
Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

 Chair

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): ____________________________________

Approved by:
 Head of the Graduate Program Date

Omkar Jayant Tilak

Decentralized and Partially Decentralized Multi-Agent Reinforcement Learning

Doctor of Philosophy

Dr. Snehasis Mukhopadhyay Dr. Mihran Tuceryan

Dr. Luo Si

Dr. Jennifer Neville

Dr. Rajeev Raje

Dr. Snehasis Mukhopadhyay

Dr. William Gorman 12/08/2011

Graduate School Form 20
(Revised 9/10)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Research Integrity and Copyright Disclaimer

Title of Thesis/Dissertation:

For the degree of Choose your degree

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University
Executive Memorandum No. C-22, September 6, 1991, Policy on Integrity in Research.*

Further, I certify that this work is free of plagiarism and all materials appearing in this
thesis/dissertation have been properly quoted and attributed.

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with the
United States’ copyright law and that I have received written permission from the copyright owners for
my use of their work, which is beyond the scope of the law. I agree to indemnify and save harmless
Purdue University from any and all claims that may be asserted or that may arise from any copyright
violation.

Printed Name and Signature of Candidate

Date (month/day/year)

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

Decentralized and Partially Decentralized Multi-Agent Reinforcement Learning

Doctor of Philosophy

Omkar Jayant Tilak

12/08/2011

DECENTRALIZED AND PARTIALLY DECENTRALIZED

MULTI-AGENT REINFORCEMENT LEARNING

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Omkar Jayant Tilak

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2012

Purdue University

West Lafayette, Indiana

ii

To the Loving Memory of My Late Grandparents : Aniruddha and Usha Tilak

To My Late Father : Jayant Tilak : Baba, I’ll Always Miss You!!

iii

ACKNOWLEDGMENTS

Although the cover of this dissertation mentions my name as the author, I am

forever indebted to all those people who have made this dissertation possible.

I would never have been able to finish my dissertation without the constant en-

couragement from my loving parents, Jayant and Surekha Tilak, and from my fiancee,

Prajakta Joshi. Their continual love and support has been a primary driver in the

completion of my research work. Their never-ending interest in my work and accom-

plishments has always kept me oriented and motivated.

I would like to express my deepest gratitude to my advisor, Dr. Snehasis Mukhopad-

hyay for his excellent guidance and providing me with a conducive atmosphere for

doing research. I am grateful for his constant encouragement which made it possible

for me to explore and learn new things. I am deeply grateful to my co-advisor Dr.

Luo Si for helping me sort out the technical details of my work. I am also thankful to

him for carefully reading and commenting on countless revisions of this manuscript.

His valuable suggestions and guidance were a primary factor in the development of

this document.

I would like to thank Dr. Ryan Martin, Dr. Jennifer Neville, Dr. Rajeev Raje

and Dr. Mihran Tuceryan for their insightful comments and constructive criticisms

at different stages of my research. It helped me to elevate my own research standard

and scrutinize my ideas thoroughly.

I am also grateful to the following current and former staff at Purdue University

for their assistance during my graduate study – DeeDee Whittaker, Nicole Shelton

Wittlief, Josh Morrison, Myla Langford, Scott Orr and Dr. William Gorman. I’d also

like to thank my friends – Swapnil Shirsath, Pranav Vaidya, Alhad Mokahi, Ketaki

Pradhan, Mihir Daptardar, Mandar Joshi, and Rati Nair. I greatly appreciate their

iv

friendship which has helped me stay sane through these insane years. Their support

has helped me overcome many setbacks and stay focused through this arduous journey.

It would be remiss of me to not mention other family members who have aided

and encouraged me throughout this journey. I would like to thank my cousin Mayur

and his wife Sneha who have helped me a lot during my stay in the United States.

Last, but certainly not the least, I would also like to thank Dada Kaka for his constant

encouragement and support towards my education.

v

PREFACE

Multi-Agent systems naturally arise in a variety of domains such as robotics,

distributed control and communication systems. The dynamic and complex nature

of these systems makes it difficult for agents to achieve optimal performance with

predefined strategies. Instead, the agents can perform better by adapting their be-

havior and learning optimal strategies as the system evolves. We use Reinforcement

Learning paradigm for learning optimal behavior in Multi Agent systems. A rein-

forcement learning agent learns by trial-and-error interaction with its environment.

A central component in Multi Agent Reinforcement Learning systems is the inter-

communication performed by agents to learn the optimal solutions. In this thesis, we

study different patterns of communication and their use in different configurations

of Multi Agent systems. Communication between agents can be completely central-

ized, completely decentralized or partially decentralized. The interaction between

the agents is modeled using the notions from Game theory. Thus, the agents could

interact with each other in a in a fully cooperative, fully competitive, or in a mixed

setting. In this thesis, we propose novel learning algorithms for the Multi Agent Re-

inforcement Learning in the context of Learning Automaton. By combining different

modes of communication with the various types of game configurations, we obtain a

spectrum of learning algorithms. We study the applications of these algorithms for

solving various optimization and control problems.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

ABBREVIATIONS . xiii

ABSTRACT . xiv

1 INTRODUCTION . 1
1.1 Reinforcement Learning Model . 1

1.1.1 Markov Decision Process Formulation 3
1.1.2 Dynamic Programming Algorithm 5
1.1.3 Q-learning Algorithm . 5
1.1.4 Temporal Difference Learning Algorithm 6

1.2 n-armed Bandit Problem . 6
1.3 Learning Automaton . 7

1.3.1 Games of LA . 10
1.4 Motivation . 11
1.5 Contributions . 12
1.6 Outline . 13

2 MULTI-AGENT REINFORCEMENT LEARNING 14
2.1 A-Teams . 15
2.2 Ant Colony Optimization . 16
2.3 Colonies of Learning Automata . 18
2.4 Dynamic or Stochastic Games . 19

2.4.1 RL Algorithm for Dynamic Zero-Sum Games 20
2.4.2 RL Algorithm for Dynamic Identical-Payoff Games 20

2.5 Games of Learning Automata . 22
2.5.1 LR−I Game Algorithm for Zero Sum Game 24
2.5.2 LR−I Game Algorithm for Identical Payoff Game 25
2.5.3 Pursuit Game Algorithm for Identical Payoff Game 25

3 COMPLETELY DECENTRALIZED GAMES OF LA 28
3.1 Games of Learning Automaton . 30

3.1.1 Identical Payoff Game . 31
3.1.2 Zero-sum Game . 32

3.2 Decentralized Pursuit Learning Algorithm 33

vii

Page

3.3 Convergence Analysis . 35
3.3.1 Vanishing � and The "-optimality 35
3.3.2 Preliminary Lemmas . 36
3.3.3 Bootstrapping Mechanism 41
3.3.4 2× 2 Identical Payoff Game 42
3.3.5 Zero-sum Game . 43

3.4 Simulation Results . 44
3.4.1 2× 2 Identical-Payoff Game 44
3.4.2 Identical-Payoff Game for Arbitrary Game Matrix 45
3.4.3 2× 2 Zero-Sum Game . 47
3.4.4 Zero-sum Game for Arbitrary Game Matrix 49
3.4.5 Zero-sum Game Using CPLA 51

3.5 Partially Decentralized Identical Payoff Games 53

4 PARTIALLY DECENTRALIZED GAMES OF LA 55
4.1 Partially Decentralized Games . 56

4.1.1 Description of PDGLA . 58
4.2 Multi Agent Markov Decision Process 60
4.3 Previous Work . 62
4.4 An Intuitive Solution . 63
4.5 Superautomaton Based Algorithms 65

4.5.1 LR−I-Based Superautomaton Algorithm 66
4.5.2 Pursuit-Based Superautomaton Algorithm 67
4.5.3 Drawbacks of Superautomaton Based Algorithms 69

4.6 Distributed Pursuit Algorithm . 69
4.7 Master-Slave Algorithm . 71

4.7.1 Master-Slave Equations . 72
4.8 Simulation Results . 77
4.9 Heterogeneous Games . 81

5 LEARNING IN DYNAMIC ZERO-SUM GAMES 84
5.1 Dynamic Zero Sum Games . 86
5.2 Wheeler-Narendra Control Algorithm 87
5.3 Shapley Recursion . 88
5.4 HEGLA Based Algorithm for DZSG Control 89
5.5 Adaptive Shapley Recursion . 94
5.6 Minimax-TD . 96
5.7 Simulation Results . 97

6 APPLICATIONS OF DECENTRALIZED PURSUIT LEARNING ALGO-
RITHM . 103
6.1 Function Optimization Using Decentralized Pursuit Algorithm . . . 103
6.2 Optimal Sensor Subset Selection . 105

viii

Page

6.2.1 Problem Description . 106
6.2.2 Techniques/Algorithms for Sensor Selection 107
6.2.3 Distributed Tracking System Setup 109
6.2.4 Proposed Solution . 113
6.2.5 Results . 117

6.3 Designing a Distributed Wetland System in Watersheds 121
6.3.1 Problem Description . 121
6.3.2 Genetic Algorithms . 122
6.3.3 Proposed Solution . 123
6.3.4 Results . 128

7 CONCLUSION AND FUTURE WORK 138
7.1 Conclusions . 138
7.2 Future Work . 139

LIST OF REFERENCES . 142

VITA . 148

ix

LIST OF TABLES

Table Page

4.1 Equlibrium Points . 79

4.2 Performance Comparison . 80

6.1 Performance Comparison . 120

6.2 Region 1 . 130

6.3 Region 2 . 132

6.4 All Regions . 132

x

LIST OF FIGURES

Figure Page

1.1 Reinforcement Learning Model . 2

1.2 Interaction between Learning Automaton and Environment 8

3.1 Schematic of CPLA - Figure 1 . 29

3.2 Schematic of CPLA - Figure 2 . 30

3.3 Schematic of DPLA . 31

3.4 Action Probabilities �pip(t) for the Decentralized Pursuit Algorithm in the
2× 2 Identical Payoff Game in Section 3.4.1 45

3.5 D(t) (Black line) and̂ D(t) (Gray Line) for the Decentralized Pursuit Al-
gorithm in the 2× 2 Identical Payoff Game in Section 3.4.1 46

3.6 Action Probabilities �pip(t) for the Decentralized Pursuit Algorithm in the
2× 2 Identical Payoff Game in Section 3.4.2 47

3.7 D(t) (Black line) and̂ D(t) (Gray Line) for the Decentralized Pursuit Al-
gorithm in the 2× 2 Identical Payoff Game in Section 3.4.2 48

3.8 Action Probabilities �pip(t) for the Decentralized Pursuit Algorithm in the
2× 2 Zero-sum Game in Section 3.4.3 49

3.9 D(t) (Black line) and̂ D(t) (Gray Line) for the Decentralized Pursuit Al-
gorithm in the 2× 2 Zero-sum Game in Section 3.4.3 50

3.10 Comparison of Various Algorithms : Trajectory of Action Probabilities
�pip(t) . 51

3.11 D(t) (Black line) and̂ D(t) (Gray Line) of Player 1 for the Decentralized
Pursuit Algorithm in the 4× 4 Zero-sum Game in Section 3.4.5 52

3.12 D(t) (Black line) and̂ D(t) (Gray Line) of Player 2 for the Decentralized
Pursuit Algorithm in the 4× 4 Zero-sum Game in Section 3.4.5 53

3.13 Comparison of Various Algorithms : Trajectory of Action Probabilities
�pip(t) . 54

4.1 Schematic for Partially Decentralized Games of Learning Automata . . 57

4.2 Superautomaton Configuration for Any State i 66

xi

Figure Page

4.3 Master-Slave Configuration for Any State i 72

4.4 Action Probabilities for Master Automaton - 2-agent, 2-state MAMDP 82

4.5 Action Probabilities for Slave Automaton - 2-agent, 2-state MAMDP . 82

5.1 Heterogeneous Games of Learning Automata 85

5.2 Dynamic Zero Sum Game . 86

5.3 HEGLA Configuration for DZSG . 90

5.4 HEGLA Interaction in DZSG . 92

5.5 Evolution of Action Probabilities for the Maximum (Row) Automaton In
A 2-state DZSG . 99

5.6 Evolution of Action Probabilities for the Minimum (Column) Automaton
In A 2-state DZSG . 100

5.7 Evolution of Action Probabilities for the Minimum (Column) Automaton
In A 2-state DZSG . 101

5.8 The value matrix (A matrix) entries for the Shapley recursion. (a) and
(b) show these values at different scales and resolution. 101

6.1 Function Optimization Using DPLA 104

6.2 A Distributed Object Tracking System 109

6.3 Federated Kalman Filter . 111

6.4 CPLA : Step Size = 0.05: (a) Energy (b) Error (c) Energy + Error . . 117

6.5 CPLA : Step Size = 0.09 (a) Energy (b) Error (c) Energy + Error . . . 117

6.6 LR−I Learning Game : Step Size = 0.05 (a) Energy (b) Error (c) Energy
+ Error . 118

6.7 LR−I Learning Game : Step Size = 0.09 (a) Energy (b) Error (c) Energy
+ Error . 118

6.8 DPLA : Step Size = 0.05 (a) Energy (b) Error (c) Energy + Error . . . 118

6.9 DPLA : Step Size = 0.09 (a) Energy (b) Error (c) Energy + Error . . . 119

6.10 Eagle Creek Watershed and its counties, reservoir, streams and 130 sub-
basins. 124

xii

Figure Page

6.11 Left figure shows the 130 sub-basins and 2953 potential wetland polygons
in the 8 regions (pink polygons) divided for optimization. Right figure
shows the enlarged view of potential wetlands (blue polygons) in the wa-
tershed area surrounded by black box in left figure. 125

6.12 Region 1 Pareto-fronts . 129

6.13 Region 2 Pareto-fronts . 129

6.14 Region 1 Map . 131

6.15 Solutions with similar flow payoffs found by DPLA and NSGA-II disagreed
with each other on the aggregated wetlands in the colored sub-basins of
region 2. 133

6.16 Solutions with similar area found by DPLA and NSGA-II disagreed with
each other on the aggregated wetlands in the colored sub-basins of region
2. 134

6.17 All Regions Pareto-fronts . 135

6.18 All Regions Map for DPLA Solution 136

6.19 All Regions Map for NSGA II Solution 137

xiii

ABBREVIATIONS

LA Learning Automaton

LAs Learning Automata

MARL Multi Agent Reinforcement Learning

DPLA Decentralized Pursuit Learning game Algorithm

PDGLA Partially Decentralized Games of Learning Automata

HOGLA Homogeneous Games of Learning Automata

HEGLA Heterogeneous Games of Learning Automata

xiv

ABSTRACT

Tilak, Omkar Jayant Ph.D., Purdue University, May 2012. Decentralized and
Partially Decentralized Multi-Agent Reinforcement Learning. Major Professors:
Snehasis Mukhopadhyay and Luo Si.

Multi-agent systems consist of multiple agents that interact and coordinate with

each other to work towards to certain goal. Multi-agent systems naturally arise in

a variety of domains such as robotics, telecommunications, and economics. The dy-

namic and complex nature of these systems entails the agents to learn the optimal

solutions on their own instead of following a pre-programmed strategy. Reinforcement

learning provides a framework in which agents learn optimal behavior based on the

response obtained from the environment. In this thesis, we propose various novel de-

centralized, learning automaton based algorithms which can be employed by a group

of interacting learning automata. We propose a completely decentralized version of

the estimator algorithm. As compared to the completely centralized versions pro-

posed before, this completely decentralized version proves to be a great improvement

in terms of space complexity and convergence speed. The decentralized learning al-

gorithm was applied; for the first time; to the domains of distributed object tracking

and distributed watershed management. The results obtained by these experiments

show the usefulness of the decentralized estimator algorithms to solve complex op-

timization problems. Taking inspiration from the completely decentralized learning

algorithm, we propose the novel concept of partial decentralization. The partial de-

centralization bridges the gap between the completely decentralized and completely

centralized algorithms and thus forms a comprehensive and continuous spectrum of

multi-agent algorithms for the learning automata. To demonstrate the applicability

of the partial decentralization, we employ a partially decentralized team of learning

xv

automata to control multi-agent Markov chains. More flexibility, expressiveness and

flavor can be added to the partially decentralized framework by allowing different

decentralized modules to engage in different types of games. We propose the novel

framework of heterogeneous games of learning automata which allows the learning

automata to engage in disparate games under the same formalism. We propose an

algorithm to control the dynamic zero-sum games using heterogeneous games of learn-

ing automata.

1

1 INTRODUCTION

Human beings, and indeed all sentient creatures, learn by interacting with the envi-

ronment in which they operate. When an infant begins playing and walking around

at a young age, it has no explicit teacher. However, but it does receive a sensory

feedback from its environment. A child collects information about cause and effect

associated with different actions,. Based on this information gathered over an ex-

tended period of time, a child learns about what to do in order to achieve goals. Even

during adulthood, such interactions with the environment provide knowledge about

the environment and direct a person’s behavior. Whether we are learning to drive

a car or to interact with another human being, we learn by using this interactive

mechanism.

Reinforcement learning (RL) is modeled after the way human beings learn in

an unknown environment. Reinforcement learning involves an agent acting in an

environment and interacting with it. The goal of the agent is to maximize a numerical

reward signal based on the experience it has of the interaction with the environment.

During the learning process, the agent is not instructed on which actions to take, but

instead must explore the action space by trying different actions and by taking into

account the response from the environment for those actions. The exploration of the

action space based on the trial-and-error method and the ultimate goal of selecting

the most optimal action are two important features of reinforcement learning.

1.1 Reinforcement Learning Model

The reinforcement learning problem is represented as the problem of learning from

interaction with an environment to achieve certain optimization goal. The learner

(also called as an agent) decides which actions should be performed based on certain

2

criteria. The part of the universe comprising of everything that is outside the agent

is called as the environment. The agent interacts continually with the environment.

The environment responds by giving rewards. Rewards are special numerical values

that the agent tries to maximize over time. For simplicity, the agent and environment

interaction can be viewed over a sequence of discrete time steps t = 0, 1, 2, At each

time step, the agent receives a representation of the state of the environment, st ∈ S

where S is the set of all possible environment states. Based on this information, the

agent selects an action at ∈ Ast , where Ast is the set of actions available in state

st. Based on the action selected, at the next time instant t + 1, the agent receives a

numerical reward, rt+1 ∈ ℛ, whereℛ is the set of real numbers. The agent transitions

to a state st+1 based on the previous state st and the selected action at. The agent

implements a mapping from states to probabilities of selecting each possible action in

that state. This mapping is called the agent’s policy, �(s, a). Reinforcement learning

techniques specify how the agent changes and learns its policy as a result of its

experience so that it can maximize the total amount of reward it will receive over the

long run.

Agent

Environment

action at
reward rt

r t+1

st+1

state St

Figure 1.1. Reinforcement Learning Model

3

Reinforcement learning differs significantly from supervised learning in these as-

pects. In supervised learning, the agent learns the optimal behavior based on the

examples provided by an external supervisor. Thus the active interaction between

agent and environment, which is a hallmark of reinforcement learning, is not present

in the supervised learning. Since complex and dynamic systems evolve with time, it

often makes it impractical to obtain representative examples that are accurate rep-

resentative of their behavior. Thus,it is beneficial for an agent to be able to learn

and adapt its behavior from its own experience and interacting actively with the

environment.

A reinforcement learning algorithm tries to incorporate a balance between ex-

ploration and exploitation. Both exploration and exploitation are necessary for the

agent to select an optimal strategy in the given environment. Exploitation involves

the agent selecting actions produced good reward during previous interactions. How-

ever, to gain this information about various actions, it has to try actions that were not

selected before. This involves exploration. However, the agent has to strike a balance

between these two seemingly contradictory tasks. Thus agent need to stochastically

select different actions many times to gain a reliable estimate about their rewards. All

learning algorithms take into account this exploration-exploitation dilemma while ex-

ploring the action space and interacting with the environment. In supervised learning,

the agent does not need to worry about exploration and exploitation as the learning

is done based on the examples provided by the supervisor.

1.1.1 Markov Decision Process Formulation

For a RL problem, it is typically assumed that the environment has Markov prop-

erty. If the environment has the Markov property, then the environment’s response

at time step t+ 1 depends only on the state and action selected at the previous time

instant t. A reinforcement learning task that satisfies the Markov property is called

4

a Markov Decision Process (MDP). If the state and action spaces are finite, then it

is called a finite Markov decision process (finite MDP).

A particular finite MDP is defined by its state and action sets and by the one-step

dynamics of the environment. Given any state s and action a, the probability of

possible transition to the next state s′ is given by the transition probability function:

P a
ss′ = Pr(st+1 = s′∣st = s, at = a)

The corresponding expected value of the reward is given by the reward probability

function:

Ra
ss′ = E(rt+1∣st = s, at = a, st+1 = s′)

The functions P a
ss′ and Ra

ss′ completely specify the dynamics of a finite MDP. Most

of the RL algorithms implicitly assumes the environment is a finite MDP. Various

types of RL learning algorithms have been proposed in the literature [1] for a single

agent to learn optimal action in an MDP environment. Here, we will describe them

in a brief manner. Almost all RL algorithms are based on estimating value function

V (s)orQ(s, a) for different states or state-action pairs of a MDP. These functions

estimate how good it is for the agent to be in a given state or how good it is to

perform a given action in a given state. The goodness is defined in terms of future

expected return of the rewards. These value functions are defined with respect to

particular policies �. They are defined as follows:

V �(s) = E�{
∞∑
k=0

krt+k+1∣st = s}

Q�(s, a) = E�{
∞∑
k=0

krt+k+1∣st = s, at = a}

where E� is the expected value obtained under policy � and 0 <
 < 1 is a small

learning parameter. V � is called as the state-value function while Q� is called as the

5

action-value function. The RL algorithms learn or compute these functions and use

them to find the optimal policy.

1.1.2 Dynamic Programming Algorithm

The Dynamic Programming (DP) algorithm updates the value function for all

s ∈ S as follows:

Vk+1(s) =
∑
a

�(s, a)
∑
s′

P a
ss′(R

a
ss′ +
Vk(s

′))

where the policy � is initialized arbitrarily and is improved as follows:

�(s)← argmaxa
∑
s′

P a
ss′(R

a
ss′ +
V (s′))

DP algorithm assumes that all the transition and reward probability values of the

MDP are known and uses this information to compute the optimal policy.

1.1.3 Q-learning Algorithm

The Q-learning algorithm learns the value function by trying various actions and

uses this information to iteratively calculate the optimal policy. In its simplest form,

the Q-learning algorithm is defined by:

Q(st, at)← Q(st, at) + �[rt+1 +
maxaQ(st+1, a)−Q(st, at)]

where � and
 are two learning parameters. By iteratively updating the value

function in this manner, the optimal policy is calculated during each iteration till

convergence.

6

1.1.4 Temporal Difference Learning Algorithm

Temporal Difference (TD) learning is a combination of Monte Carlo (MC) tech-

nique and DP ideas. Like MC methods, TD methods can learn directly from raw

experience without a model of the environment. Like DP, TD methods update boot-

strap the estimates based in part on other learned estimates, without waiting for

a final outcome. In its simplest form, TD algorithm updates the value function as

follows:

V (st)← V (st) + �[r(t+ 1) +
V (st+1)− V (st)]

Using the above equation, an arbitrary policy � can be evaluated or an optimal

policy can be learned dynamically.

1.2 n-armed Bandit Problem

n-armed bandit problem consists of a player making an action selection and re-

ceives different rewards. Through repeated plays, the player is supposed to maximize

the winnings by concentrating the plays on the best possible action. Each action has

an expected or mean reward (also called as value) associated with it. If one knew the

value of each action, then it would be trivial to solve the n-armed bandit problem:

the player would always select the action with highest value. It is assumed that the

player does not know the action values with certainty, although the player may have

estimates.

If the player maintains estimates of the action values, then at any time there is

at least one action whose estimated value is greatest. By selecting action in such

a greedy manner, the player can exploit the current knowledge of the values of the

actions. If instead the player selects one of the non-greedy actions, then we say that

the player is exploring. Exploitation is the right thing to do to maximize the expected

reward on the one play, but exploration may produce the greater total reward in the

long run. For example, suppose the greedy action’s value is known with certainty,

7

while several other actions are estimated to be nearly as good but with substantial

uncertainty. In such cases, it may be better to explore the non-greedy actions and

discover which of them are better than the greedy action. Because it is not possible

both to explore and to exploit with any single action selection, one often refers to the

”conflict” between exploration and exploitation.

Various mechanisms can be used to devise precise values of the estimates, un-

certainties. There are many sophisticated methods for balancing exploration and

exploitation. Learning Automaton provides a framework to solve the n-armed bandit

problem.

1.3 Learning Automaton

The Learning Automaton was modeled based on mathematical psychology models

of animal and child learning. The learning automaton attempts to learn long-term

optimal action through the use of reinforcement. These actions are assumed to be

performed in an abstract environment. The environment responds to the input action

by producing an output (also called as reinforcement) which is probabilistically related

to the input action. The reinforcement refers to an on-line performance feedback from

a teacher or environment. The reinforcement, in turn, may be qualitative, infrequent,

delayed, or stochastic. The interaction between automaton and the environment is

as shown below.

Stochastic learning automata operating in stationary as well as nonstationary

random environments have been studied extensively [2], [3]. Learning automaton

(LA) uses reinforcement learning paradigm to choose the best action from a finite

set. An LA A consists of a finite set of actions � = {�1, �2, . . . , �r}. On every trial

n, LA performs one action �(n) = �i ∈ � by sampling its action probability vector

and obtains a reinforcement �(n). LA then updates its action probability vector

Pj(n), 1 ≤ j ≤ r; based on this reinforcement. The manner in which P (n) is updated

is governed by the learning algorithm T . The environment E is described by a set

8

Environment

Learning Automata

{α, d, β}

{α, β, A, p(k)}

Action (α(n)) Response (β(n))

Figure 1.2. Interaction between Learning Automaton and Environment

9

of reward probabilities {dj} where, dj = Pr[�(n) = 1 ∣ �(n) = �j]. Various learning

algorithms (e.g. LR−I , LR−P algorithm) have been proposed in the literature for the

automaton to update its action probability vector [2]. If action selected at n-th time

instant is �i, then the general reward-penalty LA algorithm is given by:

pi(n+ 1) = pi(n) + a�(n)(1− pi(n))− b(1− �(n))pi(n)

pj(n+ 1) = pj(n)− a�(n)pj(n) + b(1− �(n))(
1

r − 1
− pi(n))j ∕= i

where 0 < a < 1 and 0 < b < 1 are constants called the reward and penalty

parameters, respectively. If b = a, the scheme is called linear reward-penalty (LR−P)

and if b = 0, it is called linear reward-inaction (LR−I).

The LR−I and LR−P algorithms are called as model-free algorithms because they

do not use a model of the environment in the learning process. Pursuit algorithm [4],

on the other hand, is a model-based learning algorithm. It incorporates a model of the

environment in the form of the estimates of the reward probabilities (denoted as d̂).

The automaton maintains a vector d̂i(n) where n refers to the current iteration. Let

d̂M(n) be the highest estimated value in vector d̂(n). Let ei represent a unit vector

with itℎ component set to unity and all other components set to zero. The automaton

also maintains two vectors (Z1(n), Z2(n), . . . , Zr(n))T and (R1(n), R2(n), . . . , Rr(n))T .

The number of times an action �i is chosen till trial n is given by Zi(n) while Ri(n)

gives the total reinforcement obtained in response to action �i till trial n. The au-

tomaton uses �(n) and �(n) to update Ri(n) and Zi(n) and they are used to obtain

d̂i(n). The details are given below: Let �(n) = �i. Then the automaton updates

Zi(n), Ri(n) and obtains the estimates d̂i(n) as follows:

Ri(n) = Ri(n− 1) + �(n)

Rj(n) = Rj(n− 1), ∀j ∕= i

Zi(n) = Zi(n− 1) + 1

10

Zj(n) = Zj(n− 1),∀j ∕= i

d̂i(n) =
Ri(n)
Zi(n)

,∀i

The Pursuit algorithm proceeds as follows:

1. At every time step n, the automaton chooses an action by sampling its action

probability vector.

2. The automaton obtains a payoff r(n) based on the action chosen.

3. Based on the response, the automaton updates R,Z and D̂ matrices as de-

scribed above. Then based on this information, the automaton updates its

action probability vector as follows:

p(n+ 1) = p(n) + �(eM − p(n))

where 0 < � < 1 is the learning parameter and index M is determined by

d̂M(n) = max
i

d̂(n)i

To study the convergence properties of the learning automata, various norms such

as expediency, optimality, �-optimality, and absolutely expediency have been defined

in the literature [2]. In this paper, we propose novel algorithms for multi-agent

Markov chain control that are based on (model-free) the LR−I algorithm and the

(model-based) Pursuit algorithm.

1.3.1 Games of LA

A LA acting alone represents a single learning agent operating in an environment.

However, such simple paradigm is not adequate to model a lot of real-world sys-

tems. More interesting learning schemes can be designed by allowing multiple learning

agents to interact and interconnect with each other. An automata game involves N

learning automata Ai(i = 1, 2, . . . , N), each with an action set �i = {�i1, �i2, . . . , �iai}

11

interacting through a stationary random environment. At each instant n, each indi-

vidual automaton Ai selects one action �isi by sampling its current action probability

vector P i = {P i
1, P

i
2, . . . , P

i
ai
}. The resultant action tuple {�1

s1
, �2

s2
, . . . , �NsN} deter-

mines the random environment response �(n) received by the automata for the current

iteration of the game. If all the automata of the team receive the same response �(n),

then the game is called as an identical-payoff game. However, if one automaton in

the team receives �(n) and the other one receives −�(n), then such game is called as

a zero-sum game of LA [2]. Each individual LA can use any suitable learning scheme

(LR−I , LR−P , Pursuit learning etc) to update its own action probabilities.

1.4 Motivation

Multi-agent systems appear very frequently and in various domains such as robotics,

distributed control and telecommunications. The complex and dynamic nature of

these systems makes it difficult to control them with predetermined agent behavior.

Instead, the agents must discover and adapt a solution on their own using learning.

In a multi-agent systems, agents may want to (or need to) interact with each other

thus leading to various communication configurations. Also, since agents need to

adapt to the changing environment, the learning process needs to track the changes

in the environment and guide the agents appropriately. These factors complicate the

learning algorithm and makes its analysis harder.

The games of LAs paradigm represents the multi-agent interaction model for LAs.

In this thesis, we focus on multi-agent systems that are modeled as games

of LAs. As described earlier, model-based (such as Pursuit algorithm) techniques or

model-free (such as LR−I algorithm) techniques can be used to learn optimal strategies

for the games of LAs. However, the Pursuit learning algorithms proposed for this

model remain centralized in nature. The LR−I game algorithm is decentralized in

nature. However, it displays very slow convergence and converges to one of the many

12

equilibrium points. Thus, there is a need for a LA game algorithm that possesses fast

convergence speed and is yet decentralized in nature.

The LA game algorithms proposed so far in the literature deal with either com-

pletely centralized or completely decentralized configurations. However, the config-

urations where only a subset of the automata communicate with each other have

not been studied or proposed yet. One can imagine a gamut of game algorithms for

configurations ranging from completely decentralized to completely centralized. This

leads to the proposal of partially centralized configurations of LAs.

Also, the LA game configurations proposed so far require that all the automata in

the group participate in a single type of game: either a zero-sum game or an identical-

payoff game. However, the configurations where a subset of automata participate

in identical-payoff game while others participate in a zero-sum game need further

investigation. Towards this end, we proposed the heterogeneous games of LAs. Under

this paradigm, different local groups of LAs participate in a zero-sum (or identical-

payoff) game while the automata across the groups participate in an identical-payoff

(or zero-sum) game.

1.5 Contributions

The salient contributions of this thesis are as follows:

1. We propose a novel algorithm called Decentralized Pursuit Learning (DPL)

algorithm for learning optimal strategies in games of LAs. DPL algorithm

combines fast convergence speed with the decentralized memory storage and

distributed learning mechanism.

2. We propose partially centralized configurations of LAs. This paradigm has

the power to model a vast range of LA game configurations. We applied this

paradigm to the multi-agent Markov chains and proposed various novel algo-

rithm to control the multi-agent Markov chains.

13

3. The thesis also explores the possibility of combining different types of games

(namely zero-sum and identical-payoff games) for a group of interacting LAs.

We propose a novel framework of the heterogeneous games of LAs. This allows

a group of LAs to participate in one type of game (say identical-payoff game)

while the other group participates in a different type of game (namely zero-

sum game). A novel algorithm is proposed which models the dynamic zero-sum

games as a heterogeneous games among LAs. The algorithm then uses this

framework to control the dynamic zero sum games.

4. We applied the games of LAs framework to solve optimization problems in

different domains. In particular, we applied the DPL algorithm to solve the

sensor subset selection problem in object tracking systems. To our knowledge,

it is the first time a reinforcement learning algorithm was applied for the object

tracking domain. We also applied the DPL algorithm to solve the watershed

management problem. The results from these two experiments demonstrate

the the power and flexibility of the LA and its applicability in various disparate

domains.

1.6 Outline

This thesis is organized as follows: In chapter 2, we discuss various MARL algo-

rithms that have been proposed in the literature. In chapter 3, we describe the novel

distributed Pursuit learning game algorithm and analyze its convergence mathemat-

ically. In chapter 4, we propose the novel framework of the partially decentralized

games of LA and use it to control multi-agent Markov decision process. Chapter 5

discusses the novel paradigm of heterogeneous games of LA and its use to control

dynamic zero sum games. In chapter 6, we describe some of the applications of the

games of LA to solve various real-world problems. In particular, we discuss the sensor

subset selection and watershed management problem. Finally, chapter 7 discuss the

possible future extensions of this work and concludes the thesis.

14

2 MULTI-AGENT REINFORCEMENT LEARNING

A learning automaton acting alone represents a single learning agent operating in an

environment. Along with the LA algorithms described earlier, a single agent can learn

using a plethora of other algorithms. If the agent interacts with a Markovian envi-

ronment, then various Reinforcement Learning (RL) algorithms such as Q-Learning,

Temporal Difference (TD)-learning [1] can be used to learn optimal policy. If the

parameters of the environment model are completely known, then optimal policy can

be calculated using Dynamic Programming (DP) approaches [1].

However, such simple paradigm is not adequate to model a lot of real-world sys-

tems. More interesting learning schemes can be designed by allowing multiple learning

agents to interact and interconnect with each other. A multi-agent system is defined

as a group of autonomous, interacting learning agents sharing a common environment,

which they receive response from and upon which they act by performing certain ac-

tions. However, several new challenges arise for RL in multi-agent systems. One

challenge involves defining a good learning goal for the multiple RL agents. Fur-

thermore, it is sometimes required for each learning agent to keep track of the other

learning agents. The helps the agent to coordinate its behavior with other agents,

such that a coherent joint behavior emerges [5]. However, this makes the learning

process nonstationary. The nonstationarity also invalidates the convergence proper-

ties of most single-agent RL algorithms. In addition, the scalability of algorithms

to realistic problem sizes is also a cause for concern in MARL. The Multi-Agent

Reinforcement Learning (MARL) field is rapidly expanding, and a wide variety of

approaches to exploit its benefits and address its challenges have been proposed over

the last few decades. Various algorithms and approaches have been proposed which

integrate developments in the areas of single-agent RL, game theory, and various

15

other policy search techniques. In this section, we describe few relevant algorithms

and techniques that highlight different approaches towards MARL.

2.1 A-Teams

An A-Team [6] is a multi-agent framework in which autonomous agents cooperate

by modifying results produced by other agents. These results circulate continually in a

graph which represents interconnection between agents. Convergence is said to occur

if and when a persistent solution appears. A-Team results in a type of asynchronous

organization that combines features from various learning paradigms such as insect

societies, genetic algorithms, blackboards and simulated annealing.

An A-Team consists of a set of autonomous agents and a set of memories that

are interconnected to form a strongly cyclic network. Thus, every agent is in a closed

loop with other agents in the system. Agents may include all manner of problem-

solving entities, including computer-based agents and humans. An agent is defined

to consist of three components: an operator (algorithm), a selector and a scheduler.

The operator creates and modifies the solutions stored in memories, the selector

determines which solutions the operator will work on, and the scheduler does the

resource management. An autonomous agent has completely self-contained selector

and scheduler components.

An A-Team can be visualized as a directed data-flow hypergraph. Each node

of the graph represents a complex of overlapping memories. Each arc represents an

autonomous agent. Results or trial-solutions accumulate in the memories to form

populations (like those in genetic algorithms). These populations change as new

members are continually added by construction agents, while older members are being

erased by destruction agents. All the agents in an A-Team act in an autonomous

manner. Each agent makes decisions for itself regarding what it is going to do and

when it is going to do it. There is no centralized control. Agents cooperate by working

on the results produced by the other agents. Because the agents are autonomous,

16

this cooperation is asynchronous. All the agents can work in parallel thus potentially

increasing the convergence speed. Thus, an A-Team is modeled as a strongly cyclic

network of memories and autonomous agents. Each memory is dedicated to one

problem. Collectively, the memories represent the problem that the agents try to

solve together. Various possible solutions for the parts of the problem are produced

by the agents and stored in the memories to form populations. Agents cooperate by

working on the solutions produced by the other agents.

2.2 Ant Colony Optimization

Swarm intelligence is an approach to problem solving that takes inspiration from

the social behaviors of insects and of other animals. Ant colony optimization (ACO)

[7] takes inspiration from the foraging behavior of ants. The ants deposit pheromone

on the ground in order to mark some favorable path that should be followed by other

members of the colony. Ant colony optimization exploits a similar mechanism for

solving optimization problems. In ACO, a number of artificial agents (called ants)

build solutions to an optimization problem at hand and exchange information on

the quality of these solutions via a communication scheme that is similar to the one

adopted by real ants. ACO solves the optimization problem by simulating a number

of artificial ants moving on a graph that encodes the problem. The nodes of the graph

represent solution components which represent possible assignment of values to the

decision variables of the optimization problem. Edges between the node represent a

variable called as a pheromone and it can be read and modified by ants. So far, ACO

has been applied on variety of different NP-hard problems, stochastic optimization

problems and multi-objective optimization problems [7].

ACO proceeds in is an iterative manner. At each iteration, a number of artificial

ants are considered to be active. Each of them builds a solution by walking from

vertex to vertex on the graph with the constraint of not visiting any vertex that

she has already visited in her walk. At each step of the solution construction, an ant

17

selects the next vertex to be visited according to a stochastic mechanism that is based

on the pheromone. In particular, when in vertex i, if vertex j has not been previously

visited, it can be selected with a probability that is proportional to the pheromone

associated with edge (i, j). At the end of an iteration, on the basis of the quality of

the solutions constructed by the ants, the pheromone values are modified in order to

bias ants in future iterations to construct solutions similar to the best ones previously

constructed.

The behavior of any ACO algorithm is governed mainly by the way in which the

pheromone update is done. Different algorithms have been proposed in the literature

which update the pheromone values between nodes in different ways. Ant System

(AS) was the first ACO algorithm proposed in the literature [8]. Its main character-

istic is that, at each iteration, the pheromone values are updated by all the ants that

have built a solution in the current iteration. The pheromone �ij , associated with

the edge joining nodes i and j is updated as follows:

�ij ← (1− �)�ij +
m∑
k=1

Δ�kij

where � is the evaporation rate, m is the number of ants participating in the

current iteration and Δ�kij is the quantity of pheromone laid on edge (i, j) by the ant

k.

Under the Max-Min Ant System (MMAS) algorithm, only the best ant updates

the pheromone trails and that the value of the pheromone is bound. The pheromone

update is implemented as follows:

�ij ← [(1− �)�ij +
m∑
k=1

Δ�bestij]�max�min

where �min and �max are the lower and lower bounds imposed on the pheromone

values respectively the operator [x]ba returns x if and only if a < x < b otherwise it

returns the suitable lower or upper bound value.

18

Local pheromone update algorithm updates the pheromone values in addition to

the pheromone updates performed at the end of the construction process (called offline

pheromone update). The local pheromone update is performed by all the ants after

each construction step. The main goal of the local update is to diversify the search

performed by subsequent ants during an iteration. By decreasing the pheromone

concentration on the traversed edges, local pheromone update encourage subsequent

ants to choose other edges and, hence, to produce different solutions. This makes it

less likely that several ants produce identical solutions during one iteration. Each ant

applies the local pheromone update only to the last edge traversed in the following

manner:

�ij = (1− ')�ij + '�0

where ' ∈ (0, 1] is the pheromone decay coefficient, and �0 is the initial value of

the pheromone.

2.3 Colonies of Learning Automata

In [9], authors discuss the similarities between ACO model and the graphical

formulation of the MDP framework. Authors state that MDP can be modeled as a

graph. Since ACO problems are also modeled as graphs, a particular ACO can be

modeled as an interconnected network of LAs which is capable of controlling an MDP.

Thus authors state that ACO model can be mapped onto the framework introduced

by Wheeler-Narendra [10]. The Wheeler-Narendra framework deploys one LA at each

state of the MDP. Authors state that these LAs act as ants in ACO and the links

between the states of ACO act as the links between different states of MDP.

Thus, an ant in ACO can be viewed as a dummy mobile agent that walks around

in the graph of interconnected LAs, makes states and the LAs that reside in that

state active and brings information so that the LAs involved can update their action

probabilities. The only difference is that, in ACO, several ants are walking around

19

simultaneously in a parallel and autonomous manner. Thus under the new formu-

lation, several LAs can be active at the same time. In the model of Wheeler and

Narendra, there is only one LA active at a time. However, authors state that adding

multiple mobile agents to the system will not harm the convergence. The automata

will use the same update scheme and the environment response calculation as the one

used for Markov chain control by Wheeler-Narendra.

By connecting LA and ACO in this manner, the authors give a formal justification

for the use of ant algorithms in the cases where graph is static. Therefore, LAs give

insight into why ACO algorithms work. Authors predict that in the case when the

graph is dynamic (meaning the transition probabilities in the MDP may depend on

the action probabilities of the other nodes), the model of LA colonies can still be

used. Therefore, these two frameworks may influence each other in a positive way.

2.4 Dynamic or Stochastic Games

The generalization of the Markov Decision Process (MDP) to the multi-agent

interaction is called a stochastic game or a dynamic game. A dynamic game can

be represented by a tuple ⟨S1, S2, . . . , SN ;A1, A2, . . . , AM ;T ;R1, R2, . . . RM⟩ where

S = {Si}, i = 1, 2, . . . , N is the discrete set of states of the Markov chain, Aj, j =

1, 2, . . . ,M are the discrete sets of actions available to the agent j (j = 1, 2, . . . ,M).

The joint action set is then given by A = A1 × A2 × . . . × AM . The transition

probability function is defined as T : S × A × S → [0, 1]. The reward functions are

defined as Ri : S ×A× S → ℛ.

For the dynamic games, the state transitions are the result of the joint action of all

the agents. The action tuple at ktℎ instant is given by ak ∈ A = [a1k, a2k, . . . , amk]
T

where aik ∈ Ai, for i = 1 to M and T denotes vector transpose operator. Conse-

quently, the rewards rik+1 also depend on the joint action. If R1 = R2 = . . . = RM

then all the agents try to maximize the same expected common return, and the dy-

namic is fully cooperative. It describes a dynamic identical-payoff game. If M = 2

20

and R1 = −R2, the two agents have opposite goals, and the dynamic game is fully

competitive. It describes a dynamic zero-sum game. Mixed games are stochastic

games that are neither fully cooperative nor fully competitive. In this thesis, we fo-

cus on the identical-payoff and zero-sum games of the learning agents (in particular,

Learning Automata).

2.4.1 RL Algorithm for Dynamic Zero-Sum Games

In [11], Littman proposes a novel learning algorithm called minimax-Q learning

algorithm for systems where there are only two agents and they have diametrically

opposed goals (in other words, a dynamic zero-sum game). The algorithm is very

similar to the traditional Q-learning algorithm used for single agent RL with minimax

operator replacing the max operator in Q-learning. In equation form:

V (s) = max�∈PD(S) mino∈O
∑
a∈A

Q(s, a, o)�a

Q(s, a, o) = r(s, a, o) +

∑
s′

T (s, a, o, s′)V (s′)

where o represents the action selected by the opponent and
 is the learning

parameter. Author proves that the minimax-Q algorithm learns to optimal minimax

strategy of the underlying game matrix.

2.4.2 RL Algorithm for Dynamic Identical-Payoff Games

In a Dynamic Identical Payoff Game (DIPG), all the agents have the same reward

function (R1 = R2 = . . . = RM) and the learning goal is to maximize the expected

value of the common payoff. If a centralized entity was available who knows the

actions selected by all the agents, the DIPG will reduce to a MDP, the action space

of which would be the joint action space of the SG. In this case, the goal could be

achieved by learning the optimal joint-action values with Q-learning:

21

Q(st, at)← Q(st, at) + �[rt+1 +
maxaQ(st+1, a)−Q(st, at)]

where at ∈ A = [a1k, a2k, . . . , amk]
T , aik ∈ Ai, for i = 1 to M is the joint action

tuple.

Since, the agents are autonomous decision makers, a coordination problem arises in

this particular situation. Even if all the agents update their Q-values in a synchronous

manner, the optimal Q-value learned by the individual agents might be sub-optimal.

Agents can learn by applying a greedy strategy to the Q-function as follows:

argmaxai maxa1,...,ai−1,ai+1,...,an Q(s, a)

Since the greedy action selection procedure breaks ties randomly, in the absence of

additional coordination procedures, different agents may break ties in different ways

and the resulting joint action may be suboptimal. This is termed as the coordination

problem.

The Team Q-learning algorithm [12] avoids the coordination problem by assuming

that the optimal joint actions are unique. Then, if all the agents update the common

Q-function in parallel then they can safely use the greedy policy to select the optimal

joint actions and maximize their return. Since the optimal joint action is assumed to

be unique, even if each individual agents breaks the ties arbitrarily, each agent will

converge to the unique optimal action.

The Distributed Q-learning algorithm [13] solves the cooperative task without as-

suming coordination and its complexity is similar to that of single-agent Q-learning.

However, the algorithm only works for cases where the optimal joint policy is deter-

ministic. Each agent i maintains a local optimal policy �i and a local Q-function

Qi(s, ai). This Q-function depending only on the action set of the agent i. The local

Q-values are updated only when the update leads to an increase in the Q-value. This

implies:

Qi,t+1(st, ai,t) = max{Qi,t(st, ai,t), rt+1 +
maxai Qi,t(st+1, ai,t)}

22

This ensures that the local Q-value are always equal to the maximum of the joint-

action Q-values:

Qi,t(st, ai) = maxa1,...,ai−1,ai+1,...,an Qt(s, a)

Similarly, the local optimal policy � is updated only if the update leads to an

improvement in the local Q-values:

�i,t+1(st) =

⎧⎨⎩ ai,t if maxui Qi,t+1(st, ai) > maxui Qi,t(st, ai)

�i,t(st) otherwise

This ensures that the joint policy [pi1,t, pi2,t, . . . , pin,t]
T is always optimal with

respect to the global Q-function. Under the condition that initial values of local Q-

functions are set to zero, then it is proven that the local policies of the agents converge

to an optimal joint policy.

Coordination graphs [14] paradigm can be applied to cases where the global Q-

function can be additively decomposed into local Q-functions that only depend on

the actions of a subset of agents. The decomposition might be different for different

states. Typically the local Q-functions have smaller dimensions than the global Q-

function and these dimensions are independent of each other. Maximization of the

joint Q-value is done by solving simpler task of maximizing local Q-functions. The

the individually optimized solutions are aggregated to calculate the optimized value of

the global Q-function. Under certain conditions, coordinated selection of an optimal

joint action is guaranteed [15].

2.5 Games of Learning Automata

An extension of a single learning automaton is the game scenario where a team

of automatas receive a reinforcement whose probability depends on the actions of

all the automatas. The game we consider here is a discrete stochastic game played

by N automatas (representing N players). Each of the automatas has finitely many

23

actions. At each instant, every automaton stochastically selects an action to be

played. After each play, the automatas receive reinforcement from the environment.

These reinforcements are treated as the payoffs to individual automatas. The game

is one of incomplete information. Thus, nothing is known regarding the distributions

of elements of the random payoff matrix. The game is played repeatedly and the

goal of the game is for each automaton, to asymptotically learn and converge to Nash

equilibrium strategies with respect to the expected value of the payoff. The games

of automata models have been used in telephone traffic routing [16] and control of

Markov chains [10], among several applications. Learning automata models have

also been proposed for non-stationary environments where the reward probabilities

of the environment change in specific manners (see, e.g., [17]). A specific model of

such non-stationarity leads to the so-called Associative Learning problem [18, 19]

where the reward probabilities are functions of an exogenous context vector and the

learning problem is to determine a map (e.g., a linear map) from the context space to

the optimal actions. However, the context changes in this model are not controlled

by the agent’s actions.

Each automaton i is assumed to have a finite set of actions or pure strategies,

Ri, 1 ≤ i ≤ N . Let Each play of the game then consists of each of the automatas

choosing an action. The result of each play is a random payoff to each automaton.

Let ri denote the random payoff to automaton i, 1 ≤ i ≤ N . The functions

di :
N∏
j=1

Sj → [0, 1]

where

di(�1, �2, . . . , �N) = E[ri∣automatonjchose action�j, �j ∈ Sj, 1 ≤ j ≤ N]

defines the payoff or utility matrix of automaton i. A strategy for automaton

i is defined to be its probability vector pi = [pi1, pi2, . . . , pim]. Each of the pure

strategies or actions of the itℎ automaton are considered as a strategy. Let ei be a

24

unit probability vector (of appropriate dimension) with itℎ component unity and all

others zero. Then ei is the strategy corresponding to the action i.

A slight variation of the above game formulation is a zero-sum where there are

two LAs in the group (N = 2). They payoff one automaton receives is the opposite

of he payoff received by the other automaton. If one automaton receives a reward

then the other one gets a penalty and vice versa. Thus, we have r1 = r, and r2 = −r.

Following algorithm learns the optimal minimax pure strategy for a zero-sum game.

2.5.1 LR−I Game Algorithm for Zero Sum Game

LR−I game algorithm for zero-sum game proceeds as follows:

1. At every time step, each automaton chooses an action according to its action

probability vector. Thus, the itℎ automaton (i = 1 or 2) chooses action �i at

instant k, based on the probability distribution pi(k).

2. First automaton (max or row player) obtains a payoff r1(k) based on the set

of all actions. The second automaton (min or column player) obtains a payoff

r2(k) = −r1(k) based on the set of all actions.

3. Each automaton updates its action probability as follows

pi(k + 1) = pi(k) + �ri(k)(e�i − pi(k)), i = (l, 2)

where 0 < � < 1 is a parameter and e�i is a unit vector of appropriate dimen-

sion with �ith component unity. This is the Linear Reward-Inaction (LR−I) game

algorithm. It has been shown [2] that, if each automaton uses the LR−I algorithm

for playing the game, the automata team converges to one of the Nash equilibrium

points (local maximum or locally optimal strategy) of the underlying game matrix.

A slightly modified version of the game setup is a game with common payoff where

all the automatas receive the same payoff after each play of the game. It is called the

25

identical-payoff game. Thus, we have ri = r, for all i and hence di(�1, �2, . . . , �N) =

dj(�1, �2, . . . , �N) , ∀i, j. Hence the reward structure of the game can be represented

by a single hyper matrix D of dimension ml ×m2 × . . . ×mN , whose elements are

d�l�2...�N = E[ri∣ Player j played action �j] ,1 ≤ j ≤ N Various algorithms have

been proposed to learn optimal strategies for identical-payoff games of LAs.

2.5.2 LR−I Game Algorithm for Identical Payoff Game

LR−I game algorithm for identical-payoff game proceeds as follows:

1. At every time step, each automaton chooses an action according to its action

probability vector. Thus, the itℎ automaton chooses action �i at instant k,

based on the probability distribution pi(k).

2. Each automaton i obtains a common payoff ri(k) based on the set of all actions.

3. Each automaton updates its action probability as follows pi(k + 1) = pi(k) +

�ri(k)(e�i − pi(k)), i = l, 2, . . . , N .

where 0 < � < 1 is a parameter and e�i is a unit vector of appropriate dimen-

sion with �ith component unity. This is the Linear Reward-Inaction (LR−I) game

algorithm. It has been shown [2] that, if each automaton uses the LR−I algorithm

for playing the game, the automata team converges to one of the Nash equilibrium

points (local maximum or locally optimal strategy) of the underlying game matrix.

2.5.3 Pursuit Game Algorithm for Identical Payoff Game

The idea behind Pursuit Learning algorithm is to keep estimates of reward prob-

abilities and use them in updating action probabilities. In case of game formulation,

we have one payoff hypermatrix entry for every N-tuple of actions. The Pursuit Game

Algorithm estimates these entries of payoff matrix using the reinforcement received

26

at each instant. These estimates are denoted by d̂i1i2...in . Similar to the implemen-

tation of Pursuit Learning Algorithm, the pursuit game algorithm maintains two

hypermatrixes, Z and R who have the same dimensions as that of the payoff matrix

D. The entry Zi1i2...in(k) of hypermatrix Z(k) gives the number of times the action

tuple (�1i1 , �2i2 , . . . , �NiN) is selected till trial k, while the element Ri1i2...iN (k) of the

hypermatrix R(k) gives total reinforcement obtained for this action tuple till trial k

. These hypermatrices are updated at each instant and are used to get the estimates

of the entries of payoff matrix.

At each instant k, each automaton selects an action at random based on its current

action probability vector. The action selected by jtℎ automaton is denoted by �jij .

Now various hypermatrices are updated as follows:

∀(j1, j2, . . . , jN) ∕= (i1, i2, . . . , iN)

Ri1i2...iN (k) = Ri1i2...iN (k − 1) + �(k)

Rj1j2...jN (k) = Rj1j2...jN (k − 1)

Zi1i2...iN (k) = Zi1i2...iN (k − 1) + 1

Zj1j2...jN (k) = Zj1j2...jN (k − 1)

d̂i1i2...iN (k) =
Ri1i2...iN (k)

Zi1i2...iN (k)

d̂j1j2...jN (k) = d̂j1j2...jN (k − 1)

Based on the estimated playoff matrix, the jtℎ automaton (1 ≤ j ≤ N) calcu-

lates a vector, Êj(k) = [Êj
1, Ê

j
2, . . . , Ê

j
rj

], which will be used for updating the action

probabilities. These vectors are obtained as follows:

Êj
ij

(k) = max
li
{d̂l1l2...lj−1ij lj+1...lN (k)}

Êj
l (k) = Êj

l (k − 1),∀l ∕= ij

Now, jtℎ automata updates its probability distribution as follows:

27

pj(k + 1) = pj(k) + �(eMj
(k)− pj(k))

where eMj
(k) is a unit vector with Mj(k)-th component unity and the index Mj(k)

is defined by:

Mj(k) = arg max
l

Êj
l (k)

It has been shown [20] that if the automata team employs Pursuit Learning Game

then the automata team converges to the global maximum of the underlying game

matrix. Since the computation of estimation matrices (namely d̂, R̂ and Ẑ is done

in a centralized manner, we call this algorithm as the Centralized Pursuit Learning

Algorithm (CPLA).

Learning automaton and games of learning automata have been used various ap-

plications like multiple access channel selection [21], congestion avoidance in wireless

networks [22], channel selection in radio networks [23], model a student’s behavior [24],

clustering in wireless ad-hoc networks [25], power system stabilizers [26], backbone

formation in ad-hoc wireless networks [27] and spectrum allocation in cognitive net-

works [28], graph partitioning problem [29], capacity assignment problem [30] and

keyboard optimization problem [31,32].

The LR−I identical-payoff game algorithm is decentralized. However, it converges

to one of the many Nash equilibria in the game matrix. Also, it is slower to converge.

The Pursuit algorithm for the identical-payoff game (CPLA) exhibits faster conver-

gence and it converges to the global maxima in the game matrix. However, it has

one serious drawback. Since it is a centralized algorithm, its memory requirement

grows exponentially with the the number of automaton in the group. Thus, in the

next chapter, we propose and analyze an algorithm for identical-payoff games that is

decentralized in nature and yet exhibits faster convergence.

28

3 COMPLETELY DECENTRALIZED GAMES OF LA

In this chapter, we discuss the application of indirect learning method (namely Pur-

suit learning algorithm) for zero-sum as well as identical-payoff games of learning au-

tomata. We propose a novel decentralized version of the Pursuit learning algorithm.

We call this algorithm the Decentralized Pursuit Learning Algorithm (DPLA) [33].

Such a decentralized algorithm has significant computational advantages over its cen-

tralized counterpart. The theoretical study of such a decentralized algorithm requires

the analysis to be carried out in a nonstationary environment. We use a novel boot-

strapping argument to prove the convergence of the algorithm. To our knowledge,

this is the first time such analysis has been carried out for zero-sum and identical-

payoff games. Extensive simulation studies are described that demonstrate the fast

and accurate convergence of the algorithm in a variety of game scenarios.

CPLA extends the single agent Pursuit learning algorithm to the multi-agent case.

But as discussed earlier, the CPLA is a centralized algorithm in the sense that each

automaton is aware of the actions taken by all the other automata in the team. The

problem with the centralized algorithms is that they can be computationally expensive

and require maintenance of estimate matrices whose size grows exponentially with

the number of automata in the team. We describe below a decentralized version in

which the Pursuit learning algorithm is applied by each automaton, independently of

the other(s). We call this algorithm the Decentralized Pursuit Learning Algorithm

(DPLA). The advantage of the DPLA algorithm over the CPLA is its computationally

efficiency. The DPLA obviates the need for an individual automaton to communicate

its choice of action to the other automata in the system at each instant of time. Also,

the size of the estimate matrices grows linearly with the number of automata in the

system. Suppose P automata A1, . . . , AP are involved in a game of identical payoff,

with Ap having rp possible actions. Then the size of each estimate matrix of CPLA

29

is O(r1 × r2 × ⋅ ⋅ ⋅ × rP). This exponential space complexity becomes untenable for

systems with even a moderate number of automata. The DPLA algorithm, on the

other hand, has space complexity that grows linearly with the number of automata in

the team. The total size of all the estimate matrices of DPLA is O(r1 + r2 + ⋅ ⋅ ⋅+ rP).

Environment

A1

A2

A3

AΡ

Figure 3.1. Schematic of CPLA - Figure 1

Figures (3.1) and (3.2) demonstrate the CPLA schematically. There are two

mechanisms for implementing CPLA. As indicated in Figure (3.1), each automaton

can receive action choices from all the other automata in the system. Each automaton

can then compute the estimate matrices of CPLA. Alternatively, each automaton can

send its selected action information to a central controller which in turn, calculates

the estimate matrices and then all the other automata use this information to execute

the CPLA. It is evident from the figures that under both these options, CPLA causes

lot of communication overhead and requires exponential memory space.

30

Environment
Central Controlller

A1

A2

A3

AΡ

Figure 3.2. Schematic of CPLA - Figure 2

Figure (3.3) shows the corresponding schematic for the DPLA. As the schematic

indicates, the DPLA does not require any communication between the participating

automata nor does it need a centralized controller. The DPLA combines fast conver-

gence of indirect learning techniques with the smaller memory and communication

requirements of decentralized learning algorithms. However, the DPLA causes the en-

vironment to exhibit non-stationary properties, thus making the theoretical analysis

more challenging.

3.1 Games of Learning Automaton

As described earlier, when multiple learning automaton interact with each other,

this system can be modeled by using concepts from the Game theory [34]. The LAs

can participate in various types of games. In this thesis, we will focus on the zero-sum

31

A1

A2

A3

AΡ Environment

Figure 3.3. Schematic of DPLA

and identical-payoff games of LAs. We will describe these game setups in detail and

in the process, also formalize the notation used in this chapter.

3.1.1 Identical Payoff Game

In an identical payoff game, all the automata participating in the game get the

same payoff at the end of each iteration of the game. Suppose P automata A1, . . . , AP

are involved in a game of identical payoff, with Ap having rp possible actions (or

strategies). Each play consists of each of the automata choosing an action and then

the team getting a common payoff. This payoff will form the environmental response

for each of the automata. The game is stochastic. For simplicity, we assume that the

payoff is a random variable X taking values 0 or 1, with 1 indicating reward and 0

indicating penalty.

32

Such identical-payoff game is characterized by a hypermatrix D = [di1i2⋅⋅⋅iP] of

dimension r1 × r2 × . . .× rP . The elements of the said hypermatrix D (also called as

a payoff matrix) are defined as:

di1i2⋅⋅⋅iP = E[X ∣ Ap chooses action apip , p = 1, 2, . . . , P].

Suppose there is a choice of strategies, me
p by automaton Ap, forming an P -tuple

of actions. Such action tuple is called a Nash equilibrium in pure strategies if for each

p, 1 ≤ p ≤ P

dme1...mep−1m
e
pm

e
p+1...m

e
P
≥ dme1...mep−1mpm

e
p+1...m

e
P
,∀mp ∈ Sp

where Sp is the set of pure strategies of the player Ap. The me
p is called the Nash

equilibrium strategy of player Ap.

3.1.2 Zero-sum Game

A zero-sum game consist of two automata. One automaton is called as the Row

player while the other automaton is called as the Column player. Assume that the

two automata, A1 and A2, have r1 and r2 actions (i.e. strategies) respectively. Let

these actions be denoted by ap1, . . . , aprp for p = 1, 2. A single play of the zero-sum

game consists of each automaton choosing an action, and then both the automata

getting their respective payoffs. These payoffs will form the environmental response

for each of the automata. The game is stochastic. At the end of every play, the

automata receive a payoff which is a random variable. For simplicity, we assume that

the random payoff X takes values 0 or 1, with 1 indicating reward and 0 indicating

penalty.

The zero-sum game is characterized by a bimatrix D = [(d1
i1i2
, d2

i1i2
)] of dimension

r1 × r2, representing the reward probabilities each automaton. The elements of this

payoff bimatrix are defined as:

d1
i1i2

= E[X ∣ Ap chooses action apip , p = 1, 2],

33

where E denotes mathematical expectation. Since it is a zero-sum game,

d2
i1i2

= 1− d1
i1i2
.

The element d1
imin is said to be a saddle point of D if

d1
ikin

< d1
imin < d1

imil
,∀k ∕= m,∀l ∕= n.

Then im is the saddle point (or the equilibrium point) strategy of the Row player and

in is the saddle point strategy of the Column player.

3.2 Decentralized Pursuit Learning Algorithm

Consider a sequence of probability distributions �p(t), for t ≥ 0, on the action

space of automaton Ap, p = 1, 2, . . . , P . We assume that for each t, �p(t) is an

rp-dimensional probability vector in the probability simplex

Srp−1 =
{

(s1, . . . , srp) : sk ≥ 0 and
∑rp

k=1 sk = 1
}
⊂ ℝrp .

These probability vectors are initialized to uniform initial value as follows:

�pip(0) = 1/rp, ip ∈ Ap, where Ap = {1, 2, . . . , rp}.

DPLA [33] is a type of Pursuit learning (or estimator type) algorithm. Thus it

makes use of the estimates of the environment parameters in the learning process.

For this purpose, the DPLA uses the estimate vectors D̂p(t) that keep track of the

empirical averages of rewards. The initial values of these estimate vectors, D̂p(0), are

set to zero.

At iteration t ≥ 1, each LA p samples its own action probability vector to select

an action �p(t) ∼ �p(t− 1). Then based on this action choice, a reward X(t) ∼ P�(t)

is observed. Here P�(t) denotes the conditional distribution of the reward, given

�(t) = [�1(t), . . . , �P (t)] is the action tuple selected by the automata team. For

p = 1, 2, . . . , P , we define the sets

Ipip(t) = {1 ≤ s ≤ t : �p(s) = ip}, ip ∈ Ap,

34

These sets keep track of the iterations in which Ap played action ip. Then the

DPLA for both the zero-sum game and identical-payoff games can be described as

follows:

1. At iteration t ≥ 1, sample �p(t) ∼ �p(t − 1) for p = 1, 2, . . . , P , and observe

X(t) ∼ P�(t).

2. Update

Ipip(t) =

⎧⎨⎩Ipip(t− 1) ∪ {t} if �p(t) = ip

Ipip(t− 1) if �p(t) ∕= ip.

3. Update

D̂pip(t) =⎧⎨⎩D̂pip(t− 1) +
X(t)−D̂pip (t−1)

#Ipip (t)
if �p(t) = ip

D̂pip(t) = D̂pip(t− 1) if �p(t) ∕= ip,

where #E denotes cardinality of the set E.

4. Compute: For p = 1, 2, . . . , P ,

!p(t) = arg max
ip∈Ap

D̂pip(t)

5. Update: For p = 1, 2, . . . , P ,

�p(t) = �p(t− 1) + �{�!p(t) − �p(t− 1)},

where �x denotes a unit vector of suitable dimension with mass 1 at component

with index x and all other values are set to zero. The parameter � ∈ [0, 1] is

the learning parameter.

6. If convergence criteria are met, then stop; otherwise, set t = t + 1 and return

to step 1.

35

The convergence criteria can be different depending on the application at hand.

However, typically, it is defined based on a certain action probability value threshold.

When the action probability value (the � values) of the automaton reach a certain

threshold, that particular automaton is termed as a converged automaton. Intuitively,

one would expect that under DPLA, each automaton would learn the optimal action,

so if there exists an optimal action tuple in D, then we would expect that the automata

team running the DPLA to converge to this optimal action tuple. But the analysis

is more complicated than in the case of the CPLA algorithm because the DPLA

algorithm causes the environment to display non-stationary characteristics.

3.3 Convergence Analysis

This section gives a convergence analysis for the DPLA applied to the zero-sum

as well as the identical-payoff games. For this analysis we shall consider an infinite

time-horizon and show almost sure convergence of the DPLA under certain constraints

imposed on the game matrix D. We also assume that the � = �t vanishes at a certain

rate as t→∞.

3.3.1 Vanishing � and The "-optimality

For the DPLA algorithm, we define "-optimality as follows: for any ", � > 0, there

exists T ∗ = T ∗(", �) and �∗ = �∗(", �) such that

Pr

[
min
p
�pmp(t) > 1− "

]
> 1− �

for all t > T ∗ and � < �∗. This is a “finite-time and fixed �” notion of convergence.

We argue that both “infinite-time” and “decreasing �” are implicit in the definition

of "-optimality.

36

∙ T ∗(", �) increases as " and/or � decreases, and if the number iterations increases,

the upper bound �∗ must decrease. Therefore, in "-optimality, � is indirectly

linked to the number of iterations through ", �.

∙ The critical part of proving "-optimality is establishing a monotonicity in the

dominant action equilibrium sampling probability. This boils down to showing

that the D̂’s are correctly ordered forever after a certain number of iterations

with probability > 1−�; see the proof of Theorem 3.1 in [35] and, in particular,

the definition of the event E2(k) on p. 594. Therefore, despite the fact that the

approach is “finite-time” in nature, an implicit control of the estimates over an

infinite time-horizon is generally needed to prove "-optimality.

However, the recommendation for a fixed � ∈ (0, 1) in the DPLA algorithm de-

scription and a vanishing � in theoretical analysis is not a contradiction. The theory

requires only that � = �t vanish at a certain rate as t → ∞, and this can still be

satisfied if �t is constant over a finite initial sequence of iterations. Moreover, in

practical problems where resources are fixed and a specified number of iterations T

are available, the rate of decay for �t can be used to determine a suitably small fixed

� ≈ �T .

3.3.2 Preliminary Lemmas

In this section, we define some additional notation and the preliminary lemmas.

We define the following increasing sequences of �-algebras:

{A p
t : t ≥ 0}, p = 1, 2, . . . , P, (3.1)

where A p
t tracks the information accumulated by the automaton Ap, up to and

including iteration t; A p
0 is the trivial �-algebra. We also define:

�t = 1− �1/t, t ≥ 1, (3.2)

37

where � ∈ (e−1, 1) is selected arbitrary. Note that �t ↓ 0 for each �.

Lemma 1. For �t in (3.2) with � ∈ (e−1, 1),

Pr
[

lim
t→∞

#Ipip(t) =∞
]

= 1

for all p = 1, . . . , P and ip ∈ Ap.

Proof: Write #Ipip(t) =
∑t

s=1 �pip(s), where

�pip(s) =

⎧⎨⎩1 if �p(s) = ip

0 otherwise.

For simplicity, drop the p and ip subscripts. Then the goal is to show that∑∞
t=1 �(t) = ∞. The sequence {�(t) : t ≥ 1} is adapted to {At : t ≥ 1}, and

according to Lemma 3.1 of [35],

E[�(t) ∣ At−1] = Pr[this action taken at time t]

≥ �(0)
t∏

s=1

(1− �s)

= �(0)�
(t),

where
(t) =
∑t

s=1
1
s
. The claim will follow from Lévy’s extension of the Borel-

Cantelli lemma if
∑∞

t=1 �

(t) =∞; see also [36] , [37, p. 96]. But since
(t) is asymp-

totically equivalent to ln(t), and ln(t) = ln(�) log�(t), where log� denotes log base �,

we have

�ln(t) = �ln(�) log�(t) = tln(�).

Therefore, since e−1 < � < 1,
∑∞

t=1 t
ln(�) =∞, proving the claim.

It follows immediately from Lemma 1 and Bonferroni’s inequality that all actions

are tried infinitely often with probability 1. So we get:

Pr
[∩
p

∩
ip

{
lim
t→∞

#Ipip(t) =∞
}]

≥
∑
p

∑
ip

Pr
[

lim
t→∞

#Ipip(t) =∞
]
−
∑
p

rp + 1

= 1.

(3.3)

38

Lemma 1 and its extension (3.3) justifies the law of large numbers-type of reason-

ing upon the convergence argument for DPLA is based. D̂(t) is an empirical average

of some unknown theoretical quantity. But here, unlike in the CPLA scenario, the

theoretical quantity being estimated is itself random and changing with t. The DPLA

algorithm is a constrained version (where action sampling is forced to be independent

across players) of the CPLA, but there is a loss of information in the sense that no

automaton is aware of the actions taken by the others at a given iteration.

We now describe a precise mathematical formulation of this “loss of information”

of the DPLA. By definition, the entries in the game matrix D are the expected rewards

under complete information; that is,

di1⋅⋅⋅iP = E[X(t) ∣ �p(t) = ip, p = 1, . . . , P].

But in the DPLA, no automaton is aware of the actions taken by the others, so

from Ap’s perspective, the observed X(t) is a proxy for the marginal expectation at

iteration t, namely,

Dpip(t) = E[X(t) ∣ �p(t) = ip]

=
∑

i1,⋅⋅⋅ ,ip−1,ip+1,⋅⋅⋅ ,iP

di1⋅⋅⋅ip−1ipip+1⋅⋅⋅iP

∏
q ∕=p

�qiq(t− 1), (3.4)

a weighted average of the possible awards Ap could earn for playing action ip.

Therefore, one automaton not knowing the actions taken by the other automaton

results in a loss of information. It has the effect of marginalizing over appropriate

dimensions of the game matrix. Also, it is evident that the environment reward

probabilities Dpip(t), are random and changing with t as the corresponding �’s change.

This causes the automata environment to exhibit non-stationary properties and makes

the convergence analysis more challenging compared to that of CPLA.

For the �-algebras A p
t in (3.1), define:

F p
t = �(A p

t+1, {A
q
t : q ∕= p}),

39

where �(C) denotes the smallest �-algebra containing the events in C . Also,

define:

�pip(t) = iteration when Ap plays ip for the tth time. (3.5)

Although, �pip(t) is a random variable, it is F p
t−1-measurable. This variable indi-

cates the sampling times in the sense of Breiman [37], Definition 5.9.

It is straightforward to check that

Δpip(t) := X(�pip(t))−Dpip(�pip(t))

forms a martingale difference sequence with respect to F p
t . So we get:

E[Δpip(t) ∣ F
p
t−1] = 0 t ≥ 1.

Therefore, it follows immediately that:

Mpip(t) =
∑

s∈Ipip (t)

Δpip(t) (3.6)

is a martingale with respect to F p
t . Alternatively, one could construct these

martingales by applying Doob’s optional sampling theorem; see [38] or [37, Theo-

remm 5.10].

Now if we define

Dpip(t) =
1

#Ipip(t)

∑
s∈Ipip (t)

Dpip(s),

then we see that the difference between D̂’s and D’s is a function of the martingale

M . This observation allows us to analyze the fluctuations in the estimates D̂(t) in

Lemma 2 below.

The event that a sequence of events {B(t) : t ≥ 1} occurs infinitely often (i.o.)

will written as

40

{B(t) i.o.} =
∩
t≥1

∪
s≥t

B(s);

This indicates that for any t there exists an s ≥ t such that B(s) occurs.

Lemma 2. If � = �t is as in (3.2) with e−1 < � < 1, then for all " > 0,

Pr

[
max
p

max
ip∈Ap

∣D̂pip(t)−Dpip(t)∣ > " i.o.

]
= 0.

Proof: Let B(t) = B"(t) denote the sequence of events given by:

B(t) =

{
max
p

max
ip
∣D̂pip(t)−Dpip(t)∣ > "

}
=
∪
p

∪
ip

{∣D̂pip(t)−Dpip(t)∣ > "}

The goal is to show Pr[B(t) i.o.] = 0, but since

Pr[B(t) i.o.] ≤
∑
p

∑
ip

Pr[∣D̂pip(t)−Dpip(t)∣ > " i.o.], (3.7)

it is clear that we need only show Pr[∣D̂pip(t)−Dpip(t)∣ > " i.o.] = 0 for each (p, ip)

combination. For simplicity, we drop the (p, ip) subscripts in the following discussion.

The difference ∣D̂(t)−D(t)∣ changes only at the sampling times �(t), and by Lemma

1 we know that there are infinitely many such sampling times. Since the difference

can be more than " infinitely often if and only if it is more than " at infinitely many

sampling times, for our purposes we can (without loss of generality) modify the time

scale so that ∣D̂(t)−D(t)∣ = t−1∣M(t)∣, where M(t) is the martingale defined in (3.6).

The summands in (3.6) are bounded by 2, so by Azuma’s inequality [39] we have (for

the modified time scale)

Pr[∣D̂(t)−D(t)∣ > "] = Pr[∣M(t)∣ > t"]

≤ 2 exp{−t"2/8}.

41

By the Borel-Cantelli lemma,

∞∑
t=1

Pr[∣D̂(t)−D(t)∣ > "] ≤
∞∑
t=1

2e−t"
2/8 <∞

implies

Pr[∣D̂(t)−D(t)∣ > " i.o.] = 0,

and so the lemma now follows from (3.7).

Lemma 2 implies that D̂(t) will be close toD(t) for all sufficiently large t. However,

convergence of the Pursuit Learning algorithm requires that D̂(t) be close to D(t).

This would follow from the previous lemma if it could be shown that D(t) is close

to D(t). We will establish the necessary ordering of the D’s in the case of

P = 2 and r1 = r2 = 2.

The next lemma follows immediately from the definition of dominating strategy

equilibrium.

Lemma 3. If the game matrix D is 2× 2, and there exists a unique dominating

strategy equilibrium, then one automaton will always have a clear preference ordering

between its actions, independent of the other player’s actions.

3.3.3 Bootstrapping Mechanism

Suppose Player 2 has the clear preference ordering indicated in the Lemma 3.

Then mathematically this means that for any number � ∈ [0, 1],

�d21 + (1− �)d22 ≷ �d11 + (1− �)d12

The “>” symbol means the automaton (or Player) 1 prefers Action 1, “<” means

the automaton 1 prefers Action 2. For example, consider the following 2 × 2 game

matrix:

42

D = D2×2 =

⎡⎣0.4 0.9

0.2 0.6

⎤⎦
Note that the dominating action equilibrium is d12. In this case, automaton 2 has

the clear preference. Indeed, we see that automaton 2’s D(t)’s, and hence D(t)’s are

clearly separated for all t. Therefore, Lemma 2 implies that, eventually, automaton

2’s D̂’s will be correctly ordered and, after this point, its �22(t) will be monotonically

increasing. Once �22(t) is sufficiently close to 1, the automaton 1’s D̂(t)’s will be

correctly ordered, and its �11(t) will likewise be monotonically increasing. This is

the essence of the novel bootstrapping argument. The bootstrapping mechanism

means that when one automaton converges, the other is then forced to converge. It

is easy to see that similar result applies when the dominating strategy equilibrium

resides at other locations in the game matrix.

3.3.4 2× 2 Identical Payoff Game

Theorem 1. Let D be the game matrix of an 2×2 identical payoff stochastic game

with incomplete information. Assume that there is a unique dominating strategy

equilibrium in the game matrix. If �t is as in (3.2) with e−1 < � < 1, then �pmp(t)→ 1

almost surely for p = 1, 2.

Proof: Without loss of generality, assume that d11 is the dominating action equi-

librium point of the 2× 2 game matrix D, and that Player 1 has the clear preference

ordering indicated in Lemma 3. Thus, the entries di1i2 satisfy

d22 < d21 < d12 < d11

Let � = d12 − d21 be the minimum separation between D11(t) and D12(t), and set

" = �/2. Then by using Lemma 2, the selected value of " guarantees that there exists

a time T such that D̂11(t) > D̂12(t) for all t > T . Once this event occurs, �11(t) is

monotonically increasing. For notational simplicity, assume T = 0. If the estimates

are correctly ordered (i.e., !1(t) = 1 for all t > 0), then it follows that, for t ≥ 1,

43

�11(t) = �11(0)
t∏

s=1

(1− �s) +
t∑

s=1

�s

t∏
r=s+1

(1− �r),

with the conventions that a sum and product over an empty index set is 0 and 1,

respectively. For �t in (3.2) this simplifies to

�11(t) = �11(0)�
(t) +
t∑

s=1

(1− �1/s)�
(t)−
(s)

= �
(t)

[
�11(0) +

t∑
s=1

(
�−
(s) − �−
(s−1)

)]
= �
(t)

[
�11(0) + �−
(t) − 1

]
= 1− �
(t)[1− �11(0)].

Since e−1 < � < 1 and
(t) ∼ ln(t)→∞, it is clear that �11(t) ↑ 1 as t→∞. Now

once �11(t) becomes sufficiently close to 1, automaton 2 will have separation between

its D(t)’s, so eventually D̂21(t) > D̂22(t) for all t > T ′, where T ′ > T . After this

point, �21(t) is monotonically increasing, and the previous argument may be applied

to show that �21(t)→ 1 as t→∞.

3.3.5 Zero-sum Game

Theorem 2. Let D be the game matrix of a 2× 2 zero-sum stochastic game with

incomplete information. Let the saddle point for the game be unique. If �t is as in

(3.2) with e−1 < � < 1, then �pmp(t)→ 1 almost surely for p = 1, 2.

Proof: Without loss of generality, assume that d11 is the saddle point of the

game matrix D. This means that d1
11, d1

12 and d1
21 are ordered. The ordering will be

d1
21 < d1

11 < d1
12. Now depending upon the value of d1

22, we will consider four cases

and show that in all these cases, the automata team will converge to the saddle point.

Case 1: d1
22 < d1

21 < d1
11 < d1

12. By using the arguments given in the Section 3.3.4,

we can prove that since automaton 1 has clear preference among its actions, it will

44

first converge to the saddle action. This in turn will cause the other automaton to

converge to its saddle action. Hence the whole team converges to the saddle point.

Case 2: d1
21 < d1

11 < d1
22 < d1

12. Since this is a zero-sum game, the ordering for

the Player 2 will be d2
21 > d2

11 > d2
22 > d2

12. Now, by using the arguments given in the

Section 3.3.4, we can prove that since automaton 2 has clear preference among its

actions, it will first converge to the saddle action. This in turn will cause automaton

1 to converge to its saddle action. The whole team thus converges to the saddle point.

The other two cases, namely,

d1
21 < d1

22 < d1
11 < d1

12

and

d1
21 < d1

11 < d1
12 < d1

22

are the same as cases 1 and 2 above, respectively.

3.4 Simulation Results

We implemented the novel DPLA for both zero-sum and identical payoff games.

The simulation results obtained are in confirmation with the theoretical convergence

proofs discussed in the earlier section.

3.4.1 2× 2 Identical-Payoff Game

The following 2× 2 game matrix was used in the simulation of the decentralized

zero-sum game:

D = D2×2 =

⎡⎣0.4 0.9

0.2 0.6

⎤⎦
This game matrix has the dominating action equilibrium at D(1, 2).

Figure (3.4) shows the change in action probabilities of the two automata as they

converge to the dominating action equilibrium. Figure (3.5) shows the expected value

45

of the marginal reward (D(t)’s) and its estimate (D̂(t)’s) for every action of both the

automata. The non-stationarity of the environment is exhibited by the varying D(t)’s.

It is evident that a correct separation between the D̂(t)’s of two actions occurs as the

automata begin to converge. This separation is achieved fairly quickly, even though

there may be some gaps between the D̂(t)’s and corresponding D(t)’s. Lemma 3 says

that the D̂(t)’s will eventually find the true D(t)’s, but the decentralization causes

a nontrivial reduction in the rate of convergence, explaining the gaps between the

D̂(t)’s and D(t)’s present in some cases.

0 200 400 600 800

0.
0

0.
4

0.
8

Player 1

Iteration

Action 1
Action 2

0 200 400 600 800

0.
0

0.
4

0.
8

Player 2

Iteration

Action 1
Action 2

Figure 3.4. Action Probabilities �pip(t) for the Decentralized Pursuit
Algorithm in the 2× 2 Identical Payoff Game in Section 3.4.1

3.4.2 Identical-Payoff Game for Arbitrary Game Matrix

Although this convergence proofs of DPLA given earlier apply to a D2×2 game ma-

trix, the same dominating equilibrium convergence is observed when the game matrix

Dr1×r2×...×rP has arbitrary number of players and each player has arbitrary number of

46

0 200 400 600 800

0.
6

0.
8

1.
0

Player 1, Action 1

Iteration

True
Estimate

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

Player 1, Action 2

Iteration

0 200 400 600 800

0.
0

0.
2

0.
4

Player 2, Action 1

Iteration

0 200 400 600 800

0.
80

0.
90

1.
00

Player 2, Action 2

Iteration

Figure 3.5. D(t) (Black line) and D̂(t) (Gray Line) for the Decentral-
ized Pursuit Algorithm in the 2× 2 Identical Payoff Game in Section
3.4.1

actions. If Dr1×r2×...×rP has no dominance structure, then the algorithm converges to

one of the Nash equilibria (modes) of the game matrix.

We consider following general D2×2 game matrix:

D = D2×2 =

⎡⎣0.4 0.6

0.8 0.2

⎤⎦

47

This game matrix has two Nash equilibrium points at D(1, 2) and D(2, 1) respec-

tively. In the simulations, it was observed that the automata team always converges

to one of the Nash equlibria. Figure (3.6) shows the change in action probabilities of

both the automata and Figure (3.7) shows the expected value of the marginal reward

(D(t)’s) and its estimates (D̂(t)’s) for every action of both the automata.

0 2000 6000

0.
0

0.
4

0.
8

Player 1

Iteration

Action 1
Action 2

0 2000 6000
0.

0
0.

4
0.

8

Player 2

Iteration

Action 1
Action 2

Figure 3.6. Action Probabilities �pip(t) for the Decentralized Pursuit
Algorithm in the 2× 2 Identical Payoff Game in Section 3.4.2

3.4.3 2× 2 Zero-Sum Game

The following 2× 2 game matrix was used in the simulation of the decentralized

zero-sum game:

D = D2×2 =

⎡⎣0.6 0.8

0.3 0.7

⎤⎦
This game matrix has saddle point at D(1, 1).

48

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

Player 1, Action 1

Iteration

True
Estimate

0 2000 4000 6000 8000

0.
0

0.
4

0.
8

Player 1, Action 2

Iteration

0 2000 4000 6000 8000

0.
0

0.
4

0.
8

Player 2, Action 1

Iteration

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

Player 2, Action 2

Iteration

Figure 3.7. D(t) (Black line) and D̂(t) (Gray Line) for the Decentral-
ized Pursuit Algorithm in the 2× 2 Identical Payoff Game in Section
3.4.2

Figure (3.8) shows the trajectory of action probabilities of the two automata in the

team. As the figure indicates, the action probability for the saddle action increases

and that of the non-saddle action decreases monotonically.

Figure (3.9) shows the expected value of the marginal reward (D(t)’s) and its esti-

mate (D̂(t)’s) for every action of both the automata. As explained earlier, the D(t)’s

keep changing with time (shown by the black line), thus making the environment

49

0 200 600 1000

0.
0

0.
4

0.
8

Player 1

Iteration

Action 1
Action 2

0 200 600 1000

0.
0

0.
4

0.
8

Player 2

Iteration

Action 1
Action 2

Figure 3.8. Action Probabilities �pip(t) for the Decentralized Pursuit
Algorithm in the 2× 2 Zero-sum Game in Section 3.4.3

non-stationary. The gray line indicates the running average for each action (D̂(t)’s).

As expected, the D̂(t)’s get into proper ordering as the automata begin to converge.

3.4.4 Zero-sum Game for Arbitrary Game Matrix

Although, this paper gives a saddle-point convergence proof for zero-sum game

consisting of D2×2 game matrix, the same saddle point convergence is obtained when

both the automata have arbitrary number of actions. Consider following D4×4 game

matrix:

D = D4×4 =

⎡⎢⎢⎢⎢⎢⎢⎣
0.7 0.3 0.2 0.5

0.9 0.4 0.6 0.5

0.4 0.1 0.6 0.7

0.2 0.3 0.5 0.8

⎤⎥⎥⎥⎥⎥⎥⎦
This game matrix has the saddle point at D(2, 2).

50

0 200 400 600 800 1000

0.
4

0.
6

0.
8

1.
0

Player 1, Action 1

Iteration

True
Estimate

0 200 400 600 800 1000

0.
0

0.
2

0.
4

Player 1, Action 2

Iteration

0 200 400 600 800 1000

0.
0

0.
4

0.
8

Player 2, Action 1

Iteration

0 200 400 600 800 1000

0.
0

0.
2

0.
4

Player 2, Action 2

Iteration

Figure 3.9. D(t) (Black line) and D̂(t) (Gray Line) for the Decen-
tralized Pursuit Algorithm in the 2 × 2 Zero-sum Game in Section
3.4.3

Figure (3.10) shows the change in action probabilities of the two automata during

the run of the algorithm until the convergence is reached. Figures (3.11) and (3.13)

show the marginal reward (D(t)’s) and its estimate (D̂(t)’s) for every action of both

the automata. As expected, the D̂(t)’s get into proper ordering as the automata

begin to converge.

51

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Decentralized Pursuit: Player 1

Iteration

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Decentralized Pursuit: Player 2

Iteration

Action 1
Action 2
Action 3
Action 4

0 500 1000 1500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Centralized Pursuit: Player 1

Iteration

0 500 1000 1500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Centralized Pursuit: Player 2

Iteration

Figure 3.10. Comparison of Various Algorithms : Trajectory of Action
Probabilities �pip(t)

3.4.5 Zero-sum Game Using CPLA

For comparison, we also present the action probability plots for the zero-sum

CPLA using the same D4×4 matrix.

As the figures indicate, the DPLA algorithm has faster convergence than the

CPLA. Although in Figure (3.10), the convergence speed of the DPLA appears to

be only slightly faster (or comparable to) than the centralized Pursuit learning game

algorithm, this difference increases with the increase in the number of automata in

the team. This may be due to the fact that a large number of trials were needed

for the large hypermatrix estimate (D̂) to stabilize to sufficiently accurate values.

52

0 200 400 600 800 1000

0.
0

0.
4

0.
8

Action 1

Iteration

True
Estimate

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

Action 2

Iteration

0 200 400 600 800 1000

0.
0

0.
4

0.
8

Action 3

Iteration

0 200 400 600 800 1000

0.
0

0.
2

0.
4

Action 4

Iteration

Figure 3.11. D(t) (Black line) and D̂(t) (Gray Line) of Player 1 for
the Decentralized Pursuit Algorithm in the 4× 4 Zero-sum Game in
Section 3.4.5

However, in case of an identical payoff game, the DPLA converges to one of the

modes of the game matrix (local maxima) whereas the centralized pursuit learning

algorithm converges to the maximum among the modes of the game matrix (global

maxima). However, as explained earlier, the CPLA incurs lot of communication

overhead and has exponential memory requirement. These factors make it impractical

for applications consisting of moderate or large number of automata. The DPLA does

53

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

Action 1

Iteration

0 200 400 600 800 1000

0.
4

0.
6

0.
8

1.
0

Action 2

Iteration

True
Estimate

0 200 400 600 800 1000

0.
0

0.
4

0.
8

Action 3

Iteration

0 200 400 600 800 1000

0.
0

0.
2

0.
4

Action 4

Iteration

Figure 3.12. D(t) (Black line) and D̂(t) (Gray Line) of Player 2 for
the Decentralized Pursuit Algorithm in the 4× 4 Zero-sum Game in
Section 3.4.5

not suffer from these drawbacks. This combination of properties makes the DPLA

algorithm a better candidate for application in a game scenario.

3.5 Partially Decentralized Identical Payoff Games

As discussed earlier, the CPLA requires all the automata in the team to commu-

nicate their action choice to each other. The DPLA algorithm, on the other hand

54

0 500 1000 1500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Row Player

Iteration

Action 1
Action 2
Action 3
Action 4

0 500 1000 1500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Column Player

Iteration

Action 1
Action 2
Action 3
Action 4

Figure 3.13. Comparison of Various Algorithms : Trajectory of Action
Probabilities �pip(t)

obviates this need and each automaton in the team operates in isolation. However,

there is a middle ground where different configurations can be imagined so that only a

subset of automata communicate with each other. We call such class of configurations

Partially Decentralized games of LAs. In the next chapter, we will formally describe

Partially Decentralized games and use them to control multi-agent Markov chains.

55

4 PARTIALLY DECENTRALIZED GAMES OF LA

As described in the previous chapter, the CPLA requires all the automata in the team

to communicate their action choice to each other. This results in a lot of communi-

cation overhead. Also, since the size of estimate hypermatrices grows exponentially

with the number of automata in the team, the CPLA also requires a large amount

of memory. Although the advantage of centralized algorithm is that it guarantees

convergence to the global maxima in the game matrix, it comes at a heavy memory

cost.

On the other hand, the DPLA [33] described in the previous chapter obviates the

need for automata to communicate their action choice to each other. Also, the size of

the estimate hypermatrices grows linearly with the number of automata in the system.

Thus the decentralized version offers a great improvement over the centralized version

of the algorithm. However, the decentralized algorithm converges to one of the Nash

equilibria of the game matrix(local maxima), instead to the global maxima (unlike

centralized algorithm).

However, it might be useful if the automata in the team decide to communicate

their action choices with some other chosen automaton (or automata) in the system.

Then the team may converge to an action tuple which has higher payoff than the

one offered in the case when there is no communication (as in the case of DPLA).

In certain scenarios, it may even be possible for the team to converge to the global

maxima and still communicate in a partial manner. To model this type of grouping

among LAs, we propose a novel paradigm called Partially Decentralized Games of

Learning Automata (PDGLA) [40].

56

4.1 Partially Decentralized Games

Under PDGLA, a group of learning automata are subdivided into various sub-

groups. The automata (or automaton) existing in each subgroup communicate with

all the other automata in the same group and maintain the estimate matrices nec-

essary to implement a Pursuit algorithm mechanism. Thus PDGLA [40] results in

locally centralized groups. However, the entire automata team is not centralized. The

choice of communication partner(s) could be made based on various constraints and

criteria or combinations thereof. One possible constraint is memory available with an

agent. If an agent accepts action choice input from n other automata, then it has to

maintain estimate matrices of dimension n+ 1 and size r1 × r2 × . . .× rn+1 where ri

is the size of action set associated with automata i. So it is clear that the maximum

number of automata a single automaton (agent) can communicate with is determined

by the available memory. The other possible criteria for selecting communication

partner is communication cost. In the systems where communication has a lot of

cost (e.g. in sensor systems where communication drains the power of the agent and

reduces its lifetime) and where bandwidth is at a premium, it may be sensible to

communicate with minimum number of other agents and try to get a better payoff.

By taking all these factors into account, the local groups of automata can be formed.

Figure (4.1) depicts the schematic of a system in which learning automata partic-

ipate in partially decentralized games. The system consists of ten leaning automata

who are are engaged in PDGLA. The automata team is subdivided into three sub-

groups. The automata within each subgroup learn using a centralized learning mech-

anism (like CPLA). However, as the figure indicates, there is no communication or

coordination between the automata (or automaton) across different subgroups. Each

subgroups exists as an island and is oblivious to the activities in other subgroups.

The centralization within each subgroup can be done by using any desired mecha-

nism. The automata within a subgroup can interact with a central controller which

maintains the estimate matrices necessary to implement CPLA. On the other hand,

each automaton in the subgroup may communicate its action choice to every other

57

Central Controller

Environment

Figure 4.1. Schematic for Partially Decentralized Games of Learning Automata

58

automata in the group. This way, each automaton maintains the estimate matrices

needed to run the CPLA and this obviates the need of a central controller.

We will demonstrate with an example, that partial communication (i.e., a subset of

automata communicating with each other) may remove some Nash equilibria and may

even reduce the resultant game matrix to one which has a unique Nash equilibrium.

Consider a system of three automata A0, A1, A2 each having two actions i0, i1. Let

the game matrix be:

D[i0, i0, i0] = 0.7, D[i0, i0, i1] = 0.6, D[i0, i1, i0] = 0.6, D[i1, i0, i0] = 0.6, D[i0, i1, i1] =

0.8, D[i1, i0, i1] = 0.6, D[i1, i1, i0] = 0.6, D[i1, i1, i1] = 0.9.

If the DPLA algorithm was used, the game matrix DDPLA = D remains unchanged

and it manifests two Nash equilibrium points. They are D[i0, i0, i0] and D[i1, i1, i1],

with D[i1, i1, i1] being the global maximum.

Now consider A1 and A2 communicating to form a resultant automaton B0. Then,

the game matrix between A0 and B0 is:

DPDGLA = D2×4 =

⎡⎣0.7 0.6 0.6 0.8

0.6 0.6 0.6 0.9

⎤⎦
This game matrix has a unique mode with value 0.9. So, it is possible to convert

a multimodal decentralized game matrix to a unimodal game matrix with partial

communication.

4.1.1 Description of PDGLA

Each automaton Ap, that participating in the PDGLA, maintains three ma-

trices D̂p, Rp and Zp. If automata Ap gets action choice communication from k

other automata {Aq1 , Aq2 , . . . , Aqk}, then the estimate matrices of Ap will be of size

aq1 × aq2 × . . . × aqk . The partially decentralized pursuit learning game algorithm

works in two phases: (1) Action selection and communication phase and (2) Update

phase.

59

Action selection and communication phase: Each automaton Ap chooses

action �pip at instant k by sampling the its action probability distribution P p(k).

Then each automaton Ap then communicates this action choice to other automa-

ton(automata) it is connected to. Each automaton in the team uses its own selected

action in conjunction with the actions received from other automaton(automata).

This collective action information is used by each automaton to update its estimate

hypermatrices.

Update phase: Once the communication phase is over, all the automata in the

team update their estimate hypermatrices. Each automata Ap gets action choice

communication from k other automata {Aq1 , Aq2 , . . . , Aqk}. So each automaton forms

an action tuple {�pip , �
q1
iq1
, �q2iq2 , . . . , �

qk
iqk
}. Then the estimate matrices are updated as

follows:

Rp
ip,iq1 ,iq2 ,...,iqk

(k) = Rp
ip,iq1 ,iq2 ,...,iqk

(k − 1) + �(k)

Rp
q(k) = Rp

q(k − 1),∀q ∕= {ip, iq1 , iq2 , . . . , iqk}

Zp
ip,iq1 ,iq2 ,...,iqk

(k) = Zp
ip,iq1 ,iq2 ,...,iqk

(k − 1) + 1

Zp
q (k) = Zp

q (k − 1),∀q ∕= {ip, iq1 , iq2 , . . . , iqk}

D̂p(k) =
Rp(k)

Zp(k)

Each automaton then updates its action probability vector as follows:

P p(k + 1) = P p(k) + �(eMp − P p(k))

where 0 < � < 1 is the learning parameter and index Mp is determined by

Mp = max
jp,jq1 ,jq2 ,...,jqk

D̂p
jp,jq1 ,jq2 ,...,jqk

(k)

60

If automaton Ap gets action choice communication from k other automata

Aq1 , Aq2 , . . . Aqk

then it will need O(aq1 × aq2 × . . .× aqk) memory to store estimate hypermatrices.

It is easy to see from the above discussion that the CPLA and DPLA are the

degenerate cases of a more general concept of PDGLA. Thus theoretical study of

such systems holds great potential and will bridge the gap between the two extremes.

We will describe how the PDGLA framework can be used to adaptively control a

Multi-Agent Markov Decision Process (MAMDP).

4.2 Multi Agent Markov Decision Process

A large number of distributed real-world systems can be modeled as multi-agent

systems [41, 42]. A Multi-agent Markov Decision Process (MAMDP) framework is a

flexible formalism that can be used to model such systems for control and decision-

making problems. Multi-robot systems, unmanned air vehicle (UAV) systems, sensor

networks, computer networks, smart power grids, intelligent vehicle highway (IVH)

systems, Massively Multi-player Online Role-Playing Games (MMORPGs), defense

simulations and economic systems are some examples of systems that can be modeled

as MAMDPs [43].

Many of these real-world multi-agent systems possess significant sources of uncer-

tainty, making it impossible to pre-compute the optimal decision and control rules in

an off-line manner. The complex, non-linear nature of these systems, coupled with

the inherent uncertainty requires a mathematical framework that is powerful yet sim-

ple in nature. It also requires practically feasible algorithms to act on this model to

compute the decision and control rules in an on-line manner. MAMDP and Multi-

Agent Reinforcement Learning (MARL) provide the framework and the algorithms,

respectively, for such distributed control problems.

An MAMDP framework expresses these distributed, multi-agent systems in a con-

venient mathematical formulation for decision and control problems. For tractabil-

61

ity, various approximations can be used while expressing multi-agent systems in an

MAMDP framework. An MAMDP framework can also deal with the inherent non-

linear and stochastic nature of the decision and control rules used to optimize long

term performance criteria in a distributed manner. MARL integrates seamlessly with

MAMDP and uses the rewards obtained during the execution of the system to update

the decision variables in an on-line manner. In this paper, we propose novel MARL

algorithms for the control of MAMDP systems.

A finite state Markov Decision Process (MDP) consists of multiple states. The

MDP performs state transitions that generate rewards which depend on actions taken

by the agents acting in different states of the chain. The control of finite, multi-agent

MDP for which transition and reward probabilities are known can be stated as follows:

Let Φ = {'1, '2, . . . , 'N} be the state space of a finite MAMDP with N states. For

notational simplicity, let M be the number of agents present in the MAMDP. Let

∥R∥ denote cardinality of the set R. We use Ri
k to denote action set of the agent k

residing in state i of the MAMDP and
⊗

to denote Cartesian product. An action

tuple is formed by one action from each agent. Let �i = {Ri
1

⊗
Ri

2

⊗
. . .
⊗

Ri
M}

be the finite set of action tuples available in state 'i. Transition probabilities tij(A)

and corresponding rewards rij(A) depend on the source state 'i, sink state 'j and

the action tuple A ∈ �i. Thus we define transition probability function for state

Φi as ti : Φ × Ri
1 × Ri

2 × . . . × Ri
k → PD(Φ) where PD operator represents a set

of discrete probability distributions. The corresponding associated reward function

ri : Φ×Ri
1×Ri

2×. . .×Ri
k → ℜ where ℜ is the set of real numbers that lie in the interval

[0, 1]. The goal is to choose a set of actions, or policy, ∈ �1
⊗

�2
⊗

. . .
⊗

�N that

maximizes the long term expected reward

J() ≡ limn→∞
1

n
E[

n−1∑
t=0

rx(t)(x(t), x(t+ 1),)]

where x(t) and x(t + 1) represent the states the MAMDP visits as time t and t + 1

respectively.

62

4.3 Previous Work

Dynamic programming methods can be used to determine optimal policy for a

MDP [44]. However, the dynamic programming approaches become computationally

intensive when the number of states and transitions increase. Also, dynamic program-

ming approaches require the knowledge of transition probabilities and reward values

associated with different actions. Depending on the constraints of the problem, this

information may be unknown or may change during system operation.

Wheeler and Narendra proposed a reinforcement learning solution for the control

of a single-agent MDP problem [10]. It is shown that by associating one learning

automaton with each state of the MDP and treating the problem as an identical-payoff

game of learning automata, the automata team will converge to the optimal policy

tuple. In case of a single-agent MDP, the resultant game matrix is shown to have a

unique equilibrium point and thus the automata team converges to the optimal policy

corresponding to the unique equilibrium. The Wheeler-Narendra solution uses the

framework of identical-payoff game of learning automata to solve the control problem.

In the configuration proposed by the authors, one learning automaton is associated

with each state of the MDP. The learning automaton acts as the decision maker and

makes action selection in each state of the system. Each decision maker uses simple

LR−I learning scheme [2] to update its action probabilities. It is proven that in

case of identical-payoff games of learning automata, if the game matrix has a unique

equilibrium point, and the learning agents do learning in sufficiently small steps, then

the automata team will converge to the unique equilibrium point. Learning automata

associated with the states of MDP participate in an asynchronous, identical-payoff

game. The resultant game matrix has a unique equilibrium and thus the automata

team converges to optimal policy represented by the equilibrium.

An important feature of this control scheme is that the automata acting in a state

are not informed of the one-step reward resulting from their actions. The algorithm

assumes presence of a central controller which keeps track of the cumulative reward

generated by the chain so far and global time which counts number of transitions

63

performed by the chain so far. When the MDP transitions to a state, the automaton

acting within that state receives information about the cumulative reward generated

by the chain so far and the current global time from the central controller. From

these, the automaton calculates the average reward value which is used as the payoff

� for the learning process. As described earlier, LR−I algorithm is used to update

the action probabilities of the automaton. Thus action probabilities are updated as

follows:

p(k + 1) = p(k) + ��(e� − pi(k)), i = (l, 2, . . . , N)

where 0 < � < 1 is a parameter. � is the action selected by this automaton

during previous time when MDP was in the current state and e� is a unit vector

of appropriate dimension with �-th component unity. After updating the action

probabilities, the automaton then samples its action probability vector to select the

next action which is used by the MDP to transition to an appropriate next state and

the process repeats.

We use a similar technique to calculate the environment response for the pro-

posed PDGLA approach described later. The environment response for the proposed

PDGLA algorithm(s) is calculated as the average reward generated so far by the

MAMDP. The central controller keeps track of cumulative reward and number of

transitions and the automata use this information to calculate the reward values.

4.4 An Intuitive Solution

MAMDP problems can be thought of as an extension of single-agent problem with

each state consisting of multiple agents instead of a single agent. An intuitive way

to extend the single-agent solution proposed by Wheeler-Narendra [10] to the multi-

agent problem will be to assign one learning automaton for each agent in the chain.

However, the resultant game matrix in such cases may have multiple equilibrium

points. Since the game matrix does not have a unique equilibrium point, such decen-

64

tralized game of learning automata may not converge to the global maximum among

the possible equilibrium points. The convergence in such decentralized case will be to

one of the equilibrium points in the game matrix [45]. While each such equilibrium

represents local maximum in the game matrix, the corresponding control policy may

be a locally optimal policy. Among all possible equilibrium points of the game matrix,

the equilibrium point with maximum value represents global maximum. The policy

corresponding to this equilibrium point is the globally optimal control policy.

The problem of non-optimal policy convergence can be addressed by allowing the

automata in the system to communicate their action choices with each other. Such

action communication constitutes centralized game of learning automata. Depending

on the number of automata involved in the communication, the game can be com-

pletely or partially centralized. Centralization can also be achieved by combining

actions of different automata into a superautomaton. The superautomaton then acts

as representative of the group of automata and participates in the game on behalf

of the group. However, such superautomaton construction reduces the degree of au-

tonomy in the system. Since, superautomaton makes actions selection for all the

automata it represents, the individual automaton loses its own autonomy and surren-

ders it to the superautomaton. Thus depending on how centralization is performed

(with or without the use of superautomaton approach), the system will possess dif-

ferent degree autonomy. Thus, we motivate the discussion of our algorithms based

on two factors: degree of communication and autonomy. Depending on the availabil-

ity of the resources and the domain constraints (dictating the memory capacity and

autonomy of an agent), a suitable algorithm can be chosen from a gamut of possible

algorithms.

In the following algorithms, we use the strategy described used by Wheeler-

Narendra [10] to calculate the environment response to the learning automata op-

erating in the states of the MAMDP. The learning automata are not aware of the

one-step reward values tij(A) resulting from their selected action tuple A . The

learning agent(s) representing a state receive information about the effect of their se-

65

lected actions from a bookkeeper only when the process returns to that state. When

the Markov process returns to state 'i; the automata representing that state receive

two pieces of data from a central controller: 1) the cumulative reward generated by

the process up to time n and 2) the current global time N . From these, the learning

agent(s) in the state computes reward generated since the last time this state was

visited and the corresponding elapsed global time Δn. These increments are added

to the current cumulative reward �i(ni) and cumulative time �i(ni), resulting in new

totals �i(Δn+1) and �i(Δn+1). The environment response �i is given as an input to

all the learning agent(s) operating in the state 'i and it is calculated as �i = �i(Δn+1)
�i(Δn+1)

.

Thus, �i represents the average turnaround reward generated by the chain and it is

used in the learning process. The bookkeeper merely stores the information about

the cumulative reward and does not make action selection. The action selection, and

hence the control function, is performed by the automata that reside in the individual

states of the chain.

4.5 Superautomaton Based Algorithms

We propose two partially decentralized Superautomaton-based algorithm for the

control of MAMDPs. Each state of the MAMDP is represented by a superautomaton.

This superautomaton is formed by combining actions of the subautomata present in

individual states. The action space of each superautomaton consists of Cartesian

product of the action space of individual subautomata present in the state of MAMDP.

Assume that state 'i of the MAMDP has M number of agents. The action set of jtℎ

agent is denoted by Ri
j. Thus, the action set of the superautomaton Ai representing

state 'i is {Ri
1

⊗
Ri

2

⊗
. . .
⊗

Ri
M}.

Figure (4.5) describes the Superautomaton configuration every state i of a multi-

agent MAMDP. As the figure indicates, the multiple learning automata that reside

in the state are substituted by one Superautomaton. Dashed lines indicate that these

subautomata surrender their autonomy to the superautomaton who participates in

66

Subautomaton1 Subautomaton2 Subautomatonn

R1 R2
RM

Superautomaton

R1xR2x....xRM

.........

Figure 4.2. Superautomaton Configuration for Any State i

the learning process on behalf of all the subautomata. As denoted in the figure,

the action space of the superautomaton is Cartesian product of the action spaces

of each individual subautomaton. Thus Superautomaton essentially replaces all the

subautomata that reside in a state of the MAMDP.

4.5.1 LR−I-Based Superautomaton Algorithm

Under LR−I-based superautomaton algorithm, each superautomaton uses LR−I

algorithm to update its action probabilities. The algorithm proceeds as follows:

67

1. When the MAMDP is in state 'i, the superautomaton Ai representing that

state selects an action tuple by sampling its action probability vector. Let this

action tuple be {ri1, ri2, . . . , riM} ∈ {Ri
1

⊗
Ri

2

⊗
. . .
⊗

Ri
M}

2. Based on the selected action tuple, MAMDP makes probabilistic transition to

a new state.

3. When the MAMDP returns to the state 'i, the �i is calculated as described

earlier. The superautomaton Ai uses this environment response to update its

action probabilities using the LR−I algorithm. Thus:

pi(n+ 1) = pi(n) + ��i(e�(n) − p(n))

where �(n) = {ri1, ri2, . . . , riM} and e�(n) is a unit vector of appropriate dimension

with �(n)-th component set to unity.

Since the action space of the superautomaton Ai is a Cartesian product of the

action space of individual agents acting in the state 'i, this configuration is similar

to the one described in [10]. Thus using the analysis described in [10], it can be

proven that the resultant game matrix formed by using superautomaton approach

has a unique equilibrium. Hence, the team of superautomata will converge to the

optimal policy represented by this unique equilibrium point.

4.5.2 Pursuit-Based Superautomaton Algorithm

We propose another version of the Superautomaton algorithm that makes use

of the Pursuit algorithm to update action probabilities. As described earlier, each

state of the MAMDP is represented by a superautomaton. Each superautomaton

maintains an estimate matrix d̂i of dimension ∣ Ri
1∣ × ∣ Ri

2∣ × . . . × ∣ Ri
M ∣ . All the

values of d̂i matrix are initialized to zero. The algorithm proceeds as follows:

1. When the MAMDP is in state 'i, the superautomaton Ai representing that

state selects an action tuple by sampling its action probability vector. Let this

action tuple be {ri1, ri2, . . . , riM} ∈ {Ri
1

⊗
Ri

2

⊗
. . .
⊗

Ri
M}

68

2. Based on the selected action tuple, the MAMDP makes probabilistic transition

to a new state.

3. When the MAMDP returns to the state 'i, the �i is calculated as described ear-

lier. The superautomatonAi uses this environment response to update its action

probabilities using the Pursuit algorithm. First, the algorithm uses the �i value

to set the values of the d̂i matrix. The superautomaton Ai sets d̂ri1,ri2,...,riM = �i

and all other values are left unchanged. Then algorithm selects maximum ele-

ment (and the corresponding action tuple) in the d̂i matrix and increases action

probability of that particular element (i.e. action tuple) by a small value. Thus:

p(n+ 1) = p(n) + �(eM − p(n))

where 0 < � < 1 is the learning parameter and eM represents a unit vector of ap-

propriate dimensions with M tℎ component set to unity and all other components

set to zero. The index M is determined by d̂iM(n) = max
ai1,a

i
2,...,a

i
M

d̂i
ai1,a

i
2,...,a

i
M

(n).

In other words, index M is the action tuple ai1, a
i
2, . . . , a

i
M that represents the

maximum value in the matrix d̂i at the n-the iteration of the algorithm.

Since the action space of the superautomaton Ai is a Cartesian product of the

action space of individual agents acting in the state 'i, this configuration is also

similar to the one described in [10]. Thus using the analysis described in [10], it can

be proven that if the MAMDP is ergodic then ordering in each of the d̂i matrices

becomes same as the ordering in the identical-payoff game matrix di. Here, d̂i can

be thought of as the estimate matrix that tries to estimate entries in the actual

game matrix di. Since �i represents average reward obtained by the selected action

tuple, the values of �i approach the values in di asymptotically. Thus by using

the convergence argument from [4], it can be proven that each Superautomaton will

converge to the globally optimal policy tuple.

69

4.5.3 Drawbacks of Superautomaton Based Algorithms

The drawback of both the LR−I-based and Pursuit-based superautomaton ap-

proach is that it provides very little autonomy and fault tolerance. Various subau-

tomata present in the state surrender their autonomy (regarding action selection) to

the superautomaton which represents them in the learning framework. This reduces

the level of autonomy in the system. Depending on the problem at hand, it may

not be possible for individual agents to surrender their autonomy in this manner.

Also, since each state is controlled by only one superautomata, it represents a single

point of failure and thus provides very little in terms of fault-tolerance. Failure of one

superautomaton will hinder the working of the entire system. Ideally, one would like

to provide individual agents complete autonomy in making action choices and also

make the system more robust by providing a mechanism for fault-tolerance. At the

same time, one would like the learning agents to learn the optimal policy.

To this end, we propose two more novel algorithms which mantain the autonomy

of individual agents. First algorithm is called Distributed Pursuit algorithm. The

Pursuit-based Superautomaton algorithm employs a Superautomaton configuration.

The Distributed Pursuit algorithm, on the other hand, preserves the autonomy of

individual learning agents by allowing them to select the action independently while

keeping the learning process centralized. The second algorithm uses a Master-Slave

configuration to mimic the behavior of superautomaton in every state while still main-

taining the autonomy of the individual agents in the system. Since the Distributed

Pursuit algorithm and Master-Slave algorithm maintain the autonomy of individual

subautomata operating inside the states, they provide greater fault-tolerance.

4.6 Distributed Pursuit Algorithm

We propose another version of the Pursuit based algorithm that makes use of the

Pursuit algorithm to update action probabilities of the individual automata. Each

agent in the state is represented by a LA and each learning automaton uses Pursuit

70

learning algorithm to update its action probabilities. For each state, the algorithm

also maintains an estimate matrix d̂i of dimension ∣ Ri
1∣ × ∣ Ri

2∣ × . . .× ∣ Ri
M ∣ . All

the values of d̂i matrix are initialized to zero. The algorithm proceeds as follows:

1. When the MAMDP is in state 'i, each subautomaton present in the state selects

an action by sampling its action probability vector. The individual actions

selcted by the individual automaton are combined to form an action tuple. Let

this action tuple be {ri1, ri2, . . . , riM} ∈ {Ri
1

⊗
Ri

2

⊗
. . .
⊗

Ri
M}

2. Based on the selected action tuple, MAMDP makes probabilistic transition to

a new state.

3. When the MAMDP returns to the state 'i, the �i is calculated as described

earlier. The algorithm uses this environment response to update the action

probabilities of the individual LA using the Pursuit algorithm. First, the algo-

rithm uses the �i value to set the values of the d̂i matrix. The algorithm sets

d̂ri1,ri2,...,riM = �i and all other values are left unchanged. Then algorithm selects

maximum element (and the corresponding action tuple) in the d̂i matrix. Let

this action tuple be mi
1,m

i
2, . . . ,m

i
M . The action probability of each individual

LA in state 'i is changed as follows:

pi(n+ 1) = pi(n) + �(emij − p(n)), 1 ≤ j ≤M

where 0 < � < 1 is the learning parameter and emij represents a unit vector

of appropriate dimensions with mi
j-th component set to unity and all other

components set to zero.

Using the analysis described in [10], it can be proven that the if the MAMDP is

ergodic then the ordering in each of the d̂i estimate matrices becomes same as the or-

dering in the identical-payoff game matrix di. Since �i represents average turnaround

reward obtained by the selected action tuple, the values of �i approach the values

71

in di asymptotically. Thus by using the convergence argument from [20], it can be

proven that each Superautomaton will converge to the optimum policy tuple.

4.7 Master-Slave Algorithm

We propose and Master-Slave configuration for the control of the MAMDPs. In

Master-Slave formulation, each agent present in the state of the MAMDP is repre-

sented by a learning automaton. One of these automata acts as a Slave automaton

while one or more of the remaining automata act as Master automata. The Master

and Slave automata together simulate the behavior of the superautomaton. If M − 1

automata act as Master automata then the Master-Slave configurations will simulate

the behavior of superautomaton whose action space is the Cartesian product of the

action space of M − 1 Masters as well as one Slave automaton.

Figure (4.7) describes the Master-Slave configuration for every state i of a MAMDP.

As described in the figure, all except one learning agent become Master automata and

one learning automaton acts as Slave automata. Solid lines indicate that original sub-

automata merely act as Master or Slave automata but still keep their autonomy intact

(unlike the Superautomaton configuration). Also, since Slave automaton simulates

the behavior of the hypothetical superautomaton, its action space is the Cartesian

product of the action spaces of each individual subautomaton.

Master and Slave automata select actions with complete autonomy. Master au-

tomata communicate their selected actions to the Slave automaton which uses this

information to simulate the behavior of the superautomaton. The Slave automata

then sends its action probability vector to the Master automata. Master automata

use the action probability vector of the Slave automata to set the values of their action

probability vector. Although the Master automata update their own action proba-

bility based on the action probability vector communicated by the Slave automaton,

Master and Slave automata are still autonomous with regard to action selection. Both

Master and Slave select actions completely independently of each other.

72

Subautomaton1 Subautomaton2 Subautomatonn

R1 R2
RM

R1xR2x....xRM

.........

Master1 Master2 Slave

R1 R2

Figure 4.3. Master-Slave Configuration for Any State i

4.7.1 Master-Slave Equations

Assume that Master-Slave configuration in state i of the MAMDP consists ofM−1

Master automata and the M tℎ automaton is the Slave automaton (A1, A2, . . . , AM).

The corresponding superautomaton is denoted by Ai. Let Rj denote the set of

actions for automaton j. We also use ∥Rj∥ to denote the cardinality of the set

Rj. Suppose ik is the action chosen by ktℎ automaton. Let action probabilities

of M − 1 Master automata be denoted by {p1
1, p

1
2, . . . , p

1
∥R1∥}, {p

2
1, p

2
2, . . . , p

2
∥R2∥}, . . .,

{pM−1
1 , pM−1

2 , . . . , pM−1
∥RM−1∥}. M

tℎ automaton acts as the Slave automaton. The actions

73

probabilities of M tℎ automaton are denoted by {pMR1
⊗
R2

⊗
RM
}. Let {qR1

⊗
R2

⊗
RM}

denote action probabilities of the (hypothetical) superautomaton Ai. Master-Slave

team will together try to simulate the behavior of this Superautomaton. In the fol-

lowing discussion, let T ∥ i indicate itℎ component of tuple T . {T
⊎
t} operation adds

element t to the tuple T . The idea of Master-Slave configuration is to keep the prod-

uct of the action probabilities of Master-Slave automata same as the corresponding

action tuple of the superautomaton. Thus, the action probabilities of Master-Slave

configuration are always adjusted such that following invariant is satisfied:

p1
i1
× p2

i2
× . . .× pM−1

iM−1
× pMi1i2...iM−1iM

= qi1i2...iM−1iM (4.1)

The invariant in equation (4.1) states that for any action tuple {i1i2 . . . iM−1iM},

the product of action probabilities of M − 1 Master automata and the Slave au-

tomata is equal to the corresponding action probability of the superautomaton. The

basic idea behind the Master-Slave configuration is to ensure that Master-Slave to-

gether emulate the behavior of the hypothetical superautomaton exactly. Thus it

is necessary that product of individual action probabilities of Master-Slave configu-

ration (p-values) equals the corresponding action probability of the superautomaton

(q-values). Equation (4.1) states this criteria in a mathematical form.

Rewriting the above invariant, we get the following constraint:

qR1
⊗
R2

⊗
RM =

M−1∏
i=1

{pi{R1
⊗
R2

⊗
RM}∥i} × p

M
R1

⊗
R2

⊗
RM

(4.2)

Another invariant of the algorithm relates action probabilities within each learning

automaton. Action probabilities of an individual learning automaton must always

sum to 1. So, for all the Master automata (j = 1 to M − 1), we have following

constraint: ∑
i∈Rj

pji = 1 (4.3)

74

The action probabilities of the Slave automaton must also always sum to 1. Thus

we get the following invariant:∑
i∈RM

pM{R1
⊗
R2

⊗
...

⊗
RM−1}

⊎
i = 1 (4.4)

Similarly for the superautomaton, we have the following invariant:∑
qR1

⊗
R2

⊗
RM = 1 (4.5)

We can rewrite invariant (4.2) to get following relationship between superautoma-

ton and the Master-Slave automata:∑
j∈RM

q{R1
⊗
R2

⊗
...

⊗
RM−1}

⊎
j =

M−1∏
i=1

{pi{R1
⊗
R2

⊗
RM}∥i}×

∑
j∈RM

{pM{R1
⊗
R2

⊗
...

⊗
RM−1}

⊎
j}

(4.6)

But from equation (4.4), the summation term in the RHS of 4.6 must sum to 1.

So we get: ∑
j∈RM

{pM{R1
⊗
R2

⊗
...

⊗
RM−1}

⊎
j} = 1 (4.7)

Thus equation (4.6) now becomes:

∑
j∈RM

q{R1
⊗
R2

⊗
...

⊗
RM−1}

⊎
j =

M−1∏
i=1

{pi{R1
⊗
R2

⊗
RM}∥i} (4.8)

Also, rearranging the terms in equation (4.2), we get:

pMR1
⊗
R2

⊗
...

⊗
RM

=
qR1

⊗
R2

⊗
...

⊗
RM∏M−1

i=1 pi{R1
⊗
R2

⊗
RM}∥i

(4.9)

But according to equation (4.8), the denominator term in the above equation (4.9)

is
M−1∏
i=1

{pi{R1
⊗
R2

⊗
RM}∥i} =

∑
j∈RM

q{R1
⊗
R2

⊗
...

⊗
RM−1}

⊎
j (4.10)

Thus, the equation (4.9) now becomes,

pMR1
⊗
R2

⊗
...

⊗
RM

=
qR1

⊗
R2

⊗
...

⊗
RM∑

j∈RM q{R1
⊗
R2

⊗
...

⊗
RM−1}

⊎
j

(4.11)

75

The above equation (4.11) establishes the relationship between the action prob-

abilities of the Slave automaton (the M -th automaton) and a hypothetical super-

automaton. Thus if Slave automaton could calculate the q-values (which is same as

simulating the behavior of the hypothetical superautomaton), then it can in turn

calculate its own action probabilities (the pM -values). Since the q-values are based on

the actions selected by all the automata in a particular state of the MAMDP, Slave

automata needs information about action selected by all the other automata in the

state. Towards this end, Master automata send their selected actions to the Slave

automaton. The Slave automaton uses this information along with its own selected

action to calculate superautomaton action probabilities (the q-values). The betai

value needed to compute q-values for Ai is calculated as described earlier. The Slave

automata forms an action tuple based on the actions communicated by the M − 1

Master automata (ri ∈ Ri, i = 1 to M − 1) and its own selected action rM ∈ RM .

Then Slave automaton calculates the q-values using the LR−I learning algorithm as

follows:

q(n+ 1) = q(n) + ��(n)(e�(n) − q(n))

where �(n) = {ri1, ri2, . . . , riM} and e�(n) is a unit vector of appropriate dimension

with �(n)-th component set to unity.

Thus after calculating the q-values, the Slave automaton sends the q-vector back

to all the Master automata. Now it is the turn of the Master automata to use the

q-vector information to calculate and set their own action probabilities.

From equation (4.12), we get:

pij =
∑

R1
⊗
R2

⊗
...

⊗
Ri−1

⊗
Ri+1

⊗
...

⊗
RM

qR1
⊗
R2

⊗
...

⊗
Ri−1

⊗
ij

⊗
Ri+1

⊗
...

⊗
RM (4.12)

where pij is the j-th action probability of the i-th Master automata. Thus once

Master automata receive the q-values, they can calculate their own action probability

vectors using equation (4.12). All the Master automata then send their calculated

p-values back to the Slave automaton. The Slave automaton then calculates its own

76

action probability vector using equation (4.9). The denominator in this equation

consists of p-values of the Mater automata. So once Slave automaton receives p-

values of the Master automata, it can calculate its own action probabilities.

Since these action probability values are calculated by taking all the invariants

into account, it ensures that the sum of action probabilities of individual automaton

will always sum to 1.

To summarize, the Master-Slave configuration works as follows:

1. When the MAMDP is in a particular state 'i, the Master and Slave automata

residing in that state select an action individually and autonomously. The

chain then transitions to the next state based on the action tuple formed by the

actions selected by Master and Slave automata.

2. When the chain returns to the state 'i, the Master automata in this state send

their selected actions (from step 1) to the Slave automaton that resides in the

current state of the MAMDP.

3. Slave automata calculates the q-values of the hypothetical superautomata using

the LR−I update equation.

4. Slave automaton sends q-value information back to all the Master automata

that reside in the state 'i. The Master automata then calculate their action

probabilities using the values in the q-vector.

5. All the Master automata send their action probability values back to the Slave

automaton. Slave automaton then calculates its own action probability vector

using the q-vector and the action probability vectors of the Master automata.

6. Goto step 1 (i.e. the Master and Slave automata then each select an action by

sampling their updated probability vectors and the process repeats).

77

4.8 Simulation Results

In this section, we will present simulation results for different configurations dis-

cussed in this paper. Here is a brief overview of various algorithms that will be

discussed in this section.

1. Multi-agent Wheeler-Narendra Algorithm: First algorithm is a simple

extension of Wheeler-Narendra (single agent Markov-chain control) algorithm

to the MAMDP case. It works exactly the same way as the Wheeler-Narendra

algorithm. Under this configuration, we represent each of the agents present

in each state with a LA and use LR−I algorithm as Learning algorithm. If

there are N states in the MAMDP and M agents per state, then there will

be N ×M LAs. The learning within each state is completely decentralized as

automata with a state and across the states do not share any information with

each other. Also, all the automata make action selections in an autonomous

manner. However, since the automata team may converge to the local maxima,

the solution obtained this way might be sub-optimal. We use this algorithm as

the baseline for the comparison with the novel algorithms proposed by us.

2. LR−I-based Superautomaton Algorithm: All the LA within a state are

replaced by a Superautomaton. If there are N states in the MAMDP, there will

be N Superautomata. Each Superautomaton uses LR−I algorithm. Each Super-

automaton makes action selection in autonomous manner. The Superautomata

converge to globally optimal policy. However, individual agents within a state

lose their autonomy since they are all replaced by one Superautomaton which

selects action on their behalf.

3. Pursuit-based Superautomaton Algorithm: It is similar to LR−I-based

Superautomaton algorithm with the exception that each Superautomaton uses

Pursuit algorithm for learning.

78

4. Centralized Pursuit Algorithm: All the LAs within a state learn by us-

ing Pursuit algorithm in a centralized manner. The action selection is done

autonomously while the learning is done in a centralized manner.

5. Master-Slave Algorithm: The learning agents within each state are replaced

by Master and Slave automata. If there are N states in the MAMDP and M

agents per state, then there will be (M − 1)×N Master automata and N Slave

automata in total. Each state individually has M − 1 Master and one Slave

automaton. The Master and Slave automata together converge to the globally

optimal policy. Also, each Master and Slave automaton chooses its action in

an autonomous manner. The action selection is done autonomously by Masters

and Slave while the learning is done in a centralized manner.

We simulated these algorithms on a 2-agent, 2-state MAMDP. In the following

table, we list the performance of these algorithms measured in terms of the number

of iterations needed for convergence. The convergence value was set as 0.95. When-

ever action probability value of any action belonging to an automaton reaches 0.95,

we consider that particular automaton as a converged one. If a system has multiple

automata (as is the case with all the algorithms under consideration in this paper),

when all the individual automaton in the system converge, the whole system is re-

garded as a converged system and the algorithm execution stops. Suppose the states

are numbered 1 and 2 and the actions for each automaton are also numbered 1 and

2. The transition and reward probabilities of the chain are summarized below:

t1 = {[1, {1, 1}] = 0.15; [2, {1, 1}] = 0.85; [1, {1, 2}] = 0.41; [2, {1, 2}] = 0.59;

[1, {2, 1}] = 0.22; [2, {2, 1}] = 0.78; [1, {2, 2}] = 0.38; [2, {2, 2}] = 0.62}

t2 = {[1, {1, 1}] = 0.68; [2, {1, 1}] = 0.32; [1, {1, 2}] = 0.73; [2, {1, 2}] = 0.27;

[1, {2, 1}] = 0.56; [2, {2, 1}] = 0.44; [1, {2, 2}] = 0.35; [2, {2, 2}] = 0.65}

79

r1 = {[1, {1, 1}] = 0.2; [2, {1, 1}] = 0.3; [1, {1, 2}] = 0.4; [2, {1, 2}] = 0.7;

[1, {2, 1}] = 0.2; [2, {2, 1}] = 0.9; [1, {2, 2}] = 0.2; [2, {2, 2}] = 0.3}

r2 = {[1, {1, 1}] = 0.7; [2, {1, 1}] = 0.2; [1, {1, 2}] = 0.4; [2, {1, 2}] = 0.6;

[1, {2, 1}] = 0.2; [2, {2, 1}] = 0.9; [1, {2, 2}] = 0.5; [2, {2, 2}] = 0.8}

Here ti and ri represent transition and reward functions for the i-th state of the

MAMDP. The individual entries of these functions give the values of these parameters

for various states and action tuples. The entry ti = [j, {k, l}] (or ri = [j, {k, l}]) gives

the transition (or reward) probability for the transition from state i to state j when

the action tuple {k, l} is selected (i.e. when one LA selects action k and the other

selects action l). This 2-agent, 2-state MAMDP has four equilibrium points. The

equilibrium points are listed in Table (4.1).

Table 4.1
Equlibrium Points

Equilibrium Tuple Value

{1, 2, 1, 1} 0.55

{1, 2, 2, 2} 0.66

{2, 1, 1, 1} 0.64

{2, 1, 2, 2} 0.72

The equilibrium tuple {1, 2, 1, 1} indicates the optimal action for all the four

automata in the system (2-states and 2-agents means 2 × 2 = 4 automata. First

two actions correspond to the first two agents in state 1 and the last two correspond

to the two agents in state 2. As indicated in the table, there are multiple equilibrium

points (Nash equilibria) which represent multiple local maxima. Only one action

tuple, {2, 1, 2, 2} corresponds to the global maximum.

80

Each algorithm was executed 50 times and the iteration values reported in the

table are averaged over these 50 runs. The table also lists the converged policy

value obtained by these algorithms and indicates whether it is a global maximum

or a local maximum. We also list communication and storage complexity required

per state by each algorithm. The storage (or space) complexity indicates the space

required to store all the action probability values and other algorithm parameters (for

example, estimate matrices in case of the Pursuit-based algorithm). For simplicity of

the analysis, we assume that each automaton in the system has r number of actions,

there are n number of states and m number of agents in the MAMDP.

Table 4.2
Performance Comparison

Configuration Average Number of Iterations Converged Policy Value Communication Complexity per State Space Complexity per State

Multi-agent Wheeler-Narendra 38149 0.627 (Local Maxima) No Communication O(m× r)

LR−I-based Superautomaton 40425 0.72 (Global Maxima) No Communication O(mn)

Pursuit-based Superautomaton 23126 0.72 (Global Maxima) No Communication O(mn)

Centralized Pursuit Algorithm 21174 0.72 (Global Maxima) O(m×m) O(mn)

Master-Slave 14518 0.72 (Global Maxima) O(m×m) O(mn)

The Multi-Agent Wheeler-Narendra algorithm requires no communication and has

a modest space requirement. The space requirement grows linearly with the increase

in number of automata in a state. However, this algorithm converges to one of the

(possibly many) local maxima. Thus it can not guarantee a globally optimal solution.

The LR−I-based Superautomaton algorithm requires no communication between LAs

and guarantees convergence to the global maxima. However, the space requirement

grows exponentially with the number of automata in a state. Thus it has much

higher space complexity than Multi-agent Wheeler-Narendra algorithm. One can

view higher space requirement as a necessary trade-off for converging to the globally

optimal policy.

The Pursuit-based Superautomaton algorithm has the same memory requirement

as the LR−I-based Superautomaton algorithm and it converges to the global maxima

just like the LR−I-based Superautomaton algorithm. However, it converges much

81

faster than the LR−I-based Superautomaton algorithm. Centralized Pursuit algo-

rithm, on the other hand, requires the LAs within a state to communicate their action

choices plus it has same memory requirement as the Pursuit-based and LR−I-based

Superautomaton algorithms. Its convergence speed is comparable to the Pursuit-

based Superautomaton algorithm and is much faster than LR−I-based Superautoma-

ton algorithm. The Master-Slave configuration requires same communication and

memory capacity as the Centralized Pursuit algorithm and its convergence speed is

also comparable to the Centralized Pursuit algorithm.

It is evident from the table that the new algorithms proposed in this paper do

significantly better than the previously proposed Wheeler-Narendra algorithm. They

converge to the global maxima, thus improving the quality of solution obtained. The

amount of extra memory space needed can be justified in the light of the fact that the

algorithm always converges to the globally optimal solution. This shows an interesting

trade-off between the quality of the solution and memory requirement.

We also show the evolution of action probabilities of Master and Slave automa-

ton to demonstrate the stochastic and temporal behavior of this algorithm. The

convergence value for action probability was set at 0.9 in both Superautomaton and

Master-Slave configuration. The average number of iterations for convergence were

obtained by averaging over run of 50 simulations.

4.9 Heterogeneous Games

PDGLA allows for more decentralization in the games learning automata paradigm.

The original team of automata can be split into various subgroups and each sub-

group can run CPLA. We call this type of decentralization a HOmogeneous Games of

Learning Automata (HOGLA). Although the automata are divided in different sub-

groups, each subgroup runs a single type of algorithm: namely the identical-payoff

game. However, it is possible for each subgroup to run a different type of game.

One subgroup may want to run identical-payoff game while the other subgroup uses

82

0 4000 8000

0.
0

0.
4

0.
8

Master − State 1

Iteration

Action 1
Action 2

0 4000 8000

0.
0

0.
4

0.
8

Master − State 2

Iteration

Action 1
Action 2

Figure 4.4. Action Probabilities for Master Automaton - 2-agent, 2-state MAMDP

0 4000 8000

0.
0

0.
4

0.
8

Slave − State 1

Iteration

Action 1
Action 2

0 4000 8000

0.
0

0.
4

0.
8

Slave − State 2

Iteration

Action 1
Action 2

Figure 4.5. Action Probabilities for Slave Automaton - 2-agent, 2-state MAMDP

the zero-sum game. Such mixed-type game formulations are very interesting from a

theory and application point of view. In the next chapter, we propose and explore

83

the application of HEterogeneous Games of Learning Automata (HEGLA). We use

HEGLA to control the dynamic zero-sum games.

84

5 LEARNING IN DYNAMIC ZERO-SUM GAMES

The PDGLA framework allows a group of learning automata to be subdivided into

multiple subgroups. Each subgroup acts as a locally centralized unit, although there

is no centralization of the entire group. However, the PDGLA formalism requires

the learning algorithms used across all the subgroups to be of the same type. Each

subgroup can alternatively use a centralized or decentralized approach. But each sub-

group participates in one and only one type of game: namely an identical-payoff game.

Thus we termed this configuration as HOmogeneous Games of Learning Automata

(HOGLA).

However, the PDGLA framework can be made more expressive by allowing dif-

ferent subgroups to participate in different types of games. In this thesis, we focus

on two types of games: identical-payoff games and zero-sum games. Thus, one can

imagine a configuration where the automata group is divided into two subgroups.

While the automata residing in a one subgroup participate in an identical-payoff

game. However, the automata in the other subgroup participate in a zero-sum game.

This concept can be easily extended to scenarios where there are more than two

subgroups present. In such case, automata in a few subgroups will participate in

an identical-payoff game while the automata belonging to the other subgroups will

participate in a zero-sum game. We call this framework HEterogeneous Games of

Learning Automata (HEGLA) [46].

Figure (5.1) describes a system of twelve learning automata arranged and inter-

acting using the HEGLA framework. One subgroup consists of five automata who are

involved in an identical-payoff game using a centralized controller. Another subgroup

consists of three learning automata who are involved in an identical-payoff game by

communicating their action choice with every other automata in the system. System

also consists of two automata (shown in black) who are involved in a centralized,

85

Central Controller

Environment

Figure 5.1. Heterogeneous Games of Learning Automata

zero-sum game (shown by a solid two-way arrow). Two other automata (shown in

black) are involved in a zero-sum game which is completely decentralized (shown in

wavy, dotted, two-way arrow). The system as a whole consists of automata involved

in zero-sum game as well as identical-payoff game. In this chapter, we will describe a

HEGLA-based solution for the control of Dynamic Zero-Sum Games (DZSGs).

In addition to the novel HEGLA solution [46], we propose an Adaptive Shapley

Recursion (ASR) solution for the control of DZSG problem. We use the dynamic

programming based Shapely recursion algorithm [47] to estimate optimal policies for

given configuration of DZSG. This optimal policy is then used to estimate the optimal

action in a given state. State transition and reward probabilities are estimated based

on the frequency with which different transitions are performed and the feedback

obtained during these transitions. These estimated parameters of the chain are used

as the input to the Shapely algorithm in a recursive manner. In addition, we also

propose a Temporal Difference (TD) style algorithm for the control of DZSGs. We

call this algorithm Minimax-TD algorithm. Minimax-TD algorithm estimates the Q-

values of every state and action tuple pair using TD formula and these estimates are

86

used for the control operation. The actions for each agent are selected by calculating

saddle point in the Q-matrix and the Q-values are then updated based on the reward

obtained by performing the selected actions.

5.1 Dynamic Zero Sum Games

A DZSG can be represented by a tuple ⟨S1, S2, . . . , SN ;A1, A2;T ;R1, R2⟩ where

S = {Si}, i = 1, 2, . . . , N are the discrete set of states of the Markov chain, Aj, j =

1or2 are the discrete sets of actions available to the agent j (j = 1 or 2). The two

agents are called as Maximizing (or Row) player and Minimizing (or Column) player

respectively. The joint action set is then given by A = A1 × A2. The transition

probability function is defined as T : S × A × S → [0, 1]. The reward functions are

defined as Ri : S×A×S → ℝ. For DZSG, we have R1 = −R2. The state transitions

in DZSGs are the result of joint action of both the agents acting in state Si. In turn,

the instantaneous rewards also depend on the selected joint actions.

Max Player Min Player

State1 State2

Figure 5.2. Dynamic Zero Sum Game

87

Figure (5.2) outlines a simple 2-state DZSG. As shown in the figure, two players

play the DZSG. Each player picks an action independently (there is no communication

between the two players) and then depending on the state in which DZSG finds itself,

it transitions to a new state based on the selected action tuple.

A dynamic programming solution that optimizes the expected reward for the

DZSG when complete information regarding transition and reward probabilities are

available was given by Shapley [47]. However, the computational cost of this solu-

tion increases dramatically with increasing in number of states and actions. Thus

the problem introduced by the presence of many states remains a major practical

limitation for this dynamic programming based approach. In this regard, decentral-

ization is a priority and serves to reduce the debilitating effect of large state space.

Towards that end, we present a novel, completely decentralized learning algorithm

using HEGLA. No knowledge of either transition probabilities or reward values is

assumed, other than that these values are normalized to lie in the interval [0, 1].

We use LR−I learning algorithm for LA to update its action probabilities so no ex-

plicit parameter estimation is needed. Also, the control scheme is implemented in a

decentralized fashion.

5.2 Wheeler-Narendra Control Algorithm

The Wheeler-Narendra control algorithm [10] for a single-agent Markov chain has

been described in detail in the previous Chapter. It uses the framework of identical

payoff game of learning agents to solve the control problem. In the configuration

proposed by the authors, one learning automaton is associated with each state of the

Markov chain. Each LA uses simple LR−I learning scheme [2] to update its action

probabilities.

The algorithm assumes presence of a central bookkeeper which keeps track of the

cumulative reward generated by the chain so far and global time which counts number

of transitions performed by the chain so far. When the Markov chain transitions

88

to a state, the automaton acting within that state receives information about the

cumulative reward generated by the chain so far and the current global time from the

central controller. From these, the automaton calculates the average reward value

which is used as the payoff � for the learning process. The LR−I algorithm is used to

update the action probabilities of the automaton in the following manner:

p(k + 1) = p(k) + ��(e� − pi(k)), i = l, 2, . . . , N

where 0 < � < 1 is a parameter. � is the action selected by this automaton during

previous time when Markov chain was in the current state and e� is a unit vector of

appropriate dimension with �-th component unity.

We use a similar technique for the control of DZSGs. Two LAs are associated with

each state of the DZSG (one for the ROW player or the MAX player and other for

the COLUMN player or the MIN player) which learn using LR−I algorithm. Also, the

environment response for the the proposed HEGLA-based control scheme is calculated

as the average reward generated so far by the Markov chain. The central bookkeeper

keeps track of cumulative reward and number of transitions and the automata use

this information to calculate the reward values.

5.3 Shapley Recursion

Shapely recursion [47] uses Dynamic Programming in a recursive manner. During

each iteration, an estimated value matrix for every state of the Markov chain is

calculated. The minimax value corresponding to this value matrix is calculated which

is then used in the next iteration. It is proven that the ordering in this value matrix

becomes same as the ordering in the actual game matrix in an asymptotic manner.

Author proves that this algorithm converges to the optimal strategy asymptotically.

Assume that the DZSG consists of N states. We use ∥A∥ to denote the cardinality

of the set A. We use the operator minimax to denote minimax value obtained by the

maximizing player. It is easy to prove that for two matrices X and Y ,

89

∣minmax[X]−minmax[Y]∣ ≤ max
i,j
∣xij − yij∣

Let −→� be the N -dimensional, numeric vector where. For each state s of the

Markov chain, the algorithm calculates a value matrix As(−→�) as

R(s, i, j) +
N∑
l=1

T (s, i, j, l)�l

where i = 1, 2, . . . , ∥A1∥. At the start of the recursion, values in −→� (0) are set arbitrar-

ily. As mentioned earlier, −→� (t) is calculated recursively using a dynamic programming

technique as follows:

−→� s(t) = minmax[As(−→� (t− 1)]

It is shown that the limit of −→� (t) as t → ∞ exists and is independent of −→� (0),

and its components are the optimal values of the stochastic game.

Shapley recursion is a dynamic programming technique which computes optimal

strategy given all the parameters of the game. Thus, Shapely recursion needs com-

plete information about the state of the chain with all the transition and reward

probabilities known at the start of the algorithm. However, for many systems, these

values are not known in advance. Thus there is a need to learn these values dynam-

ically as the algorithm evolves. Also, the computational cost of Shapley recursion

increases dramatically with increase in the number of states of the DZSG. Thus de-

centralization is a desirable characteristic of the algorithm used to control DZSGs.

Towards this end, we propose our novel HEGLA-based algorithm which operates in

a completely decentralized manner.

5.4 HEGLA Based Algorithm for DZSG Control

As described earlier, in HEGLA, a subset of LAs participate in identical-payoff

game while another subset of LAs participate in zero-sum game. We assign one LA

with each agent/player present in the state of the DZSG. Thus one LA is associated

for maximizing (Row) player and one LA is associated with the minimizing (Column)

90

player in every state of the DZSG. The algorithm for learning optimal strategies in

stochastic games is inspired from the Wheeler-Narendra algorithm described in [10].

State1 State2

Max
Player LA Max

Player LA

Min
Player LA

Min
Player LA

Figure 5.3. HEGLA Configuration for DZSG

The HEGLA arrangement for DZSG is described in the Figure (5.3). As de-

picted in the figure, each state of the HEGLA DZSG is inhabited by two learning

automata. One automaton plays the part of the Maximizing or Row player (denoted

by Max Player LA) while the other automata acts as the Minimizing or Column

player(denoted by Min Player LA).

The LAs acting in a state si are not aware of the one-step reward values R(si, A)

resulting from their selected action tuple A ∈ A. The LAs in a state si receive

information about the effect of their selected actions only when the Markov chain

returns to that state. At each state si, we maintain two matrices: REW si(A, T)

stores the cumulative reward obtained for action tuple A ∈ A upto time T and

TIMEsi(A, T) stores time passed since the action tuple A ∈ A was last tried. The

global time is incremented each time a state transition occurs. So the elapsed time

91

essentially indicates the number of state transitions that occurred since this state

si was last visited. We assume that there is a central bookkeeper which provides

following information when the control returns to state si:

1. the cumulative reward generated by the process up to time T .

2. the current global time T .

From these, the algorithm computes ΔT as the elapsed global time since the

current state was last visited and ΔR as the corresponding change in the global

reward. Then we compute

REW si(A, T + 1) = REW si(A, T) + ΔR

and

TIMEsi(A, T + 1) = TIMEsi(A, T) + ΔT

Based on this information, the reward for the maximizing player is calculated as:

�Max = REW si (A,T+1)
TIMEsi (A,T+1)

. The reward for minimizing player is given by: �Min = 1−�Max.

Note that the coordinator merely acts as a bookkeeper and not the decision maker.

All the control functions are performed by the decentralized learning automata.

Both maximizing player and minimizing player LAs update their action probabil-

ities as follows:

pMax/Min(k + 1) = pMax/Min(k) + ��Max/Min(e�j − pMax/Min(k))

where �j is the action chosen by Max (or Min) player and e�j is a unit vector of

appropriate dimension with �j-th component set to unity and all other components

are set to zero.

The maximizing player and the minimizing player acting in every state are play-

ing a zero-sum game with each other. However, using the same argument given by

Wheeler-Narendra in [10], it is evident that all the maximizing player from all the

states of the Markov chain form a logical team which is engaged in an identical payoff

92

game. Similarly, all the minimizing players from all the states form a logical group

which participate in an identical payoff game. Thus we can formulate the resultant

stochastic game as a game of zero-sum game between two teams of LAs. One team is

composed of maximizing players from all the states of the Markov chain. The other

team is composed of all the minimizing players from all the states of the Markov

chain. These two teams form two virtual superautomata who play a zero-sum game

between themselves. Thus the system of DZSG can be modeled as a heterogeneous

game of LAs.

Figure 5.4. HEGLA Interaction in DZSG

Figure (5.4) depicts how learning automata that participate in a DZSG behave

in a HEGLA-manner. The Max player learning automaton (denoted by the black

circle) and the Min player learning automaton (denoted by the while circle) within

each state participate in a zero-sum game among themselves (denoted by the dotted,

two-way arrrow). However, the Max players across all the states for a team such

that all the Max players are involved in an identical-payoff game. This is indicated

by a solid arrow line that connect all the Max players (black circles) in the system.

Similarly, all the Min player learning automata are involved in an identical-payoff

game. Thus we have teams of automata who are involved in identical-payoff game

93

and teams of automata who are involved in a zero-sum game. Thus the system of

learning automata that control the DZSG form a HEGLA configuration.

We now prove that the configurations of LAs proposed in this heterogeneous game

algorithm will converge to the optimal policy for a given DZSG. Let Mk
i indicate the

LA associated with each agent i (Max-player and Min-player) in the state k. Let Aki

be the corresponding action set. Then Γ = (N,Ak, J(�k)) denotes a finite, zero-sum

game among Mk
1 and Mk

2 in which the play Ak = Ak1×Ak2 results in the payoff J(Ak),

where J(Ak) is given by Shapley as

J(Ak) = Rk(Ak) +
∑
l

T (k,Ak, l)Πl

where Πl represents the limiting reward values. We first state and prove some neces-

sary lemmas.

Lemma 1. Γ has a unique equilibrium.

Proof: Follows directly from Theorems 1 and 2 of Shapley.

Here, we assume that the unique equilibrium exists in pure strategies. The proof

and the algorithm works for the DZSGs where the saddle point exists in pure strate-

gies.

Lemma 2. Saddle point in Γ represents optimal policy for the control of the

zero-sum Markov chain.

Proof: We represent the controlled Markov chain using a game Γ, which is shown

to have a unique equilibrium. We further assume that the equilibrium exists in pure

strategies. If Γ were an automata game, then players using LR−I learning scheme

would be �-optimal (based on [48], Theorem on Page 4). Thus each automata team

acting within the state will converge to the saddle point of the game matrix Dk.

However, a payoff in Γ is obtained asymptotically by using a fixed policy. Thus at

each time step n, the Γ is approximated by Γ(n). Since each decision maker uses LR−I

updating procedure, Γ becomes a limiting game Γ = limn→∞ Γ(n). The elements of

Γ(n), dk(Ak, n) = E[�(n)∣�(n) = Ak], depend on n. Thus the Zero-Sum Markov chain

updating is not the same as the updating in the zero-sum automata game described

94

in Lakshmivarahan-Narendra [48]. However, since we assume that the Markov chain

is ergodic, it follows that for a sufficiently large n, the ordering among the dk(Ak, n)

will be identical to that among the J(Ak) in Γ. Therefore, it is sufficient to analyze

the automata game Γ.

Based on these two leamms, the main result can be stated as follows.

Theorem 1. Let an automaton Mk
i using LR−I learning scheme, having Aki

actions, be associated with each agent of an N -state DZSG. If the chain is ergodic,

then for any � > 0, there exists an 0 < �∗ < 1 such that for any � < �∗ in LR−I

learning scheme, limn→∞ > J(Ak)− �.

Proof: The proof follows immediately from lemma 1 and lemma 2.

5.5 Adaptive Shapley Recursion

The idea behind indirect adaptive methods is to estimate the unknown model

parameters based on the data obtained during the execution of the model. For the

DZSGs, the task is to estimate unknown transition and reward probabilities based

on the history of transitions and immediate costs observed as the Markov chain goes

through various transitions. The Adaptive Shapley Recursion (ASR) algorithm for

learning the optimal strategies for a DZSG proceeds as follows. To initialize, the

estimated model parameters of the DZSG are set to arbitrary values. At each time

step t during the execution of the algorithm, we use Shapley recursion algorithm to

determine optimal action values based on the latest estimated parameter values of

the DZSG. Using certainty equivalence principle, we assume this to be optimal action

of the DZSG and execute that action. The information obtained during the execution

(reward values, action taken during transition etc.) of this action is further used to

update the estimates of the model parameter and this process repeats.

The action based on certainty equivalence principle appears to be best based

on information obtained upto time t and hence it is pursued. However, since the

estimated model at time t may not be the same as actual model parameter values

95

we are trying to estimate, we must occasionally also pursue actions that are different

from the one given by the certainty equivalence principle. A simple way of doing it

is by using randomized policies where actions are selected according to a probability

distribution. We use �-greedy action selection technique. Thus with probability �, we

select the optimal action as suggested by Shapley recursion and we select some other

random action with probability 1 − �. The objective of this strategy is to achieve a

balance between exploration and optimization.

Following description explain the proposed ASR algorithm for learning optimal

control policy for a DZSG.

1. For each state of the DZSG Markov chain, we estimate the state transition

probabilities and reward values based on the past experience of state-transitions

and rewards observed by the agents acting in that state. Let nk(si, sj, alm)

represents the number of transitions observed from state si to state sj until

time step k when action tuple alm was chosen. Then we calculate the total

number of times the action alm was executed in state si as follows:

Nk(si, alm) =
∑
sj∈S

nk(si, sj, alm)

From this, the transition probabilities at step k are estimated as follows:

P̂k(si, sj, alm) =
nk(si, sj, alm)

N(si, alm)

2. On the basis of the rewards obtained for every transition, transition rewards

estimates R̂k(si, sj, alm) can be directly determined.

3. On the basis of the model parameters estimated at time step k (namely P̂k(si, sj, alm)

and R̂k(si, sj, alm) time, we then execute Shapley recursion to obtain the optimal

policy for given configuration of model parameters.

4. Once the Shapley recursion algorithm has converged, we use �-greedy technique

to choose an action tuple asil′m′ in current state si.

96

5. Based on the selected action tuple, the DZSG estimate parameters (namely P̂

and R̂) are updated as explained in step 1 and the process repeats.

5.6 Minimax-TD

Temporal Difference (TD) learning combines the dynamic programming method-

ology with Monte Carlo paradigm. Like Monte Carlo methods, TD methods learn

directly from online experience without a model of the dynamics of the environment.

Like dynamic programming, temporal difference method updates estimates of the

current state based on the previously learned estimates which are calculated during

previous states of the system evolution. We propose a Temporal Difference (TD)

algorithm to control the DZSG. It is called as Minimax-TD algorithm. Minimax-

TD uses action tuples for the indices of the Q-matrix. The action tuple selection is

done by calculating the minimax value in the Q-matrix. The Minimax-TD algorithm

proceeds as follows:

1. Initialize Q(s, �s1, �
s
2) arbitrarily ∀s ∈ N and ∀� ∈ A1 × A2.

2. Arbitrarily select the starting state curr ∈ N and call it the current state.

3. Repeat forever

(a) Select (�t1, �
t
2) by performing minmax(Q(curr)). Then select �curr1 and

�curr2 by using �-greedy technique.

(b) Based on action tuple (�curr1 , �curr2), transition to state next ∈ N and

observe the reward r.

(c) Select (�t
′

1 , �
t′
2) by performing minmax(Q(next)). Then select �next1 and

�next2 by using �-greedy technique.

97

(d) Calculate

Q(curr, �curr1 , �curr2) = Q(curr, �curr1 , �curr2)

+�[r +Q(next, �next1 , �next2)−Q(c, �curr1 , �curr2)]

(e) Set curr = next and goto step 1.

Minimax-TD algorithm is analogous to the SARSA-TD algorithm [1] for the con-

trol of a single agent Markov chain with minimax operator used in conjunction with

�-greedy technique for action selection.

5.7 Simulation Results

In this section, we will present simulation results for different algorithms discussed

in this chapters. Here is a brief overview of various algorithms that will be discussed

in this section.

1. HEGLA Based Algorithm: First algorithm is a learning automata based al-

gorithm where all the learning automata in the DZSG participate in a HEGLA.

Under this configuration, we represent each of the agents present in each state

with a LA and use LR−I for updating action probabilities. If there are N states

in the DZSG, then there will be N × 2 LAs. The learning within each state

is completely decentralized as automata with a state and across the states do

not share any information with each other. Also, all the automata make action

selections in an autonomous manner.

2. Adaptive Shapley Recursion (ASR) Algorithm: The adaptive Shapley

recursion algorithm learns the parameters of the DZSG (namely the transition

and reward probabilities) and further improves these learned estimates using a

dynamic programming algorithm (namely Shapley recursion).

98

3. TD Based (Minimax-TD) Algorithm: The Q-values are updated using a

TD-style equation. The action selection is done based on the minimax value in

the Q-matrix.

We simulated these algorithms on a 2-state DZSG. Suppose the states of the DZSG

are numbered 1 and 2 and the actions for each agent are also numbered 1 and 2. The

transition probabilities of the DZSG are summarized below:

t1 = {[1, {1, 1}] = 0.5; [2, {1, 1}] = 0.5; [1, {1, 2}] = 0.5; [2, {1, 2}] = 0.5;

[1, {2, 1}] = 0.5; [2, {2, 1}] = 0.5; [1, {2, 2}] = 0.5; [2, {2, 2}] = 0.5}

t2 = {[1, {1, 1}] = 0.5; [2, {1, 1}] = 0.5; [1, {1, 2}] = 0.5; [2, {1, 2}] = 0.5;

[1, {2, 1}] = 0.5; [2, {2, 1}] = 0.5; [1, {2, 2}] = 0.5; [2, {2, 2}] = 0.5}

Here ti represent transition function for the i-th state of the Markov chain. The

entry ti = [j, {k, l}] gives the transition probability for the transition from state i to

state j when the action tuple {k, l} is selected (i.e. when one LA selects action k and

the other selects action l).

The reward probabilities are as follows:

r1 = {[{1, 1}] = 0.1; [{1, 2}] = 0.2; [{2, 1}] = 0.3; [{2, 2}] = 0.4; }

r2 = {[{1, 1}] = 0.5; [{1, 2}] = 0.6; [{2, 1}] = 0.7; [{2, 2}] = 0.8; }

Here ri represent reward function for the i-th state of the Markov chain. The

entry ri = [{k, l}] gives the reward probability for the state i when the action tuple

{k, l} is selected (i.e. when one LA selects action k and the other selects action l).

The action tuple {2, 1, 2, 1} is the optimal action tuple for this particular DZSG.

There are four agents in the system (two states and two agents per state means

99

2 × 2 = 4 agents). First two actions of the optimal action tuple give the optimal

actions for the first two agents in state 1 and the last two correspond to the two

agents in state 2.

For the HEGLA-based DZSG control algorithm, the convergence value was set as

0.95. Whenever action probability value of any action belonging to a LA reaches 0.95,

that automaton is termed as converged. If a system has multiple learning automata

(as is the case with the heterogeneous game algorithm presented in this paper), when

all the individual automaton in the system converge, the whole system is regarded as

a converged system and the algorithm execution stops. In the Figures (5.5) and (5.6),

we show the evolution of action probabilities of the Maximum (Row) and Minimum

(Column) automaton that reside in the first state of the DZSG. As indicated in the

figure, the Row player converges to action 2 and Column player converges to action 1.

These are the optimal policies for these two player. This demonstrates the stochastic

and temporal behavior of the LA based DZSG control algorithm.

0 2000 4000 6000 8000

0.
0

0.
4

0.
8

Max Player − State 1

Iteration

Action 1
Action 2

Figure 5.5. Evolution of Action Probabilities for the Maximum (Row)
Automaton In A 2-state DZSG

100

0 2000 4000 6000 8000

0.
0

0.
4

0.
8

Min Player − State 1

Iteration

Action 1
Action 2

Figure 5.6. Evolution of Action Probabilities for the Minimum (Col-
umn) Automaton In A 2-state DZSG

For the Minimax-TD algorithm, the Figure (5.7) demonstrates the behavior of

the Q values of the for the agents in the first state of the DZSG. The figure depicts

the variation in Q-values for a 4000 iteration size window during the execution of the

algorithm. As it is evident from the figure, the Q-value for action {2, 1} represent the

minimax value in the matrix formed by the four action tuples. Thus the algorithm

will select the {2, 1} action tuple for the control of the DZSG.

Figure (5.8.a) depicts the temporal behavior of Shapley recursion algorithm. We

plot A matrix (value matrix) for a 4000 iteration size window. As demonstrated in

the figure, all the matrix values always increase monotonically over the execution of

the algorithm. Although it appears that all the matrix values are superimposed on a

single line, actually very small differences exist between the individual values in the

matrix. However, these differences have much lower resolution that then resolution

of the vertical axis. However, the minimax value in the A matrix always resides in

the entry {2, 1}.

101

100000 101000 102000 103000 104000

−
2

2
4

6
8

Q Values

Iteration

Q[1][1]
Q[1][2]
Q[2][1]
Q[2][2]

Figure 5.7. Evolution of Action Probabilities for the Minimum (Col-
umn) Automaton In A 2-state DZSG

100000 101000 102000 103000 104000

33
40

0
34

00
0

34
60

0

A Matrix Values

Iteration

A[1][1]
A[1][2]
A[2][1]
A[2][2]

100005 100010 100015

33
33

5
33

33
8

A Matrix Values

Iteration

A[1][1]
A[1][2]
A[2][1]
A[2][2]

(a) (b)

Figure 5.8. The value matrix (A matrix) entries for the Shapley recur-
sion. (a) and (b) show these values at different scales and resolution.

Figure (5.8.b) shows the behavior of the Shapley recursion algorithm for the first

20 iterations. As demonstrated in the figure, all the matrix values always increase

monotonically over the execution of the algorithm. However, at this scale and resolu-

tion, we can clearly see how the individual A matrix (value matrix) entries are ordered

102

with respect to each other. It is clear that the minimax value in the A matrix resides

in the entry {2, 1}.

These simulations show that the HEGLA approach is applicable to DZSG where

optimal control policy exists in the pure strategies. If the optimal policies exist in

mixed strategies, other learning automata algorithms (e.g. LR−P algorithm or some

modification of LR−I algorithm) might be useful. However, this particular issue needs

more investigation. The TD-minimax algorithm uses the minimax operator which

finds optimal policies in pure strategies. However, it will be straightforward to extend

this technique to include cases where optimal policy exists in mixed strategies. We

can use linear programming technique used in [11] for learning mixed strategies under

TD-minimax formalism. The use of linear programming in learning algorithm can

lead to large computational complexity and thus slow convergence speed. However, it

might be possible to use approximate algorithms to find linear solutions which might

be sufficient to obtain optimal convergence. In the next chapter, we describe some

applications of the decentralized learning methods using the DPLA.

103

6 APPLICATIONS OF DECENTRALIZED PURSUIT LEARNING

ALGORITHM

In this chapter, we will describe a framework for solving computationally hard, dis-

tributed function optimization problems using reinforcement learning techniques. In

particular, we model a function optimization problem as an identical-payoff game

played by a team of learning automata. The team performs a stochastic search

through the domain space of the parameters of the function. We use the novel De-

centralized Pursuit Learning Automata (DPLA) game algorithm. We describe a for-

mulation of the NP-Hard sensor subset selection problem and watershed management

problem as an identical-payoff game of learning automata. We then apply the DPLA

algorithm to compute optimal solutions for these problems, thus demonstrating the

viability of the DPLA.

6.1 Function Optimization Using Decentralized Pursuit Algorithm

In this section, we describe a generic procedure for learning the parameter values

that maximize a given function [49]. The procedure given here is based on the one

described in [20]. Assume a function Y = f(X1, X2, . . . , XN). We will assume that

each parameter {Xi,∀i} can have real values (Xi ∈ ℝ,∀i). Assume that each param-

eter {Xi, 1 ≤ i ≤ N} can take values from range Ri
min and Ri

max (Xi ∈ [Ri
min, R

i
max]).

Each parameter range is divided into si number of subranges. Each such subrange

j of parameter Xi will be represented by its midpoint midij. So each parameter Xi

will be represented by a si-tuple M i = {midi1,midi2, . . . ,midisi}. Thus the parameters

can be discretized to a desired level of granularity and this discretization will be used

to map the function optimization problem onto the framework of decentralized and

partially decentralized game of learning automata.

104

Using the discretized parameter space, each parameter X i is represented by a

learning automata Ai running pursuit algorithm. Assign M i to be the action set of

automaton Ai. All the initial action probabilities are set to P i
j = 1

si
. Each automaton

Ai selects an action by sampling its action probability vector P i. The selected action

P i
is corresponds to choosing a particular value midiis from the M i vector. Then the en-

tries of the game matrix are calculated as: D1s2s...Ns = S(f(mid1
1s ,mid

2
2s , . . . ,mid

N
Ns)),

where S is a Sigmoid function. By sampling from this distribution, the payoff � for all

the automata in the team is determined. A suitable value can be used as the threshold

for convergence. When one of the action probabilities in the action probability vector

of an automaton reaches the threshold value, it is considered that the automaton has

converged to that action. When all the automata in the team converge to a particular

action, then the entire team converges to the corresponding action tuple.

Environment

f(X1, X2, X3, X4)
A1

A2

A3

A4

X1

X2

X3

X4

Figure 6.1. Function Optimization Using DPLA

105

Figure (6.1) describes the proposed arrangement. It describe a function Y =

f(X1, X2, X3, X4) which has four parameters. As shown in the figure, each parameter

is assigned to one learning automata. Each LA runs DPLA and thus acts in a decen-

tralized and autonomous manner. Each parameter is divided into different number of

ranges (for instance, parameter X1 is divided into four section while parameter X4 is

not divided into any subsections. Each action of the learning automata is associated

with one particular subrange of the associated parameter. The automata team makes

an action tuple selection in a stochastic manner. This forms a parameter vector which

is then evaluated by the environment. The environment gives a feedback for the cho-

sen parameter vector. This feedback is used by the automata team to update the

action probabilities and learn the optimal parameter vector.

6.2 Optimal Sensor Subset Selection

The problem of selecting a subset of sensors in a distributed object tracking envi-

ronment that optimizes an objective function consisting of a trade-off between data

accuracy and energy consumption is known to be NP-hard. Many sensor selection

algorithms proposed in the literature [50], [51], [52], [53] perform their analysis

off-line and on a static and completely known sensor configuration. Coverage is con-

sidered as primary criteria and sensors are divided in subsets so that entire space is

always covered by a suitable set of sensors. The problem is exacerbated because of the

uncertainty and dynamic nature of either sensor characteristics or the environment

or both. We propose, for the first time, a novel framework based on a reinforcement

learning approach, to deal with the problems of computational complexity, dynamic

nature and uncertainty for sensor subset selection [54]. Our proposed sensor subset

selection approach is completely decentralized and sensors do not need to know even

the presence of other sensors in the system. This makes our approach extremely scal-

able and easy to implement in a distributed system. To the best of our knowledge,

106

this is the first application of reinforcement learning to the domain of sensor subset

selection.

6.2.1 Problem Description

Distributed object tracking in a multi-sensor environment is an important techno-

logical problem that is used for the design of various security, computer-aided surgery,

and business traffic monitoring applications. In a distributed object tracking system,

multiple, geographically dispersed sensors collaborate with each other to determine

the position and other state variables of an object over time. However, the problem of

integrating the data generated by a team of such sensors to reconstruct the state tra-

jectory of an object is exacerbated by the presence of uncertainty concerning sensor

characteristics as well as the dynamic nature of the state of the target object.

If the sensor infrastructure is static with known sensor characteristics, such a

system can be hand-designed and the sensor subset selection problem can be solved a

priori for each instance of the problem to minimize the objective function. However,

in the real-world, there is usually a considerable amount of uncertainty concerning

sensor characteristics such as errors and energy consumption and these properties are

dynamic in nature. In such cases, the sensor selection problem needs to be solved on-

line in a dynamic manner to account for uncertainties. We propose a framework which,

for the first time, uses a reinforcement machine learning approach to decide which

sensors are to be turned on or off for a given object state in a decentralized manner.

The measurements generated by the selected subset of sensors, will subsequently be

combined or fused to achieve object tracking. We will investigate and use different

algorithms for selecting optimal subset of sensors and compare the performance of

these algorithms.

We use a Federated Kalman Filter approach [55] for sensor data fusion where a

separate Kalman Filter is assigned for each sensor and a Master Filter is then used

to combine the observations of the multiple Kalman Filters. The advantage of the

107

federated Kalman Filter approach is that sensors can be modeled as autonomous local

filters and need not know the presence of other sensors in the system. Once the Master

Filter generates an overall combined error covariance, this error covariance, along with

actual energy consumption can be used to generate a reinforcement signal based on

the objective function for the sensor subset selection problem. These reinforcements

can be used by individual reinforcement learners in sensors to update their strategies

concerning whether to turn themselves on or off in a dynamic and adaptive manner.

We assume that the our reinforcement learning code will be embedded in sensor

software making each sensor intelligent and adaptive to the uncertainties and dynamic

nature of the environment. This will help in the development of the next generation

of distributed object tracking systems which will be able to deal with dynamic, and

uncertain environments.

6.2.2 Techniques/Algorithms for Sensor Selection

The general sensor subset selection problem has been shown to be NP-Hard [56].

Many sensor selection algorithms proposed in literature perform their analysis off-line

and on a static and completely known sensor configuration. Coverage is considered

as primary criteria and sensors are divided in subsets so that entire space is always

covered by a suitable set of sensors. In [50], the sensor nodes are divided into sets,

such that each set is capable of providing complete coverage of the field and only

one set is active at a time. This problem is formulated as a generalized maximum

flow graph and an optimal solution is found through linear programming (LP). [51]

solves the same problem but here sets are scheduled in a round-robin order and

the focus is on the problem of finding the maximum number of disjoint sets. The

problem is transformed into a max-flow problem, which is formulated as a Mixed

Integer Programming (MIP) instance. The output of the MIP is used to compute the

disjoint set covers in polynomial time. In [52], full coverage with minimal sensors

is obtained by identifying the redundant sensors and turning them off. Identification

108

of redundant sensors is done using Voronoi diagrams [57]. In [53], the authors aim

to provide k-coverage, which means that every point in the field is covered by at

least k sensors. The sensors are turned on one by one in a greedy fashion, with the

sensor with most contribution turning on first, then the next one, and so on. The

contribution is computed based on the probability of detection of an event by that

sensor within its sensing area. [58] provides a self-scheduling scheme, in which time of

operation is the only parameter in the selection process. Here, the nodes dynamically

schedule themselves while guaranteeing a certain degree of coverage. The sensors

are time-synchronized, and each sensor generates a random reference time which is

exchanged with its neighbors. Each sensor then establishes its sleep-awake cycle by

observing the reference time of its neighbors. As mentioned earlier, these algorithms

are centralized and are off-line in nature and require the knowledge of entire sensor

configuration in order to make sensor selection. Our proposed reinforcement learning

based algorithm (described next) on the other hand, is an on-line and decentralized

algorithm.

There are some sensor selection approaches that use Entropy as criteria for sensor

selection. Entropy refers to a measure of uncertainty. The lesser the entropy of some

measurement, the more we can be certain of its accuracy. In [59], the authors use

the mutual information about the future state and the current node measurement to

determine the information gain of the different sensors. A greedy approach is used

to solve the sensor selection problem for target localization and tracking. The goal

here is to reach the required entropy level without using more sensors than necessary.

In [60], given a prior probability distribution of the target location and the locations

and sensing models of a set of sensors, an informative sensor is selected such that the

collection of the selected sensor observation with the prior target location distribution

results in the greatest reduction in uncertainty. The proposed heuristic adds one

sensor at a time to reduce the entropy of the target location distribution. Both these

approaches are centralized in nature, are computationally-intensive and consider only

one criteria for sensor selection. Our reinforcement learning approach on the other

109

hand is decentralized in nature and we consider various trade-off while making sensor

selection.

6.2.3 Distributed Tracking System Setup

Object

Master Filter
Module (Base
Station)

Figure 6.2. A Distributed Object Tracking System

The setup of a typical vision-based distributed object tracking system is shown in

Figure (6.2). The object to be monitored roams around in a space which is covered

by a group of cameras (representing the sensors in our system). We assume that

the cameras are placed so that the entire space is covered by the cameras. So the

object is continuously tracked by at least one camera while it moves around. The

set of cameras tracking the object may change but at least one camera always tracks

the object. The object has an attached bar-code like marker which helps the camera

110

to identify and calculate the position information of the object. Each camera is

attached to a processing unit which can process the image generated by the camera

to identify the marker and then use appropriate mathematical technique to generate

the position information of the marker (and hence the object). Each camera (that

can see the marker), then sends this information to a central module (also called the

base station). The central module combines the reading received by all the sensors

to generate the resultant position data of the object.

However, there are many errors that are introduced in the position data generated

by the camera. They can be due to projection or image noise, to name a few. The

error typically depends on the distance of the object from the camera. The farther

away the object, greater is the error generated by the camera for its position. Hence

we need a mechanism to model these errors. We use Kalman filter [61, 62]as the

tool to model these errors in a Gaussian estimation framework and generate error

covariance values using equations of the Kalman filter. Each sensor(camera) runs

a local Kalman filter to produce object position data with the corresponding error

covariance. This position data with corresponding error covariance is then sent to the

base station for fusion. We use Federated Kalman Filter architecture [55] for data

fusion. This architecture allows each sensor to operate in a completely decentralized

manner. Since we do not know the set of cameras that can track the object in advance

and since this set changes with time, it is not possible to design a centralized Kalman

filter framework. The decentralized nature of Federated kalman filter allows us to

deal with dynamicness of the system in an efficient manner. Figure (6.3) shows the

sensor architecture utilizing the Federated Kalman filter framework.

Each camera runs its own local Kalman filter. The local Kalman filter runs in

the Information mode [55]. This is an alternate form of Kalman filter which calcu-

lates value of information (inverse of error) associated with each sensor reading. The

Master Filter combines these individual information matrices to produce resultant

information matrix. The inverse of the resultant information matrix gives the re-

111

Local
Kalman
Filter 1

Local
Kalman
Filter 2

Local
Kalman
Filter N

Master
Filter

Measurement Z1

Measurement Z2

Measurement ZN

Master
Filter
Estimate

Figure 6.3. Federated Kalman Filter

sultant error covariance matrix P . We briefly describe the Kalman filter running in

Information mode. We use following terms in the equations:

∙ xk = (n× 1) process state vector at time tk.

∙ 'k = (n× n) matrix relating xk to xk+1 i.e. state transition function.

∙ wk = (n×1) vector - process noise - assumed to be white Gaussian with known

covariance Q.

∙ zk = (m× 1) vector measurement at time tk.

∙ Hk = (m× n) is the measurement matrix.

∙ vk = (m× 1) vector - measurement noise - assumed to be white Gaussian with

known covariance R.

112

∙ Pk = (n× n) Error covariance matrix for state variables.

The a priori estimates of a vector v are denoted as v̂−k , where ’hat’ denotes the

estimate and the super-minus is a reminder that this is the best estimate prior to

incorporating the knowledge at tk.

The recursive form of Kalman filter in information mode is given by:

1. Enter loop with (P−k)−1 and x̂−k .

2. Compute P−1
k from P−1

k = (P−k)−1 +HT
k R
−1
k Hk and invert to get Pk.

3. Compute Kalman gain Kk = PkH
T
k R
−1
k .

4. Update estimate: x̂k = x̂−k +Kk(zk −Hkx̂
−
k).

5. Project ahead: x̂−k+1 = 'kx̂k and P−k+1 = 'Pk'
T
k +Qk and invert to get P−k+1.

6. Go to step 2.

Now the Federated Kalman filter in informatiom mode operates as follows:

Local sensor filter 1:

P−1
1 = (P−1)−1 +HT

1 R
−1
1 H1

x̂1 = P1((P−1)−1x̂−1 +HT
1 R
−1
1 z1)

Local sensor filter 2:

P−1
2 = (P−2)−1 +HT

2 R
−1
2 H2

x̂2 = P2((P−2)−1x̂−2 +HT
2 R
−1
2 z2)

Local sensor filter N:

P−1
N = (P−N)−1 +HT

NR
−1
N HN

x̂N = PN((P−N)−1x̂−N +HT
NR

−1
N zN)

113

At the Master filter, the optimal global estimate and associated error covariance

are calculated as follows:

P−1 = (P−1
1 −M−1

1) + . . .+ (P−1
N −M

−1
N) + (P−)−1

x̂ = P [(P−1
1 x̂1 − (P−1)−1x̂−1) + . . .+ (P−1

N x̂N − (P−N)−1x̂−N) + (P−)−1x̂−]

This resultant error covariance will be used to calculate the total reinforcement

given to the automata by the environment (explained later).

6.2.4 Proposed Solution

In a distributed object tracking system, cameras track an object moving in the

environment and generate object position data. So for distributed object tracking

system, we formulate the sensor selection problem as follows [54]: Given a set of

sensors C = {C1, C2, . . . , Cn}, determine the subset C ′ ∈ C which optimizes an

objective function consisting of a trade-off among accuracy and energy consumption.

The objective function describes two conflicting goals: (1) to produce position data

of high accuracy and (2) to conserve energy. This trade-off is usually modeled using

the notions of utility and cost.

1. Utility: Accuracy of the information generated by each camera.

2. Energy Cost: the energy expended by the camera to send this information to

the base station. Typically, this is directly proportional to the distance of the

camera from the base station.

This sensor subset selection problem is NP-Hard [56]. This means that there is

no solution that can run in polynomial time (in number of sensors). This is clearly

not desirable for on-line implementation, especially in a network with large number

of sensors. Hence, approximate and heuristic methods are necessary to solve this

problem in tractable time. We propose a novel reinforcement learning approach (using

114

the decentralized pursuit learning game algorithm described earlier))to solve this

problem.

The optimal sensor subset selection will be governed by an optimization function

ℱC(A) where C is the set of sensors and A is the set of action tuple selected by these

sensors (explained later). The function ℱC(A) is composed of two parts and is of the

form:

ℱC(A) = WError ∗ ℱCError(A) +WEnergy ∗ ℱCEnergy(A) (6.1)

where WError +WEnergy = 1

Here, WError specifies the importance associated with the error in object location

and WEnergy specifies the importance associated with the energy used by the sensors to

send this data to the central module for fusion. By specifying these weight values, one

can specify the tradeoff associated. If WError > WEnergy, then accuracy of the data

generated by the sensors will play a dominant role in selection whereas if WEnergy >

WError, then sensors who spend less energy to send their data to the central module

will be preferred. By tuning these weight parameters appropriately, the tradeoff

between energy and error can be effectively expressed. The job of the reinforcement

learning algorithm is then to learn the action tuple Aopt (i.e. to learn which sensors

need to turn themselves on and which need to turn themselves off)so that the function

ℱC(A) attains its optimum value. We map this problem on the framework of game-

playing learning automata so that the outcome of the game will represent the optimum

configuration for the given value of weight parameters.

Each sensor (camera) in the system is represented by a learning automaton. A

sensor can perform two actions and these actions represent the action set of the

automaton. These actions are: ON and OFF. In our object tracking scenario, the

sensors that can track the object at current instant form a team of automata and

participate in the cooperative game to converge to a configuration which optimizes the

115

tradeoff function ℱC . During each trial, each automaton selects an action by sampling

its action probability vector. The set of actions selected by all the automata forms an

action tuple for current trial. Then based on the response from the environment, the

automaton updates its action probability vector. We test the performance of LR−I-

Game Algorithm, Centralized Pursuit Game algorithm and Decentralized Pursuit

Game algorithm in this scenario. When the automata selects the action ON, the

corresponding sensor sends the object location data to the central module and hence

pays the energy cost of sending the data. When the selected action is OFF, the

corresponding sensor remains idle and doesn’t send any data to the central module.

The central module is the Master filter in Federated Kalman filter configuration

[55]. Each sensor runs its own local Kalman filter. The local Kalman filter runs in

the in the Information mode [55, 61, 62]. This is an alternate form of Kalman filter

which calculates value of information (inverse of error) associated with each sensor

reading. The Master Filter combines these individual information matrices to produce

resultant information matrix. The inverse of the resultant information matrix gives

the resultant error covariance matrix P . Ideally, one would like to combine the data

from all the sensors thus increasing the information and reducing the resultant error

covariance matrix as much as possible. However, not all the data arrives at the Master

filter with the same energy cost. The sensors closer to the filter will expend less energy

in sending the object location data to the Master filter than one which is far away.

Thus one may prefer a slightly less accurate data at the cost of saving energy or one

may opt for more accuracy at the cost of spending more energy to collect this data

at the Master filter. As mentioned earlier, this tradeoff is expressed by the values of

weight parameters WEnergy and WError. As stated earlier, there will be a particular

action tuple Aopt which will optimize the value of ℱC and we use a reinforcement

learning approach to deduce this configuration.

We calculate trace of the error covariance matrix (trace(P)) and use that value as

the criteria for comparison. The less the trace(P) value, less is the error covariance

and thus better the object position data. As stated earlier, whenever a sensor sends

116

the object location data to the Master filter for fusion, it spends some energy for data

transmission. Thus when the sensor is in ON mode and sends data to the Master

filter, its energy expenditure will be tracked by environment. We use the model in

[63] to model the energy expenditure of the sensor. According to this model, the

energy expenditure is proportional to the square of the distance between the sensor

and the central module. The energy expenditure will be combined along with the

trace value of error covariance matrix to produce a common payoff to all the sensor

automata. A Sigmoid function is used to map the energy expenditure and error

covariance values to the [0, 1] interval so that they can be used in the reinforcement

learning framework.

Suppose C(k) = {C1, C2, . . . , CN} be the set of sensors who can track the object

at time instant k. Also assume that their distances from the base station at time

instant k are D = {D1, D2, . . . , DN}. The corresponding location data produced by

each sensor is given by X(k) = {X1, X2, . . . , XN} and the associated information

matrix set is I(k) = {I1, I2, . . . , IN}. The actions chosen by the sensors for the

ntℎ trial of the learning algorithm are A(k)(n) = {A1(n), A2(n), . . . , AN(n)}. We

associate a value of 1 with action ON and a value 0 with action OFF. Now we define

ℱEnergy(A(k)(n)) and ℱError(A(k)(n)) as follows:

ℱEnergy(A(k)(n)) = S(
N∑
i=1

Ai(n)×D2
i) (6.2)

ℱError(A(k)(n)) = S(Trace(Inverse(
N∑
i=1

Ai(n)× Ii))) (6.3)

where S is the Sigmoid function and Inverse(M) and Trace(M) are functions

that calculate the inverse and trace value of a matrix M respectively. Using the

values of equations (6.2) and (6.3) in equation (6.1), we obtain the penalty probability

associated with the action tuple A(k)(n). Thus (1−ℱC(A(k)(n))) gives us the reward

associated with this action tuple. This is the entry we use in the game matrix which

117

decides the probability of the reward returned to the sensors by the environment in

the form of common payoff.

6.2.5 Results

(a) (b) (c)

Figure 6.4. CPLA : Step Size = 0.05: (a) Energy (b) Error (c) Energy + Error

(a) (b) (c)

Figure 6.5. CPLA : Step Size = 0.09 (a) Energy (b) Error (c) Energy + Error

For analyzing the convergence properties of various learning algorithms in game

scenario, we tested their performance for a simulated system consisting of 10 cameras

tracking an object. Figures (6.4 - 6.9) show the results of our experiments. Each algo-

rithm was tested against a random selection game algorithm in which each automata

selects one action at random from its set of action and rest of the game algorithm

remains same. This random selection game algorithm provides a benchmark to test

other learning based game algorithms. In order to be deemed useful, these learning

algorithms must perform significantly better than the random selection algorithm.

118

(a) (b) (c)

Figure 6.6. LR−I Learning Game : Step Size = 0.05 (a) Energy (b)
Error (c) Energy + Error

(a) (b) (c)

Figure 6.7. LR−I Learning Game : Step Size = 0.09 (a) Energy (b)
Error (c) Energy + Error

(a) (b) (c)

Figure 6.8. DPLA : Step Size = 0.05 (a) Energy (b) Error (c) Energy + Error

The figures show execution of the game algorithm until all the automata converge to

one particular action from their action set. We use a value of 0.9 as the threshold for

convergence. When one of the action probabilities in the action probability vector of

an automaton reaches a value of 0.9, it is considered that automaton has converged

119

(a) (b) (c)

Figure 6.9. DPLA : Step Size = 0.09 (a) Energy (b) Error (c) Energy + Error

to that action. When all the automata in the team reach this state, then the entire

team converges to the corresponding action tuple. Each algorithm was run 50 times

and graphs show the average of the values obtained over these 50 runs. The graphs

show the execution of various game algorithms till the team of 10 automata converges

to the optimum value of the tradeoff function ℱC(A).

As demonstrated by the graphs in Figures (6.4) and (6.9), the Centralized Pursuit

algorithm causes the cameras to converge to the optimal action tuple but requires

a large number of iterations. The number of iterations will increase with increase

in number of cameras. Even at a modest number of 10 cameras, the centralized

pursuit algorithm takes a long time for the automata team to converge which makes

it unsuitable for an application like distributed object tracking where fast convergence

is necessary.

Figures (6.6) and (6.7) show the performance of LR−I game algorithm. The LR−I

game algorithm achieves much faster convergence than centralized pursuit algorithm

but it doesn’t always converge to the globally optimal action. Instead, it may converge

to a Nash mode of the game matrix and we get a locally optimal solution as indicated

by the graph. However, this solution is a reasonable approximation of globally optimal

solution.

Figures (6.8) and (6.9) show the performance of the proposed Decentralized Pur-

suit Game algorithm. As the graphs indicate, by using Decentralized Pursuit Game

algorithm, the automaton team converges to an optimal configuration much quicker

120

than the other two algorithms. The speed increase is almost ten times over LR−I

algorithm and almost hundred times over the Centralized Pursuit algorithm.

We also measured the total energy expenditure by the team of cameras to converge

to optimal tuple value. This energy expenditure is represented by the area under the

curve of function ℱEnergy(A(k)(n)) (
∫
ℱEnergy(A(k)(n)) dℱEnergy). We calculated the

average energy expenditure by automata team over a run of 50 experiments while

using different game algorithms to reach convergence and different values for the step

size (denoted by a). The algorithm which causes the least amount of energy to be

used for convergence will be the preferred algorithm for resource constrained devices.

In another set of experiments, we measured the average error incurred by the team

of cameras to reach convergence. The algorithm which results in less average error

has superior performance. As before, we calculated the average error of the automata

team over a run of 50 experiments while using different game algorithms to reach

convergence and different values for the step size. The results of these experiments

are presented in the following table.

Table 6.1
Performance Comparison

LR−I CPLA DPLA

a=0.05 a=0.09 a=0.05 a=0.09 a=0.05 a=0.09

Total Energy 320 149 3772 1020 38 23

Average Error 0.1043 0.09783 0.1050 0.1011 0.0985 0.0986

As data in above table indicates, the DPLA consumes far less energy than other

two algorithms. The DPLA algorithm shows an improvement by a factor of ten over

LR−I Game algorithm and an improvement by a factor of hundred over CPLA. Also,

the average error in case of DPLA is least among all three algorithm. This shows that

the DPLA outperforms LR−I Game algorithm and CPLA under both total energy as

well as average error criteria.

121

6.3 Designing a Distributed Wetland System in Watersheds

In this section, we will describe the application of identical-payoff games of learning

automata as a framework to solve complex multi-criteria optimization problem of

watershed management [64]. Multiple analytical criteria are used to assess design

decisions for creating a distributed network of wetlands in the watershed. DPLA as

well as a genetic algorithm based method are used for the analysis. Simulation studies

are presented which compare the efficiency of the reinforcement learning approaches

with a multi-objective genetic algorithm-based approach.

6.3.1 Problem Description

With the changing climate, impacts of flooding are expected to worsen in the

coming years. For the United States, the latest climate change models have predicted

a likely increase in duration of precipitation events during winter and spring months,

increase in the intensity of precipitation, and greater evaporation during the summer,

thereby, leading to periods of both floods and water deficits (Kundzewicz et al., 2007;

Lettenmaier et al., 2008; Milly et al., 2008). To help mitigate the effects of increased

flooding, the restoration of degraded upland and downstream storage capacities of

watersheds has been proposed: storing the excess floodwater on the land during high

precipitation events, rather than moving it rapidly off the land, could significantly

reduce the amount of flood damages incurred further downstream, mitigate water

quality impacts, and improve wildlife habitat. This work deals with the design of

a system for upland (i.e. upstream regions of the watershed) storage, specifically

by creating a network of wetlands for improving upland storage in the watershed.

Design is complex because there are a large number of alternative inter-connected

sites,thereby making it a complex combinatorial optimization problem. Additionally,

there are multiple criteria for selection among alternatives.

Reinforcement learning provides a promising framework for solving complex com-

binatorial decision making problems. Previous researchers have applied many tech-

122

niques such as genetic algorithms and supervised neural networks to specific environ-

mental problems. However, the use of reinforcement learning as an approach to solve

complex watershed management problems has remained largely unexplored. We for-

mulate the watershed management problem as an identical-payoff game of multiple

reinforcement learning agents. Multiple criteria incorporating the effect of the deci-

sion variables on watershed hydrology and land use, e.g., reduction in peak stream

flows and increase in baseflows (i.e. low flows), land area converted to wetlands etc.

are suitably combined to generate a scalar binary-valued feedback for the learning

agents. Experimental studies are conducted using different learning algorithms for

the agents. These preliminary studies clearly indicate that the approach has the po-

tential for determining high quality solutions. Further, though reinforcement learning

is used for a deterministic case study in this work, it is naturally suited for stochastic

environments. This increases its potential for applications such as watershed manage-

ment where randomness arises naturally because of unpredictable nature of rainfall,

hydrologic response of watersheds, anthropogenic drivers, etc.

6.3.2 Genetic Algorithms

Genetic Algorithms (GA) are heuristics-based optimization algorithms that emu-

late natural selection mechanism to perform the optimization task. GAs work with

”strings” of decision variables mapped in binary space (also called ”chromosomes”),

and search from a population of possible designs (”individuals”) using the informa-

tion provided by the objective function (”fitness function”). GA uses three operators

- reproduction, crossover, and mutation. These operators are used to evolve the pop-

ulation to solutions with higher fitness, until it converges to optimal or near-optimal

solutions. Multiple types of genetic algorithms currently exist that optimize problems

with one or multiple objectives. Commonly used multi-objective genetic algorithms

(e.g., MOGA [65], NSGA II [66], NPGA [67], VEGA [68]) converge the population to

a set of non-dominated solutions (i.e. a Pareto set). In this study, we compared the

123

reinforcement learning algorithms with the Non-dominated sorting genetic Algorithm

(NSGA II), which has previously been widely tested for multiple surface water and

ground water management problems [69–75].

6.3.3 Proposed Solution

The goal of this work is to develop a methodology for designing a large scale

distributed wetland network system by identifying locations and sizes of wetlands in

the watershed that could improve the overall storage of rainfall runoff and, thereby,

decrease the intensity of peak flows and possible flooding. The design process was ac-

complished by posing the problem as a multi-objective, spatial optimization problem.

The methodology was tested for Eagle Creek watershed located in Central Indiana,

USA, about 10 miles northwest of downtown Indianapolis city (Figure (6.10)). Ap-

proximately 162 miles2 of its drainage area drains into the Eagle Creek Reservoir,

which is a major source of drinking water supply in Indianapolis, and is also used for

flood control.

Using a Geographic Information Systems (GIS) based methodology, the 2008 land

use-land cover, topography, and soil drainage characteristics were first analyzed to

obtain all potential locations and scale of wetlands in the watershed. Figure (2) shows

the multiple sub-basins in the watershed, and locations and sizes of potential wet-

land sites (see blue polygons in the zoomed section of the watershed). Based on this

analysis, there are a total of 2953 wetland sites greater than 1000 m2 wetland area,

which could be potentially restored in the watershed. To assess the effect of these

potential wetland sites on the watershed hydrology and stream flows, a distributed

hydrologic model was also built for this watershed using the Soil and Water Assess-

ment Tool (SWAT [76], [77]). Since SWAT models wetlands as water bodies within

the sub-basins, and allows only one wetland per sub-basin, it was decided to aggregate

the areas and volumes of all the 2953 potential wetlands into one large wetland per

sub-basin. This resulted in 108 possible aggregated wetlands to choose, one in each of

124

Figure 6.10. Eagle Creek Watershed and its counties, reservoir,
streams and 130 sub-basins.

the 108 sub-basins that contained all the 2953 smaller wetlands. However, choosing

an optimal subset of aggregated wetlands from 108 aggregated wetlands also poses

computational hurdles because of the large design space. For example, if the problem

was posed as a binary problem of restoring or not restoring aggregated wetlands in

each of the 108 sub-basins, the design space would consist of 2108 alternatives.

Therefore, it was decided to divide the watershed basin into 8 regions (Figure

(6.11)) and run multiple optimization experiments separately for each region. Such

a division of regions assumes independence in overall performance of wetlands in any

two regions, which is not entirely true if the regions are hydrologically connected.

However, it provides a possible practical solution to working with large spatial op-

timization problems by constructing multiple smaller spatial optimization problems.

The optimization problem was then converted into a binary decision problem of select-

ing or not selecting a sub-basin for restoring the corresponding aggregated wetlands.

125

Figure 6.11. Left figure shows the 130 sub-basins and 2953 potential
wetland polygons in the 8 regions (pink polygons) divided for opti-
mization. Right figure shows the enlarged view of potential wetlands
(blue polygons) in the watershed area surrounded by black box in left
figure.

For each subbasin j in the region i, we associate a flag decision variable (flagij = 0/1).

If the flagij is 1 then the subbasin j in the region i has aggregated wetlands restored.

Since some of the regions had many sub-basins with wetlands, it was decided to select

the top 10 aggregated wetlands in every sub-basin in order to reduce computational

complexity of the search process. This, therefore, reduced the number of decision

variables for the binary decision problem to be equal to or lesser than 10 for each

region, and made the search space lesser than 210 alternatives for each region. The

color-shaded sub-basins in the left figure of Figure (2) indicate the top 10 sub-basins

with aggregated wetlands selected for optimization in every region. The top 10 sub-

basins were selected based on a sensitivity analysis in which one by one we tested the

effect of every aggregated wetland in a sub-basin on the overall reduction in flows in

126

all the streams in the region. The aggregated wetlands were then ranked from high to

low based on their decreasing order of overall flow reductions estimated by the SWAT

hydrologic model, and the corresponding sub-basins (i.e. the color-shaded sub-basins

in Figure (2)) with aggregated wetlands were selected for optimization based on their

ranks. The sensitivity analysis provided a useful heuristic to prioritizing which sub-

basins with aggregated wetlands would be most useful for optimization. However,

it also assumes the independence in wetland performance between high-ranking and

low-ranking sub-basins; this is a reasonable assumption for the purpose of a large

scale optimization.

The multiple, conflicting, quantitative objectives chosen for this problem were to

minimize the total area used by wetlands for each of the regions and to minimize

the root mean-square error between flows in streams when all the region’s wetlands

were restored/installed (i.e. the baseline conditions) and the flows estimated with

only a particular subset of wetlands selected during the optimization process. It is

clear that if we assign one learning automaton for each sub-basin in the region to

decide whether it should have its aggregated wetland installed or not, the problem

reduces to an identical-payoff game model of learning automata with multiple criteria

corresponding to the multiple objectives. For each sub-basin flagij, we associate an

automaton Aij with two actions flagij = 0 and flagij = 1. During each iteration of the

DPL algorithm, each automaton selects an action by sampling its action probability

vector and based on the action selected, the flagij decision variable is set to either

0 (potential aggregated wetland should not be installed) or 1 (potential aggregated

wetland should be installed).

We also used two scaling parameters, namely SiArea and SiF low, associated with

a region i, to scale the values for the area and flow objectives, respectively, to lie

between 0 and 1. SiArea is calculated by adding the areas of all the potential aggregated

wetlands in a particular region (i.e. those in the top color-shaded sub-basins in Figure

(6.11)).

SiArea =
∑
j

Areaij (6.4)

127

The SiF low is calculated in two steps:

1. We first generate a baseline flow dataset (Baseline∗) by installing all the top

ranked wetlands in region i and running SWAT model for this configuration.

This represents the best possible scenario offering the most reduction in the

volume of water in the streams. Then we generate the output flow dataset

(Output∗noWetlands) by running the SWAT model for the configuration in which

there are no wetlands in the region. This represents the worst possible scenario

offering the least possible reduction in the volume of water.

SiF low =
∑
region

ln(1 + [Baseline∗ −Output∗noWetlands]2) (6.5)

Using these scaling parameters we calculate the payoff values for area (P i
Area) and

flow (P i
F low) for a particular set of decision variables for the optimization algorithms

(i.e., set of actions chosen by all the learning automata agents, or set of values of the

genes in the genetic algorithm’s choromosome) as follows:

P i
F low = 1−

∑
region

log(1 + [Baseline∗ −OutputsubsetOfWetlands]2)

SiF low
(6.6)

P i
Area = 1−

∑
region

(flagij × Areaij)

SiArea
(6.7)

where,

flagij =

⎧⎨⎩
1 if potential aggregated wetland j

in region i is installed

0 otherwise

(6.8)

The total payoff is then calculated by combining both area and flow payoffs into

one single criteria. This is done by weighting each payoff with a corresponding weight

that have a real value between 0 and 1. Weights for all the criteria sum up to a total

of 1.0.

128

P i
Total = WArea × P i

Area +WFlow × P i
F low (6.9)

and

WArea +WFlow = 1 (6.10)

The genetic algorithm, however, does not use any weights to combine objective

functions into a single objective function. The multi-objective genetic algorithm

(NSGA II) used in this study allows simultaneous exploration of multiple objective

functions to directly create a non-dominated set of solutions.

6.3.4 Results

Using the above methodology, the Decentralized Pursuit Learning Algorithm

(DPLA) and Non-dominated Sorting Genetic Algorithm (NSGA II) were implemented

for each of the eight regions in the watershed. The Pareto-fronts generated by these

algorithms were then compared with each other for performance measurement. Due

to space constraints, we will discuss Pareto-fronts for only two regions. These regions

were chosen based on how closely the Pareto-fronts of DPLA and NSGA II match

with each other. As demonstrated by Figure (6.12), the DPLA and NSGA II Pareto-

fronts of region 1 match closely each other. On the other hand, Figure (6.13) shows

the mismatch in the Pareto-fronts for region 2.

Table (6.2) indicates the performance comparison of DPLA and NSGA II for region

1. It was observed that DPLA requires less iterations to obtain all the optimized

alternatives/solutions. Also the converged action tuples (or, in other words, the

decision variables) of DPLA and NSGA II are almost identical to each other. For

example, as indicated in the last row of Table (6.2), the converged DPLA and NSGA

II action tuples that were most similar to each other in objective space (measured via

a Euclidean distance of objective function values) differed in decision space by just

one aggregated wetland. DPLA tuple proposed installation of aggregated wetland in

subbasin 127, while NSGA II proposed it to be uninstalled. However, as indicated

129

Figure 6.12. Region 1 Pareto-fronts

Figure 6.13. Region 2 Pareto-fronts

by the thick blue circle on the map in Figure (6.14), this aggregated wetland consists

of only one very small wetland polygon with insignificant overall impact on flow.

Thus, the solutions provided by DPLA and NSGA II are almost identical in the first

approximation.

130

Table 6.2
Region 1

DPLA GA

Iterations 924 3600

Number of Converged Solutions 9 28

Number of Iterations per Solution 102 128

Most Similar Converged Tuples/Designs 1111011 1111010

The final set of solutions found for region 2 are not only dissimilar in objective

space, but also decision space. The Pareto front created by converged tuples found by

DPLA consisted mostly of inferior solutions compared to solutions found by the NSGA

II. At first glance, this could be attributed to the fewer total number of iterations used

by the DPLA (Table (6.3)). However, the NSGA II found a lot more distinct non-

dominated solutions, thereby, having a smaller computational load (i.e. number of

iterations) per solutions in the converged set. This indicates that the complexity in the

design space of region 2 posed additional computational challenges to the algorithms’

performance. For example, when two of the DPLA and NSGA II solutions with

similar flow payoffs were compared, their tuples (Table (6.3) and Figures (6.15) and

(6.16)) were dissimilar in 6 of the 10 sub-basins containing the aggregated wetlands.

Whereas, when two of the converged DPLA and NSGA II solutions with similar

area payoffs were compared (Table (6.3) and Figures (6.15) and (6.16)), the tuples

were dissimilar in only 2 of the 10 sub-basins. This indicates that multiple spatial

combinations of aggregated wetlands is possible in order to get similar flow benefits,

however, fewer spatial alternatives with similar area are present in the decision space.

Additional experiments were also performed to compare the differences in con-

verged tuples/solutions when the optimization was performed using all the high

ranked aggregated wetlands in each of the regions identified in the previous section,

without doing a separate optimization for individual regions as done in the previous

section. This optimization resulted in a search space that had a total of 67 sub-basins

131

Figure 6.14. Region 1 Map

(i.e. all the colored sub-basins in Figure (2)) with aggregated wetlands to choose

from. Hence, this experiment also allowed the exploration of dependencies between

multiple regions on the overall optimization performance of all candidate aggregated

wetlands in the watershed. Table (6.4) indicates the computational efficiency of these

experiments using DPLA and NSGA II, which throw light on NSGA-II’s lower com-

putational load per solution.

132

Table 6.3
Region 2

Learning Algorithm Genetic Algorithm

Iterations 1092 3600

Number of Converged Solutions 9 38

Number of Iterations per Solution 121 94

Similar Converged Tuples/Designs (Similar Flow Payoff) 0011010100 0100111000

Similar Converged Tuples/Designs (Similar Area Payoff) 0100000100 0100010000

Table 6.4
All Regions

Learning Algorithm Genetic Algorithm

Iterations 2060 3600

Number of Converged Solutions 9 48

Number of Iterations per Solution 228 75

Converged solutions found by DPLA and NSGA II were then compared for all

different sets of weights. Figure (6.17) indicates that in the objective function space,

the solutions found by DPLA were inferior to the solutions found by the NSGA II. The

solutions were then compared to each other in decision space, based on the specific

set of weights. For example, Figures (6.18) and (6.19) show the spatial distribution

of aggregated wetlands found by DPLA and NSGA II if a weight of 0.5 was chosen

for both flow and area objective functions. DPLA found a more well-distributed set

of aggregated wetlands over the entire watershed, whereas, the NSGA II found a

solution with better overall flow and area payoff by clustering aggregated wetlands

mostly in regions 5, 6, and 7. Though the overall impact of NSGA II solution on the

flow and area objectives is better than the DPLA solution, but the DPLA solution

provides options for utilizing land in other regions (e.g. regions 1, 2, and 3). The

NSGA II solution, therefore, could add social constraints to the land manager and

land owner’s management plan if they have to convince more owners in a small

region to convert their land area to wetlands. This would add an additional level of

133

Figure 6.15. Solutions with similar flow payoffs found by DPLA and
NSGA-II disagreed with each other on the aggregated wetlands in the
colored sub-basins of region 2.

uncertainty and complexity to the optimization, since ”human factors” would also

need to be considered for assessing the overall quality of these optimized solutions.

The solution in Figures (6.18) and (6.19) were also compared to the spatial distri-

bution of optimized aggregated wetlands found in the previous section for region-wise

optimization, and if optimization was performed for the same values of weights (i.e.

134

Figure 6.16. Solutions with similar area found by DPLA and NSGA-II
disagreed with each other on the aggregated wetlands in the colored
sub-basins of region 2.

0.5). Similarities and dissimilarities were observed in solutions found by the two ap-

proaches. For example, in region 1 the region-wise optimization solution found by

DPLA differed from the solution found by optimizing all the 67 wetlands together

solution in three aggregated wetlands in sub-basins with IDs 121, 123, 124. On the

135

other hand, for region 2, the region-wise optimization solution differed from the all

67 wetlands solution in sub-basins with IDs 97, 95, 94, 88, 89.

Figure 6.17. All Regions Pareto-fronts

136

Figure 6.18. All Regions Map for DPLA Solution

137

Figure 6.19. All Regions Map for NSGA II Solution

138

7 CONCLUSION AND FUTURE WORK

We will end this thesis by presenting the conclusions of this research and by pointing

out some areas for future exploration.

7.1 Conclusions

1. MARL systems are ubiquitous. However, so far, the application of learning au-

tomata in the MARL context was limited because of the centralized nature of

CPLA algorithm and slow convergence of LR−I game algorithm. In this thesis,

we proposed the DPLA algorithm which provides fast convergence in a decen-

tralized manner. DPLA is an attractive candidate for applications in MARL

systems and its performance is comparable or better than its counterparts.

2. PDGLA has the potential to provide a better payoff than the corresponding

DPLA configuration. Slightly extra communication overhead incurred by the

PDGLA can be often justified by the possibility of obtaining a better solution.

3. Various real-world combinatorial optimization problems can be modeled as the

identical-payoff games of learning automata. DPLA promises to perform better

than CPLA in such scenarios. The application studies presented in this chapter

buttress this argument.

4. The HEGLA framework further improves the expressive power of the PDGLA

by combining identical-payoff games and zero-sum games under one framework.

This allows learning automata (or automaton) to participate in zero-sum as

well as identical-payoff games. An automaton (or automata) can participate

in both types of games at the same time. It is also possible automata can

139

form subgroups and each subgroup can be involved in one type of game while

automata in the other group can be involved in other type of game.

7.2 Future Work

While the development of DPLA, PDGLA and HEGLA has made the application

of learning automata for MARL systems feasible and affordable, there are still a

number of interesting open problems to be solved in the area of the games of learning

automata. Some possible future work in this area includes:

1. Effects of Decentralization - The CPLA converges to the globally optimal

policy tuple in the game matrix. Even if the game matrix has multiple Nash

equilibria, the centralization of the environment parameter estimates leads to

the convergence to the Nash equilibrium point with the highest value (and thus

the globally optimal action tuple). The DPLA, on the other hand converges

to one of the Nash equilibria in the game matrix. Similarly, the decentralized

LR−I game algorithm converges to one of the Nash equilibria. This leads to

an important question: What is the effect of decentralization/centralization on

the behavior of the learning algorithms in the case of learning automata? One

possible research direction is to create a formal framework for the interaction

of learning automata in a game-like setting. This framework will be able to

abstract the effects of different types of learning algorithms (model-free algo-

rithms and model-based algorithms) and study the automata interaction in an

algorithm-agnostic manner. It will be interesting to view the automata interac-

tion from an information-theoretic point of view and explore the consequence of

sharing partial information in the form of a distributed algorithm. One major

contribution of such framework will be to prove that the decentralized config-

uration will always converge to one of the Nash equilibria of the underlying

game matrix no matter the type of algorithm used for learning. Such theo-

retical framework will be a major step forward in the field of RL. So far, no

140

analytical framework studies different types of learning algorithm and different

modes of communication (centralized vs. decentralized) in a unified manner.

Indeed, even a negative result has not been proven yet. In particular, it has

not been shown that a decentralized algorithm can never converge to the global

maxima under any circumstances. Such proof will unify currently disparate

fields of model-free and model-based algorithms and give a comprehensive and

unified theory under which these algorithm can be studied.

2. Rapidly Changing Environment - It will be interesting to design and an-

alyze algorithm for learning automata operating in rapidly changing environ-

ments. Such environments are characterized by rapidly or constantly changing

reward values. DPLA analysis involves automata operating in an environment

which is highly dynamic. This make the theoretical analysis of DPLA a very

challenging task. New stochastic analysis tools are required to analyze the be-

havior of automata in such chaotic environments. Creation of new methodolo-

gies or application of existing techniques towards the analysis of such algorithms

will open up a new area in the field of reinforcement learning using learning au-

tomata.

3. Optimal Partial Decentralization - PDGLA promises to alleviate the prob-

lem of complete centralization by allowing only a subset of learning automata

to communicate with each other. Also, one can explore this design space to

find partial communication configurations whose payoff is larger than that of

the completely decentralized DPLA. The cost of slightly extra communication

overhead can be justified by the better better quality of the solution. However,

one needs to explore the entire design space to find out the PDGLA config-

urations that produce better outcomes that DPLA. It will be worthwhile to

develop an algorithm which finds such better configurations. Such algorithm

will also help in creating a comprehensive formal theoretical framework required

to analyze the behavior of PDGLA for different configurations and a variety of

141

different learning algorithms. Another interesting option to consider is to allow

partial communication within each individual state of the Markov chain. This

will make the corresponding game even more decentralized. If all the automata

within a state communicate with each other, then the corresponding game ma-

trix has a unique equilibrium point. If we allow only some automata within a

state to communicate with each other, then such formulation may also produce

game matrix with a unique equilibrium point. As we described in the thesis,

the control of finite, multi-agent Markov chains can be achieved by modeling

it as a game of learning automata. However, translation in reverse direction

gives us solution for the partial decentralization of learning automata games.

Each multi-agent Markov chain problem generates a corresponding game ma-

trix. Thus given a game matrix, we can translate it to the corresponding multi-

agent Markov chain. Then if we allow the agents that reside in the same state to

communicate with each other, the corresponding partially decentralized game

formulation will converge to the globally optimal tuple. Based on autonomy,

memory and communication constraints; this communication can be modeled

as either a Superautomaton or a Master-Slave configuration.

LIST OF REFERENCES

142

LIST OF REFERENCES

[1] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. The
MIT Press, 1998.

[2] K. S. Narendra and M. A. L. Thathachar. Learning Automata: An Introduction.
Prentice-Hall, 1989.

[3] M. A. L. Thathachar and P. S. Sastry. Varieties of learning automata: An
overview. IEEE SMC, 32:711–722, 2002.

[4] M.A.L. Thathachar and P. Sastry. A new approach to the design of reinforcement
schemes for learning automata. IEEE Trans. on Systems, Man & Cybernetics,
vol. 15, no. 1, 1985.

[5] J. Crandall and M. Goodrich. Learning to compete, coordinate, and cooperate
in repeated games using reinforcement learning. Machine Learning, 82:281–314,
2010.

[6] S. Talukdar, L. Baerentzen, A. Gove, and P. De Souza. Asynchronous teams:
Cooperation schemes for autonomous agents. Journal of Heuristics, 4:295–321,
1998.

[7] M. Dorigo, M. Birattari, and T. Sttzle. Ant colony optimization– artificial ants as
a computational intelligence technique. Technical report, IEEE Computational
Intelligence Magazine, 2006.

[8] M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: Optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetic-
sPart B, 26:29 – 41, 1996.

[9] K. Verbeeck and A. Nowe. Colonies of learning automata. IEEE Transactions
on Systems, Man, and Cybernetics, Part B: Cybernetics, 32:772 – 780, 2002.

[10] R. M. Wheeler and K. S. Narendra. Decentralized Learning in Finite Markov
Chains. IEEE Trans. on Automatic Control, vol. 31, pages 519 – 526, 1986.

[11] M. L. Littman. Markov games as a framework for multi-agent reinforcement
learning. Eleventh International Conference on Machine Learning, pages 157–
163, 1994.

[12] M. L. Littman. Value-function reinforcement learning in markov games. Journal
of Cognitive Systems Research, 2:55 – 66, 2001.

[13] M. Lauer and M. Riedmiller. An algorithm for distributed reinforcement learning
in cooperative multi-agent systems. Proceedings of Seventeenth International
Conference on Machine Learning (ICML-00), pages 535 – 542, 2000.

143

[14] C. Guestrin, M.G. Lagoudakis, and R. Parr. Coordinated reinforcement learning.
Proceedings Nineteenth International Conference on Machine Learning (ICML-
02), pages 227 – 234, 2002.

[15] J. R. Kok and N. Vlassis. Using the max-plus algorithm for multiagent decision
making in coordination graphs. Robot Soccer World Cup IX (RoboCup 2005),
4020, 2005.

[16] Narendra, K. S., Wright, E. A., and Mason, L. G. . Application of Learning
Automata to Telephone Traffic Routing and Control . IEEE Trans. on Systems,
Man & Cybernetics, vol. 7, no. 11, pages 785–792, 1977.

[17] Lam, W. and Mukhopadhyay, S. A Two-Level Approach to Learning in Nonsta-
tionary Environments. In Proceedings of the 11th Biennial Canadian Conference
on AI, pages 271–283, 1996.

[18] Barto, A. G. and Anandan, P. . Pattern recognizing stochastic learning automata.
IEEE Trans. on Systems, Man, and Cybernetis, vol. 15, pages 360–375, 1985.

[19] Mukhopadhyay, S. and Thathachar, M. A. L. Associative Learning of Boolean
Functions. IEEE Trans. on Systems, Man, and Cybernetics, vol. 19, pages 1008–
1015, 1989.

[20] Mandayam A. L. Thathachar and P. S. Sastry. Learning optimal discriminant
functions through a cooperative game of automata. IEEE SMC, 17(1):73–85,
Jan 1987.

[21] W. Zhong, Y. Xu, and M. Tao. Precoding strategy selection for cognitive mimo
multiple access channels using learning automata. 2010 IEEE International Con-
ference on Communications (ICC), pages 23–27, 2010.

[22] S. Misra, V. Tiwari, and M. Obaidat. Lacas: learning automata-based congestion
avoidance scheme for healthcare wireless sensor networks. IEEE Journal on
Selected Areas in Communications, 27:466–479, 2009.

[23] T. Tuan, L. Tong, and A. Premkumar. An adaptive learning automata algorithm
for channel selection in cognitive radio network. 2010 International Conference
on Communications and Mobile Computing (CMC), 2:159–163, 2010.

[24] B. John Oommen and M. Khaled Hashem. Modeling a student’s behavior in a
tutorial-like system using learning automata. Trans. Sys. Man Cyber. Part B,
40:481–492, 2010.

[25] J. Torkestania and M. Meybodi. Clustering the wireless ad hoc networks: A
distributed learning automata approach. Journal of Parallel and Distributed
Computing, 70:394–405, 2010.

[26] M. Kashki, M. Abido, and Y. Abdel-Magid. Pole placement approach for robust
optimum design of pss and tcsc-based stabilizers using reinforcement learning
automata. Electrical Engineering, pages 383–394, 2010.

[27] J. Torkestani and M. Meybodi. An intelligent backbone formation algorithm
for wireless ad hoc networks based on distributed learning automata. Computer
Networks, 54:826–843, 2010.

144

[28] L. Lixia, H. Gang, X. Ming, and P. Yuxing. Learning automata based spectrum
allocation in cognitive networks. IEEE International Conference on Wireless
Communications, Networking and Information Security (WCNIS), pages 503–
508, 2010.

[29] B. J. Oommen and D. C. Y. Ma. Deterministic learning automata solutions to
the equipartitioning problem. IEEE JC, 37(1):2–13, Jan 1988.

[30] B. J. Oommen, R. S. Valiveti, and J. R. Zgierski. An adaptive learning solution
to the keyboard optimization problem. IEEE SMC, 21(6):1608–1618, Nov 1991.

[31] B. J. Oommen and E. V. de St. Croix. Graph partitioning using learning au-
tomata. IEEE JC, 45(2):195–208, Feb 1996.

[32] B. J. Oommen and T. D. Roberts. Continuous learning automata solutions to
the capacity assignment problem. IEEE JC, 49(6):608–620, Jun 2000.

[33] O. Tilak, R. Martin, and S. Mukhopadhyay. A decentralized indirect method for
learning automata games. IEEE Systems, Man., and Cybernetics B, Accepted
and In Print., 2011.

[34] J. Von Neumann and O. Morgenstern. Theory of Games and Economic Be-
haviour. Princeton Univ. Press, 1944.

[35] K. Rajaraman and P. Sastry. Finite time analysis of the pursuit algorithm for
learning automata. IEEE SMC, 26:590–598, 1996.

[36] David Freedman. Another note on the Borel-Cantelli lemma and the strong law,
with the Poisson approximation as a by-product. Ann. Probability, 1:910–925,
1973.

[37] Leo Breiman. Probability. Addison-Wesley Publishing Company, 1968.

[38] J. L. Doob. Stochastic Processes. Wiley, 1973.

[39] Kazuoki Azuma. Weighted sums of certain dependent random variables. Tôhoku
Math. J. (2), 19:357–367, 1967.

[40] O. Tilak and S. Mukhopadhyay. Partially decentralized reinforcement learning
in finite, multi-agent markov chains. AI Communications (Accepted For Publi-
cation), 2011.

[41] J. M. Vidal and P. Buhler. A generic agent architecture for multiagent systems.
Technical report, 2001.

[42] J. M. Vidal, P. Buhler, and H. Goradia. The past and future of multiagent
systems. AAMAS Workshop on Teaching Multi-Agent Systems, 2004.

[43] http://www.cs.cmu.edu/ softagents/multi.html.

[44] R. A. Howard. Dynamic Programming and Markov Processes. M.I.T. Press,
Cambridge, MA, 1960.

145

[45] P. S. Sastry, V. V. Phansalkar, and M. A. L. Thathachar. Decentralized learning
of nash equilibria in multi-person stochastic games with incomplete information.
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, 24:769–
777, 1994.

[46] O. Tilak and S. Mukhopadhyay. Multi agent reinforcement learning for dynamic
zero-sum games. Under Preperation, 2011.

[47] L. S. Shapley. Stochastic games. Proc Natl Acad Sci, 39:1095–1100, 1953.

[48] S. Lakshmivarahan and K. S. Narendra. Learning algorithms for two-person zero-
sum stochastic games with incomplete information: A unified approach. Control
and Optimization, 20:541–552, 1982.

[49] O. Tilak and S. Mukhopadhyay. Decentralized and partially decentralized rein-
forcement learning for distributed combinatorial optimization problems. Ninth
International Conference on Machine Learning and Applications (ICMLA),
pages 389 – 394, 2010.

[50] M. A. Perillo and W. B. Heinzelman. Optimal sensor management under en-
ergy and reliability constraints. In Proc. IEEE Wireless Communications and
Networking WCNC 2003, volume 3, pages 1621–1626, March 20–20, 2003.

[51] Mihaela Cardei and Ding-Zhu Du. Improving wireless sensor network lifetime
through power aware organization. Wirel. Netw., 11(3):333–340, 2005.

[52] Kuei-Ping Shih, Yen-Da Chen, Chun-Wei Chiang, and Bo-Jun Liu. A distributed
active sensor selection scheme for wireless sensor networks. In Proc. 11th IEEE
Symposium on Computers and Communications ISCC ’06, pages 923–928, June
26–29, 2006.

[53] Jun Lu, Lichun Bao, and Tatsuya Suda. Coverage-aware sensor engagement in
dense sensor networks. J. Embedded Comput., 3:3–18, 2009.

[54] O. Tilak, S. Mukhopadhyay, M. Tuceryan, and R. Raje. A novel reinforcement
learning framework for sensor subset selection. In IEEE ICNSC, Chicago, IL,
2010.

[55] R. G. Brown and P. Y. C. Hwang. Introduction to Random Signals and Applied
Kalman Filtering, 3rd edition. John Wiley & Sons, Inc, 1997.

[56] Isler, V., Khanna, S., Spletzer, J., and Taylor, C. . Target tracking with dis-
tributed sensors: the focus of attention problem. Computer Vision and Image
Understanding, pages 225–247, 2005.

[57] Franz Aurenhammer. Voronoi diagrams—a survey of a fundamental geometric
data structure. ACM Comput. Surv., 23(3):345–405, 1991.

[58] Ting Yan, Tian He, and John A. Stankovic. Differentiated surveillance for sensor
networks. In SenSys ’03: Proceedings of the 1st international conference on
Embedded networked sensor systems, pages 51–62, New York, NY, USA, 2003.
ACM.

146

[59] Juan Liu, Maurice Chu, Jie Liu, Jim Reich, and Feng Zhao. Distributed state
representation for tracking problems in sensor networks. In IPSN ’04: Pro-
ceedings of the 3rd international symposium on Information processing in sensor
networks, pages 234–242, New York, NY, USA, 2004. ACM.

[60] Hanbiao Wang, Kung Yao, Greg Pottie, and Deborah Estrin. Entropy-based
sensor selection heuristic for target localization. In IPSN ’04: Proceedings of
the 3rd international symposium on Information processing in sensor networks,
pages 36–45, New York, NY, USA, 2004. ACM.

[61] R. E. Kalman. A new approach to linear filtering and prediction problems.
Transaction of the ASME—Journal of Basic Engineering, pages 35–45, 1960.
Original paper by Kalman that invented the Kalman filters.

[62] Greg Welch and Gary Bishop. An Introduction to the Kalman Filter. ACM, Los
Angeles, 2001.

[63] Wendi Rabiner Heinzelman, Anantha Ch, and Hari Balakrishnan. Energy-
efficient communication protocol for wireless microsensor networks. 1999.

[64] O. J. Tilak, M. Babbar-Sebens, and S. Mukhopadhyay. Decentralized and par-
tially decentralized reinforcement learning for designing a distributed wetland
system in watersheds. IEEE Int Conf on Systems, Man, and Cybernetics - Spe-
cial Sessions, To Appear 2011.

[65] C. M. Fonseca and P. J. Fleming. Genetic algorithms for multiobjective opti-
mization: Formulation, discussion and generalization. Proceedings of the Fifth
International Conference on Genetic Algorithms, page 416423, 1993.

[66] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multi-
objective genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput., 6:182–197,
2002.

[67] J. Horn, N. Nafpliotis, and D. E. Goldberg. A niched pareto genetic algorithm
for multiobjective optimization. IEEE World Congress on Computational Com-
putation, pages 82–87, 1994.

[68] J. D. Schaffer. Multiple objective optimization with vector evaluated genetic al-
gorithms. PhD thesis, Vanderbilt University, 1984.

[69] E. Bekele. Multiobjective management of ecosystem services by integrative wa-
tershed modeling and evolutionary algorithms. Water Resources Research, 10,
2005.

[70] E. G. Bekele and J. W. Nicklow. Multi-objective optimal control model for
watershed management using swat and nsga-ii. ASCE Conf. Proc., 2007.

[71] J. L. Dorn and S. Ranjithan. Evolutionary multiobjective optimization in wa-
tershed water quality management. Evolutionary Multi-Criteria Optimization,
Lecture Notes in Computer Science (LNCS), 2632:692–706, 2003.

[72] C. Maringanti, I. Chaubey, and J. Popp. Development of a multiobjective opti-
mization tool for the selection and placement of best management practices for
nonpoint source pollution control. Water Resour. Res., 45, 2009.

147

[73] M. Babbar-Sebens and B.S. Minsker. Case-based micro interactive genetic algo-
rithm (cbmiga) for interactive learning: Methodology and application to ground-
water monitoring design. Environmental Modelling and Software, 25:1176–1187,
2010.

[74] M. Babbar-Sebens and S. Mukhopadhyay. Reinforcement learning for human-
machine collaborative optimization: Application in ground water monitoring.
Proceedings of the IEEE Systems, Man, and Cybernetics (SMC) Conference,
page 3563 3568, 2009.

[75] M. Babbar-Sebens and B.S. Minsker. Standard interactive genetic algorithm
(siga): A comprehensive optimization framework for long-term ground water
monitoring design. J. of Water Resources Planning and Management, pages
538–547, 2008.

[76] J. G. Arnold, R. Srinivasan, R. S. Muttiah, and J. R. Williams. Large area
hydrologic modeling and assessment. part i: Model development. J. Am. Water
Resour. Assoc., 34(1):73 89, 1998.

[77] S. L. Neitsch, J. G. Arnold, J. R. Kiniry, and J. R. Williams. Soil and wa-
ter assessment tool - theoretical documentation - version 2005. Grassland, Soil
and Water Research Laboratory, Agricultural Research Service and Blackland
Research Center, Texas Agricultural Experiment Station, Temple, TX., 2005.

VITA

148

VITA

Omkar Jayant Tilak

Education

(1) B.E. in Computer Engineering, Mumbai University, Mumbai, India, 2004

(2) M.S. in Computer Science, Indiana University Purdue University Indianapolis,

Indianapolis, IN, 2006

(3) Ph.D. in Computer Science, Purdue University, West Lafayette, IN, 2012

Relevant Publications

(1) Tilak, O., Babbar-Sebens, M. and Mukhopadhyay, S., Decentralized and Par-

tially Decentralized Reinforcement Learning for Designing a Distributed Wetland

System in Watersheds, IEEE Int Conf on Systems, Man, and Cybernetics - Special

Sessions, 2011.

(2) Tilak, O. and Mukhopadhyay, S., Partially Decentralized Reinforcement Learn-

ing in Finite, Multi-Agent Markov Chains, AI Communications (Accepted For Pub-

lication), 2011.

(3) Tilak, O., Martin, R. and Mukhopadhyay, S., A decentralized indirect method

for learning automata games, IEEE Systems, Man., and Cybernetics B (Accepted

and In Print), 2011.

(4) Tilak, O. and Mukhopadhyay, S., Multi Agent Reinforcement Learning for Dy-

namic Zero-Sum Games, (Under Preparation), 2011.

(5) Tilak, O., Mukhopadhyay, S., Tuceryan, M. and Raje, R., A Novel Reinforcement

Learning Framework for Sensor Subset Selection, IEEE ICNSC, 2010.

149

(6) Tilak, O. and Mukhopadhyay, S., Decentralized and Partially Decentralized Re-

inforcement Learning for Distributed Combinatorial Optimization Problems, ICMLA,

2010.

	ETDForm9_Stable
	GSForm20_Stable
	thesis

