This lack of information leads to poor actuation and responsiveness of the
controller, and is best avoided by increasing the sampling frequency. If this
is not an option, e.g. due to limited resources, sensor sampling rate and
power consumption constraints, then this problem can also be addressed by
employing a feedforward, model-predictive control mechanism. Specifically,
an empirical model of the environment and plant can be used to predict their
behavior and fill the gaps of missing information wherever possible. Such is the
case in the bicycle example, when the cyclist usually knows the neighborhood
he traverses through and its traffic activity to prepare for potential collisions
and slow down in time.

In summary, it is best to employ both control mechanisms together if
possible, but in most cases it is sufficient to consider only one type of control.
In this thesis we only consider feedback systems.

2.1.3. Digital control and SDS

In the examples discussed thus far we have considered a type of analog, or
continuous-time control, where the actuation and sensor signals are continuous
functions of time. However, with the rapid development of inexpensive
computer hardware and digital sensors, such as cameras, controller design and
implementation has largely shifted to the domain of computer software. A big
reason for this shift, is that digital implementations of filters and controllers
tend to be cheaper, easier to maintain and robust to parameter changes.
Furthermore, processing of data from complicated sensors such as radars,
cameras, etc., is not feasible with analog components, and requires complex
data processing algorithms.

Such control systems are usually mentioned as digital control systems,
but more recently they have been referred to as Sampled-Data Systems, to
emphasize the cyber-physical interaction between an analog plant and a
digital controller. The key aspect of SDS that differentiates them from analog
ones, is that actuation and measurements are discrete in nature, because a
digital computer can only perform basic arithmetic operations one sample
of the signal at a time. Specifically, measurements from sensors are taken
at discrete moments in time, i.e. samples, where each sample is represented

2.1. Control systems: a retrospective 27

by a finite-length numerical value via quantization. In turn, the sequence
of actuation commands is also computed from the measurements in specific
moments in time, and converted into a piecewise continuous signal that is
fed into the plant. The devices which achieve this conversion are the so-
called A/D and D/A converters, respectively. An A/D converter consist of
an input hold circuit that captures and keeps the value of a continuous signal
constant for a certain time period, so that a digital circuit can encode this
signal into a numerical representation. Similarly in a D/A, a decoding circuit
takes a numerical representation and feeds it to an output hold circuit. It is
interesting to note that while the A/D and D/A converters are considered as
discrete devices, integrated inside the sensors and actuators, their behavior
is subsumed in the analysis models of the system. However, explicit models
of these devices become necessary when one needs to analyze the continuous
and discrete behavior of the control system simultaneously. We elaborate on
this in more detail further in this section.

2.1.4. Problems of digital control

Digital control has many benefits in terms of design flexibility and efficiency,
however the need to convert analog signals to digital and vice versa so that
they can be processed by software introduces many problems, most of which
are directly related to the S/A period.

Aliasing

The first fundamental problem is that of aliasing [FPW+98; Ste94]. In the
context of digital signal processing, aliasing occurs when a high bandwidth
signal is sampled slowly relative to the signal’s high frequency components,
which end up being captured as low-frequency ones. This prevents an exact
reconstruction of the original signal, since the sampling process effectively
destroys information. To prevent aliasing in the case of periodic sampling,
the sampling frequency must be twice the frequency bandwidth of the signal,
so that it can be reconstructed. In the aperiodic sampling case, stricter
conditions may apply [Mar12]. Thus, to avoid aliasing, sensors typically
include analog prefilters that attenuate the higher frequency components,
introduced typically by external noise that corrupts the input signals. However,
these filters introduce phase-lag delay, which limits the response time of the
controller.

28 2. Background

Input-to-output delay

Another side effect introduced by the digitization is input-to-output dead-
time (hold) delay, and is particularly problematic in feedback control systems,
because it compromises their stability and degrades performance. Specifically,
the hold delay is the time required by the controller to respond to a newly
acquired measurement of the plant’s state. While such a delay also exists in
analog controllers due to phase lag, it is drastically worsened in SDS, because
in addition to phase-lag, the delay also depends on the sampling period,
computation and processing time, and the communication delay of the data
from/to the sensors and actuators. Additionally, the output actuation signal
is typically piecewise constant, so a change in actuation occurs only after
certain dead-time interval. In essence, this means that a larger delay gives
more time to the state to drift away from the nominal trajectory before the
controller can provide a new actuation to steer it back. The result is that the
control system’s phase margin is reduced [FPW+98], and hence it becomes
more susceptible to disturbances and instabilities.

Sampling jitter

A third type of anomaly observed in SDS is S/A jitter, which occurs when the
time-difference between samples fluctuates due to various nondeterministic
sources. One such common source is the varying processing time of the
controller. Typically, a controller is implemented on a multi-processor system
with shared memory, so that heavy data processing algorithms can be handled
efficiently. However, sharing of data between processor cores through the
memory and caches typically results in varying execution times of the tasks.
Another source is varying communication delay, which is typically caused
when the distance between the sensors and the controller changes in time,
such as in truck platooning applications [MKA08; MA10]. A common strategy
to avoid sampling jitter is to enforce periodic sampling, with a sampling
period selected as large as possible, so that the tasks are allow more time to
finish their execution. However, as discussed earlier, a large period results in
degraded performance, due to the side effects described above. In such cases
more powerful and expensive hardware is required.

Alternatively, free-running (self-timed) control as presented in Chapter 3
can also be considered. In a free-running setting the sensor data is accessed
aperiodically upon completion of a control task cycle, and the controller’s
output is immediately supplied to the actuators. In this sampling scheme
jitter is removed, because the notion of a sampling period does not exist,
i.e. the sampling instants are uncertain and do not adhere to a prescribed

2.1. Control systems: a retrospective 29

pattern. However, the consequence is that one cannot guarantee that the
control performance is improved, as demonstrated at the end of this section.
Fortunately, the mean sampling period of many practical SDSs that use free-
running control is typically much smaller than the sampling period required in
case of periodic sampling, and large sampling intervals are rare (see Chapter 4).
In these cases the control performance can greatly improve, compared to the
periodic case. The core issue that remains is that the system becomes much
harder to analyze, and designing a controller robust to sampling uncertainty
is difficult, as we will review later in this section.

Data loss

The fourth and final type of problem on this nonexhaustive list that is typically
experienced by an SDS is S/A data loss. This problem is particularly prevalent
in distributed control systems, where the communication between sensors,
actuators and computing nodes is established wirelessly. What happens is
that a data packet that holds actuation and/or sensor data is dropped due
to poor reception or signal interference, which can typically result in very
large input-to-output delays and severely compromise the performance of
the controller. Another example is misclassification and misdetection from a
Neural-Network (NN) algorithm.

In most of these cases, there is little that can be done to improve the
situation, however it is still possible to design controllers which are robust to
data loss. This is usually done by incorporating model-predictive feedforward
strategies that try to anticipate a packet drop, and prepare an appropriate
response. Such controllers require discrete-event and/or stochastic models
that are usually very difficult to analyze.

2.1.5. Modeling methods for SDS

The problems discussed previously present many challenges for the accurate
analysis and design of digital controllers. Specifically, it is difficult to ap-
ply traditional methods on isolated models of SDS, because they exhibit a
hybrid dynamical behavior under aperiodic sampling [Dul12]. Stability in
particular is very difficult to verify, unless restrictions are imposed to derive
periodic approximations with additive or multiplicative noise inputs, and
state augmentation. In that regard, there are two generally accepted isolated
modeling approaches, namely the emulation and direct methods [FPW+98;
Dul12], that are applied to SDS to derive analytic models. These isolated
approaches rely on fixing the time domain, and deriving dynamic system
model approximations in the chosen domain.

30 2. Background

Emulation method

In the emulation method the designer works with continuous-time models, by
choosing an analog controller structure and tuning its parameters using the
plant model, which is usually directly specified via differential equations. The
design is then typically carried out in the frequency domain via Fourier or
Laplace transforms, or using time-domain state-space models. Subsequently,
the controller is discretized by selecting an appropriate sampling period, such
that its behavior can be matched as close as possible. The first advantage of
this approach is that the designer works exclusively in continuous-time, where
the plant is more naturally modeled without being discretized, which results
in no approximation error. The second advantage is that dead-time delay
can be captured exactly in the model, without the need of quantization by
the sampling period. The disadvantage however is that the controller needs
to be converted into a digital representation, so that it can be implemented
in software. This conversion yields an approximation which heavily depends
on the sampling period and the involved delays, and as a result its control
performance can deteriorate compared to its continuous-time counter-part.
The second disadvantage is that the controller structures allowed are quite
limited, and complex processing operations cannot be included in the model.
Furthermore, discrete-event phenomena, such as the discontinuous actions of
the A/D and D/A or data loss are not captured using these models, and are
usually ignored. Also, digital sensors such as cameras cannot be modeled with
continuous models, and are approximated instead. These shortcomings can
introduce large mismatch between the models and the real system, leading
to a poorly performing and unsafe controller. A final subtle disadvantage,
is that the selection of the sampling period is done after the design phase,
which means that mapping the software on a hardware platform may not be
feasible without violating timing constraints or introducing S/A jitter.

Aspect Emulation method Direct method

Fixed Delay

Varying Delay

S/A data loss

S/A Jitter

Switching behavior

Data interaction

Strong
Neutral
Weak

Table 2.1: Comparison of design and analysis approaches for SDS with respect
to modeling strength of various digital aspects.

2.1. Control systems: a retrospective 31

Direct method

The direct method works exclusively with discrete-time models, where first
a discrete model of the plant is derived based on a predetermined sampling
period, and then the controller structure and parameters are tuned in the
digital domain. Here, similarly to the emulation method, one may choose
to use frequency domain models via the z-transform, or state-space models.
Additionally, these discrete models can capture more complex processing
structures and algorithms compared to analog models. As such, the con-
troller’s components can be seamlessly translated into software code, and
their temporal behavior can be also analyzed separately to determine an
appropriate sampling period. Thus, the key advantage of the direct method is
that the controller is exactly represented and designed directly in the digital
domain, which greatly reduces the controller modeling errors. Unfortunately,
the discrete models are not very suitable for capturing delays and S/A jit-
ter. The best way to do so is to approximate these as fixed delay blocks
via temporal quantization. Surprisingly, in this case the effect of delays is
somewhat easier to analyze than continuous-time models, since the delay
blocks are naturally integrated within the discrete time model in the form
of extra variables. However, this approach falls short when varying delays
and jitter are considered, in which case one must know an upper bound of
the delay. Alternately, one may fall back to continuous stochastic models
of the delay, which are incompatible with the digital modeling framework.
Capturing discrete-event phenomena such as data loss, or switching between
different processing modes is also difficult.

Comparison

The advantages and disadvantages of the emulation and direct approaches
in terms of modeling computational aspects are summarized in Table 2.1.
As seen from the table, the emulation and direct design approaches both
lack sufficient modeling power when dealing with variance and irregularity
in the S/A instants due to the unpredictable phenomena in the form jitter,
data loss and varying delay. In many applications with nonstrict safety and
performance requirements, these aspects are often ignored. However, as we
have discussed in Section 1.2, the introduced model mismatch with the real
system can lead to poor design choices and faulty systems. This modeling gap
is increasingly being filled by emerging hybrid system frameworks, but so far
their applicability is limited due to the introduced computational complexity
of Computer Aided Design (CAD) algorithms, and their limited analytical
properties.

32 2. Background

0 5 10 15 20 25

-4

-2

0

2

4

6

8

10

Figure 2.1: Discrete trajectories of the motor’s angular velocity for different
S/A time patterns.

2.1.6. Workload switching example

Here we highlight the pitfalls of traditional design and analysis methods with
an example of an SDS with workload dependent, varying processing delay
and sampling jitter. We assume that the plant is controlled by a proportional
gain feedback controller. The controller is implemented as a periodically
executed task on a multiprocessor platform with shared caches and memory.
Furthermore, it is assumed that other heavy duty processing jobs are carried
out by the system, such as computer vision algorithms. These algorithms
generally use a lot of data that needs to be transferred between processors and
the sensors via the shared memory, which results in varying execution time
overhead. Additionally, the execution time depends on the data itself, which
stretches the difference between the lower and upper bounds on execution
time even further. Another commonly observed behavior is that the processor
workload switches between modes, typically a low and a high processing
load [Moh+20]. We assume that this occurs in our example.

To demonstrate how these temporal effects influence the stability of the
control system and the inadequacy of models under the assumption of periodic
S/A, we perform three types of simulation based on the S/A time sequence
(tk)

∞
k=0:

1. Periodic S/A, i.e. for all controller iterations k ∈ N0, tk+1 − tk = T ,

2.2. Model checking of CPS 33

where T is the sampling period and is chosen to be either L̂ or Ľ, and
L̂, Ľ ∈ R+ are the estimated upper and lower execution time bounds,
respectively.

2. Aperiodic S/A, with tk+1 − tk =

{
Ľ if k is odd

L̂ otherwise.

3. Stochastic S/A, with tk+1−tk ∼ U(Ľ, L̂), i.e. we sample time differences
uniformly from the interval [Ľ, L̂].

The proportional gain parameter K is selected heuristically using the direct

design method with a sampling period of T = L̂+Ľ
2 . The motor is initially at

rest and we plot the step response of the closed loop control system for each
case described above. A plot of the trajectories of the angular velocity θ are
shown in Figure 2.1 for the first 30 executions of the controller. As observed
from the figure the periodic trajectories are stable, which is the expected
result from traditional analysis and design. In fact, the system is stable for
any sampling period chosen from the interval [Ľ, L̂].

Nevertheless, the system immediately destabilizes as soon as the time
differences begin alternating, which corresponds to the case when the processor
workload switches between low and high mode. Such behaviors cannot be
accurately captured by traditional models. Additionally, stability verification
approaches for such a switching system based on CQLFs [MA10; ZZ12] are
not always applicable, since such a quadratic function may not exist, even if
the system is actually stable. Other Lyapunov functions on the other hand
can be hard to compute [JR97; AJ14]

The stochastic simulation on the other hand serves to show that modeling
varying processing delay as additive or multiplicative noise is simply not
sufficient. Furthermore, it shows that identifying errors using simulation is
also not feasible to cover all the possible situations where the system may
behave improperly.

2.2. Model checking of CPS

In the previous section we informally covered modern design approaches of
control systems and highlighted their limitations with respect to analysis of
SDS and verification of their stability. In this section we informally cover
an alternative approach based on formal methods, and specifically model
checking, a verification technique pioneered by Clarke et al [CE81]. We start
first by covering model checking for purely digital systems, for which the
approach was originally applied. We then continue with defining the HA
model and introducing its reachability algorithm.

34 2. Background

Formal methods encompass mathematical modeling frameworks, specifica-
tion languages and verification tools for systems, which are used in unison
to systematically prove a system’s correctness. They are divided into three
major categories of modeling, specification and verification. Formal verifica-
tion, or Computer Aided Verification (CAV), is the process of algorithmically
certifying whether a formal mathematical model of the system satisfies a
collection of properties. There are several popular verification approaches,
with the most prominent being model checking [Alu15; LS16; Mil92; McM93].
It emerged as an automated approach for the verification of digital hardware
systems, and was later adopted for the verification of software systems, and in
particular distributed systems. The approach has also recently been adopted
for property verification of control systems and hybrid systems.

The key motivation for the development of model checkers is that stan-
dard verification approaches, such as simulations and testing, are usually
not sufficient to cover all individual cases exhaustively. In contrast, model
checking provides a mathematically rigorous and efficient way of specifying
and certifying correctness, by encompassing all possible behaviors of the sys-
tem. Additionally, model checking is in many cases the only option available
whenever the system models are too complex to analyze analytically, as is the
case for many SDSs. So far, model checkers have been successfully applied for
the verification of complex network protocols, cache coherency mechanisms,
operating systems and digital controllers.

2.2.1. Models

Formal models are typically graphical algebraic and logical structures, which
describe the interaction of the system with its environment through inputs,
outputs, internal state variables, and transitions. In model checking of software
and digital hardware, i.e. discrete event systems, the most commonly used
models are the so-called Labeled Transition Systems (LTSs). An LTS is a
directed graph that operates over a set of atomic propositions. Each node
represents a discrete state, and a labeling function assigns a subset from the set
of logical atomic propositions that hold at each state. The switches between
states are specified using transitions, which themselves may be labeled with a
logical formula from the set of atomic propositions.

An LTS can have an infinite number of transitions and states, but if
not, then they are called finite LTS, or more commonly Finite State Ma-
chines (FSMs). An FSM is a very powerful and useful model, because it allows
exhaustive formal analysis since the state space is discrete and finite. Never-
theless, infinite LTS such as TA can be still be analyzed by state-exploration

2.2. Model checking of CPS 35

techniques via transformations to FSM models using bisimulation [DS+09]
relations.

2.2.2. Properties

A formal property is a logical proposition which encodes an informal require-
ment that the system needs to satisfy in the course of its operation. In model
checking properties are specified using temporal logics, such as Linear Tempo-
ral Logic (LTL), Computation Tree Logic (CTL), and CTL* for discrete-event
systems, and the more recently introduced Signal Temporal Logic (STL) for
time-driven and hybrid systems. Properties are generally divided into two
categories: safety and liveness.

Informally, a safety property represents a state or set of states that the
system must never reach, or “nothing bad happens” to the system during
real-time operation. For example, a safety property of a self-driving car is
that it always stays on the road lane and keeps a distance from other vehicles.

A liveness property represents a state or set of states which the system
must reach eventually, or “something good will happen”. One such example
is the stability of a control system, which informally states that eventually
all trajectories converge to a desired stability region and stay there when
perturbed by the environment. Liveness properties are in general more difficult
to verify, because they require an infinite system execution trace to find a
counter example, i.e. prove that the property does not hold.

2.2.3. Reachability analysis

The core mechanism for the verification of transition systems using model
checking is reachability analysis. Reachability analysis is the process of
determining the set of reachable states that the system can exhibit, and is
also commonly referred to as a reachability problem [Alu15; LS16], although
sometimes reachability analysis is referring to the outcome of solving the
reachability problem. A typical reachability algorithm is implemented as a
breadth first search, which starts from a set of initial states, evaluates the
transition relations that lead to further states, and terminates once the search
space is exhausted. In the latter case, we say that the model checker has
found a fixed point. There exist two types of reachability problems: forward
and backward reachability. In forward reachability, one starts with the initial
state configuration of the system, and then evaluates the forward transition
relations until the fixed point is found, or a property is violated. I backward
reachability, one starts from a final state (presumably an unwanted state),

36 2. Background

and the backward transition relations are evaluated until fixed point or the
initial states are reached, in which case the property being checked is violated.

2.2.4. State-space explosion

A problem with reachability analysis, is that the number of states in the
search space grows exponentially, which usually makes the model checking
process infeasible due to computational constraints. The problem is referred
to as the state-space explosion in literature. To cope with it, a number of
strategies are employed, such as symbolic reachability, abstraction/refinement
on the model level, and aggregation, described below:

Symbolic reachability

In symbolic reachability, the algorithm traverses sets of states instead of
enumerating individual states. Sets can then be represented by efficient logical
structures, such as BDDs [McM93], in case of LTS models. For hybrid system
models, such as HAs, dense sets of uncountable states are represented using
geometric objects, such as zonotopes [Küh98; Gir05; GLGM06], polyhedra,
support functions [LGG10], ellipsoids [KV07], generalized stars [BD17], etc.
These are also symbolic representations, which often require little storage and
can be manipulated with set operations. However, it is often the case that these
representations overapproximate the original set by bloating to ensure that it
is completely covered by the new representation. Such overapproximations
introduce an error which slows down the reachability algorithm, or even
prevents its termination. The problem is known as the wrapping effect.
Although there exist techniques to eliminate or reduce this effect for certain
models, it still remains a major obstacle in the efficient reachability analysis of
hybrid systems. An alternative symbolic approach is to store sets as symbolic
expressions, as well as the operations performed on the sets. The approach is
sometimes referred to as lazy reachability analysis [JL16; JBS07; Bog+19a]
and unlike the concrete approach discussed above, the parameters of the set
representations are not computed. We continue this discussion in more detail
in Chapter 5.

Abstraction/Refinement

Abstraction on the model level is a technique introduced by Clarke [CGL94]
that simplifies a given model by eliminating variables, states and transitions
which do not affect the property that is being verified. Often an abstraction is
courser, but sufficient for proving the property so that it holds for the original

2.3. Sampled-Data feedback control of LTI systems 37

model. If this is not the case, then the abstraction is refined by reintroducing
variables until the abstraction satisfies or dissatisfies the required property.
A popular technique that automates this process, introduced by Clarke et
al [Cla+00], is Counterexample-Guided Abstraction Refinement (CEGAR),
where in case the property being violated by the abstraction produces a
counter example execution trace, that is then fed into the original model
to check if it is spurious. If the counter example is spurious, that is the
property is not violated by the original model, then the abstraction is refined.
The process is repeated until a non-spurious counter example is found, or a
refinement limit is reached.

Aggregation

Aggregation [DB19] is a state set reduction technique that is applied in
the reachability analysis of hybrid systems, an in particular HA. Here, the
reachable set is computed incrementally in each iteration, by constructing a
sequence of sets whose union overapproximates the set of trajectories of the
continuous dynamics in a given iteration, which is known as a flowpipe. This
is done because the trajectories are topologically dense in time, and can only
be computed in discrete time steps. Subsequently, the overapproximation
becomes tighter by decreasing the time step, but the number of sets also
increases. The consequence is that at each iteration the algorithm constructs
a new flowpipe overapproximation from a number of initial sets that increases
exponentially over the course of the algorithm, and prevents its execution.

To cope with this, the initial sets of each iteration are overapproximated
with a single new set, which is usually derived using data analysis and
optimization techniques, such as PCA [KSA17; CÁ11]. The resulting new
overapproximation, which we call an aggregate, is a set represented by a
geometric object of reduced computational complexity, i.e. it requires a lower
amount of storage and in certain cases allows tractable algebraic manipulation.
However, there is a tradeoff between the overapproximation error and the
complexity, that is very hard to control. We elaborate more on this tradeoff
in Chapter 6.

2.3. Sampled-Data feedback control of LTI systems

In this section we present a basic overview of the digital feedback control
structure in SDS, shown in Figure 1.2, where the plant is modeled by an
LTI system. Concretely, we present the so-called state-space, or Input-State-
Output (I/S/O) models, which are standard models that facilitate the design
and analysis of closed-loop digital controllers. We consider the direct method,

38 2. Background

where first an equivalent discrete-time model of the plant is derived from its
continuous-time counter part, and the controller is designed in the discrete-
time domain. For more detailed models, design approaches, and theory, we
refer the reader to [FPW+98; Ste94; ÅW13; SP07].

2.3.1. The I/S/O representation

We start by considering the continuous time model from Definition A.3.2
and extend it to the so-called I/S/O representation. This representation is
of particular importance, because it represents a plant whose state is not
known directly by other systems, i.e. it is hidden, and is instead measured
through sensors. Specifically, besides the state evolution of the plant, the
I/S/O representation also describes the signal pathway from its state and
input to the sensor outputs.

An example of a plant with a hidden state is a moving target, tracked
by a computer vision system. The system does not know the exact state,
which may be the position of the target relative to its environment, but
measures it indirectly with the camera. Concretely, each camera frame
contains information of the state in the form of pixels that represent the
intensity of light reflected from the target and environment. Of course, in this
situation there can be many other variables that constitute state of the target,
such as its velocity, pose, scale, etc., which are also indirectly measured by
the camera.

Although the relationship between the output, the state and the input is
most generally encoded by a nonlinear function, as in the example above, we
restrict ourselves to the linear I/S/O representation of the plant due to its
strong analytical properties, formulated as follows:

ẋ = Ax+Bu,
y = Cx+Du,

(2.1)

where besides equation (A.2), an additional equation is included for the output
vector y(t) ∈ Rp of the plant. Here, the matrices C ∈ Rp×n and D ∈ Rp×m
describe the relationship between the output, and the state and input of the
plant.

2.3.2. Plant discretization

With the continuous-time I/S/O representation laid out we now derive its
discrete-time counterpart, which is required for controller design using the
direct method. This process is known as discretization. Recall from Sec-
tion 1.2 that a SDS actuates the plant through its input, and acquires sensor

2.3. Sampled-Data feedback control of LTI systems 39

measurements (samples) through its output at a sequence of discrete time
instances (tk). By setting

xk , x(tk), uk , u(tk), yk , y(tk),

one can derive the discrete time I/S/O representation:

xk+1 = Φ(tk+1 − tk, xk)
yk = Cxk +Duk,

(2.2)

where Φ is the flow from equation (A.3). To complete this representation
one needs to evaluate the integral, which requires some prior assumptions of
the input signal u for the time interval [tk, tk+1). Most commonly, the input
signal u is piecewise constant, i.e. u(t) = uk for all t ∈ [tk, tk+1) and all k,
which is a reasonable assumption since the D/A converter from the actuators
behaves approximately as a Zero-Order Hold (ZOH). On the other hand,
converters that behave as higher order holds, such as First-Oder Hold (FOH),
are rare in practice [WÅÅ02; ÅW13; FPW+98]. With this assumption in
place, the discretized plant model is formulated as:

xk+1 = Φkxk + Γkuk,
yk = Cxk +Duk,

(2.3)

where Φk = eA(tk+1−tk), and Γk =
∫ tk+1

tk
eA(tk+1−tk−τ)Bdτ . Assuming that A

is nonsingular, then Γk = A−1(Φk − In)B. Otherwise, both matrices can be
derived from: (

Φk Γk
0 Im

)
= e

A B
0 0

(tk+1−tk)

, (2.4)

as described in [DeC89]. Notice that although the plant is an LTI model, its
discretization is time-variant with respect to the discrete-time k.

2.3.3. Closing the loop

Similarly to the plant, an I/S/O representation can also be formulated for
the controller:

zk+1 = Gxk +Kyk
uk = Fxk + Puk,

(2.5)

where zk ∈ Rq is the state of the controller, while yk and uk are its input and
output vectors, respectively. The controller is interfaced via the A/D and D/A
converters to the plant in a feedback fashion, as shown in Figure 1.2. The

40 2. Background

matrices G ∈ Rq×q,K ∈ Rq×p, F ∈ Rm×q and P ∈ Rm×p describe the control
law, and the matrix operations are implemented as a set of instructions on a
computer and executed iteratively for each received measurement1. In fact,
this representation is sufficient to describe many controller structures, such as
Proportional Integral Derivative (PID), Linear Quadratic Regulator (LQR),
Linear Quadratic Gaussian (LQG), H∞ and others [Ste94; FPW+98; ÅW13;
SP07].

2.3.4. Triggering strategies for the A/D and D/A converters

Controller

Plant

Clock D/AA/D

u(t)y(t)

(yk) (uk)

(a)

Controller

Plant

D/AA/D

u(t)y(t)

(yk) (uk)

(b)

Figure 2.2: Block diagrams of a SDS with time-triggered (2.2a) and event-
triggered (2.2b) control.

The models presented earlier describe a SDS in a very general setting,
where the sequence of S/A instances (tk) is assumed arbitrary, but strictly
increasing. Thus, this representation is not practical for statically analyzing
and tuning the closed-loop system, since the discrete-time behavior of the
plant is no-longer deterministic. In practice, it is desirable and necessary to
impose a certain regularity on (tk) by driving the A/D and D/A converters in
a particular systematic way, so that the controller can be designed correctly.

The most common strategy is to enforce periodic S/A, as discussed earlier.
Here, the A/D and D/A converters are driven (triggered) by a common clock
with a period T , see Figure 2.2a. The clock is usually realized with a timer in
the software implementation of the controller, which also starts new executions
of the control tasks. Enforcing periodic S/A ensures that the S/A interval
tk+1− tk = T is constant for all k, which simplifies the model in equation (2.3)
because the matrices Φk and Γk are not dependent on the S/A intervals. Thus,
the discrete-time model can be used directly to design a static controller before

1Note that while it is assumed in these ideal models that it takes zero time to compute
the actuation uk and send it to the actuators, in reality it takes a δk > 0 time, and the
reconstructed output signal from the D/A changes from uk−1 to uk at tk + δk.

2.4. The HA model and its semantics 41

deployment. Such controllers are also computationally cheaper compared to
adaptive controllers, such as Model-Predictive Control (MPC).

Unfortunately, periodic S/A cannot always be guaranteed when the varia-
tion is large, as discussed in Section 2.1. Additionally, the desire to maximize
resource utilization and to minimize power consumption in embedded devices,
while keeping the control performance high, has prompted the development of
event-driven S/A strategies, such as in [Sah+16; Cer+02; Moh+20; Hor+19;
VSEH:1; AKGD17; Lem+07]. In such strategies, the S/A instances are dy-
namically determined, and the A/D and D/A converters are aperiodically
driven by the controller, as shown in Figure 2.2b. Because the S/A is now
aperiodic, analysis must be performed using the model from equation (2.3), a
significantly more difficult problem. For this reason, if a temporal characteri-
zation of the S/A intervals can be derived, then usually the time-dependent
model is approximated by an LTI model with state augmentation [Lem+07;
FP18; ZBS04; Yan+13; Cho+09], or by a switched system model [Kum+12;
Cer+02; MA10; FP18; Moh+20]. We note that the latter is still computa-
tionally hard to analyze, as discussed in Section 1.3. Our modeling approach
of aperiodic systems using HA-CLD is described in Chapter 4.

2.4. The HA model and its semantics

In this section we formally define the HA model and its semantics, and
describe its reachability algorithm.

2.4.1. Definition

We adopt a similar definition of a hybrid automaton from [SK03], and describe
its execution from a dynamical system perspective:

Definition 2.4.1 (Syntax of hybrid automata)

A hybrid automaton is the tuple H = (Q, q0,X , X0, E, I,G, f, R),
where:

1. Q = {q1 . . . ql} is the discrete state space with state variable q,
which we call the mode, and q0 is the initial mode;

2. X ⊆ Rn is the continuous-time state space with state variable
x ∈ X , and X0 ⊆ X is an initial state set;

3. E ⊆ Q×Q is a set of discrete transitions;
4. I : Q → 2X assigns an invariant set for each mode q ∈ Q;
5. Similarly, G : E → 2X assigns a guard set for each transition

42 2. Background

e ∈ E;
6. f : Q×X → X , is a vector field assigned to each mode, such

that if x ∈ Iq for the active mode q ∈ Q, then ẋ = fq(x);
7. R : E ×X → X , is reset map (or jump transformation) for an

enabled transition e = (q, q′), such that if x ∈ Ge, then the new
state is x′ = Re(x) if the transition occurs.

Sometimes we will use the notation q → q′ instead of (q, q′) to denote a
transition. A sequence of transitions ((q, q′), (q′, q′′), . . . , (q(N−1), Q(N))) will
sometimes be denoted as q′ → q′′ → · · · → q(N).

2.4.2. Discrete execution of a HA, and its continuous-time state trajec-
tory

The behavior of an automaton H can be characterized by the following rules:

1. The automaton starts execution with an active mode q(0) = q0 and
x(0) ∈ X0.

2. The continuous state x(t) evolves according to ẋ = fq(x) for an active
mode q. Evolution is only allowed at a time t if there exists a τ > 0 such
that x(t+ τ) ∈ Iq. If no such evolution is allowed, then the automaton
must immediately transition to a new mode. If there is no available
transition, then the automaton is said to be blocking.

3. A transition e = (q, q′) occurs at a time t, if it is enabled so that
x(t) ∈ Ge, i.e. its guard is satisfied. Then the automaton instantly
switches to a new mode q′, and a new value is assigned to the continuous
state at t′ ← t, such that x(t′) = Re(x(t)).

4. Steps 2 and 3 repeat until no time-driven evolution is allowed.

This process can be formalized by defining the discrete execution of the
automaton, and its continuous state trajectory separately.

Definition 2.4.2 (Discrete execution of HA)

A discrete execution (or just execution) of an automaton H is a

sequence of modes (qk)
k̂
k=0, for which we associate a monotone in-

creasing time sequence (tk) ∈ T, where for each k > 1, tk corresponds
to a transition ek = (qk−1, qk) ∈ E, and t0 = 0. If (qk) has finite
length then we say that H is blocking. Otherwise, it is nonblock-
ing. We say that an automaton is Zeno, if it is nonblocking and

2.4. The HA model and its semantics 43

tk+1 − tk → 0 as k →∞.

An automaton is blocking whenever there is no possible transition to
another mode, or no time-driven evolution is allowed. Two scenarios are then
possible:

1. The continuous state trajectory x evolves indefinitely in time in the
last mode of the sequence, q̂, in which case tk̂ → ∞. More precisely,
x(t) ∈ Iq̂ for all t ∈ [tk̂−1,∞).

2. x evolves until the invariant Iq̂ is violated for some t̂, and time does not
progress to t̂ or further, i.e. we take tk̂ → t̂ <∞. Specifically, x(t) ∈ Iq̂
for all t ∈ [tk̂−1, t̂).

Definition 2.4.3 (Continuous-time trajectory of HA)

Let H be a HA with execution (qk), and Φ : T×Q×X → X a flow,
such that it satisfies the initial value problem Φ̇q,x = fq(Φq,x) for an
initial x ∈ X , where Φq,x(t) , Φ(t, q, x). Then the continuous-time
state trajectory of H is the discontinuous function x : T→ X , such
that for all k ∈ N:

x(t) =


x0 if t = t0,

Φq,xk−1
(t− tk−1) if t ∈ (tk−1, tk),

Rek(x′k) if t = tk,

where xk , x(tk) and x′k = lim
t→t−k

x(t).

As an example, the bouncing ball model in Section 1.3 is a nonblocking
hybrid automaton. In this case we have a single mode Q = {q , flying}. The
continuous state space is X = R2 with state vector x , (d, v) and initial set
X0 = {(d0, 0)}, while the vector field f(x) = Ax + b is an affine map, with

A =

(
0 1
0 0

)
and b =

(
0
−g

)
. There is a single transition E = {e , (q0, q0)}

from the mode to itself, and the reset map, Re(x) = Gx, is linear with

G =

(
0 0
0 −K

)
. The flow function is Φx(t) = Ã(t)x + b̃(t), with Ã(t) =(

1 t
0 1

)
, and b̃(t) = −g

(
t2/2
t

)
. Now, the transition e is enabled whenever

44 2. Background

x(t) ∈ Ge ⇐⇒ d(t) ≤ 0. On the other hand, the state is allowed to evolve
as long as x(t) ∈ Iq ⇐⇒ d(t) ≥ 0. Thus, the transition occurs whenever
d(t) = 0 for some t. Therefore, assuming that dk , d(tk) = 0 for all k ∈ N,
then we can derive a closed form expression for tk and xk.

The derivation is as follows: let v(t0) = 0 and d(t0) = d0. Then for any
k ∈ N:

x′k+1 =

(
d′k+1

v′k+1

)
= Ã(tk+1)

(
dk
vk

)
+ b̃(tk+1) =

(
dk + tk+1vk − gt2k+1/2

vk − gtk+1

)
.

But since dk = 0 for all k ≥ 1, we can solve for tk+1 using

dk+1 = tk+1vk − gt2k+1/2 = 0 =⇒ vk − gtk+1/2 = 0 =⇒ tk+1 =
2vk
g
.

For t1 we have that

d1 = d0 − gt21/2 = 0 =⇒ t1 =

√
2d0

g
.

From this we have v1 = −Kv′1 = −K(−gt1) = Kg
√

2d0
g = K

√
2d0g. Now

observe that

vk+1 = −K(vk − gtk+1) = K(g
2vk
g
− vk) = Kvk = Kkv1 = Kk+1

√
2d0g,

for k ∈ N.

Thus, we have xk =

(
0

Kk
√

2d0g

)
and the time differences tk+1 − tk =

2Kk−1(K − 1)
√

2d0
g → 0 as k →∞ for K ∈ [0, 1), so H is Zeno.

2.4.3. Reachability of HA

Let H be a HA as defined in Definition 2.4.1, then a discrete transition relation
from a state (q, x) ∈ Q× X is defined as

Jump(q, x) = {(q′, Re(x)) | ∃e = (q, q′) ∈ E : x ∈ Ge}. (2.6)

A continuous transition relation is similarly defined as:

Flow(q, x) = {(q,Φq,x(τ)) | ∃τ > 0 : Φq,x(τ) ∈ Iq}, (2.7)

where Φ is the flow function from Definition 2.4.3. Now define the successor

2.4. The HA model and its semantics 45

Algorithm 1 Reachability of hybrid automata

1: function (Q,X)← Reachability(H, T, k̂)
2: Q0 ← {q0} . Initialization
3: Xq0

0 ← X0

4: ∀q ∈ Q \ {q0} : Xq
0 ← ∅

5: for k = 1, . . . , k̂ do
6: for q ∈ Qk−1 do . Flowpipe computation
7: Ψq

k ← Φq(X
q
k−1, [0, T]) ∩ Iq

8: end for
9: Qk ← Qk−1

10: ∀q ∈ Q : Xq
k ← ∅

11: for e = (q, q′) ∈ E, q ∈ Qk−1 do . Transitions

12: Xq′

k ← Xq′

k ∪Re(Ψ
q
k ∩ Ge)

13: Qk ← Qk ∪ {q′}.
14: end for
15: for q ∈ Qk do . Aggregation
16: Xq

k ← aggregate(Xq
k)

17: end for
18: Xk ←

⋃
q∈Qk X

q
k

19: if (Qk, Xk) = (Qk−1, Xk−1) then . Fixed point
20: return (Qk, Xk).
21: end if
22: end for
23: return (Qk̂, Xk̂).
24: end function

sets:

S0 = {q0} ×X0,
Sk+1 = Jump(Flow(Sk)),

(2.8)

then

Rk =
k⋃
j=0

Sj = Sk ∪Rk−1 (2.9)

is the set of reachable states after k discrete transitions.

A standard algorithm that computes Rk can be summarized with the
following steps:

1. Compute an invariant-satisfying flowpipe from the current initial set for
each mode.

46 2. Background

2. For each mode and each outgoing transition, intersect the flowpipe with
a guard, and apply the jump transformation to the intersection. The
result is used as initial set in the next iteration per destination mode.

3. For each mode, apply aggregation to its union of new initial sets.
4. Repeat steps 1-4 until a fixed point condition is satisfied.

A more detailed description of the algorithm is provided in Algorithm 1. We
note that in line 7 of the algorithm we use the short hand notation:

Φq(X
q
k−1, [0, T]) = {Φq,x(t) | x ∈ Xq

k−1 and t ∈ [0, T]}.

While this algorithm in principle computes the exact reachable set, in
practice this is only possible for certain types of HA. Taking HA-LD as
an example, where vector fields fq and reset maps Re are affine, and the
invariants Iq and guard Ge are polyhedra, its reachable set is almost certainly
overapproximated. However, if fq is further restricted to constant vector
fields, in which case one gets the tractable Linear Hybrid Automaton (LHA)
class [Hen+95; Lyg04]. Setting fq = 1, restricting the guards and invariants to
integer-valued interval hulls, and restricting the resets to constant mappings
yields the tractable TA model. We take this discussion a step further in
Chapter 5, where we present a reachability algorithm for our newly introduced
HA-CLD model

3

State Estimation in Self-Timed
Control of SDS

Abstract

To meet the desired control performance and low cost requirements, modern
control and state estimation algorithms tend to be implemented on multipro-
cessor systems with shared memory and caches. However, Sampling and
Actuation (S/A) is typically time-triggered, and inter-task interference and
jitter tend to significantly increase the upper bound on the execution times,
prompting the selection of a large sampling period that degrades the estimation
and control performance.

In this chapter, we present a self-timed approach in which S/A is triggered
immediately upon the completion of a controller iteration, as opposed to
according to a periodic triggering pattern. The key benefit is that subsequent
S/A intervals are shorter, and the control performance is improved on average.
Additionally, the approach utilizes a Particle Filter (PF) based state estimator
to reduce the measurement error due to the temporal uncertainty introduced
by the varying task execution times. The other benefit of this estimator is that
it enables parallel execution of the prediction step with the measurement and
controller tasks, resulting in even shorter S/A intervals.

State estimators (observers), such as the Kalman Filter (KF) and the PF,
are iterative algorithms used in SDS (see Figure 1.2), to estimate the state of
the plant from (partial) noisy measurements. Specifically, they are used to
infer hidden states that are not directly measured by the sensors. Often, they
are also used for data fusion from multiple sensors, such as gyroscopes and

This chapter is based on the published and revised work in [VSEH:1].

47

48 3. State Estimation in Self-Timed Control of SDS

accelerometers, and for object tracking in computer vision applications. As
such, they are an important (and even necessary) component in SDS that uti-
lize advanced control algorithms, such as H∞, LQG [FPW+98; Ste94; SP07],
MPC [Laz06; Nec08], etc. Unfortunately, modern estimators and controllers,
coupled with other data processing algorithms such as NN inference, can be
very computationally intensive.

Thus, to meet the computational requirements, and enable their use
in time-constrained applications while keeping the cost of hardware low, it
is desirable to implement such algorithms on multiprocessor systems. In
order to take full advantage of the multiprocessor system, each algorithm is
typically implemented as a separate, periodically scheduled task. However,
the execution time of each task tends to vary a lot on multiprocessor systems
that contain shared memory and caches. In such cases, the upper bound
on the net execution time of the tasks in each iteration of the control loop
can be very large, and its WCET estimate even larger [We08]. In particular,
execution on an embedded Symmetric Multiprocessor System (SMP) with
a multi-layer cache hierarchy and an SDRAM, on which preemptive task
scheduling is applied, increases the WCET estimate even more [Pel+10]. This
is problematic for estimation and control in SDS that employ periodically
triggered S/A.

Concretely, the estimator uses a discrete model of the plant under periodic
sampling. As such, selecting a period smaller than the WCET increases
the likelihood of task deadline misses, which in turn results into a larger
estimation error due to measurement time mismatch. This side effect is
commonly referred to as sampling jitter. To prevent sampling jitter, and
address other concerns discussed in Chapter 1, selecting a sampling period
larger than the WCET is necessary to ensure that tasks finish execution
before S/A can occur, and therefore ensuring that S/A is periodic. On the
other hand, as discussed in Chapter 1 and 2, selecting a very large sampling
period deteriorates control performance, and can potentially destabilize the
controller.

In this chapter we propose an aperiodic S/A approach for SDS that allows
self-timed execution of the tasks. Specifically, S/A and a new iteration of the
control loop are allowed to start immediately after the control task finishes
its execution. One can classify this as a type of event-driven control. The key
points that motivate the adoption of such a strategy in SDS are as follows:

1. It has been shown that well designed controllers can tolerate uncertainty
in the S/A interval due to task execution time variation [Arz+00; Cer01;
Set+96; FP18; LP15; SSS12].

2. Allowing aperiodic S/A eliminates the need to determine a large sam-

49

pling period, and tightens the scheduling constraints.
3. The S/A intervals on average are much smaller than a fixed period

derived from a WCET estimate.
4. The state estimator can be used to reduce the error due to timestep

mismatch with the prediction model.

Concerning the last point in particular, we supplement this self-timed
control strategy with a PF based state estimator, which uses a stochastic
model of the total task execution times to accurately estimate the aperiodically
measured state. Specifically, the PF utilizes SMC simulations to perform state
predictions by sampling from a probabilty distribution of the execution times,
because the sampling instants are dependent on the total execution time per
iteration. The KF algorithm is not suitable for such estimation, because it
uses a linear prediction model that is deterministic in time. Concretely, the
KF requires that either the sampling intervals are fixed, or that the sampling
instants are known upfront.

While it is possible to measure the length of each S/A interval and adapt
the model of the KF on each iteration, such a scheme results in long intervals,
because the prediction step must be executed after the measurement is received.
In contrast, predictions in the PF estimator can be performed in parallel
with the controller and measurement task, resulting in much faster S/A. We
formally prove this later in the chapter. Furthermore, parallelism can also be
directly exploited in the prediction step itself to improve the throughput, by
performing multiple SMC simulations simultaneously.

We demonstrate the benefits of our approach in a case study, where we
consider an SDS with closed-loop LQR control, and the controller is designed
using the emulation method discussed in Section 2.1. The plant is specified
by a continuous-time LTI model, which is sampled and actuated aperiodically.
We then compare our approach with the optimal KF estimator. Specifically,
we evaluate the approaches using the aperiodically generated measurements
of the plant, and then compute the estimation and control errors. We show
using these metrics that our approach improves the control performance by
up-to a factor of 100 compared to the KF estimator. Furthermore, we show
that our approach does not require an accurate knowledge of the execution
time probability distribution.

The rest of this chapter is organized as follows. In Section 3.1 we describe
related work. In Section 3.2 we describe the basic idea of our approach. In
Section 3.3 we formally prove that our approach results in smaller iteration
time with respect to the alternative mentioned earlier. In Section 3.4 we
introduce the reader to preliminary state estimation theory. In Section 3.5
we present our approach. In Section 3.6 we present the results of our case

50 3. State Estimation in Self-Timed Control of SDS

study. Finally, we conclude the chapter in Section 3.7.

3.1. Related work

In this section we relate our state-estimation approach to existing state-
estimation approaches that address the sampling jitter problem.

The problem of sampling time jitter, caused by randomly delayed and/or
irregularly sampled observations of a dynamical system from multiple sensors,
is considered in [TZ94; ZBS04]. Here, the authors consider the uncertainty in
the sampling moments and the measurement delay. They provide an analytical
solution based on KFs, given that the arrival times of the measurements are
known upfront. However, they do not analyze the consequences of observation
jitter as a result of varying execution times of the KF, and do not compare
the results with a PF based approach. Furthermore, they do not propose
techniques that minimize the delay introduced by the estimator by exploiting
parallel execution of tasks.

A similar but more recent work that addresses sampling jitter of single
sensor systems is described in [Yan+13]. Here the authors also extend the
formulation of the standard KF to account for irregularly arriving measure-
ments. They assume that the number of received measurements within an
iteration period L̂ and the time at which they arrived is known. The update
step is used to correct the predicted state. However, the approach assumes
that the arrival time of each measurement is within an iteration period and
does not allow self-timed execution of the control loop. Furthermore, they
also do not introduce delay minimization techniques. Finally they do not
compare the results with a PF based approach.

A sampling jitter mitigation approach using an Extended Kalman Fil-
ter (EKF) is considered in [Cho+09] for the case of periodically sampled
measurements with additive jitter caused by uncertainty in delay. The ap-
proach utilizes an augmented state, which consists of the current state at
iteration k, and an additional amount of delayed states depending on the
maximum delay. The approach is similar to ours in the sense that multiple
state predictions for different delay values are used. However, they do not
consider aperiodic S/A as a result of varying execution times, nor do they
propose techniques to minimize the delay.

An approach which like ours utilizes a free-running estimator, is proposed
in [MCM09]. Here the authors present a periodically sampling “Any-time” KF
approach, where the measurements are queued in a First In, First Out (FIFO)
buffer. The estimator selects at each sampling moment a portion of the
buffered measurements to optimally estimate the state using an optimization

3.2. Basic idea 51

algorithm. The unneeded measurements are flushed from the buffer. This way
the prediction and update steps can execute with a smaller sampling period.
However, the authors do not consider parallel execution of the estimator.
Furthermore, the approach might introduce a large latency in a control loop
due to the queuing of measurements in the FIFO buffer and the computational
overhead of the algorithm. The authors do not propose a method to minimize
the latency.

3.2. Basic idea

In this section we look at a typical software implementation of the control
loop on a multiprocessor system, and its ideal task schedule under periodic
S/A. Subsequently, we describe the intuitive idea behind self-timed execution
and the consequence of the resulting aperiodic S/A.

3.2.1. Periodic control

Consider the SDS from Figure 1.2. A typical software loop implementation
of a controller with periodic S/A executes the following set of operations:

1. Initialize the hardware and software, set iteration k = 1.
2. Read the sensors at time tk (trigger the A/D).
3. Process the sensor data, and compute yk.
4. Compute an estimate x̂k of the state of the plant from yk.
5. Compute actuation uk from x̂k (or yk) by applying the control law.
6. Wait until exactly T time units have elapsed since tk, and send uk to

the actuators (trigger the D/A)1.
7. Set k = k + 1 and repeat steps 2-7, until the system shuts down.

Here T is the sampling period. This process is visually illustrated in Figure 3.1,
where the blue blocks represent tasks, and the plant is interfaced to the
controller via the A/D and D/A converters. Here, we have encapsulated
steps 2 and 3 in a task “Measurement”. The estimator in step 4 is split
into two tasks “Prediction” and “Update”, respectively, for reasons that will
become apparent later. The control law and actuation from steps 5 and 6
are executed in task “Control”. The blue arrows serve a dual purpose: they
indicate the flow of digital signals and data between tasks, and the execution
order of the tasks, i.e. task dependencies. The red arrows represent continuous
signals, and the dashed arrows are the S/A trigger signals.

A typical schedule of the tasks on a multiprocessor system for a SDS with
periodically triggered S/A is shown in Figure 3.2a. In this schedule the tasks

1In some implementations uk is sent immediately to the actuators after its computation,
instead of at the end of the iteration, to reduce the input-to-output delay.

52 3. State Estimation in Self-Timed Control of SDS

Figure 3.1: Block diagram of a hybrid control loop.

are executed sequentially with the exception of the prediction task, which
can execute in parallel with the measurement and control2. Each task is
executed strictly within the sampling period T . This restriction is enforced
on the execution time of the tasks, Lk, to ensure that the sampling interval
tk+1 − tk stays constant and equal to T for each iteration k. Notice that here
we do not include the execution time of the prediction task in Lk, because
it runs in parallel. However, ensuring that all tasks finish their execution
within the given time interval requires that the sampling period T be no less
than the upper bound L̂ = supk{Lk} to avoid sampling jitter. Specifically,
if a task doesn’t finish execution before T time units have elapsed after tk,
then the next S/A instant tk+1 will be delayed. As discussed earlier, finding
L̂ is difficult for multiprocessor systems, due to the large variability of the
task execution times, and a loose WCET estimate is used instead which
typically results in a very large sampling period that deteriorates the control
performance.

3.2.2. Self-timed control

Instead of enforcing periodic S/A, an alternative strategy is to let the tasks
trigger the A/D and D/A converters automatically, resulting in the so-called
self-timed control, which is a type of free-running control [FPW+98]. Specifi-
cally, we let the control task determine the S/A moments (tk), as shown in
Figure 3.2b. In the figure we show the same task schedule from Figure 3.2a,

2Although in the ideal case the estimator expects the actuation uk at tk, in reality it
occurs after a δ > 0 delay. Furthermore, the analog actuation signal u(t) takes extra time to
settle to uk. For these reasons, an earlier actuation uk−1 is used instead, or u(t) is measured
directly [FPW+98], allowing parallel execution of the prediction task.

3.2. Basic idea 53

(a) Task schedule for an SDS with periodic S/A.

(b) Task schedule Free, derived from 3.2a with self-timed execution.

(c) Alternative schedule Free* with self-timed execution.

Figure 3.2: Schedules of tasks for the control loop in Figure 3.1.

where the converters are triggered immediately at the end of an execution of
the control task, and hence also starting a new iteration of the control loop,
resulting in tk+1 − tk = Lk. We call this schedule Free throughout the rest of
this chapter. The advantage of this approach, as discussed earlier, is that each
Lk is shorter on average with respect to the WCET, since the prediction step
is allowed to execute in parallel. As a result, the control loop is sampling much
faster on average than a periodically sampling system based on Figure 3.2a,
thus potentially improving the control performance. The second advantage is
that the scheduling constraints are tightened. However, a big disadvantage
of this approach is that S/A becomes aperiodic, and hence the analysis and

54 3. State Estimation in Self-Timed Control of SDS

design of the controller is considerably more difficult. Nevertheless, robustness
to jitter has been actively addressed by the control systems community, by
introducing predictor based controllers [YL15; Sah+16; Mar+01]. Analysis
of the stability of self-timed controllers is investigated in this thesis, and
in [KC15]. The other important issue is that this particular execution order
of the tasks is not possible for standard estimation algorithms without a
considerable performance loss.

Concretely, linear state estimators, such as the KF and its derivations, are
based on the Bayesian framework, and estimate the state in a two-step process
of prediction and update. The prediction step in the Bayesian framework
infers a state estimate x̂k+1|k, prior to receiving a measurement yk+1, from the
the so-called prior Probability Density Function (PDF). Specifically, this step
utilizes the discrete dynamic model of the plant described by equation (A.5),
where a subset of the inputs are random variables, the so-called “process
noise”. The “update” step uses a newly sampled measurement to improve the
prior using Bayes’ rule, forming the so-called posterior estimate x̂k. However,
the prediction step in the KF requires upfront knowledge of Lk in order to
compute an accurate prior estimate, as we will show later in this chapter.
This is clearly impossible, since the prediction task in Figure 3.2b is executed
before the next sampling instant tk+1. The best option is to assume periodic
S/A in the model, in which case the state prediction may greatly differ from
the true sampled state due to time step mismatch.

An alternative self-timed schedule, which we call Free*, that solves this
problem is shown in Figure 3.2c, where the prediction task is executed between
the measurement and update. Here, the net execution time of the tasks in
iteration k is denoted as L∗k, and tk+1 − tk = L∗k. The prediction step is
executed after receiving a measurement in iteration k + 1, so that the length
of the sampling interval L∗k can be measured and used as time step to estimate
x̂k+1|k, thereby eliminating the effects of sampling jitter. A drawback of this
alternative approach is that each task is restricted to sequential execution,
thus increasing L∗k considerably. We formally prove later that Lk < L∗k for all
k.

3.2.3. Execution-time robust estimation

To take advantage of the high throughput schedule Free while addressing
the problem discussed above, we utilize the so-called PF estimator. This
estimation algorithm uses SMC simulations to perform multiple state predic-
tions simultaneously corresponding to different time steps drawn from the
probability distribution of Lk. Specifically, we assume that the end time
of each iteration is a stochastic event with a distribution πL from which

3.3. Execution time analysis 55

samples can be drawn. The update step of the PF estimates the state from
the predictions when the measurement arrives using a likelihood function.
There are various methods to estimate this distribution [LA97; Per+08] as
accurate as possible, however we show in our case study that an exact dis-
tribution is not required, and the estimation accuracy is not much degraded
due to distribution mismatch. This is because the PF is inherently robust to
non-stationary, non-Gaussian and nonlinear stochastic processes, and adapts
its discrete distribution during runtime.

This increase in robustness against aperiodic S/A using the PF estimator
comes at the cost of a higher computational load. Fortunately, the runtime
of the PF can be reduced by executing the SMC simulations in parallel
on the multiprocessor system [Chi+13]. Therefore, despite the additional
computation load, the delay introduced by the PF in a control loop is not
necessarily larger than by a KF.

3.3. Execution time analysis

In this section we formally prove that the iteration interval Lk of the tasks
with the schedule Free is always strictly smaller than L∗k, the iteration interval
of the same tasks given the schedule Free*, for every k. To do this, we
first derive algebraic expressions that encode the task execution order, their
starting times and their finishing times. We then use these to compare the
iteration intervals. We use ‘iteration interval’ interchangeably with ‘S/A
interval’ and ‘total task execution time’.

As discussed earlier, when the tasks are executed according to the schedule
in Figure 3.2c the estimator knows the S/A instances and can accurately
estimate the prior state. However, since parallel execution of the tasks is
restricted, the iteration interval L∗k is increased. Our estimator on the other
hand lifts this restriction and reduces the iteration time Lk. A disadvantage
of our estimator is that it is potentially less accurate than the alternative
one. However we show later in our case study that the PF estimator can
outperform the KF, because its iteration times are smaller on average.

Before we proceed with the proof, we briefly introduce the so-called
Homogeneous Synchronous Dataflow (HSDF) [SB00; KB16] model, which we
use later to encode the task schedules and derive algebraic expressions of the
execution times. An HSDF model is the directed graph H = (G,E,∆), where
the set of nodes G represent actors. The set of edges E ⊆ G×G represent
FIFO buffers with unbounded capacity between the actors, and ∆ : E → Z
assigns a number of initial tokens to each edge. An actor τ is a self-timed
entity that fires (starts executing) if and only if there is at least one token

56 3. State Estimation in Self-Timed Control of SDS

on each of its input edges. In doing so, it consumes a token from each input
edge at a starting time sτk, and produces a token on each output edge at an
ending time eτk for an execution k. We denote with ρτk = eτk − sτk the firing
duration (execution time) of τ . We assume that an actor fires immediately
when possible, and as such we formally define the starting time of an actor τ
using the firing rule as:

sτk = max
(τ ′,τ)∈E

{eτ ′k−∆(τ ′,τ)}. (3.1)

(a) H (b) H∗

Figure 3.3: HSDF graph models for the Free and Free* schedules.

We now use the HSDF formalism to derive graphs H and H∗ for the
schedules Free and Free*, respectively, shown in Figure 3.3a and 3.3b. The
set of actors is the same for both graphs, i.e. G = G∗ = {M,U,C, P},
which correspond to the measurement, update, control and prediction tasks,
respectively. The initial tokens on each edge are indicated by small black dots.
Given the graphs, the starting times of the actors for H are:

sMk = eCk−1, sUk = max{ePk , eMk }, sPk = eUk−1, sCk = eUk .

Similarly, for H∗ the starting times of the actors are simply:

sM
∗

k = eC
∗

k−1, sP
∗

k = eM
∗

k , sU
∗

k = eP
∗

k , sC
∗

k = eU
∗

k .

Then the iteration intervals are:

Lk = eCk − sMk , and L∗k = eC
∗

k − sM
∗

k , ∀k ≥ 1 (3.2)

With the iteration intervals formally defined, we state and prove the
following:

3.4. The KF estimator under aperiodic S/A 57

Proposition 3.3.1

Let H and H∗ be the HSDF graphs of schedules, Free and Free*,
with iteration intervals Lk and L∗k, respectively, and assume that for
all k ≥ 1

ρτk = ρτ
∗
k > 0, τ = τ∗ ∈ G = G∗ = {M,U,C, P},

i.e. the execution times of each task are strictly positive and the
same in both schedules. Then Lk < L∗k for all k.

Proof. First note that:

Lk = eCk − sMk = max{sPk + ρPk , s
M
k + ρMk }+ ρUk + ρCk − sMk =

= max{ρPk − ρCk−1, ρ
M
k }+ ρUk + ρCk ,

where we use the fact that sPk = sCk−1 = eCk−1 − ρCk−1 = sMk − ρCk−1.

L∗k is trivially derived as:

L∗k = ρMk + ρPk + ρUk + ρCk .

Thus:

Lk = max{ρPk − ρCk−1, ρ
M
k }+ ρUk + ρCk < max{ρPk , ρMk }+ ρUk + ρCk <

< ρMk + ρPk + ρUk + ρCk = L∗k,

because the execution times are strictly positive.

Because Lk < L∗k, we conclude that allowing execution of the prediction
task in parallel with the control and measurement tasks reduces the iteration
time. We can also conclude from the equations that L∗k can be at most
2Lk, because the prediction task cannot execute in parallel with the control
and measurement task, as shown in the schedule from Figure 3.2c. More
specifically, assuming the conditions in Proposition 3.3.1 hold, consider the
example where ρMk + ρUk + ρCk = ρPk and ePk < eMk for some k. It is trivial to
see that L∗k = 2Lk Therefore, our estimation approach can halve the delay
introduced in the control loop and can result in a sampling rate which is twice
as high compared to the alternative approach.

58 3. State Estimation in Self-Timed Control of SDS

3.4. The KF estimator under aperiodic S/A

In this section we introduce our discrete time model of the plant under
aperiodic sampling, i.e. sampling with jitter. Then we explain why the
standard KF algorithm cannot function correctly under these conditions.

3.4.1. Plant dynamics and discretization

In the most general setting, we consider the time-invariant continuous-time
model of the plant with state x ∈ Rn, specified by the Ordinary Differential
Equation (ODE) in (A.1), where the input space is divided into control inputs
u(t) ∈ Rm and stochastic inputs w(t) ∈ Rp:

ẋ = f(x, u, w), (3.3)

where w with a known distribution πw is also called the process noise of the
plant. The state is assumed hidden, and is observed at discrete sampling
moments tk through a measurement function h : Rn × Rr → Rq according to:

yk = h(xk, vk), k ∈ N0, (3.4)

where (yk) is a sequence of measurements, (vk) is a measurement noise sequence
where each vk is random variable with a distribution πv, and xk = x(tk).

To make use of the plant model in estimation algorithms, the ODE needs
to be converted into a recurrence relation form in equation A.4, a process
called discretization. This is done using a numerical method, after which
Eq. (3.3) becomes:

xk+1 = fk(xk, uk, wk), (3.5)

where fk is the discrete-time equivalent of f .
In this chapter we consider the LTI model of the plant from Definition A.3.2

that is corrupted with Gaussian-distributed noise. We also assume that the
control input u is piece-wise constant, so that ∀t ∈ [tk, tk+1) : u(t) = uk, the
so-called ZOH approximation. Thus, fk is a linear function of the state and
input variables:

fk(xk, uk, wk) = Φkxk + Γkuk + wk, (3.6)

as given in equation (2.3). The process noise sequence (wk) is Gaussian
distributed, i.e. wk ∼ N (0, Qk) where Qk ∈ Rp×p is the covariance matrix.
The measurement function is similarly defined as:

h(xk, vk) = Hxk + vk, (3.7)

where H ∈ Hq×n is the observation matrix and vk ∼ N (0, Rk) with covariance
Rk ∈ Rr×r.

3.5. Estimation for Self-timed Control 59

Although the assumed underlying continuous-time model is time-invariant,
under aperiodic S/A the discrete model described with Eq. (3.6) is time-
variant due to Lk (see Section 2.3), which we assume to be a multiplicative
noise of the model that changes with each k. In contrast, Lk = T for all
k under periodic S/A, resulting in a discrete-time LTI model that is easier
to analyze and use in the estimator, but introduces the problems discussed
earlier.

3.4.2. The Kalman Filter

The KF is an optimal state estimation algorithm for LTI systems with Gaus-
sian process and measurement noise. Without going into much detail, the
state is estimated in a two-step process [Ste94; FPW+98]:

First, a state prediction (time-update) step is performed that, using equa-
tion (3.6), computes a state estimate x̂k+1|k prior to sampling a measurement
at tk+1 according to:

x̂k+1|k = Φkx̂k + Γkuk,

Pk+1|k = Qk + ΦkPkΦ
>
k , (3.8)

where Pk+1|k is the covariance of the prior p(xk+1|yk) = N (xk+1|k, Pk+1|k).
Then, the so-called update step is performed to compute the posterior

state estimate x̂k+1 from the prior after measuring at tk+1 using Eq. (3.7),
according to:

x̂k+1 = x̂k+1|k +Kk+1(yk+1 −Hx̂k+1|k),

Pk+1 = (I −Kk+1H)Pk+1|k, (3.9)

where Pk is the posterior covariance and

Kk = Pk|k−1H
>(HPk|k−1H

> +Rk)
−1,

is the Kalman gain matrix.
From Eq. (3.8) one can see that the KF is incapable of accurately predicting

the state, unless it knows Lk to compute Φk. But this is impossible, since
Lk is determined by the end time of the current prediction task. Because
this event is unknown upfront, the only remaining option is to perform the
prediction after yk is received, or to perform an additional correction step
after these tasks have finished their execution, resulting in the schedule Free*
discussed in Section 3.2. One may also notice that computing the Kalman
gain and the posterior covariance are operations that do not depend on the
measurement. This means that computing the posterior state estimate is the
only operation performed after receiving a measurement, hence the prediction
step is the most time consuming.

60 3. State Estimation in Self-Timed Control of SDS

3.5. Estimation for Self-timed Control

In this section we first introduce the PF estimator, and then present our PF
variation of the algorithm which is robust to task execution time uncertainty.

3.5.1. Particle Filtering

The Particle Filter is an approximate recursive Bayesian filtering approach
based on the SMC method [DFG01; Sim06; Aru+02]. Since a closed-form
expression of the prior and posterior PDFs does not exist in general for non-
linear and/or non-Gaussian systems [Sim06; Ste94; Aru+02], the algorithm
works with discrete probability mass function approximations instead. The
mass function is a set of weighted outcome samples called “particles” generated
by SMC. Its main strength thus lies in its ability to represent arbitrary
distributions of non-linear state-space systems with non-Gaussian distributed
noise up to an arbitrary precision. However, the PF provides a suboptimal
solution to the estimation problem, even for LTI systems with Guassian
distributed noise, where it is always outperformed by the KF under ideal
conditions [Sim06].

One of the earliest variants of the PF is the SIR algorithm, shown in
Algorithm 2. Here, a set {x1

k+1, . . . , x
N
k+1} of state samples that approxi-

mate the prior state at time tk+1 are drawn from a proposal distribution
q(xk+1|yk) with an equal support as p(xk+1|yk) from equation 3.8. This is
the equivalent of a prediction step for the PF algorithm. A common choice
for the proposal distribution is the state-transition distribution p(xk+1|xk).
In our case, p(xk+1|xk) = N (fk(xk, uk, 0), Qk). We adopt this choice for the
SIR algorithm throughout this chapter. Then by utilizing the discrete-time
model in (3.6) for LTI systems, one can compute each sample before time
tk+1 according to:

xi0 ∼ p(x0), i = 1, . . . , N,
xik+1 = Φkx

i
k + Γkuk + wik, k ≥ 1, wik ∼ πw.

(3.10)

In the update step of the PF, each sample xik is assigned a weight θik when
the measurement yk becomes available according to:

θi0 = 1
N , i = 1, . . . , N,

θik+1 =
θikp(yk+1|xik)∑N
j=1 θ

j
kp(yk+1|xjk)

, k ≥ 1,
(3.11)

where p(yk+1|xik) = N (Hxik; yk+1, Rv) is the likelihood function derived using
equation (3.7). The resulting particle set represents a probability mass

3.5. Estimation for Self-timed Control 61

Algorithm 2 Sequential Importance Resampling (SIR) PF Algorithm

1: for i = 1 : N do . Initialization
2: Sample xi0 from p(x0), an initial state distribution
3: θi0 ← 1

N
4: end for
5: for k = 0, 1, 2, . . . do
6: for i = 1 : N do . Prediction
7: Sample wi from πw
8: xik+1 ← fk(x

i
k, uk, w

i)
9: end for

10: yk+1 ← Measurement(tk+1)
11: for i = 1 : N do . Update

12: θik+1 ←
θikp(yk+1|xik)∑N
j=1 θ

j
kp(yk+1|xjk)

13: end for
14: N̂ ← 1∑N

i=1 (θik+1)2

15: if N̂ < Nt then . Resampling, Nt is a threshold
16: {(xik+1, θ

i
k+1)}Ni=1 ← Resample({(xik+1, θ

i
k+1)}Ni=1)

17: end if
18: Estimate x̂k+1 from p̂(xk+1|yk+1)
19: end for

function p̂(xk+1|yk+1) : {x1
k+1, . . . , x

N
k+1} → {θ1

k, . . . , θ
N
k+1} that approximates

the posterior PDF p(xk+1|yk+1), so that

p̂(xk+1|yk+1)
N→∞−−−−→ p(xk+1|yk+1).

This approximation is used compute the state estimate x̂k+1, and its variance.

Unfortunately, all of the weights except one tend to become negligibly
small after several iterations, and p̂(xk+1|yk+1) collapses to a point mass
distribution, an effect called sample degeneracy [Aru+02], which is attributed
to selecting p(xk+1|xk) as proposal distribution. To avoid this, a resampling
step is introduced which samples xik+1 from p̂(xk+1|yk+1), and resets each

weight to wik+1 = 1
N .

3.5.2. PF estimation under aperiodic S/A

In Section 3.2 we introduced our self-timed control approach, where the S/A
intervals are equal to tk+1 − tk = Lk, where Lk is the net execution time of
the tasks for iteration k. The exact value of each Lk is unknown prior to

62 3. State Estimation in Self-Timed Control of SDS

the completion of the measurement task, which forces an entire KF iteration
to be executed after receiving the measurement, resulting in the schedule
Free* shown in Figure 3.2c. However, Lk can be included as an additional
independent state variable, with a distribution πL, in the prediction model
of the PF algorithm described above. Our approach uses an approximation
π̂L of the distribution derived to a certain degree of accuracy. Thus, its PDF
depends on the target architecture on which the algorithm is executed, and
the amount of temporal interference caused by other tasks executed on the
same multiprocessor system.

Because Lk is included as an extra state variable, the modified model in
equation (3.6) becomes nonlinear, as opposed to time-variant. While this new
model cannot be used in the standard KF estimator, it can be used seamlessly
in the PF algorithm. Specifically, the Particle Filter allows multiple time
predictions of the state by drawing time steps from the estimated iteration
time distribution π̂L. Suppose that a sample set {L1

k, . . . , L
N
k } is drawn from

π̂L. One can then perform the usual prediction step in a PF by evaluating fk
on the particle set for each drawn time step. Hence, the proposal distribution
becomes p(xk+1|xk, Lk).

Formally, using equation (3.6) and equation(3.10) for LTI plant models
the prediction step becomes:

xi0 ∼ p(x0), i = 1, . . . , N
Lik+1 ∼ π̂L, k ≥ 1
xik+1 = Φi

kx
i
k + Γikuk + wk,

(3.12)

where Φi
k, and Γik can be computed from equation (2.4). The update step of

the algorithm remains unchanged. Thus, line 6 in Algorithm 2 is changed to
use equation (3.12).

3.6. Case study

In this section we evaluate and compare our PF estimator with the KF esti-
mator, while demonstrating the advantages of self-timed control. Specifically,
we evaluate the estimators on a closed-loop SDS with a LQR controller with
the S/A times determined according to the schedules presented in Section 3.2.

3.6.1. Overview of evaluation method

We consider the three S/A and estimation approaches discussed in Section 3.2:
1. Periodic S/A with a KF estimator.
2. Aperiodic S/A with a KF estimator and its prediction step executed

after measurement.

3.6. Case study 63

3. Aperiodic S/A with our PF estimator.

We then perform several simulation runs of the closed-loop SDS with each
of these approaches, for different parameter choices of the iteration time
distribution πL. Concretely, the iteration time sequences (Lk) and (L∗k) are
sampled from πL in each simulation run, with the skewness of πL increased
for each run. These sequences are then used in each run to generate the S/A
time sequence (tk) for each SDS as follows:

1. For the periodic case, each tk is computed as:

tk+1 = tk + max{T, Lk}, k ≥ 0

where T is the sampling period. We consider a pessimistic and optimistic
choice for T in the simulations.

2. For the aperiodic case with the KF estimator, we generate (L∗k) by
perturbing (Lk) as follows:

L∗k = rkLk, rk ∈ U(1.5, 2),

i.e. each L∗k is at least 1.5 times, and at most 2 times larger than Lk.
The S/A times are related by tk+1 = tk + L∗k for all k ≥ 0.

3. For the aperiodic case with our PF estimator, tk+1 = tk + Lk, for all
k ≥ 0.

For each simulation run, the SDS are simulated with the generated S/A
times, and we compare each approach using performance metrics of the
estimator and controller, discussed later in this section.

3.6.2. Execution time distribution

Practical studies [LA97; Per+08; Hor+19] have shown that the processing
time distribution is typically right skewed and normally distributed. On
the other hand, the processing times are always strictly positive. Thus, one
suitable choice for πL is the log-normal distribution, so that Lk = eLk , and
Lk ∼ N (µ, σ). Its PDF is defined as follows:

πL(x, µ, σ) =
1

xσ
√

2π
exp

(
−(log x− µ)2

2σ2

)
,

where µ and σ are parameters.

The mode of this distribution is located at x = eµ−σ
2
, which is the most

likely outcome. In our case this mode represents the so-called Average-Case
Execution Time (ACET) L̄, i.e. the most common length of each iteration
interval Lk. It is fixed to L̄ = 0.001s for every simulation run.

64 3. State Estimation in Self-Timed Control of SDS

The mean of the log-normal distribution is µL = eµ−
σ2

2 , which is gradually
increased with each simulation run so that µL = νL̄, where ν is a skewness
parameter3 that starts from 1.1 and is increased until 4.5. Effectively, we
use this parameter to increase the uncertainty of each S/A interval for each
simulation. Using these, µ and σ are computed as follows:

µ =
2 log(µL) + log(L̄)

3
, σ =

√
2

log(µL)− log(L̄)

3
.

As an example, the distribution πL for ν = 3.1 is shown in Figure 3.4. In
the same figure we also show the PDF of π′L when it is mismatched, but with
a similar support as πL, used later in the case study.

0 0.002 0.004 0.006 0.008 0.01

0

1

2

3

10
-3

0 0.002 0.004 0.006 0.008 0.01

0

0.5

1

10
-3

Figure 3.4: The distributions πL and π′L.

3.6.3. Plant and controller

The plant is specified by a continuous-time LTI model with system matrices:

A =

(
−2287 2517
−2037 2236

)
, B =

(
0
5

)
, H =

(
1 0

)
.

3The actual skewness of the log-normal distribution is defined differently, however fixing
its mode to L̄ and increasing the mean µL effectively skews πL to the right.

3.6. Case study 65

The variance of the measurement noise sequence (vk) is Rk = 0.1 for all k.
There is no process noise in the model. The control law is defined as:

0 0.1 0.2 0.3 0.4

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 3.5: Simulation of the control system.

uk = N̄sk −Kpx̂k,

where N̄ ≈ 2.39 is a setpoint error correction constant, (sk) is a setpoint
sequence, x̂k is the estimated state as defined in Section 3.4 and 3.5, and

Kp ≈
(
−26.2 30.53

)
is the LQR controller’s gain matrix, computed by the emulation method from
the continuous-time plant using the command lqr in MATLAB. The sequence
(sk , s(tk)) is sampled from the square wave signal s(t) with a frequency
of 10 Hz. A simulation run of the SDS is shown in Figure 3.5, where the
sequences (yk), (ŷk , Hx̂k) and (sk) are plotted.

3.6.4. Performance metrics

To compare the control and estimation performances of each approach we use
the following error metrics:

εE =

√√√√1

k̂

k̂∑
k=1

‖x̂k − xk‖22, and εC =

√√√√1

k̂

k̂∑
k=1

‖yk − sk‖22,

66 3. State Estimation in Self-Timed Control of SDS

where εE is the Root-Meant-Square Error (RMSE) of an estimator, and εC is
the control error, i.e. how much the output of the plant deviates from the
setpoint, and k̂ = 400 is the maximum number of iterations per simulation.
These errors are computed for each run, and a smaller value indicates better
performance, while a large value indicates the opposite.

3.6.5. Results

The results of the simulations are shown in Figure 3.6, where the estimation
and control errors are plotted on a logarithmic scale. For the SDS with
periodic S/A we set T = L̂ = 3µL for the pessimistic case and T = L̄ for the
optimistic case. Our PF algorithm is evaluated with a number of particles
N = 100 and N = 1000.

From the plots it is clearly seen for the periodic case, that selection
of a small sampling period quickly deteriorates the estimation and control
performance, but not to the point that the system becomes unstable. Selecting
a large sampling period on the other hand results in very good performance
when the variation in the S/A times is small. But, as πL gets more skewed
to the right the pessimistic sampling period becomes larger, and the SDS is
eventually unstable, as indicated by the red plot shooting up.

The estimation performance of the KF estimator with aperiodic S/A is
clearly the best among all, but not much better compared to our PF estimator,
as observed from the yellow plot in Figure 3.6a. However, since L∗k is up-to 2
times larger than Lk, the control performance deteriorates by more than a
factor of 100 as the uncertainty increases, as seen in Figure 3.6b. In contrast,
the SDS with our PF-based estimator maintains a good estimation and control
performance simultaneously, even when the variation in execution times is
large.

We also compare the performance of the PF for the case that the execution
time distribution π′L, used by the PF, is different from πL. Specifically,
we compare the PF’s performance in the cases that π′L = πL, and when

π′L = U(Ľ, L̂), where Ľ = µL
3 and L̂ = 3µL are the Best-Case Execution

Time (BCET) and WCET, respectively. The mismatched distributions are
shown in Figure 3.4. The results are shown in Fig. 3.7, where the RMSE of
the PF is again plotted against the parameter ν. We tried different support
intervals for the uniform distribution. In all cases, incorrectly selecting the
distribution slightly degrades the performance, as long as its support covers
the most commonly occurring outcomes of πL.

With these results we can conclude that for this LTI model example the
PF clearly outperforms the KF in terms of robustness to S/A uncertainty,

3.7. Conclusion 67

1.5 2 2.5 3 3.5 4 4.5

10
-4

10
-3

10
-2

10
-1

10
0

(a) Estimation error

1.5 2 2.5 3 3.5 4 4.5

10
0

10
1

10
2

(b) Control error

Figure 3.6: Estimation and control error w.r.t the skewness parameter ν for
each approach.

even if the execution time distribution used by the PF differs from the actual
distribution.

68 3. State Estimation in Self-Timed Control of SDS

0 0.5 1 1.5 2 2.5
10

-2

10
-1

10
0

Figure 3.7: Comparison of the estimation performance of PF with exact and
mismatched distribution π′L.

3.7. Conclusion

In this chapter we presented a self-timed control strategy for SDS, and a PF
based state-estimation approach which is more robust to S/A time uncertainty,
caused by large variations in the execution times of processing tasks. The
variation in the execution times is caused by caches and other shared hardware
resources in multiprocessor systems. On these systems, estimation and control
using periodic S/A is usually not an option due to the large WCET of the
tasks. We demonstrated this in our case study, where if the execution time
variations are big, selecting a small S/A period results in large estimation
error, and a large period causes the SDS to become unstable.

Furthermore, the proposed approach minimizes the delay that this estima-
tor introduces if applied in a control loop, which improves the performance
of the controller. The delay is reduced by up to a factor 2, by exploiting
parallel execution of the tasks in the estimator. Additional parallelism is
introduced by allowing the prediction task to start its execution before the
next S/A moment. Thus, the prediction task must also predict the time
between subsequent S/A moments.

The estimation and control performance of the proposed PF based state
estimator is compared with the performance of a KF estimator on an LTI
model of the plant. For this example, the KF based approach is known to be

3.7. Conclusion 69

optimal in case of periodic S/A. However, simulation results show that our
PF based state estimation approach can outperform the KF based approach
by up to a factor of 100 with respect to the RMSE in case of aperiodic S/A,
even if a relatively small number of particles is used.

Our PF based state estimation approach makes use of an approximate
distribution of the execution times of tasks, which is used to construct a
discrete distribution of the state variable. Specifically, the PF uses SMC
simulations to compute multiple hypotheses of the state variable by drawing
iteration time samples from the execution time distribution. Usually, only a
coarse estimate is known at design time. However, simulation results show
that a distribution mismatch hardly affects the estimation error.

Finally, the use of a PF instead of a KF makes estimation more robust
against sampling uncertainty, but increases the computational load in the
system. However, this additional load does not result in an increased delay
in the control loop, because particles can be computed in parallel on a
multiprocessor system.

4

Stability Verification of
Aperiodic SDS Using HA-CLD

Abstract

Sampled-Data Systems are typically designed by enforcing periodic S/A,
because this allows the use of tractable dynamical system models for analysis.
However, ensuring that the S/A moments respect this periodic pattern is
difficult to achieve in practice without a significant performance loss, and in
reality S/A is often aperiodic. In such cases, traditional modeling and analysis
approaches are not sufficiently accurate, and lead to faulty system designs.

In this chapter we introduce the HA-CLD model for SDS with aperiodic
S/A, and use it to verify their stability. The HA-CLD model is more accurate
than traditional models, because it can capture the tight dependency between
computational aspects and control performance, which is usually discarded
under the assumption of periodic S/A. Besides the introduction of this model,
we also prove the key result that the (asymptotic) stability of HA-CLD can be
verified using reachabiltiy analysis. Finally, we apply our modeling and analysis
approach to SDS with self-timed execution of the control tasks, discussed earlier,
where S/A is aperiodically triggered by definition.

In Chapter 3 we studied the computational aspects of the so-called self-timed
control for SDS, which is also known as free-running control. In this approach
the A/D and D/A converters are triggered immediately at the end of an
iteration of the control loop, and at the same time start a new iteration. The
key benefits of this approach over the standard time-triggered approaches,

This chapter is based on the published and revised work in [VSEH:2].

71

72 4. Stability Verification of Aperiodic SDS Using HA-CLD

where periodic S/A is usually enforced, are that the S/A intervals are shorter
on average, and that the scheduling constraints of the control tasks are
significantly tightened. This results into better hardware resource utilization,
and potentially improved control performance. As such, self-timed control is
very beneficial when the tasks are executed on multiprocessor systems. In
such systems, the tasks tend to exhibit large variations in their execution
times, and the derived WCET bound is pushed to undesirable limits, despite
that very long executions occur rarely.

However, a key drawback of self-timed control is that S/A automatically
becomes aperiodic. As a consequence, the control performance of the resulting
SDS is significantly more difficult to evaluate using standard time-driven
models that assume periodic S/A. Concretely, these models cannot always be
used to analytically verify the (asymptotic) stability of SDS with aperiodic
S/A. Even switched system models [DS+09], which are more expressive than
their time-driven counterparts, may not be sufficiently accurate for analysis.
Furthermore, such models typically rely on CQLFs [SN03; Sho+07] to prove
stability, but CQLFs may not exist even if the system is stable [Sho+07]. On
the other hand, deriving other types of Lyapunov functions is computationally
hard [JR97; AJ14].

In this chapter we introduce the Hybrid Automaton with Clocked Linear
Dynamics (HA-CLD) for modeling of SDS with aperiodic S/A, and analysis
of their control performance. A key benefit of this hybrid system model, is
that it allows including the dynamics of the temporal behavior of the SDS,
driven by computational aspects, alongside the dynamical behavior of the
plant and controller. Most importantly, the temporal behavior is explicitly
and independently specified, using the so-called clock variables, which signifi-
cantly simplifies the analysis of HA-CLD. Concretely, the temporal behavior
can be efficiently analyzed in isolation. Furthermore, this property allows
(asymptotic) stability verification of the HA-CLD using reachability analysis.
We prove this key result later in this chapter. Other benefits of HA-CLD
related to the computation of their reachable set are discussed in Chapter 5.

We use this modeling and verification approach exclusively in this chapter
to analyze SDS with self-timed control. Specifically, we derive a HA-CLD
model of the target SDS given an average workload characterization [Ho13] of
the tasks. We note however, that the approach can be applied to any SDS with
explicitly defined temporal behavior, i.e. switching between the modes depends
only on temporal modeling variables. The applicability of our approach is then
demonstrated in our case study of a practical SDS, where we show that the
self-timed SDS can perform better than its time-triggered counterpart. Here,
various HA-CLD models are derived from the system’s physical model and

4.1. Related Work 73

different workload characterizations, including the WCET characterization.
We show first that a model checker, such as SpaceEx [Fre+11], can verify
stability of the system in the sense of Lyapunov theory [Tes12]. However, at
the time of writing, SpaceEx and other tools [CÁS13; BD17] cannot be used
to verify asymptotic stability in the same sense, because they are not equipped
with a stronger fixed point termination criterion, as we show in this chapter.
Therefore, we use our own reachability analyzer, which is implemented in
MATLAB. Finally, we show that the considered self-timed system has an
improved transient response.

The rest of this chapter is organized as follows: Section 4.1 reviews and
compares other state-of-the-art work with ours. In Section 4.2 we look at
the dynamical behavior of SDS with aperiodic S/A in more detail, discuss
some stability verification approaches, and outline the issues related to the
WCET workload characterization. In Section 4.3 we describe the modeling
framework of our approach. In Section 4.4 we prove that (asymptotic) stability
of HA-CLD can be established using reachability analysis. In Section 4.5 we
present the case studies. Finally, we state the conclusions in Section 4.6.

4.1. Related Work

In this section we describe related stability analysis approaches and explain
the differences with the approach described in this chapter.

Many approaches make use of Lyapunov functions [Kum+12; LB10;
Sho+07; Zha+02], and more specifically CQLFs. Such approaches first
derive hybrid automata and/or switched system models of the closed-loop
system, by analyzing its discrete-event behavior. A CQLF [SN03] is then
computed and used to verify the stability of the system. Average Dwell-
Time (ADT) [Zha+02] and Multiple Lyapunov Functions (MLF) [LB10]
theory can also be used in a similar way. In contrast, our approach relies only
on stability verification through reachability analysis. As such, it can still be
used to verify stability in cases when a Lyapunov function is computationally
hard to construct from a family of functions, e.g. [JR97; AJ14], or does not
exist.

Approaches which combine reachability analysis with Lyapunov functions
are proposed in [HMT15; PW06]. Such approaches first compute simplified
abstractions of the derived hybrid automaton. Reachability analysis is then
used on the transformed models to compute critical regions of the system.
Finally, Lyapunov functions are derived for these regions to conclude local
stability. Global stability is concluded if all regions are locally stable. However,
the key difference is that our approach does not rely on abstractions of generic

74 4. Stability Verification of Aperiodic SDS Using HA-CLD

hybrid automata models. Furthermore, we don’t make use of Lyapunov
functions.

A method by Aminifar et al. [Ami+14] considers stability verification
for networked control systems with variable delay and sampling jitter. Here
the authors use a periodic task workload characterization, similar to [Ho13],
and the so-called jitter margin [Cer+04] curves to compute optimal sampling
periods of the controller. However, compared to our approach, they don’t
consider systems with aperiodic S/A. In contrast, our approach can be used
to verify the stability of systems with aperiodic S/A, which more accurately
describes the behavior of the system.

The approach proposed by Frehse et al. [Fre+14] uses SpaceEx [Fre+11]
to verify functional and temporal properties simultaneously of time-triggered
systems. They propose the use of the worst-case response time [QHE12]
characterization for the delay introduced by the execution of the control
task(s). The key difference with our work is that we provide an analytical
proof that stability can be determined using a reachability tool for HA-CLD,
a subclass of HA-LD. Furthermore, we consider a different workload/response-
time characterization which is similar to the one introduced in [Ho13].

The works by Khatib et al. [AKGD15; AKGD17] propose a reachability
analysis based approach for stability verification of a class of self-triggered
control systems. The systems under consideration, similarly to our work, have
uncertain S/A times. Specifically, the works propose reachability algorithms
to synthesize feasible schedules given a timing contract and verify the stability
of the resulting SDS. They consider a variant of the WCET characterization
of the control task, which they define as the timing contract. However, they
do not consider systems with multiple modes. Additionally, they do not
consider workload characterizations other than the WCET.

The work by Hausmans et al. [Ho13] presents a two-parameter workload
characterization to characterize the maximum net execution time in every
window of n subsequent task executions. In this chapter we take inspiration
from this characterization to derive a similar one that is easily specified
using HA-CLD. The work of Hausmans considers only the discrete event
part of a system. An important difference is that in our work the temporal
and dynamical behaviors are analyzed together, by encoding the workload
characterization and system dynamics into a HA-CLD model.

4.2. Basic Idea

In this section we give a basic overview of time-triggered and aperiodic control
systems, and discuss their design issues.

4.2. Basic Idea 75

4.2.1. Time-triggered systems

Time-triggered systems are designed such that the S/A moments are deter-
mined by a deterministic triggering pattern. Specifically, the S/A intervals
are tk+1 − tk ∈ T where T = {T1, . . . Tm} is a bounded, finite set of S/A
intervals that represents the triggering pattern. This is done so, because the
derived mathematical model of the system has strong analytical properties in
case that it is linear and time-invariant. In particular, if the sampling pattern
can be assumed constant throughout the evolution of the system, then one
can utilize static analysis techniques to analyze and design the controller,
such that a desired behavior is achieved. To see this, consider the closed-loop
evolution of the state of the SDS, described by the switched system model:

xk+1 = Aqkxk, Aq ∈ A, (4.1)

where (qk) ∈ {1, . . . ,m} is an indexing (switching) sequence, and A =
{A1, . . . , Am} is a finite family of transition matrices. For each k ∈ N0,
Aqk ∈ A ⊂ Rn×n describes the closed-loop dynamics of the SDS in the S/A
interval tk+1 − tk = Tqk . Because the triggering pattern is deterministic, (qk)
is a periodic sequence, i.e. ql = qk+N for all k ∈ N0 and some N ∈ N.

As an example, consider a two mode system with T = {T1, T2}, and
A = {A1, A2}. A valid indexing sequence can be e.g. (qk) = (1, 2, 1, 1, 2, 1, . . .)
with N = 3. Assuming this pattern, then:

xiN = A1A2A1 · · ·A1A2A1x0, t(i+1)N − tiN = 2T1 + T2, i ∈ N0.

If T = {T} and A = {Acl}, then the A/D and D/A converters are driven
periodically such that tk+1 − tk = T for all k ∈ N, and the switched system
reduces to the familiar LTI model xk+1 = Aclxk, where Acl is the closed-loop
state transition matrix.

Stability of such systems can be verified by showing that the spectral
radius ρ(AqN · · ·Aq1) is smaller than one [Har02]. Alternatively, stability
can be verified by finding a candidate Lyapunov function, if such a function
exists [Ste94; FPW+98].

However, as we have discussed previously, the biggest difficulty associated
with the design of time-triggered systems, is the enforcement of the triggering
pattern. If the time steps are too small, then there may not exists a feasible
schedule of the tasks that satisfies the triggering pattern. On the other
hand, if the time steps are too large, then the controller’s performance will
deteriorate, and even become unstable. Other temporal disturbances, such
as data loss, varying transmission delay and others complicate the control
design and scheduling problem even further. As we have discussed earlier in
Chapter 2, this problem is difficult even for the simple periodic case.

76 4. Stability Verification of Aperiodic SDS Using HA-CLD

4.2.2. Aperiodic SDS

We now revisit SDS with aperiodic S/A from Section 2.3 in the context of
the self-timed control strategy from Chapter 3. There we considered the
event-driven system setup from Figure 2.2b, in which the event that triggers
the A/D and D/A converters, and starts a new iteration of the control loop,
is the completion of the control task. In this setup S/A occurs as soon as
possible and aperiodically.

A key advantage of self-timed control is that the effective sampling period
may be significantly smaller than its time-triggered counterpart. This is often
the case in practice when large execution times rarely occur. The authors
in [AKGD17; Cer+02; Hor+19; Lem+07] make a similar observation. In such
cases a so-called running average workload characterization [Ho13] can be
used during analysis that is less pessimistic than the WCET of the control
task, while still providing an upper bound on the total execution time of a
sequence of executions.

However, a drawback is that the dynamical behavior of the system changes
dramatically, because the S/A times are nondeterministically selected, as
noted in Section 2.3. In this case the transition matrices are dependent
on the S/A interval tk+1 − tk in each iteration k. Additionally, workload
characterizations other than the WCET introduce an uncertain switching
behavior. Going back to equation (4.1), this means that the sequence (qk) is
now a discrete stochastic process. Formally, the closed-loop state evolution
equation (4.1) becomes:

xk+1 = Aqk(tk+1 − tk)xk, Aqk(·) ∈ A, tk+1 − tk ∈ Tqk ∈ T , (4.2)

where T = {T1 = [T 1, T 1] ⊂ R+, . . . , Tm = [Tm, Tm] ⊂ R+} is now a set of
sets, and the matrices Aq : [T q, T q] → Rn×n are now functions of the S/A
interval, which is allowed to vary on each iteration, i.e. tk+1 − tk ∈ Tqk ∈ T .
As a result, methods such as the CQLF [SN03] cannot always be applied.
The reason is that an infinite amount of matrix product combinations must
be evaluated, which should be approximated by a CQLF. Other approaches
like the JSR [Har02] are for the same reason not always applicable. A special
case when this is not true, is when the matrices commute [Lyg04].

4.2.3. Drawbacks of the WCET task characterization

In order to understand the drawback of the WCET characterization more
precisely, consider the control loop schedule from Figure 3.2b with iteration
times Lk <∞, characterized by the bounds Ľ = infk{Lk} and L̂ = supk{Lk}.
This characterization leads to a model with a single mode of operation,

4.2. Basic Idea 77

according to equation (4.2), with T = [Ľ, L̂]. In both the time-triggered and
aperiodic cases, this model is unstable if L̂ becomes too large. Concretely, if
one assumes that Lk is an uncertain variable with unknown distribution in the

aperiodic case, then there may exist a sequence (Lk), such that ‖xk‖
k→∞−−−→∞

with respect to the any norm ‖·‖ on Rn. We have shown this earlier in

Section 2.1 with an example of a system which, given the WCET bound L̂,
becomes unstable with aperiodic S/A, despite that it is stable under periodic
S/A for all sampling periods T ∈ [Ľ, L̂], i.e. tk+1 − tk = T for all k.

However, in a practical application the upper bound L̂ is rarely reached,
and most often the iteration times are distributed near the BCET. In this
case, given an average workload characterization, it may be the case that the
system will be unstable with periodic S/A, but stable with aperiodic S/A.
One such characterization where the upper bound is more flexible, similar
to [Ho13], is formally described as:

Ľ ≤ Lk ≤

{
L̂ if Lk−i ≤ L̄ for all i ∈ {1, . . . , N},
L̄ otherwise,

(4.3)

with L̄ < L̂ and N ∈ N. Informally, this characterization states that for
every N consecutive short iterations, bounded above by L̄, at most one long
iteration is allowed to occur, bounded above by L̂. For example in the case
that N = 1, it is stated that a long iteration is always followed by a short
one, i.e. Ľ ≤ Lk ≤ L̄.

Because standard LTI models are often not flexible enough to verify sta-
bility of aperiodic SDS with such workload characterizations, we use hybrid
automata, and more specifically the HA-CLD model introduced later in the
chapter. These models allow the workload characterization to be encoded
alongside the closed-loop dynamical behavior, and other computational se-
mantics. Subsequently, model checking tools are used to evaluate all of the
possible trajectories of an SDS, and verify safety and liveness properties,
such as stability. This is not possible for general HA, because there it is not
always possible to derive the temporal relationship between the transition
times tk (see Section 2.4), unless this relationship is explicitly encoded in the
automaton, which is the case for HA-CLD. Therefore, a contraction towards
a stable region of states cannot be shown for every possible initial state of a
HA using our reachability analysis approach. We show later in the chapter
that the characterization from equation (4.3) can be encoded exactly in the
HA-CLD model, and that the state trajectories take the same form as in
equation (4.2). We then provide a proof that stability can be verified using
reachability analysis for any initial state x0. To the best of our knowledge,

78 4. Stability Verification of Aperiodic SDS Using HA-CLD

(a) Worst-case iteration time characteriza-
tion model

(b) Average iteration time characterization model

Figure 4.1: Hybrid automata of a single mode closed-loop controller according
to WCET and running average characterizations.

our approach is one of the earliest that addresses this practically relevant
stability verification problem.

4.3. Modeling aperiodic systems

In this section we describe our modeling framework for aperiodic SDS with a
workload characterization using HA. We start by deriving HA models that
describe the dynamical and temporal behavior of SDS using the WCET and
average iteration time characterization described earlier. We then point out
some particularities and restrictions in the syntax of the derived models, which
we use as basis to define our HA-CLD model. We point out that the same
framework can be used to model any type of SDS, provided that the temporal
behavior can be characterized and explicitly defined. Hybrid automata are
a very suitable for modeling the aperiodic SDS that we study in this work,
because of their ability to include non-determinism, along with discrete-event
and continuous-time dynamics.

4.3. Modeling aperiodic systems 79

4.3.1. Modeling using automata

We will use Definition 2.4.1 to derive HA models of aperiodic SDS. First, the
continuous state-space is partitioned into X×Z×C, where X is the state-space
of the plant, Z is the state-space of the controller, and C is the space of variables
with constant dynamics, called clock variables. Concretely, the clock variables
evolve according to ċ = 1. We need only one clock variable to represent
the iteration time, and we use the guards and invariants to define lower and
upper bounds that constrain the length of each S/A interval. Therefore, the
guards and invariants are intervals, similarly to TA. Edges and modes are
used to encode switching behavior, similar to equations (4.1) and (4.2). This
way the discrete-event and temporal behaviors are explicitly specified using
the previously discussed workload characterizations, independently of the
dynamical behaviors of the plant and the controller. The continuous dynamics
of the plant are specified in each mode of the automaton in the usual way
according to equation (2.1), while the discrete dynamics of the controller are
specified for each transition of the automaton according to equation (2.5).

As an example, the HA model of an SDS with its S/A intervals character-
ized by the bounds L̂ and Ľ is shown in Figure 4.1a. Here, the continuous
time behavior of the plant is specified in a single mode q0 as ẋ = Ax+ Bu
from equation (2.1). The state of the controller is constant while in mode q0,
i.e. u̇ = 0. S/A occurs with the transition q0 → q0, which is equipped with
a reset map u := Fx + Gu that applies the discrete-time control law from
equation (2.5). For simplicity, the sample-to-actuation delay is zero in this
model, i.e. the control law is instantly computed and applied. The reset map
also sets c back to zero, to allow another continuous-time and discrete-event
execution of the automaton to take place. The invariant c ≤ L̂ enforces that
the value of the clock c can grow to at most L̂, at which point the automaton
is forced to transition out of q0. On the other hand, the guard c ≥ Ľ prohibits
a transition to take place, before the value of c is at least Ľ. Thus, staying in
mode q0 simulates the continuous evolution of the plant during the execution
of a control-loop iteration with a length that is precisely Lk ∈ [Ľ, L̂]. Then
an execution of this automaton exactly simulates a state trajectory of the
aperiodic SDS with a WCET characterization.

An extension of the same automaton that encodes the characterization
from equation (4.3) is shown in Figure 4.1b. The continuous-time dynamics
and reset maps are the same for all modes and transitions, respectively,
indicated by ‘· · · ’. The difference is that this model includes an extra N
modes that represent the short iterations that always occur after a long one,
represented by q0. This is enforced by equipping each mode qi, i = 1, . . . , N,
with an invariant c ≤ L̄, and a single outgoing transition with a guard c ≥ Ľ.

80 4. Stability Verification of Aperiodic SDS Using HA-CLD

q0 can also corresponds to short iterations, and the guard of transition q0 → q0

is changed to Ľ ≤ c ≤ L̄. This, and the guard c > L̄ of transition q0 → q1

ensure that if a long iteration takes place, then it is always followed by N
short ones in the transition sequence q0 → q1 → · · · → qN → q0.

4.3.2. Hybrid Automata with Clocked Linear Dynamics

The models described earlier share some common features in their syntax:
1) the state variables can be partitioned based on their dynamics, which are
classified (with respect to the derivatives) as linear (plant), zero (controller)
and constant (clocks) derivative; 2) the reset maps are linear; 3) the guards
and invariants are intervals restricted to the clocks only. Because these
features and restrictions on the syntax of HA are sufficient to characterize a
wide range of aperiodic SDS, we identify such models with a new HA-CLD
class, defined as follows:

Definition 4.3.1 (Syntax of HA-CLD)

A Hybrid Automaton with Clocked Linear Dynamics is a tuple H =
(Q, q0,X , XInit, C, CInit, E, I,G, j, jc), where:

1. Q = {q1 . . . ql} is the set modes, and q0 is the initial mode;
2. X ⊆ Rn is the continuous state space with state variable x(t) ∈
X , called a nonclock, and XInit ⊆ X is an initial state set. x
evolves in each mode q according to ẋ = Aqx, Aq ∈ Rn×n;

3. C ⊆ Rp is the clock state-space with state variable c(t) ∈ C,
called a clock, and CInit ⊆ C is an initial clock set. c evolves in
each mode q according to ċ = 1;

4. E ⊆ Q×Q is a set of discrete transitions;
5. I : Q → 2C assigns a clock-restricted interval hull invariant for

each mode q ∈ Q, according to Iq , I(q) = [cq1, c
q
1]×· · ·×[cqp, c

q
p];

6. Similarly, G : E → 2C assigns a clock-restricted interval hull
guard for each transition e = (q, q′) ∈ E, according to Ge ,
G(e) = [ce1, c

e
1]× · · · × [cep, c

e
p];

7. R : E×X → X , is a linear reset map (or jump) on for an enabled
transition e = (q, q′), defined as Re(x) = Fex, Fe ∈ Rn×n.

8. Similarly, RC : E × C → C is a linear reset map, RCe (c) = Pec+
c̄e, Pe ∈ Rp×p, c̄e ∈ Rp, that is applied to the clock variables.

The definition of the HA-CLD model is quite similar to Definition 2.4.1
with its state space partitioned into X × C, the set of nonclock and clock

4.4. Semantics and analysis of HA-CLD 81

variables. Here, we make the restriction that the dynamics of nonclocks are
linear, while the clocks have constant dynamics. Additionally, guards and
invariants are restricted to interval hulls, which are only defined for clocks.
Jumps are also affine maps. In terms of the operational semantics, a HA-CLD
behaves exactly as any other HA as described in Chapter 2.

4.4. Semantics and analysis of HA-CLD

In this section we describe the temporal and dynamical behaviors of the
HA-CLD model. Concretely, we use dwell time abstractions, specified by
clocks, to describe the temporal and switching behaviors. This allows us to
ignore the clock variables in the analysis of the dynamical behavior. Because
the temporal behavior is completely independent of the nonclock variables, it
can be analyzed in isolation to characterize the dwell times. Subsequently, we
use this property the prove our key stability result about HA-CLD.

4.4.1. Temporal behavior

The temporal behavior in a HA-CLD is explicitly modeled by the set of clocks
C and the associated guard and invariant constraints. However, to simplify the
analysis of the dynamical behavior, it is easier to reason with so-called dwell
times instead. Specifically, with dwell times we refer to the time intervals
between two discrete transitions in a trajectory. Formally, given an execution

(qk)
k̂
k=0 of a HA-CLD H, then a dwell time τk = tk+1 − tk ∈ R+, where the

sequence (tk) is defined in Definition 2.4.2.

Furthermore, we denote with τ e = infτ{τ ∈ R | e = q → q′ ∈ E and c+
τ1 ∈ Ge ∩ Iq} the lower bound on the dwell time for a transition e ∈ E.
Similarly, with τ(q) = supτ{τ ∈ R | c+ τ1 ∈ Iq} we denote the upper bound.
Finally we denote with Te = [τ e, τ q] ⊂ R+ the closed dwell time interval, with
τk ∈ Tqk→qk+1

.

Normally, reasoning with dwell times is not useful for HA, because bounds
on these cannot be explicitly derived in general, i.e. the temporal behavior
of the automaton is implicitly defined. In contrast, the dwell times can
always be characterized for HA-CLD, and analytical expressions for their
characterizations can be derived, similarly to equation (4.3), or by performing
isolated temporal analysis.

4.4.2. Dynamical behavior

The dynamical behavior is characterized by the continuous state trajectories
of x(t) ∈ X according to Definition 2.4.3. The trajectories of c(t) ∈ C can be

82 4. Stability Verification of Aperiodic SDS Using HA-CLD

ignored, since their behavior is not necessary for analysis by the introduction
of dwell times. We only consider the state at time tk, i.e. xk = x(tk), the state
after continuously evolving up-to, but not including time tk, from its initial
value xk−1, and subsequently applying the reset map R upon transitioning
to a new mode qk at time tk. Thus, given a HA-CLD H with an execution
(qk), and using Definition 4.3.1, the discrete-time state xk can be recursively
defined for all k ≥ 0 as:

x0 ∈ X0, ek = qk → qk+1 ∈ E,
xk+1 = Ψek(τ)xk, τ ∈ Tek ,

(4.4)

where Ψek(τ) = Feke
Aqτ .

From this relation, a discrete-time trajectory of the state up-to time tk
can be seen as a left-wise product of k − 1 matrices, such that:

xk = Ψek−1
(τk−1) · · ·Ψe0(τ0)x0, τk ∈ Tek for all k. (4.5)

Using this we give the following definition of stability:

Definition 4.4.1

Let the sequence (qk)
N
k=0 be any valid execution of the HA-CLD H

of length N , as defined in Definition 2.4.2, and let (xk)
N
k=0 be its

corresponding continuous state trajectory that satisfies equation (4.4).
We say that the automaton is stable if for all N ∈ N there exists a
bounded constant ε > 0, such that ‖xk‖ ≤ ε for all x0 ∈ X0 and all
k ≤ N . It is asymptotically stable if ‖xk‖ → 0 as k →∞. Here ‖·‖
is any vector norm on Rn.
The automaton is said to be unstable if it is not stable.

4.4.3. Stability verification

The process of verifying the stability of a HA-CLD using reachability analysis
involves computing exact or tight overapproximations of the reachable and
successor sets as defined in equation (2.8) and (2.9) respectively, until a
fixed-point is found. This condition is met when the set of reachable states,
Rk, stops expanding for some k, formally Rk = Rk+1. Additionally, to
verify asymptotic stability it must hold that all states in Xk are contained
in X0, i.e. Xk ⊂ X0, where X0 = B‖·‖ is a unit ball with respect to ‖·‖.
Visually this is shown in Figure 4.2. For general HAs this is not possible,
as discussed in Section 3.2. Fortunately for the HA-CLD model we can

4.4. Semantics and analysis of HA-CLD 83

Figure 4.2: Visual depiction of the reachable and successor sets. Here Rk+1 =
Rk because Sk+1 ⊂ Rk, and Sk+1 ⊂ S0.

capitalize on the following properties to show global (asymptotic) stability
using model-checking:

1. The temporal behavior is independent of the dynamical behavior: re-
moving the state variable x and its dynamics yields a LHA, for which
the reachability problem is decidable [Hen+95].

2. The state recurrence relations are linear as observed from equation (4.4).
Specifically the state after k > 0 discrete transitions is computed by a
series of matrix multiplications from the initial state.

We formalize the stability verification of HA-CLD with reachability anal-
ysis as follows:

Theorem 4.4.1

Let H be a HA-CLD with nonzero and bounded dwell times, and
corresponding successor and reachable sets of states, Sk and Rk, de-
fined according to equation (2.8) and (2.9) respectively. Furthermore
let S0 = {q0} × B‖·‖ × C0 be an initial set of states.

1. The automaton is stable for any initial state x0 ∈ X0 if there
exists an N ∈ N, such that Rk+1 = Rk for all k ≥ N .

2. In addition, it is asymptotically stable if and only if there is a
k > N such that for all (q, x, c) ∈ Sk holds that ‖x‖ < 1 and
Sk ⊂ S0.

84 4. Stability Verification of Aperiodic SDS Using HA-CLD

Proof. 1. Let Xk = {x ∈ X | (q, x, c) ∈ Rk}, andXk = {x ∈ X | (q, x, c) ∈ Sk}.
Assuming that there is an N ∈ N, such that Rk+1 = Rk for all k ≥ N ,
then Xk+1 = Xk =

⋃k
i=0Xi =

⋃N
i=0Xi = XN . Thus, Xk is bounded for

all k, and we set:

ε = max
k
{max
x∈Xk
{‖x‖}} <∞.

Therefore, we can pick an arbitrary infinite sequence (xk ∈ Xk) ∈ XN
that satisfies equation (4.4). Then ‖xk‖ ≤ ε for all k, because Xk
contains all of the sequences up-to k. Because the choice of (xk) is
arbitrary, then by Definition 4.4.1 the automaton H is stable.

2. =⇒ : Let (xk) be an arbitrary sequence, such that xk ∈ Xk for all
k. Assuming that the automaton is asymptotically stable by Defini-
tion 4.4.1, then ‖xk‖ → 0 as k → ∞. By definition this implies that
there exists a k such that Xk ⊂ B‖·‖ = X0 =⇒ Sk ⊂ S0.

⇐= : Suppose that Sk1 ⊂ S0 and Xk1 ⊂ B‖·‖ = X0 for some k1, and let

(qk)
k1

k=0 be an arbitrary execution of the automaton with an associated

arbitrary sequence of dwell times (τk ∈ Tqk→qk+1
)k

1−1
k=0 and transition

sequence q0 → · · · → qk1 . Then using equation (4.5) one can derive for
any arbitrary x0 ∈ X0 that:

‖xk1‖ =
∥∥∥Ψqk1−1→qk1 (τk1−1) · · ·Ψq0→q1(τ0)x0

∥∥∥ = ‖A1x0‖ < 1,

because Xk1 ⊂ X0, and thus the matrix A1 is a contraction mapping
with m1 = ‖A1‖ < 1. By a similar procedure, we pick another arbitrary

execution (qk)
k2

k=k1 , k
2 > k1, with associated matrix A2, that has m2 =

‖A2‖ < 1, because ‖A2xk1‖ < m1 for any xk1 ∈ Xk1 . We can repeat
this process indefinitely, because the dwell times τk are assumed nonzero
and bounded for all k ≥ 0. Repeating this process indefinitely, one finds
execution sequences (qk)

ki

k=ki−1 , i ≥ 1, with associated matrices Ai and
norms mi = ‖Ai‖ < 1, so that:

‖xki‖ = ‖Ai · · ·A1x0‖ ≤
i∏

j=1

mj → 0, for all x0 ∈ X0,

as i → ∞. In the inequality we make use of the submultiplicativity
property of the operator norm (see Definition A.1.8). Because the
choice of sequences is arbitrary, we conclude by Definition 4.4.1 that
the automaton H is asymptotically stable. This holds for any arbitrary
nonzero initial state x0 ∈ X given S0 as defined in Theorem 4.4.1,

4.5. Case study 85

because xk can be expressed as ax′k for all k and some a ∈ R, so that
x′0 ∈ B‖·‖ . Therefore, by the homogeneity of ‖·‖, ‖xk‖ = |a| ‖x′k‖ → 0.

In the second part of the proof of Theorem 4.4.1, we exploited the fact
that the clock variables can be abstracted by dwell times, and therefore
excluded from analysis, and that the switching of the automaton is completely
independent of the state x ∈ X . This allowed us to conclude, if the conditions
of the theorem hold true, that there are a series of arbitrary executions with
associated linear mappings that contract the initial set X0. Thus, the theorem
shows that if a HA-CLD has asymptotically stable fixed point, then during
the model-checking process the condition Rk+1 = Rk is eventually met and
the tool terminates. Conversely, when a model-checker terminates execution,
then this implies that there exists a stable fixed-point. However, verifying
asymptotic stability requires an additional finite amount of iterations so that
the condition Sk ⊂ S0 is satisfied, which is a stronger condition compared to
Rk+1 = Rk, used by reachability tools as a stopping criterion.

4.5. Case study

In this section we present a case study where we evaluate our stability verifi-
cation approach. We consider an SDS with self-timed execution, as presented
earlier in Chapter 3, and derive the HA-CLD models of its closed-loop dynam-
ical behavior given the WCET and average task workload characterizations.
We then use SpaceEx [Fre+11] on the derived models to compute their
reachable sets, and evaluate the control performance. Because SpaceEx is
not equipped with the necessary features to verify asymptotic stability, as
Theorem 4.4.1 requires, we also use our own reachability analyzer to do so,
described in Chapter 5. Our tool also provides additional insights about the
control performance, by assessing the transient closed-loop response of the
system.

4.5.1. Setup

The plant under consideration has a state x(t) ∈ R2 and its dynamics are
specified by the system matrices:

A =

(
−1 0.1
−0.02 −2

)
, B =

(
0
2

)
.

The plant is controlled by a proportional feedback regulator with a state
u(t) ∈ R, and update matrices F =

(
−Kp 0

)
and G = 0, Kp = 15.

86 4. Stability Verification of Aperiodic SDS Using HA-CLD

The total state of the closed-loop system is then z =

(
x
u

)
∈ R3. The

initial set of continuous states is Z0 = [−1, 1]3 = B‖·‖∞ , i.e. the unit cube.

Given a WCET characterization, we consider the HA-CLD model shown
in Figure 4.1a. Here L̂ = 2.2 and Ľ = 0.2, such that the system is unstable.
For the average characterization the model shown in Figure 4.1b is used,

where we take L̄ = L̂
m with m the number of modes.

The SpaceEx tool uses the STC algorithm [FKLG13] with an absolute
error of 0.001 and octagon template polyhedra. The time horizon is set to 5s.
An example 5-mode automaton is shown in Figure 4.3.

Figure 4.3: SpaceEx automaton model of a 5-mode self-timed system.

4.5.2. Results

The results from our MATLAB-based model-checker are shown in Figure 4.4,
where the absolute maximum and minimum value of the state x is computed
for each iteration k. The resulting graph forms the so-called envelopes, which
encapsulate all possible state-trajectories of the plant. The state of the
controller is not shown for clarity.

4.6. Conclusion 87

The 1-mode envelope (red) shows that the system is unstable given a
WCET characterization. An average iteration time characterization however
is shown to improve the performance, as seen from the other envelopes.
Although the system is still unstable given a 2-mode approximation, refining
the model by including more modes stabilizes the system and decreases the
maximum overshoot.

The SpaceEx model checker also partially confirmed some of these results.
Specifically, for the 1-mode automaton the tool fails to find a fixed-point
after 50 iterations. Repeating the same procedure for the running average
characterization with 2, 3 and 4 modes results in a similar situation. On
the other hand, the tool terminates for the 5 mode model from Figure 4.3
with L̄ = 0.2 and L̂ = 0.44 after 38 iterations. However, the tool stops after
Rk+1 = Rk, but Sk ⊂ S0 does not hold. That both hold is a necessary and
sufficient condition for asymptotic stability as required by Theorem 4.4.1, so
SpaceEx cannot verify asymptotic stability. Other tools such as Flow* [CÁS13]
and HyLaa [BD17] use the same stopping criterion as SpaceEx, so they also,
as of writing, cannot be directly used to verify asymptotic stability.

The poor convergence behavior of SpaceEx is due to the introduced
overapproximation error in the reachable set Rk by the tool. This is because
SpaceEx does not exploit the syntax and properties of HA-CLD to optimally
compute tighter flowpipes, and guard and invariant intersections, as we will
show in Chapter 5.

2 4 6 8 10 12 14
-1

-0.5

0

0.5

1

1 mode

2 modes

3 modes

4 modes

5 modes

(a) x1

2 4 6 8 10 12 14
-15

-10

-5

0

5

10

15

1 mode

2 modes

3 modes

4 modes

5 modes

(b) x2

Figure 4.4: State-envelopes of the plant.

88 4. Stability Verification of Aperiodic SDS Using HA-CLD

4.6. Conclusion

In this chapter we introduced the HA-CLD model for SDS with aperiodic S/A.
The model is particularly suitable for analyzing SDS, whose S/A intervals
can be characterized with average workload characterizations, where intervals
are shorter on average compared to their time-triggered counter-parts. Such
systems tend to have an improved control performance, which is hard to
evaluate with other approaches, based on e.g. switched systems and CQLFs.

We then show that the stability of an aperiodic SDS, modeled by a
HA-CLD, can be verified using reachability analysis. Specifically, we prove
that a model checker can conclusively verify (asymptotic) stability of HA-CLD
models. In this result we exploit the property that the temporal and switching
behaviors, specified by clock variables, are independent of the dynamical
behavior of the model. This property allows tractable tools to analyze the
temporal behavior separately, and derive dwell time abstractions that are
used to prove stability, provided that the condition of contraction is satisfied.

Finally, we demonstrate our approach on a practical aperiodic SDS. Specif-
ically, we used SpaceEx to show stability of the system in self-timed control
mode, of which the execution times are characterized by its WCET and a
running average. Asymptotic stability is shown using our own reachability
algorithm, because existing tools do not provide the required state-space explo-
ration stop criterion. Additionally, we show with MATLAB that the transient
control performance of the system with tighter task workload characterizations
is improved in terms of maximum overshoot.

5

Reachability Analysis of
HA-CLD

Abstract

HA-CLD are an expressive hybrid system model that can be used to analyze
a large subset of SDS with aperiodic S/A, where the temporal and discrete-
event behaviors can be characterized and explicitly specified. However, modern
reachability analysis tools introduce a large overapproximation error, because
the flowpipe of nonclock variables is not computed separately from the flowpipe
of clock variables, which have constant dynamics, by the algorithm.

In this chapter we present a reachability algorithm that exploits the explicit
separation of clock and nonclock variables in the HA-CLD subclass, to compute
tighter flowpipes that greatly reduce the overapproximation error. Furthermore,
we exploit that the guard and invariant constraints are only defined for clock
variables in the model to simplify the computation of set intersections.

Reachability analysis of HA is an important and extensively studied problem
in the hybrid systems community. As discussed in Chapter 2, the reachability
problem is to compute the set of all the possible states that a system can reach
from a given initial set, as the system evolves over time. Equivalently, it is a
problem of evaluating all possible state trajectories at once. This reachable
set is then used to verify certain safety and liveness properties.

However, computing an exact representation of the reachable set of a
HA is usually not possible, and as a result it is typically derived as a union
of overapproximated sets, a process known as flowpipe construction. The

This chapter is based on the published and revised work in [VSEH:3].

89

90 5. Reachability Analysis of HA-CLD

sets are also called segments of the flowpipe, because their union forms a
connected set. The most common representations of the segments are convex
polytopes, zonotopes, ellipsoids and oriented box hulls, among others [BD17;
Ben+08; Che15; Fre+11; Bog+18; DV16; FKLG13; LGG10]. A problem with
this method of computing the reachable set is the accumulation of error due
to overapproximation, also known as the wrapping effect [GLGM06]. Typical
causes for this are: 1) mixture of variables with different dynamics, for which
one representation may not be universally tight; 2) set operations that produce
one representation from another, e.g. intersection of zonotopes; 3) overap-
proximations introduced to reduce the complexity of a set representation,
and/or to reduce the number of segments, i.e. aggregation. While there exist
methods to avoid the overapproximation when performing continuous-time
and discrete-event reachability independently for certain subclasses of the
HA, it is unavoidable when combined.

The HA-CLD model introduced in Chapter 4 is one such example of
an automaton, where the above mentioned issues stand out clearly in its
reachability analysis. In these models the Continuous-Time (CT) state space
is partitioned into clock and nonclock variables. Clock variables (clocks) have
simple linear dynamics in the form of ċ = 1, while the dynamics of nonclock
variables are linear, or even affine. While this syntactic partitioning of the state
space proved to be very beneficial for modeling and analysis, it is not exploited
by state-of-the-art reachability tools. Instead, they treat the state space as
a whole, and apply one common flowpipe construction technique equally to
all of the variables. As a result, the reachable sets of HA-CLD computed
by SpaceEx tend to be very bloated by the overapproximation, which makes
them even useless in many cases, as demonstrated in the previous chapter.
This has prompted the development of our own reachability algorithm, which
we have used to accurately evaluate the control performance of the aperiodic
SDS in Chapter 4.

In this chapter we present our reachability algorithm, which exploits the
syntactic partitioning of the state space into clocks and nonclocks. Con-
cretely, the partitioning allows computing their flowpipe overapproximations
separately, of which the clock flowpipe is trivially derived, which increases
the accuracy and computational efficiency. Additionally, the invariants and
guards are interval hulls defined only for clocks, which greatly simplifies com-
puting intersections. Similar ideas have been proposed in [SNA17; SWÁ18]
for general HA, where the partitioning of the state space, based on the syn-
tactic classification of the continuous dynamics, is automatically performed.
However, a key difference with the work presented in this chapter, is that
there they do not propose a more efficient approach for guard and invariant

5.1. Related Work 91

intersections, and aggregation of the flowpipe segments.

Besides its use in the case study of Chapter 4, here we evaluate the
reachability algorithm on two HA-CLD models of commonly encountered,
practical SDS. In the first case we consider the scenario where the sampled
sensor data is received aperiodically by the controller at different data rates.
In the second case we consider SDS with periodic S/A, which experiences
data loss, due to e.g. a packet drop in a network, or due to misdetection
by a NN-based computer vision algorithm. The results for these systems
obtained with our model checker are compared with results obtained with the
state-of-the-art model checker SpaceEx [Fre+11].

The rest of this chapter is organized as follows: In Section 5.1 we review
related work. Section 5.2 discusses the basic idea of our approach and
introduces common reachability analysis issues. In Section 5.3 we describe
the flow-pipe construction process. In Section 5.4 we present the complete
reachability algorithm and the key techniques that simplify the intersection
with guards and invariants. Our benchmark results are presented in Section 5.5.
Our conclusions are presented in Section 5.6.

5.1. Related Work

In this section we discuss approaches that are closely related to our work and
outline the differences.

The works by Frehse and Le Guernic et al. [LGG10; FKLG13] present
a reachability analysis approach for LTI systems with extensions to HA-LD.
Here they utilize symbolic support function representations of the overapprox-
imated sets, allowing certain operations to be applied efficiently. The methods
presented in these works have been successfully integrated into the SpaceEx
model-checker [Fre+11]. However SpaceEx does not exploit separability of
clock and nonclock variables for HA-CLD models to improve the accuracy
and computational efficiency. In contrast our approach specifically targets
HA-CLD models.

An approach by Schupp et al. [SNA17; SWÁ18], similarly to our work,
proposes a reachability algorithm (implemented using HyPro [Sch+17]) that
utilizes syntactical separation of the variables into partitions with dynamic-
specific classes, namely (1) zero-derivative, (2) timed (clocks), (3) constant-
derivative and (4) linear. Existing class-specific flow-pipe techniques are then
applied to each partition separately to achieve better efficiency and accuracy.
They also observe that segments in different partitions are related and note
that if a guard or invariant, i.e. a predicate, for a segment of one flow-pipe
does not hold, then there is no need to evaluate the predicates of the other

92 5. Reachability Analysis of HA-CLD

flow pipes, which improves the efficiency. A difference with our work is that
in the HA-CLD model guards and invariants can only be defined for clocks,
and checking these predicates on clocks is always easy. Furthermore, Schupp
does not present an efficient way to compute overapproximated intersections.
We present an efficient intersection approach which is based on the relation
between the segments of clock and nonclock flowpipes.

A recent work by Bogomolov et al. [Bog+18] describes an approach
which considers decomposing a highly dimensional system into 2 × 2 sub-
systems that can be independently analyzed more efficiently and accurately.
A Cartesian product of the resulting reachable sub-sets is then computed,
which overapproximates the reachable set of the original system. However, the
approach does not make an explicit type distinction between the sub-spaces.
As such, efficient guard/invariant intersection and flow-pipe construction
approaches for each sub-space are not considered. A reachability algorithm is
also not presented.

The works by Khatib et al. [AKGD15; AKGD17] present a stability verifi-
cation approach using reachability analysis of systems, where the temporal
and functional behaviors are explicitly specified. The models considered
are very similar to our HA-CLD, and the algorithms presented exploit the
separability of temporal and functional variables to compute reachable sets
efficiently and synthesize schedules. However, an important difference is that
their approach supports only a single clock and one discrete mode, whereas
our approach supports models with multiple clocks and multiple modes.

5.2. Basic Idea

In this section we describe common issues associated with reachability analysis
and the basic idea of our approach.

5.2.1. Common issues

In state-of-the-art tools, flowpipe segments are represented by symbolic geo-
metrical objects, which have certain advantages and disadvantages over each
other with respect to the data structures used to store them, the computational
complexity of the operations that can be applied, and the overapproximation
error introduced by these operations. For example linear transformations,
Minkowski sums and checking for an intersection are computationally efficient
operations for zonotopes. However, zonotopes tend to grow in storage com-
plexity due to the Minkowski sum, which forces one to overapproximate the
zonotope with one of lower order [KSA17; Gir05]. Additionally, computing
intersections with another zonotope, or any other polytope, is not an efficient

5.2. Basic Idea 93

operation [FFL01; GLG08]. Furthermore, the computed intersection is no
longer a zonotope, which shows that in general some of these representa-
tions are not closed under certain operations. For a more detailed discussion
about the benefits and drawbacks of zonotopes and other set representations
see [Sch19; Bog+18; GLG08; GLGM06; LGG10].

To take advantage of the computational benefits that come with one
particular representation, the algorithm needs to constantly switch between
representations, which almost certainly introduces an overapproximation error.
Even worse, repeating this process numerous times throughout the execution
of the algorithm tends to propagate and amplify the overapproximation error.
Furthermore, the error scales with the dimension of the state space of the
model, and certain representations become less tight as the number of dimen-
sions grows. This is especially the case when the state variables have mixed
dynamics, such as clocks and Piecewise-Constant (PWC) variables [SÁ18;
SNA17]. Finally, when simple guard and invariant constraints are defined for
e.g. clocks, an intersection and inclusion operation can be more expensive
than needed, as an unnecessary complex representation is used for all of the
variables.

As an example consider the HA-CLD models from Chapter 4. There
we specified the dynamics of the plant in each mode using linear ODEs,
while the control law was specified by a transition with a linear reset map.
Additionally, a clock was introduced in the model that represents the S/A
intervals and execution times of the controller. There, invariants and guards
are intervals over the clock variable, which define an upper and a lower bound
on the execution time. Thus, the plant, controller and clock states variables,
x, u and c, respectively, form the state space of the HA-CLD model. In
these models it is easy to see that an explicit intersection of the reachable
sets is not necessary, because the dwell times in each given mode can be
exactly derived, and the clock flowpipe can be trivially computed. However,
modern reachability algorithms usually do not make this syntactic state
space partitioning, and therefore do not apply dynamics-specific reachability
analysis techniques that take advantage of this partitioning. Consequently,
intersections are also more computationally expensive to compute, and may
result into large overapproximations if converted to a different representation.
The consequence is that the analysis may conclude that the system does not
satisfy the requirements, even though in reality it does, as seen from the case
study in Section 4.5.

In the spirit of this example, we take into consideration that the partition-
ing of the state space into clock and nonclock variables can have great benefits
for the reachability algorithm, and exploit this concept in our approach. For

94 5. Reachability Analysis of HA-CLD

Figure 5.1: A set as an arrangement of hyperplanes and intersecting half-
spaces (green), and as the convex hull of a finite number of vertices (orange).

example the flowpipe of the nonclock variables is more tightly computed since
the dimensionality is reduced, because clock variables are treated separately.

5.2.2. On polytope representations of nonclock segments

Our method, which is described later in this chapter, uses the norm ball
B‖·‖ = {x ∈ Rn | ‖x‖ ≤ 1} to represent the “endpoints” of a nonclock
flowpipe segment. However, the representation of these depends on the
chosen norm ‖·‖, and can have different implications on the computational
and storage complexity, and overapproximation error. The 2-norm ball for
example is stored by its center and radius, thus requiring O(n+ 1) storage
per ball. Unfortunately, computing convex hulls and Minkowski sums of
2-norm balls is not tractable. Furthermore, they are not closed under these
operations, including linear transformations where the image of a ball under
a linear map is an ellipsoid. And so, this representation is not useful in the
long run. The alternative 1-norm ball B‖·‖1 , and the ∞-norm ball B‖·‖∞ on
the other hand are much more useful, because they are convex polytopes (also
called bounded convex polyhedra). Convex polytopes, depending on their own
representation, lend themselves to tractable methods of computing Minkowski
sums, intersections, unions, and linear mappings. Because of these qualities,
we use convex polytopes to represent the flowpipe segments.

There are two possible polytope representations: as sets of points or as
an arrangement of hyperplanes (see Figure 5.1). The first is often called
the V-polytope representation. Here, the polytope is specified by a set of
vertices, which are extreme points on the boundary of the polytope that
determine its structure. Formally, given a set of points {p1, . . . , pk}, then

5.2. Basic Idea 95

P = conv({p1, . . . , pk}). Furthermore, P 6= conv({p1, . . . , pk} \ {pi}) for any
i ∈ {1, . . . , k}, that is removing any vertex of the polytope yields a different
polytope. If one allows the set of vertices to contain nonextreme points
{v1, . . . , vl} ⊂ P , then also P = conv({p1, . . . , pk, v1, . . . , vl}), and removing
any nonextreme point does not change the polytope structure. Such points are
also called redundant, and are most often in the interior of the polytope. The
advantage of this representation is that it allows to efficiently compute unions,
Minkowski sums, and linear transformations, which yields a V-representation
in return. A union in particular is a simple concatenation of points. The V-
representation is also very suitable for set aggregation, a technique to prevent
exponential growth of segments, described later in this chapter. However,
computing intersections of V-polytopes is NP-Hard [Tiw08].

The other representation is often called the H-polytope representation.
Given a matrix A ∈ Rk×n and a vector b ∈ Rk, then a H-polytope is specified
by P = {x ∈ Rn | Ax � b}. Here the pair (ai, bi), where ai ∈ Rn is a row
of A, represents a hyperplane and a half-space. Therefore, an equivalent
representation of the polytope is P =

⋂k
i=1{x ∈ Rn | a>i x ≤ bi}. Similarly

to V-polytopes, removing a hyperplane yields a different polyhedron, which
may be unbounded. On the other hand, there may be a plane represented
by the pair (ai, bi), such that P ∩ {x ∈ Rn | c>i x ≤ di} = P , i.e. this plane
is redudant. In contrast to the V-polytope, intersections of H-polytopes are
efficiently computed, by concatenating their respective linear inequalities.
However, computing Minkowski sums and convex hulls of unions that yield a
H-polytope in return is NP-Hard [Tiw08]. Additionally, removing redundant
inequalities can also be a very expensive operation [EL13].

Because of these tradeoffs, it may be tempting to convert a V-polytope
to an H-polytope, and vice versa, a process known as the facet and vertex
enumeration problem, respectively. However, these operations can also be
NP-Hard [BDH96]. Therefore, switching between representations should be
avoided as much as possible. Thus, in our reachability algorithm we only use
the V-polytope representations of the nonclock segments, because intersections
of the segments with guards and invariants are not computed. Furthermore,
the V-representation can be extended to allow representing nonconvex sets.
However, the computational load and storage complexity of this representation
may increase, because union operations introduce redundant points. We note
however that the extra computational effort is compensated by the fact that
flowpipes are tighter and a fixed point is found earlier. Furthermore, the
redundant points are directly removed during aggregation.

96 5. Reachability Analysis of HA-CLD

5.2.3. Computing intersections with clock segments

In HA-CLD, guards and invariants are defined as box constraints, which
are polyhedra specified by a set of box inequalities of the form a � x � b.
Computing intersections of sets with polyhedra is often a very expensive
operation, which is usually not closed for certain set representations, i.e.
intersecting a set representation by a polyhedron does not yield a set of
the same representation. As a result, the computed intersection is often an
overapproximation of the exact intersection, so that it can be represented
with the same representation of the intersected set. A classical example
of this is the zonotope intersected by a polyhedron, as discussed earlier.
Although a zonotope is a polytope by definition, it is hard to compute an
equivalent H-polytope representation for which the polyhedron intersection
can be computed exactly [FFL01]. Even then, the resulting polytope is not
symmetric, and so it is not a zonotope. Alternatively, the intersection can
be overapproximated by a new zonotope, as proposed in [GLG08]. Other
representations that are not H-polytopes, such as ellipsoids, are impossible to
intersect exactly without an overapproximation, such as a Minimum-Volume
Enclosing Ellipsoid (MVEE) [KY05]. Therefore, H-polytopes seem to be
the most suitable representation of segments to compute exact intersections.
But, as discussed previously, H-polytopes may include redudant halfspaces,
and removing these may be a costly operation, equivalent to solving a set of
Linear Programs (LPs) [EL13]. Finally, it is worth mentioning that one may
also opt to not derive a concrete set representation of the set intersection,
i.e. its parameters are not explicitly computed. Instead, the set and the
applied intersections are stored by a symbolic expression. Such an approach
is often called a lazy set intersection [Bog+19a]. This method avoids the
above mentioned issues and works well when one only needs to compute
the reachable set of a HA in symbolic form. However, eventually a concrete
representation is required in the verification process, which typically nullifies
the benefits of this approach.

On the positive side, the state variables in HA-CLD are partitioned into
clocks and nonclocks. This, and the additional restriction that guards and
invariants be box constraints defined only for clock variables with very simple
dynamics is very beneficial for computing intersections efficiently. Specifically,
it is easy to evaluate box constraints on clock segments whose flowpipes
evolve linearly in time, especially if the segments are themselves represented
as interval hulls. However, while guards and invariants are not defined for
nonclock variables, an intersection still needs to be computed for nonclock
segments. This is impossible to do exactly, because points from nonclock
segments are not topologically related to points in clock segments. The only

5.2. Basic Idea 97

(a)

(b) (c)

Figure 5.2: The combined flowpipe Z(t) (5.2a), intersected by G, and the
disjoint flowpipes C(t) and X(t) (5.2b and 5.2c, respectively).

relation that remains between segments is the time variable t. This becomes
apparent when the state space is not syntactically partitioned into clocks and
nonclocks, and the halfspaces generated by the box constraints are directly
intersected with the joint flowpipe instead, which is how a reachability tool
such as SpaceEx would normally analyze HA-CLD.

To make this point explicit, will we use the exact symbolic flowpipes
of two 1-dimensional variables c(t), x(t) ∈ R with initial sets C0 = [0, 1]
and X0 = [0, 1], respectively, where c is a clock. The flowpipes are to be
intersected by a box polyhedron G = {c | č ≤ c ≤ ĉ} = [č, ĉ]. The variables
evolve according to:

ẋ = −ax+ u, x(0) ∈ X0, a ∈ R+, u ∈ R is a constant,
ċ = 1, c(0) ∈ C0,

(5.1)

Notice that the initial sets and the box constraint are intervals, because the
variables are one dimensional when considered separately. Now, if we take the
joint initial set of the two variables as Z0 = X0 × C0, then the symbolic joint

98 5. Reachability Analysis of HA-CLD

flowpipe is defined as Zt = {(c(t), x(t)) ∈ R2 | x, c satisfy (5.1)} for t ∈ [0,∞),
shown in Figure 5.2a. Its intersection with the box constraint, extended to
a slab G = {(c, x) ∈ R2 | č ≤ c ≤ ĉ}, is G ∩ Zt, which is the portion of the
flowpipe indicated by a hatching in the same figure.

In contrast, if considered separately, the disjoint symbolic flowpipes are
Ct = {c0 + t | c0 ∈ C0} and Xt = {e−atx0 + u(1− e−at) | x0 ∈ X0}, in-
dependently constructed from C0 and X0 for all t ∈ [0,∞), respectively,
and t is the only variable relating the two flowpipes, see Figures 5.2b
and 5.2c. Without composition into a joint flowpipe, the intersection can
only be derived for the clock flowpipe, which is exactly represented as
Ct ∩ G = {c0 + t | č ≤ c ≤ ĉ, c0 ∈ C0} = [č, ĉ], an interval. As a conse-
quence, the exact points of intersection cannot be determined for Xt, be-
cause the points from Ct are not topologically related to the points in Xt.
However, because both flowpipes are related by t, there exist points in
time that determine the “bounds” of the intersection. Specifically, the
fact that the clock flowpipe is intersected at the points ĉ and č implies
that for each c0 ∈ C0 there exists a t′ such that c0 + t′ ∈ [č, ĉ]. We can
thus define the interval [ť, t̂], where ť = inf{t ∈ R+ | c0 + t ∈ [č, ĉ], c0 ∈ C0}
and t̂ = sup{t ∈ R+ | c0 + t ∈ [č, ĉ], c0 ∈ C0}. In this example, ť = č − c0,
and t̂ = ĉ − c0, as shown in Figures 5.2b and 5.2c. Defining the set
X[ť,t̂] =

⋃
t∈[ť,t̂]Xt, and similarly C[ť,t̂] =

⋃
t∈[ť,t̂]Ct (which is also equal to

Ct ∩ G), then the overapproximated intersection is the rectangle X[ť,t̂] × C[ť,t̂],
indicated in by a purple color in Figure 5.2a. It is evident from this that the
syntactic partitioning of the state-space, and computing the intersection only
for clocks results in an overapproximation.

Fortunately, because both flowpipes are computed as a union of disjoint
segments which are related by similar time intervals as described above, this
overapproximation can be substantially reduced by making the segments
smaller. In fact, computing an intersection with segments is completely
avoided, and the only requirement is to check if the intersection is nonempty.
This efficient method for computing precise (and sometimes exact) intersec-
tions of clock and nonclock flowpipes independently is described in more
detail later in this chapter. We also point out the observation that while this
approach is overapproximative in nature, it is typically much less conservative
compared to state-of-the-art tools, where intersections are significantly more
expensive to compute, and are eventually overapproximated anyway.

5.3. Continuous-time forward reachability 99

Figure 5.3: A clock flowpipe C[0,T] (light blue), and it’s box overapproximation

{C̃i}Ni=1 (dark green) over an invariant Iq.

5.3. Continuous-time forward reachability

In this section we use Definition 4.3.1 to describe in detail the computation
of Flow(·) using flowpipe over-approximations from a single initial set S =
{q} ×X0 × C0.

5.3.1. Clock flowpipes

Clock variables in HA-CLD have simple dynamics in the form of ċ = 1, c(t) ∈ C,
and so c(t) = c0 + t1, c0 , c(0) ∈ C, for any mode q ∈ Q and any t ∈ R.
Thus, computing their clock flowpipe is trivial compared to the nonclock
variables. Specifically, if one takes as initial set C0 ⊂ C, then the flowpipe
image at any time t ∈ R is symbolically represented as Ct = C0 + t1 =
{c0 + t1 | c0 ∈ C0}. A symbolic segment of the flowpipe over a time interval
[T , T] is similarly represented as C[T ,T] = {c0 + t1 | c0 ∈ C0 and t ∈ [T , T]}.
However, as discussed previously, this representation is not suitable further
on when guard and invariant intersections need to be computed, because it is
symbolic. Additionally, as it will be shown in this section, a nonclock flowpipe
cannot be derived exactly and is instead overapproximated by a union of
segments, computed over time intervals of the same, fixed length, which is
the timestep. In order to efficiently compute intersections in our approach,
this time relation between the segments of the clock and nonclock flowpipes
needs to be preserved. Thus, a similar quantization technique is also applied
to the clock flowpipe which we describe below. Concretely, the clock flowpipe

100 5. Reachability Analysis of HA-CLD

is also split into segments of fixed sizes, based on the selected timestep. We
show later on that this also helps in the aggregation part of the algorithm.

Flowpipe construction

We restrict our attention to the clock evolution in one mode q ∈ Q. The
flowpipe is computed over a fixed time interval [0, T]. This T > 0 is selected
large enough, such that it guarantees that the flowpipe eventually reaches
the boundary of the invariant Iq for some t ∈ [0, T], i.e. C[0,T] ∩ ∂Iq 6= ∅.
Because the flowpipe is divided into segments, an additional timestep δ ∈ R+

is also selected so that C[0,T] =
⋃N
i=1C[(i−1)δ,iδ], where N = T

δ is the number
of segments. However, for the clock flowpipe one may select δ first and
determine N directly, as we show later, and this sidesteps the whole process
of determining T .

So far, we have derived the exact clock flowpipe divided into N segments,
but their representation is still not suitable to compute the intersections with
guards and invariants, which are interval hulls. To overcome this, we represent
the segments using interval hulls as well, for which the intersection operation
is naturally very efficient. We use the alternative representation of an interval
hull:

Box(c, w) = [c1, c1 + w1]× · · · × [cp, cp + wp] ⊂ C,

where c is the lowest corner point of the hull, and w is a displacement
vector with components equal to the lengths of the hull along each dimension.
Let C0 = Box(c, w) be the initial set of initial clock states, then the i-th
overapproximated segment is:

C̃i , C̃[(i−1)δ,iδ] = Box(c+ (i− 1)δ1, w + δ1), i = 1, . . . , N (5.2)

An example of a computed flowpipe is shown in Figure 5.3, where N = 5. It
is not hard to see that C[(i−1)δ,iδ] ⊂ C̃[(i−1)δ,iδ] for all i = 1, . . . , N , because

C[0,δ] consists of line segments from c0 ∈ C0 ⊂ C̃[0,δ] to c0 + δ1 ∈ C̃[0,δ]. Since

the sets C̃[(i−1)δ,iδ] are identical in size and their overlap is exactly the set

C0 + iδ, C[0,Nδ] ⊂
⋃N
i=1 C̃[(i−1)δ,iδ] showing that this new representation is in

fact an overapproximation of the exact flowpipe. While this is indeed the case,
it does not have a noticeable influence on the performance of the algorithm,
as we show in our case study.

Deriving the number of segments directly

As noted earlier, manually selecting T is unnecessary, and the exact amount of
segments N can be derived directly, given a time step δ and an initial set C0,

5.3. Continuous-time forward reachability 101

from the invariant Iq, provided that C0 ∩ Iq 6= ∅. Given these preconditions,
N can be directly computed according to

N =

⌈
max{t ∈ R+ | c+ t1 ∈ Iq, c ∈ C0}

δ

⌉
.

Given that C0 = Box(c, w) and Iq = [cq1, c
q
1]× · · · × [cqp, c

q
p] = Box(cq, cq − cq),

then this simplifies to:

N =

⌈
mini{cqi − (ci + wi)}

δ

⌉
. (5.3)

Informally, N is the minimum number of segments that can be fit inside the
invariant, if one is to place them along the 45◦ diagonal line connecting the
upper right corner of the initial set, and the boundary of the invariant, see
Figure 5.3. This is so because the clock variables evolve linearly with time
toward the upper bounds of the invariant, and never toward the lower.

5.3.2. Nonclock flowpipes

Now we describe the flowpipe construction process for nonclock variables. As
in the case of clocks, we only focus on the flowpipe construction process for
a single mode q of the automaton, and omit q throughout this section for
clarity. Recall from Definition 4.3.1 that the nonclock state evolves according
to ẋ = Ax. We generalize this a bit further to include a bounded disturbance
input u(t) ∈ U ⊂ Rm for all t ∈ R, so that:

ẋ = Ax+Bu, x(0) = x0 ∈ X0.

From Definition A.3.2, we know that the flow Φ is a solution to this ODE,
so that x(t) = Φ(t, x0). The exact flowpipe at a time t is thus Xt =
Φ(t,X0), and over a time interval [0, T] on the other hand it is X[0,T] =
{Φ(t, x) | t ∈ [0, T], x ∈ X0}. Its exact segments are defined, similarly to the
clock flowpipe, as X[(i−1)δ,iδ], i = 1, . . . , N . Because the flowpipe is continuous
in time, it cannot be computed exactly, and instead it is overapproximated
by a set of N segments {X̃i}Ni=1, where N is derived by the method described
earlier. First, the trajectory is discretized using the time step δ ∈ R+. Then
an initial segment X̃1 is computed, such that X[0,δ] ⊆ X̃1. The most common
approach is by bloating, where:

X̃1 = conv(X0 ∪ eAδX0) + (α+ β)B‖·‖ ,

where + is the Minkowski sum, conv(·) is the convex hull of a set (see
Definition A.2.2), α ∈ R+ is a bloating constant, and β ∈ R+ is an upper

102 5. Reachability Analysis of HA-CLD

Figure 5.4: The initial segment X̃1, indicated with purple color, and derived
by bloating. Here the exact flowpipe from X0 to eAδX0 is indicated with
green, and conv(X0 ∪ eAδX0) with a hatching.

bound on the disturbance input for a timestep δ, see [Gir05]. Intuitively, β
accounts for every possible input value of u(t).

On the other hand, α is chosen so that the initial segment X̃1 cov-
ers all of the curved trajectories from X0 to eAδX0, and not just straight
line segments, see Figure 5.4. Specifically, let x0 ∈ X0 be arbitrary, then
x̄(t) = t

δe
Aδx0 + (1− t

δ)x0 is a line segment connecting x0 to eAδx0. Clearly,
x̄(t) ∈ conv(X0 ∪ eAδX0) for all t ∈ [0, δ] and all x0 ∈ X0. Now, the distance
between x̄(t) and x(t) is:

‖x(t)− x̄(t)‖ =

∥∥∥∥(eAt − I)x0 −
t

δ
(eAδ − I)x0

∥∥∥∥
≤
∥∥∥∥(eAt − I)− t

δ
(eAδ − I)

∥∥∥∥ ‖x0‖ , (5.4)

by submultiplicativity of the operator norm. The term on the right hand side
can be maximized over t ∈ [0, δ] independently from x0 using 1-dimensional
optimization methods, such as bisection. Doing so, we define:

d∗ = max
t∈[0,δ]

{∥∥∥∥(eAt − I)− t

δ
(eAδ − I)

∥∥∥∥} .
Choosing α = d∗ ‖X0‖ = d∗maxx∈X0∪{0} ‖x‖, then clearly ‖x(t)− x̄(t)‖ ≤ α
implying that x(t) ∈ x̄(t) + αB‖·‖ for all t ∈ [0, δ] and all x0 ∈ X0, which

implies that X[0,δ] ⊆ X̃1.
Then, each segment is recursively computed as:

X̃i+1 = eAδX̃i + βB‖·‖ , i = 1, . . . , N. (5.5)

To understand why this is an overapproximation of the exact flowpipe, assume
without loss of generality that u = 0, and pick an arbitrary t ∈ [0, Nδ]

5.3. Continuous-time forward reachability 103

and x0 ∈ X0. Then there is an i ∈ N0 such that t ∈ [iδ, (i + 1)δ], and a
point x′′ = eAtx0 = eA(iδ+t′)x0 = eAiδeAt

′
x0 = eAiδx′, where t′ ∈ [0, δ] and

x′ ∈ X̃1 by construction of X̃1. But then this immediately implies that
x′′ ∈ eAiδX̃1 = X̃i+1, and the inclusion X[0,Nδ] ⊆

⋃N
i=1 X̃i follows. We note

that even though making δ smaller results into tighter segments, there is a
saturation point beyond which the overapproximation error is not significantly
reduced, while the number of segments increases substantially.

Flowpipe construction

Here we describe an alternative approach based on ball arithmetic to compute
tighter segments, where we first derive the intermediate sets Xδi, i = 0, . . . , N
using equation (A.3). The reason this approach results in tighter segments, is
because each segment is not bloated uniformly by the upper bound on the
disturbance input β, as is done in the previously described approach. Instead,
each “endpoint” of a segment, represented by a ball, is bloated individually.
Furthermore, the bound derived in e.g. [Gir05] is too conservative, because it
assumes arbitrary input signals. We only consider the set of bounded PWC
input signals over [0, δ], i.e. u ∈ {u′ : [0, δ] → U | u′(t) = uc ∈ U for all t ∈
[0, δ]}, which is realistic for SDS, and results into a tighter disturbance input
bound. Then by evaluating the integral in equation (A.3):

X(i+1)δ = ΦδXiδ + ΓδU , (5.6)

where Φδ and Γδ are computed using equation (2.4) with tk+1 − tk = δ.
Assuming that U = uc + µB‖·‖ , µ > 0 then equation (5.6) can be expanded
into:

Xiδ = Φi
δX0 +

∑i−1
j=0 Φj

δΓδU

= Φi
δX0 +

∑i−1
j=0 Φj

δΓδuc + µ
∑i−1

j=0 Φj
δΓδB‖·‖

⊆ Φi
δX0 +

∑i−1
j=0 Φj

δΓδuc + µβiB‖·‖ = X̄i,

(5.7)

where βi =
∑i−1

j=0‖Φ
j
δΓδ‖. In the last expression we make use of the following

property:

104 5. Reachability Analysis of HA-CLD

Proposition 5.3.1

Given matrices A ∈ Rn×n and B ∈ Rn×n, then

AB‖·‖ +BB‖·‖ ⊆ (‖A‖ + ‖B‖)B‖·‖ ,

i.e. the Minkowski sum of two images of the unit ball under two
linear maps A and B is in a ball with radius ‖A‖ + ‖B‖.

Proof. Pick an arbitrary z ∈ AB‖·‖ +BB‖·‖ , then there exist x, y ∈ B‖·‖ , such
that z = Ax+By from the definition of the Minkowski sum (see Notation).
We now show that z ∈ (‖A‖ + ‖B‖)B‖·‖ , i.e. that ‖Ax+By‖ ≤ ‖A‖ + ‖B‖.
Indeed:

‖z‖ = ‖Ax+By‖ ≤ ‖Ax‖ + ‖By‖ ≤ ‖A‖ ‖x‖ + ‖B‖ ‖y‖ ≤ ‖A‖ + ‖B‖ .

The last two inequalities are due to submultiplicativity of the operator
norm (see Definition A.1.8), and because x, y ∈ B‖·‖ . Because the choice of z
is arbitrary, AB‖·‖ +BB‖·‖ ⊆ (‖A‖ + ‖B‖)B‖·‖ . By a similar argument, this
property is easily extended to the Minkowski sum of an arbitrary number of
linear transformations of the unit ball with respect to the norm ‖·‖.

Finally, using equation (5.7), the i-th flowpipe segment is:

X̃i = conv(X̄i−1 ∪ X̄i) + αiB‖·‖ , (5.8)

where αi = d∗
∥∥X̄i−1

∥∥, derived using the method described earlier. Note that
at this point the convex hull is purely symbolic and is not actually computed.

5.4. Reachability algorithm for HA-CLD

In this section we extend Algorithm 1 to handle HA-CLD. Specifically, the
reachability algorithm for HA-CLD is shown in Algorithm 3, and in this
section we describe the discrete reachability part of the algorithm. We start
by describing how guard and invariant intersections are efficiently computed.
Then, we describe a simple aggregation algorithm the utilizes that interval
hull representation of clock segments.

5.4. Reachability algorithm for HA-CLD 105

Algorithm 3 Reachability of HA-CLD

1: function (Q,X,C)← Reachability(H, k̂)
2: Q0 ← {q0}, Xq0

0 ← XInit, C
q0
0 ← CInit . Initialization

3: ∀q ∈ Q \ {q0} : Xq
0 ← ∅, C

q
0 ← ∅

4: for k = 1, . . . , k̂ do
5: for each q ∈ Qk−1 do . Flowpipe computation
6: Xq

Temp ← ∅, C
q
Temp ← ∅

7: for each X0 ∈ Xq
k−1 and C0 ∈ Cqk−1 do

8: if C0 ∩ Iq 6= ∅ then . Check invariant intersection
9: Compute N according to equation (5.3).

10: Xq
Temp ← Xq

Temp ∪ {X̃i}Ni=1 . equation (5.8) and (5.7)

11: CqTemp ← CqTemp ∪ {C̃i}Ni=1 . equation (5.2)
12: end if
13: end for
14: end for
15: Qk ← Qk−1

16: ∀q ∈ Q : Xq
k ← ∅, C

q
k ← ∅

17: for e = (q, q′) ∈ E, q ∈ Qk−1 do . Transitions
18: Qk ← Qk ∪ {q′}.
19: for each X̃i ∈ Xq

Temp and C̃i ∈ CqTemp do

20: if C̃i ∩ Ge 6= ∅ then . Check guard intersection

21: Xq′

k ← Xq′

k ∪Re(X̃i)

22: Cq
′

k ← Cq
′

k ∪ R̃
C
e (C̃i) . equation (5.9)

23: end if
24: end for
25: end for
26: for q ∈ Qk do . Aggregation
27: (Xq

k , C
q
k)← aggregate(Xq

k , C
q
k)

28: end for
29: Xk ←

⋃
q∈Qk X

q
k , Ck ←

⋃
q∈Qk C

q
k

30: if Rk = Qk ×Xk × Ck = Qk−1 ×Xk−1 × Ck−1 = Rk−1 then
31: return (Qk, Xk, Ck). . Fixed point
32: end if
33: end for
34: return (Qk̂, Xk̂, Ck̂).
35: end function

106 5. Reachability Analysis of HA-CLD

(a) (b)

Figure 5.5: The overapproximated intersection of the flowpipes
⋃4
i=1 C̃i (5.5a)

and
⋃4
i=1 X̃i (5.5b) with G, marked in green.

5.4.1. Discrete reachability

Computing over-approximate intersections

Since guards and invariants in HA-CLD are interval hulls only defined for
clock variables, and a clock segment is itself an interval hull, intersections can
be performed trivially on the clock flowpipes. On the other hand, nonclock
flowpipes cannot be efficiently intersected without combining the flowpipes of
clock and nonclocks, for the reasons described earlier in Section 5.2.

Here we propose a very efficient method that derives approximate inter-
sections, without the need to directly involve the nonclock flowpipe segments.
Concretely, we take advantage of the fact that flowpipes segments are re-
lated by common time intervals [(i − 1)δ, iδ], i = 1, . . . , N over which they
are computed. Specifically, segments which do not intersect with a guard
Ge are discarded. Formally, if X[0,T] × C[0,T] is a joint flowpipe, then its
overapproximated intersection with the guard Ge is:

{X̃i × C̃i | i ∈ {1, . . . , N} and C̃i ∩ Ge 6= ∅} ⊇
(
X[0,T] × C[0,T]

)
∩ Ge.

A similar overapproximation is derived for intersections with an invariant Iq.
This overapproximation is very efficient to compute, because it requires check-
ing which segments form a nonempty intersection with a set, and discarding
the rest. Because guards and invariants are interval hulls only defined for
clocks, this check is trivially performed only for the clock segments.

Consider as an example a system with two clocks c1,2 and two state
variables x1,2. Let X0 = {x0} and C0 = Box(c0, 0) be the initial sets, and

5.4. Reachability algorithm for HA-CLD 107

let G = [−∞,∞] × [č, ĉ] be a guard. The flowpipes X[0,T] and C[0,T], their

approximations {X̃i}Ni=1 and {C̃i}Ni=1, and the guard G are visualized in
Figure 5.5. The segments with indices i = 1, 2, highlighted in red, are in the
exterior of G, and are therefore discarded, while the segments with indices
i = 3, 4, highlighted in green, are kept and represent the overaproximated
intersection.

Reset map overapproximation

After computing approximate intersections the reset maps Re and RCe , as
defined in Definition 4.3.1, are applied to the intersected sets. However,
interval hulls are in general not closed under linear transformations, and so
the image of an interval hull under an affine transformation, RCe (Box(c, w)),
may not be an interval hull, and is instead a parallelotope (see Figure 5.6).
To resolve this, we replace the standard transformation with an interval hull
overapproximation:

R̃Ce (Box(c, w)) = Box(Pec−
1

2
(Pe − abs(Pe))w + c̄e,abs(Pe)w), (5.9)

as shown in Figure 5.6. When there is no ambiguity, we will use the shorthand
notation R̃Ce (c, w) , R̃Ce (Box(c, w)). This is derived from the equivalent
zonotope representation Box(c, w) = Z(c+ w

2 ,diag(w2)) (see Definition A.2.7),
applying Proposition A.2.1, and using Proposition A.2.2 to derive a standard
basis-aligned bounding box of RCe (Box(c, w)).

Figure 5.6: Example over-approximation of a clock reset.

5.4.2. Set aggregation

Once continuous and discrete reachability is complete for an iteration k, the
resulting flowpipe segments are stored in the set arrays Xq

k and Cqk , as seen
from lines 21 and 22 of Algorithm 3, which are used in the next iteration
to compute new flowpipes. In particular, as seen from line 7, each stored
segment is used as an initial set in the flowpipe construction algorithm, which

108 5. Reachability Analysis of HA-CLD

generates a new flowpipe in the next iteration of the reachability algorithm
for each segment. Because the number of flowpipes grows uncontrollably with
each iteration, the reachability algorithm becomes infeasible. This is worsened
by the increasing number of redundant points in each X ∈ Xq

k , as discussed
in Section 5.2.

To reduce the number of flowpipes, clustered overlapping segments in
the clock domain are aggregated by a single interval hull, while the related
nonclock segments are merged and have their redundant points removed
using a convex hull algorithm. This procedure is described in Algorithm 4,
where we again take advantage of the fact that clock flowpipe segments
are interval hulls. Specifically, any two sets Ci = Box(ci, wi) ∈ Cqk and
Cj = Box(cj , wj) ∈ Cqk , i 6= j, are overlapping if the relation Ci u Cj holds,
defined as:

Ci u Cj ⇐⇒ (ci � cj and cj ≺ ci + wi) or (ci = 0 and ci = cj). (5.10)

The set of equalities are there to include the case when one of the interval
hulls has a side with zero length. If the sets overlap, then they are aggregated
by the interval hull Box(ci, wij), where wij = max{wi, cj + wj − ci}, and
conv(Ci ∪ Cj) ⊆ Box(ci, wij). The corresponding sets Xi,j ∈ Xq

k are then ag-
gregated by computing conv(Xi∪Xj) using the QuickHull algorithm [BDH96].
The aggregation of segments is performed for every ij-th pair, as seen in
Algorithm 4. Notice here that a set of indices J is introduced to keep track
of already aggregated segments, an thus these are skipped. Finally, all of the
aggregated sets are stored in arrays XNew and CNew, respectively, see line 14.
While this approach does not solve the problem completely, it significantly
reduces the uncontrollable growth of flowpipes. In Chapter 6 we introduce
a different aggregation method for nonclock segments, which tightens their
flowpipes.

5.5. Case study

In this section we present the case study where the HA-CLD reachability
algorithm is evaluated on two practical SDS. In the first case we assume that
sensor data is received asynchronously by the controller. In the second case,
we assume that the data is periodically received, but it can also be lost in the
process.

5.5.1. Evaluation setup

For both SDS cases we consider a controller that is interfaced to two sensors,
see Figure 5.7, that are strictly periodically triggered by a clock. The data

5.5. Case study 109

Algorithm 4 Set aggregation for HA-CLD

1: function (XNew, CNew)← aggregate({Xi}Li=1, {Ci}Li=1)
2: XNew ← ∅, CNew ← ∅, J ← ∅
3: for j = 1, . . . , L do
4: if j /∈ J then
5: J ← J ∪ {j}
6: X ′ ← Xj , C

′ ← Cj
7: for l = j + 1, . . . , L do
8: if Cj u Cl and l /∈ J then . Equation (5.10)
9: J ← J ∪ {l}

10: X ′ ← X ′ ∪Xl

11: C ′ ← Box(cj ,max{wj , cl + wl − cj})
12: end if
13: end for
14: XNew ← XNew ∪ conv(X ′), CNew ← CNew ∪ C ′
15: end if
16: end for
17: end function

Figure 5.7: A multiple sensor control system setup.

from the two sensors is preprocessed before it is sent to the controller. As
a result of the variable execution time ρi ∈ [ρ̌i, ρ̂i] of the preprocessing task,
and because of transmission delays, measurement data arrives after a variable
delay at the controller. The controller is also executed as a task with execution
time L ∈ [Ľ, L̂], similarly to the aperiodic SDS in Chapter 3 and 4. It is
assumed that this task does not wait for data from the sensors, and uses
the most recent measurements yi that are sent to the controller. We also
assume that data can be lost as well during transmission. Verifying the safety
properties and stability of such aperiodic SDS is very challenging, because the
mixture of event-driven and time-driven dynamics leads to a very complex

110 5. Reachability Analysis of HA-CLD

nonlinear behavior.

Therefore, we will apply our approach to verify the asymptotic stability
of the SDS in the same way as described in Chapter 4. SpaceEx and our own
algorithm are used to compute the reachable set. The tools are compared
based on the number of iterations and the time required to find a fixed point.
Another performance metric that is considered is the overapproximation
error introduced by the approaches. However, since it is difficult to acquire
numerical information from SpaceEx, we rely on the graphical plot outputs
generated by the tool for our comparison.

Figure 5.8: HA-CLD model for SDS with asynchronous data transmission.

SDS with asynchronous data transmission

For the first system the particular HA-CLD model that we use is shown in
Figure 5.8. Two clocks c1,2 model the sampling times of the sensors and c3 the
execution time of the controller task. The variable x is the state of the plant,
while u and y are PWC actuation and sensor data states, respectively. Each
transition represents the completion of a task, which is allowed when a task’s
respective execution timer reaches its lower period bound. The invariant
enforces that a transition is taken when a task reaches its upper bound. A
sensor transition stores a new measurement in the variables y1 or y2, while a
controller transition updates the actuation variable u. Similar systems are
considered in [ZZ12].

The plant in this SDS is the same as the one considered in the case study
of Chapter 4. The difference is that the we use a feedback controller with
gain matrix K =

(
−10 −1

)
, and the sensor matrices are C1 =

(
1 0

)
and

C2 =
(
0 1

)
.

5.5. Case study 111

Figure 5.9: HA-CLD model for SDS with data loss.

SDS with data loss

For the second system we consider a similar setup as shown in Figure 5.7,
but with only one sensor. The other difference is that data can be lost when
communicated from the sensors to the controller. A realistic scenario of
such situation is when the sensors are remotely connected to a centralized
controller via a network, and the data is lost due to packet dropout. It will
also occur if previously sent data to the controller is overwritten before it can
be read. Another scenario is that the data is received by a computer vision
system, which estimates the positions of objects. Since such systems rely on
trained machine learning models, such as neural networks, they are prone to
misdetection.

In the model we assume that if the controller fails to receive data from
the sensor within an iteration, then the actuation value remains unchanged,
otherwise the received value yk is used to compute a new actuation. The
derived HA-CLD model of this SDS is shown in Figure 5.9. In this model it
is assumed that the controller will miss at most N consecutive measurements,
after which at least one measurement is always received. The clock variable t2
is used to keep track of the number of lost measurements, while t1 represents
the execution time of the controller. Now consider for example the case when
N = 2. In this scenario if the controller does not receive data from the sensor
within two consecutive iterations, then it is guaranteed to receive one in the
third iteration. A similar setup is studied in [Kum+12; MA10].

In this benchmark, the plant to be controlled is an aircraft. For this
system an LTI state-space representation has been derived1. Here the state
vector is x =

(
α q θ

)
∈ R3, where α is angle of attack, and q and θ are the

1Derivation can be found on http://ctms.engin.umich.edu/CTMS/.

112 5. Reachability Analysis of HA-CLD

pitch rate and angle of the aircraft, respectively. The derived system matrices
are:

A =

 −0.313 56.7 0
−0.0139 −0.426 0

0 56.7 0

 , B =

 0.232
0.0203

0

 , C =
(
0 0 1

)
.

It is controlled by a proportional-gain controller, with K = −0.75.

Truck platooning

Another interesting application where data loss and delay during commu-
nication occurs quite often is truck platooning. Consider the example in
Figure 5.10. Here N trucks are equipped with sensors and actuators to
maintain a certain velocity and acceleration, and transmit relevant data wire-
lessly (e.g. via an WLAN802.11p network) between each other in order to
keep certain distances di. A model and control technique of such a platoon is

Figure 5.10: A typical truck platoon.

presented by Maschuw et al [MKA08; MA10], where the platoon dynamics
are approximated by a first-order filter, and the controller is determined by
an LMI formulation, where the communication topology is taken into account.
Here they model the events of data loss as a switched system and find a
CQLF, which gives a (sufficient) condition for asymptotic stability. The
authors note however that this cannot be guaranteed for the whole platoon,
and an additional check (presumably with simulation) needs to be performed
afterwards.

As discussed in Chapter 4, a CQLF may not exist, and finding other
Lyapunov function can be very difficult. Thus one may opt to verify stability
using reachability analysis, since it covers all of the extreme cases. This
is possible because a HA-CLD model of the platoon can be derived, that
is similar to the ones described previously. Because the HA-CLD model is
similar, we do not evaluate our approach on such a system. However, we do
note that such a model would become too complex if the number of trucks is
large.

5.5. Case study 113

(a) (b)

Figure 5.11: Reachable sets of x2,3 computed by SpaceEx (5.11a), and our
approach (5.11b) from benchmark 2, run 1 with XInit = 5B‖·‖∞ . The set
colors in 5.11b range from blue to orange for k = 1, 2, ...

5.5.2. Evaluation results

We evaluate our approach and SpaceEx on the previously described SDS for
various values of the sensor bounds on ρ1,2, data loss rate N , and the controller
execution time L, as summarized in Table 5.1. Here we show runs that result
in a fixed point found after the k-th iteration. The SpaceEx model checker is
run using the STC scenario and octagonal template. The relative tolerance of
the algorithm is set to 0.1, since lower values have occasionally caused the tool
to halt. Our tool on the other hand is implemented with MATLAB, and we
use a fixed time step δ, see Table 5.1. Additionally, we make use of the Parallel
Computing Toolbox [SM09] during flowpipe computation. The evaluation PC
is a laptop with 16 GB of DDR4 memory and an Intel© Core™ i7-6700HQ
CPU clocked at 2.60GHz.

From Table 5.1 one can conclude that our approach indeed outperforms
SpaceEx for the given systems in terms of run-time and number of iterations,
except for the first two and last runs in system 1 where the only source of
non-determinism is from the transitions. Unfortunately system 2 proved
too difficult for SpaceEx to handle, even for the most trivial case of Ľ = L̂,
resulting in very large overapproximations of the reachable set, regardless
of the options specified in the tool. This is evident from Figure 5.11, where

114 5. Reachability Analysis of HA-CLD

Our tool SpaceEx

SDS 1 Time (sec) k Time (sec) k

ρ̌1 ρ̌1 ρ̌2 ρ̌2 Ľ L̂ δ

0.05 0.05 n/a n/a 0.05 0.05

0.01

1.4 30 0.761 27
0.03 0.03 n/a n/a 0.06 0.06 2.07 39 1.07 36
0.05 0.05 n/a n/a 0.03 0.07 21 67 78.32 286
0.03 0.07 n/a n/a 0.05 0.05 18 80 217.57 470
0.03 0.07 n/a n/a 0.03 0.07 40 93 1076.96 1135

0.05 0.05 0.05 0.05 0.05 0.05

0.01

3.59 51 30.77 247
0.04 0.06 0.05 0.05 0.05 0.05 34 63 2181.31 1561
0.05 0.05 0.04 0.06 0.05 0.05 43 63 779.42 876
0.05 0.05 0.05 0.05 0.04 0.06 28 66 1347.97 1074
0.02 0.02 0.04 0.04 0.06 0.06 21 104 11.33 111

SDS 2 Time (sec) k Time (sec) k

N Ľ L̂ δ

0 0.5 0.5

0.05

41.234 79 n/a n/a
1 0.5 0.5 98 92 n/a n/a
2 0.5 0.5 2730 1113 n/a n/a
0 0.3 0.7 283 143 n/a n/a
1 0.3 0.7 655 157 n/a n/a
2 0.3 0.7 3054 232 n/a n/a

Table 5.1: Run parameters and evaluation results for the two systems.

much larger overapproximation error is introduced by SpaceEx compared to
our approach.

The first reason why such a big difference is observed is that flowpipe
computation is done separately for the clock and nonclock variables. Also,
intersections are greatly simplified by only allowing guards and invariants
for the clocks, and utilizing the technique described earlier, leading to faster
runtimes. Finally, we suspect that SpaceEx introduces a significant error by
not making use of a tight aggregation method. Specifically, instead of applying
a convex hull algorithm on sets which are not represented by finite number of
points, SpaceEx utilizes template polyhedra. These are polyhedra constructed
using support functions in fixed directions, and generally introduce a large
overapproximation error if the number of variables of the system is large with
respect to the number of directions. Specifically, from our experiments we have
observed that the number of directions required to keep the overapproximation
error small is at most exponentially larger than the number of variables. The

5.6. Conclusion 115

choice of these directions also affects this error, as we will show in Chapter 6.

5.6. Conclusion

In this chapter we presented a reachability algorithm that is optimized for
HA-CLD. It can be concluded from our case study that the reachable set of
the HA-CLD model is significantly tighter when computed using our approach,
compared to other tools, and specifically SpaceEx. Furthermore, the run
times of our algorithm are up-to 65 times smaller for the considered models.

Tighter reachable sets were obtained by making use of the explicit syntactic
partitioning of the state space into clock and nonclock subspaces in the
HA-CLD model, as well as that guards and invariants are interval hulls only
defined for clocks. These restrictions make our overapproximated guard and
invariant intersections easy to compute, and allow the use of an interval hull
representation for the clock flowpipes. The nonclock flowpipes are represented
by V-polytopes and are tighter, but operations on this set representation
are more computationally expensive. However, a direct intersection of the
nonclock flowpipes with guards and invariants, which is very expensive to
compute, is avoided completely. This was achieved by exploiting the fact
that the segments of the clock and nonclock flowpipes are related by fixed
time invervals over which the segments are computed, and by discarding
segments that are in the exterior of a given guard or invariant. Thus, the
overapproximation error of the intersections is directly reduced by making
the time step of the segments smaller.

6

Decomposed Aggregation for
HA-LD

Abstract

Hybrid Automata are an emerging formalism used to model CPS, and
analyze their behavior using reachability analysis. This is because HA pro-
vide a richer and more flexible modeling framework, compared to traditional
approaches. However, modern state-of-the-art tools struggle to analyze such
models, due to the computational complexity of the reachability algorithm, and
due to the introduced overapproximation error. These shortcomings are largely
attributed (but not limited) to the aggregation of sets.

In this chapter we propose a decomposed aggregation approach, that uses
subspace projections, in the reachability analysis of HA-LD. Our key contribu-
tion is the observation that the choice of a good subspace basis does not only
depend on the sets being aggregated, but also on the continuous-time dynamics
of the model. With this observation in mind, we present a dynamics-aware
subspace identification algorithm that we use to construct tight decomposed
convex hulls for the aggregated sets.

In reachability problems of hybrid automata the growth of disjoint sets is a
frequently encountered issue. This growth increases the complexity of the
reachability algorithm exponentially for generic HA, thus preventing any use
of a reachability tool within a reasonable amount of time.

The first reason for this exponential growth is due to the computation
of the flowpipe. Because the state trajectories are continuous in time, an
image of the flowpipe from an initial set of states cannot be computed exactly.

This chapter is based on the published and revised work in [VSEH:4].

117

118 6. Decomposed Aggregation for HA-LD

Figure 6.1: A flowpipe (blue) generated from the set X0, and its overapproxi-
mation using segments (green).

Thus, during the flowpipe construction phase, it is overapproximated as a
union of a set of segments, each generated for a fixed time step δ ∈ R+, such
that it covers a portion of the true flowpipe, see Figure 6.1. This process was
described for HA-CLD in Section 5.3. The smaller the time step, the tighter
each segment becomes at the cost of a larger number of segments.

The second reason is due to the accumulation of segments in a mode
from incoming transitions. During the discrete transition phase, the flowpipe
in each mode is intersected with a guard, and an image of the intersected
segments under the so-called jump transformation (reset map) is computed
for each outgoing transition. On the receiving end, a mode with incoming
transitions uses these as initial sets to compute a new flowpipe in the next
iteration, see Figure 6.2 for a basic idea.

To prevent this exponential growth of segments, reachability algorithms
typically utilize aggregation techniques, which derive significantly smaller
numbers of set representations (aggregates) that tightly contain the segments,
with the most popular representations being template polyhedra. However,
these representations are based on fixed, manually selected templates and
typically introduce a large overapproximation error, as shown in Figure 6.2b.
This error propagates through each iteration of the algorithm, and can severely
compromise its reliability by bloating the reachable set to the point where
a fixed point cannot be determined. This is particularly problematic for
the verification of liveness properties, such as stability. On the other hand,
convex hulls can be used to compute an exact aggregate of a union of disjoint
sets, but the computational complexity is exponential with respect to the

119

(a) (b)

Figure 6.2: A mode with two incoming transitions (6.2a), and two sets
of flowpipe segments from each transition, X1

1,2,3 and X2
1,2,3, respectively,

aggregated using a box (6.2b).

dimensionality of the sets. In such cases decomposed aggregation via subspace
projections can decrease this complexity at the expense of overapproximation
error. This error greatly depends on the selected subspaces.

In this chapter we present a subspace identification approach for de-
composed convex hull aggregation. The key contribution is the important
observation that the choice of subspace basis for decomposed aggregation
highly depends on the continuous dynamics. To be more precise, depending
on the flow of the continuous-time state variables, an aggregate may contract
faster, even if it is not tight with respect to the set it overapproximates. Sub-
sequently, we develop an optimization algorithm which derives an orthogonal
basis for the subspaces, such that the aggregate contracts faster. Specifically,
given a set of segments, our approach finds a box aggregate, such that the
overapproximated flowpipe generated from this aggregate converges faster
to the preaggregated flowpipe with respect to a set measure. Convex hulls
are then computed of the projections of the sets onto the subspaces, and
the decomposed sets are composed back using the Cartesian product. This
decomposed method of aggregation in lower dimensional subspaces, brings a
fair balance between accuracy and algorithmic complexity to the reachability
algorithm. Our approach is applied to HA-LD, a more generic model com-

120 6. Decomposed Aggregation for HA-LD

pared to HA-CLD, where the continuous dynamics and reset maps are linear
with respect to the state variables.

In our case study we apply our technique to the reachability analysis
of aperiodic SDS [Kum+12; BJ15; AKGD15; AKGD17; VSEH:2; Lem+07;
MA10; ZZ12]. Specifically, we evaluate our approach on two practically
relevant hybrid automata models, similar to the models described in earlier
chapters, where we consider full-state feedback control of the plant. We show
that a good subspace basis in decomposed aggregation significantly improves
the accuracy of the reachability algorithm by up-to a factor of 10.

The rest of this chapter is organized as follows. In Section 6.1 we review
related work. Section 6.2 gives a basic overview of our approach. In Section 6.3
we describe our decomposed convex hull aggregation technique. Subsequently
we describe the dynamics-aware subspace identification algorithm. Our case
study and results are presented in Section 6.4. Our conclusions are presented
in Section 6.5.

6.1. Related work

In this section we discuss approaches that are closely related to our work and
outline the differences.

A recently proposed method [CÁ11] uses PCA to determine the directions
of template polyhedra overapproximations of the flowpipe segments. First,
PCA is used to determine the directions of the template approximating the
initial segment of a flowpipe. Subsequently, PCA is used to determine an
oriented box template of the complete flowpipe, or partitions of it, because the
size of the exact convex hull of the segments may grow large. However, the key
difference with our work is that their subspace identification approach via PCA
does not consider the continuous dynamics of the automaton. Furthermore,
decomposed subspace based aggregation is not considered. Finally, in their
approach aggregation is performed on individual flowpipes and their segments,
rather than sets of unrelated flowpipe segments from different modes.

In the tool SpaceEx [Fre+11; FKLG13] they use support function represen-
tations of the flowpipes, and a combination of template polyhedra and convex
hulls are used for aggregation. Their aggregation and clustering strategy
on the flowpipe level, which is referred to as the STC scenario in the tool,
determines the time step dynamically for each of the segments. As demon-
strated by the authors, this can significantly reduce the number of segments,
with a slightly increased overapproximation error. However, in contrast to
our approach SpaceEx does not allow automatic selection of the template
directions for aggregation. Instead, they are fixed and manually selected

6.2. Basic idea 121

by the user. Additionally, the clustering technique presented in [FKLG13]
is applied to segments during flow-pipe construction. Finally, decomposed
aggregation is not used in the tool.

In [SÁ18] the authors propose an efficient CEGAR based approach to
dynamically reduce overapproximation error. The idea, albeit similar to ours,
is to automatically select suitable parameters of the reachability algorithm,
so that verification can be performed more efficiently and accurately. The
parameters considered are the state set representations, their spatial and
algorithmic complexity, the time step, the aggregation strategy and others.
Then the reachability algorithm is executed repeatedly, starting with an initial
configuration of parameters, and are refined with each execution until the
verification process is complete, or the search space is exhausted. However,
their approach is different from ours because the refinement of parameters
occurs on each complete execution of the algorithm. In contrast, our subspace
identification approach is applied on each iteration of the reachability algo-
rithm. Additionally, they do not consider decomposed aggregation in their
approach. As such, an optimal subspace basis for aggregation is not included
in the parameter search space.

In [BD17; DB19] the authors propose an aggregation and a de-aggregation
technique to reduce the number of segments, such that a low overapproxima-
tion error is maintained. More precisely, the technique identifies spuriously
aggregated sets, which are then de-aggregated so that the error is reduced.
The set representations of the segments that are considered are generalized
stars, while aggregation is performed by a combination of template polyhedra
and convex hulls. However, the key difference with our approach is that they
do not provide a method to automatically determine template directions.
Additionally, while they utilize symbolic orthogonal projections [Hag14], their
aggregation approach is not decomposed using subspaces. Thus, a subspace
identification technique is not considered.

6.2. Basic idea

In this section we provide a basic overview of aggregation methods and our
approach.

6.2.1. Aggregation using template polyhedra

Template polyhedra aggregation is a very popular way to aggregate sets,
and has been extensively used in state-of-the-art reachability tools, such as
HyLaa [BD17; DB19], SpaceEx [Fre+11] and Flow* [CÁ11; CÁS13], due
to their simplicity. The basic idea is to find hyperplanes that support the

122 6. Decomposed Aggregation for HA-LD

aggregated set, and form a convex polyhedron from their intersection, see
Figure 6.2b. First, an aggregated set X ⊂ Rn is projected onto a set of
normal vectors {u1, . . . uN}, called directions, and subsequently upper bounds,
{b1, . . . , bN}, are derived of the projections, i.e. bi = maxx∈X〈ui, x〉. Here
〈·, ·〉 is the inner product of two vectors. The pairs (ui, bi) then define the
hyperplanes.

The box template is particularly useful, because its set of directions,
{±u1, . . . ,±un}, are mutually orthogonal, and therefore form an orthogonal
subspace basis for Rn. Thus, when a set X is projected onto the subspaces
spanned by the directions, the template can be incrementally refined to
produce a tighter polyhedron, by adding more directions in the respective
subspaces. This incremental approach has been used in SpaceEx [Fre+11],
where the basis used is fixed to the standard basis.

However, the choice of directions heavily influences how well the reacha-
bility algorithm performs, because of overapproximation error. This choice
is left to the user in state-of-the-art tools, and thus it often leads to very
poor results. While PCA-based approaches have been used to dynamically
determine directions [CÁ11], we show in our case study that PCA is not
sufficiently accurate for practical applications.

6.2.2. Aggregation using convex hulls

Another approach for set aggregation is to compute convex hulls of unions of
sets. A big advantage over template polyhedra, is that convex hulls are the
tightest possible convex aggregates of set unions, since a convex hull consists
of all the possible convex combinations of the sets’ points. Unfortunately,
the computational complexity of the convex hull algorithm depends on the
representation used for the aggregated sets, and their dimensionality. The
algorithm has been shown to be most efficient for finite sets of points, and
V-polytope representations of polyhedra [BDH96], however even then the
complexity is exponential with respect to the dimension.

6.2.3. Decomposed aggregation

An emerging approach that exploits the complexity-to-accuracy trade-off
in aggregation using convex hulls, template polyhedra, etc, is decomposed
aggregation. The basic idea is to project the aggregated set onto lower
dimensional subspaces of the parent space, perform the aggregation on the
projections for each subspace, and compose the aggregated projections back
into the original space using the Cartesian product. More formally, suppose
that X ⊂ Rn is a set to aggregate, and letW1, . . . ,Wp be mutually orthogonal

6.2. Basic idea 123

Figure 6.3: The aggregate conv(P12X)× conv(P3X) indicated in purple, and
the box aggregate conv(P1X) × conv(P2X) × conv(P3X) indicated with a
hatching.

subspaces of Rn, such that Rn = W1 ⊕ · · · ⊕ Wp and 〈wi, wj〉 = 0 for all
wi ∈ Wi, wj ∈ Wj , i 6= j. Now let Aggr(PWi(X)) be an aggregate (e.g.
conv(PWi(X))) of the projection (see Definition A.2.6) of X onto subspaceWi.
The decomposed aggregate of X is then Aggr(PW1(X))×· · ·×Aggr(PWp(X)).

The main advantage of decomposed aggregation is that the complexity to
compute lower-dimensional aggregates is decreased at the expense of increased
overapproximation error. The trade off is controlled by selecting the size of
the subspace partition. Such an approach has been used in [Bog+19b] using
convex hulls, where the standard basis is used for the subspaces. We also
apply a similar approach in this work, however our decomposed convex hull
allows generic subspace partitions of the state space.

An example of two aggregates where Aggr(·) , conv(·) is shown in Fig-
ure 6.3. In this example, the set X ⊂ R3 is a finite set of points, indicated
by red dots in the figure, projected onto the standard subspaces of R3. Here
the map Pi projects the points onto a subspace spanned by standard basis
vector ei, while Pij is a projection mapping onto the subspace spanned by
{ei, ej}, i 6= j. The first aggregate is conv(P12X)× conv(P3X), where P12X
is a convex polygon, while P3X is a line segment. Their Cartesian product in
the parent space R3 results into a polyhedral cylinder. On the other hand, the
second aggregate is conv(P1X) × conv(P2X) × conv(P3X), which defines a

124 6. Decomposed Aggregation for HA-LD

standard basis aligned box. Because conv(P12X) ⊆ conv(P1X)× conv(P2X),
the first aggregate is tighter than the second.

6.2.4. Indentifying subspaces

-15 -10 -5 0 5 10 15 20

-15

-10

-5

0

5

10

15

20

Figure 6.4: Contraction of two box aggregates Box 1 and Box 2, respectively.
The boxes with thinner outlines are images from the flowpipes of the boxes
along the vector field of A.

Besides selecting the subspace partion, overapproximation error can be
further reduced by correctly selecting the subspaces. As such, the identification
of a suitable basis for the subspaces is crucial for the accurate performance of
the reachability algorithm, and is usually done using PCA. A key observation
that we have made, is that the choice of a good basis required to derive a tight
decomposed aggregate does not only depend on the sets being aggregated,
but also on the continuous dynamics. Specifically, how fast the aggregate
contracts depends also on the flow functions that govern the evolution of
the state variables. This contraction of the aggregate directly affects how
its approximated flowpipe converges to the exact flowpipe. We observe that
if it contracts faster, then the propagated overapproximation error due to

6.3. Decomposed aggregation and subspace identification 125

successive aggregations is reduced. We demonstrate this observation with the
following example:

Consider a 2-dimensional state-space with the variable x ∈ Rn evolving
according to the flow equation ẋ = Ax,A ∈ Rn×n, see Figure 6.4. Here
are shown the vector field of A, an arbitrary compact set X0, and two box
aggregates, Box 1 and 2, of X0 with respect to two orthogonal subspace bases.
Thus the orthogonal vectors that span the subspaces are normal to the faces
of the respective box aggregates. Box 2 specifically is derived using PCA,
and is smaller in volume compared to Box 1. Additionally we show several
contracting trajectory “snapshots” of the boxes at discrete moments in time.
These are indicated by parallelograms with thinner outlines. Note that a
trajectory is generated by taking a point as initial state in the flow equation
and simulating the system. What is observed, is that the points of Box 1
are approaching the origin faster than the ones of Box 2, despite that Box 2
seems tighter than the first one. Another interesting observation, is that Box
1 contracts along the flow field. As we show later in the chapter the most
important consequence is that the flowpipe of Box 1 converges faster to the
flowpipe of X0 than Box 2, and as such the cumulative overapproximation
error is reduced.

By taking this important observation into account, our approach attempts
to find a subspace basis which produces the tightest box aggregate that also
contracts faster. The template is refined further via a decomposed convex
hull, described later in the chapter. Our approach thus has a clear advantage
over standard PCA, since PCA does not use a contraction measure or metric
in its optimization problem. As a result, PCA cannot guarantee that the
reachable set contracts faster, or at all, a result observed in our case study.

6.3. Decomposed aggregation and subspace identification

In this section we present our decomposed aggregation approach, and our
dynamics-aware subspace identification algorithm.

6.3.1. Notation and definitions

The matrix-valued function skew : Rn(n−1)/2 → Rn×n is defined as:

skew(v) =


0 v1 · · · vn−1

−v1 0
. . .

...
...

. . .
. . . vn(n−1)/2

−vn−1 · · · −vn(n−1)/2 0

 , (6.1)

126 6. Decomposed Aggregation for HA-LD

and it maps an n(n − 1)/2-dimensional vector to the space of n × n skew-
symmetric matrices. We remind that a matrix S is skew-symmetric if S> =
−S. We use this later to generate randomized rotation matrices using the
matrix exponential map, which in turn are used in our SMC optimization
algorithm.

Definition 6.3.1 (Bounding box)

Given an orthogonal matrix U ∈ O(n) with columns ui, and a set
X ⊂ Rn, then the H-polytope:

BoxU (X)={x′ ∈ Rn |min
x∈X
{u>i x} ≤ u>i x′ ≤ max

x∈X
{u>i x}, i = 1, . . . , n},

is the bounding box of X with respect to U , with ±ui normal to its
facets.

6.3.2. Decomposed convex hull aggregation

As discussed earlier, aggregation is applied to the flowpipe segments by
grouping them with a new set representation. In our approach we use the
so-called decomposed convex hull to derive this representation, defined below:

Definition 6.3.2 (Decomposed convex hull)

Let J = {J1, . . . , Jm} be an ordered partition of {1, . . . , n}, such
that i 6= j =⇒ Ji ∩ Jj = ∅, and

⋃
i Ji = {1, . . . , n}. Furthermore,

let U ∈ Rn×n be an orthogonal matrix, then for each ordered set
Ji = {j1, . . . , jpi} ∈ J we construct a matrix UJi ∈ Rn×pi , such that
UJi =

(
uj1 · · · ujpi

)
, where uj ∈ Rn×1 is a j-th column of U . Then

the decomposed convex hull of a set X ⊂ Rn, is:

dconv(X,U,J) = UJ
m

×
i=1

conv(U>JiX), (6.2)

where the matrix UJ =
(
UJ1 · · · UJm

)
is constructed by concate-

nating the matrices UJi .

We call the set J a subspace partition, and use it to select the projections
of X onto the subspaces spanned by U , that are individually aggregated using

6.3. Decomposed aggregation and subspace identification 127

the convex hull. The result is a set of convex hulls in each subspace, that are
composed in Rn. For example, when J = {{1}, {2}, . . . , {n}}, dconv(X, I,J)
is the standard basis bounding box of X, an example of which is shown with
a hatching in Figure 6.3. For the same example when the subspace partition
is J = {{1, 2}, {3}}, dconv(X, I,J) is the purple polyhedral cylinder shown
in Figure 6.3.

The matrix UJ is necessary to map the Cartesian product of convex
hulls in the correct configuration, because the product can permute the
order of coordinates of a point in Rn with respect to its standard basis.
This can be easily seen from the following example: Let X ⊂ R3, then a
point in X is x = (x1, x2, x3). Now let J = {{1, 3}, {2}}, and without

loss of generality let U = I. From Definition A.2.1, UJ1 =

1 0
0 0
0 1

, and

UJ2 =

0
1
0

. Now the points x′ = U>J1x = (x1, x3), and x′′ = U>J2x = (x2) are

projections of x onto R2 and R, respectively, and x̃ = (x′, x′′) = (x1, x3, x2) ∈
conv(U>J1X)× conv(U>J2X) ⊂ R2 × R = R3. But clearly, x 6= x̃. This is also
evident from the fact that R2 and R are not subspaces of R3. Thus, to map
the product of the convex hulls back in the original space in correct order, the
second coordinate of each point needs to be switched with the third, which is
equivalent to permuting the respective columns of U in the construction of
UJ .

We now provide a result that demonstrates how the overapproximation of
the decomposed convex hull is related to the subspace partition. Suppose that
J and J ′ are subspace partitions as defined in Definition 6.3.2. We say that
J ′ is finer than J , i.e. J ′ @ J , if for each Ji ∈ J there are J ′1, . . . , J

′
ki
∈ J ′

such that Ji = J ′1 ∪ · · · ∪ J ′ki . As an example, take J = {{1, 4, 5}, {2, 3}}
and J ′ = {{1}, {4, 5}, {2}, {3}}, then J ′ @ J . With this relation between
partitions formally defined, we state and prove the following:

Proposition 6.3.1

Let X ⊂ Rn, U ∈ O(n), and J and J ′ be subspace partitions as
defined in Definition 6.3.2, such that J ′ @ J . Then

dconv(X,U,J) ⊆ dconv(X,U,J ′).

Proof. Let the point z ∈ dconv(X,J , U) be arbitrary, then z =

128 6. Decomposed Aggregation for HA-LD

UJ
(
y>1 · · · y>p

)>
, where for each Ji ∈ J , yi ∈ conv(U>JiX) =⇒ yi =

θU>Jix + (1 − θ)U>Jiy = U>Ji(θx + (1 − θ)y) = U>Ji x̄ ∈ U>Ji conv(X) for
some x, y ∈ X and θ ∈ [0, 1]. Now for each J ′i ∈ J ′ define the point
y′i = U>J ′i

x̄ = θU>J ′i
x + (1 − θ)U>J ′i

y ∈ conv(U>J ′i
X), then the point z′ =

UJ ′
(
y′1
> · · · y′p′

>
)>
∈ dconv(X,J ′, U) by construction.

We claim that z = z′. Since J ′ @ J , for each Ji ∈ J there are
J ′1, . . . , J

′
ki
∈ J ′, with corresponding points y′1, . . . , y

′
ki

, such that Ji =
J ′1∪· · ·∪J ′ki , which implies that UJiyi = UJ ′1y

′
1 + · · ·+UJ ′ki

y′ki by construction

of UJi and UJ ′1 , . . . , UJ ′ki
. Because this holds for each Ji ∈ J :

z′ = UJ ′

y
′
1
...
y′p′

 =
∑
J ′i∈J

UJ ′iy
′
i =

∑
Ji∈J

UJiyi = UJ

y1
...
yp

 = z.

Because the choice of z is arbitrary, and z ∈ dconv(X,J ′, U), we conclude
that dconv(X,J , U) ⊆ dconv(X,J ′, U).

Suppose that J − = {{1}, . . . , {n}} and J + = {{1, . . . , n}}, then
J − @ J @ J + for all J as defined in Definition 6.3.2. Furthermore,
dconv(X,J +, U) = conv(X) and dconv(X,J −, U) = BoxU (X). Thus, a
direct consequence of Proposition 6.3.1 is that

conv(X) ⊆ dconv(X,J , U) ⊆ BoxU (X),

for any J as defined in Definition 6.3.2.

6.3.3. Subspace Identification using PCA

Our decomposed convex hull aggregate requires that a subspace basis matrix
U is specified. As discussed earlier, PCA is the most popular dimensionality
reduction and subspace identification approach, used also in reachability
algorithms [CÁ11; SK03], that can derive this matrix. For the sake of
completeness, we give a minimal definition of the method here.

Given a finite set of points, {x1, . . . , xN} ⊂ Rn, represented by a matrix
X =

(
x1 · · · xN

)
∈ Rn×N , then the standard 2-norm PCA optimization

problem is:

argmax
U
{1

2
tr(U>XX>U) | U ∈ O(n)}, (6.3)

where tr(·) is the trace of a matrix. The columns of optimal matrix U
span 1-dimensional subspaces, such that the variance of the points’ projec-
tions onto the subspaces is maximized. Equivalently, U forms a basis for

6.3. Decomposed aggregation and subspace identification 129

2 4 6 8 10 12 14

0

50

100

150

200

250

300

350

Figure 6.5: Convergence error for the example in Figure 6.4.

aff(X) − xi, i = 1, . . . , N , where aff(·) is the affine hull of a set, see Defini-
tion A.2.1. The optimization problem is efficiently solved with the singular
value decomposition:

X = UΣV >. (6.4)

An issue with the standard 2-norm PCA is its sensitivity to outliers [Kwa08],
and thus a key reason for its poor performance in aggregation due to the
possible existence of spread out disjoint sets.

6.3.4. Dynamics-aware identification

Earlier in Section 6.2, we argued that a good subspace basis is very beneficial
for the selection of directions of template polyhedra, and for computing
decomposed convex hulls. The initial intuition is to choose a basis, such that
the aggregate tightly contains the aggregated set. This is usually formulated
as the problem of finding a minimum volume bounding aggregate, such as
an ellipsoid or box. However, we observed that the continuous dynamics of
the automaton also influence the choice of optimal basis, and demonstrated
that counter to the initial intuition, a tighter template is not necessarily
better in terms of convergence. We also highlighted the significance of the
bounding box template as a building block for more refined aggregates. Most
importantly, its directions form an orthogonal subspace basis. For these

130 6. Decomposed Aggregation for HA-LD

reasons, our dynamics-aware subspace identification approach uses bounding
boxes to derive an orthonormal basis. We now formulate and define the
optimization problem of our approach.

We start first by defining a dynamics invariant contraction measure of
the flowpipe of a box aggregate of a set. Let X ⊂ Rn be a set, U ∈ O(n) an
orthonormal basis matrix and Φ = eAδ ∈ Rn×n a discrete-time state-transition
matrix, as used in Section 5.3. Then by (5.5), the discrete-time flowpipe
of X as initial set is Xk+1 = ΦXk, k = 0, 1, . . ., with X0 = X.1 A similar
relation holds for the bounding box (see Definition 6.3.1) XU = BoxU (X).
We then construct standard basis boxes BoxI(X) and BoxI(XU), and use
them to measure the contraction of the flowpipe. We call the sequence
(Errk(X,U))Lk=1, L ∈ N, where:

Errk(X,U) = vol(BoxI(Φ
kXU))− vol(BoxI(Φ

kX)), (6.5)

the contraction error between the discrete flowpipe of X and its box template
XU with respect to U , where vol(X) is the m-dimensional volume of a set,
m = dim aff(X). The reason we define the error this way, is because the direct
volumes of the sets are vol(ΦkXU) = det(Φ)k vol(XU), and so minimizing
vol(ΦkXU) is equivalent to minimizing vol(XU). Thus, in this case our
problem would be reduced to just finding the minimum volume bounding box,
which is independent of the matrix Φ. On the other hand, measuring the
volume difference with respect to the standard basis also allows measuring
the contraction due to Φ. We also note that this is one of many estimates
of the contraction error. However, this error estimate is easy to compute for
box templates compared to others, as we show later.

Two error sequences for the box example in Figure 6.4 are shown in
Figure 6.5, given matrices U1 and U2. The plot indicates that the sequence of
errors indeed converges to zero faster for the first box, compared to the second.
More importantly, each value of the first sequence is smaller than each value of
the second sequence, which indicates that U1 is a desirable basis matrix. This
is despite that vol(BoxU1(X)) > vol(BoxU2(X)), as pointed out in Section 6.2.
We can now give a formal definition to the subspace identification problem:

1Note that here we consider without loss of generality HA-LD with no disturbance
inputs.

6.3. Decomposed aggregation and subspace identification 131

Definition 6.3.3 (Dynamics aware subspace identifica-
tion)

A subspace basis represented by a matrix U∗ ∈ O(n) is optimal for
a set X ⊂ Rn in the sense of the contraction error, if ∀U ∈ O(n) :∑L

k=1 Errk(X,U
∗) ≤

∑L
k=1 Errk(X,U) for some L ∈ N.

More informally, one wants to find a matrix U∗, such that this error is
minimized for every segment in the flowpipe over a finite discrete time interval
[1, L]. This is a scalarized vector optimization problem with equal weighting
for each objective. In this case the initial box template represented by U∗

converges the fastest to the set X. This can be formulated as the following
optimization problem:

argmin
U
{
L∑
k=0

vol(BoxI(ΓΦkXU)) | U ∈ O(n)}, (6.6)

where we additionally introduce a scaling matrix Γ ∈ Rn×n, and thus sum-
mation is done over k ∈ {0, . . . , L}. Γ is useful when we “shift” the flowpipe
backward and forward in time by t′ ∈ R, as used in our case study.

6.3.5. Simplification using zonotopes

The optimization problem defined in (6.6) can be reformulated to the equiva-
lent simplified problem:

argmin
U
{f(U) =

L∑
k=0

n∏
i=1

[abs(ΓΦkU) abs(d−X)]i | U ∈ O(n)}, (6.7)

where d−X is defined later in equation 6.8. The key reason why this reformula-
tion simplifies the original problem, is because the new objective function f
can be directly evaluated by a solver, without having to evaluate many implicit
inequality constraints in (6.6) due to the representation of the box template,
see Definition 6.3.1. Here we derive f using a zonotope representation of
ΦkXU , for which the error sequence is easy to compute. Without loss of
generality we ignore the scaling matrix Γ.

We start by deriving a zonotope representation of XU = BoxU (X). Define
the vectors d+

X , d
−
X ∈ Rn with components:

[d±X]i =
1

2
(max
x∈X
{u>i x} ±min

x∈X
{u>i x}), (6.8)

132 6. Decomposed Aggregation for HA-LD

where ui is a column of U , i = 1, . . . , n. Here, d+
X is the center of the box, and

its sides are the components of d−X . Then it is easy to verify that the zonotope
Z(d+

X , diag(d−X)) = BoxI(U
>X) (see Definition A.2.7). It is also trivial to

verify that BoxU (X) = UBoxI(U
>X). Therefore, using the properties of

zonotopes (see Proposition A.2.1):

ΦkBoxU = ΦkUZ(d+
X , diag(d−X)) = Z(ΦkUd+

X ,Φ
kU diag(d−X)) = Z(c, V),

for all k ∈ {0, . . . , L}.
Now, BoxI(Z(c, V)) = [me1 ,Me1] × · · · × [men ,Men], where for all i ∈

{1, . . . , n} : mei = ci −
∑n

j=1|Vij |, and Mei = ci +
∑n

j=1|Vij |. The bounds
mei and Mei are derived using Proposition A.2.2, where we minimize and
maximize, respectively, the functions e>i z over z ∈ Z(c, V). Thus:

vol(BoxI(Z(c, V))) =
∏n
i=1(Mei −mei) = 2n

∏n
i=1

∑n
j=1|Vij |

=
∏n
i=1

∑n
j=1|[ΦkU diag(d−X)]ij |

=
∏n
i=1

∑n
j=1|[ΦkU]ij [d

−
X]j |

=
∏n
i=1

∑n
j=1|[ΦkU]ij | |[d−X]j |

=
∏n
i=1[abs(ΦkU) abs(d−X)]i,

as required. The fourth equality follows from |ab| = |a||b| for all a, b ∈ R.

6.3.6. Optimization using Sequential Monte Carlo

The optimization problem is nonlinear and non-convex, while the objective
function of (6.7), f(U), is non-smooth. Additionally, standard subgradient
methods are not easily applied here due to the orthogonality constraint. For
this reason, we use an evolutionary algorithm to derive suboptimal solutions
of the problem using SMC [DFG01]. This is a heuristic also known as
Bayesian optimization using SMC [BBV12], and is particularly useful in our
case, because it has the ability to escape local minima. As such, it can be
considered as a hybrid between Particle Swarm Optimization (PSO) and
a genetic algorithm [Sim13]. The key property that makes it useful with
respect to these heuristics, is that the objective function is used to construct an
approximate probability distribution of the global minimum. This distribution
is used to sample candidate solutions of the minimum on each iteration, which
makes it harder to get stuck in a local minimum, because each candidate has
a probability to end up in another local minimum that is smaller. The other
advantage is that this algorithm can be combined with other local search
methods, although we do not explore this possibility here. A final advantage,
is that this algorithm can be easily parallelized. The algorithm is similar to
the Algorithm 2, and can be summarized in the following steps:

6.3. Decomposed aggregation and subspace identification 133

Algorithm 5 Dynamics-aware subspace identification

1: function U ← optimBasis(X,Φ,Γ, L,N, ρ, r)
2: UP ← PCA(X) . Using equation (6.4)
3: X ′ ← U>P X.
4: for i ∈ {1, . . . , N} do . Initialize particles
5: θ ∼ U(−rπ/2, rπ/)n(n−1)/2

6: Ui ← exp(skew(θ))
7: end for
8: v ←∞, U ← I
9: loop

10: for i ∈ {1, . . . , N} do . Compute weights
11: wi ←

∑L
k=0

∏n
j=1[abs(ΓΦkUi) abs(d−X′)]j

12: end for
13: if mini{wi} ≥ v then
14: return UpU
15: end if
16: v ← mini{wi} . Update objective value
17: j = argmini{wi}
18: U ← Uj
19: for i ∈ {1, . . . , N} do . Construct pdf
20: Map wi to the interval [0, 1]
21: wi ← e−ρwi

22: end for

23: ∀i ∈ {1, . . . , N} : ci ←
∑i
j=1 wj∑N
j=1 wj

. Construct cdf

24: t ∼ U(0, 1
N)

25: for i ∈ {1, . . . , N} do . Resample (Systematic)
26: j ← argmink{ck − t | ck − t ≥ 0}
27: t← t+ 1

N
28: U∗i ← Uj
29: end for
30: for i ∈ {1, . . . , N} do . Perturb particles
31: θ ∼ U(−rπ/2, rπ/2)n(n−1)/2

32: Ui ← exp(skew(θ))U∗i
33: end for
34: end loop
35: end function

134 6. Decomposed Aggregation for HA-LD

1. Generate a set of N candidate solutions (particles) {U1, . . . , UN}.
2. Evaluate the objective function and compute a weight for each candidate,

i.e. wi = f(Ui), i ∈ {1, . . . , N}.
3. Construct a discrete PDF from the weights, and use it to resample the

particle set.
4. Perturb the particles in order to avoid sample impoverishment.
5. Repeat steps 2-4 until the objective function stops decreasing for all of

the particles.

Unfortunately, this algorithm has a high computational cost and may suffer
from the curse of dimensionality.

Fortunately f(U) is relatively cheap to evaluate, and “periodic” with
respect to U . Specifically, for any n-dimensional rotation R around a (n− 2)-
dimensional subspace of Rn by π it holds that f(U) = f(RU), due to the
symmetry of the box template. This property considerably reduces the search
space of the algorithm. In our experiments, we observe that a very small
number of particles is required to reach a good solution. The complete
algorithm is summarized in Algorithm 5.

Here we would like to point out that another important component of
the algorithm is the perturbation of the particle matrices, such that they
remain orthogonal. Perturbation is required in order to ensure that the
probability distribution does not collapse to a single point, by diversification,
and is achieved by generating randomized rotation matrices Ri ∈ SO(n), i ∈
{1, . . . , N} [GC01]. We use a very simple method to generate random rotations:
first a sample vector with randomized angles is drawn from the multivariate
uniform distribution, i.e. θ ∼ U(−rπ/2, rπ/2)n(n−1)/2, where 0 < r ≤ 1; next
we construct the skew-symmetric matrix S = skew(θ); finally the rotation
matrix is R = eS [Plu04], and is used to perturb a given particle by a
randomized rotation.

Second, while we try to improve over the standard PCA, we still use it
in our algorithm to initialize the particle set. This is done for the following
reasons: 1) an initial basis matrix UP is fast to compute; 2) it reduces the
search space considerably.

6.4. Case study

In this section we present our case study, where we evaluate and compare our
approach with PCA on the reachability of two SDS, modeled using HA-CLD,
which as we pointed out earlier are more restricted HA-LD.

6.4. Case study 135

Figure 6.6: Hybrid automaton of a sampled-data CPS with information loss.

Figure 6.7: Hybrid automaton of a sampled-data CPS with uncertain sampling
rate.

6.4.1. Control with uncertain S/A times

For our first case, we consider an SDS system with uncertainty in the S/A
times. The following assumptions are made for the model: 1) upper and
lower bounds on the difference between the sampling moments are known;
2) the bounds are allowed to switch to different values. Such a model can
be used to describe and analyze a multiprocessor based computer-controlled
system with a switching workload characterization. To be more precise, the
S/A moments are determined by the execution time of the control algorithm.
On the other hand, the difference between the bounds is dictated by the
processors’ workloads. For example, one may assume that the difference is
large when the workload on the processors is high, and small otherwise. Such
characterizations have been shown to be more accurate approximations for
analysis than the WCET characterization, as discussed in Chapter 4.

The hybrid automaton for this system is shown in Figure 6.7, which
is a HA-CLD. Here we use a clock variable t to model the sampling and
switching behavior of the controller. Two modes are used to represent two

136 6. Decomposed Aggregation for HA-LD

workloads of the processor, low and high load, with iteration time bounds
Ť1 < T̂1 and Ť2 < T̂2, respectively, with the first assumed the normal mode
of operation. Thus, if the ideal sampling period of the controller is T , then
we let Ť1 ≤ t ≤ T̂1 = T in the first mode and Ť2 = T ≤ t ≤ T̂2 in the second.
The controller may switch to the high load mode at any time, as is usually
the case for real-time multiprocessor based control systems [QHE12]. The
variable x is the state of the plant, and we consider full-state feedback control
via the piece-wise constant actuation u (ZOH). Note the similarity to the
models considered in Chapter 4.

6.4.2. Periodic control with data loss

In the second case we revisit the SDS from Section 5.5, and consider a
networked control system with periodic sampling and actuation. The model
is very similar to the first case. However, here we assume that sensor data
may be lost during transmission, due to packet drop. For example in the case
of a full-state feedback control, only a subset of the state variables may be
received. A packet may be lost at any time, but to keep the model realistic,
we also assume that no-more than m consecutive packet drops can occur. A
similar system was studied in [Kum+12], and in Chapter 5.

The hybrid automaton of this system, also a HA-CLD, is shown in Fig-
ure 6.6, and is very similar to the ones discussed previously. However, the
key difference is that we add an additional clock variable t2 to monitor the
number of packet losses. The variable t1 models the sampling and actuation
times of the controller, as usual. The first mode is the standard, periodic
mode of operation. In the second mode, the complete sensor data packet is
lost, and no actuation is applied to the plant, i.e. u = 0.

6.4.3. Evaluation method

To evaluate our approach, we use the implementation of the reachability
algorithm as described in Chapter 5. However, instead of the standard convex
hull algorithm used in Algorithm 4, we use our own decomposed convex
hull and subspace identification algorithm. Specifically, at line 14 of the
aggregation algorithm, the operation conv(·) is replaced by dconv(·) from
equation (6.2). Subsequently, a new line is inserted before line 14, where
optimBasis from Algorithm 5 is called to derive the subspace basis matrix
U . A similar modification is done to include the PCA subspace identification
approach, as defined in equation (6.4). Note that aggregation in this case is
only applied to nonclock variables. All of the algorithms are implemented
using MATLAB, and are executed on a computer with 16GB RAM and

6.4. Case study 137

-3 -2 -1 0 1 2 3

-6

-4

-2

0

2

4

6

Figure 6.8: Reachable set of the first hybrid automaton from run 1 for variables
x1,2 at iteration k = 1, . . . , 15 (blue to red).

a quadcore Intel™ processor. We use a time step δ = 0.01 for all of the
evaluation runs of the models. The parameters used for our algorithm are
summarized in Table 6.1, and are selected heuristically.

To demonstrate the effect of the overapproximation error on the reachable
set Xk of continuous variables (excluding the clocks), we compute the so-
called set norm ek = ‖Xk‖∞ on each iteration of the algorithm, with X0 =
[−1, 1]n. Here, Rn is equipped with the infinity vector norm ‖·‖∞, and we
define the norm of a compact subset A ⊂ Rn induced by ‖·‖∞ as ‖A‖∞ =
maxa∈A∪{0} ‖a‖∞.

The plant model used for both hybrid automata is described by the
following matrices:

A =

 19.24 10.72 −5.67
−84.95 −13.56 18.53

50.7 11.53 −13.68

 , B =

−3
0.5
1

 .

A discrete time full-state feedback control matrix has been designed using
MATLAB’s command dlqr for the plant, given a sampling time T = 0.1s,
as K =

(
−1.39 −0.463 1.0446

)
. Additionally for the first HA-CLD, Ť1 =

0.06s and T̂2 = 0.15s, while for the second m = 2.

138 6. Decomposed Aggregation for HA-LD

Parameter Aut 1 Aut2

N 100 100

ρ 40 40

r 1/30 1/30

L 5 10

Γ eA(7×δ) eA(7×δ)

Φ eAδ eAδ

Table 6.1: Parameters used for Algorithm 5.

Run Time (PCA) Time (our) J
Aut 1 Aut 2 Aut 1 Aut 2

1 0.31s 0.59s 2.02s 5.57s {{1}, {2}, {3}, {4}}
2 0.8s 0.81s 6.18s 9.16s {{1, 2}, 3, 4}
3 0.43s 0.77s 6.42s 9.81s {1, {2, 3}, 4}
4 0.3s 0.6s 1.75s 5.16s {1, 2, {3, 4}}
5 0.86s 1.04s 7.6s 9.92s {{1, 3}, 2, 4}
6 5.72s 2.88s 66.3s 26.77s {{1, 2, 3}, 4}

Table 6.2: Evaluation run times.

6.4.4. Results

A total of six runs are performed for each model using standard PCA and our
approach for subspace identification prior to aggregation. The plots of the
set norm of the reachable set for each automaton are shown in Figure 6.9 and
Figure 6.10, respectively. The run times, as well as the subspace partitions
used for each run, are summarized in Table 6.2. The reachable set of the
first automaton from run 1 is shown in Figure 6.8. From the figure it is clear
that our subspace identification algorithm outperforms the standard PCA
with respect to the norm of the reachable set, which can be seen to expand
indefinitely in e.g. run 1. An exception to this is run 6, where both methods
perform equally well. This is because in this case the convex hull is used on
all 3 dimensions of the state variables of the plant, and aggregation does not
benefit from decomposition.

What this shows is that the reachability algorithm greatly benefits from
decomposed aggregation if a good subspace basis is used. Specifically, as seen
from runs 1,3 and 5 in Figure 6.10, the overapproximated reachable set with
our approach can be up-to 10 times tighter, compared to when PCA is used for
subspace identification. Additionally, one can see that the convergence rate is
also determined by the subspace partition J . Thus, as a future consideration,
it is beneficial to understand how to select the correct partition automatically,

6.4. Case study 139

2 4 6 8 10 12 14

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 6.9: Results for the first hybrid automaton.

instead of manually.

However, our method is greatly outperformed by PCA in terms of run
time. Indeed, a drawback of our method is its computational complexity,
as observed from the run times of the reachability algorithm. While the
implementation of Algorithm 5 may not be optimal, we believe that the key
reason for this shortcoming is because of the set representation of the flowpipe
segments. We observe that the number of points in each flowpipe segment (see
Sections 5.2 and 5.3) can grow quite large, such that even for a small number
of particles, our algorithm slows down considerably. The decomposed convex
hull also slows down due to the number of points. We thus consider the
following future improvements:

1. Use a different representation of the segments, such as zonotopes or
ellipsoids.

2. Instead of using all of the points, one can consider the so-called core
set [KY05], which a subset of the original set that is sufficient to find
an optimal solution.

3. Use a point clustering method, which groups sets of neighboring points
into a ball.

4. Use a combination of convex hulls and template polyhedra (or other set
representations).

140 6. Decomposed Aggregation for HA-LD

2 4 6 8 10 12 14

-1

-0.5

0

0.5

1

1.5

2

Figure 6.10: Results for the second hybrid automaton.

Additionally, the rate of convergence of our algorithm can be improved, while
reducing the number of particles, by considering gradient approximations
since we observe that for a large number of points, the objective function of
(6.7) is relatively smooth.

Finally, we observed that the manual selection of parameters for the
algorithm is difficult and greatly influences the accuracy of the reachable set.
The most important parameters are the scaling matrix Γ, and the number of
discrete-time iterations L. The rest of the parameters can be automatically
inferred from the analyzed model.

6.5. Conclusion

In this chapter we presented an approach for accurate decomposed set ag-
gregation in reachability analysis of hybrid automata, supplemented with a
dynamics-aware subspace identification algorithm. Specifically, our approach
allows applying decomposed aggregation of the sets in the identified subspaces
using convex hulls, such that the overapproximating aggregate contracts faster.
While identifying a good subspace basis using our approach comes with a
larger computational cost, it is compensated by the fact that a fixed point

6.5. Conclusion 141

is found earlier. We demonstrated this in our case study by applying our
approach on two practical sampled-data control CPS models, and making a
direct comparison with PCA. In particular, we showed that with our approach
the reachability algorithm achieves up-to 10 times tighter reachable sets, and
that with PCA a fixed-point is not guaranteed to be found.

The key observation that we have made in our work, is that the choice
of subspace basis used to derive a template aggregate is dependent on the
continuous dynamics of the automaton. More precisely, when an initial set
is aggregated for a mode using the box template, then its points contract
faster or slower towards the origin, depending on the orientation of the box.
We exploited this observation in our approach to develop an algorithm that
determines a suitable orthonormal basis, such that the flowpipe of the box
template converges faster to the flowpipe of the aggregated set. The algorithm
is based on the SMC optimization technique, because the objective function
of the optimization problem is highly nonlinear and nonconvex.

7

Conclusion

In this thesis we introduced new modeling and analysis methods for SDS with
aperiodic S/A. Specifically, we introduced more accurate models of SDS that
capture the tight dependency between the temporal behavior of a system
and its control performance, and which enable more computationally efficient
algorithms that facilitate their analysis.

Traditionally, SDS are designed by utilizing isolated model abstractions,
guided by the separation of concerns principle, that assume periodic sampling
and actuation. These models are derived based on conservative bounds on the
temporal uncertainties introduced by the physical environment and software.
As a result, these models often do not capture the nuanced relationship
between the control performance and the temporal behavior of the system via
S/A, leading to poorly performing and faulty designs. Our work addressed
this shortcoming by providing more descriptive, hybrid system models in the
form of HA-CLD that capture the direct influence of temporal disturbances
on the control system, and enable more accurate evaluation of its performance
using formal methods.

Specifically, HA-CLD facilitate an alternative verification approach us-
ing reachability analysis, which is commonly referred to as model checking.
Compared to standard analysis and design techniques for isolated models,
reachability analysis allows algorithmic evaluation of the system by jointly en-
compassing all of its possible temporal and physical behaviors in a systematic
and mathematically rigorous way. However, the computational complexity
of the analysis of the models tends to increase dramatically, compared to
their isolated counterparts, due to the increased expressiveness. As a result,
reachability analysis is often a very computationally intensive problem, and
exact reachability analysis is in general undecidable. Nevertheless, we have

143

144 7. Conclusion

shown in this thesis through numerous practical examples, that in many occa-
sions this approach remains the only option available as a means to guide the
designer towards safe and robust system design. Additionally, the restricted
syntax and properties of HA-CLD allow partial separation of concerns within
the model in order to facilitate less computationally intensive analysis.

Concretely, the key feature of a HA-CLD that differentiates it from other
models, is that the temporal behavior can be explicitly specified using vari-
ables with simple linear dynamics, which we call clocks, while the plant
and controller dynamics can be modeled with linear ODEs and difference
equations, used in control theory. Moreover, the aperiodic temporal behavior
is independent of the plant and controller dynamics. Thus, while analysis of
HA-CLD remains undecidable, their temporal behavior can still be studied
in isolation, and its verification remains a decidable problem. Additionally,
we have proven that HA-CLD can be used to verify stability, a feat that is
in general not possible for HA, since there the temporal behavior may be
implicitly defined.

A more detailed discussion and summary of these and other results are pro-
vided in Section 7.1. The key contributions are outlined in Section 7.2. Finally,
future improvements and research directions are discussed in Section 7.3.

7.1. Summary

In Chapter 2 we first presented a detailed retrospective on control systems
and design methodologies for SDS. Here, we provided a detailed exposition
of traditional isolated modeling approaches and design techniques, such as
the direct and emulation methods. Furthermore, we provided a motivating
example where these techniques fall short. We then briefly touched upon
model checking as an alternative algorithmic approach to system verification
and validation, and outlined the challenges associated it. Subsequently, we
covered essential background theory about linear dynamical system models,
whose properties eventually find their way into hybrid system models. Finally,
we closed the chapter with a detailed definition and semantics of HA, and its
reachability problem.

Having fleshed out important design concepts and theory for SDS, we
then presented in Chapter 3 an alternative free-running control strategy for
multiprocessor based SDS with shared memory and caches. We first introduced
the notion of free-running control, and discussed the differences with periodic
control, a strategy commonly adopted in industry that facilitates isolated
modeling and analysis of SDS. In free-running control sampling and actuation
occurs as soon as the control task finishes execution, and immediately starts

7.1. Summary 145

a new iteration as soon as measurement data is available. As such, it does not
enforce strict scheduling of tasks, and the execution times effectively dictate
the pace of sampling and actuation. This allows control design that is based
on a execution time distribution, rather than the WCET bound which is
typically very large, resulting in improved control performance. While this
strategy eliminates the need to derive an upper bound on the execution time,
it inevitably introduces sampling uncertainty due to the varying processing
times and delays. This introduces problems for state-estimation algorithms.
Specifically, the received measurements are different from the ones predicted
by the periodic model, due to the deviation of the sampling moments from the
mean. We addressed this issue with a novel state-estimation algorithm based
on Particle Filters, that corrects this error using a probabilistic execution
time model. We then showed in our results that our PF based estimator
outperforms other estimation algorithms, such as the KF, by a factor of
10. Unfortunately, the resulting S/A behavior of the SDS with free-running
control is aperiodic, and the control performance is more difficult to evaluate.

To address this, in Chapter 4 we focused on the modeling and analysis
of free-running SDS using HA-CLD. We first discussed the drawback of the
WCET task workload characterization. We then presented an approximate
quantization of the so-called running average workload characterization, that is
more suitable for the analysis of free-running controllers. In this approximation
we exploit the observation that long task executions occur rarely, and are
typically due to inter-task interference and cache misses. We then showed
how this workload characterization can be encoded using HA-CLD models,
by representing task executions with switching modes, each equipped with
dwell time lower and upper bounds that depend on the length of an execution
interval. Next, we reasoned that classical (asymptotic) stability verification
approaches, such as CQLFs, are not always applicable to such systems,
because a CQLF may not exists even if the system is stable. An alternative
to such approaches is to apply reachability analysis. We then proceeded
with formulating and proving a key theorem about the stability analysis
of HA-CLD models using reachability analysis. In particular, we showed
that verifying (asymptotic) stability of such models can be accomplished by
computing an overapproximated reachable set of states, and algorithmically
checking whether it contracts to the unit ball. In this result we rely on the
restrictions imposed on the HA-CLD model and that the temporal behavior
is independent of the system’s dynamics. Specifically, by stripping the layer
of plant and controller dynamics, one is left with a decidable model of the
temporal behavior, that can be analyzed separately. As a result, one can
reason about stability through reachability analysis by only considering upper

146 7. Conclusion

and lower bounds on temporal dwell-times per iteration. We finally showed
using our own reachability algorithm and SpaceEx, that the average workload
characterization improves the analysis, thus verifying the stability of free-
running sampled-data systems. Specifically, we showed that if a periodically
sampling SDS with a large sampling period is not stable, the same system
with free-running control can become stable, by refining the derived HA-CLD
model. Here we also highlighted the drawbacks of SpaceEx for the reachability
analysis of HA-CLD, which was unable to find a fixed point for a number of
our models. Additionally, as of writing SpaceEx is not equipped with the
necessary and sufficient fixed point stopping condition to verify stability.

Besides having desirable analysis and modeling properties, HA-CLD also
enable more efficient reachability methods that are not considered in generic
model checkers such as SpaceEx. To overcome this, we presented our own
algorithm in Chapter 5, where the separability of clock and nonclock variables
is exploited to compute their flowpipes independently. Specifically, clock
flowpipes are trivially overapproximated using tight box segments, while non-
clock flowpipes are overapproximated using ball arithmetic. Most importantly,
our algorithm capitalizes on the restriction that guards and invariants are
only allowed for clocks in HA-CLD, which are simple box constraints. This
allows computing guard and invariant intersections with the clock flowpipes
efficiently, and independently from the nonclock variables. Lastly, clock seg-
ments are easily aggregated using boxes, which contrary to what intuition
suggests do not introduce too much overapproximation. We then presented
a case study where we considered HA-CLD models of practical SDSs, and
showed that our method greatly outperforms the popular tool SpaceEx for
these models, which is arguably the most used HA analyzer available. In
particular, we showed that our tool produces tighter reachable sets, while
verifying asymptotic stability of a system in lesser number of iterations. We
note here that our fixed point condition is more difficult to satisfy, compared
to SpaceEx, because we additionally require that the reachable set contracts
within the unit ball.

While reachability of HA-CLD can be performed more efficiently and accu-
rately, our method still suffers from what we believe to be a core bottleneck of
modern reachability algorithms, namely set aggregation. Without aggregation,
the growth of flowpipe segments grows uncontrollably, and thus prohibiting
the algorithm from terminating within a reasonable amount of time, or at all.
With aggregation on the other hand, this growth is controlled, at the expense
of increased overapproximation, by covering the union of segments with a
single geometrical set that requires less storage, and is reasonably fast to
compute. As such, the challenge is to choose this set in such a way that it min-

7.2. Contributions 147

imizes the overapproximation error, and requires less computational resources.
In Chapter 6 we presented a novel heuristic for aggregation in the reachability
of the more general HA-LD class, based on subspace decomposition, that
addresses this tradeoff. The basic idea is that by performing aggregation on
subspace projections the cost of aggregation in isolated subspaces is traded
for the cost of overapproximation, because the derived aggregates are lower
dimensional and then composed back in the original space using the Cartesian
product. The tradeoff is then completely determined by the selection of
subspaces and their partition within the parent space. We addressed the
subspace selection problem, by designing a SMC-based subspace identification
algorithm that relies on an important observation. Specifically, we observed
that an optimal subspace basis does not only depend on the shape of the
aggregated union of flowpipe segments, but also on the contraction rate of the
overapproximation towards the aggregated flowpipe. As such, the advantage
of our subspace identification algorithm over the popular PCA algorithm,
is that with PCA the aggregated sets are not guaranteed to contract. We
showed that while our algorithm is computationally expensive, the reachability
algorithm achieves tighter reachable sets, and that with PCA a fixed point
was not found for the considered models.

7.2. Contributions

The main contributions of this thesis are as follows:

1. A state estimator robust to sampling uncertainty Our state es-
timation algorithm targets free-running control algorithms executed on
multi-processor systems with shared memory and caches. The basic idea
of the approach is to allow schedules of control tasks without enforcing
hard real-time periodic execution, which generally utilizes conservative
execution time bounds that may deteriorate control performance. Subse-
quently, we supplement this strategy with a state estimation algorithm
that corrects model mismatch errors of received measurements, due to
the aperiodic nature of free-running control.

2. Introduction of the HA-CLD model. The first feature that makes
this subclass of hybrid automata particularly useful, is that it can model
a larger portion of SDS, compared to isolated methods, by partially
preserving the tight dependency between the control and temporal
behaviors. Specifically, the effects of information loss, varying processing
times and delay on the control performance are captured directly through
sampling and actuation. Second, the temporal behavior is independent
of the continuous dynamics, and so it can still be efficiently analyzed

148 7. Conclusion

in isolation. Thirdly, HA-CLD allow (asymptotic) stability verification
through reachability analysis, a property that cannot be checked in
general for HA-LD, because their temporal behavior is implicitly defined,
and not independent of the dynamics.

3. Formulation and proof of a stability verification theorem for
HA-CLD Stability verification of SDS is usually achieved by utilizing
Lyapunov functions, such as CQLF. However, such functions are very
difficult to find, and a CQLF in particular may not exist, even if the
system is stable. In contrast, analyzing the stability of SDS through
reachability of HA-CLD is always possible, using our result, and pro-
vides an alternative that guarantees stability as long as the underlying
HA-CLD model captures sufficient information about the analyzed CPS.
However, verifying that a system is unstable with our approach is not
possible in general, since it relies on overapproximations of the reachable
set. The problem of deriving underapproximations on the other hand
that are sufficient to conclude instability is not addressed.

4. An accurate and efficient reachability algorithm for HA-CLD.
Our reachability algorithm directly exploits the restricted syntax of
HA-CLD and separation of variables, which greatly simplify the compu-
tation of the reachable set, because computing intersections is easier,
and because flowpipes of clock and nonclock variables are computed
independently of each other. In contrast, state-of-the-art tools such as
SpaceEx, do not exploit such properties, because they are designed to
handle the general case of HA-LD. As such, our approach demonstrates
the benefit of domain-specific models with restricted syntax, and tools
that are able to identify and exploit these restrictions.

5. A decomposed aggregation method. Our so-called decomposed
aggregation approach utilizes projections onto subspace partitions of
the parent space. The projections are then aggregated and composed
back into the original space using the Cartesian product. Additionally,
the approach relies on a new dynamics-aware subspace identification
algorithm based on SMC. The algorithm solves a non-differentiable
objection function with an orthogonality constraint, based on a flowpipe
contraction measure. This measure is a direct consequence of the key
observation that the choice of basis for the subspaces directly affects
the rate of contraction of the aggregate flowpipe to the flowpipe of
the aggregated set. Specifically, we have observed that a flowpipe that
converges faster reduces the cumulative overapproximation error in the
reachability algorithm.

7.3. Future directions 149

7.3. Future directions

The ideas and algorithms developed in this work can be further improved and
extended in the following ways:

1. The HA-CLD model has many attractive modeling and analytical prop-
erties that can be investigated further. One particular problem that
we have not touched upon, is verifying instability of CPS. This is
a more difficult problem, because the reachability problem is based
on overapproximations. A possible research direction is to consider
under-approximations. Furthermore, it is interesting to see whether
stability verification can be improved and accelerated, by combining
analytical analysis with reachability analysis. Finally, the HA-CLD
reachability algorithm presented in this thesis can be further improved,
by considering other flowpipe segment representations, and symbolic
techniques.

2. Our decomposed aggregation approach can be improved further by
considering methods to determine subspace partitions. This is particu-
larly important for sparse or semi-sparse dynamics, where the evolution
of a state variable may depend on a smaller number of other state-
variables. Thus, computationally efficient and accurate aggregation can
be performed on a more fine-grained partitioning of the parent space.

3. The subspace identification algorithm presented in Chapter 6 is at this
point very computationally expensive. The first step towards the im-
provement of the performance is a more optimized implementation of
the algorithm with a suitable programming language, such as Julia.
Furthermore, the structure of the optimization problem is not well
understood yet. Efforts in this area can result to more efficient optimiza-
tion strategies that converge faster and utilize less resources. Finally,
the algorithm will greatly benefit from a more appropriate choice of set
representations for the flowpipe segments. Two possible representations
are zonotopes and ellipsoid, the latter of which may even permit a more
tractable contraction measure.

4. The computation of flowpipes in the reachability analysis of HA-LD
can benefit from methods that apply subspace decomposition. The
idea is to compute independent flowpipes from projections of the initial
sets onto subspace partitions, similarly to our decomposed aggregation
approach. As discussed before, the problem is how to determine this
subspace partition, such that the overapproximation error and compu-

150 7. Conclusion

tational burden are minimized. One such strategy is the use of model
transformations via triangularization and diagonalization of the system
dynamics matrices.

5. Finally, the ideas developed so far can greatly benefit from evaluation
using physical platforms. Such evaluation will improve the understand-
ing of how detailed HA-CLD models need to be to capture the real
behaviors of a CPS, and will help to evaluate and improve the proposed
analysis techniques.

The work presented in this thesis encapsulates new and fundamental ideas
for the modeling and analysis of SDS, that fill important gaps in the theory
of digital control and CPS. Nevertheless, there are many stones left unturned
in the pursuit of more accurate, and efficient design and analysis methods for
SDS. As such, we hope that this work will inspire motivated researchers to
continue this pursuit, and that it will stimulate further development of tools
which will eventually find their way into industrial adoption. We strongly
believe in, and promote the view that good design and engineering practices in
this modern age of automation need to be supplemented with formal methods,
justified by the realistic demands and requirements of our dynamic, highly
technological world.

A

Mathematical preliminaries

A.1. Vector spaces

In this section we redefine key concepts about vector space, linear maps
from [HJ12; HN01].

Definition A.1.1 (Vector space)

A vector space X (also called linear space) over a scalar field F = R (or
F = C) is a set of points, or vectors, closed under addition and scalar
multiplication, so that for any x, y, z ∈ X and any a, b ∈ F:

1. ∃0 ∈ X : x+ 0 = x Identity

2. ∃ − x ∈ X : x+ (−x) = 0 Inverse

3. x+ (y + z) = (x+ y) + z ∈ X Associativity

4. x+ y = y + x ∈ X Commutativity

5. (a+ b)(x+ y) = ax+ bx+ ay + by ∈ X Scalar distributivity

A subset V ⊆ X that satisfies these properties is called a subspace
of X . We say that X is a normed vector space, if it is additionally
equipped with a nonnegative function ‖·‖ : X → R+ called a norm,
which satisfies

1. ∀x ∈ X : ‖x‖ ≥ 0, ‖x‖ = 0 ⇐⇒ x = 0 Nonnegativity

2. ∀x, y ∈ X : ‖x+ y‖ ≤ ‖x‖ + ‖y‖ Subadditivity

3. ∀a ∈ F, x ∈ X : ‖ax‖ = |a| ‖x‖ Homogeneity

151

152 A. Mathematical preliminaries

In this thesis we exclusively work with X = Rn, the finite dimensional
space of real-valued vectors and assume that F = R, unless stated otherwise.
Furthermore we use the term vector and point interchangeably.

Definition A.1.2 (Linear combination and span)

Let X be a vector space, then given a set of vectors X =
{x1, . . . , xk} ⊂ X and a set of scalars {a1, . . . , ak} ⊂ F, then the
vector y =

∑k
i=1 aixi ∈ X is called a linear combination. Further-

more we denote with

span{x1, . . . , xk} = {y =
k∑
i=1

aixi | ai ∈ F for all i = 1, . . . , k},

the set of all linear combinations of X. If V is a subspace and
V = spanX, then we say that X spans V.

Definition A.1.3 (Linear independence)

Let X = {x1, . . . , xk} ⊂ X then we say that X is linearly independent,
whenever

∑k
i=1 aixi = 0 if and only if ai = 0 for all i = 1, . . . , k.

Definition A.1.4 (Basis and dimension)

If V is a subspace of X , and X ⊂ V, then we say that X is a basis
of V if and only if X spans V, and is linearly independent. We then
denote with dimV = #X the dimension of V, i.e. the maximum
number of linearly independent vectors that span V.

Note that dimRn = n.

Definition A.1.5 (Orthonormal basis)

Let V be a subspace of Rn, then a set of vectors {v1, . . . , vm} form
an orthonormal basis of V if, in addition to being a basis of V, the

A.1. Vector spaces 153

vectors satisfy:

v>i vj =

{
1 if i = j,

0 otherwise.

The standard basis {e1, . . . , en} of Rn is an orthonormal basis.

Definition A.1.6 (Linear map)

Let X ,Y be vector space, then a linear map A : X → Y is a function
that satisfies A(ax+ by) = aAx+ bAy for all x, y ∈ X and all a, b ∈ F.
Furthermore, we denote with kerA = {x ∈ X | Ax = 0}, the kernel,
or nullspace of A, and with ranA = {y = Ax | x ∈ X} the range
of A. If X and Y are finite with dimensions n and m, respectively,
and {e1, . . . , en} is the standard basis of X , then the linear map is
identified with the matrix:

[A] =
(
Ae1 · · · Aen

)
⊂ Rm×n.

Without loss generality, we let A , [A].

Definition A.1.7 (Vector components/point coordi-
nates)

Let V be a finite vector space with basis V = {v1, . . . , vn}, and let
x =

∑n
i=1 aivi be any point (or vector) in V. Then [·]Vi : V → R is a

linear map with respect to the basis V defined as

[x]Vi = ai.

We call this map the i-th coordinate (or component) of x with respect
to V . If V is the standard basis, we drop the superscript. In addition
to that we use the notation xi , [x]i if there is no confusion for the
given context.

154 A. Mathematical preliminaries

Definition A.1.8 (Operator norm)

Let X ,Y be vector spaces equipped with the norms ‖·‖X and ‖·‖Y .
Then, given a linear map A : X → Y, its operator (matrix) norm is:

‖A‖XY = sup
‖x‖X=1

{‖Ax‖Y} = inf{M | ‖Ax‖Y ≤M ‖x‖X , x ∈ X}.

This norm is submultiplicative, i.e. it satisfies the inequality:

‖Ax‖Y ≤ ‖A‖XY ‖x‖X , x ∈ X ,

which trivially follows from the definition. A direct consequence of
this is that given a vector space Z equipped with norm ‖·‖Z , and a
map B : Y → Z, then the map BA : X → Z has operator norm

‖BA‖XZ ≤ ‖B‖XY ‖A‖YZ .

The property can be extended to any number of linear maps.

We drop the vector space subscripts from the norms if all spaces have the
same norm, and is understood from the context.

A.2. Geometry

In this section we define some specific geometric sets, and operations on these
sets from [BV04].

Definition A.2.1 (Affine combination and hull)

Let X be a vector space, then given a set of points X = {x1, . . . , xk} ⊂
X and a set of scalars {a1, . . . , ak} ⊂ R, such that

∑k
i=1 ai = 1, the

vector y =
∑k

i=1 aixi ∈ X is called an affine combination of X. We
say that a set C is affine if and only if each of its points is an affine
combination of any other two points in C, i.e.

z ∈ C =⇒ ∀x, y ∈ C : ∃λ ∈ R : z = λx+ (1− λ)y.

A.2. Geometry 155

Furthermore we denote with

aff(X) = {y =
k∑
i=1

aixi | xi ∈ X and
k∑
i=1

ai = 1},

the affine hull of any set X ⊂ X , i.e. the set of all affine combinations
of X. If C is an affine set and x0 ∈ C, then the set V = C − x0 is a
subspace of X . Thus, dim C = dimV.

The most trivial case of an affine set is the line passing through points x′

and x′′, defined as {θx′ + (1− θ)x′′ ∈ Rn | θ ∈ R}.

Definition A.2.2 (Convex combination and hull)

Let X be a vector space, then given a set of points X = {x1, . . . , xk} ⊂
X and a set of scalars {a1, . . . , ak} ⊂ F, such that

∑k
i=1 ai = 1 and

ai ≥ 0, i = 1, . . . , k, then the point y =
∑k

i=1 aixi ∈ X is called a
convex combination of X. A set C is convex, if and only if every point
in C is a convex combination of any two other points in C, i.e.

z ∈ C =⇒ ∀x, y ∈ C : ∃0 ≤ λ ≤ 1 : z = λx+ (1− λ)y.

Furthermore we denote with

conv(X) = {y =

k∑
i=1

aixi | xi ∈ X,
k∑
i=1

ai = 1 and ai ≥ 0 for all i},

the convex hull of X, i.e. the set of all convex combinations of a set
X ⊂ X .

All affine sets and subspaces are convex sets.

Definition A.2.3 (Hyperplane and half-space)

Let u ∈ Rn and b ∈ R. A hyperplane is the set:

{x ∈ Rn | u>x = b}.

156 A. Mathematical preliminaries

A half-space is the set:

{x ∈ Rn | u>x ≤ b}.

Hyperplanes and half-spaces are by definition convex sets.

Definition A.2.4 (Polyhedron and polytope)

Let ui ∈ Rn and bi ∈ R for i = 1, . . . ,m. Then the intersection of
half-spaces:

P =

m⋂
i=1

{x ∈ Rn | u>i x ≤ bi} = {x ∈ Rn | U>x � b}

where U =
(
u1 · · · um

)
and b =

(
b1 · · · bm

)>
, is a polyhedron

in half-space representation, or H-polyhedron. If P is bounded, then
we refer to it as a polytope, or H-polytope.
On the other hand, suppose that {p1, . . . , pN} ⊂ Rn is a finite set of
points. Then the set:

P = conv({p1, . . . , pN})

is also a polytope in vertex representation, or V-polytope, since it is
always bounded. The point pi, such that P 6= conv({p1, . . . , pn}\{pi})
is called an extreme point, or vertex, of P.

Definition A.2.5 (Set projection)

Let X be a vector space equipped with a norm ‖·‖, and let X ⊂ X
be a nonempty set. Then the map PX : X → X defined by:

PX(x) = argmin
x′∈X

{
∥∥x′ − x∥∥}

is called a projection onto the set X.

Note that the projection, depending on the set X and the chosen norm
‖·‖, is not unique in general, and may not exist if X is not closed. If X is

A.2. Geometry 157

closed and convex, and X is equipped with the Euclidean norm ‖·‖2, then the
projection always exists and it is unique [BV04].

Definition A.2.6 (Subspace projection)

Let V be a subspace of Rn. Without loss of generality, let
{v1, . . . , vm} ⊂ Rn be an orthonormal basis of V. Then the sub-
space projection of a set X ⊂ X onto V is a linear map:

PV(X) = V V >X,

where V =
(
v1 · · · vm

)
is a matrix with columns vi.

Definition A.2.7 (Zonotope)

Let V ∈ Rn×m and c ∈ Rn. Then the set:

Z(c, V) = {V x+ c | x ∈ [−1, 1]m} = V B‖·‖∞ + c

is called a zonotope.

Because a zonotope is an affine image of the unit cube, a polytope, it is
also a polytope. A zonotope has the following properties that follow from the
definition:

158 A. Mathematical preliminaries

Proposition A.2.1 (Zonotope properties)

Zonotopes are closed under affine transformations and Minkowski
sums:

1. Given a zonotope Z(c, V), a matrix A ∈ Rn×n and a vector
b ∈ Rn the affine image

AZ(c, V) + b = Z(Ac+ b, AV),

is a zonotope.
2. Given two zonotopes Z(c1, V1) and Z(c2, V2), then

Z(c1, V1) + Z(c2, V2) = Z(c1 + c2,
(
V1 V2

)
),

is a zonotope.

Although evident from the definition, a proof of these properties is provided
in [Gir05; GLGM06].

The following property is useful when finding bounding half-spaces of
zonotopes:

Proposition A.2.2 (Linear optimization over zonotopes)

Let Z(c, V) be a zonotope, and u ∈ Rn. Then Mu =
max{u>z | z ∈ Z(c, V)} = u>c + 1> abs(V >u), and mu =
min{u>z | z ∈ Z(c, V)} = u>c− 1> abs(V >u).

Proof. We only prove the result for Mu, since the proof for mu is similar.
Obtaining Mu is the same as solving the following LP:

maximize u>z
subject to z = V x+ c

−1 � x � 1,

which can be solved from the equivalent LP:

maximize ũ>x
subject to −1 � x � 1,

where ũ = V >u. The LP trivially attains its maximum at a point x∗ ∈
{−1, 1}n, the set of vertices of the unit cube. Indeed, it is easy to check that

A.3. Linear Dynamical Systems 159

if x∗ = (sign(ũ1), . . . , sign(ũm)), then for all x ∈ [−1, 1]n : ũ>x ≤ ũ>x∗. Thus,
Mu = u>c+ ũ>x∗ = u>c+

∑m
i=1|ũi| = u>c+ 1> abs(V >u).

From the proposition it immediately follows that Z(c, V) ⊆
{x ∈ Rn | mu ≤ u>x ≤Mu}, which is a slab constructed from the intersection
of two half-spaces defined by u. In [GLGM06] a similar construction is called
an S-band intersection.

A.3. Linear Dynamical Systems

In this section we formally redefine the linear dynamical system model from
[CK14; Tes12], and discuss its properties.

A dynamical system is a mathematical model that describes how the state
of a real physical process evolves over time. A less general definition, based
on [CK14], is as follows:

Definition A.3.1 (Continuous dynamical system)

A continuous system is a tuple H = (T,X ,Φ), where T is a semigroup,
X is a complete normed vector space over R, called the state space,
and Φ : T×X → X is a flow with the properties:

a) Φ(0, x) = x for all x ∈ X ,
b) Φ(s+ t, x) = Φ(s,Φ(t, x)) for all s, t ∈ T and all x ∈ X .

For each x ∈ X , the set {Φ(t, x) | t ∈ T} is called the orbit (or
trajectory) of the system through x. Similarly for X ⊂ X ,
{Φ(t, x) | t ∈ T, x ∈ X} is called the flowpipe through X.

In [CK14] X is assumed to be a complete metric space, rather than a
complete normed space. Without loss of generality that X = Rn, unless
stated otherwise. Additionally we assume that either T = R, i.e. the system
is continuous-time, or T = Z, i.e. the system is discrete-time.

The typical way to specify a dynamical system in continuous-time is by
the solution set of the initial-value problem:

ẋ = f(x), x(0) = x0 ∈ Rn, (A.1)

where x(t) is the state trajectory, and we assume that f : Rn → Rn is a time-
invariant, locally Lipschitz continuous vector field, tangent to each solution
curve of (A.1). We say that the dynamical system specified this way is linear,
if f is linear or affine. More precisely, the rate of change of the state variables
with respect to time is a linear combination of the state variables. In this case,

160 A. Mathematical preliminaries

such a system is also called autonomous. If there are input and disturbance
variables, then the state-evolution function is affine. Here we give the general
definition of the representation for non-autonomous systems.

Definition A.3.2 (Continuous-time LTI dynamical sys-
tem)

A continuous linear time-invariant system H in continuous time
T = R is a system specified by

ẋ = Ax+Bu, x(0) = x0, (A.2)

where x(t) ∈ Rn is the state vector and u(t) ∈ Rm is the input vector
to the system at time t ∈ R. A ∈ Rn×n, B ∈ Rm×n are the so-called
system matrices. Furthermore the solution

x(t, x0) = Φ(t, x0) = eAtx0 +

∫ t

0
eA(t−s)Bu(s)ds, t ∈ R, (A.3)

is unique for each x0 and fixed u : R→ Rm.

A discrete-time dynamical system with T = Z is specified similarly, with
the main difference to its continuous-time counterpart being that the state
evolves according to a recurrence relation of the form:

xn+1 = f(xn), (A.4)

where the sequence (xn) is the state trajectory, and f shares the same
properties as in (A.1). Thus in a similar fashion, we define a linear time-
invariant system in discrete-time as follows:

Definition A.3.3 (Discrete-time LTI dynamical system)

A continuous linear system H in discrete-time T = Z is a system
specified by

xk+1 = Axk +Buk, (A.5)

where xk ∈ Rn is the state vector, uk ∈ Rm is the input vector to the

A.3. Linear Dynamical Systems 161

system. Furthermore

Φ(k, x0) = xk = Akx0 +

k∑
i=1

Ak−iBui.

Linear dynamical systems play a very important role in modeling, design
and analysis of CPS due to their nice analytical properties, and because a
solution of the system of equations can be determined exactly in closed-form.
Furthermore, non-linear systems can be approximated as a linear system
locally in the neighborhood of a fixed-point. Next we discuss some properties
of linear systems.

Notation

Sets and spaces

R Real numbers.

R+ Positive real numbers.

R++ Strictly positive real numbers.

Rn Space of n-dimensional vectors with real compo-
nents (n× 1 matrices).

Z Integers.

Z+ Positive integers.

Z++ Strictly positive integers.

N Natural numbers.

N0 Natural numbers, including 0.

Rm×n Space of real matrices with m rows and n columns.

2X Powerset of a set X.

F A field.

#X Cardinality (numer of elements if finite) of a set X.

O(n) Set of orthogonal n × n matrices
{S ∈ Rn×n | S>S = I}.

SO(n) Set of special matrices {S ∈ O(n) | det(S) = 1}.
C(X,Y); C(X) Space of continuous functions f : X → Y ; same with

Y = X.

Ck(X,Y); Ck(X) Space of k-times differentiable continuous functions;
same with Y = X.

Vectors and matrices

1 Vector with all components equal to 1.

ei A vector with i-th component equal to 1, and the rest
equal to 0.

In; I n × n identity matrix; same with implicitly defined
size, if understood from the context.

163

164 Notation

A>; x> Transpose of matrix A; transpose of vector x.

[v]i i-th component of vector v, used sometimes instead
of vi if ambiguity may occur.

[A]ij ij-th entry of matrix A, used sometimes instead of
aij if ambiguity may occur.

diag(x) Diagonal matrix with diagonal entries x1, . . . , xn.

span{x1, . . . , xk} Span of vectors x1, . . . , xk.

ran(A) Range of matrix A.

ker(A) Kernel (nullspace) of matrix A.

tr(A) Trace of matrix A, i.e. the sum of its diagonal entries.

det(A) Determinant of matrix A.

Set topology and calculus

×k
i=1Xi X1 × · · · ×Xk, the Cartesian product (cross product)

of sets X1, . . . , Xk.

AX Image of a set X under a linear map represented by
matrix A ∈ Rm×n, i.e. {Ax | x ∈ X ⊆ Rn}.

aX The set X scaled by a ∈ R, i.e. {ax | x ∈ X ⊂ Rn}.
V ⊕W Direct sum of vector spaces V and W.

X + Y The Minkowski sum of two sets X and Y , i.e.
{x+ y | x ∈ X, y ∈ Y }

X + c Translation of set X by c ∈ Rn, i.e.
{x+ c | x ∈ X ⊂ Rn}.

[a, b]n Shorthand for×n
i=1[a, b], an interval hull.

aff(X) Affine hull of the set X (see Definition A.2.1)

conv(X) Convex hull of the set X (see Definition A.2.2).

int(X) Interior of the set X.

cl(X) Closure of the set X.

∂X Boundary of the set X, i.e. cl(X) \ int(X).

Norms

‖·‖ A norm.

‖x‖1 1-norm (`1-norm) of vector x.

‖x‖2 2-norm (`2-norm) of vector x.

‖x‖∞ ∞-norm (`∞-norm) of vector x.

‖A‖ Norm of matrix A induced by ‖·‖, i,e. supx 6=0 ‖Ax‖.

Notation 165

B‖·‖ n-dimensional unit ball, i.e. the set
{x ∈ Rn | ‖x‖ ≤ 1}.

‖X‖ Set norm induced by ‖·‖, i.e. maxx∈X∪{0}{‖x‖}.

Probability distributions

N (µ, σ) Normal (Gaussian) distribution with mean µ and
standard deviation σ.

N (µ,Q) Multivariate normal distribution with mean µ ∈ Rn
and covariance matrix Q ∈ Rn×n.

U(a, b) Uniform distribution with interval [a, b].

U(a, b)n Multivariate uniform distribution over [a, b]n.

Functions and relations

f : A→ B f is a function mapping from A to B.

dom f Domain of a function f .

exp(a) Exponential of a ∈ R.

exp(A) Matrix exponential of A ∈ Rn×n, equivalent to eA.

det(A) Determinant of matrix A ∈ Rn×n.

abs(A); abs(v) Matrix with entries [abs(A)]ij = |[A]ij |; vector with
components [abs(v)]i = |vi|. In other words, entry-
wise absolute value function.

max{x, y, . . .} Vector with components max{xi, yi, . . .}, i = 1, . . . , n,
and x, y, . . . ∈ Rn.

x � y Componentwise inequality between vectors x and y.

x ≺ y Strict componentwise inequality between vectors x
and y.

vol(X) n-dimensional volume (Lebesgue measure) of set X ⊂
Rn.

sign(x) The sign of x ∈ R, i.e. sign(x) =

−1 if x < 0
0 if x = 0
1 if x > 0.

(xk)
N
k=1; (xk) Sequence of points/vectors xk, k = 1, . . . , N ; same but

with implicit limits, if understood from the context.

(xk ∈ Xk); (xk) ∈ X A sequence where each xk ∈ Xk for all k, and {Xk}
are sets; same, but xk ∈ X for all k, X is a set.

Abbreviations

PSO Particle Swarm Optimization 132

SMP Symmetric Multiprocessor System 48

WCET Worst-Case Execution Time 19

ACET Average-Case Execution Time 63

BCET Best-Case Execution Time 66

KF Kalman Filter . xi

EKF Extended Kalman Filter 50

PF Particle Filter . 18

CPS Cyber-Physical System xi

LTI Linear Time Invariant xi

LTV Linear Time Variant . 16

SDFG Synchronous Data Flow Graph 10

FIFO First In, First Out . 50

SIR Sequential Importance Resampling 61

HSDF Homogeneous Synchronous Dataflow 55

PDF Probability Density Function 54

RMSE Root-Meant-Square Error 66

ZOH Zero-Order Hold . 39

FOH First-Oder Hold . 39

SDS Sampled Data System xi

A/D Analog to Digital . 8

D/A Digital to Analog . 8

I/S/O Input-State-Output . 37

HA Hybrid Automaton . xi

HA-CLD Hybrid Automaton with Clocked Linear Dynamics . . . ii

HA-LD Hybrid Automaton with Linear Dynamics xii

LHA Linear Hybrid Automaton 46

TA Timed Automata . 14

167

168 Abbreviations

ADT Average Dwell-Time . 73

CQLF Common Quadratic Lyapunov Function 10

JSR Joint Spectral Radius 16

MLF Multiple Lyapunov Functions 73

ODE Ordinary Differential Equation 58

PWC Piecewise-Constant . 93

PWA Piecewise-Affine . 12

CT Continuous-Time . 90

LP Linear Programming . 96

PCA Principal Component Analysis 22

LMI Linear Matrix Inequality 10

MVEE Minimum-Volume Enclosing Ellipsoid 96

CEGAR Counterexample-Guided Abstraction Refinement 37

S/A Sampling and Actuation xi

ECU Electronic Control Unit 1

MCAS Maneuver Characteristics Augmentation System 2

SMC Sequential Monte Carlo 18

SDS Sampled-Data Systems xi

CAV Computer Aided Verification 34

CAD Computer Aided Design 31

FSM Finite State Machine . 34

LTS Labeled Transition System 34

MPC Model-Predictive Control 41

LQG Linear Quadratic Gaussian 40

LQR Linear Quadratic Regulator 40

PID Proportional Integral Derivative 40

NN Neural-Network . 29

LTL Linear Temporal Logic 35

CTL Computation Tree Logic 35

STL Signal Temporal Logic 35

LP Linear Program . 96

Bibliography

[AD94] Rajeev Alur and David L Dill. “A theory of timed automata”.
In: Theoretical computer science 126.2 (1994), pp. 183–235.

[AJ14] Amir Ali Ahmadi and Raphaël M Jungers. “On complexity
of Lyapunov functions for switched linear systems”. In: IFAC
Proceedings Volumes 47.3 (2014), pp. 5992–5997.

[AKGD15] Mohammad Al Khatib, Antoine Girard, and Thao Dang. “Stabil-
ity verification of nearly periodic impulsive linear systems using
reachability analysis”. In: IFAC-PapersOnLine 48.27 (2015),
pp. 358–363.

[AKGD17] M. Al Khatib, A. Girard, and T. Dang. “Self-Triggered Con-
trol for Sampled-data Systems using Reachability Analysis”. In:
IFAC-PapersOnLine 50.1 (2017), pp. 7881–7886.

[Alu15] Rajeev Alur. Principles of cyber-physical systems. MIT Press,
2015.

[Ami+14] Amir Aminifar et al. “Bandwidth-efficient controller-server co-
design with stability guarantees”. In: Proc. Design, Automation
and Test in Europe Conference and Exhibition (DATE). 2014,
pp. 1–6.

[Aru+02] M Sanjeev Arulampalam et al. “A tutorial on particle filters
for online nonlinear/non-Gaussian Bayesian tracking”. In: IEEE
Transactions on Signal Processing 50.2 (2002), pp. 174–188.

[Arz+00] K-E Arzén et al. “An introduction to control and scheduling
co-design”. In: Proceedings of the 39th IEEE Conference on
Decision and Control (Cat. No. 00CH37187). Vol. 5. IEEE. 2000,
pp. 4865–4870.

[ÅW13] Karl J Åström and Björn Wittenmark. Computer-controlled
systems: theory and design. Courier Corporation, 2013.

169

170 BIBLIOGRAPHY

[BBV12] Romain Benassi, Julien Bect, and Emmanuel Vazquez. “Bayesian
optimization using sequential Monte Carlo”. In: International
Conference on Learning and Intelligent Optimization. Springer.
2012, pp. 339–342.

[BD17] S. Bak and P. S. Duggirala. “HyLAA: A Tool for Computing
Simulation-Equivalent Reachability for Linear Systems”. In: Pro-
ceedings of the 20th International Conference on Hybrid Systems:
Computation and Control. ACM. 2017, pp. 173–178.

[BDH96] C.B. Barber, D.P. Dobkin, and H. Huhdanpaa. “The Quick-
hull Algorithm for Convex Hulls”. In: ACM Transactions on
Mathematical Software (TOMS) 22.4 (1996), pp. 469–483.

[Ben+08] L. Benvenuti et al. “Reachability computation for hybrid systems
with Ariadne”. In: Proc. of the 17th IFAC World Congress. 2008,
pp. 8960–8965.

[Ben+95] Johan Bengtsson et al. “UPPAAL—a tool suite for automatic ver-
ification of real-time systems”. In: International hybrid systems
workshop. Springer. 1995, pp. 232–243.

[Ber+19] Philipp Berger et al. “Multiple Analyses, Requirements Once”.
In: International Workshop on Formal Methods for Industrial
Critical Systems. Springer. 2019, pp. 59–75.

[BJ15] Stanley Bak and Taylor T Johnson. “Periodically-Scheduled
Controller Analysis using Hybrid Systems Reachability and Con-
tinuization”. In: Proc. Real-Time Systems Symposium. IEEE.
2015, pp. 195–205.

[Bog+18] S. Bogomolov et al. “Reach Set Approximation through De-
composition with Low-dimensional Sets and High-dimensional
Matrices”. In: Proceedings of the 21st International Conference
on Hybrid Systems: Computation and Control (part of CPS
Week). ACM. 2018, pp. 41–50.

[Bog+19a] Sergiy Bogomolov et al. “JuliaReach: a toolbox for set-based
reachability”. In: Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control. 2019,
pp. 39–44.

[Bog+19b] Sergiy Bogomolov et al. “Reachability analysis of linear hybrid
systems via block decomposition”. In: CoRR abs/1905.02458
(2019). arXiv: 1905.02458. url: http://arxiv.org/abs/1905.
02458.

BIBLIOGRAPHY 171

[Bur+18] Ondrej Burkacky et al. “Rethinking car software and electronics
architecture”. In: McKinsey & Co., February (2018).

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex Optimization.
USA: Cambridge University Press, 2004. isbn: 0521833787.

[CÁ11] Xin Chen and Erika Ábrahám. “Choice of Directions for the Ap-
proximation of Reachable Sets for Hybrid Systems”. In: Interna-
tional Conference on Computer Aided Systems Theory. Springer.
2011, pp. 535–542.

[CÁS13] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan.
“Flow*: An Analyzer for Non-linear Hybrid Systems”. In: Com-
puter Aided Verification. Ed. by Natasha Sharygina and Helmut
Veith. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 258–263. isbn: 978-3-642-39799-8.

[CE81] Edmund M Clarke and E Allen Emerson. “Design and synthe-
sis of synchronization skeletons using branching time tempo-
ral logic”. In: Workshop on Logic of Programs. Springer. 1981,
pp. 52–71.

[Cer01] Anton Cervin. “Analyzing the effects of missed deadlines in
control systems”. In: ARTES Real-Time Graduate student con-
ference. Citeseer. 2001, pp. 17–26.

[Cer+02] Anton Cervin et al. “Feedback–feedforward scheduling of control
tasks”. In: Real-Time Systems 23.1-2 (2002), pp. 25–53.

[Cer+04] Anton Cervin et al. “The jitter margin and its application in the
design of real-time control systems”. In: Proc. IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS).
2004, pp. 1–9.

[CGL94] Edmund M Clarke, Orna Grumberg, and David E Long. “Model
checking and abstraction”. In: ACM transactions on Program-
ming Languages and Systems (TOPLAS) 16.5 (1994), pp. 1512–
1542.

[Che15] X. Chen. “Reachability Analysis of Non-Linear Hybrid Systems
Using Taylor Models”. PhD thesis. PhD thesis, RWTH Aachen
University, 2015.

[Chi+13] Mehdi Chitchian et al. “Adapting particle filter algorithms to
many-core architectures”. In: Parallel & Distributed Processing
(IPDPS), 2013 IEEE 27th International Symposium on. 2013,
pp. 427–438.

172 BIBLIOGRAPHY

[Cho+09] Minyong Choi et al. “State estimation with delayed measure-
ments considering uncertainty of time delay”. In: ICRA. 2009,
pp. 3987–3992.

[Chr07] Frank J Christophersen. “Piecewise affine systems”. In: Optimal
Control of Constrained Piecewise Affine Systems (2007), pp. 39–
42.

[CK14] Fritz Colonius and Wolfgang Kliemann. Dynamical systems and
linear algebra. Vol. 158. American Mathematical Society, 2014.

[Cla+00] Edmund Clarke et al. “Counterexample-guided abstraction re-
finement”. In: International Conference on Computer Aided
Verification. Springer. 2000, pp. 154–169.

[DB19] Parasara Sridhar Duggirala and Stanley Bak. “Aggregation
Strategies in Reachable Set Computation of Hybrid Systems”.
In: Special issue of ACM Transactions on Embedded Computing
Systems (TECS) associated with 16th International Conference
on Embedded Software. EMSOFT. 2019.

[DeC89] R.A. DeCarlo. Linear Systems: A State Variable Approach with
Numerical Implementation. Prentice-Hall, Inc., 1989, pp. 215–
215.

[DFG01] Arnaud Doucet, Nando de Freitas, and Neil Gordon. “An In-
troduction to Sequential Monte Carlo Methods”. In: Sequential
Monte Carlo Methods in Practice. Ed. by Arnaud Doucet, Nando
de Freitas, and Neil Gordon. New York, NY: Springer New York,
2001, pp. 3–14. isbn: 978-1-4757-3437-9. doi: 10.1007/978-1-
4757-3437-9_1.

[DS+09] B De Schutter et al. “Survey of modeling, analysis, and control
of hybrid systems”. In: Handbook of Hybrid Systems Control–
Theory, Tools, Applications (2009), pp. 31–55.

[Dul12] Geir E Dullerud. Control of uncertain sampled-data systems.
Springer Science & Business Media, 2012.

[DV16] P.S. Duggirala and M. Viswanathan. “Parsimonious, Simulation
Based Verification of Linear Systems”. In: International Confer-
ence on Computer Aided Verification. Springer. 2016, pp. 477–
494.

[EJ09] Christof Ebert and Capers Jones. “Embedded software: Facts,
figures, and future”. In: Computer 42.4 (2009), pp. 42–52.

BIBLIOGRAPHY 173

[EL13] David Eppstein and Maarten Löffler. “Bounds on the complexity
of halfspace intersections when the bounded faces have small
dimension”. In: Discrete & Computational Geometry 50.1 (2013),
pp. 1–21.

[FFL01] J.A. Ferrez, K. Fukuda, and T.M. Liebling. “Cuts, Zonotopes
and Arrangements”. In: The sharpest Cut. SIAM Series on
Optimization (2001).

[FKLG13] Goran Frehse, Rajat Kateja, and Colas Le Guernic. “Flowpipe
approximation and clustering in space-time”. In: Proc. Int’l Conf.
on Hybrid systems. 2013, pp. 203–212.

[FP18] Daniele Fontanelli and Luigi Palopoli. “On Soft Real-Time Im-
plementation of LQG Controllers”. In: 2018 IEEE 13th Inter-
national Symposium on Industrial Embedded Systems (SIES).
IEEE. 2018, pp. 1–8.

[FPW+98] Gene F Franklin, J David Powell, Michael L Workman, et al.
Digital control of dynamic systems. Vol. 3. Addison-wesley Menlo
Park, CA, 1998.

[Fre+11] G. Frehse et al. “SpaceEx: Scalable Verification of Hybrid Sys-
tems”. In: Proc. 23rd International Conference on Computer
Aided Verification (CAV). LNCS. Springer, 2011.

[Fre+14] Goran Frehse et al. “Formal analysis of timing effects on closed-
loop properties of control software”. In: Proc. Real-Time Systems
Symposium. 2014, pp. 53–62.

[GC01] Simon Godsill and Tim Clapp. “Improvement Strategies for
Monte Carlo Particle Filters”. In: Sequential Monte Carlo Meth-
ods in Practice. Ed. by Arnaud Doucet, Nando de Freitas, and
Neil Gordon. New York, NY: Springer New York, 2001, pp. 139–
158. isbn: 978-1-4757-3437-9. doi: 10.1007/978-1-4757-3437-
9_7.

[Gir05] A. Girard. “Reachability of uncertain linear systems using zono-
topes”. In: International Workshop on Hybrid Systems: Compu-
tation and Control. Springer. 2005, pp. 291–305.

[GLG08] A. Girard and C. Le Guernic. “Zonotope/Hyperplane Intersec-
tion for Hybrid Systems Reachability Analysis”. In: Interna-
tional Workshop on Hybrid Systems: Computation and Control.
Springer. 2008, pp. 215–228.

174 BIBLIOGRAPHY

[GLGM06] Antoine Girard, Colas Le Guernic, and Oded Maler. “Efficient
computation of reachable sets of linear time-invariant systems
with inputs”. In: Proc. Int’l Conf. on Hybrid systems. 2006,
pp. 257–271.

[Gos+13] Dip Goswami et al. “Model-based development and verifica-
tion of control software for electric vehicles”. In: 2013 50th
ACM/EDAC/IEEE Design Automation Conference (DAC).
IEEE. 2013, pp. 1–9.

[GYA02] John Golias, George Yannis, and Constantinos Antoniou. “Clas-
sification of driver-assistance systems according to their impact
on road safety and traffic efficiency”. In: Transport reviews 22.2
(2002), pp. 179–196.

[Hag14] Willem Hagemann. “Reachability Analysis of Hybrid Systems
Using Symbolic Orthogonal Projections”. In: Proc. Int’l Conf.
on Computer-Aided Verification (CAV). Springer. 2014, pp. 407–
423.

[Har02] Darald J Hartfiel. Nonhomogeneous matrix products. World Sci-
entific, 2002.

[Hen+95] Thomas A Henzinger et al. “What’s decidable about hybrid
automata?” In: Proc. annual ACM Symposium on Theory of
computing. 1995, pp. 373–382.

[HJ12] Roger A Horn and Charles R Johnson. Matrix analysis. Cam-
bridge university press, 2012.

[HMT15] Willem Hagemann, Eike Möhlmann, and OE Theel. “Hybrid
tools for hybrid systems: Proving stability and safety at once”.
In: Formal Modeling and Analysis of Timed Systems (2015).

[HN01] John K Hunter and Bruno Nachtergaele. Applied analysis. World
Scientific Publishing Company, 2001.

[Ho13] Joost PHM Hausmans and other. “Two parameter workload char-
acterization for improved dataflow analysis accuracy”. In: Proc.
IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS). 2013, pp. 117–126.

[Hor+19] Eelco P van Horssen et al. “Event-and deadline-driven control
of a self-localizing robot with vision-induced delays”. In: IEEE
Transactions on Industrial Electronics 67.2 (2019), pp. 1212–
1221.

BIBLIOGRAPHY 175

[JBS07] Susmit Jha, Bryan A Brady, and Sanjit A Seshia. “Symbolic
reachability analysis of lazy linear hybrid automata”. In: Inter-
national Conference on Formal Modeling and Analysis of Timed
Systems. Springer. 2007, pp. 241–256.

[JL16] Löıg Jezequel and Didier Lime. “Lazy reachability analysis in
distributed systems”. In: 27th International Conference on Con-
currency Theory (CONCUR 2016). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik. 2016.

[JMH01] HM Jagtman, VAWJ Marchau, and T Heijer. “Current knowl-
edge on safety impacts of Collision Avoidance Systems (CAS)”.
In: Critical Infrastructures–Fifth International Conference on
Technology, Policy and Innovation, Lemma, Delft, The Nethre-
lands. 2001.

[JR97] Mikael Johansson and Anders Rantzer. “Computation of piece-
wise quadratic Lyapunov functions for hybrid systems”. In: 1997
European Control Conference (ECC). IEEE. 1997, pp. 2005–
2010.

[KB16] Guus Kuiper and Marco J.G. Bekooi. “Latency Analysis of Homo-
geneous Synchronous Dataflow Graphs Using Timed Automata”.
In: Proc. Design, Automation and Test in Europe Conference
and Exhibition (DATE). 2016.

[KC15] Chung-Yao Kao and Michael Cantoni. “Robust performance
analysis of aperiodic sampled-data feedback control systems”.
In: 2015 54th IEEE Conference on Decision and Control (CDC).
2015, pp. 1421–1426.

[KSA17] A. Kopetzki, B. Schürmann, and M. Althoff. “Methods for order
reduction of zonotopes”. In: 2017 IEEE 56th Annual Conference
on Decision and Control (CDC). 2017, pp. 5626–5633.

[Küh98] Wolfgang Kühn. “Rigorously computed orbits of dynamical sys-
tems without the wrapping effect”. In: Computing 61.1 (1998),
pp. 47–67.

[Kum+12] Pratyush Kumar et al. “A hybrid approach to cyber-physical
systems verification”. In: Proc. Design Automation Conference
(DAC). 2012, pp. 688–696.

[KV07] A. A. Kurzhanskiy and P. Varaiya. “Ellipsoidal Techniques for
Reachability Analysis of Discrete-time Linear Systems”. In: IEEE
Transactions on Automatic Control 52.1 (2007), pp. 26–38.

176 BIBLIOGRAPHY

[Kwa08] Nojun Kwak. “Principal Component Analysis Based on L1-Norm
Maximization”. In: IEEE transactions on pattern analysis and
machine intelligence 30.9 (2008), pp. 1672–1680.

[KY05] Piyush Kumar and E Alper Yildirim. “Minimum-Volume En-
closing Ellipsoids and Core Sets”. In: Journal of Optimization
Theory and Applications 126.1 (2005), pp. 1–21.

[LA97] Yan Alexander Li and John K Antonio. “Estimating the exe-
cution time distribution for a task graph in a heterogeneous
computing system”. In: Heterogeneous Computing Workshop,
1997.(HCW’97) Proceedings., Sixth. 1997, pp. 172–184.

[Laz06] Mircea Lazar. Model predictive control of hybrid systems: Stability
and robustness. 2006.

[LB10] Jin Lu and Lyndon J Brown. “A multiple Lyapunov functions
approach for stability of switched systems”. In: American Control
Conference (ACC), 2010. 2010, pp. 3253–3256.

[Lem+07] Michael Lemmon et al. “On Self-triggered Full-Information H-
infinity Controllers”. In: Proc. Int’l Conf. on Hybrid systems.
Springer. 2007, pp. 371–384.

[LGG10] C. Le Guernic and A. Girard. “Reachability Analysis of Lin-
ear Systems using Support Functions”. In: Nonlinear Analysis:
Hybrid Systems 4.2 (2010), pp. 250–262.

[LP15] Giuseppe Lipari and Luigi Palopoli. “Real-Time scheduling:
from hard to soft real-time systems”. In: arXiv preprint
arXiv:1512.01978 (2015).

[LS16] Edward Ashford Lee and Sanjit A Seshia. Introduction to em-
bedded systems: A cyber-physical systems approach. Mit Press,
2016.

[Lyg04] John Lygeros. “Lecture notes on hybrid systems”. In: Notes of
ENSIETA workshop. 2004.

[MA10] J.P. Maschuw and D. Abel. “Longitudinal Vehicle Guidance in
Networks with changing Communication Topology”. In: IFAC
Proceedings Volumes 43.7 (2010), pp. 785–790.

[Mar+01] Pau Marti et al. “Jitter compensation for real-time control sys-
tems”. In: Proc. Real-Time Systems Symposium. 2001, pp. 39–
48.

[Mar12] Farokh Marvasti. Nonuniform sampling: theory and practice.
Springer Science & Business Media, 2012.

BIBLIOGRAPHY 177

[MCM09] Nima Moshtagh, Lingji Chen, and Raman Mehra. “Optimal mea-
surement selection for any-time kalman filtering with processing
constraints”. In: Proc. of the Decision and Control Conference.
2009, pp. 5074–5079.

[McM93] Kenneth L McMillan. “Symbolic model checking”. In: Symbolic
Model Checking. Springer, 1993, pp. 25–60.

[Mil92] Kenneth L Mc Millan. “Symbolic Model Checking: An approach
to the state explosion problem”. PhD thesis. Ph. D thesis sub-
mitted to Carnegie Mellon University (CMU), 1992.

[MKA08] J.P. Maschuw, G.C. Keßler, and D. Abel. “LMI-based control
of vehicle platoons for robust longitudinal guidance”. In: IFAC
Proceedings Volumes 41.2 (2008), pp. 12111–12116.

[Moh+20] Sajid Mohamed et al. “A scenario-and platform-aware design
flow for image-based control systems”. In: Microprocessors and
Microsystems (2020), p. 103037.

[Nec08] Ion Necoara. Model predictive control for hybrid systems: piece-
wise affine and max-plus-linear systems. VDM Verlag Müller,
2008.

[Pel+10] Rodolfo Pellizzoni et al. “Worst case delay analysis for memory
interference in multicore systems”. In: Proc. Design Automation
Conference (DAC). 2010, pp. 741–746.

[Per+08] Ricardo Perrone et al. “Estimating execution time probability
distributions in component-based real-time systems”. In: Proc.
of the Brazilian Workshop on Real-Time and Embedded Systems.
2008.

[Plu04] Mark D Plumbley. “Lie group methods for optimization with
orthogonality constraints”. In: International Conference on In-
dependent Component Analysis and Signal Separation. Springer.
2004, pp. 1245–1252.

[PW06] Andreas Podelski and Silke Wagner. “Model checking of hybrid
systems: From reachability towards stability”. In: Proc. Int’l
Conf. on Hybrid systems (2006), pp. 507–521.

[QHE12] Sophie Quinton, Matthias Hanke, and Rolf Ernst. “Formal anal-
ysis of sporadic overload in real-time systems”. In: Proc. Design
Automation Conference (DAC). 2012, pp. 515–520.

178 BIBLIOGRAPHY

[SÁ18] S. Schupp and E. Ábrahám. “Efficient Dynamic Error Reduction
for Hybrid Systems Reachability Analysis”. In: International
Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer. 2018, pp. 287–302.

[Sah+16] Zakaria Sahraoui et al. “Predictive-delay control based on real-
time feedback scheduling”. In: Simulation Modelling Practice
and Theory 66 (2016), pp. 16–35.

[Sai+18] Selma Saidi et al. “Special session: Future automotive systems
design: Research challenges and opportunities”. In: 2018 Inter-
national Conference on Hardware/Software Codesign and System
Synthesis (CODES+ ISSS). IEEE. 2018, pp. 1–7.

[SB00] S. Sriram and S.S. Bhattacharyya. Embedded Multiprocessors:
Scheduling and Synchronization. Marcel Dekker Inc., 2000.

[Sch+17] S. Schupp et al. “HyPro: A C++ Library for State Set Represen-
tations for Hybrid Systems Reachability Analysis”. In: Proc. of
the 9th NASA Formal Methods Symposium (NFM’17). Vol. 10227.
LNCS. Springer International Publishing, Apr. 2017, pp. 288–
294.

[Sch19] Stefan Schupp. “State set representations and their usage in the
reachability analysis of hybrid systems”. Veröffentlicht auf dem
Publikationsserver der RWTH Aachen University; Dissertation,
RWTH Aachen University, 2019. Dissertation. Aachen: RWTH
Aachen University, 2019, 1 Online–Ressource (217 Seiten) : Illus-
trationen, Diagramme. doi: 10.18154/RWTH-2019-08875. url:
https://publications.rwth-aachen.de/record/767529.

[Set+96] Danbing Seto et al. “On task schedulability in real-time control
systems”. In: 17th IEEE real-time systems symposium. IEEE.
1996, pp. 13–21.

[Sho+07] Robert Shorten et al. “Stability criteria for switched and hybrid
systems”. In: SIAM review 49.4 (2007), pp. 545–592.

[Sim06] Dan Simon. Optimal state estimation: Kalman, H infinity, and
nonlinear approaches. John Wiley & Sons, 2006, pp. 401–402.

[Sim13] Dan Simon. Evolutionary optimization algorithms. John Wiley
& Sons, 2013.

[SK03] Olaf Stursberg and Bruce H. Krogh. “Efficient Representation
and Computation of Reachable Sets for Hybrid Systems”. In:
Proc. Int’l Conf. on Hybrid systems. Springer. 2003, pp. 482–497.

BIBLIOGRAPHY 179

[SM09] G. Sharma and J. Martin. “MATLAB®: A Language for Parallel
Computing”. In: International Journal of Parallel Programming
37.1 (2009), pp. 3–36.

[SN03] Robert N Shorten and Kumpati S Narendra. “On common
quadratic Lyapunov functions for pairs of stable LTI systems
whose system matrices are in companion form”. In: IEEE Trans-
actions on automatic control 48.4 (2003), pp. 618–621.

[SNA17] S. Schupp, J. Nellen, and E. Abraham. “Divide and Conquer:
Variable Set Separation in Hybrid Systems Reachability Anal-
ysis”. In: Proc. of the 15th Workshop on Quantitative Aspects
of Programming Languages and Systems (QAPL’17). Vol. 250.
EPTCS. Open Publishing Association, 2017, pp. 1–14.

[SP07] Sigurd Skogestad and Ian Postlethwaite. Multivariable feedback
control: analysis and design. Vol. 2. Wiley New York, 2007.

[SSS12] Daniel Simon, Alexandre Seuret, and Olivier Sename. “On real-
time feedback control systems: Requirements, achievements and
perspectives”. In: 2012 1st International Conference on Systems
and Computer Science (ICSCS). IEEE. 2012, pp. 1–6.

[Ste94] Robert F Stengel. Optimal control and estimation. Courier Cor-
poration, 1994.

[SWÁ18] S. Schupp, J. Winkens, and E. Ábrahám. “Context-Dependent
Reachability Analysis for Hybrid Systems”. In: 2018 IEEE In-
ternational Conference on Information Reuse and Integration
(IRI). IEEE. 2018, pp. 518–525.

[Tes12] Gerald Teschl. Ordinary differential equations and dynamical
systems. Vol. 140. American Mathematical Soc., 2012.

[Tiw08] Hans Raj Tiwary. “On the hardness of computing intersection,
union and minkowski sum of polytopes”. In: Discrete & Compu-
tational Geometry 40.3 (2008), pp. 469–479.

[TZ94] Stelios CA Thomopoulos and Lei Zhang. “Decentralized filtering
with random sampling and delay”. In: Information Sciences
81.1-2 (1994), pp. 117–131.

[WÅÅ02] Björn Wittenmark, Karl Johan Åström, and Karl-Erik Årzén.
“Computer control: An overview”. In: IFAC Professional Brief 1
(2002), p. 2.

180 BIBLIOGRAPHY

[We08] Reinhard Wilhelm et.al. “The Worst-Case Execution Time Prob-
lem – Overview of Methods and Survey of Tools”. In: ACM
Transactions on Embedded Computing Systems 7.2 (2008).

[Yan+13] Liping Yan et al. “State estimation for a kind of non-uniform
sampling dynamic system”. In: International Journal of Systems
Science 44.10 (2013), pp. 1913–1924.

[YL15] Se Young Yoon and Zongli Lin. “Predictor based control of linear
systems with state, input and output delays”. In: Automatica
53 (2015), pp. 385–391.

[ZBS04] Huichai Zhang, Michael V Basin, and Mikhail Skliar. “Optimal
state estimation with continuous, multirate and randomly sam-
pled measurements”. In: American Control Conference, 2004.
Proceedings of the 2004. Vol. 4. IEEE. 2004, pp. 3808–3813.

[Zha+02] Guisheng Zhai et al. “Qualitative analysis of discrete-time
switched systems”. In: Proc. American Control Conference.
Vol. 3. 2002, pp. 1880–1885.

[ZZ12] Q. Zhu and H. Zeng. “Stability Analysis of Multi-rate Switched
Networked Systems with Short Time Delay”. In: Computer Dis-
tributed Control and Intelligent Environmental Monitoring (CD-
CIEM), 2012 International Conference on. IEEE. 2012, pp. 642–
646.

Publications

[VSEH:1] Viktorio S. El Hakim and Marco J. G. Bekooij. “Sampling Jitter
mitigation in latency-critical state-estimation applications using
particle filters”. In: 2017 SICE International Symposium on
Control Systems (SICE ISCS). IEEE. 2017, pp. 1–8.

[VSEH:2] Viktorio S. El Hakim and Marco J. G. Bekooij. “Stability Verifi-
cation of Self-Timed Control Systems using Model-Checking”.
In: 2018 21st Euromicro Conference on Digital System Design
(DSD). IEEE. 2018, pp. 312–319.

[VSEH:3] Viktorio S. El Hakim and Marco J. G. Bekooij. “Reachability
Analysis of Hybrid Automata with Clocked Linear Dynamics”.
In: SCOPES. 2019, pp. 27–36.

[VSEH:4] Viktorio S. El Hakim and Marco J. G. Bekooij. “Dynamics-
Aware Subspace Identification For Decomposed Aggregation in
the Reachability Analysis of Hybrid Automata”. In: Proceed-
ings of the 23rd International Conference on Hybrid Systems:
Computation and Control (HSCC). 2020, pp. 1–11.

181

