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Preface to ”Feasible, Robust and Reliable Automation

and Control for Autonomous Systems”

The past few decades have seen a rapid development toward autonomous systems. Increasing

computational power ability and advances in new computing devices currently allow the feasible

real-time implementation of autonomous systems. This is further supported by large-scale research

in autonomous systems applications, including but not limited to ground, aerial, maritime vehicles,

mobile robotics. Differently to automated systems, an autonomous system employs situational

awareness information, via perception modules, normally using a multi-layer control strategy to

command the effectors driving the system. Given that environments in the real world consist of

dynamic and varied conditions, a reliable control strategy for autonomous systems should offer a

safe, reliable and robust solution.

Thus, this Special Issue book ‘Feasible, Robust and Reliable Automation and Control for

Autonomous Systems’ aims for wider dissemination of research on control strategy topics for

multiple types of autonomous systems that are not constrained to a single platform. It highlights

current research in the control field for autonomous systems as well as showcases the state-of-the-art

control strategy approaches used for the autonomous platforms. We believe this Special Issue will

be of great appeal to researchers in fields related to control systems and their applications typified in

the fields of ground, aerial, maritime vehicles and robotics as well as industrial audiences. Thus, in

reflecting the most recent progress in control strategies for autonomous platforms, the covered topics

include control system design in autonomous systems for different platforms, robustness analysis of

control strategy performance of autonomous systems and discussions on the kinematics, dynamics

and model nonlinearity effects on the controller performance of the autonomous systems, among

many others.

The Special Issue is co-edited by distinguished international control system experts currently

based in Sweden, the United States of America, and the United Kingdom. The ten articles published

within represent contributions from reputable researchers in China, Austria, France, the United States

of America, Poland, and Hungary, among many others.

The editors would like to thank all the contributors to this Special Issue, which include the

authors and reviewers as well as the Electronics publishing team.

Umar Zakir Abdul Hamid, Argyrios Zolotas, and Chuan Hu

Editors
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* Correspondence: umartozakir@gmail.com

The global market for autonomous robotics platforms has grown rapidly due to the
advent of drones, mobile robots, and driverless cars, while the mass media coverage
examining the progress of robotics and autonomous systems field is widespread. There
are instances in which such news may be exaggerated, and to a certain extent, surrounded
by potentially misleading hype. This is understood in terms of the valuation standing
of automation and robotics industries [1]. With lot of startups raising huge number of
investments worldwide, and big corporations launching spin-off companies to expedite
the deployment of the emerging technologies, the trajectory of this domain continues to
escalate [2].

‘Deep Learning’, ‘Machine Learning’, ‘Artificial Intelligence’, ‘Data-Driven’, and ‘Neu-
ral Network’ are among the terms frequently used to discuss the rapid developments in
the future robotics and autonomous systems technologies sectors. However, robotics and
automation are complex fields which are not restricted to the aforementioned phrases.
Autonomous systems consist of different domains such as ‘mapping’, ‘localization’, ‘ob-
ject detection’, and ‘embedded systems’, as well as ‘guidance, navigation and control’,
among many others. Each of these terms requires cross-disciplinary expertise and talents
to facilitate innovation and further developments.

In this Special Issue, the editors aim to provide an in-depth assessment of one of the
most important elements of autonomous systems, i.e., automation and control. The Special
Issue is co-edited by distinguished international control system experts currently based in
Sweden, the United States of America, and the United Kingdom, with contributions from
reputable researchers from China, Austria, France, the United States of America, Poland,
and Hungary, among many others. The main objective of this Special Issue is to highlight
current research and development in the automation and control field for autonomous
systems, as well as to showcase state-of-the-art control strategy approaches for the au-
tonomous platforms. The editors believe the ten articles published within this Special Issue
will be highly appealing to control-systems-related researchers in applications typified in
the fields of ground, aerial, maritime vehicles, and robotics, as well as industrial audiences.

In the first article, Hernandez-Barragen et al. [3] investigated an adaptive single
neuron anti-windup PID controller based on the extended Kalman filter algorithm, where
the experimental tests are performed on a KUKA® Youbot® omnidirectional platform. This
work demonstrated that the proposed adaptive PID controller performed better than the
conventional PID and other benchmarked PID approaches.

In the article ‘Facilitating Autonomous Systems with AI-Based Fault Tolerance and
Computational Resource Economy’ [4], Deliparaschos et al. proposed the facilitation of
fault-tolerant capability in autonomous systems, with particular consideration of low
computational complexity and system interface devices (sensor/actuator) performance.

Electronics 2022, 11, 2126. https://doi.org/10.3390/electronics11142126 https://www.mdpi.com/journal/electronics1
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An AI-based control framework enabling low computational power fault tolerance was
presented, where the efficacy of the proposed scheme was shown via rigorous analysis of
several sensor fault scenarios for an electro-magnetic suspension testbed.

‘On-Line Learning and Updating Unmanned Tracked Vehicle Dynamics’ by Strawa
et al. [5] proposed a method by which to estimate vehicle model parameters using a com-
pound identification scheme utilizing an exponential forgetting recursive least square,
generalized Newton–Raphson (NR), and Unscented Kalman Filter methods. The proposed
identification scheme facilitates adaptive capability for the control system, improves track-
ing performance, and contributes to an adaptive path and trajectory planning framework,
which is essential for future autonomous ground vehicle missions and traversability.

Meng et al. presented ‘High Velocity Lane Keeping Control Method Based on the
Non-Smooth Finite-Time Control for Electric Vehicle Driven by Four Wheels Indepen-
dently’ [6], in which two kinds of tracking error computing methods of lane keeping
control for electric vehicles were proposed to tackle different conditions, and a Non-FT
lane keeping controller was designed to keep the EV-DFWI running in the desired lane
suffering external disturbances.

The topics of path planning and tracking algorithms were studied by Rumetshofer
et al. in ‘A Generic Interface Enabling Combinations of State-of-the-Art Path Planning
and Tracking Algorithms’ [7]. A generic interface design between the local path planning
and path tracking systems was examined. This topic holds significant importance for
autonomous driving applications.

Tran et al. [8] authored ‘Integrated Comfort-Adaptive Cruise and Semi-Active Suspen-
sion Control for an Autonomous Vehicle: An LPV Approach’, which presents an integrated
linear parameter-varying (LPV) control approach of an autonomous vehicle intending
to guarantee driving comfort, consisting of cruise and semi-active suspension control.
Simulation-based experiments were conducted using a realistic nonlinear vehicle model
validated from experimental data. The simulation results demonstrate the proposed ap-
proach’s capability to improve driving comfort (a topic that will remain important for
future people-carrier autonomous vehicles).

In ‘Development and Verification of Infrastructure-Assisted Automated Driving Func-
tions’ [9], Rudigier et al. extensively discussed the autonomous driving and ADAS applica-
tions of control systems. Their paper presents specific use cases in the said context, and the
verification results for a proposed system utilizing a simulation framework are reported.

In ‘Automatically Learning Formal Models from Autonomous Driving Software’ [10],
Selvaraj et al. shared their Autonomous Driving expertise and applied active learning
techniques to obtain formal models of an existing (though still in development) autonomous
driving software module implemented in MATLAB. This demonstrates the feasibility
of automated learning for automotive industrial use. Practical challenges in applying
automata learning, and possible directions for integrating automata learning into the
automotive software development workflow, are also discussed in this work.

In ‘Practical Nonlinear Model Predictive Controller Design for Trajectory Tracking
of Unmanned Vehicles’, Pang et al. explored the trajectory tracking issue of unmanned
vehicles [11]. The authors proposed an improvement of the nonlinear model predictive
controller (NMPC) for the trajectory tracking application of an unmanned vehicle (UV).
The simulation results confirm that the proposed NMPC scheme reveals better control ac-
curacy and computational efficiency than the standard MPC controller under two different
prescribed roads.

Finally, in ‘Leader-Based Trajectory Following in Unstructured Environments—From
Concept to Real-World Implementation’, Nestlinger et al. described the issue of guiding
a vehicle by means of an external leader [12]. A system was proposed and tested in a
simulation framework and then deployed in a demonstrator vehicle for validation under
real operating conditions.

The editors would like to thank all the contributors to this Special Issue, which includes
the authors and reviewers, as well as the Electronics publishing team. The editors believe
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the findings presented in this Special Issue will be beneficial for the reading of interested
researchers and general audiences.

Author Contributions: U.Z.A.H., C.H. and A.Z. have contributed equally to this editorial for the
Special Issue, ‘Feasible, Robust and Reliable Automation and Control for Autonomous Systems’,
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version of the manuscript.
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Abstract: In this paper, an adaptive single neuron Proportional–Integral–Derivative (PID) controller
based on the extended Kalman filter (EKF) training algorithm is proposed. The use of EKF training
allows online training with faster learning and convergence speeds than backpropagation training
method. Moreover, the propose adaptive PID approach includes a back-calculation anti-windup
scheme to deal with windup effects, which is a common problem in PID controllers. The performance
of the proposed approach is shown by presenting both simulation and experimental tests, giving
results that are comparable to similar and more complex implementations. Tests are performed
for a four wheeled omnidirectional mobile robot. Tests show the superiority of the proposed adaptive
PID controller over the conventional PID and other adaptive neural PID approaches. Experimental
tests are performed on a KUKA® Youbot® omnidirectional platform.

Keywords: neuron PID; Kalman filtering; omnidirectional mobile robot; implementations; anti-windup

1. Introduction

Presently, Proportional–Integral–Derivative (PID) controllers are still among the most popular
controllers used in the industry [1–3]. However, a PID is just adequate for a nominal process; it performs
poorly for a system with uncertainties in operating conditions or environmental parameters [2,4,5].
It is well known that if the mathematical model of a plant is available, various techniques to
determine PID controller parameters exist. Based on that, improvements and tuning mechanisms were
proposed in the literature for conventional PID controllers. However, those techniques are mainly
offline methodologies, and in most cases, they require a model of the system, which is commonly
not available [1–3]. Among these techniques, adaptive neural PID controllers are presented as
an option due to neural networks characteristic that allows them to adapt themselves to changes
in operating conditions and environmental parameters, giving the controller the capability of adapting
its parameters online [5–7]. Adaptive control techniques are important to solve problems in robotics
research, such as control of robot manipulators [8,9], control of mobile robots [10,11] and formation
control [12], control of underwater vehicles [13,14], control for teleoperation systems [15] and industrial
applications [16,17].

Adaptive neural PID controllers have been presented mainly in three different forms:

• Single neuron PID controllers

Examples of this group are works [6,18–21].
These adaptive controllers are base on a single neuron whose inputs are the proportional error
(P), integral of the error (I), and derivative of the error (D) (see Figure 1).

Electronics 2020, 9, 636; doi:10.3390/electronics9040636 www.mdpi.com/journal/electronics
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+
-

System

Figure 1. Single neuron PID controller scheme.

• Multi-layer neural PID controllers

Examples of this group are works [4,22–26].
These works are mainly based on an architecture as shown in Figure 2, where the output layer
only has one neuron, and the immediately before layer to this output layer has three neurons,
each one dedicated to the proportional gain (KP), the integral gain (KI), and the derivative gain
(KD), respectively. The inputs are the proportional error (P), integral of the error (I), and derivative
of the error (D). In some works, the inputs include the system output and its reference.

+
-

System

Figure 2. Multilayer PID controller scheme.

• Hybrid neural PID controllers

Examples of this group are [5,27,28].
These adaptive neural PID controllers are based on improving the performance of a conventional
PID controller (Figure 3). Typically, the neural network chooses online the proportional gain (KP),
the integral gain (KI), and the derivative gain (KD) parameters of the controller. However, they
tend to have slow learning rates, complex architectures, and high computational cost [4,23].

+
-

System

ANN

PID

Figure 3. Hybrid PID controller scheme. ANN: Artificial Neural Networks.

Training methods for the previous mentioned adaptive neural PID controllers are mostly based
on backpropagation. Also, most of them only report simulation results using benchmark systems that
do not necessarily represent real-world problems. Another common problem with PID controllers
is the windup effect [29]. The windup effect occurs when the cumulative error in the integral control

6



Electronics 2020, 9, 636

action produces a saturation on the actuators, which while on the saturation zone, the system
loses controllability [30,31]. The windup effect contributes to poor performance, overshoot, high
settling time, and instability [32,33]. Anti-windup methods were proposed to deal with these issues,
among them, the limiter integrator, conditional integration, back-calculation, the observer approach,
modified tracking anti-windup, and others [31,33]. The inclusion of anti-windup strategies in control
designs is essential to be considered. The previously mentioned adaptive neural PID controllers do
not include it.

This work proposes an adaptive single neuron PID controller trained with the Extended Kalman
Filter (EKF) training algorithm. The EKF for neural networks were proven to have faster learning speeds
and convergence times than training based on backpropagation, which make them ideal for experimental
and real-time tests [34,35]. Moreover, the neuron PID controller includes a back-calculation scheme to
deal with windup effects. The proposed anti-windup scheme uses the information of the cumulative
error and the input saturation to compute the integral action dynamically. No special tuning
is required to adjust the contribution of input saturation, which is needed by conventional
back-calculation methods. The performance of the proposed controller is shown through simulation
and experimental results using an omnidirectional robot. For simulation tests, the robot is simulated
on Matlab® (Matlab is a registered trademark of the MathWorks, Inc.), on the other hand, for the
experimental case a KUKA® (KUKA is a registered trademark of KUKA Aktiengesellschaft Germany)
Youbot® (Youbot is a registered trademark of KUKA Aktiengesellschaft Germany) is used. Moreover,
comparative results are presented with respect to the conventional PID controller, an adaptive
single neuron PID controller, and an adaptive multilayer PID controller. A case of study is also
presented to compare the performance of a PID controller with an anti-windup method against
the proposed adaptive controller. The control objective is set as trajectory tracking, where through
the tests and a smaller tracking error is obtained with the proposed controller compared to the other
implemented techniques. Since the proposal is based on a neuron and an the EKF training algorithm,
then, it is essential to mention the works (Sento, 2016, [24] and Gomez, 2016, [26]) where multilayer PID
controllers are presented. However, those works only present simulation results; the first one uses an
inverted pendulum system and a DC motor system. The second one presents results using a quadrotor
system and a control scheme that presents a neural PD controller. Moreover, both approaches do not
include an anti-windup scheme.

The main contribution of this work is an adaptive single neuron PID controller trained with
an extended Kalman filter training algorithm, which includes an anti-windup scheme to overcome
the overshoot and settling time inconveniences. The proposed controller scheme offers excellent results
compared with other similar proposals and also compared to more complex ones.

A mobile system is considered to be autonomous if its motion is based on its own knowledge
of the environment. Mobile robots can make decisions and perform appropriate actions without
the intervention of a human user. To perform an autonomous motion, control techniques are required.
The use of controllers that require the tuning of gains is not appropriated because the intervention
of a user is needed every time the model changes. However, the proposed adaptive neuron controller
provides an auto-tuning mechanism that contributes to robot autonomy.

Path planning is an important task to be solved for autonomous robot systems. Path planning
consists of the determination of a path from an initial point to an endpoint, without collision with
obstacles in the environment. Moreover, the autonomous guided vehicle (AGV) robots are widely used
to transport materials between assembly stations. The AGV robots need to use a controller technique
to follow special paths, which are usually electrical guide wires based on sensors. A trajectory tracking
control algorithm is crucial to follow the given paths successfully. The proposed approach proved to
be robust and reliable for control tracking tasks that are beneficial for autonomous mobile systems.

The work outline is as follows:

• in Section 2 the proposed adaptive neuron anti-windup PID controller is presented, where EKF
neural PID controller is presented, where Section 2.1 explains the EKF training algorithm.

7
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• Section 3 presents the implementation of the propose adaptive controller for position tracking
of an omnidirectional mobile robot. In Section 3.1 the robot kinematics are presented
for illustrative purposes, Section 3.2 presents the conventional PID controller implementation
scheme, and Section 3.3 presents the adaptive control scheme.

• in Section 4, both simulation (Section 4.1) and experimental results (Section 4.3) are presented,
showing the performance of the proposed single neuron PID controller against the conventional
PID and others neural PID controllers.

• in Section 5, important conclusions are presented and discussed.

2. Adaptive Single Neuron PID Controller Based on the Extended Kalman Filter Algorithm

An artificial neuron is a mathematical simplification of a biological neuron; however, simple as
it is, an artificial neuron is capable of accomplishing multiple tasks. Many artificial neurons can then
be put together to achieve even more complex tasks [7]. Similar to a neuron and a neural network, they
learn a task of function obtaining information of the environment, such knowledge or information
is stored in the synaptic weights ω, the output of a neuron is computed as represented in Equation (1)

ŷ = φ(ω�x) (1)

where ω is a weight vector, x the input vector, ŷ is the output of the neuron, and φ is an activation
function. Training can be perform using different paradigms please see [7,36].

The proposed adaptive single neuron PID controller is illustrated in Figure 4, where e is the error (2)
of the system under consideration, this error is the difference between the reference (yr) and the system
output (y). The error e′ is the output of the anti-windup scheme (8). x1, x2, and x3 are the inputs
to the neuron and they are define as the proportional error (3), the integral of the error (5), and the
derivative of the error (4) [37]. The weights ω1, ω2, and ω3, are adapted online using the extended
Kalman filter algorithm described in Section 2.1, and they represent the KP, KI , and KD gains,
respectively. v is the weighted sum (6), u is the output of the neuron (7), where as activation function
tanh (·) is selected and α scales the amplitude of tanh.

e (k) = yr (k)− y (k) (2)

x1 (k) = e (k) (3)

x2 (k) = e (k)− e (k − 1) (4)

x3 (k) =
k

∑
j=1

e′ (k) (5)

v (k) =
3

∑
i=1

ωi (k) xi (k) (6)

u (k) = α tanh (v (k)) (7)

the activation function tanh (·) reacts in the range [−1, 1]. Moreover, the parameter α needs to be
selected depend on the control action requires for control tasks.

Anti-
Windup

Figure 4. Adaptive single neuron PID controller.
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In the presence of actuator saturation, the cumulative error in the integral action produces
windup effects. Back-calculation methods are often used to overcome these inconveniences. In general,
back-calculation methods consist of reducing the integral action by feeding back the difference between
saturated and unsaturated control signals. In order to prevent the windup effects, the feed-back
difference es is computed (9). The error es defines the differences between the outputs u and v, and it
is only considered when the value of v exceeds the saturated control signal u scaled by the parameter
α, see (7). The anti-windup scheme consists of computing the error e′, which handle the integral action.
This scheme is defined as

e′ (k) =
{

e (k) + es (k) if |v (k)| > α

e (k) otherwise
(8)

where
es (k) = u (k)− v (k) (9)

The anti-windup scheme is conducted as follows: when the control signal u is saturated,
then the error e′ is considered to be the actual error e plus the feed-back difference es to reduce
the cumulative error. When the control signal u is not saturated, the error e′ is the same as the error e.
In this case, the cumulative error is not reduced. Typically, limitations in actuators provoke saturation.
However, the presented anti-windup scheme prevents the actuator saturation by the selection of α.

It is important to remark that most of the reported adaptive neural PID controllers present training
strategies mainly based on the backpropagation algorithm. In this work, the proposed adaptive neuron
is trained online using an Extended Kalman Filter (EKF) algorithm that is described in the next section.
An important advantage of online training is that the network can adapt itself to changes in the nature
of the problem under consideration.

2.1. Adaptive Neuron Training Based on the EKF Algorithm

Several algorithms were reported for the training of neural networks, most of them with
the problem of having a slow learning rate and high sensitivity to initial conditions. On the other
hand, algorithms based on the Kalman filter are an alternative [34,38], as they reduce the number
of neurons and epochs. Moreover, they improve learning convergence [39], and they proved to be
reliable for online and offline training for several applications for both feedforward and recurrent
neural networks [34,38,40–42]. The Kalman filter is used to estimate the state of a linear system
with additive white noise, both in the state and in the output using a recursive solution, which
uses previous state and the current input [34]. In the case of neural networks, due to the nonlinear
mapping EKF is required, and the weights of the neural network become the state variables to
be estimated. The error between the measured output and the network output is considered additive
white noise. The training goal is to find an optimal weight vector that minimizes the prediction
error [34,38]. The EKF is used due to the mapping of the neural network is nonlinear [34,38,43].
The idea behind the use of the EKF to train the ANN is that other training algorithms, such as gradient
descent, recursive least squares and backpropagation, are particular cases of the Kalman filter; for this
reason, the EKF is suitable for training [44,45]. Moreover, Neural networks trained with the EKF
demonstrated faster learning speeds and convergence times than networks trained with algorithms
based on backpropagation [34,43].

The training algorithm for the proposed scheme is an EKF algorithm as proposed in [38],
which was proven to be reliable for many applications using multilayer and recurrent neural
networks [35,38,41]. Control scheme of the training is depicted in Figure 5. The training of this
neuron is performed by an online supervised scheme in which the desired response is the desired
trajectory, this is the reason such an error is the one considered for the training, which is going to train
the neuron to give control signal such as the trajectory error is minimized.
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Anti-
Windup

EKF

System

EKF-SNPID

Figure 5. Adaptive single neuron anti-windup PID control scheme. EKF-SNPID: the proposed adaptive
neuron PID controller trained with EKF algorithm.

The EKF training algorithm is given by Equations (10)– (12) [43].

K (k) = P (k)H (k)
[
R (k) + H� (k) P (k)H (k)

]−1
(10)

ω (k + 1) = ω (k) + ηK (k) e (k) (11)

P (k + 1) = P (k)− K (k)H� (k) P (k) + Q (k) (12)

Hj (k) =

[
∂u (k)
∂ωj (k)

]
=

[
∂u (k)
∂v (k)

∂v (k)
∂ωj (k)

]
= α sech2 (v (k)) xj (k) (13)

where ω ∈ R
3 is the weight vector, K ∈ R

3×1 is the Kalman gain vector, P ∈ R
3×3, Q ∈ R

3×3,
and R ∈ R

1×1 are covariance matrices of weight estimation error, estimation noise, and error noise,
respectively. η ∈ R is the Kalman filter learning rate, and H ∈ R

3×1 is a matrix whose entries Hj
are the derivative of the neural network output with respect to each weight Equation (13), u ∈ R

is the neuron output, the error e ∈ R is defined as the difference between the desired output
and the neuron output (2) [43].

The training objective is to have a set of weight ω such as the signal u minimizes the error
between the desired reference and the system output in (2). In the EKF algorithm, the learning rate
η is a scalar. However, it is proposed to use η ∈ R

3×1 to provide a learning rate to adjust each
weight ωi independently with ηi, respectively. Finally, the proposed neuron PID controller trained
with the Extended Kalman Filter algorithm is called EKF-SNPID. A brief description of the proposed
approach is given in the flowchart of Figure 6.

Begin

End

Randomly initialize and define 
Initialize Kalman filter settings , 

, and 

EKF training:
Compute and 
Update and 

Single neuron PID controller:
Compute the error 
Calculate inputs , and -
Compute outputs and 
Determine error 

Has the error 
converged?

True

False

Figure 6. Flowchart of the proposed adaptive neuron PID controller trained with EKF algorithm.

10



Electronics 2020, 9, 636

3. Implementation of the Adaptive Neuron PID Controller for an Omnidirectional Mobile Robot

Omnidirectional mobile robots were used in many robotic applications due to their movement
capabilities, which allow them simultaneously to move towards any position and reach any desired
orientation [46–49]. In contrast to the limit movement capabilities of a conventional mobile robot with
two or four wheels due to their nonholonomic kinematics constraints [50]. In this work, the proposed
single neuron PID controller is to make an omnidirectional mobile robot reach a desired position
and orientation; for this case, the control computes velocities.

3.1. Omnidirectional Mobile Robot Kinematics

The considered omnidirectional mobile robot in this work is made up of four mecanum wheels
placed similarly to a conventional vehicle (Figure 7). The pose of the robot with respect to the world
frame is given by three degrees of freedom (DOF), which are the positions x, and y, and the orientation θ.
Velocities of the mobile robot in the base frame are given by vx, vy, and vθ . Velocity vi correspond to
the velocity of each wheels with i = 1, 2, 3, 4, where vi = ri × wi, where ri is the radius of the wheels,
and wi is angular velocity. The parameter L is half of the distance between the front and the rear
wheels, and l is half of the distance between the left and right wheels.

Figure 7. Schematic of an omnidirectional mobile robot conformed of four mecanum wheels. See Figure 18
for a real mobile robot.

The inverse kinematics of the omnidirectional mobile robot in the base frame are given by (14) [51].⎡⎢⎢⎢⎣
v1 (t)
v2 (t)
v3 (t)
v4 (t)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 −1 − (L + l)
1 1 (L + l)
1 1 − (L + l)
1 −1 (L + l)

⎤⎥⎥⎥⎦
⎡⎢⎣vx (t)

vy (t)
vθ (t)

⎤⎥⎦ (14)

Velocities
[
vx vy vθ

]�
are mapped into the velocities

[
ẋ ẏ θ̇

]�
of the world frame using

the transformation (15). ⎡⎢⎣ẋ (t)
ẏ (t)
θ̇ (t)

⎤⎥⎦ =

⎡⎢⎣cos (θ (t)) − sin (θ (t)) 0
sin (θ (t)) cos (θ (t)) 0

0 0 1

⎤⎥⎦
⎡⎢⎣vx (t)

vy (t)
vθ (t)

⎤⎥⎦ (15)
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Equation (16) is obtained from Equations (14) and (15).⎡⎢⎢⎢⎣
v1 (t)
v2 (t)
v3 (t)
v4 (t)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
√

2 sin
(
θ + π

4
) −√

2 cos
(
θ + π

4
) − (L + l)√

2 cos
(
θ + π

4
) √

2 sin
(
θ + π

4
)

(L + l)√
2 cos

(
θ + π

4
) √

2 sin
(
θ + π

4
) − (L + l)√

2 sin
(
θ + π

4
) −√

2 cos
(
θ + π

4
)

(L + l)

⎤⎥⎥⎥⎦
⎡⎢⎣ẋ (t)

ẏ (t)
θ̇ (t)

⎤⎥⎦ = J (θ (t))

⎡⎢⎣ẋ (t)
ẏ (t)
θ̇ (t)

⎤⎥⎦ (16)

where J (θ) is a transformation matrix, which maps the mobile robot velocities
[

ẋ ẏ θ̇
]�

into
the velocities for each of the wheels.

For further information about the kinematics of the considered mecanum omnidirectional mobile
robot, please go to references [52,53].

3.2. Conventional Velocity Control Design

To achieve the position tracking, proper velocities have to be computed, then, the controller has to
find velocities ux (k), uy (k), and uθ (k) at step time k, to drive the mobile robot, from the current pose
(17) to the desired pose (18). The error between the desired pose and current pose is defined as (19):[

x (k) y (k) θ (k)
]�

(17)[
xr (k) yr (k) θr (k)

]�
(18)

⎡⎢⎣xe (k)
ye (k)
θe (k)

⎤⎥⎦ =

⎡⎢⎣xr (k)− x (k)
yr (k)− y (k)
θr (k)− θ (k)

⎤⎥⎦ (19)

A PID control can be use to compute the velocities vi (k) of the mobile robot in order to
asymptotically stabilize the system, for i = 1, 2, 3, 4 [51]. A discrete PID control laws [37] at step
k are given in Equations (20)–(22), respectively. For this control scheme, there is one PID module
for each error xe (k), ye (k), and θe (k). Parameters Kx

P, Kx
I and Kx

D are the proportional, integrative
and derivative gains for error xe, respectively. Similarly, the parameters Ky

P, Ky
I and Ky

D are the gains
for error ye, and Kθ

P, Kθ
I and Kθ

D are the gains for error θe.

ux (k) = Kx
P xe (k) + Kx

I

k

∑
j=1

xe (j) + Kx
D [xe (k)− xe (k − 1)] (20)

uy (k) = Ky
P ye (k) + Ky

I

k

∑
j=1

ye (j) + Ky
D [ ye (k)− ye (k − 1)] (21)

uθ (k) = Kθ
P θe (k) + Kθ

I

k

∑
j=1

θe (j) + Kθ
D [θe (k)− θe (k − 1)] (22)

Based on (16), the control outputs ux (k), uy (k) and uθ (k) are mapped to each wheel control
velocity uj (k) with j = 1, 2, 3, 4, using transformation matrix J (θ (k)) as follows⎡⎢⎢⎢⎣

u1 (k)
u2 (k)
u3 (k)
u4 (k)

⎤⎥⎥⎥⎦ = J (θ (k))

⎡⎢⎣ux (k)
uy (k)
uθ (k)

⎤⎥⎦ (23)

The conventional PID is widely used to control mobile robots due to its simplicity
and performance [51,54–56]. It is well known that the main problem of the conventional PID
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is the manual tuning of the proportional, integrative, and derivative gains. However, this paper
presents an adaptive single neuron PID approach to overcome this inconvenience. The proposed
approach can adjust itself online during the operation of the system.

3.3. Control Scheme Using the Adaptive Single Neuron PID Controller

The proposed control scheme based on the adaptive single neuron PID controller trained with EKF
algorithm (EKF-SNPID) of an omnidirectional mobile robot is shown in Figure 8. In order to minimize
the errors xe, ye and θe, an adaptive PID controller module is designed for each DOF. Then, each output
control signal (24) corresponding to each single neuron PID control module which is mapped into
the control velocities signals (25) for each wheel, respectively. The system output is given by the pose
of the mobile robot (26). [

ux (k) uy (k) uθ (k)
]�

(24)[
u1 (k) u2 (k) u3 (k) u4 (k)

]�
(25)[

x (k) y (k) θ (k)
]�

(26)

+
-

+
-

+
- System

Figure 8. Adaptive single neuron anti-windup PID control scheme for a omnidirectional mobile robot.

It is important to note that even with the inclusion of the anti-windup block to the single
neuron architecture (25), the computed control signal is bounded, then such control signal designed
for a dynamic system, such as the one for the mobile robot (15) is a feed forward neural control law,
which composes a stable system [57–59].

4. Results

In Section 4.1 results of both simulation and experimental tests of the proposed adaptive single
neuron PID controller trained with extended Kalman filter (EKF-SNPID) compared to conventional
PID, backpropagation trained adaptive neural PID controller (BP-PIDNN) [4], and an adaptive
neuron PID controller trained with Hebbian learning rule (HR-PIDNN) [19]. Then, in Section 4.1.1,
the proposed EKF single neuron PID controller is compared with a conventional PID controller with
a back-calculation anti-windup method [29].

The presented kinematic model of the mobile robot is given in continuous time domain. This model
is not used by the proposed EKF single neuron controller scheme. For simulation tests, the kinematic model
is programmed on Matlab® where it is discretize using zero-order hold Matlab® function method.
For the experimental tests, the information is sent a received on discrete instants of time.

4.1. Simulation Results

For this section, it is important to clear out that in the literature, the reported adaptive neural PID
controllers do not integrate an anti-windup scheme. In this way, the proposed scheme is compared
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against different adaptive neural PID controllers as they where reported. Moreover, limits for control
signals are not set due to lose of controllability of the techniques the proposal is compared with.

Simulation experiments consist of the tracking of different trajectories. Test are implemented
in Matlab®. Parameters for the omnidirectional mobile robot are set as: L = 0.2355 m, l = 0.15 m,
r = 0.0475 m, and sampling time k = 0.05 s.

For conventional PID controller, proportional gains are set as: Kx
P = 0.3, Ky

P = 0.3 and Kθ
P = 0.2,

integral gains Kx
I = 0.2, Ky

I = 0.2 and Kθ
I = 0.1, and derivative gains Kx

D = 0.1, Ky
D = 0.1 and Kθ

D = 0.05.
In addition, for adaptive neural PID controllers, weights are initialized randomly.

Parameter setting for proposed EKF-SNPID controller are: matricesP and Q are initialized as
diagonal matrices with P11 = P22 = P33 = 1 and Q11 = Q22 = Q33 = 0.1, the parameter R = 0.0001,
Kalman filter learning rates η1 = 0.1, η3 = 0.1 and η2 = 0.01 and α = 0.3. The selection of these
parameters was chosen experimentally. Considered trajectories at each step time k are generated
as follows:

• a sinusoidal trajectory is computed as

xr (k) = 0.05 k

yr (k) = 0.2 sin
((

1
0.5

)
xr (k)π

)
θr (k) =

π

8

• a rose curve trajectory generated as

a = 0.2 + 0.05 cos (3 (0.05) kπ)

xr (k) = a cos (0.05kπ)

yr (k) = a sin (0.05kπ)

θr (k) =
π

4

To compare the performance of the considered controllers, resulting tracking and control signals
are shown in graphs. Additionally, the root mean square (RMS) and mean absolute deviation (MAD)
measures of the obtained errors are reported.

4.1.1. Simulation Test: Sinusoidal Reference

Trajectory tracking results for the sinusoidal trajectory reference are shown in Figure 9. As with
the circular trajectory case, the proposed adaptive PID controller achieves the best tracking among
the other compared controllers.

Velocity control signals for the sinusoidal trajectory reference are provided in Figure 10. The proposed
EKF-SNPID controller reports faster performance than the others.

The system response for the sinusoidal trajectory reference is shown in Figure 11 where Figure 11a
shows the system response for x. In this case, it is shown that all compared controllers achieve
the reference successfully. Respect to system response for y, the proposed adaptive PID controller
outperformed the others, see Figure 11b. The proposal reported a less steady-state error. In contrast,
the other controllers have bigger errors. In Figure 11c, the system response for θ is presented. In this
case, there is not overshoot provided by the proposed EKF-SNPID.
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Figure 9. Trajectory following results for the sinusoidal trajectory. (a) Trajectory following for PID.
(b) Trajectory following for BP-PIDNN. (c) Trajectory following for HR-PIDNN. (d) Trajectory following
for EKF-SNPID.
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Figure 10. Velocity control signal results for the sinusoidal trajectory. (a) Velocity control signal of PID.
(b) Velocity control signal of BP-PIDNN. (c) Velocity control signal of HR-PIDNN. (d) Velocity control
signal of EKF-SNPID.
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Figure 11. System response for the sinusoidal trajectory. (a) System response for x. (b) System response
for y. (c) System response for θ.

The RMS and MAD results for the sinusoidal trajectory reference are presented in Table 1.
The proposed adaptive neuron PID controller outperforms the other compared controllers.

Table 1. Simulation results for the sinusoidal trajectory. The best results are highlighted in bold.

Measure Method xe ye θe

RMS

PID 4.6702×10−3 1.8181×10−2 6.6922×10−2

BP-PIDNN 5.0489×10−3 1.7526×10−2 6.7741×10−2

HR-PIDNN 9.4373×10−3 3.9668×10−2 8.5651×10−2

EKF-SNPID 4.1447×10−3 5.0465×10−3 5.0092×10−2

MAD

PID 3.0401×10−3 1.6364×10−2 3.0477×10−2

BP-PIDNN 3.1118×10−3 1.5772×10−2 3.1253×10−2

HR-PIDNN 6.2210×10−3 3.5599×10−2 4.7817×10−2

EKF-SNPID 1.2864×10−3 2.6786×10−3 1.9203×10−2
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4.1.2. Simulation Test: Rose Curve Reference

Figure 12 shows the trajectory following results for the rose curve trajectory. Also for this case,
the proposed adaptive PID controller outperformed the other controllers.
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Figure 12. Trajectory following results for the rose curve trajectory. (a) Trajectory following for PID) .
(b) Trajectory following for BP-PIDNN. (c) Trajectory following for HR-PIDNN. (d) Trajectory following
for EKF-SNPID.

Figure 13 provides the velocity control signal for the rose curve trajectory. Velocity control signals
for EKF-SNPID are lower than the others.

Figure 14 shows the system response for the rose curve trajectory test. The system response
for x, y, and θ are shown in Figure 14. The proposed adaptive PID controller follows in a better way
the desired references than the other controllers. In this case, the proposed approach has the lowest
steady-state errors. Additionally, the proposed controller reported a fast system response without
overshoot respect to θ, see Figure 14c.

Table 2 reports the RMS and MAD results for the rose curve trajectory. In this case, the BP-PIDNN
reported the best RMS respect to the xe error. On the other hand, the proposed EKF-SNPID controller
performed better than the other controllers for the ye and θe error. Additionally, the proposal achieved
the best results with the lowest MAD results.

Based on the reported results so far, the BP-PIDNN controller performed better than
the conventional PID controller. However, the performance of the proposed EKF-SNPID controller
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is superior to the compared controllers, respect to the best transient response, the smaller steady-state
errors, and lower overshoot results. Additionally, the performance of the PID controller for tracking
is acceptable. However, it is necessary to adjust the PID gains manually to improve its performance.
In contrast, the proposed adaptive EKF-SNPID controller does not require any adjustment.
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Figure 13. Velocity control signal results for the rose curve trajectory. (a) Velocity control signal of PID.
(b) Velocity control signal of BP-PIDNN. (c) Velocity control signal of HR-PIDNN. (d) Velocity control
signal of EKF-SNPID.

Table 2. Simulation results for the rose curve trajectory. The best results are highlighted in bold.

Measure Method xe ye θe

RMS

PID 2.0057×10−2 8.5850×10−3 1.4285×10−1

BP-PIDNN 1.8210×10−2 9.6169×10−3 1.5274×10−1

HR-PIDNN 2.7587×10−2 1.8114×10−2 1.3674×10−1

EKF-SNPID 1.8662×10−2 3.7495×10−3 1.2650×10−1

MAD

PID 1.0300×10−2 6.6289×10−3 6.6001×10−2

BP-PIDNN 9.6779×10−3 7.4597×10−3 7.7155×10−2

HR-PIDNN 1.8695×10−2 1.4109×10−2 5.9445×10−2

EKF-SNPID 4.9995×10−3 5.7139×10−3 3.4104×10−2
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Figure 14. System response for the rose curve trajectory. BP-PIDNN: Neural PID controller trained with
Back Propagation algorithm. HR-PIDNN: Neuron PID controller trained with Hebbian learning rule.
EKF-SNPID: the proposed neural PID controller trained with Extended Kalman filter. Label s: seconds.
Label m: meters. Label rad: radian. (a) System response for x. (b) System response for y. (c) System
response for θ.

4.2. Anti-Windup Tests

The following simulations results show the performance of the proposed neuron PID controller
with the integration of the back-calculation anti-windup method. Simulations consist of the tracking
of a trajectory with offsets. These offsets provoke velocity saturation in the mobile robot when trying
to reach the necessary speeds to get to the trajectory. The performance of the proposed adaptive single
neuron controller is compared against a PID with back-calculation anti-windup [29]. The conventional
PID is also considered for simulations to contrast the windup effects. These tests are implemented
in Matlab®.

The omnidirectional mobile robot of the previous simulation is also used for the following tests.
Similarly, parameter settings of the considered controllers are chosen. Moreover, the back-calculation

19



Electronics 2020, 9, 636

anti-windup on PID requires a parameter for the feeding back information [29], which is defined as Ts,
and its value is selected as 0.1. This tuning is not required by the proposed EKF-SNPID controller.

The considered trajectory at each step time k are given as follows:

• An approximated trapezoidal trajectory which is calculated as

xr (k) = 0.1k

b = 3.0 + 0.3 sin
((

1
1.5

)
xr (k)π

)

yr (k) =

⎧⎪⎨⎪⎩
3.2 if b ≥ 3.2
−3.2 if b < −3.2
b otherwise

θr (k) =
π

3

To compare the performance of the considered controllers in this test, results are shown
in graphs. Moreover, the RMS and MAD results are presented in terms of percent error. To compare
the performance of the proposed approach against the PID controller, we proposed to measure
the percent error as

% error =
PIDRMS − EKF-SNPIDRMS

PIDRMS
× 100 (27)

where a positive percent error indicates that the proposed approach performs better than PID,
and a negative percent error indicates that PID overcomes the proposed approach. The same equation
is used to compare the proposed controller against the PID with anti-windup. Similarly, the percent
error of MAD results are also measured.

Simulation Test: Trapezoidal Reference

Trajectory tracking and Velocity control signal for the trapezoidal reference are give in Figure 15.
The conventional PID presents a high tracking error caused by the windup effects, see Figure 15a.
The Figure 15c shows that the PID with anti-windup reports better tracking results, but the tracking
response is slow compared to the proposed EKF-SNPID with anti-windup that shows the fastest
tracking response without windup effects, see Figure 15e. The Figure 15b,d,f reports that the saturation
limits are reached by all controllers. The control signals are saturated at ux = 0.3 m/s, uy = 0.3 m/s
and ux = 0.3 rad/s.

The Figure 16 reports the system response for the trapezoidal trajectory tracking. The conventional
PID reports the highest overshoot. The PID reduces the overshoot with anti-windup. Moreover, the proposed
EKF-SNPID suppressed the overshoot and it reaches the reference faster than the others.

The percent errors for this test are give in Figure 17. As can be seen, a percent error is shown
for each error of the mobile robot pose xe, ye and θe. A percent error for RMS and MAD results is also
computed. Figure 17a reports the comparison of the proposed EKF-SNPID against the conventional
PID and Figure 17b illustrates the of EKF-SNPID against the PID with anti-windup. The reported
results for both comparison are positive percent errors. This indicates that the proposed adaptive
EKF-SNPID performs betters than the compared controllers.

This test indicates that the conventional PID controller suffers from overshot, which is provoked
by saturation velocity. The use of the back-calculation method in the PID highly reduces this
inconvenience. However, its response time and tracking results are poor. The conventional
back-calculation requires the tune of a gain parameter to improve this performance. In contrast,
the proposed EKF-SNPID with anti-windup outperformed the conventional PID and the PID with
anti-windup. The proposal reduces overshoot effectively. Moreover, it has a better response time
and tracking performance, even in the presence of saturation limits. Additionally, it does not require
any adjustment or tuning.
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Figure 15. Trajectory following and Velocity control signal results for the trapezoidal trajectory
with offsets. (a). Trajectory following for PID. (b) Velocity control signal of PID. (c) Trajectory following
for PID with anti-windup. (d) Velocity control signal of PID with anti-windup. (e) Trajectory following
for EKF-SNPID. (f) Velocity control signal of EKF-SNPID.
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Figure 16. System response for the trapezoidal trajectory with offsets. (a) System response for x.
(b) System response for y. (c) System response for θ.
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Figure 17. RMS and MAD percent errors results for the trapezoidal trajectory with offsets. The percent
errors x, y and theta were computed based on the RMS and MAD results of the mobile robot error pose
xe, ye and θe, respectively. (a) Percent error for EKF-SNPID vs PID. (b) Percent error for EKF-SNPID
vs. PID with anti-windup.

4.3. Experimental Results

Experiment tests are performed using a four-wheeled omnidirectional mobile robot.
The considered omnidirectional mobile robot is a KUKA® Youbot® platform (Figure 18). Its parameters
are L = 0.2355 m and l = 0.1 m, and the wheel radius r = 0.0475 m. For the experimental
test, the performance of the proposed EKF-SNPID controller, which includes the back-calculation
anti-windup, is compared to the PID controller with anti-windup. The PID and the proposed approach
were implemented in C++ using the KUKA® Youbot® API. The sampling time for the system is set
to 0.05 s.
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(a) (b)

Figure 18. Omnidirectional KUKA® Youbot® platform. (a) side and (b) front views.

In the case of the PID controller, proportional gains are set as Kx
P = 1.5, Ky

P = 1.5 and Kθ
P = 0.5,

integral gains are set as Kx
I = 0.5, Ky

I = 0.5 and Kθ
I = 0.3, and derivative gains are set as Kx

D = 0.01,
Ky

D = 0.01 and Kθ
D = 0.01. For the back-calculation method, the parameter tuning Ts was selected

as 0.1.
For the proposed adaptive EKF-SNPID controller, Kalman filter settings are given below. The matrices

P and Q are initialized as diagonal matrices with P11 = P22 = P33 = 1 and Q11 = Q22 = Q33 = 0.1.
The parameter r is set as 0.0001. The Kalman filter learning rates are set as η1 = 0.2, η3 = 0.2
and η2 = 0.01 and α = 0.3. Moreover, initial weights are set randomly. All these parameters were
chosen experimentally.

The experiments consist of some trajectory tracking tasks. The use of two trajectories with
different degrees of difficulty. was considered. The considered trajectories at step time k are generated
as follows:

• a sinusoidal trajectory is computed as

xr (k) = 0.1k

yr (k) = 0.2 sin (xr (k)π)

θr (k) = −π

4

• a rose curve trajectory with offsets is generated as

a = 0.2 + 0.05 cos (5 (0.1) kπ)

xr (k) = 2.5 + a cos (0.1kπ)

yr (k) = 2.5 + a sin (0.1kπ)

θr (k) =
π

4

For the simulation results, to compare the performance of the proposed EKF-SNPID and the PID
controller, tracking and control signals results are illustrated in graphs. Moreover, the RMS and MAD
measures of the achieved errors are reported in tables. Additionally, the RMS and MAD results
are reported in terms of percent error as well.

4.3.1. Experimental test: sinusoidal reference

Figure 19 reports trajectory tracking and the velocity control signal of the test for a sinusoidal
desired reference. Figure 19a,b show that the proposed EKF-SNPID controller outperformed PID.
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In this case, the proposal showed the best tracking result compared to PID, which performs poorly.
From Figure 19c,d, it is seen that proposed EKF single neuron PID controller is adjusting itself to reject
perturbation and changes during experimental test.
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Figure 19. Experimental results for the sinusoidal trajectory. (a) Trajectory following for PID.
(b) Trajectory following for EKF-SNPID. (c) Velocity control signal of PID. (d) Velocity control signal
of EFK-PIDNN.

Figure 20 shows system response results for the sinusoidal trajectory. System response for x, y
and θ are reported in Figure 20a–c, respectively. In this test, PID controller shows bigger steady-state
errors. In contrast, the adaptive EKF-SNPID controller performed better. In the case of the system
response for θ, PID controller provides a bigger overshoot and transient response, see Figure 20c.

Table 3 reports the RMS and MAD results for the sinusoidal trajectory. In this case, the RMS
and MAD results of the proposed EKF-SNPID controller are better than PID.

Table 3. Experimental results for the sinusoidal trajectory. The best results are highlighted in bold.

Measure Method xe ye θe

RMS PID 1.0232×10−2 2.4106×10−2 1.3638×10−1

EKF-SNPID 8.6468×10−3 7.8939×10−3 1.1402×10−1

MAD PID 4.8462×10−3 2.1612×10−2 5.3743×10−2

EKF-SNPID 2.9027×10−3 5.6546×10−3 3.7291×10−2
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Figure 20. System response for the sinusoidal trajectory. (a) System response for x. (b) System response
for y. (c) System response for θ.

4.3.2. Experimental Test: Rose Curved Reference

Trajectory tracking and velocity control signals of test for rose curve trajectory are shown
in Figure 21. This test includes velocity saturation since the trajectory includes offsets. Figure 21a,b
show the trajectory results for PID and for proposed EKF-SNPID controllers, respectively. In this test,
the EKF-SNPID performed better than PID. The velocities control signal for both controllers reached
the saturation limits in the first 4 seconds, see Figure 21c,d.

Figure 22 gives the system response for rose curve trajectory. The system response for x is shown
in Figure 22a and the system response for y is shown in Figure 22b. For both cases, the adaptive
EKF-SNPID controller outperformed PID with a better tracking results and faster system response.
Additionally, the proposal reported the smallest steady-state errors. Both controller suppressed
overshot, but PID controller showed slow response. The Figure 22c shows the system response for θ.
In this case, there is no presence of overshoot in the system response of the proposed adaptive controller.
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Figure 21. Experimental results for the rose curve trajectory. (a) Trajectory following for PID.
(b) Trajectory following for EKF-SNPID. (c) Velocity control signal of PID. (d) Velocity control signal
of EKF-SNPID.
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Figure 22. Cont.
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Figure 22. System response for the rose curve trajectory. (a) System response for x. (b) System response
for y. (c) System response for θ.

The RMS and MAD results for rose curve trajectory tests are reported in Table 4. The adaptive
EKF-SNPID controller performed better than PID. In this case, better RMS and MAD results
are provided by the proposal.

Table 4. Experimental results for the rose curve trajectory. The best results are highlighted in bold.

Measure Method xe ye θe

RMS PID 3.8207×10−2 3.4422×10−2 1.3833×10−1

EKF-SNPID 2.6344×10−2 2.0574×10−2 1.1510×10−1

MAD PID 2.9415×10−2 2.7517×10−2 5.4825×10−2

EKF-SNPID 1.2798×10−2 1.3251×10−2 3.8303×10−2

Finally, the percent errors for experimental results are give in Figure 23. This Figure reported
the comparison among the adaptive EKF-SPID and PID with anti-windup. RMS and MAD percent
errors for each error of the mobile robot pose xe, ye and θe are shown in Table 4. Figure 23a presents
the percent results for the sinusoidal tracking results and the Figure 23b shows the percent results
for the rose curve tracking results. The percent error for both tracking results are positive percentages,
which indicates that the proposed adaptive EKF-SNPID performs betters than PID.
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Figure 23. RMS and MAD percent errors results for EKF-SNPID vs PID with anti-windup. The percent
errors x, y and theta were computed based on the RMS and MAD results of the errors xe, ye and θe

from Table 4, respectively. (a) Percent error results for sinusoidal trajectory. (b) Percent error results
for rose curve trajectory.
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Based on the results of the experiments, the performance of the adaptive EKF-SNPID controller
is superior to PID controller with anti-windup. The results of PID controller present more significant
steady-state errors for the required references. In contrast, the proposed approach reported smaller
steady-state errors. PID controller needs to adjust its parameter setting to improve the performance.
On the other hand, these experiments proved that the proposed EKF-SNPID controller can adjust its
parameters to improve its performance. Moreover, the performance of the PID under perturbations
and changes during the operation of the experiment is poor. In contrast, the proposed EKF-SNPID can
adjust itself to overcomes these inconveniences. Additionally, the performance of EKF-SNPID to handle
with windup effects is superior to PID controller with conventional back-calculation anti-windup
method. Both controllers suppressed the overshoot provoked by saturation limits. However, the system
time response of the proposed EKF-SNIP is faster.

The parameter setting for conventional PID controller was heuristically determined. Simulations
and experiments results indicates that it is required to adjust the parameters of PID control to improve
its performance. Even if the model is known and the gains are properly adjusted, unmodelled dynamics
and uncertainties are present, moreover, the model changes when adding or changing sensors and it
should be tuned again regardless of the method used. In contrast, the proposed single neuron PID
adjusts dynamically these parameters to overcome this inconvenient.

5. Conclusions

In this paper, an adaptive single neuron PID controller trained with the EKF algorithm
was proposed. Simulations and experiments test was implemented to show the performance
of the proposed adaptive PID controller. Tests were designed for position tracking control of an
omnidirectional mobile robot. A comparative study against a conventional PID controller and other
adaptive neural PID controllers were included. The simulations report that the performance
of the proposed adaptive neuron PID controller is superior to the compared controllers, respect
to best transient response, smaller steady-state errors, and lower overshoot results. The use
of the EKF algorithm improves faster learning and convergence speeds compared to backpropagation.
An anti-windup test was also included to test the performance of the proposed controller under
saturation limits. The proposal showed a better time and tracking response than the PID controller with
a back-calculation anti-windup method. The experimental results indicate that the proposed adaptive
controller outperformed the performance of PID with better system response under perturbations
and changes during the operation of the experimental. Moreover, the conventional PID controller
requires the tuning of its gains to improve the performance, which is not necessary for the proposed
adaptive single neuron PID controller.

Based on the obtained results, the proposed scheme offers good performance compared to
more computationally demanding techniques. This makes it an excellent option to be implemented
in similar systems or as part of more complex systems as autonomous vehicles, where fast, reliable
responses are needed. Also, it can be seen as future work and implementation of a multilayer approach
of the proposal.

As future work, the proposed adaptive PID control can be used to control nonholonomic mobile
robots by including the nonholonomic constraints in the control scheme. Moreover, the parameter
setting of the EKF algorithm was heuristically determined. However, to improve the performance
of the proposed adaptive PID, the use of metaheuristic techniques can be used to optimize the EKF
parameters. Additionally, the proposed control method can be extended to handle time-delay systems.
Finally, the application of the proposed controller is online based on the Youbot API through ethernet
cable connection on the onboard computer. A study of the proposed scheme considering latency is left
as future work.
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Abbreviations

The following abbreviations are used in this manuscript:
ANN Artificial Neural Networks
PID Proporional Integrative Derivative
P Proportional error
I Integral of the error
D Derivative of the error
DOF Degrees of freedom
BP-PIDNN Neuron PID controller trained with Back Propagation algorithm
HR-PIDNN Neuron PID controller trained with Hebbian learning rule
EKF-SNPID Single neuron PID controller trained with Extended Kalman filter
m meters
m/s meters per second
s seconds
rad radian
rad/s radian per second
RMS Root Mean Square
MAD Mean Absolute Deviation
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Abstract: Proposed is the facilitation of fault-tolerant capability in autonomous systems with particular
consideration of low computational complexity and system interface devices (sensor/actuator)
performance. Traditionally model-based fault-tolerant/detection units for multiple sensor faults in
automation require a bank of estimators, normally Kalman-based ones. An AI-based control framework
enabling low computational power fault tolerance is presented. Contrary to the bank-of-estimators
approach, the proposed framework exhibits a single unit for multiple actuator/sensor fault detection.
The efficacy of the proposed scheme is shown via rigorous analysis for several sensor fault scenarios for
an electro-magnetic suspension testbed.

Keywords: fault tolerance; reconfigurable control; Maglev; neural networks; artificial intelligence

1. Introduction

Modern control systems require careful, reliable and economic design with maximum performance,
normally imposing several design trade-offs (economic design, reliability, performance). In particular,
reliability in control systems is vital especially in safety-critical systems (i.e., where faults must be
accommodated before the impaired system becomes unstable). In non-safety-critical system cases,
like production lines, reliability supports a normal operation regime avoiding production delays
and/or unnecessary maintenance. In areas more aligned to autonomy, such as in Unmanned Area
Vehicles (UAVs), the problem of considering control methods for reliability adds to the computational
power of the already limited resources [1–6].

Autonomous systems must be trustworthy, and trustworthiness has been a popular topic of
discussion in the current autonomous systems literature [7,8]. Reliability facilitates trustworthiness,
and in this context fault accommodation can be achieved with a priori design of a controller that has
the ability to take remedial actions so that the stability of the control system is maintained even with
degraded performance. The stability and performance of a control system depends upon the healthy
operation of its interfaces (actuators and sensors) and various approaches to design such capability
appear in the literature (both model-based and model-free methods) [9–17]. Fault-tolerant control
(FTC) supports reliability [18], the approach normally classified as either Passive (PFTC) or Active
(AFTC) [19]. Passive FTC type requires a prior knowledge of the faults, while the Active type (used in
this work) does not necessitate such knowledge of the fault rather a Fault Detection and Isolation (FDI)
mechanism with reconfigurable control. Reconfigurable FTC control has gained significant attention
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over recent years given the demand on reliable system design [20–22] and in the area of cyber-physical
systems [23].

Referring to sensor fault tolerance, especially after sensors failure, a few methods exist that use
the information from the remaining healthy sensors, in order to reconstruct the lost signal of the
faulty ones [24]. The latter methods include, use of a bank of Neural Networks (NNs) or use of
Kalman Estimators (KE) [1,25]. Both approaches are worth considering when aiming in avoiding
sensor redundancy. In contrast to the KEs approach, NNs have increased False Alarm Rates (FAR),
mainly because they leave a very small residual after fault estimation [24]. Despite that, they are
widely used since they can be designed without having precise knowledge of the model of the system
under test [26–29]. In the above approaches, where many actuators/sensors exist, an (in-parallel) bank
of estimators for multiple faults detection is employed [30]. For example, if there is one actuator with
ny sensors, then the number of sensor fault combinations that could happen is 2ny − 1 (where ny is
the total number of sensors, assuming that not all sensors can fail). Hence, to be able to detect those
faults it requires the same number of estimators. However, this increases the complexity of the control
design and requires additional computational resources, since the estimators must work in parallel.

NNs have been used to a great extend in many engineering fields including control systems [31,32],
as well as for Fault Detection (FD) methods in FTC systems [33,34] and more specifically in Sensor
FDI [24,35,36]. We proposed an AI-based FD mechanism, referred to as iFD, based on the use of Neural
Network approach that performs a similar task to the conventional bank-of-estimators FD albeit offers
substantially reduced computational complexity. Visually this is depicted in Figure 1, the bank of
the estimators running in parallel (dotted lines). The authors, in their brief paper [19], presented
the original concept framework from an automatic fault-tolerant control viewpoint. This paper
considerably extends the original results (with a particular emphasis on their interpretation) and
present how reliable system autonomy can be facilitated.

Figure 1. Bank of estimators (dotted lines) vs. proposed iFD (bold lines) for actuators/sensors estimates.

We discuss the framework solution with the help of a practical example, i.e., an Electro-Magnetic
Suspension (EMS) testbed (typically forms the suspension platform of Maglev train) to support the
vehicle compartment and maintain acceptable passenger ride quality. The rationale behind this
choice being that EMS (Maglev) is an inherently unstable, non-linear, safety-critical system, subject to
non-trivial control performance and reliability requirements (hence offering a challenging application
for the validation of the work). Sensor faults are first modelled and then the simulation results using
various fault scenarios showcase the proposed method.

The rest of the paper is organized as follows: Section 2 describes the proposed iFD approach
including a short description of the NN training, and Section 3.1 shows the efficacy of the proposed
method based on the analysis of the results (with the help of the practical example of the EMS—the
test case details been discussed in Appendix A). Conclusions are discussed in Section 4.
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2. Proposed Fault Detection Scheme

We employ the FD unit to detect actuator/sensor faults and activate controller reconfiguration.
The proposed FD scheme is NN-based and the concept is depicted in Figure 2. Industrial systems
typically exhibit Multiple-Input, Multiple Outputs. Control inputs relate to actuation (i.e., industrial
drives, motors, pumps, electro-magnets etc.), in a control setting indicated by variable U . Outputs
measure several useful parameters (both for control purposes and monitoring purposes), typically
indicated by variable Y . Control design satisfies a desired performance relevant to the application.

Figure 2. FDI general diagram with proposed iFD and including the binary switch operator.

When one or more actuators and/or sensors are impaired, those signals are distorted leading to
performance degradation or possibly instability of the closed loop. The sets of actuators and sensors
are defined as U = [u1, u2, . . . unu ] and Y = [y1, y2, . . . yny ], where uj is the jth actuator, yj is the jth
sensor, nu is the total number of actuators and ny is the total number of sensors.

The control loop features a bank of controllers [K1, K2, . . . Knyu ] and two isolation units for isolating
faulty actuator and sensor signals when these happen. The iFD mechanism is employed to detect the
faults and is comprised of a NN-based estimator, a Residual Generator (RG) and a Decision Mechanism
(DM). The NN estimator is trained in such a way that the actuators and sensors signals are estimated
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and fed into the RG which in its turn compares the real signals with the estimated ones. Immediately
after the RG has completed the comparison, it advances the residuals to the DM, leading to a decision
whether a component is faulty or not.

The key point in the proposed iFD method is the estimator training approach to observe U and Y
(the training process discussed in Section 2.1).

The inputs to the estimator are obtained from the Binary Switches (BS) depicted in Figure 2.
The BS have three inputs; one represents the real measured values of the U and Y and the other comes
from the functions Cuj and Cyj , defined as Cuj = [cu1 , cu2 . . . cunu ] and Cyj = [cy1 , cy2 . . . cyny ]. Cuj and
Cyj represent two arrays that contains predefined functions, used during the training and operation
of the iFD. Typically, calculating these values is benefited by designer experience as they tend to be
application dependent. The third input (ISyj ) is a binary input which controls the switching operation
between the inputs e.g., from y1 to cy1 . The output yBSj of the BS is given by (1)

yBSj = {yj , i f ISyj=1

cyj , i f ISyj=0 (1)

The residual generation is a vital task although is out of scope in this paper. The moving average
filter defined in (2), manages to accommodate the noise coming from the sensors to reduce the FAR [37].

ryj =
j

∑
j−(N−1)

(yj − ŷj)
2

N
(2)

where ryj is the residual, yj and ŷj are the jth real and estimated signals (for the actuators the y is
replaced by u), and N is the total number of past samples.

The DM decides whether one or more actuating and/or sensing components are impaired or not
by comparing the relative residual rj with a predefined threshold (engineer must define the threshold).
Threshold selection is a non-trivial task to perform, since it impacts both fault detection sensitivity of the
DM and the FAR. A very sensitive DM to faults (thresholds too low) causes increase of FAR, while a less
sensitive DM (thresholds too high) may cause instability due to delayed reconfiguration. Threshold
selection is normally done as trial-and-error process with designer experience in the application
beneficial. Within the AI remit of fault estimation, threshold selection has received attention [38] but
the details of this aspect are beyond the scope of this paper. In the proposed iFD, the Reconfiguration
Signal (RS) at the output of DM enables controller reconfiguration. The proposed iFD setup works
as follows:

• Given normal operation, the actuator(s)/sensors signals are estimated and then fed into the
residual generator. The generator calculates the residual (which would correspond to a very small
value under normal operation) for each actuator/sensor and feeds it to the DM. The DM outputs
the ISj and RS signals.

• With one or more actuator(s)/sensors failing the corresponding residuals rj increase and the DM
will detect the change by comparison with the relevant threshold levels. Next, the ISs will switch
in order to activate the corresponding BS to modify its output to cj; while the RS will feed the
appropriate data value to enable controller reconfiguration. The BSs will also isolate the signals
of the faulty devices from the estimator so that the latter ‘sees’ some ‘known’ data based on its
training/knowledge (this is described in the next section).

• Finally, the isolation units will remove faulty devices from the loop and the controller reconfigures
to maintain performance and stability.

2.1. Offline Training of the iFD Unit: Obtaining the Learning Set

As in all AI-based solutions, training of the algorithm is the key point. The NN iFD unit is trained
based on data accumulated from an extensive set of scenaria on subsets of the main sensor set, Y .
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The collected data are then packed in a structure shown on Table 1. The first column presents the
sensor set number from 1 to nyn, defined as,

nyu = 2(nu+ny) − 2nu − 2ny + 1 (3)

The second column shows the status of the sensor set, i.e., all possible sensor/actuator fault
scenarios are covered, and the next two columns show the measured sensors and actuators signals.
The last two columns reflect the estimated sensors and actuators signals. The data set D with
dimensions dr × dc is given by,

dr = nyu × k (4)

dc = ny + nu + nŷ + nû (5)

where nû and nŷ are the number of estimated signals for actuators and sensors, respectively. D is
constructed with data from numerical simulations with each sensor/actuator fault scenario. Where
the sensor(s) and/or actuator(s) is (are) assumed to be faulty, a known function cuj , cyj replaces the
k data points. In an automatic setup the design engineer is required to select a set of functions Cuj

and Cyj to replace the non-predicted outputs from the faulty actuators and sensors respectively. In an
autonomous setting, experience from automation and use of reinforced learning design will enable the
aforementioned choice (this part is studied as future research and is not the main aspect of the work
presented here).

When an actuator and/or sensor fault occurs, the corresponding function cuj and/or cyj is/are
connected to the iFD. This is a result of the iFD learning capability to respond to sensor/actuator faults
in a way that the iFD unit itself continually checks for faults on the full sensor set and its subsets.

An electro-magnetic suspension (EMS) system testbed (details in Appendix A) is used as the
practical platform to illustrate the proposed solution.

2.2. Visualizing the iFD Applied on the EMS Example

The EMS system is excited by a single control input (i.e., nu = 1), U = {uc}, and provides
four output measurements (i.e., ny = 4), namely Y = {i, (zt − z), ż, z̈}. The outputs are employed
for controller design. The H∞ Loop-Shaping Design Procedure (LSDP) robust control approach
was used to enable the necessary closed-loop performance. Please note that the airgap (zt − z) is
required by default as a standard input [39]. With (zt − z) a default measurement, the total number
of actuator/sensor sets are nyn = 8. Hence, eight LSDP controllers (i.e., K(zt−z), Ki,(zt−z), K(zt−z),ż,
K(zt−z),z̈, . . ., etc.) are used to cover the spectrum of (seven) possible sensor combinations that could
occur as indicated in Figure 3. Details on the design of LSDP controllers is discussed in [40]. The iFD
concept presented here can be considered for the detection and isolation of sensor faults in a typical
FTC system arrangement for other engineering test platforms. In the case of one or more sensors
failures, the relevant fault is detected and isolated (note that the isolation switches and the binary
switches are merged together as shown in the figure) and the system switches to the alternative
controller K• (for closed-loop purposes).
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ŷ 2
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D

1 û1 1
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1 ŷk 2

D
1 ŷk 3
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c3 ŷk 2
D

3 ŷk 3
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5 ŷ1 n ŷ
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5 ŷk n ŷ
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Figure 3. The proposed iFD solution using the EMS application example (basis from [19]).

Sensor faults can be categorized into additive and multiplicative categories. As clearly shown
in Figure 4, there exist three types of faults in each category, namely: (i) abrupt or step-type fault,
(ii) incipient or soft fault and (iii) indeterminate fault. The faults accounted for in this work fall into the
additive and multiplicative categories and are both abrupt and incipient types of faults. In the first case,
the output of the sensor is added or multiplied with a function fa and fm respectively. Indeterminate
faults could also belong to any combinations of the aforementioned faults, but they are assumed to
occur in random width time windows and amplitudes. These faults are treated like permanent by the
iFD, and they are ’captured’ once they appear.

(a) Fault categories. (b) Fault types.

Figure 4. Sensor fault categories (a) and types (b) (basis from [19]).

2.3. Neural Network Algorithm

A plethora of NN algorithm types exist in the research literature; however in this paper a dynamic
non-linear input-output Neural Network model with tapped delay lines at the input is employed for
time-series prediction. The NN’s task is to perform similar to that of the—more conventional—bank of
Kalman estimators (KE) in the feedback loop, as well as to predict future values based on past values
of one or multiple time-series. In particular, to predict φ(t) series based on nc past values of θ(t) series
so that φ(t) = λ(θ(t − 1), . . . , θ(t − nc)).

This type of NN algorithm is adapted to fit the inputs and targets of the suspension for the iFD
realization. It has a total of five inputs (uc and i, (zt − z), ż, z̈) and three estimated outputs (î, ˆ̇z, ˆ̈z).
Its internal architecture is shown in Figure 5, and is realized as a hidden layer (with one delay and
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20 hidden neurons) and an output layer with sigmoid and linear functions, respectively. Each neuron’s
output is generally described by (6),

on =
nn

∑
j=1

Δjwj + ψ (6)

where on is the neuron’s output, nn is the number of neuron’s inputs, w are the weights (is a vector
equal to the size of the neuron’s inputs), Δ are the delay lines and ψ is the bias point (considered to be
one for all neurons).

A fast convergence method for training moderate sized feed-forward neural networks is the
Levenberg-Marquardt backpropagation algorithm (for details see [41,42] (Chapters 11–12)).

The training data that were (later used to train the NN), were successively collected in equal time
windows T for all failing set combinations with a sampling time τs, on an online working state model
with the H∞ LSDP controllers in the feedback loop. The stopping criteria was set to a Mean Square
Error (MSE ≤ 10−5) or a maximum of 1000 epochs.

Figure 5. The Neural network architecture for the iFD as applied on the EMS.

3. Results Discussion

3.1. Efficacy and Assessment of the Proposed iFD

A rigorous analysis follows next, to show the effectiveness of the proposed iFD unit with results
from realistic simulations (MATLAB/Simulink) on the EMS system.

An offline training with a typical NN-based estimator, described in Section 2.3, was performed
prior to the FTC design of the suspension. The total training process (1000 epochs) required c.7 min on
a mobile workstation laptop (equipped with Intel® CoreTM i7-9750H @ 2.6 GHz, 32 GB RAM), with
the parameters described in the previous section. The total number of sensor and actuators, their
estimated signals and the number of actuator/sensor sets are, ny = 4, nu = 1, nŷ = 3, nû = 1 and nyu = 8
respectively.

The training data from each sensor set comprising D, were collected using sample rate τs = 1 kHz
under total simulation time T = 6.6 s. The data set D consists of data subsets Dd and Ds, drawn from
the deterministic and stochastic suspension responses (Subscripts d and s indicate the deterministic
and stochastic cases respectively). The data set used for training is as follows,

Ddr×dc =

[
Ddrd×dcd

d
Ddrs×dcs

s

]
(7)

where dr = drd + drs and dc = dcd = dcs are both found from (4). The total number of columns is
calculated as dc = 9, while the total samples per set is k = 6.6 × 1000, hence drd = drs = 52,800 and
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dr = 105,600. The functions used for the training of the NN are Cyj = {ci = 0, cż = 0, cz̈ = 0} with
dimensions k × 3. These functions are both used in the stochastic and deterministic responses of the
suspension where a fault is assumed, as explained in Section 2.1.

Overall, there are 4 sensors in the full sensor set (Y), while it is taken for granted that the actuator,
uc, and the airgap sensor (zt − z) cannot fail (in case where fault tolerance is required for the airgap
then redundant components can be used under a voting scheme). Three sensor fault possibilities are
considered: the current i, the vertical velocity ż and the acceleration z̈. Sensor faults are generally
classified into abrupt and incipient fault types. We also use additive and multiplicative faults with
bias for each one of the sensors i, ż and z̈. Figure 6 illustrates current sensor measurement, i, fault
profile (similar pattern fault profiles are used for other sensors in this work). For all cases, faults start
developing at time t f = 1 s (this is marked at point A in all relevant figures).

Figure 6a for the impaired sensor, illustrates the normal current value superimposed with a
low frequency band-limited random signal, ν(t), at frequencies of 10 rad/s and zero mean, white
noise characteristics and power spectral density of Si = 5 limited to ωi = 1.6 Hz. Consequently,
the additive/abrupt fault profile for the current sensor ( faai ) is given by,

faai (t) = {ν(t) i f t f ≤t<∞
0 i f t<t f

(8)

Sensor output ż and z̈ follow a similar pattern (same bandwidth) and Sż = 0.03 and Sz̈ = 2
respectively. Next, Figure 6b depicts the multiplicative/abrupt case ( fmai ) where the current sensor is
suddenly damaged at t = 1 s and as a result its output becomes five times larger than normal (9).

fmai (t) = {5 i f t f ≤t<∞
1 i f 0≤t<t f

(9)

The same fault profile is used for the other two sensors, ż and z̈. For the current measurement,
a bias (abrupt) type of failure is shown in Figure 6e. Clearly the sensor output abruptly increases (in a
step manner) to its maximum value, i.e., in this case max yoi = 10 A.

The incipient types of faults are illustrated in Figure 6c and Figure 6d respectively. In the
former figure the additive/incipient fault on the current measurement ( faii ) are described by (10).
The latter is a ramp type signal with σi slope superimposed with a low frequency random signal with
band-limited white noise characteristics as previously explained. The aforementioned figure, depicts
the multiplicative/incipient ( fmii ) fault described by (11), where the fault starts developing at t f = 1 s
and then falls to zero (due to multiplication by zero).

faii (t) = {σi(t−t f )+ν(t) i f t f ≤t<∞
0 i f 0<t<t f

(10)

fmii (t) = {σi(t−t f )+1+ν(t) i f t f ≤t<∞
1 i f 0<t<t f

(11)

The fault profiles for ż and z̈ follow the same behavior as above with effective slopes, σi = 20,
σż = 6 and σz̈ = 20 and for the PSD, Si = 0.5, Sż = 0.03 and Sz̈ = 0.5 respectively. The following
scenario supports explaining the iFD working principle:

• Three sensors are subsequently impaired with a time difference as follows: accelerometer at 0.5 s,
velocity at 1.5 s and current at 2 s),

• the deterministic disturbance to the suspension is used and,
• a multiplicative/abrupt fault profile is injected for each sensor at each time instant mentioned

above (e.g., for the current sensor see Figure 6b).

The airgap sensor output with fault-free case and with the aforementioned fault scenario is depicted
in Figure 7. The figure illustrates the airgap with a fault-free case (i.e., healthy sensor set, Y , with
Ki,(zt−z),ż,z̈) and under the fault scenario mentioned. The acceleration sensor is impaired at 0.5 s (point
A) and immediately after a controller reconfiguration follows (a new controller, Ki,(zt−z),ż, is introduced
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in the loop) in order to maintain the stability and performance of the EMS. The EMS response with
both fault-free and fault scenario comply with the control performance requirements described in
Appendix A. Following the acceleration fault, the velocity one fails at t = 1.5 s (designated at point B)
and the current sensor follows at t = 2 s (marked at point C). The subsequent faults are successfully
detected and accommodated via appropriate switching on Ki,(zt−z) and K(zt−z) respectively.

(a) Additive/abrupt fault profile, faai . (b) Multiplicative/abrupt fault
profile, fmai .

(c) Additive/incipient profile, faii . (d) Multiplicative/incipient fault
profile, fmii .

(e) Bias/abrupt fault profile.

Figure 6. Coil’s current sensor, i, fault profiles.
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Figure 7. Airgap sensor signal with fault-free and with the fault scenario, id: 8 of Table 2.

The sensor fault accommodation for each sensor failure is integrated in three steps. To assist in
explaining the steps of the procedure, the current sensor fault will be interpreted: (i) Sensor FD: when
the fault occurs at t = 1 s, the residual of the current measurement, ryi starts increasing and as soon as
it passes the threshold (see Figure 8) the fault is detected. (ii) Fault Isolation: at this stage the faulty
sensor is removed from the loop using a BS, while a ’known’ function cyi = 0 is connected at the input
of the iFD. Figure 9 clearly shows the signal at the input and output of the BS, as well as the signal at
the output of the iFD. (iii) Controller reconfiguration: after the faulty sensor isolation, a reconfiguration
signal is generated and the new controller, K(zt−z), is introduced in the loop.

Careful investigation of Figure 9 (after the fault occurs at point C) shows that the unit detect the
fault after a few time steps and that one time step is required for the BSyi portion to permanently
change its output to cyi = 0. Hence, the residual remains large which justifies the reason the BS
output will never return to its previous stage when/if the fault vanishes. The same figure also shows
the input to BSyi with the two previous sensor faults, i.e., acceleration and velocity (at point A and
B respectively).

Figure 8. Current sensor residual, ryi , when fault occurs at 2 s.

Table 2 indicates the resulted performance of the suspension and the false alarm (FA) after 70 tests,
analytically 35 for each deterministic and stochastic responses of the suspension. The first column
of the table describes the sensor fault scenarios used to test the proposed iFD. Typically, rows 2–4
show the results for single sensor faults that occur at t = 1 s, while the rest rows show the results
with subsequence faults starting from 0.5 s with a time difference of 1 s. The first six columns present
the performance with abrupt faults while the rest four, show the performance with incipient faults.
The track inputs exciting the EMS were discussed in Appendix A. Multiplicative (Mult.) and Additive
(Add.) faults are used, as well as a bias (Bis.) fault that occurs abruptly. Per the scenario case, entry �
indicates that EMS performance is successfully maintained, while entry “x” indicates the opposite.
In addition, if a FA arises is marked with a red color �.
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Close investigation of the aforementioned table of results indicates that the iFD successfully
detects and reconfigures the controller under all scenaria (maintaining the appropriate performance
levels). In some cases, i.e., in id: 7–8, an FA appears meaning that a sensor is ‘shown’ impaired
although truly is healthy. This is an important finding towards facilitating reliable system autonomy.
The threshold setting for the residual plays a substantial role and this needs to be addressed in a
reliable autonomous system (as an FA could hinder perception and hence impact system stability).

Given that the residual threshold of such sensor cases is increased to avoid the FA, and the sensors
are impaired themselves, then the FD could delay long enough to cause instability. Two particular
issues that have been noted and looked further as future research are: (i) in the NN-trained FD unit,
in general a small residual remains after a fault occurs in some scenaria, (ii) the coupled nature of the
closed-loop (FD unit, reconfiguration mechanisms, decision making). A deep learning approach is
currently investigated to address that uncertainty envelope.

Table 2. Performance with various sensor fault scenarios for the EMS.

Abrupt Fault Incipient Fault

id
Faulty

Mult./FA Add./FA Bis./FA Mult./FA Add./FA
Sensor(s)

Sth. Dtm. Sth. Dtm. Sth. Dtm. Sth. Dtm. Sth. Dtm.

1 Fault-free �/x �/x �/x �/x �/x �/x �/x �/x �/x �/x
2 i �/x �/x �/x �/x �/x �/x �/x �/x �/x �/x
3 ż �/x �/x �/x �/x �/x �/x �/x �/x �/x �/x
4 z̈ �/x �/x �/x �/x �/x �/x �/x �/x �/x �/x
5 i → ż �/x �/x �/x �/x �/x �/x �/x �/x �/x �/x
6 i → z̈ �/x �/x �/x �/x �/x �/x �/x �/x �/x �/x
7 ż → z̈ �/x �/� �/x �/� �/x �/� �/x �/� �/� �/�
8 z̈ → ż → i �/x �/� �/x �/� �/x �/� �/x �/� �/x �/�

Mult.—Multiplicative, Add.—Additive, FA—False Alarm, Sth.—Stochastic, Dtm.—Deterministic,
Bis.—Bias.

Figure 9. Input-output of the BSyi of the current sensor, i, and the output of the iFD.

Sensor FD time investigation is seen on Table 3. Column-wise: column 1 maps the identifier
number for the chosen scenario, column 2 lists the sensors (remark: underlined channels indicate
faulty ones with incident occurring at t f which is shown column 3). The rest of the columns refer to
FD time, td, in particular the ones marked using boldface font indicated fault occurrence is detected
(while boldface entries with superscript “*” are the false alarms).
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Careful investigation of the results shows that with abrupt single sensor failures (id: 1–3) the
fault detection succeeds at the instance the sensor fails. In the incipient fault cases, a short delay
within 0.030–0.399 s is noted. However, this delay does not hinder performance due to the robust
controller. Although delays are observed in FD throughout these three and the next two scenaria, none
of these cause FAs. In the last two scenarios (i.e., in scenario 6: two subsequent faults on velocity and
acceleration outputs are considered and in scenario 7: acceleration, velocity and current sensors are
impaired sequentially) FAs appear mainly in the current sensor case. Please note that other observed
fault delays in iFD are successfully accommodated via the control reconfiguration.

Table 3. Sensor (-Snr.) fault detection time, td, for the various fault scenarios.

Fault Detection Time, td(s)

id Snr.
t f Abrupt Fault Incipient Fault

Mult. Add. Bis. Mult. Add.(s)

Sth. Dtm. Sth. Dtm. Sth. Dtm. Sth. Dtm. Sth. Dtm.

1
i 1 1.000 1.000 1.000 1.000 1.000 1.000 1.052 1.000 1.000 1.000
ż - - - - - - - - - - -
z̈ - - - - - - - - - - -

2
i - - - - - - - - - - -
ż 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 2.399 1.000
z̈ - - - - - - - - - - -

3
i - - - - - - - - - - -
ż - - - - - - - - - - -
z̈ 1 1.000 1.000 1.000 1.000 1.000 1.000 1.030 1.000 2.075 1.000

4
i 0.5 0.500 0.500 0.500 0.500 0.500 0.500 0.527 0.500 0.500 0.500
ż 1.5 1.500 1.502 1.500 1.500 1.500 1.500 1.517 1.500 2.335 1.511

z̈ - - - - - - - - - - -

5
i 0.5 0.500 0.500 0.500 0.500 0.500 0.500 0.527 0.500 0.500 0.500
ż - - - - - - - - - - -
z̈ 1.5 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.510 1.514 1.500

6
i - - 1.700 * - 1.700 * - 1.700 * - 1.700 * 2.400 * 1.700 *
ż 0.5 0.500 0.500 2.070 0.500 0.500 0.500 0.500 0.500 2.423 0.534

z̈ 1.5 1.500 1.500 1.500 1.500 1.500 1.700 1.500 1.500 2.403 1.500

7
i 2.0 2.000 0.654 * 2.000 0.654 * 2.000 0.650 * 2.614 0.654 * 2.000 0.654 *
ż 1.5 1.517 1.502 1.500 1.500 1.500 1.500 1.517 1.502 2.336 1.511

z̈ 0.5 0.506 0.500 0.500 0.500 0.500 0.500 0.508 0.500 0.500 0.500

3.2. Comparison of the Execution Time

Using the full sensor set, Y is possible to compare the time taken for a simulation to complete i.e.,
the execution time (te) using the iFD with that for a bank of eight in-parallel KEs as shown in Figure 10a.
The execution time is measured at a high-level simulation in Simulink platform iteratively (×100)
with each estimator. The execution time for each simulation is illustrated in Figure 10b. The mean
simulation time for the iFD is 0.5 s, while that of the bank-of-estimators setup 7.9 s. Clearly the iFD
is c. ×16 faster, in terms of mean exec. time, compared to the bank of KEs (in addition the proposed
scheme offers c. ×13 lesser standard deviation i.e., 0.15 s). The comparison showcases a two-fold
aspect: (i) the efficacy of the proposed fault detection approach in terms of fast actuators/sensors fault
detection, (ii) a level of re-assurance as the proposed approach performs within the same envelope of
performance of the conventional bank-of-estimators approach.
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(a) (b)

(c)

Figure 10. Computational complexity comparison bank of KE vs. iFD (AI-based) for multiple sensors
failure detection on the EMS system: (a) bank of KE (inner box) vs. iFD architecture (outer box),
(b) execution time performance, (c) normal probability plot of execution time data.

Figure 10c shows the normal probability plots for the conventional bank of estimators and
proposed AI-based schemes. Clearly with very different execution time average, it is seen that the
former setup is closer to a normal distribution, the latter NN-based solution favors faster execution
time (while providing comparable performance). The importance of this result is two-fold, which we
study further, (i) maintaining similar level of performance/reliability to an acceptable conventional
solution enables certification [43] and (ii) correlating the process with descriptive statistics supports
faster training for the autonomous system solution. To summarize, the following specific comments
are highlighted for the proposed scheme:

1. a single AI-based estimator unit can be used in the FDI instead of the conventional bank of
estimators benefiting substantial computational resource reduction;

2. the AI-based unit maintaining similar level of performance/reliability to an acceptable
conventional solution enables certification [43];
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3. faults of multiple characteristics can be handled appropriately by the single AI-based unit as in
the more conventional cases;

4. correlating the process with descriptive statistics will support faster autonomous system training.

4. Conclusions

We presented an AI-based, using neural networks, method referred to as iFD, towards more
reliable system autonomy via detecting actuator/sensor faults. The methods were supported by a
detailed analysis on multiple (70) fault scenarios using an electro-magnetic suspension system testbed.
Various sensor fault types were studied i.e., abrupt/multiplicative, abrupt/additive, abrupt/bias,
incipient/multiplicative and incipient/additive characteristics. The results clearly show that: a single
AI-based estimator can be used in the FDI instead of the conventional bank of estimators, which benefits
computational resource reduction. The paper indicates important point towards reliable AI-based
system autonomy from the FD and threshold discussion. Currently the scheme follows a conservative
approach that considers indeterminate faults as permanent ones which are removed as soon as they
are detected (to enforce a level of reliability in performance). It is worth mentioning that training (and
availability of data) plays an important role in the development.
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Appendix A. The EMS System—A Test Case

We use a single-stage EMS system platform representation (typically representing a quarter of a
Maglev vehicle [44]. The model is actually extensively discussed in [45]. It is the nature of the EMS
system that makes it appealing as a test system [46], i.e., being inherently unstable, safety-critical
system, under non-trivial control requirements. Figure A1a presents the EMS schematic diagram,
the input excitation profile and Figure A1c lists the performance constraints.

The characteristics of the system are discussed in [45]. In particular, the vehicle mass (Mc) is
supported on the electromagnet with the distance between them being the so-called airgap (zt − z).
Normally the airgap does not exceed 15 mm. The rest of the variables of interest are: flux B, force F,
current I, airgap (zt − z), input voltage to the EM Vc, vehicle position Z. Please note that the designed
operating condition for the EMS system is at airgap of 15 mm, with nominal force 9810 N, nominal
flux 1 T, nominal current Io = 10 A, and operating voltage 100 V. For the linearized time invariant state
space model of the EMS and the electromagnet parameter calculations the reader is referred to [19,45].

In addition, for simulation purposes the operational scenario uses deterministic rail track
information due to the intended changes of the rail’s inclination. This transition, vertical direction only,
onto the rail’s gradient is simulated by the signal shown in Figure A1b. We also consider stochastic
track irregularities as random variations of the rail’s vertical layout typically caused by the installation
process i.e., accumulated inaccuracies and unevenness. Such track elements normally are difficult to
measure (some information can be provided from a monitored track database, or a specialist track
condition measurement vehicle), while attempts to estimate irregularities from vehicle-based sensor
exist in the current literature [47]. Considering the vertical direction, the velocity variations can be
approximated by a double-sided power spectrum density [19].
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(a) The single-stage EMS system. (b) EMS’ deterministic input
profile.

(c) EMS control constraints.

Figure A1. EMS systems and its constraints.

Moreover, the control design requirements of an EMS system are dependent on the train type and
its speed [48]. The EMS system should follow the gradient onto the rail (deterministic) and remain
insensitive to track irregularities. Figure A1c summarizes the control performance requirements.

References

1. Napolitano, M.; Windon, D.; Casanova, J.; Innocenti, M.; Silvestri, G. Kalman filters and neural-network
schemes for sensor validation in flight control systems. IEEE Trans. Control Syst. Technol. 1998, 6, 596–611.
[CrossRef]

2. Rago, C.; Prasanth, R.; Mehra, R.K.; Fortenbaugh, R. Failure detection and identification and fault tolerant
control using the IMM-KF with applications to the Eagle-Eye UAV. In Proceedings of the 37th IEEE
Conference on Decision and Control, Tampa, FL, USA, 18 December 1998; Volume 4, pp. 4208–4213.

3. Ranjbaran, M.; Khorasani, K. Fault recovery of an under-actuated quadrotor Aerial Vehicle. In Proceedings of
the 49th IEEE Conference on Decision and Control, Atlanta, GA, USA, 15–17 December 2010; pp. 4385–4392.

4. Petritoli, E.; Leccese, F.; Ciani, L. Reliability and Maintenance Analysis of Unmanned Aerial Vehicles. Sensors
2018, 18, 3171. [CrossRef] [PubMed]

5. Nguyen, N.P.; Hong, S.K. Fault Diagnosis and Fault-Tolerant Control Scheme for Quadcopter UAVs with a
Total Loss of Actuator. Energies 2019, 12, 1139. [CrossRef]

6. Chen, X.M.; Wu, C.X.; Wu, Y.; Xiong, N.X.; Han, R.; Ju, B.B.; Zhang, S. Design and Analysis for Early Warning
of Rotor UAV Based on Data-Driven DBN. Electronics 2019, 8, 1350. [CrossRef]

7. Lussier, B.; Chatila, R.; Guiochet, J.; Ingrand, F.; Lampe, A.; Olivier Killijian, M.; Powell, D. Fault Tolerance
in Autonomous Systems: How and How Much? In Proceedings of the 4th IARP/IEEE-RAS/EURON
Joint Workshop on Technical Challenge for Dependable Robots in Human Environments, Nagoya, Japan,
16–18 June 2005; 10p.

8. Kate Devitt, S. Trustworthiness of Autonomous Systems. In Foundations of Trusted Autonomy; Abbass, H.A.,
Scholz, J., Reid, D.J., Eds.; Studies in Systems, Decision and Control; Springer International Publishing:
Cham, Switzerland, 2018; pp. 161–184. [CrossRef]

48



Electronics 2020, 9, 788

9. Napolitano, M.; An, Y.; Seanor, B. A fault tolerant flight control system for sensor and actuator failures using
neural networks. Aircr. Des. 2000, 3, 103–128. [CrossRef]

10. Campa, G.; Fravolini, M.L.; Seanor, B.; Napolitano, M.R.; Gobbo, D.D.; Yu, G.; Gururajan, S. On-line learning
neural networks for sensor validation for the flight control system of a B777 research scale model. Int. J.
Robust Nonlinear Control 2002, 12, 987–1007. [CrossRef]

11. Lunze, J.; Schroder, J. Sensor and actuator fault diagnosis of systems with discrete inputs and outputs.
IEEE Trans. Syst. Man Cybern. Part B 2004, 34, 1096–1107. [CrossRef]

12. Edwards, C.; Tan, C. Sensor fault tolerant control using sliding mode observers. Control Eng. Pract. 2006,
14, 897–908. [CrossRef]

13. Talebi, H.; Khorasani, K. An intelligent sensor and actuator fault detection and isolation scheme for nonlinear
systems. In Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA, USA,
12–14 December 2007; pp. 2620–2625.

14. Talebi, H.A.; Khorasani, K. A neural network-based actuator gain fault detection and isolation strategy for
nonlinear systems. In Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA,
USA, 12–14 December 2007; pp. 2614–2619.

15. Heredia, G.; Ollero, A.; Bejar, M.; Mahtani, R. Sensor and actuator fault detection in small autonomous
helicopters. Mechatronics 2008, 18, 90–99. [CrossRef]

16. Yetendje, A.; Seron, M.M.; Doná, J.A.D.; Martínez, J.J. Sensor fault-tolerant control of a magnetic levitation
system. Int. J. Robust Nonlinear Control 2010, 20, 2108–2121. [CrossRef]

17. Realpe, M.; Vintimilla, B.X.; Vlacic, L. A Fault Tolerant Perception system for autonomous vehicles.
In Proceedings of the 2016 35th Chinese Control Conference (CCC), Chengdu, China, 27–29 July 2016;
pp. 6531–6536.

18. Ding, S.X. Data-Driven Design of Fault Diagnosis and Fault-Tolerant Control Systems; Springer: London,
UK, 2014.

19. Michail, K.; Deliparaschos, K.M.; Tzafestas, S.G.; Zolotas, A.C. AI-Based Actuator/Sensor Fault Detection
With Low Computational Cost for Industrial Applications. IEEE Trans. Control Syst. Technol. 2016, 24,
293–301. [CrossRef]

20. Hwang, I.; Kim, S.; Kim, Y.; Seah, C.E. A survey of fault detection, isolation, and reconfiguration methods.
IEEE Trans. Control Syst. Technol. 2010, 18, 636–653. [CrossRef]

21. Zhang, Y.; Jiang, J. Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev.
Control 2008, 32, 229–252. [CrossRef]

22. Chibani, A.; Chadli, M.; Ding, S.X.; Braiek, N.B. Design of robust fuzzy fault detection filter for polynomial
fuzzy systems with new finite frequency specifications. Automatica 2018, 93, 42–54. [CrossRef]

23. Ruiz-Arenas, S.; Rusák, Z.; Horváth, I.; Mejí-Gutierrez, R. Systematic exploration of signal-based indicators
for failure diagnosis in the context of cyber-physical systems. Front. Inf. Technol. Electron. Eng. 2019, 20,
152–175. [CrossRef]

24. Samy, I.; Postlethwaite, I.; Gu, D.W. Survey and application of sensor fault detection and isolation schemes.
Control Eng. Pract. 2011, 19, 658–674. [CrossRef]

25. Samy, I.; Postlethwaite, I.; Gu, D.W. A comparative study of NN- and EKF-based SFDA schemes with
application to a nonlinear UAV model. Int. J. Control 2010, 83, 1025–1043. [CrossRef]

26. Tzafestas, S. System Fault Diagnosis Using the Knowledge-Based Methodology. In Fault Diagmosis in
Dynamic Systems; Patton, R., Frank, P., Clark, R., Eds.; Prentice Hall: Upper Saddle River, NJ, USA, 1989;
pp. 502–552.

27. Mok, H.; Chan, C. Online fault detection and isolation of nonlinear systems based on neurofuzzy networks.
Eng. Appl. Artif. Intell. 2008, 21, 171–181. [CrossRef]

28. Skoundrianos, E.N.; Tzafestas, S.G. Fault diagnosis via local neural networks. Math. Comput. Simul. 2002,
60, 169–180. [CrossRef]

29. Skoundrianos, E.N.; Tzafestas, S.G. Modelling and FDI of Dynamic Discrete Time Systems Using a MLP
with a New Sigmoidal Activation Function. J. Intell. Robot. Syst. 2004, 41, 19–36. [CrossRef]

30. Isermann, R. Supervision, fault-detection and fault-diagnosis methods–an introduction. Control Eng. Pract.
1997, 5, 639–652. [CrossRef]

31. Albu, A.; Precup, R.E.; Teban, T.A. Results and challenges of artificial neural networks used for decision-making
and control in medical applications. Facta Univ. Ser. Mech. Eng. 2019, 17, 285. [CrossRef]

49



Electronics 2020, 9, 788
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Abstract: Increasing levels of autonomy impose more pronounced performance requirements for
unmanned ground vehicles (UGV). Presence of model uncertainties significantly reduces a ground
vehicle performance when the vehicle is traversing an unknown terrain or the vehicle inertial
parameters vary due to a mission schedule or external disturbances. A comprehensive mathematical
model of a skid steering tracked vehicle is presented in this paper and used to design a control law.
Analysis of the controller under model uncertainties in inertial parameters and in the vehicle-terrain
interaction revealed undesirable behavior, such as controller divergence and offset from the desired
trajectory. A compound identification scheme utilizing an exponential forgetting recursive least
square, generalized Newton–Raphson (NR), and Unscented Kalman Filter methods is proposed
to estimate the model parameters, such as the vehicle mass and inertia, as well as parameters of
the vehicle-terrain interaction, such as slip, resistance coefficients, cohesion, and shear deformation
modulus on-line. The proposed identification scheme facilitates adaptive capability for the control
system, improves tracking performance and contributes to an adaptive path and trajectory planning
framework, which is essential for future autonomous ground vehicle missions.

Keywords: unmanned tracked vehicle; inertial parameters; vehicle-terrain interaction; identifica-
tion; recursive least square with exponential forgetting; generalized Newton–Raphson; Unscented
Kalman Filter

1. Introduction

The growing interest in the development of autonomous platforms establishes new
research directions that address challenges associated with autonomous systems operations.
Control of unmanned ground vehicles is a complex task due to vehicle-ground interactions
that can strongly influence dynamics of the system and, at the same time, are very difficult
to be measured or estimated analytically. Most of the important parameters may vary
because a vehicle can cross different types of terrains during motion, mass and inertia
can vary due to mission plan, etc. All these factors tend to influence control performance
negatively and, as a result, trajectory tracking capabilities.

Learning and updating vehicle dynamics on the fly can tackle the aforementioned
issues and improve the control and trajectory tracking performance, thus providing a
framework for adaptive path-planning and control [1–4].

Usage of tracked vehicles in military, rescue, agricultural and recreational missions
where terrain conditions are difficult or unpredictable is common. This is because tracked
vehicles perform better than wheeled vehicles due to the larger contact area of tracks which
provides better flotation and better mobility over unprepared terrain [3,5]. Hence, tracked
vehicles are preferred choice for autonomous off-road tasks.

Skid steering can be characterized by an absence of a separate steering system, like,
for example, in the Ackermann steering system. Advantages provided by the skid-steered
scheme are a simple mechanical structure, robustness and high maneuverability [6].
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Skid-steering, although energy inefficient, is commonly used for mobile robots (both
wheeled and tracked) with the requirement of good mobility.

Skid-steering is performed by controlling relative velocities of the drives on the left
and right sides of the vehicle; hence, track slippage causes turning. In this case, the
motion of the tracked vehicle is governed by the two longitudinal track forces and the
lateral friction force. Due to the fact that the friction force depends on the linear and
angular velocities, the force equilibrium equation perpendicular to the tracks becomes a
non-integrable differential equality constraint [3]. Maneuvering capabilities also depend
on the complex vehicle—ground interaction [7].

For identification of varying parameters in real-time applications, kinematic models
of vehicles seems more attractive as they put a less computational burden on the on-board
instrumentation at the expense of unmodeled dynamic effects. Unfortunately, such simpli-
fication might be especially inefficient in case of skid-steering due to significant slippage.
Some authors addressed this problem in their researches. For example, Wu et al. [7] pro-
posed a method for experimental estimation of the wheeled vehicle kinematics. In their
work, they applied approximating function with identifiable parameters to derive the
relationship between the instantaneous center of rotation of the vehicle, its speed and
path curvature. A different approach was studied by Sutoh et al. [8], who experimentally
obtained the relationship between a rover’s wheels input and output velocities for various
types of loose terrain such as silica or gravel.

The biggest challenge in the ground vehicle dynamics modeling is a description of
the vehicle-ground interaction. For the wheeled vehicles, model obtained experimentally
by Pacejka [9] and so-called ‘Pacejka’s magic formula’ is most widely used. In the case of
tracked vehicles, the majority of authors applies the work of Wong [5]. A workaround for
contact modeling problem was demonstrated in Reference [10], where a tyre-model-free
integral control method correcting the wheel slip coefficient in real-time was designed.
Many researches, however, utilize the classic dynamics model, including contact forces
obtained with analytical functions derived from experimental data. Equations of motion
for skid-steering based mobile robots are well-known and can be found to name a few in
Reference [6,11–13]. Ahmadi et al. [14] slightly simplified the model by excluding the non-
holonomic constraint from the dynamics equations, while Tang et al. [15] considered more
complex and generalized track-terrain interactions model. Some advanced methods were
also used to describe vehicle-terrain interaction. For example, Economou and Colyer [16]
utilized the Fuzzy Logic for modeling of the vehicle-ground interactions based on the
experimental results obtained for an electric wheeled skid steer vehicle under steady-state
conditions and a variety of motions and surfaces. A neural network was employed to
model the steering dynamics of an autonomous vehicle in Reference [17].

The path tracking control problem of a skid-steered vehicle is a fairly well-researched
field. Hence, a variety of approaches can be found in the existing literature. Due to the
highly nonlinear nature of the considered class of ground vehicles, a common starting point
for the trajectory tracking control design is the feedback linearization. Thus, a linear control
law can be further applied. The feedback linearization is thoroughly described in Refer-
ence [18]. A similar approach was used in Reference [11], and an exponentially stabilizing
state feedback was further applied to complete the control design. Feed-forward friction
compensation is implemented alongside the feedback linearization in Reference [14]. Their
controller is based on the simplified model of the tracked vehicle. The elaborated force-
slip relationship is linearized to relate the inputs with the states of the system. A robust
recursive LQR design was applied for the mobile robot in Reference [19]. A neural network
model of the steering dynamics of an autonomous vehicle developed in Reference [17]
was integrated with a Nonlinear Model Predictive Controller to generate feed-forward
steering commands. Recently, approaches based on dynamic model of vehicle for optimal
path planning and tracking control of unmanned ground vehicles (UGV) were proposed
in Reference [20,21]. Moreover, a novel approach introduced in Reference [22] employs a
backstepping technique to robustly control the instantaneous center of rotation position
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of the vehicle so that it relates to the path curvature and the desired vehicle speed. The
backstepping method was also utilized by Zou et al. [13], who designed a modified PID
computed-torque controller for an unmanned tracked vehicle.

From a practical point of view, the interest of the current research lays in identification
of the following parameters: mass, inertia, and slip, as well as the soil parameters, as part
of the vehicle-terrain interaction model.

Vehicle mass and inertia estimations become increasingly important with the rising
popularity of autonomous vehicles. These parameters are especially vital in the heavy-duty
vehicles automation, powertrain and economic cruise control [23,24]. Upon the analysis
of approaches presented in the existing literature, exponential forgetting recursive least
squares (EF RLS) method is the most widely used for this purpose [23–25] since it is a
very powerful and robust method when the system dynamics can be represented in a
linear form. A different method for vehicle mass estimation was introduced by Rhode and
Gauterin [26], who utilized the total least squares (TLS) regression.

Regarding the slip estimation, although it is possible to measure all the quantities
essential for obtaining the slip value from analytical expressions, measurement inaccuracies
and errors lead to the results highly inconsistent with the real slip values. As the slip
estimation problem has a significant impact on the tracked vehicle control, therefore, many
researchers sought the solution.

Dar and Longoria [27] utilized an Extended Kalman Filter (EKF) with state noise com-
pensation to estimate slip, trajectory and orientation of a small tracked vehicle. However,
some authors question the accuracy of EKF estimation, especially in the case of the fast
dynamics. Instead, they suggest employing an Unscented Kalman Filter (UKF) which can
provide more accuracy without linearization [28]. In research [29], not only kinematics of
the vehicle but also simplified dynamics were included in the UKF design. Alternatively, a
sliding mode observer (SMO) was exploited in Reference [30] to obtain an accurate slip
estimation. In their comparative studies, the authors proved that both the UKF and SMO
yield better results than those obtained with the EKF.

Another important vehicle dynamics parameter is the maximum tractive effort that
certain vehicle can develop on certain soil types. This property has a major influence on
path planning as it can restrict the maneuverability of the vehicle and has a huge impact
on the energy efficiency [5]. For satisfactory estimation of soil parameters the Newton–
Raphson (NR) method is widely used [31–33]. In particular, in Reference [31], the authors
conducted a comparison between NR and RLS that manifested that the former yields much
better estimation accuracy and robustness as RLS tends to diverge quite often as it is more
prone to the measurement noise.

UGVs are characterized by nonlinear dynamics and excited by a combination of multi-
ple external and internal (to the system) factors. Even small variation (and/or uncertainties)
in parameters of a nonlinear system can cause dramatic departures from a “nominal” case
scenario. Although many research works focused on designing algorithms for the identifi-
cation of a particular parameter of UGV dynamics, there is a lack of studies addressing the
whole (integrated) dynamics or, at least, its major part. A rigorous evaluation of the system
performance is required, especially, while traversing unknown terrains (as is the case inves-
tigated in this paper). Such an integrated estimator-based approach is extremely valuable
for the development of advanced autonomous systems utilizing AI tools to estimate and
predict vehicle behavior for uncertain in nature terrain environments and generate optimal
path [2,34,35].

Thus, the main aim of this research was the development of an integrated system
running on-line algorithms estimating different vehicle model parameters. To reach this
aim, the simplicity and computational efficiency were prioritized. Influence of uncertainties
of the dynamics model used for the control design on the behavior of an autonomous
tracked vehicle was studied. On-line system identification algorithms using the EF RLS,
UKF, and NR algorithms were implemented for soil and inertial parameters estimation;
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their performance was further evaluated. The system considered in this study consists of
the tracked vehicle model, trajectory tracking controller, and the identification module.

This paper is organized as follows. Section 2 provides description of the track-terrain
interaction model. The kinematic and dynamic models of the tracked vehicle are given
in Sections 3 and 4, correspondingly. Overview of the entire system is provided in
Section 5. Design of the control system is described in Section 6. The proposed identification
framework is demonstrated in Section 7. The obtained results are discussed in Section 8,
and, finally, Section 9 concludes the paper.

2. Track-Terrain Interaction Model

The system identification has the following key elements, namely selection of the
model structure, experiment design, and parameter estimation. On-line identification is
performed automatically, so it is extremely important to have a good understanding of all
aspects of the problem [1]. That is why we provide here a detailed description of vehicle
dynamics, including vehicle-terrain interaction model.

2.1. Terramechanics

The current section gives a brief introduction into terramechanics to equip with a basic
knowledge of the track-terrain interaction, indispensable for the tracked vehicle modeling.

Mobility of the off-road vehicles can be severely limited by properties of the encounter
terrain. Terramechanics provides essential knowledge of the mechanical properties of the
terrain, as well as its reaction to vehicular loadings.

Certain types of trafficable terrain can be considered as ideal elastoplastic materials [5].
Unless stress level exceeds a given limit, terrain behavior remains in the elastic range (see
Figure 1). This assumption is utilized for stress distribution prediction in the soil. When
yield stress is reached in the terrain under vehicular load, strain increases and plastic flow
is constituted. Transition to plastic flow is known as the failure of soils. Failure criterion can
be described with the Mohr-Coulomb theory, which postulates that the following condition
must be satisfied at the point of the material to cause its failure [36]:

τ = c + σ tan φ, (1)

where τ is the shear stress, c is cohesion, σ is normal stress on the sheared surface, and φ is
the angle of internal shearing resistance.
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Figure 1. Strain-stress relation of idealized elastoplastic material, adopted from Reference [36].

Cohesive forces bind soil grains together irrespective of normal pressure between the
particles, e.g., for saturated clay only cohesion c is presented. However, when grains are
not held together by cohesion, they can move upon each other and, while pressed against
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each other, friction develops, e.g., for dry sand, the shear strength can be expressed by
σ tan φ. In practice, the majority of the soils exhibit both plastic and frictional behavior and
the shear strength should be hence characterized with Equation (1).

2.2. Tractive Effort and Slip of a Track

For a mathematical description of a ground vehicle motion, a track-terrain interaction
should be considered. In the current study, a parametric approach proposed by Bekker [36]
is used to do this.

Bekker’s method assumes that a track in contact with a terrain is similar to a rigid
footing. Moreover, it is assumed in the current research, that the center of gravity (CG) of
the tracked vehicle is positioned at the mid-point of the track-terrain contact area. It is also
assumed here that a normal pressure produced by the track has an uniform distribution
along the track.

During the vehicle motion a torque produced by the motors and applied to the sprocket
of the track initiates shearing action on the track-terrain interface, which subsequently
results in a development of tractive effort. The maximum tractive effort is bounded by the
maximum shear strength of the soil τmax and the track contact area A. Taking into account
Equation (1), we can obtain:

Fmax = Aτmax
= A(c + p tan φ)
= Ac + W tan φ,

(2)

where A = bl, b is the contact width, l is the contact length, W is the normal load, and c
and φ are the soil parameters: the cohesion and the angle of internal shearing resistance,
respectively. It can be observed that the terrain type critically impacts the maximum shear
strength of the soil and, consequently, has great influence on the maximum tractive effort.
For instance, as it was mentioned before, dry sand is a frictional soil. Therefore, cohesion is
negligible in this case and maximum tractive effort is higher for heavier vehicles. On the
other hand, the saturated clay, which is an example of cohesive soil, has a low value of φ;
hence, mainly the contact area of the track influences the maximum tractive effort value.

It should be pointed out that the tractive effort defined in Equation (2) is a maximum
value that the tracked vehicle can develop on a certain terrain. To determine thrust over a
full operating range, its relationship with the slip of a track should be examined. The slip
of a track is defined as follows [5]:

i = 1 − V
ωr

= 1 − V
Vt

=
Vt − V

Vt
=

Vj

Vt
, (3)

where V is the forward speed of a track, and Vt is the theoretical speed defined by the
sprocket rotational speed ω and its radius r. Then, Vj is the speed of slip with reference
to the ground. Assuming that the track is rigid and cannot stretch, the vehicle is moving
along a flat surface with a homogeneous soil property, then every point of the track, which
is in contact with the terrain, has the same speed Vj. Therefore, the shear displacement
j at a distance x from the front of the track-terrain contact area can be found with the
following equation:

j = Vjt, (4)

with t = x/Vt being the contact time of a considered point and the terrain. Thus, Equation (4)
can be rearranged:

j =
Vjx
Vt

= ix. (5)

Equation (5) indicates that the shear displacement increases linearly with the distance
from the front of the contact area (see Figure 2).

55



Electronics 2021, 10, 187

j
l

UNDISTURBED SOILDISTURBED SOIL

Figure 2. Shear displacement developing under a track [5].

For plastic soils, which have shear stress–displacement relationship described by the
simple exponential equation proposed by by Janosi and Hanamoto [37], development
of the shear stress is directly related to shear displacement and can be defined with the
following function:

τ = τmax

(
1 − e−j/K

)
= (c + σ tan φ)

(
1 − e−j/K

)
, (6)

where K is the soil shear deformation modulus. Since we assumed the uniform normal
pressure distribution (σ = W/bl), which is independent of x, the total tractive effort of the
track can be represented in the following form:

F = b
∫ l

0 τ dx
= b

∫ l
0 (c + σ tan φ)

(
1 − e−j/K

)
dx

= b
∫ l

0

(
c +

W
bl

tan φ

)(
1 − e−j/K

)
dx

= (Ac + W tan φ)

[
1 − K

il

(
1 − e−il/K

)]
.

(7)

The advantage of the proposed friction model is that it provides high predictive
capabilities while maintaining low computational complexity. This is a quite strong point
while designing the considered framework, which is focused on the integration of different
on-line identification algorithms running at the same time on-board.

3. Kinematics

Kinematics equations relates rotation of the track sprockets with the vehicle motion.
Here, we are considering kinematics of a maneuvering planar skid-steering vehicle. Two
orthonormal bases are introduced: the inertial frame (X, Y, Z) and the body-fixed frame
(x, y, z) with its origin at the center of mass (COM) of the vehicle (Figure 3). Note that Z
coordinate remains constant as the vehicle is in planar motion. Moreover, to simplify the
formulation, it is assumed that COM coincides with the centroid of the vehicle body.

Let us assume that the vehicle moves with a linear velocity:

vB =
[
ẋ ẏ 0

]T ,

expressed in the local frame B and rotates with the angular velocity:

ω =
[
0 0 θ̇

]T .

We choose the generalized coordinate vector as follows:

q =
[
X Y θ

]T ,
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where θ is the orientation of the local coordinate frame B with respect to the inertial frame
I . As a result, the vector of generalized velocities is defined as:

q̇ =
[
Ẋ Ẏ θ̇

]T .

θ
α

α

CG

x
y

X

Y

b

l

O’

x I
C
R

ω

w

V

Figure 3. Kinematics of a tracked vehicle.

Here, we introduce rotation matrix R2×2 that carries I into B [13]:

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
.

In what follows, sin(·) and cos(·) are denoted by s(·) and c(·), respectively, for sim-
plicity of notation.

Thus, velocity of the vehicle can be expressed in the inertial frame by means of vB and
R(θ) [11]: [

Ẋ
Ẏ

]
= R(θ)vB =

[
cθ −sθ
sθ cθ

][
ẋ
ẏ

]
.

We assume that, when maneuvering, slipping or skidding are possible. When these
effects are taken into consideration, the vehicle speed can be obtained from the following
expression [13]:

V =
r

2cosα
[ωL(1 − iL) + ωR(1 − iR)], (8)

where α is a slip angle, r is the radius of the sprockets, and ωL, ωR, and iL, iR denote the
left and the right track rotational velocities and slips, respectively. The rotational velocity
can be calculated using the following equation:

θ̇ =
r
b
[ωL(1 − iL)− ωR(1 − iR)]. (9)

Slip of the left and right track is given by Reference [5]:
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iL =1 − vt,L

ωLr
= 1 − ẋ + (b/2)θ̇

ωLr
,

iR =1 − vt,R

ωLr
= 1 − ẋ − (b/2)θ̇

ωRr
,

and the slip angle can be computed as follows:

α = arctan
ẏ
ẋ

.

Taking into account Equations (8) and (9), the turning radius R, with slip considered,
can be obtained:

R =
V
θ̇
=

b
2cosα

ωL(1 − iL) + ωR(1 − iR)

ωL(1 − iL)− ωR(1 − iR)
.

Since velocity in the body frame can be expressed through speed and slip angle the
following equation can be obtained: [

ẋ
ẏ

]
= V

[
cosα
sinα

]
.

Therefore, this approach can be further projected to the inertial frame[
Ẋ
Ẏ

]
= V

[
cθcα − sθsα
sθcα + cθsα

]
,

and, subsequently, one can relate the velocity in the I frame with the rotational velocities
of the sprockets and slips of the tracks, which yields a complete kinematic model of the
tracked vehicle [13]:

Ẋ =
r
2
[ωL(1 − iL) + ωR(1 − iR)][cθ − sθ tan α], (10)

Ẏ =
r
2
[ωL(1 − iL) + ωR(1 − iR)][sθ + cθ tan α], (11)

θ̇ =
r
b
[ωL(1 − iL)− ωR(1 − iR)]. (12)

To finalize the mathematical description of the kinematics model of the tracked ve-
hicle, nonholonomic constraint should be imposed [12,14]. The arbitrary planar motion
of a body can be represented as a rotation around the instantaneous center of rotation
(ICR) [38]. This concept applied to the tracked vehicle is demonstrated in Figure 4. ICR
of the tracked vehicle is denoted by O′, while the rotation radius vectors, defined in the
body-fixed frame and directed from the ICR, are: dt,i =

[
dt,ix dt,iy

]T , where i = {L, R},

and dC =
[
dCx dCy

]T . From the definition of ICR, we can obtain

‖vt,i‖
‖dt,i‖ =

‖V‖
‖dC‖ = |ω|, (13)

where ‖ · ‖ is the Euclidean norm. Equation (13) can be further transformed to the ex-
panded form

vt,ix

−dt,iy
=

Vx

−dCy
=

vt,iy

dt,ix
=

Vy

dCx
= ω. (14)
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Figure 4. Instantaneous center of rotation geometry.

Coordinates of the ICR can be defined in the local frame as

ICR = (xICR, yICR) =
(−dCx,−dCy

)
. (15)

Thus, Equation (14) can be rewritten in the following way:

Vx

yICR
= − Vy

xICR
= ω. (16)

Note that, due to the planar motion of the vehicle, ω = θ̇.
The ICR coordinates can be obtained from Equation (16) as follows:[

xICR
yICR

]
=

[−ẏ/θ̇
ẋ/θ̇

]
.

In a case of straight line motion, both the lateral velocity ẏ and the angular velocity θ̇
vanish; thus, the ICR shifts to infinity along the y-axis. During turning maneuvers, the ICR
moves along x-axis by an amount of |xICR|. Shift of the xICR beyond the vehicle geometry
causes loss of motion stability.

Following Reference [11], we impose the nonholonomic constraint obtained from
Equation (16)

Vy + xICR θ̇ = 0.

The above expression can be presented in Pfaffian form [39]

[− sin θ cos θ xICR
]⎡⎣Ẋ

Ẏ
θ̇

⎤⎦ = A(q)q̇ = 0. (17)

Now, we choose a full-rank matrix S(q) ∈ R
3x2, in which columns are in null space of

A(q), that is
ST(q)A(q) = 0,
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and S(q) can be, for example, defined as follows:

S(q) =

⎡⎣cθ xICRsθ
sθ −xICRcθ
0 1

⎤⎦.

Then, it is possible to define the generalized velocities by means of S and an auxiliary
vector υ(t) ∈ R

2

q̇ = S(q)υ(t), (18)

where the auxiliary vector is υ(t) =
[
V θ̇

]T .

4. Dynamics

In this section, we provide a model of tracked vehicle dynamics for a comprehensive
description of the vehicle dynamics required for the development of the controller and
identification scheme.

4.1. Forces and Moments Acting on the Tracked Vehicle

In the current analysis, we assume that the service brake is not applied, and the friction
brakeforce is not generated. Additionally, the aerodynamic loads are neglected since the
vehicle travels with a very low speed and the cross-sectional area of the vehicle is assumed
to be small.

A moving vehicle is subjected only to track-terrain interaction forces, which are
illustrated in Figure 5 and can be classified as follows:

• tractive forces FR and FL,
• longitudinal resistance forces RR and RL,
• lateral forces Fy,R and Fy,L, and
• moment of turning resistance Mr induced by the resistive forces.

θ
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y
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Y
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FR

FL

RR

RL

fy

fy

Figure 5. Free-body diagram.
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4.1.1. Tractive Force

The concept of tractive force has been already discussed in Section 2.1. In this study,
it is assumed that rotation of the tracks, which results in the development of traction, is
caused by the torque transmitted to the sprockets from a pair of DC motors—one per each
track of the vehicle. Transmission factor is assumed to be ideal.

4.1.2. Longitudinal and Lateral Resistance Forces

Friction term for longitudinal resistance force can be calculated with the following
expression [5]:

rl =
μlmg

2
,

where μl is the coefficient of longitudinal resistance, and g is the gravitational accelera-
tion. To define the direction of the longitudinal friction forces, the following function is
employed [14]:

G(F, f , ẋ) =

⎧⎨⎩
− f sign(ẋ), ẋ �= 0,
0, ẋ = 0, |F| ≤ f ,
− f sign(F), ẋ = 0, |F| > f ,

(19)

where sign(·) denotes the signum function.
Then, the longitudinal resistance force can be defined as follows:

Rl,i = G(Fi, rl , vt,i), i = {R, L}.

The lateral friction distribution and force can be obtained according the follow-
ing equations:

fy =
μtmg

l
, Fy = −2sign(ẏ) fyxICR,

where μt denotes the coefficient of lateral resistance.

4.1.3. Turning Moment and Moment of Turning Resistance

The turning moment is induced by the forces acting in the longitudinal direction, i.e.,

M = (FL − Rl,L)
b
2
− (FR − Rl,R)

b
2
= (FL − FR)

b
2

.

The resistance moment can be obtained by integrating over the track length of the
distribution given by the following expression from Reference [3]:

mr = 2 fy

(
l2

4
− x2

ICR

)
. (20)

Direction of the moment of turning resistance can be again determined with Equa-
tion (19), namely

Mr = G(M, mr, θ̇). (21)

4.1.4. Drive Model

In this study, it is assumed that the vehicle is actuated with two DC motors that drive
the sprockets through the transmission gear and are controlled with a simple PID controller.
The relationship between the motor torque τ and the rotor current ia is considered to be
linear [12]:

τm = kmia,

where km is a motor torque constant. Voltage and current in the motor circuits can be
approximated with the differential Equation [12]:

ua = La
d
dt

ia + Raia + keωm,
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where La and Ra are the inductance and resistance of the motor, respectively, ke denotes
the electromotive force coefficient, and ωm is the angular velocity at the output. Under the
assumption that the transmission is ideal, we can write:

τ = nkmia,

ωm = nωs,

where n is the transmission ratio, and ωs is the rotational speed of sprocket.
Assuming that the voltage ua is the motor control input, the following equations can

describe the powertrain system:

τ = nkmia,

ua = La
d
dt

ia + Rai + keωm,

where τ =
[
τL τR

]T , ua =
[
uL uR

]T , ia =
[
iL iR

]T , and ω =
[
ωL ωR

]T .

4.2. Equations of Motion

Taking into account the nonholonomic constraint, we can obtain the equations of
motion of the tracked vehicle through Lagrange-Euler formula with Lagrange’s multipliers
similar to approach given in Reference [40]:

d
dt

(
∂L
∂q̇

)
− ∂L

∂q
+ A(q)λ = Q, (22)

where λ is vector of the Lagrange’s multipliers, A(q) is the nonholonomic constraint de-
fined in Equation (17), Q is the vector of generalized forces, and L(q̇, q, t) is the Lagrangian
defined as

L = ET − EV , (23)

where ET and EV are the kinetic and potential energy, respectively.
First, we obtain the Lagrangian of the system. Since it is assumed that the vehicle is in

planar motion, it can be assumed that EV = 0 and Equation (23) takes the following form:

L(q̇, q, t) = ET(q̇, q).

Assuming that the energy of rotating tracks can be neglected, the kinetic energy of the
system is given by

ET =
1
2

mvTv +
1
2

Iω2, (24)

where m is mass of the vehicle, and I denotes its moment of inertia about the COM. As
vTv = ‖V‖2, and the value of velocity magnitude is independent of the reference frame,
one can rewrite Equation (24) in the following form

ET =
1
2

m
(

Ẋ2 + Ẏ2
)
+

1
2

Iθ̇2. (25)

Hence, the derivatives of kinetic energy can be computed as

d
dt

(
∂ET
∂q̇

)
=

⎡⎣mẌ
mŸ
Iθ̈

⎤⎦ = Mq̈,

∂ET
∂q

= 0,
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where

M =

⎡⎣m 0 0
0 m 0
0 0 I

⎤⎦.

Vector of the generalized forces can be decomposed into actuating forces generated by
motors and resistive forces causing dissipation of energy, which yields

Q = B(q)τ − C(q, q̇),

with

C(q, q̇) =

⎡⎣2Rlcθ + Fysθ
2Rlsθ − Fycθ

Mr

⎤⎦, B(q) =
1
r

⎡⎣ cθ cθ
sθ sθ

b/2 −b/2

⎤⎦, τ =

[
τL
τR

]
,

where r is the sprocket radius, and τL, τR are the torques provided by the left and right
motors, respectively. Having all terms of Equation (22) defined, the mathematical model of
system dynamics is obtained [11,13]:

Mq̈ + C(q, q̇) + A(q)λ = B(q)τ. (26)

For control purposes, it is convenient to express the generalized velocities q̇ in terms
of pseudo-velocity υ(t). Differentiating Equation (18), we have

q̈ = Ṡ(q)υ(t) + S(q)υ̇(t) (27)

Next, Equations (18) and (27) are substituted into Equation (26), and both sides of
the obtained equation are multiplied by ST(q), which leads to the modified mathematical
description of the system dynamics

q̇ = S(q)υ(t),
υ̇(t) = M̃−1

(
B̃(q)τ − Ẽ(q, q̇)υ(t)− C̃(q, q̇)

)
,

(28)

where

M̃ = STMS =

[
m 0
0 mx2

ICR + I

]
, Ẽ(q, q̇) = STMṠ =

[
0 mxICR θ̇

−mxICR θ̇ mxICRẋICR

]
,

C̃(q, q̇) = STC =

[
2Rl

FyxICR + Mr

]
, B̃(q) = STB =

1
r

[
1 1

−b/2 b/2

]
.

5. System Overview

The introduced kinematics and dynamics of the tracked vehicle are used to design
the control system and the system identification framework. This section aims to provide
a high-level overview of the overall system design. In the beginning, a block diagram of
the system is presented, and a brief description of each subsystem and their interfaces is
provided. Furthermore, the measurement system is described.

5.1. Block Diagram of the System

The overall system consists of five sub-modules representing different functionalities.
Figure 6 shows the block diagram of the system.

The base element of the whole structure is the tracked vehicle platform represented in
the diagram with the vehicle model block. The model is described in Sections 2–4.

63



Electronics 2021, 10, 187

PARAMETER
IDENTIFICATION AUTOPILOT VEHICLE

MODEL

SENSORS

TRAJECTORY
PLANNER

m̄, Ī, ī
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Figure 6. Block diagram of the tracked vehicle system.

The vehicle is controlled with an autopilot sending computed torque demand to the
motor controller. The autopilot obtains a reference trajectory from the trajectory planer,
which, in this research, was composed of a couple of the predefined trajectories. At the
same time, information about the current vehicle state is fed to the autopilot from the on-
board sensors. The autopilot computes the control inputs based on the difference between
the desired trajectory and the actual state of the vehicle.

Concurrently, measurements obtained with sensors are provided to the parameter
identification framework. The updated values of the system parameters are estimated and
passed to the autopilot to improve the trajectory tracking performance of the platform.

The sensors block function is introduced to mimic the behavior of real sensors, includ-
ing dynamics and noise, providing more realistic simulations. More detailed discussion on
the sensors can be found in the following section.

5.2. Measurements and Sensors

The control scheme, as well as the identification process, requires knowledge about
the current system state. Such information can be obtained through measurement of
observable states. Today, there is a wide choice of measurement instrumentation in the
market, varying in quality and price. In this research, the authors aimed to choose the most
affordable solution possible.

5.2.1. Position, Velocity and Acceleration

One of the most popular devices utilized to obtain information about the vehicle
motion is the inertial measurement unit (IMU), which combines multiple sensors, such as
accelerometers, gyroscopes, and magnetometers. At the output, IMU provides the vehicle
acceleration and rotation rate, that can be further integrated to obtain the velocities and
position in space. Although IMU measurements are quite accurate and provide information
at high frequency, they suffer from accumulating error in time. IMUs are prone to the
influence of noise (needed signals (speed and acceleration) for pose computation are
derivations of the base signal), which accelerates the error accumulation. Odometry as an
inertial navigation system (INS) that uses IMU measurements, for example, accumulates
the pose error with the square of the traversed distance.

To improve the accuracy of IMU measurements, an inertial navigation system (INS)
combined with GPS technology can be introduced. GPS measurements are generally less
accurate and sampled at lower frequencies. However, it is quite a common strategy to
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combine data from different sources each having its errors and sampling frequencies to get
better estimations [41]. In GPS/INS, the data obtained from IMU is fused with the GPS
measurements using Kalman Filter to correct the IMU bias and increase the overall system
accuracy [42].

Identification of the moment of inertia requires information on the vehicle angular
acceleration. This can be obtained with two accelerometers mounted at different distances
from the rotation center [43]. Let us assume that the accelerometers are placed at distances
r1 and r2 from the vehicle center of rotation, respectively (see Figure 7), and ay1 and ay2
denote the tangential accelerations measured with the accelerometers. Distance between
the devices can be computed as D = r2 − r1, and then the angular acceleration is given by
θ̈ =

(
ay1 − ay2

)
/D.

r2

r1
RC

x

y

x

y

Figure 7. Positioning of the accelerometers for rotational measurements.

In the simulation, the INS/GPS sensors are modeled with the IMU and INS/GPS
objects available with MATLAB® Sensor Fusion and Tracking Toolbox. INS/GPS sensor
noise is modeled as a white noise process. For the simulations conducted in this research,
the following INS/GPS parameters are set:

• yaw accuracy: σ = 1 deg,
• position accuracy: σ = 1 m, and
• velocity accuracy: σ = 0.1 m/s.

For the IMU sensor, accelerometer and gyroscope performance is also specified. Values
of the parameters employed in the simulation were found in the datasheets of the IMU
sensors available in the market

• gyro bias: 0.01 rad/s,
• accelerometer bias: 0.002 m/s2, and
• axis cross-coupling: 0.001.

Assuming that sreal is the real signal value and smeas is the measured value, then the
measurement error is given by s = sreal − smeas.

5.2.2. Rotational Velocity of the Sprockets and Motor Torque

Another quantity that needs to be measured in the system is the rotational speed
of the tracks. There are two possible ways of obtaining this information. First, the shaft
decoders can be utilized. The second approach is to estimate the rotation rate from the
motor current measurement (applicable when the electric motors actuate the system).
Torque and, consequently, rotational speed measurement can be performed with sensors
available on the market.

In the simulation environment, sprocket rotational speed, as well as torque measure-
ments, are obtained by introducing the additive white noise to the computed signal value.
In Simulink, the noise is incorporated into the signal with AWGN Channel block that can be
found in Communications Toolbox. In this study, we defined the variance of white noise
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added to the input signals. For both torque and sprocket rotational speed, the variance was
set to σ2 = (0.1)2.

6. Control

In this chapter, the derivation of the control scheme for the tracked vehicle is described.
Our control objective is to accurately guide the vehicle along the desired trajectory. Below,
a thorough description of the employed method is presented.

6.1. Static State Feedback

The tracked vehicle is a nonlinear system, therefore, to be able to apply linear control
techniques, it is vital to algebraically transform a nonlinear dynamics into a linear form.

First, nonlinear static state feedback is applied to compensate for the system dynamics.
From Equation (28), we can obtain the expression for torque:

τ = B̃−1(q)
(

M̃υ̇ + Ẽ(q, q̇)υ(t) + C̃(q, q̇)
)

.

Following Reference [11], we choose the new control variable u =
[
u1 u2

]T and
transform the torque control signal so that input u becomes proportional to the system
acceleration response υ̇, namely

τ = B̃−1
(

M̃u + Ẽυ + C̃
)

,

and results in a torque control signal of the following explicit form:

⎡⎣τ1

τ2

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

r
2
(
mu1 + mυ2

2 + 2Rl
)

+
r
b
((

mx2
ICR + I

)
u2 − mxICRv1v2 + mxICRẋICRv2 + Fy + Mr

)
r
2
(
mu1 + mυ2

2 + 2Rl
)

− r
b
((

mx2
ICR + I

)
u2 − mxICRv1v2 + mxICRẋICRv2 + Fy + Mr

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (29)

Thus, a second-order kinematic model is obtained:

q̇ = Sυ,
υ̇ = u,

which gives:
Ẋ = υ1 cos θ + υ2xICR sin θ,
Ẏ = υ1 sin θ − υ2xICR cos θ,
θ̇ = υ2,
υ̇1 = u1,
υ̇2 = u2.

6.2. Input-Output Linearization

In the next step, the dynamic state feedback is applied so that the system becomes
input-output decoupled.

Let us consider a smooth affine nonlinear system:

ẋ = f (x) + G(x)u,
z = h(x),
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with x, u, and z being the system state, input, and output, respectively. Moreover, we
assume that the number of inputs and outputs is equal. In case of linearization via static
feedback, we seek for the control law of the following form [18]

u = a(x) + B(x)r,

where r is an external auxiliary input of the same size as u, and B(x) is non-singular
decoupling matrix. Sometimes it is not possible to solve the problem by means of static
feedback. In such case, a dynamic feedback compensator might be successfully utilized: [18]

u = a(x, ξ) + B(x, ξ)r,
ξ̇ = c(x, ξ) + D(x, ξ)r,

where ξ is the state compensator.
In the case of the tracked vehicle, a new set of linearizing outputs needs to be chosen

for the decoupling matrix to be non-singular [11]. Hence, we choose to observe the position
of a point D located on the x-axis at distance d from the body-frame origin. Therefore, the
coordinates of the point D in the inertial frame are given by

z =

[
X + d cos θ
Y + d sin θ

]
. (30)

Then, the dynamic extension is introduced on the input u1

u1 = ξ,
ξ̇ = η1,
u2 = η2

(31)

with η1, η2 being the new control inputs.
In the input-output decoupling algorithm, the output z is differentiated until the new

input η appears explicitly in the equations

ż =

[
Ẋ − dsθθ̇
Ẏ + dcθθ̇

]
=

[
υ1cθ + υ2xICRsθ − dsθυ2
υ1sθ − υ2xICRcθ + dcθυ2

]
=

[
υ1cθ
υ1sθ

]
, (32a)

z̈ =

[
υ̇1cθ − υ1sθθ̇
υ̇1sθ + υ1cθθ̇

]
=

[
u1cθ − υ1υ2sθ
u1sθ + υ1υ2cθ

]
, (32b)

...
z =

[
u̇1cθ − u1υ2sθ − υ̇1υ2sθ − υ1υ̇2sθ − υ1υ2cθθ̇
u̇1sθ + u1υ2cθ + υ̇1υ2cθ + υ1υ̇2cθ − υ1υ2sθθ̇

]
=

[
η1cθ − 2ξυ2sθ − υ1η2sθ − υ1υ2

2cθ
η1sθ + 2ξυ2cθ + υ1η2cθ − υ1υ2

2sθ

]
.

(32c)

Subsequently, Equation (32c) can be rearranged to a more convenient form:

...
z =

[
cθ −υ1sθ
sθ υ1cθ

]
η+

[−2ξυ2sθ − υ1υ2
2cθ

2ξυ2cθ − υ1υ2
2sθ

]
= α(q, υ)η+ β(q, υ, ξ).

Further, we rearrange the above equation to obtain the control law

η = α−1(q, υ)[r − β(q, υ, ξ)], (33)

where we introduce the trajectory jerk reference r =
...
z . From the determinant of α

det[α(q, υ)] = υ1,
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we can conclude that the decoupling matrix is non-singular apart from the situation when
the linear speed of the vehicle is zero, i.e., υ1 = 0, which does not negatively influence the
tracking performance for the persistent trajectories.

Combining Equation (31) with Equation (33) yields the final form of fully linearizing,
input-output decoupling controller:

ξ̇ = r1 cos θ + r2 sin θ + υ1υ2
2,

u1 = ξ,

u2 =
1
υ1

(−r1 sin θ + r2 cos θ)− 2ξ
υ2

υ1
.

(34)

6.3. Exponentially Stabilizing Feedback for Tracking

Once full-state linearization is obtained, the control design can be completed with a
globally stabilizing feedback for the desired smooth trajectory zd(t) [18]:

ri =
...
z di + kai(z̈di − z̈i) + kvi(żdi − żi) + kpi(zdi − zi), i = {1, 2}.

The feedback gains are chosen so that the polynomials,

λ3 + kaiλ
2 + kviλ + kpi, (35)

are Hurwitz polynomials, and z, ż, z̈ can be computed with Equations (30) and (32a–c).
Thus, we obtained the control scheme that results in the following open-loop transfer
function of the system [11]

F(s) = C(s)P(s) =
kas2 + kvs + kp

s3 .

The block diagram of the proposed controller is illustrated in Figure 8.

+

−
kas2 + kvs + kp

+

+

∫
Eq. (34)

P−1(s)
Eq. (29)

P(s)
Eq (28)

zd r u τ z

Controller Plant

...z d

Figure 8. Block diagram of the trajectory tracking control system.

It should be noted that Hurwitz polynomials guarantee the stability of the developed
controller. In the case of perfect knowledge of the vehicle dynamics model, the proposed
control law perfectly performs trajectory tracking. In case of uncertain model dynamics
parameters, the vehicle closed-loop dynamics will be nonlinear and coupled. The effect
of the estimation error is a torque disturbance that could be rejected by the controller
augmented with adaptive capabilities and by avoiding unfeasible commands via proper
path planning.

7. Parameter Identification

The vehicle mass, inertia, and terrain behavior can vary due to mission operations or
moving through unknown terrain. Imprecise knowledge of the vehicle model can lead
to poor control performance. However, model parameters can be estimated on-line and
provided to the controller and/or the trajectory planner to improve the system performance.

Selection of the model structure and parametrization are crucial steps of the system
identification. Within this research, the models of ground vehicle dynamics and vehicle-
terrain interaction described above are used for parametrization. In particular, values of
the vehicle mass, inertia, and also parameters of the vehicle-terrain interaction, such as slip,
resistance coefficients, cohesion Fmax, and shear deformation modulus K, are estimated on
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the fly. Analysis of the model structure enabled selection of the proper estimation technique
for each of the mentioned parameters.

7.1. Estimations of Mass, Inertia and Motion Resistance

The EF RLS is a common approach for estimation of mass, inertia, and road grade
based on the model of longitudinal and rotational dynamics of the ground vehicle [23,24],
and it was applied to estimate mass, inertia, and motion resistance coefficients in the
current research.

Let us first give a brief overview of the system identification methods used in the
current research.

7.1.1. Recursive Least Squares with Exponential Forgetting

Recursive Least Squares with Exponential Forgetting (RLS) algorithm is the most
common approach since it is simple and can be applied to a large variety of on-line
estimation problems.

Assume that a process is generated by the following model:

y(t) = φT(t)ϑ + ε(t), (36)

where y is the observed variable, φ is the vector of known functions, ε is the measurement
noise, and ϑ is the vector of unknown parameters.

The estimation ϑ̂(k) of unknown parameter vector ϑ at a step k can be obtained
recursively using the following equations [23,44]:

ϑ̂(k) = ϑ̂(k) + K(k)ε(k),
ε(k) = y(k)− φT(k)ϑ̂(k − 1),

K(k) =
P(k − 1)φ(k)

λ + φT(k)P(k − 1)φ(k)
,

P(k) =
1
λ

[
P(k − 1)− P(k − 1)φ(k)φT(k)P(k − 1)

λ + φT(k)P(k − 1)φ(k)

]
,

where K(k) is the adaptation gain vector, and P(k) is the covariance matrix.

7.1.2. Identification Parametrization

Following the common way, here, we estimate the mass and longitudinal resistance
coefficient based on the longitudinal dynamics. If the torque converter and the driveline
are fully engaged, it can be assumed that all the torque from the engine is fully passed to
the track. Another assumption made here is that the service brake is not applied during
identification procedures, and the friction brake force is not generated. Further, we assume
that there is no slip, which is an acceptable assumption, for the most part. It is also assumed
that the aerodynamic loads can be neglected since the vehicle travels with a very low speed.
Under these assumptions, the longitudinal dynamics can be presented in the following
simplified form:

mẌ =
τL + τR

r
− 2Rl .

We want to rearrange the above equation and represent it in the form of Equation (36).
Note that Rl is also dependent on m, as well as μl . We obtain

Ẍ =
τL + τR

r
1
m

− gμl ,

where y = Ẍ, φ =
[
(τL + τR)/r −g

]T and ϑ̂ =
[
1/m μl

]T .
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The inertia and lateral resistance indices can be evaluated from the rotational dynam-
ics model. To simplify parametrization of the identification, let us write the rotational
dynamics of the tracked vehicle in the body fixed reference frame in the following way [3]:

(I)θ̈ =
b(τL − τR)

2r
− Mr. (37)

Recalling the expression for Mr from Equations (20) and (21) and rearranging the
Equation (37) into the form of Equation (36), we can obtain

b(τL − τR)

2r
= θ̈ I − 2sign(θ̇)mg

l

(
l2

4
− x2

ICR

)
μt,

where

y =
b(τL − τR)

2r
,

φ =

[
θ̈

−2sign(θ̇)mg
l

(
l2

4
− x2

ICR

)]T

,

ϑ =
[
I μt

]T .

7.2. Slip Estimation

As it is discussed earlier, the Unscented Kalman Filter (UKF) demonstrates quite accu-
rate estimation of parameters and can be effectively used for longitudinal slip identification.
A brief description of the UKF algorithm is provided in the next subsection, followed by
the derivation of state and measurement equations for the tracked vehicle.

7.2.1. Unscented Kalman Filter

UKF is an effective technique for estimating the state of a nonlinear dynamic system.
Let us assume that a system has the following nonlinear dynamics:

xk+1 = f (xk, uk) + vk,
zk = h(xk) + wk,

where xk is a process state vector at time tk, uk is a vector of the control inputs, zk is a
measurement vector, and f (xk, uk) and h(xk) are state transition function and measurement
function, respectively. Finally, vk and wk denote the additive white noise of the covariance
determined by Qk and Rk, respectively.

Approximations associated with the linearization process, e.g., in Extended Kalman
Filter (EKF), may lead to noticeable errors in the covariance and posterior mean of the
transformed random variable, which, subsequently, can cause a sub-optimal performance
or even divergence of the filter [45].

The approximation drawbacks described above are eliminated with the UKF, where
the prior and posterior mean and covariance are represented by minimal set of weighted
samples, so called sigma points. The UKF utilizes an unscented transformation method for
calculating the statistics of a random variable which undergoes a nonlinear transformation.
In the unscented transform, prior sigma points projection through nonlinear function gives
results very close to the real transformed distribution [46]. The applied method for the
sigma points derivation is described below.

Let us assume that mean and covariance of the random variable x are denoted
with x̂ and Px, respectively. The variable is propagated through the nonlinear functions
xk+1 = f (xk) and zk = h(xk). For this purpose, a matrix X of sigma points (Equation (38))
is formed, and the corresponding weights Wi (Equation (39)) are computed. The number
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of sigma points is defined with the expression: 2L + 1, where L is dimension of the x

vector [46]:
X0 = x̂,

Xi = x̂ +

(√
(L + λ)Px

)
i

i = 1, · · · , L,

Xi = x̂ −
(√

(L + λ)Px

)
i

i = L + 1, · · · , 2L,

(38)

W(m)
0 = λ/(L + λ),

W(c)
0 = λ/(L + λ) + (1 − α2

uk f + βuk f ),

W(m)
i = W(c)

i = 1/[2(L + λ)] i = 1, · · · , 2L,

(39)

where λ = α2
uk f (L + κuk f ) and κuk f are the scaling parameters, αuk f determines how sigma

points are spread around mean, and βuk f = 2 for Gaussian distributions and should be
chosen basing on the prior knowledge about the random variable distribution.

Further, points are propagated through the nonlinear functions

X i
k+1|k = f (X i

k , uk), i = 0, · · · , 2L, (40a)

Z i
k+1|k = h(X i

k+1|k). (40b)

Subsequently, the mean and the covariance of x and z are computed:

x̂−k+1 =
2L

∑
i=0

W(m)
i X i

k+1|k, (41a)

ẑ−k+1 =
2L

∑
i=0

W(m)
i Z i

k+1|k, (41b)

Pk+1|k =
2L

∑
i=0

W(c)
i (X i

k+1|k − x̂−k+1)(X i
k+1|k − x̂−k+1)

T + Qk, (42a)

Pz̃z̃ =
2L

∑
i=0

W(c)
i (Z i

k+1|k − ẑ−k+1)(Z i
k+1|k − ẑ−k+1)

T + Rk, (42b)

Px̃z̃ =
2L

∑
i=0

W(c)
i (X i

k+1|k − x̂−k+1)(Z i
k+1|k − ẑ−k+1)

T . (42c)

In the last step, the Kalman gain is computed:

Kk+1 = Px̃z̃Pz̃z̃
−1,

and the new state and covariance estimate are obtained:

x̂k+1 = x̂−k+1 + Kk+1

(
zk+1 − ẑ−k+1

)
,

Pk+1 = Pk+1|k + Kk+1Pz̃z̃KT
k+1.

7.2.2. Identification Parametrization

The UKF is designed to recover the slip parameters iL and iR from the vehicle states.
Therefore, the augmented state vector is formed:

x =
[
X Y θ iL iR α

]T ,
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and the vector of estimates
[
X̂ Ŷ θ̂ îL îR α̂

]T is obtained from the available measurements:

z =
[
Xm Ym θm ωtm,L ωtm,R

]T ,

where ωtm,L and ωtm,R are the control inputs. The following process model is adopted from
the kinematic model of the tracked vehicle from Equation (3):

xk+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xk + ΔT · 0.5r
[
(1 − iL,k)ω

k+1
t,L + (1 − iR,k)ω

k+1
t,R

]
(cos θk − sin θk tan αk)

Yk + ΔT · 0.5r
[
(1 − iL,k)ω

k+1
t,L + (1 − iR,k)ω

k+1
t,R

]
(sin θk + cos θk tan αk)

θk + ΔT
r
b

[
−(1 − iL,k)ω

k+1
t,L + (1 − iR,k)ω

k+1
t,R

]
iL,k
iR,k
αk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

7.3. Soil Parameters Estimation

It was shown previously that Generalized Newton–Raphson (GNR) method identifies
unknown soil parameter with a high accuracy and rapid convergence [47]. The GNR is
employed in this study for the soil parameters estimation that impact the tractive effort,
i.e., cohesion Fmax and shear deformation modulus K. Below, we provide a brief overview
of this method and the parametrization of the identification of soil parameters.

7.3.1. Generalized Newton–Raphson

The system equation can then be expressed as a function of the parameter vector p

and the measurement vector xi [31]:

f1(p1, p2, · · · , pn, x1(t1), x2(t1), · · · , xm(t1)) = 0,
f2(p1, p2, · · · , pn, x1(t2), x2(t2), · · · , xm(t2)) = 0,

. . .
fq
(

p1, p2, · · · , pn, x1(tq), x2(tq), · · · , xm(tq)
)

= 0.

In the GNR method, q independent equations are required to find the parameter
vector p, where q > n

⎡⎢⎢⎢⎣
p1
p2
...

pn

⎤⎥⎥⎥⎦
i+1

≈

⎡⎢⎢⎢⎣
p1
p2
...

pn

⎤⎥⎥⎥⎦
i

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ f1

∂p1
· · · ∂ f1

∂pn
∂ f2

∂p1
· · · ∂ f2

∂pn
...

. . .
...

∂ fq

∂p1
· · · ∂ fq

∂pn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

i

⎡⎢⎢⎢⎣
f1
f2
...
fq

⎤⎥⎥⎥⎦
i

.

The above system of equation is solved recursively until the convergence condition
is met.

The main advantage of GNR algorithm is robustness and fast convergence. However,
an initial guess of the parameter can influence the convergence rate. Especially, if the initial
derivative of a function is close to zero, the convergence speed is low [31]. The advantage
of the GNR method over classic Newton–Raphson method is that the former is considered
more robust to the measurement noise due to the higher number of samples included in
the equation [48].

7.3.2. Identification Parametrization

To obtain the estimation model, we need to consider a function in the form

f (p, x) = 0.
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For the tractive force expressed as in Equation (7), we have:

f (Fmax, K, τ, i) = 0, (43)

where: p =
[
Fmax K

]T is the vector of parameters to be identified, and x =
[
τ i

]T is the
measurement vector, where τ is the total torque produced by the motors, and i is the slip.
Explicitly, Equation (43) yields:

Fmax

(
1 − K

il

(
1 − e−il/K

))
− τ

r
= 0,

and Jacobian elements can be obtained with the following expressions:

∂ f
∂Fmax

= 1 − K
il

(
1 − e−il/K

)
,

∂ f
∂K

=
Fmax

Kil

(
K
(

1 − eil/K
)
+ il

)
e−il/K.

During the identification process, the algorithm considers q time samples of the
measurements to find the solution for Equation (43) using the following equation:

[
Fmax

K

]
i+1

≈
[

Fmax
K

]
i
−
[

∂ f
∂Fmax

∂ f
∂K

]−1

i

fi.

8. Results

This section presents the simulation outcomes and discussion on the obtained results.
The system model was created in MATLAB®/Simulink environment. In the first part
of this section, validation of the control system performance is provided. Next, system
response to parameters uncertainties is investigated. In the closing part of this section,
identification algorithms implemented in the system are evaluated.

Table 1 provides information on the vehicle parameters adopted in the simulation.
Default soil parameters are included in Table 2 and are used throughout all the simulations
unless stated otherwise.

Table 1. Vehicle parameters.

Parameter Value Unit

Mass, m 1450 kg
Inertia, I 1180 kg · m2

Tread, b 1.7 m
Track width, w 0.3 m

Track contact length, l 2 m
Sprocket radius, r 0.3 m

Gear ratio, n 1/380

Table 2. Soil parameters for heavy clay [5].

Parameter Value Unit

Cohesion, c 70 kPa
Angle of internal shearing resistance, Φ 38.4 deg

Shear deformation parameter, K 0.02 m
Coefficient of longitudinal resistance, μl 0.6

Coefficient of lateral resistance, μt 0.8
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Results presented in this chapter were obtained with a fixed-step solver with the time
step dt = 0.01 s. Differential equations were solved with ODE4 (Runge-Kutta) algorithm.

8.1. Validation of the Control System

At the beginning, the control system behavior was investigated. Controller gains were
chosen experimentally with regard to the stability condition Equation (35). Final values of
the feedback gains can be found in Table 3.

Table 3. Final values of the controller gains.

Gain Final Value

kp 50
kv 70
ka 15

In the first test, all model parameters are assumed to be known, and the input signals
represent the ideal values of the system states.

Figure 9 shows the system response to the circular and straight line trajectory demand.
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Figure 9. Trajectory following tests: circular (left) and straight (right) path.

From Figure 10, one can see that once on path, the vehicle travels with constant linear
and angular velocities that demonstrated on the left and right subplots, respectively.
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Figure 10. Trajectory following test: forward (left) and rotational (right) velocity.
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According to the results obtained for the circular trajectory (shown as an example), it
can be observed that the controller successfully guides the vehicle to the desired path and
then continues following the path with no position, velocity, and acceleration error, which
is shown in Figure 11.

The behavior of the system parameters, such as torque, sprocket rotational velocity,
and slip of the track, is also of interest. These parameters are shown in Figure 12. One can
observe that, as soon the vehicle reaches the constant forward and rotational velocities, all
the parameters remain of constant magnitudes. Constant turning rate is achieved due to the
fixed difference between the left and the right sprocket angular velocities—approximately
1 rad/s. Additionally, one can observe in Figure 12 that the slip of the tracks is directly
related to the sprocket torque, as slip characteristics have a similar shape to those obtained
for the torque.

0 5 10 15 20 25 30
Time [s]

0

1

2

3

4

5

P
os

iti
on

 e
rr

or
 [m

]

Coord. X
Coord. Y

0 5 10 15 20 25 30
Time [s]

-4

-3

-2

-1

0

1

2

V
el

oc
ity

 e
rr

or
 [m

/s
]

Coord. X
Coord. Y

0 5 10 15 20 25 30
Time [s]

-10

-5

0

5

A
cc

el
er

at
io

n 
er

ro
r 

[m
/s

2 ]

Coord. X
Coord. Y

Figure 11. Trajectory following test: position (left), velocity (middle), acceleration (right) errors.
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Figure 12. Trajectory following test: torque behavior (left), sprocket rotational velocity (middle), slip of the track (right).

8.2. System Behavior under Parameter Uncertainties

In this section, the closed-loop behavior is analyzed under unknown uncertainties
introduced in the tracked vehicle dynamics. Different scenarios are considered: in the
first scenario, the uncertainties brought in the mass and inertia; in the second scenario,
the uncertainties are in the longitudinal and lateral resistance coefficients; and, in the last
considered scenario, the uncertainties are introduced in the soil parameters.

8.2.1. Incorrect Mass and Inertia of the Vehicle

In the first scenario, mass and inertia of the vehicle used in the controller for torque
command calculation differ from the actual values. Figure 13 shows the tracking perfor-
mance of the controller for the circular and the straight path tests.

The mass provided to the controller is 55% of the true vehicle mass m, and moment
I is 110% of the actual value. For true values, take a look at Table 1. The introduced
uncertainty is quite big, which is purposely caused to obtain a clear view of uncertainty
impact produced on the system behavior.

Figure 14 demonstrates the velocity tracking behavior of the controller.
A more detailed look into the position, velocity, and acceleration errors is given in

Figure 15. According to these results, one can conclude that the inaccurate knowledge of
mass and inertia causes the inaccurate trajectory tracking, but the controller performance
remains at the acceptable level.
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Figure 13. Trajectory following test in case of incorrect knowledge of incorrect mass and inertia: circular (left) and straight
paths (right).
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Figure 14. Trajectory following test in case of incorrect knowledge of incorrect mass and inertia: instantaneous forward
velocity (left) and rotational velocity(right).

0 5 10 15 20 25 30
Time [s]

-2

-1

0

1

2

3

4

5

P
os

iti
on

 e
rr

or
 [m

]

Coord. X
Coord. Y

0 5 10 15 20 25 30
Time [s]

-3

-2

-1

0

1

2

V
el

oc
ity

 e
rr

or
 [m

/s
]

Coord. X
Coord. Y

0 5 10 15 20 25 30
Time [s]

-10

-5

0

5

A
cc

el
er

at
io

n 
er

ro
r 

[m
/s

2 ]

Coord. X
Coord. Y

Figure 15. Trajectory following test in case of incorrect knowledge of incorrect mass and inertia: position (left), velocity
(middle), acceleration (right) errors.

The torque, sprocket rotational velocity, and the slip of the track produced by the
controller designed for the uncertain system is demonstrated in Figure 16, together with
the results for a controller designed for the system without uncertainties. The behavior is
quite similar, with the only difference in the sprocket rotational velocity during the initial
stage (first 10 s).

To separate the effects produced by the presence of uncertainty in mass and inertia,
the root mean square error (RMSE) of the vehicle trajectory for various levels of uncertainty
in the mass and the inertia values as compared to the trajectory obtained for the correct
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model is calculated and plotted in Figure 17. These results manifest that inaccuracies in
mass estimation have a greater impact on the trajectory tracking capabilities of the vehicle
than the moment of inertia.
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Figure 16. Trajectory following test in case of incorrect knowledge of incorrect mass and inertia: torque behavior (left),
sprocket rotational velocity (middle), slip of the track (right).
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Figure 17. Root mean square error (RMSE) of the vehicle trajectory.

8.2.2. Incorrect Resistance Coefficients

In the next considered scenario, it is assumed that the longitudinal and lateral resis-
tance coefficients vary depending on the X-Y plane location. Such scenarios are relevant for
the cases when vehicle is moving through unknown rugged terrain where different types
of vehicle-terrain interactions can be met.

Maps of the coefficient distributions over the surface are synthesized based on the
experimental data provided in Reference [5] and shown in Figure 18.

The dependencies of the resistance coefficients for the longitudinal and lateral coeffi-
cients were generated with the following functions, respectively:

μl = 0.7 + 0.02X cos (0.3Y), (44)

and
μt = 0.6 + 0.03X sin (0.2X)e−0.01Y. (45)

The functions (44) and (45) were selected quite arbitrarily, just to test the ability of the
controller to cope with uncertainties.

Behavior of the coefficients along the vehicle trajectory is given in Figure 19 with solid
lines. Reference values adopted in the controller are marked with the dotted lines.
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Figure 18. Maps of resistance coefficients: longitudinal (left) and lateral (right).
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Figure 19. Friction coefficients values on the vehicle path (circular path).

The trajectory tracking tests under the discussed above variations of the resistance
coefficients are provided in Figure 20.

From presented results, one can observe that the performance of the controller is
more sensitive to the uncertainties in resistance coefficients for the rotational motion.
Namely, in the circular test, vehicle trajectory diverges from the reference one for the
sections of the path, where the real values of the coefficients differ significantly from the
values assumed in the controller. The controller performance for the straight-line motion
is still good enough even for the inaccurate coefficient approximations since the lateral
resistance coefficient does not affect significantly on the trajectory tracking precision in
the longitudinal direction and the longitudinal resistance coefficient uncertainty cause
inaccuracies rather for the velocity.

The circular test is selected for a further analysis since the uncertainty in resistance
coefficients can produce more effect on the system dynamics in this case.

Instantaneous forward and rotational velocities are given in Figure 21, while the
controller errors are provided in Figure 22.

From the figures, one can conclude that the tracking errors are observed where the
assumed friction model has mismatches with the true values (Figure 19).

The system parameter states, which are the torque, the sprocket rotational velocity,
and the slip of the track, are demonstrated in Figure 23 and compared with the parameters
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when the correct coefficients are available. It can be noted that the controller cannot reach a
steady-state, and the oscillatory response of the system reflects the changes in the resistant
properties of the terrain.
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Figure 20. Trajectory following test in case of incorrect knowledge of resistance coefficients: circular (left) and straight
paths (right).
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Figure 21. Trajectory following test in case of incorrect knowledge of resistance coefficients: instantaneous forward velocity
(left) and rotational velocity (right).
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Figure 22. Trajectory following test (circular path) in case of incorrect knowledge of resistance coefficients: position error
(left), velocity error (middle), and acceleration error (right).
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Figure 23. Trajectory following test (circular path) in case of incorrect knowledge of resistance coefficients: torque behavior
(left), sprocket rotational velocity (middle), and slip of the track (right).

8.2.3. Incorrect Estimation of Maximum Tractive Effort

In this section, the last scenario is considered, namely the maximum tractive effort that
the vehicle can develop on the certain type of soil is incorrectly predicted, which results in
the trajectory demand that the vehicle is unable to follow. The expected maximum tractive
effort was computed for the heavy clay (parameters provided in Table 2), while the actual
parameters in this simulation corresponded to sandy loam with c = 9.65 kPa and φ = 35o.

In this scenario, we performed the same simulation tests, namely the circular and
straight path following, which are shown in Figures 24 and 25 .
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Figure 24. Trajectory following test in case of incorrect tractive force estimation: circular path (left) and straight path (right).
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Figure 25. Trajectory following test in case of incorrect tractive force estimation: velocity V (left) and rotational velocity
ω (right).
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As it is clearly seen in the figures, the vehicle cannot follow the desired trajectory and
causes large errors in positioning and following the desired velocities (Figure 26).

0 5 10 15 20 25 30
Time [s]

-15

-10

-5

0

5

10

P
os

iti
on

 e
rr

or
 [m

]

Coord. X
Coord. Y

0 5 10 15 20 25 30
Time [s]

-4

-2

0

2

4

6

8

V
el

oc
ity

 e
rr

or
 [m

/s
]

Coord. X
Coord. Y

0 5 10 15 20 25 30
Time [s]

-40

-20

0

20

40

60

A
cc

el
er

at
io

n 
er

ro
r 

[m
/s

2 ]

Coord. X
Coord. Y

Figure 26. Trajectory following test (circular path) in case of incorrect tractive force estimation: position error (left), velocity
error (middle), and acceleration error (right).

The demanded torque is too big for the system capabilities (Figure 27) and causes
control saturation. The vehicle cannot provide proper acceleration to follow the circular
path. The controller even is not capable of maintaining a steady velocity. From Figure 25,
one can conclude that, in the 7th second of the simulation, the vehicle practically stops
when it reaches the desired trajectory for the first time. Then, it rapidly accelerates after
a couple of seconds to mitigate a huge position error, shown in Figure 26, that has been
accumulated in the process.
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Figure 27. Trajectory following test (circular path) in case of incorrect tractive force estimation: torque behavior (left),
sprocket rotational velocity (middle), and slip of the track (right).

To summarize this section, it can be concluded that incorrect estimation of the vehicle
or soil-track interaction parameters can reduce the control system performance. As a result,
the vehicle cannot follow the desired trajectory. In particular, inaccurate predictions of
mass, inertia or friction coefficients introduce errors between the obtained trajectory of the
vehicle and the reference trajectory. This, in turn, can cause extensive energy consumption
as the motors have to generate bigger moments to guide the vehicle back on the path.
Furthermore, a wrong assumption of the soil parameters can even lead to total inability to
follow the desired trajectory.

To address the issues discussed above, the identification framework is implemented
and tested. The results are presented in the next section.

8.3. Validation of Parameters Identification

This section presents results obtained with parameter identification algorithms, which
were previously introduced in Section 7.

It should be indicated here that some of the identified parameters, such as mass,
moment of inertia, and longitudinal and lateral resistance coefficients, can be used to adjust
controller on the fly, thus providing an adaptive augmentation to the baseline controller.
However, some of the parameters, which are track slip ratios and soil parameters can
be used only for the trajectory modifications due to new environmental conditions, thus
giving a contribution to an adaptive path planning framework. However, in the current
study, we consider the trajectory to be predefined and unchangeable. So, the identified
mass, moment of inertia, and longitudinal and lateral resistance coefficients are used to
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improve controller performance, and track slip ratios, maximum tractive force, and shear
deformation are only identified and are not used to improve the motion performance of
the vehicle.

8.3.1. Identification of Mass, Moment of Inertia and Resistance Coefficients

As discussed in Section 7.1.1, EF RLS is selected for identification of mass and moment
of inertia of the vehicle. Forgetting factor λ = 0.998 is utilized in the current simulations.

Identification of mass and moment of inertia is demonstrated in Figures 28 and 29. Iden-
tification of the longitudinal and lateral resistance coefficients is provided in Figures 30 and 31.
The identification maneuver can be found in Figure 32.
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Figure 28. Identification of mass: identified value (left) and relative error (right).
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Figure 29. Identification of moment of inertia: identified value (left) and relative error (right).

The identified values were used to improve the controller performance under un-
certainties provided earlier in Section 8.2. Data obtained with the identification scheme
was then fed into the controller to form the adaptation capabilities of the control scheme.
The trajectory tracking of the controller with adaptive augmentation is compared with the
baseline controller in Figure 32. One can notice that the identification of the parameters
decreases position error as compared to the baseline controller.

It can be observed that both mass and inertia of the vehicle were estimated quite
accurately. However, predictions of moment of inertia is more accurate.

The precision of mass identification is better during the first 7 s (the error is less
than 1%), while the vehicle being driven along the straight path. The identification error
increases after the vehicle starts the spiral motion. This is caused by the fact that the
mass identification scheme developed in Section 7 assumes the longitudinal motion. Even
under this assumption, the proposed scheme helps to to improve the trajectory tracking
(Figure 32); in particular, the error is kept at the satisfactory level, namely below 5%. The
identification precision might be further improved either by changing the assumptions
of longitudinal motion or by synchronization of the updating system parameters with
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the identification maneuvers by using some top level governing algorithm similar to that
proposed in Reference [49].
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Figure 30. Longitudinal resistance coefficient: identified value (left) and relative error (right).
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Figure 31. Lateral resistance coefficient: identified value (left) and relative error (right).
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Figure 32. Trajectory of the vehicle: with identified parameters and incorrect parameters.
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Estimations of the coefficients of longitudinal and lateral resistance are at a quite
reasonable level. The proposed scheme identifies the resistance coefficients quite good
when the coefficients vary slowly. Starting from the t = 6 s, the resistance coefficients start
to change very fast and the EF RLS cannot follow such an abrupt variations. This is quite
well known limitation of the RLS method. Nevertheless, the EF RLS provides good time
average estimates of μL and μt. The variation of the resistant coefficients, simulated in the
current experiment (see Equations (44) and (45)), is not quite realistic, namely, in the real
motion, the the resistance coefficients are not expected to vary so fast; thus, the proposed
scheme should be applicable for real-time applications.

8.3.2. Identification of Slip Parameter

Estimation of the slip parameter is performed with the UKF-based approach, which
utilizes kinematics of the vehicle for state equations and is described in Section 7.2. Identi-
fication of the track slip ratio together with the actual value is coplotted in Figure 33.
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Figure 33. Track slip ratio identification: Left track (left) and Right track (right).

In the simulation, UKF and controller are fed with noisy measurement data. It can be
noticed that the filter is capable of capturing the changing values of the slip ratio for both
the left and right track. It provides an unbiased estimation of the states. The temporary
divergence from the actual value between 15th and 20th second of the simulation was
caused by the rapid speed change of the vehicle. Thus, for a relatively slow motion of the
vehicle, the proposed approach manifests quite a good result.

8.3.3. Identification of Soil Parameters

Soil parameters, i.e., maximum tractive force and shear deformation parameter
were identified using the GNR method presented in Section 7.3. Results are shown in
Figures 34 and 35 . It can be concluded that the algorithm is able to obtain very accurate
estimations of the parameters and adapts to the changes almost instantly.
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Figure 34. Identification of max. tractive force: identified value (left) and relative error (right).
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Figure 35. Identification of shear deformation parameter: identified value (left) and relative error (right).

Different settings of the window size for the number of measurement samples were
tested. It was concluded that fifty samples provided robust behavior and were not compu-
tationally demanding at the same time. Additionally, the maximum number of iterations
was set to twenty. In case when the algorithm was unable to converge, the last converged
value was provided at the output. The number of iterations for each time step is presented
in Figure 36.
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Figure 36. Generalized Newton–Raphson (GNR)—number of algorithm iterations.

Comparing the prediction error (Figures 34 and 35) with the number of iterations
in Figure 36 one can conclude that high error is mainly obtained when the algorithm
was unable to converge. Thus, fine-tuning of the number of iterations could further
improve the algorithm performance. However, it can be done only by sacrificing the
computational power of the on-board computer and should be decided for a particular
real-world application based on its characteristics.

It should be noted that conversely to the inertial parameters, soil parameters iden-
tification yields better results for the experiment conducted when the vehicle is moving
in a steady-state and not performing rapid maneuvers. This illustrates once again the
need for different identification methods (including different maneuvers) for different state
parameters and the presence of a governing algorithm to supervise learning [49].

9. Conclusions

The increasing level of autonomy of unmanned ground vehicle dictates a higher de-
mand for operation performance, including trajectory tracking precision. Presence of model
uncertainties can significantly reduce ground vehicle performance when then vehicle is
traversing an unknown terrain or the vehicle inertial parameters are changed due to a
mission schedule or external disturbances. Current research addressed the problem of tra-
jectory tracking capabilities of a tracked vehicle under uncertainties in inertial parameters
and in the vehicle-terrain interaction model.

85



Electronics 2021, 10, 187

At the beginning, a deep insight into the dynamics of a tracked vehicle was pro-
vided, which facilitates better understanding of the system vulnerabilities and possible
control problems.

Next, the controller aiming to obtain trajectory tracking capabilities was developed.
The control system design tackled the challenges brought by the nonlinear nature of the
tracked vehicle dynamics. In case of perfect knowledge of motion parameters, the proposed
control law perfectly follows the desired trajectory. However, when the vehicle model
parameters are unknown or incorrectly estimated, the vehicle closed-loop dynamics will
still be nonlinear. The influence of an uncertainties in the system dynamics is a torque
disturbance that should be compensated by a proper control design.

Sensitivity of the controller to the model uncertainties was analysed and provided
the valuable intuition into the consequences, such as controller divergence, offset from
the desired trajectory, etc. It was shown that a precise approximation of the parameters
employed in the control scheme improved tracking capabilities.

In addition, three identification schemes were proposed to address different issues
of parameters estimation. First, the EF RLS was utilized to obtain improved estimates
of the mass and moment of inertia of the vehicle, as well as friction coefficients. The
algorithm yields very good estimation of the vehicle mass and inertia. Regarding the
friction coefficients, the RLS method adapted at a slower pace to the dynamically changing
terrain characteristics still providing an acceptable average from the process.

Identified values were further used to form an adaptive augmentation loop and to
improve the tracking performance of the controller. It was demonstrated that providing
estimations to the controller helps to follow the desired path more precisely.

Next, the Unscented Kalman Filter was designed to estimate the slip ratio of the tracks.
Only kinematics of the vehicle were included in the state equation. The filter was able to
track the actual slip values accurately.

Finally, the generalized Newton–Raphson algorithm was employed for accurate esti-
mations of the soil parameters.

The estimated values of vehicle-terrain interaction did not effect directly on the con-
troller; thus, knowledge of these parameters was not used to improve the control perfor-
mance. Such parameters can be used for improved path and trajectory planning in the
future; however, for the purposes of this work, the trajectory was assumed to be defined
a priori.

The proposed approach helps to improve vehicle tracking capabilities regardless
of a control approach via identifying uncertainties of the tracked vehicle dynamics. The
developed framework can tackle the trajectory tracking problem not only as a direct
problem but also as a reciprocal problem. Indeed, the identification module provides
estimations of uncertain parameters to the controller for appropriate trajectory tracking. At
the same time, estimated vehicle-terrain interaction parameters can be used for generating
feasible trajectories. Such bilateral tackling of trajectory tracking is essential for future
autonomous vehicle missions.

Future work will look into the algorithms proposed in the paper towards development
of an adaptive trajectory planner and validation on a testbed.

Author Contributions: The authors contributed to the article as follows: conceptualization, N.S.,
D.I.I. and A.T.; methodology, N.S. and D.I.I.; software, N.S.; validation, N.S.; investigation, N.S.;
writing—original draft preparation, N.S. and D.I.I.; writing—review and editing, N.S., D.I.I., A.C.Z.
and A.T.; supervision, D.I.I. and A.T.; project administration, A.T. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank Jeremy Baxter from QinetiQ for fruitful dis-
cussions helped to crystallize the problem statement and for providing thoughtful comments on
the research.

Conflicts of Interest: The authors declare no conflict of interest.

86



Electronics 2021, 10, 187

References

1. Astrom, K.J.; Wittenmark, B. Adaptive Control, 2nd ed.; Addison-Wesley Longman Publishing Co., Inc.: Petaluma, CA, USA, 1994.
2. Wellhausen, L.; Dosovitskiy, A.; Ranftl, R.; Walas, K.; Cadena, C.; Hutter, M. Where Should I Walk? Predicting Terrain Properties

From Images Via Self-Supervised Learning. IEEE Robot. Autom. Lett. 2019, 4, 1509–1516. [CrossRef]
3. Shiller, Z.; Serate, W.; Hua, M. Trajectory planning of tracked vehicles. In Proceedings of the IEEE International Conference on

Robotics and Automation, Atlanta, GA, USA, 2–6 May 1993; Volume 3, pp. 796–801.
4. Ma, Y.; Li, Y.; Liang, H. Design of sliding mode controller on steering control of skid steering 6 × 6 unmanned vehicle.

In Proceedings of the 2017 IEEE International Conference on Unmanned Systems (ICUS), Beijing, China, 27–29 October 2017;
pp. 272–276.

5. Wong, J.Y. Theory of Ground Vehicles, 4th ed.; Wiley: Hoboken, NJ, USA, 2008.
6. Elshazly, O.; Abo-Ismail, A.; Abbas, H.S.; Zyada, Z. Skid steering mobile robot modeling and control. In Proceedings of the 2014

UKACC International Conference on Control (CONTROL), Loughborough, UK, 9–11 July 2014; pp. 62–67.
7. Wu, Y.; Wang, T.; Liang, J.; Chen, J.; Zhao, Q.; Yang, X.; Han, C. Experimental kinematics modeling estimation for wheeled

skid-steering mobile robots. In Proceedings of the 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO),
Shenzhen, China, 12–14 December 2013; pp. 268–273.

8. Sutoh, M.; Iijima, Y.; Sakakieda, Y.; Wakabayashi, S. Motion Modeling and Localization of Skid-Steering Wheeled Rover on Loose
Terrain. IEEE Robot. Autom. Lett. 2018, 3, 4031–4037. [CrossRef]

9. Pacejka, H.B. Tire and Vehicle Dynamics; Butterworth-Heinemann Distributed in conjunction with SAE International: Oxford, UK;
Waltham, MA, USA; Warrendale, PA, USA, 2012.

10. Meng, H.; Xiong, L.; Gao, L.; Yu, Z.; Zhang, R. Tire-Model-Free Control for Steering of Skid Steering Vehicle. In Proceedings of
the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 1590–1595.

11. Caracciolo, L.; De Luca, A.; Iannitti, S. Trajectory tracking control of a four-wheel differentially driven mobile robot. In Proceedings
of the 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C), Detroit, MI, USA, 10–15 May
1999; Volume 4, pp. 2632–2638.

12. Kozlowski, K.; Pazderski, D. Modeling and control of a 4-wheel skid-steering mobile robot. Int. J. Appl. Math. Comput. Sci.
2004, 14, 477–496.

13. Zou, T.; Angeles, J.; Hassani, F. Dynamic modeling and trajectory tracking control of unmanned tracked vehicles. Robot. Auton.
Syst. 2018, 110, 102–111. [CrossRef]

14. Ahmadi, M.; Polotski, V.; Hurteau, R. Path tracking control of tracked vehicles. In Proceedings of the 2000 ICRA. Millennium Con-
ference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), San Francisco,
CA, USA, 24–28 April 2000; Volume 3, pp. 2938–2943.

15. Tang, S.; Yuan, S.; Hu, J.; Li, X.; Zhou, J.; Guo, J. Modeling of steady-state performance of skid-steering for high-speed tracked
vehicles. J. Terramech. 2017, 73, 25–35. [CrossRef]

16. Economou, J.T.; Colyer, R.E. Modelling of skid steering and fuzzy logic vehicle ground interaction. In Proceedings of the 2000
American Control Conference, ACC (IEEE Cat. No.00CH36334), Chicago, IL, USA, 28–30 June 2000; Volume 1, pp. 100–104.

17. Garimella, G.; Funke, J.; Wang, C.; Kobilarov, M. Neural network modeling for steering control of an autonomous vehicle. In
Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada,
24–28 September 2017; pp. 2609–2615.

18. De Luca, A.; Oriolo, G.; Samson, C. Feedback control of a nonholonomic car-like robot. In Robot Motion Planning and Control;
Laumond, J.P., Ed.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 171–253.

19. Inoue, R.S.; Cerri, J.P.; Terra, M.H.; Siqueira, A.A.G. Robust recursive control of a skid-steering mobile robot. In Proceedings of
the 2013 16th International Conference on Advanced Robotics (ICAR), Montevideo, Uruguay, 25–29 November 2013; pp. 1–6.

20. Liu, J.; Han, W.; Liu, C.; Peng, H. A New Method for the Optimal Control Problem of Path Planning for Unmanned Ground
Systems. IEEE Access 2018, 6, 33251–33260. [CrossRef]

21. Liu, J.; Han, W.; Zhang, Y.; Chen, Z.; Peng, H. Design of an Online Nonlinear Optimal Tracking Control Method for Unmanned
Ground Systems. IEEE Access 2018, 6, 65429–65438. [CrossRef]

22. Jun, J.; Hua, M.; Benamar, F. A trajectory tracking control design for a skid-steering mobile robot by adapting its desired
instantaneous center of rotation. In Proceedings of the 53rd IEEE Conference on Decision and Control, Los Angeles, CA, USA,
15–17 December 2014; pp. 4554–4559.

23. Lin, N.; Zong, C.; Shi, S. The Method of Mass Estimation Considering System Error in Vehicle Longitudinal Dynamics. Energies
2018, 12, 52. [CrossRef]

24. Vahidi, A.; Stefanopoulou, A.; Peng, H. Recursive least squares with forgetting for online estimation of vehicle mass and road
grade: Theory and experiments. Veh. Syst. Dyn. 2005, 43, 31–55. [CrossRef]

25. Hsu, L.Y.; Chen, T.L. Vehicle Dynamic Prediction Systems with On-Line Identification of Vehicle Parameters and Road Conditions.
Sensors 2012, 12, 15778–15800. [CrossRef] [PubMed]

26. Rhode, S.; Gauterin, F. Vehicle mass estimation using a total least-squares approach. In Proceedings of the 2012 15th International
IEEE Conference on Intelligent Transportation Systems, Anchorage, AK, USA, 16–19 September 2012; pp. 1584–1589.

27. Dar, T.M.; Longoria, R.G. Slip estimation for small-scale robotic tracked vehicles. In Proceedings of the 2010 American Control
Conference, Baltimore, MD, USA, 30 June–2 July 2010; pp. 6816–6821.

87



Electronics 2021, 10, 187

28. Zhou, B.; Peng, Y.; Han, J. UKF based estimation and tracking control of nonholonomic mobile robots with slipping. In Pro-
ceedings of the 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO), Sanya, China, 15–18 December 2007;
pp. 2058–2063.

29. Cui, M.; Liu, W.; Liu, H.; Lü, X. Unscented Kalman Filter-based adaptive tracking control for wheeled mobile robots in the
presence of wheel slipping. In Proceedings of the 2016 12th World Congress on Intelligent Control and Automation (WCICA),
Guilin, China, 12–15 June 2016; pp. 3335–3340.

30. Song, Z.; Zweiri, Y.H.; Seneviratne, L.D.; Althoefer, K. Non-linear observer for slip estimation of tracked vehicles. Proc. Inst.
Mech. Eng. Part D J. Automob. Eng. 2008, 222, 515–533. [CrossRef]

31. Song, Z.; Hutangkabodee, S.; Zweiri, Y.H.; Seneviratne, L.D.; Althoefer, K. Identification of soil parameters for unmanned ground
vehicles track-terrain interaction dynamics. In Proceedings of the SICE 2004 Annual Conference, Sapporo, Japan, 4–6 August
2004; Volume 3, pp. 2255–2260.

32. Hutangkabodee, S.; Zweiri, Y.H.; Seneviratne, L.D.; Altho, K. Multi-solution Problem for Track-Terrain Interaction Dynamics and
Lumped Soil Parameter Identification. In Field and Service Robotics; Corke, P., Sukkariah, S., Eds.; Springer: Berlin/Heidelberg,
Germany, 2006; pp. 517–528.

33. Hutangkabodee, S.; Zweiri, Y.H.; Seneviratne, L.D.; Althoefer, K. Validation of Soil Parameter Identification for Track-Terrain
Interaction Dynamics. In Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego,
CA, USA, 29 October–2 November 2007; pp. 3174–3179.

34. Angelova, A.; Matthies, L.; Helmick, D.; Perona, P. Learning and prediction of slip from visual information. J. Field Robot. 2007,
24, 205–231. [CrossRef]

35. Helmick, D.; Angelova, A.; Matthies, L. Terrain Adaptive Navigation for planetary rovers. J. Field Robot. 2009, 26, 391–410.
[CrossRef]

36. Bekker, M. Introduction to Terrain-Vehicle Systems; University of Michigan Press: Ann Arbor, MI, USA, 1969.
37. Janosi, Z.; Hanamoto, B. Istituto elettrotecnico nazionale Galileo Ferraris. The Analytical Determination of Drawbar Pull as a

Function of Slip for Tracked Vehicles in Deformable Soils. In Proceedings of the 1st International Conference of Terrain-Vehicle
Systems, Turin, Italy, 1 June 1961; pp. 707–726.

38. Landau, L.; Lifshitz, E. Chapter VI—Motion of a Rigid Body. In Mechanics, 3rd ed.; Landau, L., Lifshitz, E., Eds.; Butterworth-
Heinemann: Oxford, UK, 1976; pp. 96–130. [CrossRef]

39. Choset, H.; Burgard, W.; Hutchinson, S.; Kantor, G.; Kavraki, L.E.; Lynch, K.M.; Thrun, S. Principles of Robot Motion: Theory,
Algorithms, and Implementation; MIT Press: Cambridge, MA, USA, 2005.

40. Baruh, H. Analytical Dynamics; WCB/McGraw-Hill: Boston, MA, USA, 1999.
41. Ignatyev, D.I.; Shin, H.S.; Tsourdos, A. Bayesian calibration for multiple source regression model. Neurocomputing 2018, 318, 55–64.

[CrossRef]
42. Grewal, M. Global Positioning Systems, Inertial Navigation, and Integration; Wiley-Interscience: Hoboken, NJ, USA, 2007.
43. Kionix. Using Two Tri-Axis Accelerometers for Rotational Measurements. 2015. Available online: http://kionixfs.kionix.com/en/

document/AN019%20Using%20Two%20Tri-Axis%20Accelerometers%20for%20Rotational%20Measurements.pdf (accessed on
11 January 2021).

44. Soderstrom, T.; Stoica, P. System Identification (Prentice Hall International Series in Systems and Control Engineering); Prentice Hall:
Englewood Cliffs, NJ, USA, 1989.

45. Van Der Merwe, R.; Doucet, A.; De Freitas, N.; Wan, E. The Unscented Particle Filter. In NIPS’00: Proceedings of the 13th
International Conference on Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2000; pp. 563–569.

46. Julier, S.J.; Uhlmann, J.K. New extension of the Kalman filter to nonlinear systems. In Proceedings of the Signal Processing,
Sensor Fusion, and Target Recognition VI, Orlando, FL, USA, 21–24 April 1997; Volume 3068.

47. Zweiri, Y.H.; Seneviratne, L.D.; Althoefer, K. Parameter estimation for excavator arm using generalized Newton method. IEEE
Trans. Robot. 2004, 20, 762–767. [CrossRef]

48. Zweiri, Y.H. Identification schemes for unmanned excavator arm parameters. Int. J. Autom. Comput. 2008, 5, 185–192. [CrossRef]
49. Ignatyev, D.I.; Shin, H.S.; Tsourdos, A. Two-layer adaptive augmentation for incremental backstepping flight control of transport

aircraft in uncertain conditions. Aerosp. Sci. Technol. 2020, 105, 106051. [CrossRef]

88



electronics

Article

High Velocity Lane Keeping Control Method Based on the
Non-Smooth Finite-Time Control for Electric Vehicle Driven
by Four Wheels Independently

Qinghua Meng 1,*, Xin Zhao 1, Chuan Hu 2 and Zong-Yao Sun 3

Citation: Meng, Q.; Zhao, X.; Hu, C.;

Sun, Z.-Y. High Velocity Lane

Keeping Control Method Based on

the Non-Smooth Finite-Time Control

for Electric Vehicle Driven by Four

Wheels Independently. Electronics

2021, 10, 760. http://doi.org/

10.3390/electronics10060760

Academic Editor: Mahmut

Reyhanoglu

Received: 3 March 2021

Accepted: 21 March 2021

Published: 23 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; 40341@hdu.edu.cn
2 Department of Mechanical Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA;

chuan.hu.2013@gmail.com
3 College of Engineering, Qufu Normal University, Qufu 276826, China; sunzongyao@sohu.com
* Correspondence: mengqinghua@hdu.edu.cn

Abstract: In order to improve the output response and robustness of the lane keeping controller
for the electric vehicle driven by four wheels independently (EV-DFWI), the article proposes a lane
keeping controller based on the non-smooth finite-time (NoS-FT) control method. Firstly, a lane
keeping control (LKC) model was built for the EV-DFWI. Secondly, a tracking method and error
weight superposition method to track error computing for the lane keeping control based on the
LKC model are proposed according to the lane line information. Thirdly, a NoS-FT controller was
constructed for lane keeping. It is proved that the NoS-FT controller can stabilize the system by
the direct Lyapunov method. Finally, the simulations were carried out to verify that the NoS-FT
controller can keep the vehicle running in the desired lane with the straight road, constant curvature
road, varied curvature road, and S-bend road. The simulation results show that the NoS-FT controller
has better effectiveness than the PID controller. The contributions of this article are that two kinds
of tracking error computing methods of lane keeping control are proposed to deal with different
conditions, and a Non-FT lane keeping controller is designed to keep the EV-DFWI running in the
desired lane suffering external disturbances.

Keywords: lane keeping control (LKC); non-smooth finite-time control; previewed tracking; error
weight superposition; electric vehicle (EV)

1. Introduction

The electric vehicle (EV), especially the electric vehicle driven by four wheels indepen-
dently (EV-DFWI), has the potential capacity to reduce energy consumption, enhance traffic
safety, and preserve environmental pollution [1,2]. Therefore, the EV has been produced
all over the world. Researchers have also studied many technologies for the electric vehicle
driven by in-wheel motors including cooling system methods [3], energy regeneration ap-
proaches [4], handling stability improvement methods [5], traction control systems [6], etc.
Because the EV has higher electrification than the traditional fuel vehicle, new control tech-
nologies and equipment are easily applied [7]; therefore, the EV becomes more and more
intelligent. Lane keeping control (LKC) technology is one of the intelligent technologies
that has been used in EVs; however, the technology needs to be studied further to improve
the response, robustness, etc. The basic principle of LKC is to ensure that an EV accurately
follows the desired lane via different kinds of sensors and controllers. With the help of
various sensors, an EV can perceive and identify the driving environment around the
vehicle and the driving state of the vehicle itself in real time. Then, the LKC system makes
correct decisions and planning of vehicle motion control based on all sensors’ information
to guide the vehicle actuators to make unified and coordinated movement for trajectory
tracking. Now more and more researchers have paid attention to the field throughout the
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world. Some researchers constructed lane keeping control models such as model predictive
control [8], the fuzzy Takagi–Sugeno model [9], the linear parameter varying model [10],
etc. Many lane keeping control methods have been proposed. The researchers designed
a kind of fault-tolerant lane-keeping controllers for the automated vehicles [11]. A lane
keeping assistant system was proposed to track the desired path with minimized trajectory
overshoot, and an optimal controller was designed to minimize the cost function in [12].
The paper [13] proposed the concept of driver steering override for lane keeping assistant
systems. An approach for a robust multi-rate lane-keeping control with predictive virtual
lanes was proposed in [14]. In [15], a fuzzy-logic-based switching control law was con-
structed for the lane keeping assistance system. The paper [16] proposed a simple adaptive
lane keeping controller based on an improved vehicle dynamic expression. The paper [17]
used a multi-rate Kalman filter to deal with the asynchronous and irregular sampling time,
and constructed a lane keeping system based on a kinematic model. The paper [18] studied
active disturbance rejection control for the lane keeping system to achieve satisfactory
performance. The paper [19] presented a lane keeping system for an autonomous vehicle,
which used an image sensor to obtain the lane information.

The aforementioned literature mainly implemented the LKC by controlling the steer-
ing system, which could influence the vehicle running stability. With the development of
control theory, the sliding mode control methods were improved in theory and application
greatly for the robustness and fast response [20,21]. Levant et al. studied the k-order filter
and time delay in sliding mode [22]. Fridman et al. studied different structures of sliding
mode [23]. Zhang et al. investigated an alternative non-recursive finite-time trajectory
tracking control methodology for a class of nonlinear systems via higher-order sliding
modes [24]. These researchers developed sliding mode control methods in theory. Many
researchers also improved the sliding mode control methods for application in vehicles.
A state-saturated-like second-order sliding-mode algorithm was proposed by using the
saturation technique and the back stepping-like method in [25], and the sliding mode
control method was applied to in-wheel electric vehicles in [26]. In paper [27], a sliding
mode controller for friction compensation of a three-wheeled omni-directional mobile
robot was designed based on a reduced-order extended state observer. In [28], a new fast
non-singular terminal sliding mode surface without any constraint was proposed and
applied to trajectory tracking control for the wheeled mobile robots. Location information
and angular speed were used in the sliding mode controller to solve the lane keeping
problem in [29]. The paper reconstructed the unmeasured auxiliary states and disturbances
synchronously online by constructing a higher-order extended state observer; an output
feedback sliding mode control method was proposed based on this approach for motion
control in [30]. In [31], the authors designed a sliding mode controller for the lane keeping
control and applied it to four-wheel independently actuated autonomous vehicles. In [32],
the authors designed a sliding mode controller for autonomous vehicles that considered
input saturation. An adaptive sliding mode control based on a higher-order nonlinear
disturbance observer was proposed for underactuated mechanical systems in [33]. The pa-
per [34] designed a fault-tolerant control method based on sliding mode control and control
allocation algorithm.

However, the sliding mode control method may generate chatter that could influence
the service life of the actuator. On the other hand, besides the sliding mode control method,
some other finite-time control methods are also developed. The paper [35] proposed a
novel control strategy to unify the construction of Lyapunov functions for finite-time
stability theorem. A finite-time controller for four-wheel steering of an electric vehicle was
designed to improve the vehicle stability [36]. A finite-time controller was designed to
stabilize the electric vehicle if a tire blowouts [37]. The paper [38] investigated the finite-time
boundedness of a class of neutral type switched systems with time-varying delays.

A non-smooth control method has grabbed researchers’ attention in recent years.
The non-smooth control is a kind of nonlinear control method between smooth control
and non-continuous control method. The method has fast convergence and strong anti-
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disturbance features that are useful in practice. Many researchers have achieved some
results. In [39], two non-smooth control laws, high-gain finite-time guidance law, and com-
posite guidance law were designed to improve the disturbance rejection for the missile-
target interception problem. The first one assumes that the system uncertainty is bounded
by a constant. The second one includes a disturbance observer and finite-time state feed-
back. The disturbance observer was used to estimate the system uncertainty, and the
finite-time state feedback was used to stabilize the system. A non-smooth control method
combining the active front-wheel steering control method with the direct yaw moment
control method was proposed to ensure the stability of the electric vehicle driven by four
wheels independently in [40]. A non-smooth composite control approach that could stabi-
lize the system in finite time was proposed to improve the anti-disturbance performance of
permanent magnet synchronous motor in [41].

The development of non-smooth control theory and application provides the possi-
bility for the lane keeping control system. Therefore, we propose a novel lane keeping
controller based on the non-smooth finite-time (NoS-FT) control method for the EV-DFWI
under high vehicle velocity in this article. The main contributions of this article lie in the
following aspects.

• Two kinds of tracking error computing methods of the lane keeping, previewed
tracking and error weight superposition, are proposed to deal with different conditions
for EV-DFWI.

• An NoS-FT lane keeping controller was designed, which can stabilize the vehicle to
run in the desired lane when suffers external disturbance. The controller is proved by
the Lyapunov method.

The article is organized as follows. An LKC model of EV-DFWI and two kinds of
tracking error computing methods of lane keeping control are presented in Section 2. A lane
keeping controller is designed based on the NoS-FT method in Section 3. Section 4 details
the simulation of the designed NoS-FT controller compared with the PID controller, which
is followed by the conclusions in Section 5.

2. Modeling of the LKC for the EV-DFWI

In order to express the relationship between the LKC model and the following de-
signed controller, the EV-DFWI is simplified into a two-DOF model, which just includes
lateral motion and yaw motion with lateral force—shown in Figure 1. The model can be
expressed as follows:

β̇ = − (Cf + Cr)

mv
β − (

(l f Cf − lrCr)

mv2 + 1)γ +
Cf

mv
δ f +

Fw

mv

γ̇ = − (l f Cf − lrCr)

Iz
β −

(l2
f Cf + l2

r Cr)

v
γ +

l f Cf

Iz
δ f +

Mz

Iz
+

Fwlw
Iz

,

(1)

where β is the sideslip angle of vehicle, γ is the yaw rate, m is the mass of vehicle, v is the
longitudinal velocity of the centroid, Iz is the rotary inertia around the Z axis, Cf and Cr are
the front tire cornering stiffness and rear tire cornering stiffness, l f and lr are the distances
from the centroid to the front axle and rear axle, respectively, δ f is the wheel angle of the
front wheel, Fw is the lateral force, lw is the distance from vehicle centroid to the lateral
wind force center, and Mz is the additional yaw moment generated by different torques of
four in-wheel motors.
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v f

f

vf

 

Figure 1. The bike model of the electric vehicle driven by four wheels independently (EV-DFWI).

If an EV-DFWI is controlled to run along the desired lane, the controller must output
yaw moment Mz according to the tracking error of the lane. Therefore, how to obtain
the tracking error of the lane is very important. Generally speaking, the tracking error
is obtained in two ways. When the cameras collect enough information about the lane
lines, the reference path polynomial is fitted according to the direction of the lane line and
the current location of the EV-DFWI. Then the displacement offset between the next time
previewed point and the reference target path point is regarded as the controller input.
The tracking error can be obtained accurately in this way; however, if the lane lines are
collected incompletely, an error weight superposition method is used to determine the total
error as the controller input. The structure of the LKC is shown in Figure 2. Next, the core
modules of the LKC are discussed in detail.

Figure 2. The structure of the lane keeping control.

Tracking Error Computing of the LKC

As previously mentioned, the tracking error is obtained in two ways according to the
lane lines collection. The two tracking error computing methods are shown in Figure 3.

Figure 3. The computing methods for tracking error of the lane keeping control.

(1) Previewed tracking method for tracking error computing
In order to acquire an ideal path, the lane line information and the current location of

the vehicle should be acquired completely. The ideal path is not always the center line of
the lane for a running EV. That is to say, the correction function of the LKC method will
keep the vehicle running in the lane according to its current location, not along the center
line of the lane. The ideal path is shown in Figure 4.
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Figure 4. The ideal path of a HEV-DFWI.

As shown in Figure 4, if the vehicle’s distances from the left and right lane lines are Δx1
and Δx2 respectively, the ideal path is the red dotted line. The ideal path can be obtained
as follows.

a. The locations of the sampled points on the left lane line are (x11, y1), (x12, y2),
(x13, y3), · · · . The initial offset distance Δx1 is added to every sampled points to obtain the
locations of the first group points (x11 + Δx1, y1), (x12 + Δx1, y2) , (x13 + Δx1, y3), · · · .

b. The locations of the sampled points on the right lane line are (x21, y1), (x22, y2),
(x23, y3), · · · . The initial offset distance Δx2 is subtracted from every sampled points to obtain
the locations of the second group points (x21 − Δx2, y1) , (x22 − Δx2, y2) , (x23 − Δx2, y3), · · · .

c. For the same Y-axle values, the locations of the third group points are obtained
as ( 1

2 ((x11 + Δx1) + (x21 − Δx2)), y1), ( 1
2 ((x12 + Δx1) + (x22 − Δx2)), y2), ( 1

2 ((x13 + Δx1) +
(x23 − Δx2)), y3), · · · .

d. A curve is matched according to the locations of the third group points, which is
the ideal path under the current condition.

An absolute coordinate, oxy, and vehicle coordinate, OXY, shown in Figure 5, were
built to construct the driver preview tracking model. As shown in Figure 5, the vehicle’s
location is (xt, yt) in the absolute coordinate at t instant. The target trajectory function is
ytra = f (x). The previewed time is t0 = d

v , where d is the previewed distance, v is the
vehicle velocity. Then after time t0, the vehicle’s abscissa is

xp(t + t0) = x(t) + t0v cos(β + η), (2)

where xp is the vehicle abscissa of the next instant, η is the yaw angle. According to the
target trajectory function, after time t0, the target trajectory ordinate with this abscissa is

ytra(xp) = f (xp(t + t0)) = f (x(t) + t0v cos(β + η)). (3)

According to the displacement computing function, after previewed time t0, the ordi-
nate is

yp(t + t0) = y(t) + t0ẏ(t) +
1
2

ÿ(t)t0
2. (4)

Then, the offset λ is the error between the previewed ordinate and the computed
ordinate according to the target trajectory.

λ = f (x(t) + t0v cos(β + η))− [y(t) + t0ẏ(t) +
1
2

ÿ(t)t0
2]. (5)
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Figure 5. The vehicle locations in the absolute coordinate and vehicle coordinate (β is the sideslip
angle of vehicle, η is the yaw angle).

(2) Error weight superposition method for tracking error computing
The lane line information collected by the cameras may be not enough because of

muddy road, insufficient light, etc. Then the polynomial of the lane line can not be fitted to
obtain the target trajectory. In this case, an error weight superposition method is proposed
to obtain the total error as the controller input. The error weight superposition method
considers the influence to lane departure from the road curvature, lateral position relative
to the lane center, and vehicle yaw angle. The controller input is composed of every factor
with respective weights.

If a vehicle is controlled to run within a lane, the road curvature and the departure
from the center of the road should be provided. In this case, we can understand this
issue from the relative curvature. For example, a vehicle generates a yaw angle when it
runs along a straight road. The lane lines collected by cameras may still curve. Then the
actuator regards this case as the vehicle running on a curve road unless the heading angle is
corrected to obtain the straight lane lines by the cameras. Therefore, the offset between the
vehicle and road is composed of three parts, the road curvature, offset between vehicle’s
location and road center line, and vehicle yaw angle. The lane center line can be obtained
by the left and right lane lines. Then the curvature of the lane center line determines the
lane curvature, which can be calculated by

kcurve =
δ

h
, (6)

where h is the horizontal offset, δ is the vertical offset, as shown in Figure 6. If the vehicle’s
vertical center line deviates from the road center line as shown in the figure, and runs
into the curve lane along the tangent, the vehicle must be adjusted to return to the road
center line and runs along the curve line. Therefore, the direction angle which needs to be
adjusted can be described as

θ = p1
δ

h
+ p2λ, (7)

where p1 and p2 are the coefficients.
However, the vehicle may not run parallel to the lane lines, or run into the curved

lane along the tangent, i.e., the vehicle deviates the road center line with a yaw angle as
shown in Figure 7. In this case, the vehicle must be adjusted to return to the road center
line for running along the curve line. The yaw angle should also be adjusted. Therefore,
the total error e can be calculated as

e = p1
δ

h
+ p2λ + p3η, (8)
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where p3 is the coefficient. Then, we can calculate the necessary adjusted angle for keeping
the car running along the lane by Equation (8).

Figure 6. The road curvature computing (h is the horizontal offset, δ is the vertical offset).

Figure 7. The vehicle runs into a curve lane with a yaw angle (h is the horizontal offset, δ is the
vertical offset, η is the yaw angle).

3. Design of the Lane Keeping Controller Based on NoS-FT Control Method

The classic lane control method usually outputs an additional steering wheel angle by
the PID algorithm according to the relative relation between the vehicle location informa-
tion and lane center line. This control method is mature and reliable, but not robust. When
the system suffers a sudden change of external force, it will generate an obvious oscillation,
and the oscillation is difficult to decrease. Some scholars proposed some improved control
algorithms in the references. These algorithms have better robust, but need larger memory
space, and become complex which may lead to poor stability.

The purpose of this article is to design a NoS-FT controller to keep the EV-DFWI
running along the desired route. The designed controller generates a additional direct yaw
moment Mz for this purpose. In fact, The additional yaw moment is the torque difference
among the four driving wheels. This method is faster and more direct.

The objective of the controller is to ensure the total error e being zero. Therefore,
the necessary adjusted angle of the body is the state, and the additional yaw moment is
the controller input. The relation between the total error and additional yaw moment is
simplified to a first-order plant.

ẋe = udym = Mz. (9)
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Then, the designed NoS-FT lane keeping controller is

udym = −kusign(xe)|xe|αu , 0 < αu < 1, ku > 0. (10)

According to Equations (9) and (10), we obtain

ẋe = −kusign(xe)|xe|αu . (11)

The solution of Equation (11) is

xe(t) =

⎧⎨⎩ sign(xe(0))(|xe(0)|1−αu − ku(1 − αu)t)
1

1−αu , 0 < t ≤ |xe(0)|1−αu

(1−αu)ku

0, t > |xe(0)|1−αu

(1−αu)ku

. (12)

Next, we prove the system can be stabilized by the designed NoS-FT controller via the
direct Lyapunov method. The selected Lyapunov function is

V(xe) =
1
2

x2
e . (13)

The derivation of Equation (13) is

V̇(xe) = xeẋe. (14)

Substituting Equation (11) into Equation (14), one obtains

V̇(xe) = −kuxesign(xe)|xe|αu = −ku|xe|1+αu < 0, (15)

which means that the designed NoS-FT controller can stabilize the vehicle’s driving devia-
tion to zero, i.e., the controller can keep the vehicle running in the desired lane.

4. Simulation and Analysis

In this section, the simulation of the control system (11) was conducted under a vehicle
velocity of 90 km/h. The designed NoS-FT controller was compared with the PID controller
in the simulation to verify its efficiency. We classify the vehicle running conditions into
four types: straight road, constant curvature road, varied curvature road, and S-bend road.
Next, we present the simulations of the four conditions separately. The vehicle parameters
used in the simulation are in Table 1.

Table 1. Vehicle parameters.

Parameters Value

Mass m/kg 1800
Rotary inertia Iz/kg · m2 3000
Length between front axle and centroid l f /m 1.2
Length between rear axle and centroid lr/m 1.8
Lateral stiffness of front axle Cf /N · rad−1 –1500
Lateral stiffness of rear axle Cr/N · rad−1 –1200

We first simulated the straight running condition. In the simulation, the car was
located on the right of the white line that separates the road into two lanes, as shown in
Figure 8. The simulation results are shown in Figure 9. From Figure 9, we can see that
the lateral displacement under the NoS-FT controller is smaller than the PID controller.
The displacement under the NoS-FT controller tends to zero after 75 m of longitudinal
displacement, but the displacement under the PID controller tends to zero after 150 m of
longitudinal displacement.
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Figure 8. The straight road used in the simulation (the X axle is the longitudinal displacement, the Y
axle is the lateral displacement).

Figure 9. The displacements of the car on a straight road controlled by different controllers.

The second simulation was carried out using the constant curvature road, which is
shown in Figure 10. In this simulation, the car was located in one lane, and the input
steering wheel angle was zero. The simulation results are shown in Figures 11 and 12.
The NoS-FT controller and PID controller both keep the car running along the constant
curvature as shown in Figure 11, and the NoS-FT controller has a smaller offset than the
PID controller as shown in Figure 12. The offset is limited within –0.1 to 0.15 m under the
NoS-FT controller, but within –0.5 to 0.28 m under the PID controller.

Figure 10. The car runs on a constant curvature road (the X axle is the longitudinal displacement,
the Y axle is the lateral displacement).
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Figure 11. The traveling track of the car runs on a constant curvature road under different controllers.

Figure 12. The offset of the car runs on a constant curvature road under different controllers.

Another common condition is that the car runs on a varied curvature road. In the
simulation, the input steering wheel angle is zero. The road model is shown in Figure 13.
The car runs on the straight part, then runs into the varied curvature part. Figure 14 is
the car’s displacements under different controllers, which shows that the NoS-FT and PID
controllers are both effective for the varied curvature road. Figure 15 shows that the offset
is between –0.12 and 0.1 m under the NoS-FT controller, which is much smaller than the
PID controller that is between –0.35 and 0.4 m.

Figure 13. The car runs on a varied curvature road (the X axle is the longitudinal displacement, the Y
axle is the lateral displacement).
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Figure 14. The traveling track of the car runs on a varied curvature road under different controllers.

Figure 15. The offset of the car runs on a varied curvature road under different controllers.

The last condition is the S-bend curvature road, which is shown in Figure 16. The car
runs in one lane, and the car’s steering wheel angle is zero. The car’s displacements under
different controllers are shown in Figure 17. From which we can see that the two controllers
can keep the car running along the desired lane. But the offset is within –0.12 to 0.15 m
under the NoS-FT controller, which is much smaller than –0.35 to 0.55 m under the PID
controller as shown in Figure 18.

Figure 16. The car runs on a S-bend curvature road (the X axle is the longitudinal displacement, the Y
axle is the lateral displacement).

99



Electronics 2021, 10, 760

Figure 17. The traveling track of the car runs on a S-bend curvature road under different controllers.

Figure 18. The total track error of the car runs on a S-bend curvature road under different controllers.

5. Conclusions

In this article, an LKC model of an EV-DFWI is built for to design a controller to
improve the output response and robustness of the LKC. Then, based on the model, both
a previewed tracking method and error weight superposition method are proposed to
compute the tracking errors for the following designed controller to enable the vehicle to
run along the desired lane. Based on the NoS-FT control method, the lane keeping controller
is designed to control four driving wheels to reduce the total tracking error. The designed
controller is proved by the direct Lyapunov method that it can stabilize the vehicle in
theory. Through the simulation of the designed NoS-FT controller and PID controller under
the common four conditions, this paper achieves the following conclusions:

• The designed NoS-FT controller can stabilize the lateral displacement of the EV-DFWI
to zero faster than the PID controller running along a straight road.

• The designed NoS-FT controller has a smaller offset and better effectiveness than the
PID controller under other different conditions.
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Abstract: In the development of Level 4 automated driving functions, very specific, but diverse,
requirements with respect to the operational design domain have to be considered. In order to
accelerate this development, it is advantageous to combine dedicated state-of-the-art software
components, as building blocks in modular automated driving function architectures, instead of
developing special solutions from scratch. However, e.g., in local motion planning and control,
the combination of components is still limited in practice, due to necessary interface alignments,
which might yield sub-optimal solutions and additional development overhead. The application
of generic interfaces, which manage the data transfer between the software components, has the
potential to avoid these drawbacks and hence, to further boost this development approach. This
publication contributes such a generic interface concept between the local path planning and path
tracking systems. The crucial point is a generalization of the lateral tracking error computation,
based on an introduced error classification. It substantiates the integration of an internal reference
path representation into the interface, to resolve the component interdependencies. The resulting,
proposed interface enables arbitrary combinations of components from a comprehensive set of state-
of-the-art path planning and tracking algorithms. Two interface implementations are finally applied
in an exemplary automated driving function assembly task.

Keywords: ODD-based AD function design; path tracking; path planning; software architecture;
interface design

1. Introduction

Automated driving (AD) has been a huge challenge over the last decades in research
as well as in industry. However, estimations and expectations for final breakthroughs
on the market have been continuously shifted, contrary to many announcements. An
analytic look at the available products on the market reveals that SAE Level 2 [1] is still
state-of-the-art in passenger cars, outdone in few applications to Level 3 for very restrictive
applications (e.g., [2]). Level 4 automation, in particular for urban road networks, is still
an open challenge (see [2]) and therefore in focus of current research. From a general
perspective, the step from Level 3 to 4 is a shift from automated to autonomous driving.
This step involves full environmental perception and decision making. Furthermore, the
human driver can not be applied as safety fallback anymore. Consequently, it is a game
changing development step. From implementation point of view a paradigm shift in
system architecture is required since sensors must be shared between components and new
concepts for multi-layer control software are required.

In contrast to the “under all conditions” requirement of Level 5 automation, which
is quite problematic from a technical perspective, Level 4 automation solves the task of
fully autonomous driving under clearly defined conditions, i.e., in a specified operational
design domain (ODD). Different ODDs can be very diverse, e.g., valet parking and highway
driving, and, hence, require a carefully matched AD function. From this point of view, a
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modular system architecture design (e.g., [3]) is beneficial ([2]). It enables the development
of modular and, hence, reusable software components with respect to dedicated tasks of
the fundamental sense-plan-act principal from robotics [4], and ODD-based assembly and
tuning of these components. An attempt to overview the scientific state-of-the-art on all
stages of the sense-plan-act principal, reveals a tremendous amount of highly sophisticated
scientific solutions (see, for example, [5,6], (pp. 71–140) and [7]), with promising simulation
and also real-world testing results in specific use cases. Although equivalent components
solve the same task on a qualitative level, they diverge in their specific input/output data
requirements. This fact complicates ODD-based AD function assembly, yielding potential
performance interdependencies between the components. This has to be avoided since the
components form a safety critical overall system. Hence, a clear strategy on the definition
and implementation of component interfaces is beneficial. A common approach is to define
very basic, static interfaces (cf. Autoware [8]), focusing on a minimized version of the
shared information. The drawback of this approach is the need for repetitive wrapper
code within the single software components adapting the interface signals to match the
components’ requirements. Although this wrapper code is independent from the actual
component algorithm, it eventually impacts the performance of the component and of the
overall combined system. A modification that affects this code involves all components.
In order to overcome this drawback, these wrapper-tasks may be assigned to a dedicated
interface component following, if possible, a generic design approach. This enables a
clear focus of the connected components on their dedicated tasks omitting component
independent input/output data processing. Simultaneously, the application of dedicated
interface components supports a middelware independent component development and
reduces later integration risk in combination with different middleware concepts.

The design of such an interface has to handle manifold requirements of state-of-the-
art components. This obviously, on the one hand, complicates the interface design to a
challenging task. On the other hand, it reveals significant benefits especially in the ODD-
based AD-function assembly, since it enables straight-forward combination of arbitrary
state-of-the-art components.

This publication is dedicated to the design of such an interface, between the local
motion planning system and the path tracking system, which is an essential part of every
AD function. The interface, hence, shall be able to connect a comprehensive set of state-of-
the-art path planning and path tracking algorithms (see Figure 1), resolving performance
interdependencies to the greatest possible extend. This is of special interest for example
in collision avoidance, see for example [9,10], since it requires an accurate coordination of
path planning and tracking.

Path
planning

Path
tracking

Interface

Figure 1. A generic interface shall enable arbitrary combinations of state-of-the-art path planning
and tracking components, without any need for repetitive wrapper code for input/output data
processing within the components.

The interface design needs an overview on state-of-the-art components and algorithms.
Therefore, the publication simultaneously features a survey contribution, in particular with
respect to path tracking algorithms (from a specific point of view) and specific interpolation
methods. The presented classification of lateral tracking error definitions based on a
comprehensive set of state-of-the-art tracking controllers is essential for the proposed
interface design, but also contributes to a better understanding of the impact of tracking
error definition on the performance of a tracking controller. The proposed interface design,
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furthermore, may serve as conceptual model for the design of other interfaces in modular
system architecture for AD functions.

In detail, the publication structures as follows: Section 2 outlines the general path
tracking problem and identifies the lateral tracking error computation as a major challenge
in the generic interface design. In order to tackle this challenge, Section 3 introduces
a lateral tracking error classification approach. This proposed classification enables a
generalized approach in tracking error computation (see Section 4), based on a concise
set of three elementary path operations. This set is sufficient to cover a comprehensive
set ot state-of-the-art path tracking controllers. Section 5 summarizes the contribution of
the preliminary findings for the aimed interface design. Section 6 extends the interface
requirements from the path planning side, yielding the final interface design concept in
Section 7. Finally, in Section 8 a simple, exemplary ODD-based AD function assembly
tasks is considered in order to demonstrate the proposed interface design and to sub-
stantiate its benefits. Appendixs A and B provide continuative theoretical basics on path
parametrization and interpolation.

2. The Path Tracking Problem

Path tracking is an important sub-problem of motion control in automated driving
tasks. In contrast to the more general trajectory tracking (see for example [11,12], (p. 172))
the trajectory is split into a time-independent, spatial information—the reference path—and
a time-dependent function, which defines the reference position at a specific time along
this path. A lateral controller applies steering commands to approach the reference path—
the so-called path tracking. Concurrently a longitudinal controller applies vehicle speed
adaptions in order to track the time-dependent reference position along the path. The basic
assumption behind a separated lateral and longitudinal control is almost decoupled lateral
and longitudinal vehicle dynamics. In fact, they are actually coupled due to the limited
traction forces of the vehicle tires and the time-dependent actuation limitations (steering
rate). Whereas this assumption is valid in low- and moderate-speed driving at dry roads,
respectively in high-speed driving with low steering dynamics, it is not valid in highly
dynamic maneuvers, like emergency evasions or when driving on an icy road.

There exists several surveys on the classification of state-of-the-art tracking controllers
like [5,13–15] and [6] (pp. 71–140). In general, the path tracking problem can be stated as
follows: Given an planar reference path, which might be represented in a parametric way
(cf. Appendix A) with respect to a curve parameter τ,

γ(τ) = [x(τ) y(τ)]T
, (1)

the path tracking controller has to compute a steering actuation, e.g., a steering wheel angle,
in order to make a the position of the vehicle to follow the reference path. In order to use
classical control system design approaches an appropriated error vector has to be defined,

e(t) = fe(γ(τ), p(t)) = [elat(t) eψ(t) ⋯]T
, (2)

based on the reference path and the vehicle pose. The vehicle pose consists of the vehicle
position x(t), y(t) and heading ψ(t) and possibly more vehicle states,

p(t) = [x(t), y(t), ψ(t), . . .]T
. (3)

The error vector consists of a mandatory spatial tracking error (some lateral offset
error) and optionally of additional error measures like an orientation error or curvature
error. Some special control approaches, e.g., Model Predictive Control (MPC), furthermore,
require several lateral tracking errors corresponding to vehicle pose predictions.

With respect to a specific control error, the path tracking controller defines a steering
command δ(t), which shall control the tracking error to zero, and consequently make the
vehicle to follow the reference path:
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δ(t) = fδ(e(t)) ∶ e(t) → 0 (4)

There are various reasonable possibilities to the define a lateral tracking error (see
Figure 2) based on different motivations. In general, there exists no unique mappings
between different lateral errors. It is an important but little-noticed fact that both the error
definition and the control law design have to be considered as degrees of freedom in control
system design and impact the final tracking performance.

The computation of the tracking error depends on the reference path, which is pro-
vided by the motion planning system. Consequently, its constitution and quality are
defined by another component, which yields an undesired dependency on the planning
system. Therefore, it is reasonable to think about outsourcing the tracking error computa-
tion to a generic interface component. To do so, it is necessary to analyze state-of-the-art
path tracking algorithms with respect to the applied lateral tracking error definition. A
unique classification of the used tracking error definitions and a generalization of the
tracking error computation based on this classification is a major step towards the intend
generic interface, which is addressed in the next sections.

ψ

δ

γ(τ)

e2

.
e3

.

e1

.

Figure 2. Different tracking error definitions of state-of-the-art tracking controllers.

3. Tracking Error Classification

Based on the analysis of a comprehensive set of state-of-the-art path tracking controllers
(cf. Table 2), the introduction of three general and comprehensible classifier sets are introduced
(Svr: vehicle reference, Slh: look-ahead (direction and distance) and Seo: error orientation),
which are applicable to classify these controllers and to analyze their differences.

SSotA ∈ Svr × Slh × Seo (5)

These classifiers shall now be discussed in more detail, in order to summarize the
corresponding motivation and the effects on the control design and control performance.

3.1. Vehicle Reference Point

The vehicle reference might be defined at an arbitrary point on the vehicle chassis.
There is a set of common reference points, based on a single-track abstraction of a front-
axle-steered vehicle (see Figure 3) with different motivations:

• Rear axle: A vehicle, in general, features non-holonomic dynamics. The rear axle is the
point of the vehicle with the "most constrained" motion. Assuming zero lateral slip,
the motion of the rear axle is aligned with the vehicle heading. Therefore, a constant
zero tracking implies that also the vehicle heading is aligned to the reference path,
which is a favorable tracking property. From control system theory the center of the
rear axle is of interest, as it is a flat output of the system restricting on slip-free vehicle
kinematics (see for example [11,16]). The turning radius of the rear axle in cornering
is smaller than the turning radius of the front axle (see Figure 4). Therefore, the choice
of the rear axle as a vehicle reference point, in general, implies potential undesired
overshooting of the vehicle’s front.

• Front axle: If the vehicle reference point is set to the center of the front axle, the
non-holonomic vehicle kinematics in principle do not have to be considered in the
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control design, as stopping and adjustment of the steering angle enables tracking of
arbitrary reference paths within the limited turning radius. This enables a simplified
control design, especially for low dynamic driving tasks as parking. A drawback of
this reference point is the smaller turning radius of the rear axle in cornering (cf. rear
axle reference point), which implies potentially undesired curve cutting.

• Center of gravity: The choice of the center of gravity as a vehicle reference, simplifies
the setup of the vehicle’s equations of motion. Therefore, it is used in many control
system design approaches. From tracking perspective its position, somewhere in the
middle of the car is of interest, in order to minimize the total distance of all points
with respect to the reference path.

• Center of oscillations/percussion: In the center of oscillation or percussion, the trans-
lation and rotation impact of a lateral tire slip at the rear axle are in balance. Con-
sequently, this point is of special interest in order to design control laws, which are
robust with respect to lateral rear axle tires slip. The choice of this reference point
is popular in tracking controllers designed for limit-handling, as racing applications
(see for example [17,18]). For front-wheel-steered vehicles the position of the center of
percussion with respect to the rear axle lCP is:

lCP = lCG + Izz

m × lCG
, (6)

where lCG is the distance of rear axle and center of gravity, m the vehicle mass and Izz
the vehicle’s inertia in the center of gravity with respect to the vertical vehicle axis.

rear axle

center of gravity

center of oscillation

front axle

Figure 3. Common vehicle reference points for control error definition based on a single-track
vehicle model.
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Figure 4. Direction of motion ψx of different reference points.

The set of vehicle reference classifiers Svr, hence, can be summarized as:

Svr = {rear, front, CG, CP}. (7)

3.2. Look-Ahead

Due to the non-holonomic motion of a vehicle, reference points on the path parallel
to the vehicle are out of reach without reverse driving or spacious maneuvers. Therefore,
many tracking error definitions do not directly use the vehicle reference point to compute a
lateral tracking error, but some point ahead of the vehicle reference point. The application
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of such a so-called look-ahead, or preview (see, for example, [19]), is a very natural behavior
of human drivers. The look-ahead refers to the vehicle reference point and is defined by a
look-ahead direction and a look-ahead distance. The introduction of a look-ahead enables
preventive reaction to sudden direction changes of the reference path, which stabilizes the
vehicle motion. As this becomes more crucial for higher vehicle speeds several tracking
controllers (see, for example, [19–22]) use an adaptive, velocity dependent look-ahead
distance, instead of a fixed distance. This is advantageous also if the tracking controller
is applied in combination with simple motion planning systems, which do not provide a
smooth path (cf. Section 8), since the look-ahead damps the impact of path discontinuities.
In [23], the impact of this damping characteristic is analyzed with respect to control stability
in frequency domain base on a linearized vehicle model. This damping characteristic at
the same time reveals the main drawback of a look-ahead application. A smooth vehicle
motion is achieved at the cost of worse tracking performance in the vicinity of the actual
vehicle position (e.g., curve cutting). Even in the case of perfect reference tracking elat(t) ≡ 0
the vehicle itself actually does not follow the planned reference path. This implies that
planned reference path properties, like specific safety distances to obstacles, are withdrawn.
If a tracking controller is applied in combination with a comprehensive motion planning
system, consequently, one should carefully think about the application of a look-ahead in
the tracking error definition. Three reasonable choices for the direction of a look-ahead
appear (see Figure 5):

• look-ahead towards the vehicle heading,
• look-ahead towards the direction of motion in vehicle reference point,
• and look-ahead towards the reference path in a certain distance.

ψ

δ

γ(τ)

heading

motion

path

Figure 5. Different look-ahead directions based on the vehicle reference point in the center of the
front axle.

Considering vehicle kinematics (see Figure 4), the absolute direction of motion ψx in a
vehicle reference point at distance lx in front of the rear axle (towards the vehicle heading
ψ), with respect to a steering angle δ is:

ψx = ψ + arctan( lx
l

tan δ). (8)

This direction is obviously equal to the vehicle heading at the rear axle (for lx = 0)
and equal to the steering direction at the front axle (lx = l). The application of a look-
ahead extends the possibilities in achieving specific constitution of the final model-based
tracking problem, as it is proposed for example in [12] (pp. 199–201) (front axle vehicle
reference and a look-ahead in direction of motion): In this case, decoupling and input–
output linearization can be achieved with a static feedback. The above considerations yield
the set of look-ahead classifiers Slh:

Slh = {heading, motion, path}. (9)
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3.3. Error Orientation

Based on a vehicle reference point and the optional look-ahead (direction and distance)
the orientation of the tracking error needs to be defined in order to compute a lateral track-
ing error. Similar to the definition of look-ahead directions, reasonable orientations are:

• perpendicular to the vehicle heading,
• perpendicular to the direction of vehicle motion in the vehicle reference point,
• perpendicular to the path.

For almost straight reference paths, different error orientations approximately coincide
if the vehicle drives along the reference path. On the other hand, if the vehicle first has to
approach the reference path, or drives along curvy path sections, differences reveal (see
Figure 6). In summary the classification set for the error orientation is:

Seo = {heading, motion, path}. (10)

The above definitions can be used to give a comprehensive definition of a lateral
tracking error based on the classifiers vehicle reference, look-ahead (direction and distance)
and error orientation in the combined set,

S = Svr × Slh × Seo, (11)

according to (7), (9) and (10). Figure 6 exemplarily illustrates all possible error definitions
for the vehicle reference at the front axle, i.e., for the set {heading} × Slh × Seo, as listed in
Table 1. In the case of a look-ahead towards the path and an error orientation perpendicular
to the path, the lateral error has to be defined either with respect to the vehicle heading or
motion (see errors ep,p(h) and ep,p(m)).

Based on given coordinates of the vehicle reference point, a specified look-ahead
distance and direction and error orientation define a reference point on the path. In
addition to the lateral tracking error, this reference point can be used to compute further
error measures like an orientation or curvature error. In [24], the choice of an appropriate
heading error is discussed and its impact on the tracking performance is analyzed.
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Figure 6. Possible tracking error definitions for vehicle reference at the front axle (see Table 1), i.e.,
the classification set {front× Slh × Seo}.
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Table 1. Corresponding tracking error definition classifiers to Figure 6.

Look-Ahead Error Orientation

e0,h no heading
e0,m no motion
e0,p no path
eh,h heading heading
eh,m heading motion
eh,p heading path
em,h motion heading
em,m motion motion
em,p motion path
ep,h path heading
ep,m path motion

ep,p(h) path path (heading)
ep,p(m) path path (motion)

3.4. Application to State-of-the-Art Tracking Controller

To prove the applicability of the proposed tracking error definition classification, it
is applied to a comprehensive set of state-the-art tracking controllers. Table 2 lists the
classification according to the specified classifiers.

Table 2. Tracking error classification of state-of-the-art path tracking controllers.

Controller Vehicle Ref. Look-Ahead Error Orient.

Hoffmann (Stanley) [25], Kolb [26] front no path

Sun [27,28], Kritayakirane [17], CG no path
Chen [29], Hu [30] Bruschetta [31]

Chatzikomis [14], Xu [19], Zhang [32] CG no heading
Hiraoka [33] CP no path

Tieber [34], Samson [35], rear no path
Dominguez [36], Solea [37]

Nestlinger [20], Ackermann [38], CG heading heading
ARGO [21], Guldner [23], Yuan [22]

Elkaim [39] CG heading path
Solea [37] rear motion path

Sentouh [40] CG motion motion
Coulter (Pure-pursuit) [41] rear path heading

While Table 2 shows the application of various vehicle reference points, and look-
ahead directions, most tracking controllers are based on an error orientation perpendicular
to the reference path or to the vehicle heading. Only one of the considered controllers [40] is
based on an error orientation perpendicular to the vehicle motion in the reference point. A
possible explanation for this is the fact that direct measurement of the actual vehicle motion
direction is challenging due to the side slip of the tires. As an alternative, an estimation
based on the yaw rate has to be used. In fact, in [40], the authors do not propose a steering
controller for application in an autonomous vehicle but propose a human driver model for
simulation purpose. In [42], a hybrid concept consisting of an Pure-pursuit and Stanley
controller is proposed in order to combine a tracking error definition with look-ahead and
without look-ahead. In [17], the control law is designed with a vehicle reference point in
the center of percussion. The used lateral control error eCP, however, is a projection of the
distance of the center of gravity to the path eCG:

eCP = eCG + dCG,CP × sin eψ, (12)
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according to the distance between center of gravity and center of percussion dCG,CP and the
heading error eψ. Therefore, the vehicle reference point is assigned to the center of gravity.
In [27,28,31], an MPC is applied for path tracking. In every MPC step, actuation signals
are optimized with respect to a specific cost function on a prediction horizon. In general,
the cost function includes a deviation from the reference path, i.e., a lateral tracking error.
Instead of an evaluation of the tracking error at a single vehicle pose (cf. Figure 8), hence
additionally an evaluation at several predicted vehicle poses is required.

The choice of the single introduced classifiers can be considered as part of the control
parametrization. As Figure 6 indicates, the actual control error computation is defined
by specific geometrical operations with respect to the current vehicle pose, the control
parametrization and the provided reference path. A generalization of the tracking error
computation is presented in the next section.

4. Tracking Error Computation

Based on a generalized reference point, which already considers an optional vehicle-
oriented look-ahead (except for a look-ahead towards to reference path), it is noticeable that
despite the various possibilities in the tracking error definition the actual error computation
can be handled with only five geometric operations (see Tables 3 and 4 and Figure 7).

The operations a (intersection of two lines) and c (projection of a point on a line) do not
depend on the reference path and have simple analytic solutions. Contrary, the operations
A (intersection of the reference path with a line), B (intersection of the reference path and a
circle) and C (point projection onto the reference path) depend on the path representation
(cf. Appendix A). Hence, the reference path representation also determines the resulting
computational complexity. Some general statements can be made on this path operations.

Table 3. Path operations.

Operation

A intersection line/path

B intersection circle/path
C point projection on path
a intersection line/line
c point projection on line

Table 4. Operations for error computation.

Error Orientation

Path Heading Motion

no C A A

path B+a B+c B+c

heading C A A

lo
o

k
-a

h
e

a
d

motion C A A
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Figure 7. Visualization of path operations in the lateral tracking error computation.

4.1. Intersection of Reference Path and a Straight Line

After performing a translation and rotation of the path, this operation reveals as com-
mon root finding problem, which can, in general, not be solved analytically, for example
in case of a higher order polynomial reference path. However, many well-established
numeric algorithms like Newton-method, bisection-method or Brent-method, can be
used to compute arbitrarily exact approximations to the solution of this problem (see,
for example, [43–45]). The solution of this path operation is neither unique nor it exists for
sure. Hence, tracking controllers relying on this path operation inevitably have to define a
fallback solution for the control law. The fallback solution, e.g., a constant curvature turn,
has to ensure the convergence to a region where the path operation yields a solution. With
respect to the uniqueness, it is reasonable to use the closest solution.

4.2. Intersection of Reference Path and a Circle

From an analytic perspective, this operation can be considered equivalent to operation
A after performing a transformation of the corresponding reference path section into polar
coordinates, which is challenging for an arbitrarily parameterized path. From numerical
perspective, it might also be considered as a generalization of the shortest-distance-problem
(cf. operation C), searching for a fixed given distance to the reference path instead of the
shortest distance. The solution of this path operation in general yields at least two solutions,
which can be prioritized following again the most-progress-on-path principle. The solution
of this path operation obviously does not exist if the shortest distance between the center
point of the circle and the path exceeds the specified circle radius.While this offers a
straight-forward method to test for the existence of a solution, there is, in contrast to
operation A, no simple fallback, which can be applied for arbitrary controllers, which
rely on this path operation. Therefore, a reliable fallback solution, which ensures that the
vehicle is approaching the path, has to be design including the specific control law. For
many controllers including the famous pure-pursuit controller [41], the solution of the
shortest-distance-problem (see operation C) is applicable as a fallback solution.

4.3. Point Projection Onto the Reference Path

Point projection is a well investigated topic, but still an ongoing research field in
geometry (see, for example, [46–49]). Although for some path representations (e.g., if
the path consists of circular arcs) an analytic solution exists, most implementations apply
iterative numeric methods, similar to path operation A, to compute approximations of the
solution. The existence of a solution is not ensured. A widely used fallback for tracking
controllers is to transition to the shortest-distance-problem. A solution to this fallback
problem always exists and if a solution to the point projection problem exists, the solutions
are equivalent. The ambiguity of the solution can be handled based on the path direction
(choosing the solution which gains the most progress along the reference path).
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5. Summary of Interface Requirements from Tracking Control Perspective

The comprehensive investigations of the last sections provide the theoretical backbone
in order to state the general requirements for a generic planning and control interface from
control side. The central idea for the interface implementation is to detach the tracking error
computation from the control component. On the one hand, this avoids redundant compu-
tations in different control components. On the other hand, it enables careful coordination
with respect to the representation of the provided reference path. This supports the perfor-
mance of the overall system, which is especially of interest in safety critical applications
like collision avoidance. According to Section 3, the definition of three classifiers (vehicle
reference point, look-ahead and error orientation) is sufficient to define the lateral tracking
error definition applied in state-of-the-art path tracking controllers. Furthermore, according
to Section 4, three elementary path operations are sufficient to compute all possible tracking
errors, which can be defined based on the introduced tracking error classifiers. Hence,
these elementary path operations can be implemented with respect to the reference path
representation outside of the actual path tracking component, in order to supply various
different tracking controllers with the required tracking error, as illustrated in Figure 8.

Error
computation

(Table 4)

Path
trackingTracking

error
Reference

path

Tracking
error definition

Path operations
(Table 3)

Reference path
representation

Vehicle pose

Interface

Figure 8. Interface concept to meet the output requirements defined by the state-of-the-art in path
tracking controller design.

In order to complete the interface concept, the following section consider the path
planning problem in general and the interface requirements resulting from the state-of-the-
art in path planning.

6. Interface Requirements from Path Planning Perspective

Similar to path tracking path planning, is a sub-problem of the more general trajectory
planning problem. It focuses exclusively on the spatial planning, also known as lateral
planning, neglecting the temporal aspect of the motion planning. The general limitations
of the applicability of such a decoupled motion planning and control have already been
mentioned in the Section 2. In addition, from planning perspective also limitations of this
approach with respect to complex dynamic environments arise. However, this separation
enables simplified planning for relevant use-cases like valet parking. The general path
planning problem can be stated as follows: The planner has to compute a collision-free
path from a given starting pose to a given final pose, complying constraints with respect to
drivability (limited actuation systems, like a vehicle’s bounded steering angle), comfort
(bounded lateral acceleration and jerk), efficiency (length of the path and necessary actu-
ation effort) and safety (distance to obstacles). Many surveys on different path planning
approaches and algorithms have been published (see, for example, [2,5,50–52]).
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In contrast to the state-of-the-art path tracking controllers, where it was necessary
to establish a reasonable generalization of the input requirements via a careful study of
state-of-the-art components, the generalization of the output requirements of path planning
components is more straight forward and does not need an extensive consideration of
specific state-of-the-art path planning algorithms. On a qualitative level, there are two
different output formats provided by path planning systems: Hermite path data and
analytic curve expressions.

Hermite path data consist of a set of consecutive way points (position x, y ↦ G0
Hermite data) and optional higher-order geometric information: tangent (position x, y +
orientation ψ ↦ G1 Hermite data), curvature (position x, ys + orientation ψ + curvature
κ: ↦ G2 Hermite data (cf. Figure 9)) and so on. Hermite path data give a hint about the
qualitative course of a continuous path, assuming that the single samples do not skip a
significant section of the path.

κ−1
0

κ−1
1

κ−1
2ψ0

ψ1

ψ2

P0

P1

P2

Figure 9. Exemplary G2 Hermite waypoint data, consisting of position P, orientation ψ and curvature κ.

Alternatively a path planning algorithm may provide the reference path in form of
an analytic curve expression. The most commonly used analytic curve expressions are
parametric curves. In Appendix A, an overview on the basics of parametric curves and
commonly used parametric curves expressions in path planning are given.

The more accurate the shape of a single analytic curve shall be specified, the more
complex representations (e.g., high-order polynomials) are required. In practice, this yields
an increased computational complexity and corresponding numerical issues. Hence, it is
far more practicable to represent the planned path not as one single analytic curve but as a
sequence of aligned curve segments, in which each are defined by simple analytic curves,
yielding a so-called spline. The application of a segmented path needs an adaption of the
elementary path operations stated in Section 4. The determination of a tracking control
error has to be managed in two stages:

1. Global: Identification for the respective path segment.
2. Local: Application of the actual error computation within the path segment (see

Section 4).

The identification of the respective path segment can inflate to a complex issue, since
the actual optimal solution of this task requires the application of the path operation (step 2)
on each path segment. In order to reduce the computational effort for step 1, a practicable
workaround is to aim for a sub-optimal solution. Such a solution can be obtained, for
example by applying the path operation to a simplified version of the path, like for example
a linear interpolation of the way point within the path segments. However, the discrepancy
between the sub-optimal solution and the optimal one, may become significant especially
for reference paths including sharp turns, loops or cusps.

In summary, the path representations provided by state-of-the-art path planning al-
gorithms feature a huge diversity. There is no obvious link for a potential generalization
similar to the error classification for path tracking. However, according to Section 5, the
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implementation of identified elementary path operations depends on the reference path rep-
resentation. Therefore, it is reasonable to include an internal reference path representation
into the interface, which, in general, may differ from a possible parametric path provided
by the planner. Since it is straight forward to generate Hermite path data from a given
parametric path, by path sampling, the generalized input format is defined as Hermite path
data. The drawback of this definition is that the proposed interface may withdraw analytic
curve expressions potentially provided by high-sophisticated planning components.

The choice for an internal path representation is a degree of freedom in the interface
design. Appendix A gives important hints for the pros and cons of different curves. A
common choice are polynomial splines. Such splines may be defined in different polyno-
mial bases (e.g., monomial and Bernstein basis). The missing step to finalizing the wanted
generic motion planning and control interface is the parametrization of the internal path
with respect to given Hermite way point data. This is covered by the well investigate
research field of interpolation. For sake of completeness, Appendix B surveys some state-
of-the-art algorithms for the interpolation of Bezier splines, which serve as internal path
representation for the exemplary implementation of the interface (cf. Section 8).

Figure 10 illustrates the intermediate result with respect to the input structure of the
proposed generic interface.
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Figure 10. Interface concept to meet the input requirements defined by state-of-the-art reference
path representations.

7. A Generic Path Planning and Tracking Interface

Combining the above considerations from path planning and path tracking side, the
concept for the generic interface design shall now be summarized (see Figure 11). The three
major steps in the implementation of such an interface are:

• Decision for an internal path representation.
• Implementation of corresponding Hermite waypoint data interpolation algorithms

(see Appendix B), in order to accomplish input (planning) modularity with respect to
different data types (G0, G1, ⋯).

• Implementation of corresponding error computation, based on the path operations
discussed in Section 4 (path-line intersection, path-circle intersection and point projec-
tion), in order to accomplish output modularity (control).

The key design decision is the choice of an internal path representation. The internal
path representation, on the one hand, has to be able to accurately describe a planned
reference path. On the other hand the computational aspects of the required interpolation
and path operation algorithms have to be considered. It is an important fact that this design
decision impacts the final performance of the motion planning and control system, in terms
of tracking performance (cf. Section 8) and computational effort.
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Figure 11. Interface for modular motion planning and control systems.

Such an interface is able to connect state-of-the-art path planning algorithms, which
provide Hermite waypoint data, with state-of-the-art path tracking controller, which re-
quires a lateral tracking error definition that is covered by the introduced error classifiers:
vehicle reference, look-ahead and error orientation. Consequently, it enables the combi-
nation of a huge range of planning or tracking components without necessary interface
modifications, which offers significant benefits in both simulation and operation:

• In simulation, it supports a straight-forward identification of an appropriate com-
ponent set, based on iterative combination, simulation and evaluation, considering
specific scenarios and corresponding KPIs. This is an important aspect of ODD-based
AD function assembly. Furthermore, a specific error definition can be applied as
common evaluation measure for a set of tracking controllers, which could not be
compared on a quantitatively based on their different native error definition on a fair
basis (cf. the example in Section 8).

• In operation, it enables the simultaneous execution of different software components
as well as switching between different components. This on the one hand supports the
design of AD-functions, for a set of varying ODDs extending the application range of
Level 4 driving functions. On the other hand, it supports the application of redundant
and fail-operational software in order to increase safety of an AD function.

In addition to these major benefits in simulation and operation, the application of the
proposed interface offers additional possibilities in the AD function development. The
resolution of the component interdependencies, which might impact the overall system per-
formance, is a significant advantage in safety critical applications, like collision avoidance.
Furthermore, as already mentioned in Sections 2 and 3.4, the tracking error computation
can be executed also on a set of vehicle poses, generated by some motion prediction in
order to support, e.g., MPC-based path tracking approaches. However, there might occur
cases, which exclude the possibility of outsourcing the error computation to an interface
component for some algorithmic reasons. In this case, the proposed interface still can
operate as a reference path pre-processing unit, which may provide reference path sections
of fixed quality, with respect to configurable requirements, e.g., equidistant sampling
and path continuity, without any modifications of the planning components. Finally, the
application of specific error definitions based on the current and predicted vehicle poses
are also applicable and beneficial as risk indicators in threat and risk assessment (see for
example [53,54]).

116



Electronics 2021, 10, 788

8. Exemplary Interface Application

In this final section, some of the aforementioned benefits and aspects of a generic
interface shall be demonstrated in a practical use case. Starting point is a simplified but
exemplary ODD-based AD function assembly problem. A path tracking controller shall
be selected for application in an AD function for highway driving. This ODD arises a
considerable number of specific scenarios. This example is restricted to an exemplary lane-
change maneuver. Therefore, a standardized maneuver—the second half of a standardized
double lane-change maneuver in [31]—is considered. The maneuver is performed at a
constant speed of v = 72 km/h. Since no obstacles have to be considered in this maneuver
a simple path planner is used. It uses cubic Bezier splines (cf. Appendix A) to plan a
smooth trajectory within the defined maneuver corridor. The planned path is provided
to the generic interface as G2 Hermite data, with a sample distance of 5 m. In order
to show the impact of the internal path representation on the control performance, two
different interface implementations are applied in simulation. The first one uses a simple
linear path representation. The provided Hermite path data are interpolated linearly,
resulting in piece-wise straight sections, respectively piece-wise linear orientation and
curvature. Note that the linear interpolation of orientation and curvature do not represent
the actual orientation and curvature of the resulting polygonal path, which would be piece-
wise constant respectively zero, but serves as an improved approximation. The second
interface implementation is based on piece-wise polynomial path sections an applies
the interpolation algorithms described in Appendix B. The G2 Hermite waypoint data
are interpolated with quintic Bezier splines in order to achieve a G2 continuous internal
reference path.

An exemplary set of two state-of-the-art path tracking controllers is used with a fixed
parametrization (see Tables 5 and 6), including the applied lateral tracking error definition
according to the proposed classification in Section 3:

• Stanley ([25]):

δ(t) = eψ − kag × v2 × κre f × sin eψ + arctan( k × elat

ksoft + v
) (13)

• PurePursuit ([41]):

δ(t) = arctan
⎛⎝2× l × elat

d2
lh

⎞⎠ (14)

Table 5. Parametrization of Stanley tracking controller.

Parameter Value

k 19

ksoft 1
kag 0.013

vehicle reference front
look-ahead no

error orientation path

The two controllers shall just serve as an exemplary set of components for this demon-
stration. The performed evaluation can be extended straight forwardly for example to the
entire set of tracking controllers listed in Table 2.

In order to compare the performance of different controllers, which, in general, apply
different error definition, an additional lateral tracking error definition (vehicle reference:
center of gravity, look-ahead: no, error orientation: heading) is used to provide a compara-
ble error measure. The path planning system, the two exemplary interface implementations
as well as the exemplary tracking controllers have been implemented in a Python-based
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software framework. This framework has been used to perform the simulations, which are
discussed within the following section.

Table 6. Parametrization of PurePursuit tracking controller.

Parameter Value

l 2.68 m

dlh 10 m
vehicle reference rear

look-ahead path
error orientation heading

8.1. Discussion

Figure 12 shows the results of a series of four simulations (all combinations of the
two controllers and the two interfaces implementations). According to the top plots, both
controllers in principle accomplish the required scenarios task and keep the vehicle inside
the defined scenario corridor. Due to its look-ahead the lateral error of the PurePursuit
controller increase earlier, resulting in an earlier initiation of the lane-change maneuver.
Furthermore, this yields a more smooth maneuver with reduced steering effort due to the
damping behavior of a look-ahead in path tracking (cf. Section 3.2 and [23]). The drawback
of this property is the curve-cutting behavior of the final vehicle motion, which brings
the vehicle to the borders of the scenario corridor several times. Considering the defined
common error measure, this fact substantiates in a considerable ≈ 1 m) lateral offset of
the vehicle’s center of gravity with respect to the reference path. From this point of view,
the Stanley controller shows superior tracking performance to the cost of an increased
steering effort.

The comparison of the two different applied interfaces reveals the important fact that
the internal path representation impacts the final tracking performance. The non-smooth
linear reference path yields a non-smooth tracking error. The damping characteristic of
the PurePursuit’s look-ahead still ensures a satisfying steering command, which is almost
equivalent to the corresponding steering command when applying the polynomial internal
path. Contrary, the Stanley controller is affected through-out by this effect, yielding an
unsatisfying jerky steering command. This consideration shows that in absence of an
interface the Stanley controller is not applicable at all in this scenario in combination with
the used planning system. Obviously, this is an illustrative edge-case example and the
effect may be reduced when using a more dense sampling of the reference path, but, in
general, this might be a fixed parameter of the planning system. The slight steering into
the opposite direction of the Stanley controller results from an undesired property of the
applied path interpolation algorithm, the so-called Runge’s phenomenon.

In order to conclude this exemplary evaluation, based on the defined error measure
lateral offset of the vehicle’s center of gravity, the Stanley controller has to be favored in
this scenario.
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Figure 12. Simulation results: Lane-change maneuver [31] performed with two different path tracking
controllers (Stanley [25] and PurePursuit [41]) using two different interface implementations (linear,
respectively 5th order polynomial internal path representation). The plots on the top show the vehicle
position, the plots in the middle illustrate the occurring lateral tracking errors (controller specific
lateral tracking error + common error measure) and the bottom plots show the resulting steering
commands computed by the two controllers.
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9. Conclusions

Level 4 autonomous driving requires AD-functions, which are carefully matched to
the specific ODD. The scientific state-of-the-art provides a tremendous amount of dedicated
algorithms, which may be applicable for specific tasks of an AD-function in different ODDs.
Hence, contrary to developing AD-functions from scratch for each ODD, it is beneficial to
aim for a modular system architecture with generic interfaces, enabling fast combination
and evaluation of sets of algorithms, without any code adaptions. This publication is
dedicated to the design of such a generic interface between a local path planning and path
tracking system. In order to ensure modularity with respect to different state-of-the-art
path tracking controller, it contributes a classification of controllers based on the applied
lateral tracking error definitions. Based on this classification the actual requirements from
control side in the error computation are identified in terms of elementary path operations.
This substantiates the advantage of including an internal reference path representation into
the interface in order to resolve the interdependencies between the path planning and the
path tracking system and, hence, to achieve the required input modularity (on planning
side) and output modularity (on control side). With these building blocks, the publication
contributes a generic interface concept and a solid theoretical basis for occurring design
decisions in the implementation. Two exemplary implementations are finally applied in a
demonstrative ODD-based AD assembly task. The application of such an interface offers
significant advantages in simulation, like straight-forward combination, evaluation, and
benchmarking of set of components in different scenarios, as well as in operation, as a
key element for fail-operational and ODD-adaptive AD-function design. A concluding
overview on the technical content of the publication is represented in Table 7.

Table 7. Overview on the proposed generic interface concept for path planning and tracking.

Approach

• Analysis of requirements based on state-of-the-art components
• Identification of potentials for generalization
• Definition of component independent interface tasks and requirements

Concept

• Interface internal continuous reference path representation (Section 6)
• Generalization of tracking error definition based on classifiers ((11) and

Section 3)
• Implementation of elementary path operations (Table 3) based on the

internal path representation (Section 4)
• Generalized tracking error computation based on error definition and

path operations (Table 4)
• Parametrization of the internal path by Hermite interpolation of reference

path data (Appendix B)

Benefits

• Arbitrary combination of state-of-the-art path planning and
tracking algorithms

• Avoidance of component independent input/output data processing
within the components

• Push modular ODD-based AD function design (iterative combination,
simulation and evaluation of path planning and tracking components)

• Support application of redundant and fail-operational software design to
increase safety of an AD function (redundant operation and ODD-based
switching of components)
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Appendix A. Parametric Path

This section gives a theoretical basis on parametric path representation and exemplary concepts.

Appendix A.1. Basics

Analytic curve expressions can be given in terms of a implicit, explicit or parametric expression:

implicit: f (x, y) = 0, explicit: y = f (x), parametric: γ(τ) = [x(τ) y(τ)]T
. (A1)

In general, a parametric expression is most convenient, since it enables a global
definition of arbitrary paths (from a starting point Pa to a target point Pb),

γ(τ) = [x(τ)
y(τ)] ∶ γ(τa) = [x(τa)

y(τa)] = Pa and γ(τb) = [x(τb)
y(τb)] = Pb, (A2)

without any bijection issues as they occur for implicit and explicit expressions and which
require path sectioning and transformation to local coordinate systems.

The curve parameter τ is a monotonically increasing parameter, related to the progress
along the path. It is a degree of freedom and can be used for normalization,

τa
!= 0, τb

!= 1, (A3)

or to achieve a path length parametrization τ = s (also known as natural, arc-length or
chord-length parametrization):

∂s
∂τ

= √
x′2 + y′2 != 1, (A4)

holds. x′ and y′ are the derivatives with respect to the curve parameter ∂x
∂τ and ∂y

∂τ . If the
curve parameter in this case is interpreted as time (τ = t), the curve is passed with a speed
of v = 1 m/s. Therefore, this parametrization is also called unit-speed parametrization (see
for example [55]). Orientation and curvature of a parametric path compute as:

θ(τ) = arctan(y′

x′
), (A5)

κ(τ) = ∂θ

∂s
= ∂θ

∂τ

∂τ

∂s
= x′y′′ − x′′y′

(x′2 + y′2) 3
2

, (A6)

Appendix A.2. Clothoidal Path

A widely used curve in natural parametrization is the clothoid or Euler spiral. It is
defined by a linear curvature with respect to arc length,

κ(s) = σ × s, (A7)

and is widely used as transition curve between straight and circular road segments in road
network design to offer a good steering behavior. Therefore, for it is an important paramet-
ric curve candidate for path planning (see, for example, [5,56–59]). The consideration of
clothoid x, y-coordinates by integration with respect to (A5) and (A6),

x(s) = ∫ s

0
cos(στ2

2
)dτ, y(s) = ∫ s

0
sin(στ2

2
)dτ, (A8)
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reveals the main drawback of a natural curve parametrization: Whereas arc length-based
curve parameters (curvature, . . . ) feature a simple form, the functions for the coordinates
may be transcendental functions (in this case Fresnel-Integrals), which cannot be solved ana-
lytically. This property of curves in natural parametrization complicates a coordinate-based
definition, like curve fitting or interpolation, which is much more straight forward for other
curve parametrizations. Therefore, several approaches have been published, aiming at
approximation of clothoid section with other parametric curves (see, for example, [60–62])
to overcome this drawback while maintaining the advantage of a bounded path curvature.

Appendix A.3. Polynomial Path

A widely-used and, hence, important parametric path is the polynomial path. It is
defined by a set of coefficients,

aT
x = [ax,0 . . . ax,n], aT

y = [ay,0 . . . ay,n], (A9)

with respect to some set of polynomial basis functions—monomial basis functions,

τT
m,n = [1 τ . . . τn], (A10)

in the most general case:

γ(τ) = [x(τ) y(τ)]T = [aT
x τm,n aT

y τm,n]T
. (A11)

Polynomials in monomial basis can be efficiently evaluated using Horner’s scheme [63],
which features a minimum number of additions and multiplications. Due to possibly
huge differences in the range of the single polynomial coefficients, however, numerical
instabilities might occur. The Bernstein basis is a widely used alternative to the monomial
basis. For a polynomial of order n, the basis functions,

τT
b,n = [τb,n,0 τb,n,1 . . . τb,n,n], (A12)

compute as:

τb,n,i = (n
i
)τi(1− τ)n−i with: i = [0, 1, . . . , n], (A13)

where the relation

n∑
i=0

τbn,i(τ) ≡ 1 and: τ ∈ (0, 1), (A14)

holds. A polynomial curve in Bernstein basis is known as Bezier curve:

γ(τ) = [x(τ) y(τ)]T = [bT
x τb,n bT

y τb,n]T
. (A15)

The (n + 1) pairs of x, y-coefficients,

[B0 . . . Bn] = [bT
x

bT
y
], (A16)

the so-called control points, form a convex hull to the curve (see Figure A1) and, hence,
offer a comprehensible geometric interpretation of the polynomial coefficients:

γ(τ) = [x(τ)
y(τ)] =

n∑
i=0

Bi × τb,n,i(t). (A17)
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B0

B3

B1

B2

Figure A1. Exemplary cubic Bezier curve from B0 to B3 controlled by control B1 and B2.

Bezier curves play an important role in computer graphics, and also in path planning.
With the De Casteljau’s algorithm there exists a strong algorithm to evaluate a Bezier curve. It
is not as efficient as the Horner’s scheme but more numerically stable. As also the Bernstein
basis finally consists of monomial terms, there exists a static transformation between these
two bases:

⎡⎢⎢⎢⎢⎢⎣
AT

n,0⋮
AT

n,n

⎤⎥⎥⎥⎥⎥⎦
= Mn

⎡⎢⎢⎢⎢⎢⎣
BT

n,0⋮
BT

n,n

⎤⎥⎥⎥⎥⎥⎦
(A18)

This transformation may be used to adaptively utilize the advantages of the different
bases. Without proof the transformation matrix Mn can be computed with the following
Hadamard product:

Mn = Qn ○ PL,−n. (A19)

With a polynomial coefficient matrix Qn with switching signs with elements qi,j:

qi,j ∶= (n
i
), for: i, j ∈ [0, ..., n] (A20)

and lower triangular pascal matrix extension to negative coefficients PL,−n, which is
for example,

PL,−3 =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
1 −1 0 0−1 2 −1 0
1 −3 3 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (A21)

for n = 3. This relation offers a simple approach to assemble a transformation matrix for
specific order of the polynomials, which has not been published yet to the knowledge of
the authors.

In order to improve the quality of a polynomial approximations of specific curve
sections, e.g., conic sections, while maintaining a low polynomial degree, there exists
several generalizations (see, for example, [64]) like rational polynomial functions, B-splines
and there combination: non-uniform rational B-splines (NURBS).

Appendix B. Hermite Data Interpolation

Path interpolation is an extensively researched topic and is considered as a special
case of path smoothing (see [65]). In [65], a comprehensive overview on the state-of-the-art
in path smoothing and interpolation is given. In [66], the mathematical properties of
different interpolation functions are considered in very detail. This section shall not survey
the complete state-of-the-art in path interpolation, but assemble basic definitions and a
survey on interpolation algorithms for Bezier splines. The task of interpolation is to find a
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parametric curve expression for each path segment, which matches the given Gn Hermite
data (see Figure A2), with n = 0, 1,⋯.

Pa
Pb

1
κa

1
κb

θa

θb

Figure A2. G2 Hermite data interpolation.

The number of matched geometric path information determine the minimal geometric
continuity of the total path at the waypoints, i.e., the transition points between the single
spline segments. If the path, furthermore, features continuous orientation (and curva-
ture, . . . ) on the entire definition domain, the curve is called to have G1 (G2, . . . ) continuity.
In contrast to this so-called geometric continuity, differential continuity refers to the deriva-
tives of the curve with respect to the curve parameter τ. Differential continuity always
implies geometric continuity. If the curve parameter τ is not applied also for longitudinal
velocity planning, differential continuity is a too restrictive requirement, which does not
provide any additional geometric features of the curve. However, in practice it is often
more convenient to require differential continuity as it will be shown on a comprehensive
example of a G2 Hermite interpolation with Bezier curves.

Consider a set of G2 Hermite way point data in two points Pa and Pb. This gives eight
boundary conditions and, hence, a cubic Bezier spline (determined by four way points)
should be sufficient to meet these conditions:

xa, ya, θa, κa, xb, yb, θb, κb ↦ B0, B1, B2, B3, (A22)

Due to non-linearity of tangent direction and curvature of a general parametric curve,
the analysis of the existence and uniqueness of the solutions to this interpolation problem
is rather complex. In fact, a cubic spline is not sufficient to interpolate arbitrary G2 Hermite
data. Ref. [67] gives a proof that the necessary order for Hermite interpolation of arbitrary
G2 data with a Bezier curves is 3 ≤ n ≤ 5 depending on the given boundary conditions
for tangent directions and curvatures. In [68], conditions for the G2 boundary conditions
on the existence and uniqueness of a cubic curve solution are given, restricting on shape
preserving curves. In summary, the Hermite interpolation of arbitrary G2 data with
Bezier curves of fixed order, in general, requires quintic curves. According to [67], this,
consequently, means that occasionally up to 4 additional degrees of freedom occur.

An alternative approach is to implicitly solve the problem, requiring differential
continuity (C2 for this example). This enlarges the original set of eight boundary conditions
to twelve,

xa, ya, x′a, y′a, x′′a , y′′a , xb, yb, x′b, y′b, x′′b , y′′b ↦ B0, B1, B2, B3, B4, B5 (A23)

and, consequently, directly requires a quintic Bezier curve (six control points). In [69,70],
a parameter vector η has been proposed to utilize the additional degrees of freedom
compared to the original problem for later curvature minimization. An extension of this
concept for G3 Hermite interpolation has been published in [71,72].

A different common interpolation problem is that a specific geometric continuity
between the single spline segments of a curve is required, but not (or not all of them) fixed
to a given value. Following again an implicit approach over the differential continuity, a
linear equation system can be set up to determine the coefficients of the curve segments. In
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order to obtain a fully determined equation system, additional global boundary conditions
(initial conditions for the first segment and final conditions for the last segment) have
to be specified. The necessary spline order n of the curve segments and the resulting
number of additional global boundary conditions nBC can be determined straight forwardly
considering Cx input data at N way points and required Cy path continuity (with x ≤ y):

2#
2D

⋅
fixed local BCs%&&&&&&&&&&&&'&&&&&&&&&&&*

2(x + 1) (N − 1),&&&&&&&&&&-&&&&&&&&&&.
splines

+
2D/
2 (y − x),&&&&&&&&-&&&&&&&.

free lokal BCs

joints%&&&&&&&&&&'&&&&&&&&&&*(N − 2)+ nBC0
global BCs

≡
2D/
2 (N − 1),&&&&&&&&&&-&&&&&&&&&&.

splines

coeffs./spline%&&&&&&&&'&&&&&&&*(n + 1) (A24)

The evaluation of this identity in N (the spline order should be independent of the
number of way points) yields:

nBC = 2(y − x) and n = x + y + 1. (A25)

Table A1 lists the evaluation of (A25). These simple relations are quite useful in order
to implement input data adaptive interpolation algorithm, but have not been published
yet to the knowledge of the authors.

In the special case of x = 0 and y being an odd number and a homogeneous choice of
the global boundary conditions, the resulting splines are called natural splines (see [66]).
Such natural splines are characterized by the possibility to continuously extend them with
polynomials of order n−1

2 outside of the nominal definition space, i.e., before the starting
point P0 respectively after the end point PN−1.

While the splines, as proposed above, are simple to compute, they suffer from several
drawbacks like an asymmetric shape in the case that the number of global boundary
conditions is not a multiple of four. Furthermore, they are global splines, which means that
appending additional way point data affects the entire spline. Another drawback of, in
general, all polynomial approaches, is that, although a specific geometric or differential
continuity is ensured at the spline transitions, there are, in general, no guarantees about the
continuity within the single spline segments. In fact, for spline order n ≥ 3 cusps (curvature
discontinuities) may occur. [73] gives necessary and sufficient conditions for the existence
of such cusps. To handle this problem, special types of more restrictive polynomials, which
result in so-called regular curves (curves without cusps) have been proposed. For example,
in [74] Bezier spirals (a spiral is a curve with monotonic curvature, i.e., without interior
curvature extrema) are used to ensure specific continuity.

Table A1. Necessary spline order and number of free boundary conditions for given Hermite data
and required differential path continuity.

Data Continuity Spline Order Boundary Conditions

C0 C2 3 4
C1 C2 4 2
C0 C3 4 6
C1 C3 5 4
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Abstract: This paper presents an integrated linear parameter-varying (LPV) control approach of
an autonomous vehicle with an objective to guarantee driving comfort, consisting of cruise and
semi-active suspension control. First, the vehicle longitudinal and vertical dynamics (equipped with
a semi-active suspension system) are presented and written into LPV state-space representations.
The reference speed is calculated online from the estimated road type and the desired comfort level
(characterized by the frequency weighted vertical acceleration defined in the ISO 2631 norm) using
precomputed polynomial functions. Then, concerning cruise control, an LPV H2 controller using a
linear matrix inequality (LMI) based polytopic approach combined with the compensation of the
estimated disturbance forces is developed to track the comfort-oriented reference speed. To further
enhance passengers’ comfort, a decentralized LPV H2 controller for the semi-active suspension
system is proposed, minimizing the effect of the road profile variations. The interaction with cruise
control is achieved by the vehicle’s actual speed being a scheduling parameter for suspension
control. To assess the strategy’s performance, simulations are conducted using a realistic nonlinear
vehicle model validated from experimental data. The simulation results demonstrate the proposed
approach’s capability to improve driving comfort.

Keywords: autonomous vehicle; advanced driver-assistance system; LPV approach; robust control;
cruise control; semi-active suspension control; passenger comfort

1. Introduction

Autonomous vehicles always remain an interesting research topic thanks to their
numerous advantages, including collision avoidance and fuel consumption reduction
capabilities, satisfying traffic safety and environmental objectives.

There has been a considerable amount of research work conducted on either cruise
or suspension control of autonomous vehicles. Cruise control refers to the control of
the vehicle speed, which is related to longitudinal dynamics, for multiple purposes such
as collision avoidance [1,2]. For this, different control strategies (optimal, robust, linear
parameter-varying (LPV), etc.) have been proposed [3–7]. Recently, cruise control has been
linked to a comfort objective [8–10], which extends the field to the coordination between
longitudinal and vertical controllers.

Indeed, the suspension system is a key subsystem that allows us to improve the
driving comfort and road-holding performance of the vehicle [11,12]. This is thanks to
its remarkable ability to limit the vertical oscillations of the vehicle body caused by road
displacements at the four wheels. From recent years, it is known that the semi-active
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suspension system provides better performance than the passive one while being less
energy-consuming than the active one [12]. Existing work on semi-active suspension
control includes model predictive control or state feedback with various observers, from
robust, LPV, to unified ones [11–15].

However, there has not been much work combining cruise and suspension control
into an integrated problem, considering their interaction. Besides, very few studies do
consider the driving comfort level in a cruise control problem. To improve driving comfort,
a potential strategy is to relate the speeds at which the vehicle should travel to the desired
comfort level and w.r.t specific road profiles. Such speed values are determined using
criteria formed by examining the human body, including which range of frequency is most
absorbed by humans. Our group has conducted a study [16] into relating the vehicle speed
with the comfort level measured using the ISO 2631 standard [17] and the international
roughness index (IRI) [18] for each road type from A to D (defined in [19]). Recent research
about road profile estimation using adaptive observers allows us to detect which road type
the vehicle is traveling on [20], thus enabling this strategy.

The purpose of this paper is to bring further results and to introduce a comfort-oriented
strategy of the integrated cruise–suspension control of an autonomous vehicle. There has
been some existing work combining these problems [9,21]. In the latter, the coupling
between longitudinal and vertical motions is considered but not the comfort objective. The
work [9] requires too many assumptions and much information from the environment
(therefore being challenging to embed in reality). Therefore, this work proposes a more
realistic approach, handling unknown inputs using a robust LPV control approach. We
analyze both longitudinal and vertical dynamics and their interaction through the road
displacement at each of the four wheels. The H2 condition is used as it is suited for the
type of noise we are faced with in this suspension control case where one of the sensors
is an accelerometer. For cases where the variation of a specific parameter(s) significantly
affects the system, we model the parameter(s) into an LPV problem, which is solved as a
set of linear matrix inequalities (LMIs). We also show how driving comfort is evaluated by
measuring the vertical acceleration transmitted to passengers, from which we propose a
way to relate the current speed to comfort level using the ISO 2631 standard. This allows
us to determine which speed the vehicle should travel at in order to guarantee that the
acceleration felt by one passenger does not exceed a predefined value. Combining the cruise
and suspension controllers with a comfort-oriented reference speed generation algorithm
leads to the proposed integrated comfort-oriented vehicle control. The integrated control
scheme is then tested using simulations on a realistic nonlinear vehicle model validated
from experimental data.

This paper is organized as follows. In Section 2, we present the vehicle longitudinal
and vertical dynamics (quarter-car model) then the integrated dynamics model. The general
scheme of the strategy is presented in Section 3, which consists of comfort-guaranteeing
speed calculation (described in detail in Section 4) and integrated cruise–suspension control
(discussed in Section 5). Finally, simulation results are presented in Section 6, which shows
the effectiveness of our strategy.

2. Vehicle Dynamics Modeling

This section introduces and discusses the vehicle longitudinal and vertical dynamics
considered in this paper. The integrated full-vehicle model is also briefly presented.

2.1. Longitudinal Dynamics

In this part, we present the vehicle longitudinal dynamics and the corresponding
system’s LPV state-space representation. First, let us make some assumptions for the
longitudinal dynamics system:

• The vehicle mass is considered to be time-varying. It is measured online thanks to
multiple built-in sensors that detect the additional load (the mass of the empty vehicle
is the known nominal mass). This is the most crucial assumption as it allows for

130



Electronics 2021, 10, 813

gain-scheduling based on mass. The vehicle speed is also directly measurable using a
speedometer;

• The road slope is known/estimated in real time thanks to algorithms such as in [22–24].
Such an assumption allows us to implement road slope compensation using a feed-
forward term in the cruise control input.

Suppose we have a vehicle of mass m traveling at the speed of v, as shown in Figure 1.
Let F be the longitudinal control force on the vehicle, and Fd the total disturbance force.

Figure 1. Longitudinal forces on the vehicle.

We have the following equation of motion [3]:

mv̇ = F − Fd. (1)

The disturbance force Fd consists of three components: The rolling friction supposed
to have a constant value, the drag by gravity supposing the road slope θ to be sufficiently
small (between ±10◦ which is a realistic assumption for real roads), and the aerodynamic
drag that adds nonlinearity to the system, respectively:

Fr = mgCrcos(θ) ≈ mgCr, (2)

Fg = mgsin(θ) ≈ mgθ, (3)

Fa =
1
2

CvDaSv2, (4)

where Cr is the rolling friction coefficient, Cv is the aerodynamic drag coefficient, Da is the
air’s density, and S denotes the vehicle’s frontal area. The disturbance force thus has the
following equation:

Fd = mgCr + mgθ +
1
2

CvDaSv2. (5)

Finally, the vehicle’s motion equation is formulated as:

mv̇ = F − mgCr − mgθ − 1
2

CvDaSv2. (6)

The input force F is composed of two parts:

F = Ff f + Fl , (7)

where Ff f = mgĈr + mgθ̂ is the feed-forward term that compensates for the rolling friction
and the road slope and Fl is the feedback term of the longitudinal control force. Here Ĉr
is an estimated nominal value for Cr (constant) and θ̂ is the road slope estimated in real
time by the methods in [22–24]. As this compensation is inexact, i.e., Ĉr �= Cr and θ̂ �= θ,
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all the uncertainty is modeled by Δwl , where Δ is a constant bound and wl is white noise
(|wl | ≤ 1).

The system is then written in the LPV form, with xl = v being the state variable,
ul = Fl being the cruise control input, yl = v being the measured output, and ρl =[
ρl1 ρl2

]�
=
[
1/m v

]� being the varying parameter of the longitudinal control case, as:

Σl(ρl) :
{

ẋl = Al(ρl)xl + Bl1wl + Bl2(ρl)ul
yl = Cl xl + Dl1wl + Dl2ul ,

(8)

where:

Al(ρl) =

[
−1

2
CvDaSρl1ρl2

]
, Bl1 = [−gΔ], Bl2(ρl) = [ρl1], Cl = [1], Dl1 = [0], Dl2 = [0].

Vehicle longitudinal dynamics parameters are given in Table 1.

Table 1. Longitudinal dynamics parameters.

Symbol Value SI Unit Parameter Name

m 1400 kg Vehicle mass
Cr 0.01 - Rolling friction coefficient
Cv 0.32 - Aerodynamic drag coefficient
Da 1.3 kg/m3 Density of air
S 2.4 m2 Vehicle frontal area
g 9.8 m/s2 Gravitational acceleration
τ 0.1 s Actuator time constant
σ 0.2 s Communication delay in the vehicle

vwind 12 km/h Average wind speed

2.2. Vertical Dynamics

The suspension control design is carried out using the quarter-car suspension sys-
tem [11]. Indeed, this model is simple enough to catch the comfort objective w.r.t the
bounce motion and to cope with the requirements about reducing the complexity of an
embedded controller. For pitch/roll control, a full-vehicle model would be needed, which
is not the case here.

We use the quarter-car model with a semi-active magneto-rheological (MR) suspension
system to model the vehicle vertical dynamics, as shown in Figure 2. This consists of the
sprung mass ms, the unsprung mass mus, and the suspension components positioned
between them, including a spring element with stiffness ks and the damper part. Let us
denote zs and zus as the sprung and unsprung mass’ displacement, respectively.

From Newton’s second law of motion, we obtain:{
msz̈s = −Fspring − Fdamper
musz̈us = Fspring + Fdamper − Ftire,

(9)

where Fspring = ks(zs − zus) is the spring force and Ftire = kt(zus − zr) is the tire force.
Concerning the damper force Fdamper, two models are considered:

• A control-oriented model as given below:

Fdamper = k0(zs − zus) + c0(żs − żus)︸ ︷︷ ︸
Fpassive

+Fv, (10)

where Fv is the control input;
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• A simulation model as given below and shown in Figure 3:

Fdamper = k0(zs − zus) + c0(żs − żus) + I · fc · tanh(k1(zs − zus) + c1(żs − żus)), (11)

where c0, k0, c1, and k1 are constant parameters and I is the applied current. In order to
design the controller, the controlled part in (11) is defined as Fv = I · fc · tanh(k1(zs −
zus) + c1(żs − żus)).

Figure 2. The quarter-car model for an illustration of vehicle vertical dynamics.

In Figure 3, the considered MR damper force – deflection velocity (żde f = żs − żus)
characteristic is shown, from the MR damper available at ITESM, Mexico (refer to [25]).

Figure 3. Magneto-rheological damper force–deflection velocity characteristic [25].

The model in (10) is used to design the controller. Then, the nonlinear model (11) is
used as the inverse model to simulate the suspension controlled system for the full car
model presented later.

Remark 1: The controller to be designed in this paper is applied to the semi-active
suspension system using the clipped strategy as used in [26]. Then, the control input
current to be applied to the MR damper is computed from the clipped controlled damper
force and given the deflection (zde f = zs − zus) and the deflection velocity żde f .
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To link with longitudinal dynamics, we here consider benefiting from some knowledge
of the road displacement input model zr, which is related to the current vehicle speed
according to [27] as:

żr + a · v · zr = b · v · wv, (12)

where wv is white noise, and a and b are coefficients that depend on the road type according
to International Organization for Standardization (ISO) classification [19].

Remark 2: Using a road profile model is indeed possible since the information on
the type of road profile may be obtained using some adaptive road profile estimator, as
proposed in [20], or a frequency-wise approach [27].

From (9) and (12), by selecting the system states as xv =
[
zs żs zus żus zr

]� ∈ R
5,

the measured variables yv =
[
z̈s zs − zus

]� ∈ R
2, the control input uv = Fv, and by

choosing the scheduling variable ρv = v to link with longitudinal dynamics, the extended
quarter-car system can be written in the LPV form as:

Σv(ρv) :
{

ẋv = Av(ρv)xv + Bv1(ρv)wv + Bv2uv
yv = Cv2xv + Dv21wv + Dv22uv,

(13)

where:

Av(ρv) =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 0 0

− k
ms

− c0
ms

k
ms

c0
ms

0
0 0 0 1 0
k

mus
c0

mus
− k+kt

mus
− c0

mus
kt

mus
0 0 0 0 −a · ρv

⎤⎥⎥⎥⎥⎥⎦, Bv1(ρv) =

⎡⎢⎢⎢⎢⎣
0
0
0
0

b · ρv

⎤⎥⎥⎥⎥⎦, Bv2 =

⎡⎢⎢⎢⎢⎢⎣
0

− 1
ms
0
1

mus
0

⎤⎥⎥⎥⎥⎥⎦,

Cv2 =

[
− k

ms
− c0

ms
k

ms
c0
ms

0
1 0 −1 0 0

]
, Dv21 =

[
0
0

]
, Dv22 =

[− 1
ms
0

]
,

where k = ks + k0. In this work, the coefficients a and b are consistent with those of a road
profile of type B in [19].

Vehicle vertical dynamics parameters are given in Table 2.

Table 2. Vertical dynamics parameters.

Symbol Value SI Unit Parameter Name

ms 315 kg Sprung mass
mus 37.5 kg Unsprung mass
c0 3000 Ns/m Viscous damping coefficient

k = ks + k0 29,500 N/m Spring and damper stiffness
kt 208,000 N/m Tire stiffness

2.3. Full-Vehicle Dynamics

In this paper, the full-vehicle model presented in [28,29] is used for simulation and
validation purposes. This model and its parameters have been validated on a real Renault
Megane vehicle (thanks to M. Basset, from the MIAM research team). For illustration, the
model is presented in Figure 4, but interested readers should refer to [28] for more details.
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Figure 4. Full-vehicle model.

Note that the main interest in using the full nonlinear vehicle model is that it allows
us to consider a nonlinear load transfer, fast nonlinear dynamics entering the tire force
description, and consequently, in the global chassis dynamic. It reproduces the longitudinal
(x), lateral (y), vertical (z), roll (θ), pitch (φ), and yaw (ψ) dynamics of the chassis. It also
models the vertical and rotational motions of the wheels (zusij and ωij respectively), the
slip ratios (λij), and the center of gravity side slip angle (βcog) dynamics, as a function of
the tires and suspensions forces.

3. Integrated Cruise—Suspension LPV Control of an Autonomous Vehicle for
Comfort: Structure and Objectives

The proposed strategy is illustrated in Figure 5.
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Figure 5. Integrated cruise—suspension linear parameter-varying (LPV) control for comfort.

Our strategy consists of three main parts closely connected to each other and the
full-vehicle dynamics. Note that the vehicle speed connects the longitudinal and vertical
dynamics due to the relationship (12).

The road type is assumed to be known/estimated in real time thanks to algorithms
such as in [20]. This is the condition that enables the making of the proposed reference
speed generation strategy, which gives us suitable speed values based on the road profile
and comfort objective. In the reference speed calculation part, given the estimated road
type and the desired comfort level specified by the driver/passenger(s), a suitable reference
speed value is determined so as to guarantee this level. How we quantify driving comfort
and calculate the reference speed is presented in Section 4.

In the cruise control part, given the calculated reference speed value, the cruise
controller drives the vehicle speed to track this value. This uses not only the feedback
measured by the speedometer but also road information such as road slope in order to
compensate for this, providing a smoother response. How we design this part is discussed
in Section 5.2.

In the semi-active suspension control design method, a semi-active suspension control
strategy is used to further improve driving comfort. How we design this part is discussed
in Section 5.3.

Combining the three mentioned parts constitutes what we propose in this paper as the
integrated cruise–suspension control of an autonomous vehicle with a comfort objective.

4. Comfort-Oriented Reference Speed Calculation

4.1. Comfort Evaluation Using the ISO 2631 Standard

First, the road types are characterized by the ISO norm [19]. In Figure 6, we examine
the road displacement profiles of types from A to D described in the ISO standard, with
the vehicle’s speed being 15 m/s. As shown in [30], such profiles do change w.r.t the speed
as we considered in the modeling step (see (12)).
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Figure 6. Road displacement profiles of road types A–D for a given speed.

This displacement is then transmitted to the passengers through the vehicle vertical
dynamics. What affects driving comfort is the acceleration felt by passengers, as analyzed
in the ISO 2631 norm [17]. In order to characterize human comfort, i.e., the effect of
exposure to vibration, a filter is applied on the sprung mass acceleration [31]. This filter’s
transfer function is:

WISO(s) =
81.89s3 + 796.6s2 + 1937s + 0.1446
s4 + 80s3 + 2264s2 + 7172s + 21196

. (14)

Driving comfort is then assessed according to the following scale of the ISO 2631 stan-
dard using the root mean square (RMS) value of the vertical acceleration [17] (see Table 3).

Table 3. Vertical acceleration RMS (root mean square) value and comfort level.

RMS Value of Acceleration Comfort Level

Less than 0.315 m/s2 Not uncomfortable
0.315–0.63 m/s2 A little uncomfortable

0.5–1 m/s2 Fairly uncomfortable
0.8–1.6 m/s2 Uncomfortable

1.25–2.5 m/s2 Very uncomfortable
Greater than 2 m/s2 Extremely uncomfortable

4.2. Modeling of Vehicle Speed—Comfort Interaction

It is known that, as the vehicle travels on certain different road types with the same
speed and vice versa, it experiences different road displacement profiles. Thus, the felt
human comfort varies according to the vehicle speed [30,32].

Our objective is to propose a comfort-oriented reference speed profile to link the
comfort level to the vehicle’s speed. This is carried out using a vertical vehicle model
performing simulation with different speed values and computing the comfort criterion.
This allows us first to evaluate the human comfort (for the RMS of the vertical acceleration)
as seen in Figure 7.
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Figure 8. Polynomial functions: Speed vs. comfort level for different road types.

Then, following our previous study in [16], we define the comfort-oriented reference
speed values from a polynomial fitting method, which are illustrated in Figure 8 and
Table 4.

Table 4. Calculation of comfort-oriented reference speed values.

Road Type Comfort-Oriented Reference Speed Values vre f (x) Where x is RMS Acceleration

A −281058.82x7 + 616932.65x6 − 553287.74x5 + 259269.77x4 − 67006.34x3

+9126.1x2 − 490.82x + 17.03

B −2918.46x7 + 12566.60x6 − 22133.93x5 + 20420.08x4 − 10438.88x3

+2839.03x2 − 319.40x + 20.36

C −20.58x7 + 176.82x6 − 620.95x5 + 1140.85x4 − 1158.9x3

+623.06x2 − 134.38x + 17.84

D −0.19x7 + 3.22x6 − 22.33x5 + 81.06x4 − 162.92x3

+174.09x2 − 76.47x + 19.57

These polynomials are precomputed and programmed into the autonomous vehicle’s
computer. In practice, the vehicle detects the current road type by performing the road
estimation algorithm as assumed. Then from a given desired comfort level, characterized
by a given RMS acceleration, the corresponding reference speed is calculated thanks to
these polynomials.
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5. LPV H2 Cruise and Semi-Active Suspension Control

In this section, both longitudinal and vertical controllers are synthesized using the
H2 control approach for LPV systems. A short background of the control approach is
presented herein, followed by the two design applications.

5.1. Preliminaries on LPV H2 Controller Design

Throughout this paper, we design two LPV controllers for cruise and semi-active
suspension control. This part presents briefly the LPV approach including the optimization
problem to be solved [28]. An LPV system is represented as:

Σ(ρ) :

⎡⎣ẋ
z
y

⎤⎦ =

⎡⎣ A(ρ) B1(ρ) B2(ρ)
C1(ρ) D11(ρ) D12(ρ)
C2(ρ) D21(ρ) D22(ρ)

⎤⎦⎡⎣x
w
u

⎤⎦, (15)

where x is the state, z is the controlled output, y is the measured output, w is the disturbance,
u is the control input, and ρ =

[
ρ1 ρ2 ... ρN

]� ∈ Ω is the vector of varying parameters
(Ω is a convex set). The assumptions on ρ are:

• ρ varies in the set of continously differentiable parameter curves and is known or
measurable;

• ρ is bounded, i.e., ρj ∈ [ρj, ρj], ∀j;

• The system matrices A(·), etc. are continuous on Ω.

The vector of parameters evolves inside a polytope represented by 2N vertices ωi, as:

ρ ∈ Co{ω1, . . . , ωZ}. (16)

It is then written as the convex combination:

ρ =
2N

∑
i=1

αiωi, αi ≥ 0,
2N

∑
i=1

αi = 1, (17)

where the vertices are defined by a vector ωi = [νi1, . . . , νiN ] where νij equals ρj or ρj.
Therefore, we consider a polytopic model of the LPV system above, represented as:

Σ(ρ) =
2N

∑
i=1

αi(ρ)

[
A(ωi) B(ωi)
C(ωi) D(ωi)

]
, αi(ρ) ≥ 0,

2N

∑
i=1

αi(ρ) = 1, (18)

where
[

A(ωi) B(ωi)
C(ωi) D(ωi)

]
is the linear time-invariant (LTI) system corresponding to one of

the system’s 2N vertices.
An LPV controller has the following structure:

K(ρ) :
[

ẋc
u

]
=

[
Ac(ρ) Bc(ρ)
Cc(ρ) Dc(ρ)

][
xc
y

]
. (19)

Solving for an LPV controller using the H2 condition is here carried out using the
polytopic approach so computing the controllers Ki ∀i, at each vertex of the parameter
polytope, such that a single, global performance γ2 is minimized. For a given parameter
value ρ, the controller is then determined as:

K(ρ) =
2N

∑
i=1

αi(ρ)Ki, αi(ρ) ≥ 0,
2N

∑
i=1

αi(ρ) = 1. (20)
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Proposition 1. A dynamical output-feedback controller K(ρ) (19) that solves the control problem
is obtained by solving the following LMIs in (X(ρ), Y(ρ), Ã(ρ), B̃(ρ), C̃(ρ), and D̃(ρ)) at the 2N

vertices ωi of the polytope, while minimizing γ2:⎡⎣ M11 (∗)� (∗)�
M21 M22 (∗)�
M31 M32 M33

⎤⎦ ≺ 0, ∀i,⎡⎣ N11 (∗)� (∗)�
N21 N22 (∗)�
N31 N32 N33

⎤⎦ � 0, ∀i,

Trace(Z) < γ2,

(21)

where:
M11 = A(ωi)X(ωi) + X(ωi)A(ωi)

� + B2C̃(ωi) + C̃(ωi)
�B�

2 ,
M21 = Ã(ωi) + A(ωi)

� + C�
2 D̃(ωi)

�B�
2 ,

M22 = Y(ωi)A(ωi) + A(ωi)
�Y(ωi) + B̃(ωi)C2 + C�

2 B̃(ωi)
�,

M31 = B1(ωi)
� + D21(ωi)

�D̃(ωi)
�B�

2 ,
M32 = B1(ωi)

�Y(ωi) + D21(ωi)
�B̃(ωi)

�,
M33 = −Inu ,
N11 = X(ωi),
N21 = In,
N22 = Y(ωi),
N31 = C1(ωi)X(ωi) + D12(ωi)C̃(ωi),
N32 = C1(ωi) + D12(ωi)D̃(ωi)C2,
N33 = Z.

Then, the reconstruction of the controller Ki is obtained by the following equivalent
transformation:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Dc(ωi) = D̃(ωi)

Cc(ωi) = (C̃(ωi)− Dc(ωi)C2(ωi)X(ωi))M(ωi)
−�

Bc(ωi) = N(ωi)
−1(B̃(ωi)− Y(ωi)B2(ωi)Dc(ωi))

Ac(ωi) = N(ωi)
−1(Ã(ωi)− Y(ωi)A(ωi)X(ωi)− Y(ωi)B2(ωi)Dc(ωi)C2(ωi)X(ωi)

− N(ωi)Bc(ωi)C2(ωi)X(ωi)− Y(ωi)B2(ωi)Cc(ωi)M(ωi)
�)M(ωi)

−�,

(22)

where M(ωi) and N(ωi) are defined such that M(ωi)N(ωi)
� = In − X(ωi)Y(ωi) (that can be

solved through a singular value decomposition plus a Cholesky factorization).

5.2. Application of the LPV H2 Approach to Cruise Control

5.2.1. Cruise Controller Design

The approach above is here applied to the LPV longitudinal model presented before
in (8) as:

Σl(ρl) :
{

ẋl = Al(ρl)xl + Bl1wl + Bl2(ρl)ul
yl = Cl xl + Dl1wl + Dl2ul ,

(23)

where ρl includes the vehicle mass and speed.
To use the polytopic approach, the control input matrix has to be independent of the

scheduling parameter. Therefore, following the method in [33], the system is extended
with the following filter at the input variable:

Wf :
[

ẋ f
ul

]
=

[
A f Bf
Cf 0

][
x f
u f

]
, (24)

where A f , Bf , and Cf are constant matrices. Here, we choose A f = −1/τf , Bf = 1/τf ,
and Cf = 1 where τf is a small constant. To synthesize the controller, we define the
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generalized system denoted Σgl(ρl) (see in Figure 9) consisting of the extended state-space
representation with a parameter-independent control input:⎧⎪⎪⎨⎪⎪⎩

[
ẋl
ẋ f

]
=

[
Al(ρl) Bl2(ρl)Cf

0 A f

][
xl
x f

]
+

[
Bl1
0

]
wl +

[
0

Bf

]
u f

yl =
[
Cl Dl2Cf

][xl
x f

]
+ Dl1wl ,

(25)

and the following weighting functions in order to ensure tracking performances and to
cope with the actuator limitations:

We =
0.5s + 2

s + 0.0002
, Wu =

1
100

, Wd = 0.01. (26)

Figure 9. LPV cruise control generalized system Σgl(ρl).

According to [33], since the parameter dependence is affine and since the scheduling
parameter ρl varies in a polytope of four vertices, i.e., ρl1 ∈ [ρl1, ρl1] and ρl2 ∈ [ρl2, ρl2], the
generalized system Σgl(ρl) in Figure 9 can be expressed as a polytopic system composed
of four vertices:

Σgl(ρl) =
4

∑
i=1

αli (ρl)Σgli
, αli (ρl) ≥ 0,

4

∑
i=1

αli (ρl) = 1, (27)

where Σgl1
= Σgl(ρl1, ρl2), Σgl2

= Σgl(ρl1, ρl2), Σgl3
= Σgl(ρl1, ρl2), and Σgl4

= Σgl(ρl1, ρl2).
Solving the LMIs in Proposition 1, the LPV controller Kl(ρl) with the scheme as shown in
Figure 9 is defined as:

Kl(ρl) :
[

ẋcl
u f

]
=

[
Acl(ρl) Bcl(ρl)
Ccl(ρl) Dcl(ρl)

][
xcl
ε

]
, (28)

where ε = r − yl denotes the tracking error where r is the reference. The controller Kl(ρl)
can be transformed into a convex interpolation as follows:

Kl(ρl) =
4

∑
i=1

αli (ρl)

[
Acli

Bcli
Ccli

Dcli

]
, αli (ρl) ≥ 0,

4

∑
i=1

αli (ρl) = 1. (29)
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5.2.2. Cruise Control Simulation

We verify by simulation that the vehicle speed can track a given reference value in the
presence of disturbance and noise in the form of inexact disturbance force compensation.

We see that the tracking performance is guaranteed, and tracking is achieved after
a few hundreds of meters (see Figure 10), with a longitudinal control force smaller than
4000 N (see Figure 11).
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20
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35

Figure 10. Reference and real speed.
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-2000

0

2000

4000

Figure 11. Longitudinal control force.

5.3. Application of the LPV H2 Approach to Semi-Active Suspension Control

5.3.1. Semi-Active Suspension Controller Design

First, let us recall the LPV system where the extended quarter-car system is described
in (13) as:

Σv(ρv) :
{

ẋv = Av(ρv)xv + Bv1(ρv)wv + Bv2uv
yv = Cv2xv + Dv21wv + Dv22uv,

(30)

where ρv is the vehicle speed.
In order to guarantee the comfort and road holding objectives, we define the perfor-

mance output vector as zv =
[
zus z̈s

]� ∈ R
2. To synthesize the controller, we define the

generalized system denoted Σgv(ρv) (see in Figure 12) consisting of:⎧⎨⎩
ẋv = Av(ρv)xv + Bv1(ρv)wv + Bv2uv
zv = Cv1xv + Dv11wv + Dv12uv
yv = Cv2xv + Dv21wv + Dv22uv,

(31)
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where:

Cv1 =

[
0 0 1 0 0

− k
ms

− c0
ms

k
ms

c0
ms

0

]
, Dv11 =

[
0
0

]
, Dv12 =

[
0

− 1
ms

]
,

and the parameter-dependent weighting function Wz̈s(ρv) and the weighting function
Wzus shaped in order to reduce the amplification of the sprung mass acceleration z̈s and
unsprung mass displacement zus depending on the vehicle speed; Ww and Wn model
white noise (wv) and measurement noise, respectively. These weighting functions can be
chosen as:

Wz̈s(ρv) = ρv · kz̈s · s2+2ζ11Ω11s+Ω2
11

s2+2ζ12Ω12s+Ω2
12

, Wzus = kzus · s2+2ζ21Ω21s+Ω2
21

s2+2ζ22Ω22s+Ω2
22

, Ww = 0.5s+0.1
s+0.001 , Wn = 10−3. (32)

Remark 3: The parameters in the weighting functions are chosen following our
previous studies where a Genetic Algorithm is applied to find these parameters optimizing
multiple objectives: Passenger’s comfort and road holding (safety). Refer to [34] for
more details.

According to [33], since the parameter dependence is affine and since the scheduling
parameter ρv varies in a polytope of two vertices, i.e., ρv ∈ [ρv, ρv], the generalized system
Σgv(ρv) in Figure 12 can be expressed as a polytopic system composed of two vertices:

Σgv(ρv) =
2

∑
i=1

αvi (ρv)Σgvi
, αvi (ρv) ≥ 0,

2

∑
i=1

αvi (ρv) = 1, (33)

where Σgv1
= Σgv(ρv) and Σgv2

= Σgv(ρv). Solving the LMIs in Proposition 1, the LPV
controller Kv(ρv) with the scheme as shown in Figure 12 is defined as:

Kv(ρv) :
[

ẋcv
uv

]
=

[
Acv(ρv) Bcv(ρv)
Ccv(ρv) Dcv(ρv)

][
xcv
yv

]
. (34)

The controller Kv(ρv) can be transformed into a convex interpolation as follows:

Kv(ρv) =
2

∑
i=1

αvi (ρv)

[
Acvi Bcvi

Ccvi Dcvi

]
, αvi (ρv) ≥ 0,

2

∑
i=1

αvi (ρv) = 1. (35)

Figure 12. LPV semi-active suspension control generalized system Σgv(ρv).
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5.3.2. Frequency-Domain Analysis

The Bode diagrams given in Figure 13 show the system frequency performance
according to the varying ρv. Compared with the passive suspension, the closed-loop
system provides efficient vibration mitigation (attenuation) in the whole frequency range
of 10−3–104 Hz. The effects of road vibrations on the performance output (sprung mass
acceleration, which is directly linked to driving comfort) are shown, which are effectively
attenuated for both vertices.
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Figure 13. Bode diagram (from wv to z̈s) of the closed-loop systems corresponding to the vertices of
ρvmin and ρvmax , and of the passive system.

5.3.3. Semi-Active Suspension Control Simulation

In order to demonstrate the performance of the LPV H2 approach, simulation in the
time domain is performed in this part. In this simulation, the sprung mass acceleration at
one corner of the vehicle is considered. The simulation scenario is as follows:

• The vehicle speed rises from its minimum (10 m/s) to maximum value (35 m/s);
• The ISO road profile (type B) is used (shown in Figure 14).
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0
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0.01

Figure 14. Road input at the front right corner.

From Figures 15 and 16, it can be seen that the LPV H2 control for the semi-active
suspension provides better driving comfort than the passive one.
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Figure 15. Sprung mass acceleration at the front right corner (filtered by (14)).
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Figure 16. Damper force at the front right corner.

6. Simulation of the Integrated Control Strategy

In this part, we perform simulations using the full-vehicle model presented in [29],
following the scheme presented in Figure 17. It should be noted that the parameters
used for simulations are chosen according to a real Megane vehicle. Because of this, the
speed is limited to 10–35 m/s. This vehicle is equipped with four independent semi-
active suspension systems controlled with a sampling period of 0.005 s. Since we perform
simulations with a full-vehicle model, there is a varying time delay of L/v (where L is the
distance between the front and rear wheels, i.e., L = l f + lr in Figure 4) in the road profile
zr at the rear wheels compared to the front wheels. Driving comfort is evaluated using the
RMS value of the acceleration at the vehicle’s center filtered by (14). We combine the two
control strategies into an integrative case where the reference speed varies according to
the road type and the desired comfort level to guarantee driving comfort. In this part, we
perform simulations with various road types and desired RMS acceleration values to test
the reference speed generation and integrated cruise-suspension vehicle control strategies.
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Figure 17. Simulation scheme.

6.1. Simulation Scenario 1

The road profile inputs are chosen according to the road model (12) for the given road
types, where the input is white noise. The total simulation time is 54 s. The simulation
scenario is as follows (see Figures 18 and 19):

• At 18 s (around 550 m), the desired comfort level (characterized by the given RMS
acceleration) decreases from 0.4 to 0.3 m/s2;

• At 36 s (around 1000 m), the road type (characterized by the estimated road roughness)
changes from A to B.
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Figure 18. Desired comfort level.
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Figure 19. Road roughness.

We see from Figure 20 that each time the road type or the desired RMS value changes,
a new reference speed is calculated, and the cruise control effectively tracks this value. The
resulting road displacement zr significantly increases after 36 s (around 1000 m) due to the
change in road type (only the displacement at the front right corner of the vehicle is shown
in Figure 21).
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Figure 20. Resulting reference and vehicle speed.
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Figure 21. Resulting road input at the front right corner.
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The resulting accelerations are shown in Figure 22, whose RMS values are 1.2360 m/s2

for the passive suspension case and 0.4301 m/s2 for the LPV H2 semi-active suspension
case, which correspond to the comfort level of “uncomfortable” and “a little uncomfort-
able”, respectively, according to Table 3. These results show that the latter further improves
driving comfort by limiting the acceleration transmitted to passengers. Finally, the resulting
deflections are shown in Figure 23, from which we can see that semi-active suspension
leads to smaller deflection values compared to passive suspension.
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Figure 22. Resulting acceleration felt by passengers (filtered by (14)).
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Figure 23. Resulting deflection at the front right corner.

6.2. Simulation Scenario 2

The second simulation scenario is used to assess the robustness of the proposed
approach w.r.t uncertainty on the sprung mass and viscous damping coefficients at the
corners. This scenario is designed by adding the following uncertainty into the first one.
The uncertain parameters are shown in Table 5.

Table 5. Uncertain parameters.

Uncertain Parameter Value

Sprung mass ms at each corner 315 + 2.5% kg
Viscous damping coefficients c f l and c f r at the front corners 3000 + 10% Ns/m
Viscous damping coefficients crl and crr at the rear corners 6000 + 10% Ns/m
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The total simulation time is 60 s. The simulation scenario is as follows (see
Figures 24 and 25):

• At 20 s (around 160 m), the desired comfort level (characterized by the given RMS
acceleration) increases from 0.2 to 0.3 m/s2;

• At 40 s (around 360 m), the road type (characterized by the estimated road roughness)
changes from B to A.
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Figure 24. Desired comfort level.
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Figure 25. Road roughness.

Again, we see from Figure 26 that the new reference speed is calculated, and the
cruise control effectively tracks this value. The resulting road displacement zr significantly
decreases after 40 s (around 360 m) due to the change in road type (only the displacement
at the front right corner of the vehicle is shown in Figure 27).
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Figure 26. Resulting reference and vehicle speed.
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Figure 27. Resulting road input at the front right corner.

The resulting accelerations are shown in Figure 28, whose RMS values are 1.1947 m/s2

for the passive suspension case and 0.6916 m/s2 for the LPV H2 semi-active suspension
case, which correspond to the comfort level of “uncomfortable” and “fairly uncomfortable”,
respectively, according to Table 3. Finally, the resulting deflections are shown in Figure 29,
from which we can see that again, semi-active suspension leads to smaller deflection values
compared to passive suspension. These results show that the proposed method is robust
enough w.r.t the uncertainty.
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Figure 28. Resulting acceleration felt by passengers (filtered by (14)).
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Figure 29. Resulting deflection at the front right corner.

6.3. Comparison of Comfort Performances: Passive vs. Semi-Active Suspension

Table 6 summarizes the comfort evaluation for the two performed simulation scenarios.

Table 6. RMS acceleration (m/s2).

Simulation Scenario Passive Suspension Semi-Active Suspension

Scenario 1 1.2360 0.4301
Scenario 2 1.1947 0.6916

Clearly, the LPV semi-active suspension control outperforms the passive one, and it
allows for an efficient coupling between the longitudinal and vertical dynamics.

7. Conclusions

This work presented an integrated strategy for comfort-oriented vehicle cruise and
suspension control with a robust/LPV approach in the H2 framework. We related driving
comfort (quantified using the filtered sprung mass acceleration) and road type with the
vehicle speed to obtain comfort-guaranteeing reference speed functions. We then designed
a cruise and a semi-active suspension controller respectively for vehicle longitudinal
and vertical dynamics, which are linked to each other through the vehicle speed as a
scheduling parameter. These controllers were tested by performing simulations, first
independently and then in an integrated framework using a nonlinear full-vehicle model
validated from real data. Results showed that the vehicle was capable of finding a speed
value guaranteeing comfort and tracking this value thanks to cruise control, while semi-
active suspension control provided further enhancement of comfort level. Indeed, the
integrated control approach was adapted to the comfort requirement and vehicle speed.
It is worth mentioning that we relied on basic assumptions and a reasonable amount of
knowledge of the environment, making this strategy realistic.
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Abbreviations

The following abbreviations are used in this manuscript:

IRI international roughness index
ISO International Organization for Standardization
LMI linear matrix inequality
MR magneto-rheological
LPV linear parameter-varying
LTI linear time-invariant
RMS root mean square
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Abstract: Automated vehicles we have on public roads today are capable of up to SAE Level-3
conditional autonomy according to the SAE J3016 Standard taxonomy, where the driver is the
main responsible for the driving safety. All the decision-making processes of the system depend
on computations performed on the ego vehicle and utilizing only on-board sensor information,
mimicking the perception of a human driver. It can be conjectured that for higher levels of autonomy,
on-board sensor information will not be sufficient alone. Infrastructure assistance will, therefore, be
necessary to ensure the partial or full responsibility of the driving safety. With higher penetration rates
of automated vehicles however, new problems will arise. It is expected that automated driving and
particularly automated vehicle platoons will lead to more road damage in the form of rutting. Inspired
by this, the EU project ESRIUM investigates infrastructure assisted routing recommendations utilizing
C-ITS communications. In this respect, specially designed ADAS functions are being developed
with capabilities to adapt their behavior according to specific routing recommendations. Automated
vehicles equipped with such ADAS functions will be able to reduce road damage. The current paper
presents the specific use cases, as well as the developed C-ITS assisted ADAS functions together with
their verification results utilizing a simulation framework.

Keywords: automated vehicles; ADAS/AD functions; C-ITS; IVIM; infrastructure assistance; routing
recommendations

1. Introduction

Advanced driver assistance systems (ADAS) are becoming more widespread in mod-
ern automotive vehicles with the promise to reduce the cognitive load on drivers and to
increase the driving safety in general. Such assistance systems are also helping with the
user acceptance of automated driving (AD) systems with the view of a fully autonomous
future mobility. In doing so, however, there are still many hurdles to be cleared in reach-
ing this dream, especially in controlling and effecting the automated vehicle behavior in
dynamic traffic conditions. This is particularly important for the transition phase from
conventional to automated traffic at different penetration rates.

Automated vehicles that we have on public roads today are capable of up to SAE Level-
3 autonomy, which implies conditional automation according to the SAE J3016 Standard
taxonomy of automated road vehicles [1]. At this level of autonomy, the driver holds the
main responsibility for ensuring the driving safety. Although, all the decision-making
processes of this class of automated vehicles depend on the computations performed
on the ego vehicle, utilizing only on-board sensor information. This procedure, mimics
the perception process of a human driver. However, it is conjectured that for higher
levels of autonomy (SAE Level-4 and Level-5), infrastructure assistance will indeed be
helpful to ensure partial or full responsibility of the driving safety. In the simplest terms,
infrastructure communication can be utilized to convey the dynamic traffic and hazard
information ahead and beyond the range of on-board sensors in the form of real-time
routing and driving recommendations for connected automate vehicles (CAV).
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Motivated by this, the EU-H2020 funded project ESRIUM [2] strives for the high-level
goal of increased safety and resource efficiency of transport on European roads. In doing
this, its key innovation is a digital map of road surface damage and road wear. This shall
help reduce both the number of road works and the associated problems by using new
digital services for managing the traffic, as well as by controlling the utilization of the road.
The road wear map will contain unique information for the road operators to enhance the
road maintenance planning, as well as to provide route and driving recommendations
to CAVs and connected vehicles. These recommendations will be used for adjusting the
driving path (in-lane and between lanes), which shall help with gradual degradation of the
road surface, thereby reducing the regular maintenance actions.

The development of CAVs and infrastructure-assisted automated driving functions
have attracted increasing attention in recent years, as summarized in [3,4]. Particularly,
lane change and merge maneuvers present a challenge for vehicle automation. The authors
in [5] provided a survey in this area, including vehicle positioning systems, communication
systems, control systems and system validation. The energy saving potentials of CAVs, on
the other hand, have been highlighted in [6]. The conservative assessment in [6] shows 3%
energy saving in highway driving in presence of static environment information, and 10%
energy saving in arterial driving if traffic signals are provided via vehicle-to-infrastructure
(V2I) communications. However, the effect of automated vehicles (AVs) on mixed traffic
might be negative. The authors in [7] used real traffic data together with the traffic
simulation tool simulation of urban mobility (SUMO) [8] to accomplish the traffic efficiency
analysis of mixed traffic, and they claimed that maximum traffic flow rate reduces with
higher penetration rate of AVs in mixed traffic. Another important application for CAVs is
truck platooning and many problems remain unsolved [9].

In addition to perception and control, trajectory planning is an indispensable function
to realize high level of autonomous driving [10]. The configuration space of AVs or
CAVs on a 2D plane comprises three dimensions: two dimensions indicating the vehicle’s
position (x, y), and one dimension indicating the vehicle’s heading θ. However, the
time dimension or velocity dimension has to be added, if differential constraints and
vehicle dynamics are considered. Quite a lot of work tries to tackle this high dimensional
problem using the so-called spatiotemporal planning. McNaughton and et al. proposed
conformal spatiotemporal lattice to represent search space for structured environments [11].
However, the high dimension of the state space makes the lattice expensive to be repeatedly
constructed and searched in a dynamical environment. Recently, Sun and et al. attempted
to address this problem by using intelligent driver model (IDM) as a velocity feedback
policy [12]. Therefore, the number of dimensions of the lattice planner is reduced.

To balance the trade-off between computation time and quality of the trajectory
planning result, a framework of combining graph search and optimization was proposed
in [13] and has been augmented recently. In [14,15], an A* search is used to find a rough
reference spatiotemporal trajectory along with a collision-free driving corridor, which
is subsequently refined by optimization considering safety and dynamical constraints.
Moreover, [16] proposed a different approach to identify the spatiotemporal constraints
(collision-free driving corridors) using set-based reachability analysis. By combining their
approach with optimization-based spatiotemporal planning, arbitrary traffic scenarios can
be solved.

Wheel wander, which is related to road surface damage, is of interest for infrastructure
designers. Gungor analyzed the literature about wheel wander and its impact on the
pavement [17]. According to this report, wheel wander was defined as uncertainty of
the lateral position of wheel loads on a lane. The lateral position of the wheels of human
driven cars is not uniformly distributed over the whole lane but can be modeled as a
normal distribution with non-zero mean and known standard deviation. It was shown
in simulation, that wheel wander reduces rutting in comparison to the case without
wheel wander.
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CAVs, especially heavy-duty trucks in platoon formations, are per design expected to
have no wheel wander, and without any measure will lead to more road damage in the
from of rutting of the road surface. This is, in fact, very different than the effects of human
driven trucks on the road networks, and can cause infrastructure maintenance issues as
the penetration of such vehicles increase. In the recent paper [18], this problem was also
described and some counter measures were analyzed. Particularly, optimization strategies
using V2I communication are proposed for a desired lane off-set the vehicles should drive.

On another strand of work, Bouchihati [19] analyzed the impact of truck platooning
on pavement structure on Dutch motorways. It is stated in this publication that automated
truck platoons will lead to substantial higher damage on the pavement as result of rut
development and fatigue. As a potential solution, smart lanes were proposed. Accordingly,
sensors can be used to measure the positions of all previous passed truck platoons and the
optimum lateral position can be communicated to the leading truck who will then adjust
its lateral position according to the given recommendation. With this method, an optimal
use of the road surface can be achieved.

Inspired by these, the EU project ESRIUM investigates infrastructure assisted routing
and driving recommendations utilizing C-ITS communications. In this respect, specially
designed ADAS functions (i.e., lateral and longitudinal tracking controllers and a trajec-
tory planner) are being developed with capabilities to adapt their behavior according to
specific routing and driving recommendations received in the form of infrastructure to
vehicle information message (IVIM). The current paper presents the specific use-cases to
demonstrate the utilization of this approach for reduction in road rutting (due to reduced
wheel wander of CAVs), and to initiate informed lane changes to avoid potential hazard
situations. The paper further describes the developed C-ITS assisted ADAS functions
together with their verification results utilizing a simulation framework.

The paper is organized as follows: First, we introduce the two use cases of the C-ITS
assisted routing and driving recommendation in Section 2. In Section 3, the simulation
framework is introduced. Next, the ADAS functions are defined in Section 4. Simulation
implementation and verification results are finally given in Section 5 followed by the
conclusions and outlook in Section 6.

2. Descriptions of the Use Case Scenario and Performance Indicators

In this paper, two use case scenarios of ESRIUM are described. The first one is an
in-lane off-set recommendation for connected automated vehicles (CAVs) and the second
is a strategic lane change and lane utilization information for CAVs. In both cases, the ego
vehicle receives the information via the C-ITS message type IVIM [20].

In the in-lane off-set recommendation scenario, as sketched in Figure 1, the ego
vehicle shall drive in automated mode (SAE Level-3 equivalent Motorway Chauffeur
combining adaptive cruise control (ACC) and lane keeping assist (LKA) driving functions)
in a detection zone when it receives an IVIM containing a recommended lane-off-set
information. This C-ITS routing recommendation in the form of a IVIM comes from an
infrastructure road-side unit (RSU) and is received by an on-board unit (OBU) and the
linked automated driving functions on the ego vehicle interpret it. The detection zone
defines the region, where the vehicle is expected to be in a bi-lateral communication link
with the RSU. Before entering the relevance zone (this is the zone, where the recommended
action by the IVIM needs to be implemented), the ego vehicle adapts the typical LKA task
of tracking the center of the existing lane and transitions to driving along the same lane
with the given in-lane off-set. The ego vehicle is expected to drive throughout the relevance
zone with the recommended in-lane off-set in case traffic conditions permit it. Immediately
after leaving the relevance zone, the ego vehicle is expected to follow the default centerline
tracking task unless otherwise recommended.
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Figure 1. In-lane off-set recommendation scenario description.

In the lane change recommendation scenario (see Figure 2) , the ego vehicle shall
drive in automated mode (SAE Level-3 equivalent Motorway Chauffeur combining ACC
and LKA driving functions) in a detection zone when it receives an IVIM containing a set
of three relevance zones with instructions to avoid the rightmost lane, because of road
damage. When the ego vehicle is driving on the rightmost lane in relevance zone 1, it will
change the lane to next lane if traffic allows it, and in relevance zone 2 it will continue
driving on the remaining lanes and avoid the rightmost lane. In relevance zone 3, the
rightmost lane is cleared and the ego vehicle uses the most appropriate lane according to
the traffic situation.

Figure 2. Lane change recommendation scenario description (see Table 1 for the definitions of the
pictogram symbols)

3. Simulation Environment and Setup

3.1. Driving Functions and Vehicle Dynamics

For the development of the driving functions, a co-simulation environment based
on Matlab/Simulink and the vehicle dynamics software IPG Carmaker was utilized (see
Figure 3a). This simulation environment was preferred since it is well suited for rapid-
prototyping purposes. As depicted in the figure, all driving functions in terms of trajectory
planner, as well as longitudinal and lateral tracking controllers were developed and imple-
mented in Matlab/Simulink. Those include the vehicle state, an object list and lane marking
information. The vehicle state includes actuation signals (steering angle, brake and gas
pedal), velocities and accelerations. For the object list, no sensor dynamics were assumed
considering only occlusion effects. Taking into account limitations of a prospective real
world demonstration of the presented implementations, lateral vehicle guidance was based
on lane marking information only. For that purpose, a polynomial lane marking model
was recreated in simulation, which describes lane boundaries as third order polynomials
and related polynomial domains.

The routing recommendations based on IVIM messages were implemented as preset
messages. Future demonstrations will be performed on sections of the Austrian motorway
A2. Therefore, the corresponding UHDmaps(®) [21] in the OpenDRIVE format was used
in the CarMaker driving scenario.
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Figure 3. Simulation environment, setup, and ego vehicle aligned visualization. (a) Co-simulation
architecture utilizing Matlab/Simulink and IPG Carmaker. (b) Visualization of objects (blue boxes)
and assigned ID, lane markings and quality of detection (black), and ego prediction (red).

Object list and lane marking inputs to the driving function were visualized in an
ego-centered view online (Figure 3b), i.e., in parallel with the simulation. This allowed to
validate driving function inputs and outputs.

3.2. C-ITS Message Structure and Simulation Implementation

In the final implementation, the recommendations for lane off-set and lane change
will be sent using the IVIM messages. IVIM information will be broadcast according to
TS 103 301 V2.1.1 and ISO 19321: 2020 standard. The automated vehicle container of the
broadcast IVIM message will include the pictograms of the recommended action. In the
case of lane change recommendations, one of the four categories of recommendations
associated with corresponding pictograms according to the ISO 14823:2017 “Intelligent
transport systems-Graphic data dictionary”, as indicated in Table 1, will be used.

Table 1. IVIM lane choice recommendation according to the ISO 14823:2017 code.

Recommendation ISO14823 Code Pictogram

Keep the current lane 13,660

Move to the left lane 13,661

Move to the right lane 13,662

Lane closed 13,669

The lane off-set recommendation will also be broadcast using the free text option
in the automated vehicle container of the IVIM message. The free text will contain the
signage followed by the off-set in centimeters. In this setting “+” sign indicates an off-set
to the right of the lane center whereas “−” sign indicates an off-set to the left relative to the
lane center. The example information content of the lane off-set IVIM message is given in
Table 2.
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Table 2. IVIM lane off-set messages information structure.

AV-Container
Part

Detection-
Zone Ids

Relevance-
Zone Ids

Applicable
Lane ±Offset [cm]

1 1 11 1 −20

2 1 13 2 10

...
...

...
...

...

In the scope of the simulation based development of the driving functions, the im-
plementation of sending and receiving of the IVIM communications is not considered.
Although parsing of the message standard structure described above is not part of this first
simulations. For both use case scenarios a simple emulation subsystem was developed. Its
aim is to check if the ego vehicle is inside the detection or relevance zones and to provide
the trajectory planner with the necessary information. In the case of the first scenario (i.e.,
in-lane off-set recommendation), this information is the desired off-set for each lane in a
give relevance zone. For the lane change recommendation scenario, on the other hand,
the specific information that is provided to the driving functions includes one detection
zone and three relevance zones. Therefore, the developed emulation block checks and
interprets whether the ego vehicle is inside one of these areas and consequently specifies
the desired lane to the trajectory planner. The specific implementation of the IVIM parser
will be conducted as part of the real vehicle tests. The ego vehicle has to be equipped
with a GNSS-receiver and compares its position with the definitions of the detection and
relevance zones to evaluate if it is inside of a zone.

4. AD Functions Development

The AD functions presented in this article are discussed in the well known sense–
plan–act scheme. As mentioned in Section 3, the sensing task is delegated to CarMaker,
which provides all the required ego vehicle states, as well as obstacle and road information.
The sensors are therefore modeled as low-fidelity ideal sensors providing object lists
within specified cones representing their respective field of view. The planning task is
accomplished by a rule-based trajectory planner adapted to utilize C-ITS messages, as
described below in Section 4.1.

4.1. Planning: Rule-Based Trajectory Planner

The planning task is accomplished by a rule-based trajectory planner (TP) that was
developed for structured environments like highways with well defined lane boundaries. It
uses a finite state machine and a set of discrete decisions to trigger lane changes or keep the
vehicle on its current lane. By default, the ego vehicle drives in the middle of the rightmost
lane. If a slower vehicle prevents the ego vehicle from reaching its desired cruising speed,
and the target lane is not occupied, a Bézier curve is planned to perform a lane change.

The value of the Bézier curve at a tunable look-ahead distance is then used as the
desired lateral off-set for the underlying lateral controller. As can be seen from Figure 4,
this off-set is defined with respect to the center of the current lane. Therefore, the TP needs
to handle a change of reference during the lane change maneuver. This allows future
deployment of the proposed algorithm to a demonstrator vehicle which utilizes only a
vision sensor for lane marking based in-lane localization.

Together with emulations blocks for parsing the IVIM (see Section 3.2), the TP is able
to generate the input signals for the lateral and longitudinal controllers to accomplish the
described scenarios in Section 2.

Bézier Based Path Planning Approach

Path planning relies on a Bézier curve approach [22] that was enhanced to handle
specific limitations that are common in real world applications. Apart from using HD
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maps, currently available sensors lack the ability of providing trustworthy lane information,
specifically the lane width, besides the current lane. To overcome this issue, the planned
path consists of two quadratic Bézier curves connected via a straight segment as shown in
Figure 4.

Figure 4. Lane change with two quadratic Bézier curves and a linear segment.

The Bézier curves provide a smooth transition to initiate and finish the lane change,
while the straight segment can be shortened or extended during the lane change maneuver
according to the width of the target lane.

The path as shown in Figure 4 can then be written as a spline

S(τ) =

⎧⎪⎨⎪⎩
Γ1(τ) 0 ≤ τ ≤ 1,
Γ2(τ) 1 ≤ τ ≤ 2,
Γ3(τ) 2 ≤ τ ≤ 3.

(1)

with three segments Γi (i = 0, 1, 2) and the path parameter τ. Considering a quadratic
Bézier curve

C(τ, C0, C1, C2) = C0(1 − τ)2 + 2C1(1 − τ)τ + C2τ2, τ ∈ [0, 1] (2)

with control points Ci (i = 0, 1, 2), the spline segments Γ1 and Γ3 were chosen as

Γ1(τ) := C(τ, P0, P1, P2) and Γ3(τ) := C(τ, Q0, Q1, Q2). (3)

For the terminal points of S(τ), we can immediately state from Figure 4:

P0 = (0, 0) and Q2 = (l, w). (4)

To achieve a comfortable lane change, the length l of the lane change is chosen
according to the current vehicle speed, while the lane change off-set w is pre-defined by
the widths of the current and target lane:

w =
wactual + wtarget

2
. (5)

Since Γ3 is skew-symmetric to Γ1, the relations

Q0 = Q2 − P2 and Q1 = Q2 − P1 (6)

hold, leaving only P1 := (c, 0) and P2 := (a, b) undetermined. The straight segment Γ2
shown in magenta connects the points P2 and Q0, therefore

Γ2(τ) = (Q0 − P2)τ + P2 = (Q2 − 2P2)τ + P2. (7)
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Claiming geometric continuity at the transition from Γ1 to Γ2 (and, therefore, from Γ2
to Γ3), the relation

b
a − c

=
w − 2b
l − 2a

. (8)

must be fulfilled. According to Figure 4, it is reasonable to restrict b ≤ 1
2 wactual, which is

usually fulfilled by setting b to half the width of the ego vehicle. Then, introducing fc =
c
a

as a tunable parameter, (8) can be solved for

a =
bl

w + 2b fc − w fc
. (9)

To conclude the path planning approach, the control points are

P0 = (0, 0), P1 = (c, 0), P2 = (a, b),

Q0 = (l − a, w − b), Q1 = (l − a/2, w), Q2 = (l, w).
(10)

As mentioned, b was set to half the ego vehicle width, while fc was determined
empirically considering the trade-off between the slope and continuity of the spline S. For
the simulations presented in Section 5, b = 0.9 and fc = 0.5 were used.

4.2. Actuation: Lateral and Longitudinal Control

For tracking the lateral and longitudinal references from the trajectory planner, two
proven controller implementations were reused. The lateral controller implements a
state-feedback control law based on [23], modified according to [24] as motivated from a
demonstrator vehicle application. It makes use of the reference path from the trajectory
planner up to the second geometric continuity, i.e., lateral error, heading error, and path
curvature. The actuated signal is the steering wheel angle. Although, the dynamics of a
steer-by-wire actuator are considered.

The longitudinal controller is implemented as a time-discrete PI (proportional-integral)
controller with an anti-wind-up measure providing the control signal pk at time step k
according to

pk = kPek + αk (11)

αk = kIek + max(−100, min(αk−1, 100)). (12)

Here, ek is the acceleration error, kP and kI are the proportional and integral gain
and pk is the commanded brake pedal position for pk < 0 and the throttle position for
pk > 0. The anti-wind-up measure is implemented via max() and min() functions ensuring
pk ∈ [−100, 100]. To ensure bumpless activation of the longitudinal controller, α0 is
initialized according to the current pedal positions.

Both controllers execute with a sample time of 20 ms.

5. Simulation Results and Analysis

The described use case scenarios in Section 2 were simulated on a straight section of
the A2 motorway without other traffic elements. The vehicle speed was set to 130 km/h
for the longitudinal tracking controller.

Figure 5 shows the results of the in-lane off-set recommendation scenario. For this
simulation a detection zone with a length of 200 m was chosen and a relevance zone with
a length of 1000 m and the in-lane off-set recommendation is only valid for the rightmost
lane. In Figure 5a, the steering wheel angle during the maneuver is depicted. Moreover,
the lateral acceleration in Figure 5b, the yaw rate in Figure 5c, and the desired and driven
off-sets in Figure 5d are shown, respectively.

According to the simulated scenario, at approximately 2.5 s the ego vehicle starts the
transition to the desired in-lane off-set. In this example the vehicle reaches its desired
steady-state off-set value of −0.2 m at approximately 7 s. The total time it took to reach the
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set off-set value is, therefore, about 4.5 s, which matches the in the controller defined value.
According to the designed scenario, the ego vehicle drives through the relevance zone (RZ)
with the desired off-set and leaves it at about second 35 returning back to zero off-set value.

As seen from the results in Figure 5, the developed enhanced driving functions are
quite effective in achieving the desired off-set value. The difference between the desired
and achieved off-set values are quite small except a small overshoot. The overshoot in
the lateral position was smaller than 2 cm in this case. The small oscillation in the middle
point of the maneuver (which should not be existing at all, at about 21 s) was caused by the
CarMaker itself and is believed to be a modeling bug, as it varied when the vehicle model
was changed, but could not be avoided completely.

(a)

(b)

(c)

(d)
Figure 5. Result of the in-lane off-set recommendation scenario: (a) steering wheel angle, (b) lateral
acceleration, (c) yaw rate, and (d) lane off-set.

Figure 6 shows the use case scenario simulation results for the strategic lane change
and lane utilization recommendation for CAVs. Figure 6a shows the steering wheel angle
variation during this example recommended lane change maneuver. Furthermore, the
lateral acceleration in Figure 6b, the yaw rate in Figure 6c, and, finally, the vehicle lateral
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position relative to the desired lane in Figure 6d are shown, respectively. According to
this example scenario, the ego vehicle enters the relevance zone 1 (RZ1) at about 6.6 s and
the desired lane, therefore, switches from 0 to 1. Note that in the TP the rightmost lane
is indexed with 0 and the index is increased while going towards the left side, which is
different to the numbering convention in the IVIM. Since there is no hindering traffic in
the scenerio, the TP initiates immediately a lane change maneuver to lane 1, where it stays
while passing the relevance zones 1 and 2 (RZ1 and RZ2). In relevance zone 3 (RZ3) the
TP computes a lane change maneuver back to the original starting lane (i.e., lane 0). In
this use case as well, the recommended maneuvers were conducted effectively with little
overshoot. It can be observed that the total lane change maneuver was achieved with less
than 5 s transition times between steady state driving positions.

(a)

(b)

(c)

(d)
Figure 6. Result of the lane change recommendation scenario: (a) steering wheel angle, (b) lateral
acceleration, (c) yaw rate, (d) lateral vehicle position.

As a further simulation use case example, we implemented also a combined in-lane
off-set and lane change recommendations, as seen in Figure 7. In this scenario, the ego
vehicle starts in the right lane and first receives a in-lane off-set recommendation and than
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consecutively a lane change to the left lane followed by reverse maneuvers to return to
the right lane lateral 0-off-set position. In this case, the in-lane off-set values were varied
with specific values {−1 m, −0.5 m, −0.2 m, −0.1 m, 0 m, 0.1 m, 0.2 m, 0.5 m, 1 m} and
the resulting trajectories were displayed in Figure 7 as a superimposed plot. The results
indicate that complex maneuvers combining the two specific recommendations can also be
achieved with efficacy.

Figure 7. Combined in-lane off-set and lane change recommendations with varying lateral off-set
values. The lane boundaries were shown to aid the visualization.

6. Conclusions and Outlook

Given that the number of automated vehicles increase rapidly, their behavior on
the motorways can have abnormal ramifications on the road surface wear. Consider, for
example, automated truck platoons driving along same road stretch, which will surely
lead to frequent rutting. Motivated by this, we introduced in this paper a new model for
operation of automated driving functions, namely by using specific infrastructure routing
recommendations for enhancing or adapting their behavior.

The recommendations are in the form of specific lane-change and in-lane off-set
suggestions. It is envisaged that from the collective behavior of the automated vehicles
(and connected vehicles in general) with a capability to adapt their behavior according to
the routing recommendations will benefit both the road operators and the vehicle owners.
These vehicles will, on the one hand, reduce rutting of the surface, as well as unbalanced
wear of the road surface, especially when their penetration rates increase. On the other
hand, such vehicles will avoid rutted or damaged road sections and blocked lanes thanks
to the routing recommendations, providing a safer and more comfortable ride. This is an
idea being developed within the recently started EU-H2020 funded project ESRIUM, where
the complete value chain for implementing this basic idea is being developed to investigate
its feasibility.

In this paper we described the specific ADAS/AD functions including longitudinal
and lateral tracking controllers, as well as a rule based trajectory planner, which are utilized
to achieve the routing recommendations. We also introduced the specific use cases that will
be implemented in this context, and the structure of the routing recommendations based on
the IVIM message standard. The corresponding ADAS/AD functions were developed in a
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high-fidelity simulation framework based on Matlab/Simulink and Carmaker software
with the view of deploying the same functions in a test vehicle for real-life implementation.
The ADAS/AD functions were demonstrated for representative use cases to verify their
basic operation. In the future extensions, the same driving functions will be imported to an
automated drive demonstrator vehicle to implement and realize the demonstration of the
routing recommendations in real-life use cases on a public road. It is planned to conduct
this demonstration during the progress of the ESRIUM project.
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Abstract: The correctness of autonomous driving software is of utmost importance, as incorrect
behavior may have catastrophic consequences. Formal model-based engineering techniques can help
guarantee correctness and thereby allow the safe deployment of autonomous vehicles. However,
challenges exist for widespread industrial adoption of formal methods. One of these challenges is the
model construction problem. Manual construction of formal models is time-consuming, error-prone,
and intractable for large systems. Automating model construction would be a big step towards
widespread industrial adoption of formal methods for system development, re-engineering, and
reverse engineering. This article applies active learning techniques to obtain formal models of an
existing (under development) autonomous driving software module implemented in MATLAB.
This demonstrates the feasibility of automated learning for automotive industrial use. Additionally,
practical challenges in applying automata learning, and possible directions for integrating automata
learning into the automotive software development workflow, are discussed.

Keywords: autonomous driving; active learning; formal methods; model-based engineering;
automata learning

1. Introduction

In recent years, the global automotive industry has made significant progress towards
the development of autonomous vehicles. Such vehicles potentially have several benefits
including the reduction of traffic accidents and increased traffic safety [1]. However, these
are highly complex and safety critical systems, for which correct behavior is paramount, as
incorrect behavior can have catastrophic consequences. Ensuring safety of autonomous ve-
hicles is a multi-disciplinary challenge, where software design and development processes
play a crucial role. A strong emphasis is placed on updating current engineering practices
to create an end-to-end design, verification, and validation process that integrates all safety
concerns into a unified approach [2].

Automotive software engineering is faced with several challenges that include non-
technical aspects (organization, strategic processes, etc.) and technical aspects such as the
need for new methodologies that combine traditional control theory and discrete event
systems, quality assurance for reliability, etc. [3,4]. Model-based engineering techniques can
address some of the challenges and help tackle the complexity in developing dependable
automotive software [5–8].

An autonomous vehicle consists of several software and hardware components that
interact to solve different tasks. Software in a modern car typically consists of hundreds of
thousands of lines of code deployed over several distributed units developed by different
suppliers and manufacturers. The model-based approach to design, test, and integrate
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software systems is instrumental in achieving the necessary correctness guarantees for such
complex systems. In this vein, several tools and methods have been developed and used
over the years. In particular, the usage of MATLAB/Simulink [9] has become increasingly
successful in a number of automotive companies [10].

A direct consequence of such software complexity is the possible presence of poten-
tially dangerous edge cases, bugs due to subtle interactions, errors in software design
and/or implementation. Although the automotive industry is constantly evolving, testing
(including model-based testing [11]) is currently a prominent technique for software quality
assurance [12]. However, an approach only based on testing is insufficient and partly
infeasible to guarantee the correctness of autonomous vehicles [13]. Thus, there is a need
for strict measures for quality assurance, and the use of formal methods in this regard
promise to be beneficial [14,15].

Formal verification techniques can indeed be used to identify design errors in MAT-
LAB/Simulink function block networks using Simulink Design Verifier (SDV) [16], and
Polyspace [17] to perform static code analysis on C code generated from the function block
networks. However, there are limitations in SDV; for instance in scalability and in the
verification of temporal properties that cannot be expressed as assertions [18,19]. SDV also
exclusively works with Simulink, which presents a challenge in reasoning about MATLAB
code without Simulink function blocks. Additionally, SDV and Polyspace cannot be used
to reason about function blocks where the internal implementation details are unavail-
able. Thus, in such cases there is a need to use complementary methods to guarantee the
correctness of the complete system under design.

In [20], different formal verification methods were used to verify an existing decision
making software (developed using MATLAB) in an autonomous driving vehicle. Formal
models of the code were manually constructed to perform formal verification and several
insights were presented. Admittedly, formal methods can be more beneficial if introduced
during the early stages of the software development workflow rather than being used
for after-development verification. However, there are several obstacles that impede
the widespread adoption of formal methods [14,21]. Significant trade-offs (e.g., tools
compatible with formal methods, development cost and time) have to be made that disrupt
current industrial best practice. Therefore, any work towards industrial adoption of formal
methods in the automotive domain without significant disruptions on current practice is
definitely rewarding.

Formal verification techniques like model checking [22]—to prove the absence of
errors in software designs—or, formal synthesis techniques like supervisor synthesis [23]—
to generate a controller/supervisor that is correct by construction—require a model that
describes the behavior of the system. However, constructing a formal model that captures
the behavior of the software under design is a challenging task and is one of several
impediments in the industrial adoption of formal methods. Manual construction of models
is expensive, prone to human errors, and even intractable for large systems. Constructing
such a model manually is also time consuming, which further complicates things as the
specification and consequently the implementation changes frequently, especially so for
rapidly evolving systems typical for the autonomous driving domain.

Automating model construction could speed up industrial adoption of formal methods
by reducing the burden of manually constructing the models. Such automated methods
will help find potential errors, as they can automatically generate and verify production
code at regular intervals. This will further strengthen the suitability of formal methods for
industrial use [21,24]. Automatically constructing formal models can also help understand
and reason about ill-documented legacy systems and black-box systems, which is crucial
for quality assurance of large-scale and complex automotive systems.

Active automata learning [25–32] is a field of research that addresses the problem of
automatic model construction. These approaches constitute a class of machine learning
algorithms that actively interact with the target system to deduce a finite-state automa-
ton [33] describing its behavior. This article is an extended version of [34], in which we
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reported results from a case study to automatically learn a formal model of the Lateral State
Manager (LSM), a sub-component of an autonomous driving software (under development)
programmed in MATLAB. In addition, we described an interface between the learning
tool MIDES [35] and MATLAB, which was used to learn a model of the LSM using two
active learning algorithms L∗ and Modular Plant Learner (MPL). The results demonstrated
the feasibility of our approach, but also the practical challenges encountered. This article
extends our previous work [34] with:

• Extensive description of the learning algorithms L∗ [36] and MPL [30] with illustrative
examples.

• An evaluation on the practical applicability of L∗ to automatically learn a model of
the LSM is presented based on experiments using LearnLib, an open-source automata
learning framework [32], in addition to MIDES.

• Analysis of the learning outcome is performed by investigating optimizations that can
potentially help improve the practical applicability of the learning algorithms.

• New insights on the approach of using automata learning to enable formal automotive
software development is presented.

Note that this article does not aim to compare the performance of the different algo-
rithms, but to show the applicability of active automata learning in a MATLAB development
environment. The experiments also showed that a known bug existing in the actual MAT-
LAB code was present in the learned model as well. This is very much desired, because the
analysis of a model can only reveal a bug in the system if the bug also manifests itself in
the model.

This article is structured as follows. Section 1.1 presents a brief overview of related
work. Section 2 describes the system under learning followed by the necessary prelim-
inaries in Section 3. Section 4 illustrates the learning algorithms with an example. A
description of the learning framework and the results from the learning are presented in
Sections 5 and 6, respectively. Section 7 presents the evaluation of the results. Section 8
includes the validation of the formal model learned and the threats to validity. Section 9
presents some insights from the experiments, discusses practical challenges and possible di-
rections for integrating automata learning into automotive software development workflow.
The article is concluded in Section 10 with a summary and some ideas for future work.

1.1. Related Work

Automatically learning finite-state models for formal verification has been done pre-
viously, for instance, from Java source code in [37], and from C code in [38,39]. These
methods rely on extracting an automaton by analyzing the program source code. Hence,
they are specific to the particular programming language and strictly rely on well defined
coding patterns and program annotations. Additionally, the approaches of [37–39] cannot
extract models where the source code is not available, such as when dealing with black-box
systems or binaries. Active automata learning mitigates these restrictions and learns models
of black-box systems through interaction.

There exist works on integrating the MATLAB development environment with tools
compatible for formal verification. For example, in [40], MATLAB/Simulink designs
are translated to the intermediate language Boogie that can later enable the use of SMT
solvers [41] for verification. Other works include developing MATLAB toolboxes to inte-
grate with a theorem prover [42] and a hybrid model checker [43]. Such methods depend
on considerable manual (and skilled) work to understand the semantics of the MATLAB
commands and built-in functions to develop the respective toolboxes. In contrast, by
actively interacting with the actual MATLAB code the work in this article learns a formal
model, which allows us to use general purpose formal methods tools to asses properties of
the code. In addition, knowledge about the semantics of MATLAB code are not needed by
the learning tool.
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Active automata learning has been successfully applied to learn and verify communi-
cation protocols using Mealy machines [26,44], and to obtain formal models of biometric
passports [45] and bank cards [46]. In [47], automata learning is used to learn embed-
ded software programs of printers. Though such research indicates the use of active
automata learning for real-life systems, challenges exist to broaden its impact for practical
use [29,48,49]. There are very limited examples on the use of active automata learning in
an automotive context [50,51] and it is yet to find its place in automotive software develop-
ment. To the best of the authors’ knowledge, active automata learning has not been used
previously to learn formal models from MATLAB.

2. System under Learning: The LSM

The system under learning (SUL), the LSM, is a sub-component of the decision making
and planning module in an autonomous driving system and is responsible for managing
modes during an autonomous lane change. The lane change module is implemented
in MATLAB-code [9] using several classes with different responsibilities. A simplified
overview of the system and the interaction of the LSM with a high level strategic Planner
and a low level Path Planner is shown in Figure 1. The lane change module is cyclically
updated with the current vehicle state (e.g., position, velocity), surrounding traffic state,
and other reference signals.

Figure 1. The lane change module system overview and interactions between the three components:
Planner, LSM, and Path Planner.

The Planner in the lane change module is responsible for strategic decisions. Depend-
ing on the state of the vehicle, the Planner sends lane change requests to the LSM, indicating
the desired lane to drive in. This request is sent in the form of a laneChangeRequest sig-
nal, which takes one of the three values: noRequest, changeLeft, or changeRight at any
point in time. On receiving a request, the LSM keeps track of the lane change process by
managing the different modes possible during the process, and issues commands to the
Path Planner. If a lane change is requested, the Path Planner plans a path and sends required
control signals to the low level controller to perform a safe and efficient lane change. Once
a lane change is initiated, the LSM needs to remember where in the sequence it is, thus it
is implemented as a finite state machine. A representation of the LSM, which consists of
seven states, is shown in Figure 2. For confidentiality reasons, the state and event names are
not detailed. An example of a state in the LSM state machine is State_Finished, abbreviated
as SF in Figure 2, which represents the completion of the lane change process.
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SA

SB SC

SD SE

SG

SF

Figure 2. A finite state machine representing the LSM.

A call to the LSM is issued at every update cycle. During each call, the LSM undergoes
three distinct execution stages. In the first stage, an associated function updateState
is executed that updates all the inputs according to the function call arguments. Then,
depending on the current state, code is executed to decide whether the system transits
to a new state or not. This code also assigns outputs and internal variables. Finally, if a
transition is performed, the last stage executes code corresponding to the new state entered
and assigns new values to the variables.

3. Preliminaries

An alphabet, denoted by Σ, is a finite, nonempty set of events. A string is a finite
sequence of events chosen from Σ. The empty string, denoted by ε, is the string with zero
events. For two strings, s and t, their concatenation denoted by st, is the string formed such
that s is followed by t. Let Σk be the set of all strings over Σ of length k. Then, Σ2 is ΣΣ and
similarly Σ(n+1) = ΣnΣ. The set of all strings of finite length over an alphabet Σ, including
Σ0 = {ε}, is denoted by Σ∗.

A language L ⊆ Σ∗ is a set of strings over Σ. A string s is a prefix of a string u, if
there exists a string t such that u = st; t is then a suffix of u. For a string s ∈ L ⊆ Σ∗, its
prefix-closure s is the set of all prefixes of s, including s itself and ε. L is said to be prefix-closed
if the prefix-closures of all its strings are also in L, that is L = L. Suffix-closure can be
defined analogously.

Definition 1 (State). Let V = {v1, v2, ..., vn} be an ordered set of state variables, where each
variable vi has a discrete finite domain defined as vD

i . A state is then defined as the assignment of
values to variables, V̂ ∈ VD where VD = vD

1 × vD
2 × · · · × vD

n . V̂ is called a valuation.

Definition 2 (DFA). A deterministic finite automaton (DFA) is defined as a 5-tuple
〈Q, Σ, δ, q0, M〉, where:

• Q is the finite set of states;
• Σ is the alphabet of events;
• δ : Q × Σ ⇀ Q is the partial transition function;
• q0 ∈ Q is the initial state;
• M ⊆ Q is the set of marked states.

The set of all DFA is denoted A. Every DFA A ∈ A determines a language generated,
respectively, marked, by that DFA, defined with help of the extended transition function.

Definition 3 (Extended Transition Function). Given a DFA 〈Q, Σ, δ, q0, M〉, the extended
transition function δ : Q × Σ∗ ⇀ Q is defined as (with s ∈ Σ∗, a ∈ Σ):

• δ(q, ε) = q
• δ(q, sa) = q′ if there exists q′′ ∈ Q s.t. δ(q, s) = q′′ and δ(q′′, a) = q′
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Definition 4 (Generated and Marked Language). Given a DFA A = 〈Q, Σ, δ, q0, M〉, the
languages generated and marked by A, L(A) and Lm(A), respectively, are defined as:

• L(A) = { s ∈ Σ∗ |δ(q0, s) ∈ Q }
• Lm(A) = { s ∈ L(A) |δ(q0, s) ∈ M }

Intuitively, the marked language is the set of all strings that lead to marked states.
While the generated language denotes behavior that is possible but not necessarily accepted,
the marked language denotes possible behavior that is accepted. A language is said to be
regular if it is marked by some DFA. It is well-known [33] that for a given regular language,
there exists a minimal automaton, in the sense of least number of states and transitions, that
accepts that language.

4. The Learning Algorithms

This section introduces and illustrates the learning algorithms used in this article. An
example consisting of two robots, R1 and R2, is used as the SUL. Each robot can perform
two operations, load and unload, represented by the events l1 and u1, respectively, for R1,
and l2 and u2 for R2. The marked languages of R1 and R2 are Lm(R1) = (l1u1)

∗ and
Lm(R2) = (l2u2)

∗, respectively. The behaviors of the robots represented as automata are
shown in Figure 3, to the left. Each robot starts in its respective initial state i, and moves to
the working state w on the occurrence of a load event. Then the robot transits back to its
initial state on the occurrence of an unload event. An automaton representing their joint
behavior is given in Figure 3c.

i

w

l1u1

i

w

l2u2

i,i w,i

i,w w,w

l1

u1

l2

u2

l2u2 l1u1

(a) (b) (c)

Figure 3. The example system. (a) R1; (b) R2; (c) joint behavior of R1 and R2.

4.1. The L∗ Algorithm

The L∗ algorithm [25] is a well-known active automata learning algorithm that has
inspired a tremendous amount of work [26–29,32,36,46,52]. It learns a minimal automaton
M̂ that generates the regular language L(M̂) ⊆ Σ∗ representing the behavior of the SUL.
L∗ assumes access to an oracle that has complete knowledge of the system, and works by
posing queries to the oracle. The modified L∗ from [36,52] is used in this work. The learning
algorithm interacts with the SUL to answer two types of queries:

Membership Queries: Given a string s ∈ Σ∗, a membership query for s returns 2 if the
string can be executed by the SUL and takes the system (from the initial state) to
a marked state. If the string can be executed, but does not reach a marked state,
1 is returned. Otherwise, 0 is returned. The membership query has the signature:
T : A× Σ∗ → { 0, 1, 2 }, and for A ∈ A and s ∈ Σ∗:

T(A, s) =

⎧⎨⎩
2, s ∈ Lm(A)
1, s ∈ L(A) \ Lm(A)
0, s /∈ L(A)

(1)
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Equivalence Queries: Given a hypothesis automaton H, an algorithm verifies if H represents
the language L(M̂). If not, a counterexample c ∈ Σ∗ must be provided, such that,
either c is incorrectly generated (that is, c ∈ L(H) but c �∈ L(M̂)), or incorrectly
rejected (that is, c �∈ L(H) but c ∈ L(M̂)) by H. In this work, equivalence queries
are performed using the W-method [53].

Let M̂ have n states. Given a hypothesis H, with m ≤ n states, the W-method creates
test strings to iteratively extend the hypothesis until it has n ≥ m states.

The learner constantly updates its knowledge about the SUL’s language as an obser-
vation table. The observation table O(S, E, T) is a 2-dimensional table, where S is a set of
prefix-closed strings, and E is the set of suffix-closed strings. The table has rows indexed
by elements of S ∪ (S Σ), and the columns indexed by elements of E. The value of a cell
(s, e) (for s ∈ S ∪ (S Σ) and e ∈ E) is populated using membership queries. The algorithm
ensures that the observation table is closed and consistent [36]. The observation table is
used to obtain a deterministic finite-state automaton, the hypothesis. Then, the learner
performs an equivalence query on the hypothesis automaton. If a counterexample is found,
it is added to the observation table together with all its prefixes. The algorithm loops until
no counterexample can be found.

Example 1. To illustrate the working of the L∗ algorithm, consider the example with the two robots.
L∗ initializes the observation table as seen in Figure 4. The empty event ε is related to the initial
state, which is marked, and hence its membership query results in a value of 2. On the other hand,
the table entries for the l1 and l2 events are 1, as these events are defined from the initial state but do
not reach marked states. Additionally, membership queries for strings that begin with u1 and u2
result in a value of 0, as they are not defined from the initial states. Hence, rows corresponding to
such strings are not included in subsequent observation tables. The rows corresponding to the two
sets of elements belonging to S and S Σ are separated by a horizontal line in the table. For the sake of
compactness, the ε prefix is omitted for non-empty strings.

E︷ ︸︸ ︷
ε

S

{
ε 2

S
Σ

{
l1 1
l2 1

Figure 4. L∗—The initial table.

The initial table is made closed, and consistent using membership queries, and the resulting
table is shown in Figure 5a and its corresponding automaton in Figure 5b. States in the automaton
correspond to the row values of the table.

Given the first hypothesis, L∗ now makes an equivalence query resulting in the counterexample
l1l2u1 According to the hypothesis, this string is rejected. However, the membership query for this
string will result in a value 1, as this string is possible in the system, as seen in Figure 3c. This
counterexample and its prefixes are incorporated into the set S, and the learning continues until
a new closed and consistent table, Figure 6a, is obtained. The corresponding hypothesis is seen in
Figure 6b. Since no counterexample can be found at this stage, the algorithm terminates, returning
the hypothesis as the learned model.
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ε l2
ε 2 1
l1 1 1
l2 1 0

l2 u2 2 1
l1 u1 2 1
l1 l2 1 0
l2 l1 1 0

(a)

21 11

10

l1

u1

l2

l2

u2

l1

(b)

Figure 5. L∗—First iteration. (a) The initial table made closed and consistent; (b) first hypothesis.

ε l2 u2
ε 2 1 0
l1 1 1 0
l2 1 0 2

l2 u2 2 1 0
l1 l2 1 0 1

l1 l2 u1 1 0 2
l1 u1 2 1 0
l2 l1 1 0 1

l2 u2 l1 1 1 0
l2 u2 l2 1 0 2
l1 l2 u2 1 1 0

l1 l2 u1 l1 1 0 1
l1 l2 u1 u2 2 1 0

(a)

210 110

102 101

l1

u1

l2 l2

l1

u2

u1

u2

(b)

Figure 6. L∗—Second iteration. (a) The table updated with the counterexample and made closed and
consistent; (b) second hypothesis.

4.2. The Modular Plant Learner

The Modular Plant Learner [30] is a state-based active learning algorithm developed
to learn a modular model, that is, one composed of a set of interacting automata. These
modules together define the behavior of the system. MPL does so by actively exploring the
state-space of a program in a breadth-first search manner. It exploits structural knowledge
of the SUL to search smartly. Hence, it requires access to the SUL’s variables, and a Plant
Structure Hypothesis (PSH) [30] defining the structure of the system. The PSH is a 3-tuple
H = 〈D, E, S〉, where D is a set that provides a unique name for each module that is to be
learned. The cardinality of D defines the number of modules to learn. E is an event mapping
that defines which events belong to which module. S is a state mapping that defines the
relationship between the modules and the variables in the SUL. The algorithm consists of
the Explorer, which explores new states and a ModuleBuilder for each module to keep track
of its module as it is learned.

The Explorer maintains a queue of states that need to be explored, terminating the
algorithm when the queue is empty. The learning is initialized with the SUL’s initial state
in the queue, which becomes the search’s starting state. For each state in the queue, the
Explorer checks if an event from the alphabet Σ can be executed. If a transition is possible,
the Explorer sends the current state (q), the event (σ), and the state reached (q′) to all the
ModuleBuilders.

Each of the ModuleBuilders evaluates if the received transition is relevant to its particu-
lar module. If it is, the transition is added to the module; otherwise it is discarded. The
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ModuleBuilder tracks the learning of each module as an automaton. This is done by maintain-
ing a set Qm containing the module’s states and a transition function Tm : Qm × Σm ⇀ Qm,
for each module m ∈ D. Once the transition is processed, the ModuleBuilder waits for the
Explorer to send the next transition. The algorithm terminates when all modules are waiting
and the exploration queue is empty. Each ModuleBuilder can now construct and return an
automaton based on Qm and Tm.

Example 2. Consider again the example with the two robots. Assume that the robots’ states are
stored in the variables R1var and R2var, respectively, represented as a state vector 〈R1var, R2var〉.
The initial state is then 〈i, i〉. A PSH for this example is defined as follows:

• D = {R1, R2}
• E(R1) = {l1, u1}
• E(R2) = {l2, u2}
• S(R1) = {R1var}
• S(R2) = {R2var}

At the start, the Explorer knows only about the initial state. Two ModuleBuilders are
initialized, one for each robot. The ModuleBuilders use the known initial state and knowledge
regarding the PSH to initialize themselves as seen in Figure 7. The state marked blue in the Explorer
denotes the state that is to be explored next.

〈i,i〉 〈w,i〉

〈i,w〉 〈w,w〉

l1

u1

l1

u1

l2u2 l2u2

(a)

i

(b)

i

(c)

Figure 7. MPL—Initialization. (a) Explorer; (b) R1; (c) R2.

Once initialized, the Explorer attempts to execute all the events in the alphabet from the initial
state. Accepted states are reached only for the events l1 and l2; events u1 and u2 cannot be executed.
Identified transitions are sent to the ModuleBuilders, where they are processed according to the
PSH. Figure 8a shows the knowledge gained by the Explorer. The transitions in red show the current
execution of the Explorer, and the blue states represent the states reached, but not yet explored.
Figure 8b,c show the internal representation of the knowledge for each of the ModuleBuilders. The
states reached in each of the modules are new. Hence, the corresponding global states are added to
the exploration queue.

〈i,i〉 〈w,i〉

〈i,w〉 〈w,w〉

l1

u1

l1

u1

l2l2 l2u2

(a)

i

w

l1

i

w

l2

(c)(b)

Figure 8. MPL—First Iteration. (a) Explorer; (b) R1; (c) R2.
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For each of the states present in the queue, the Explorer tries to execute all the events,
and the obtained transitions, colored red in Figure 9a, are sent to the ModuleBuilders. The
ModuleBuilders take only transitions relating to u1 and u2 to update their knowledge. As seen in
Figure 9b,c the states reached by these (newly added) transitions are not new and have already been
explored. Hence, no more states need to be explored, and the algorithm terminates. At termination
the Explorer has explored only three states to learn a modular model describing the behavior of the
two robots. In the worst-case scenario, though, the MPL must explore the entire state-space. This
depends on the user-defined PSH and the possibility to decouple the system. Further details about
the MPL are found in [30].

〈i,i〉 〈w,i〉

〈i,w〉 〈w,w〉

l1

u1

l1

u1

l2u2 l2u2

(a)

i

w

l1u1

i

w

l2u2

(c)(b)

Figure 9. MPL—Final Iteration. (a) Explorer; (b) R1; (c) R2.

5. Method: The Learning Setup

To actively learn a DFA model of the SUL, an interface is necessary to execute (strings
of) events, which represent the executable actions of the SUL. It should be possible to
observe and set the state of the SUL. If an event is requested that is not executable by the
SUL in its current state, the SUL should reply with an error message. Figure 10 presents
an overview of the active automata learning setup used in this article. The learner refers
to the learning tool MIDES [35] that implements the two learning algorithms described in
Section 4. Furthermore, the learner can be replaced with other tools that follow a similar
setup for automata learning, such as LearnLib [32]. The learning setup allows learning of
automata models by (actively) interacting with the SUL. The following subsections describe
the components and the learning outcome.

System Under
Learning (SUL)

Lateral State
Manager (LSM)

Interface

Learner

Learning Algorithms

Formal Model Analyzer

Finite-state Simulator
Formal Verification
Formal Synthesis

LEARNING SETUP

Figure 10. Overview of the learning setup.

5.1. Abstracting the Code

As described in Section 2, the LSM is a part of the lane change module, which is
updated cyclically with the necessary signals. In order to decide whether the system
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transits to a new state or not, the LSM is dependent on external function calls. These
interactions with external modules need to be abstracted away to learn a model of the LSM.
Thus, the first step in the learning process is to abstract the MATLAB code such that all
external dependencies are removed, which is described using Example 3.

Example 3. Consider the small MATLAB code snippet shown in Listing 1. The function dur-
ingStateA decides whether the system transits to a new state or not depending on var1 and
var2. The values of these two variables are dependent on external function calls, function1 and
function2, respectively.

Listing 1. A small illustrative example.

function duringStateA(self , laneChangeRequest)
var1 = function1 ();
var2 = function2(laneChangeRequest );
if var1 && var2

self.state = stateB;
end

end

Listing 2 shows how the external function calls are replaced by the additional input argument
decisionVar. The two variables, decisionVar.var1 and decisionVar.var2, have the domain
{True, False}. While this abstraction is not universally valid and increases the number of input
parameters of the function, it is possible in this particular context due to the way the different
modules interact; the decision logic remains unchanged.

Listing 2. Abstracted version of Listing 1.

function duringStateA(self ,
laneChangeRequest ,
decisionVar)

if decisionVar.var1 && decisionVar.var2
self.state = stateB;

end
end

Similarly, all such external function calls are abstracted and the final abstracted func-
tion contains one additional input parameter, decisionVar, to the updateState function.
The output of the updateState function is a set of internal variables, which includes the
current state and the direction for the lane change among others. This set of variables is
used by the learner to observe the behavior of the LSM during their interaction, as described
in the following section.

5.2. Interaction with the SUL

The interaction between the learning tool MIDES and the LSM, implemented in
MATLAB, is crucial, for which there is a need to:

1. Enable communication between MIDES and MATLAB,
2. Provide information to MIDES on how to execute the LSM and observe the output.

MIDES must be able to call MATLAB functions, evaluate MATLAB statements, and
pass data to and get data from MATLAB. In this learning setup, the learner is compiled to
Java bytecode, and the resulting executable code is run on a Java virtual machine. Therefore,
the interface integrates Java with MATLAB using the MATLAB Engine API for Java [54],
providing a suitable API for MIDES to interact with MATLAB.

With this interface established, the learner can now call the updateState function by
providing an input assignment to the corresponding variables. However, to learn a model,
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the learner additionally requires, among other things, predicates over state valuations that
define the marked states, the set of events, and event predicates that define when an event
is enabled or disabled.

Since the interaction between the learner and the LSM is done via the updateState
function, the input parameters define the alphabet of the model. Each unique valuation
of the input parameters corresponds to one event in the alphabet. Since the abstracted
LSM module is provided to the learner, each function that is abstracted into a decision
variable potentially results in one additional input parameter. Following the abstraction
described in Section 5.1, ten external function calls in the LSM resulted in ten Boolean valued
decisionVar, in addition to one three-valued laneChangeRequest, as input parametersand
a total of 3072 events. However, as state transitions in the LSM are defined only for a subset
of these events, some of them would potentially not have any effect on the model behavior,
and therefore their event predicates would be unsatisfiable.

The event predicates are defined over the state variables. The granularity of these
predicates contribute to the performance of the learning algorithm. A very detailed pred-
icate will potentially reduce the total number of strings to test in the SUL. A general
rule of thumb for constructing these is to create one predicate for each abstracted vari-
able. Taking the example in Listing 2, all events corresponding to decisionVar.var1 and
decisionVar.var2 are enabled when the predicate, self.state == stateA evaluates to
True. For an event to be enabled in a given state, all individual predicates corresponding
to the different variables must evaluate to True. Events with unsatisfiable predicates can
be discarded. Doing so for the LSM results in a total of 1536 events. Finally, to observe
the behavior of the LSM, the learner requires a set of variables given by the output of the
updateState function. Furthermore, initial valuation of the variables, which is then the
initial state of the LSM, is known to the learner.

6. Results

This section discusses the learning outcome. The learning algorithms were run on an
Intel i7 machine, with 8 GB ram, running Linux.

6.1. Learning with L∗

The L∗ algorithm implemented in MIDES ran out of memory during the experiments
and could not learn a full model. In our longest learning experiment, after 13 h of learning,
it was observed that 6 iterations of the hypothesis involving about 500k membership queries
resulted in a hypothesis model with 8 states and 231 transitions. On visual inspection, the
automaton structure resembles parts of Figure 2. Each of the states in the partially learned
model correspond to one or more states in the automaton of Figure 2. However, since L∗
did not terminate successfully, further analysis is needed.

Two main obstacles were faced while learning using the L∗. Firstly, as the observation
table grows in size, it takes longer to make the table closed and consistent. Furthermore,
the memory used to store the table grows rapidly by a factor dependent on the size of the
alphabet. Secondly, an exhaustive search for a counterexample using the W-method in the
given setup is time consuming. The number of test strings grows rapidly due to the large
alphabet size, which slow down the equivalence queries. A detailed analysis on learning
using the L∗ algorithm is discussed in Section 7.

6.2. Learning with MPL

Apart from the interface with the SUL the MPL requires information about the modules
to learn from the SUL. The LSM is a monolithic system and cannot, in its current form, be
divided into modules. Hence, the MPL, though specifically developed to learn a modular
system consisting of several interacting automata, learns a monolithic model.

The resulting automaton consists of 37 states and 687 transitions. The learning took a
total of 68 seconds. Furthermore, applying language minimization [33] to the learned model
results in a model with 6 states and 114 transitions. The language minimized automation is
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shown in Figure 11, and its similarity to Figure 2 is obvious. Multiple transitions between
two states are indicated by a single transition in Figure 11. The two states SG and SF of
Figure 2 have the same future behavior and hence are bisimilar [33], so they both correspond
to the single state q6 of Figure 11.

Figure 11. Learned model of the LSM.

The self-loops in the states of Figure 11 correspond to those events that are enabled in
that particular state, but do not change the internal state of the LSM. For example, consider
the code snippet in Listing 2. When decisionVar.var1 is True and decisionVar.var2 is
False, the corresponding event is enabled in stateA, but when fired does not cause a change
in the value of self.state, and thereby results in a self-loop. Similarly, all such enabled
events that do not change the internal state become self-loops in the learned model. The
state q6 does not have a self-loop, as it is a transient state in the LSM. That is, irrespective of
input parameters, when q6 is reached, LSM transits to state q0 for every enabled event.

7. Evaluation

As described in Section 6.1, the L∗ algorithm implemented in MIDES did not learn
a complete model. Prior to performing a detailed analysis, it is essential to eliminate any
potential implementation specific causes for this negative outcome. Typical causes in this
regard could be related to the use of inefficient data structures or non-optimized search
strategies. LearnLib is an open-source library for active automata learning that has been
shown to outperform other existing open-source libraries [32]. LearnLib features a variety
of automata learning algorithms including the L∗ algorithm. As LearnLib is implemented
in Java, it is possible to use an interface similar to the one in Section 5.2 to actively learn a
model of the LSM.

The L∗ algorithm implemented in LearnLib was run on a standard computer with
2.7 GHz Intel i5 processor and 8 GB of ram storage to learn a model of the LSM. However,
even in this case, the L∗ algorithm from LearnLib failed to learn a complete model of the
LSM before it ran out of memory. With these two experimental results, there is adequate
evidence to rule out any implementation specific causes for the negative outcome and to
warrant further analysis as described in the next section.

7.1. Learning Complexity

The complexity of L∗ depends on the number of membership and equivalence queries
as they require interaction with the system and storage of information in the observation
table. In [25], the theoretical worst case size of the observation table is calculated to be
(k + 1)(n + m(n − 1))n, where k = |Σ| is the size of the alphabet, n = |Q| is the number of
states, and m is the maximum length of any counterexample presented by the oracle. This
is also the upper bound for the number of membership queries and thus the complexity
is O(m|Σ||Q|2). Assuming that m = |Q| in the worst case, the number of membership
queries (and the size of the observation table) is O(|Σ||Q|3). Note from Section 6.2 that
the minimal automaton had 6 states. Since L∗ learns a minimal model, it is safe to assume
that it would learn a model with 6 states. Taking these values as an example would mean
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that learning the LSM would involve 1536 × 63 ≈ 3.3 × 105 membership queries. This
corresponds with the observations in Section 6.1.

The efficiency of L∗ for learning finite automata in practice has been investigated
by empirical studies on some real-word examples and some randomly generated exam-
ples. For instance, [55] observes that the required number of membership queries grows
quadratically in the number of transitions when learning prefix-closed languages. This is a
challenge, as learning from autonomous driving (or automotive) software in general would
typically involve models of reactive systems and therefore learning prefix-closed languages
like the case with the LSM. Further empirical studies in [56] show that in general, more
queries are required (i.e., harder) to learn a DFA with more marked states (≈|Q|) and the
number of membership queries per equivalence query grows linearly as a function of |Σ|
and |Q|. These results show the need for optimizations of the L∗ algorithm for practical
applicability, as is further shown by this study.

7.2. Alphabet Reduction

Based on the discussions so far, it is evident that optimizations are necessary to
successfully learn a model of the LSM. The size of the alphabet directly affects the number of
membership and equivalence queries. As also pointed out by [55], finding a counterexample
to refute a hypothesis in an equivalence query becomes increasingly hard with large
alphabets and prefix-closed languages. Therefore, any optimization that reduces the
number of such queries is potentially beneficial. In this regard, it is valuable to investigate
whether knowledge about the LSM could be exploited to reduce the size of the alphabet
without loss of information during the learning process.

Through the abstraction method in Section 5, the alphabet size can be decreased by a
reduction in the set of decision variables during the abstraction. For example, in Listing 2
the two variables decisionVar.var1 and decisionVar.var2 can potentially be combined
into a single variable decisionVar.var12. Such a simplification is only possible if it is the
case that decisionVar.var1 and decisionVar.var2 are exclusively used in StateA and
do not affect other state changes in the LSM. This information could be obtained from
knowledge about the design requirements of the LSM used to create the abstraction shown
in Figure 2.

The above approach was implemented through a wrapper function before a call to the
initially abstracted LSM from Section 5.2 is made. This ensures that the decision logic in
the LSM remains unchanged. Thus, the number of Boolean decision variables was reduced
from 10 to 6; bringing down the number of possible events to 192. However, even in this
case, L∗ failed to learn a complete model before running out of memory.

As further optimization was necessary, more knowledge about the LSM was used to
reduce the alphabet size. The decision logic of the LSM was studied to find a correlation be-
tween the (now abstracted) 6 Boolean decision variables, showing that only 4 combinations
were actually used, which could be encoded using only 2 Boolean variables. This resulted in
12 events in total, and L∗ successfully learned a model similar to the one shown in Figure 11.
The wrapper function described here to reduce the alphabet is similar to the approach of
using event predicates described in Section 5.2 to remove unnecessary events from the
alphabet. However, to reduce the alphabet in the proposed manner requires considerable
knowledge about the LSM and is potentially prone to errors due to the manual abstraction
involved. Though it is a limitation that the complete set of events is not queried in this way,
it was adopted to explore the limits of L∗.

8. Model Validation

A formal model of the LSM was learned using the MPL and the optimized L∗ as
described in Section 6 and Section 7.2, respectively. To validate the learned model, similar
to [45], it was compared to a model [57] manually constructed from the MATLAB code.
This was done using the tool SUPREMICA [58], which includes an automata simulator. It is
possible to view the current state, choose which event to execute, observe the resulting state
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changes, and step forwards and backwards through the simulation. Thus, a comparison
of the simulations of the learned formal model and the simulation of the actual LSM code
using MATLAB/Simulink is made.

Recall from Section 5.2 that the alphabet of the learned DFA model is constructed
using the input parameters of the LSM code. Therefore, executing the LSM code with
a set of input parameters can analogously be simulated by executing the corresponding
string of events in the DFA model. Since this comparison is made between the results from
simulating the actual LSM implementation and the automata simulation of the learned
model, it also validates the abstraction choices described in Section 5.1. Furthermore, a
known existing bug in the LSM development code manifested itself also in the learned
model. This was validated by manually simulating the learned model with a sequence of
input parameter changes known to provoke the bug.

Though no discrepancy was found between the code and the learned model, such
manual inspection is not exhaustive and cannot guarantee completeness of the validation
process. Alternatively, formal verification could be used to verify correctness. However, as
only limited informal (natural language) specifications were available, this was not (easily)
done. Still, the minimized model, together with the simulations in SUPREMICA strengthens
the confidence in the results of the learning process.

Threats to Validity

This article investigated only one problem instance and so cannot give any concrete
conclusions on the generalization or the scalability of the approach. Accidentally, a piece
of MATLAB code could have been chosen that lent itself particularly well to automatic
learning. Indeed, a piece of code was chosen that the authors were already familiar with.
Furthermore, the validation of the learned model was admittedly rather superficial, visual
inspection and comparison of simulation results between the learned model and the actual
MATLAB code. Ideally, the learned model should have been used to assert functional
properties of the MATLAB code. The closest in this respect was the known bug in the code,
that could be shown to also be present in the learned model.

However, a general automata learning framework that was not tailored specifically
to the SUL in this article was used; the only thing that was specifically implemented
was the interface between the learning framework and MATLAB. Even so, that interface
was intentionally kept general so that similar case studies of other pieces of code can be
performed in the future to truly assess the validity of the presented approach.

9. Insights and Discussion

A formal model of the LSM was successfully learned, and validated in multiple ways.
This section presents a discussion on the insights gained.

9.1. Towards Formal Software Development

The primary motivation for this work is to overcome the limitations in manual model
construction so that techniques like formal verification and formal synthesis can be used
to guarantee the correctness of software, without disrupting current industrial practices.
The presented approach is independent of the semantics of the implementation languages
One technical requirement to seamlessly integrate this approach with the daily engineering
workflow is the possibility to establish an interface between the production code and the
learning algorithms. Such a seamless integration makes it easier to use formal methods not
only for safety-critical software, but also for other automotive software (e.g., infotainment).
Though this article does not consider any kind of formal analysis on the learned model,
formal analysis using different verification and synthesis tools can directly be done on
the learned models with tools like SUPREMICA, similar to [20,57]. Of course, the learned
models must be translated into an input format suitable for the particular tool.
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Continuous Formal Development

With increasing complexity, software development in the automotive industry is
adopting new model-based development approaches in the software development life
cycle (SDLC) [59–62]. Quality assurance in such approaches relies on continuous integration
methods where continuous testing is vital. However, safety critical software requires strict
measures and testing, and unlike formal methods cannot guarantee the absence of errors.
Continuous formal verification [63] is a viable solution in this regard. Though there is a
need for a significant amount of research to adopt a continuous formal verification process
for automotive SDLC, insights from this article can be used to scale active learning to obtain
formal models for safety-critical software development.

9.2. Practical Challenges

This section discusses practical challenges encountered in the course of the study.

9.2.1. Interaction with the SUL

The interaction with real-life systems and the construction of application-specific
learning setups remain as challenges for the automata learning community despite the
application of automata learning in different scenarios over the years [29,48,49]. A major
aspect of the active learning process is to establish a proper interface between the learner
and the SUL. In this article, the interface is achieved through MATLAB-Java integration
using the MATLAB Engine API for Java [54] as described in Section 5.2. A challenge is to
establish an appropriate abstraction such that the learner can obtain necessary information
about the alphabet to actively interact with the LSM. In this study, all external dependencies
were abstracted such that the learner can easily interact with the SUL. However, data
dependencies between different methods and user defined classes could present additional
challenges to scale this approach, for example to learn a model of the Planner and the LSM
together. The effort needed to design and implement application specific learning setups
can be reduced by creating test-drivers [48] in the form of standalone libraries, and/or
automatically constructing abstractions [27] for seamless integration between the SUL and
the learner.

9.2.2. Efficiency of the Learning Algorithms

The L∗ algorithm in both the tools (MIDES and LearnLib) failed to learn a complete
model of the LSM. From Section 7, it is evident that the number of membership and
equivalence queries affect the efficiency of the L∗ algorithm. Optimization by exploiting
knowledge about the decision logic of the LSM was necessary to successfully learn a model
of the LSM. While this corresponds to similar observations in other applications [29,55],
it highlights the limitations in the practical applicability of language-based learning to
autonomous driving software.

Though the MPL successfully learned a model of the LSM, more empirical case
studies are needed to explore the limits of state-based learning in this context. The MPL is
specifically developed to learn a modular system with several interacting automata. The
main benefit here is the reduction in search space achieved by exploiting the structure of the
SUL. Unfortunately, due to the structure of the LSM, a monolithic model had to be learned.
However, the modular approach could potentially be helpful in tackling the complexity
that arises in learning larger systems.

9.2.3. States vs. Events

Both L∗ and the MPL require a definition of the events that are relevant to the SUL.
Interestingly, there is a trade-off between the size of the alphabet and the size of the state-
space; a small alphabet leads to a large state-space, and vice versa. This trade-off is thus
important, as the well known state-space explosion is a real practical problem.

The current learning setup resulted in 3072 events, one for each unique valuation of
the input parameter. However, it is possible to use each of the input parameters as an event.
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This would result in a considerably smaller alphabet of only 23 events. Using the 23 events
to learn leads to a huge state-space, however, and both algorithms failed to learn a model.
Multiple interlaced lattice structures are seen in the partial models that were obtained and
these relate to the various combinations of input parameters. The efficiency of the learning
algorithms can be improved by leveraging this trade-off when abstracting the code as seen
in Section 7.2.

9.3. Software Reengineering and Reverse Engineering

Reverse engineering, which involves extracting high level specifications from the
original system can help to understand (ill-documented) legacy systems and black-box
systems, and to reason about theircorrectness. In addition, the development of intelligent
autonomous driving features typically undergoes several design iterations before public
deployment. In such a case, the formal approaches used to guarantee correctness need
to adapt to the software reengineering lifecycle. Reengineering embedded automotive
software is different from software reengineering in other domains due to unique chal-
lenges [64,65]. The active learning approach in this article can help identify unintended
changes between different software implementations and also help to obtain high-level
models from legacy systems, thereby aiding in the reengineering and the reverse engineer-
ing phase, respectively.

10. Conclusions

This article describes an application to interact with and learn formal models of
MATLAB code. MATLAB/Simulink is currently a main engineering tool in the automotive
industry, by automatically learning models of MATLAB code a significant step is taken
towards the industrial adoption of formal methods. This is especially important for the
development of safety-critical systems, like autonomous vehicles.

Using an active automata learning tool MIDES, which interacts with MATLAB, two
different learning algorithms were applied to the code of a lane change module, the LSM,
being developed for autonomous vehicles. One of these, an adaption of L∗, was unable to
learn a model due to memory issues. The other, MPL, being a state-based method designed
for learning a modular model, had more information about the target system, and learned a
model in roughly one minute. To rule out possible implementation issues, another version
of L∗ from the open-source LearnLib toolbox was used to learn a model of the LSM. Even in
this case, L∗ failed to learn a model. Investigation of this negative outcome lead to alphabet
reduction to improve the performance of L∗.

The learned models were validated in four ways:

• The language minimization of the model learned by MPL is very similar to the original
model of the LSM.

• Manual comparison of the learned models to a manually developed model of the LSM
indicated close similarity.

• Simulating the learned automata in SUPREMICA and comparing to the simulation of
the actual code in MATLAB/Simulink showed no obvious discrepancies.

• A known bug in the development code was found also in the learned models.

Though the validation of the learned models were performed informally, taken to-
gether, they make a strong argument for the benefits of active automata learning in an
industrial setting within the automotive domain. Model validation is a well known prob-
lem within the active automata learning community [29,31] and in the future, we would
like to investigate different formal/semi-formal methods to validate the learned models.

Learning a monolithic model is a bottleneck, as it scales badly. Learning modular
models potentially allows us to learn models of larger systems, which is important for
industrial acceptance, so this is clearly future research. Currently, the main obstacle is how
to define the modules and partition the variables among the modules; if not done properly,
the benefits of modular learning are lost.
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Existing learning frameworks, like Tomte [27], could potentially help in the learning
process by providing more efficient ways to abstract and reduce the alphabet. Furthermore,
learning richer structures (but with the same expressive power), like extended finite state
machines [66], is an interesting topic for further research. In addition, to further corroborate
our findings, we plan to study several other software components of an autonomous
vehicle, using the generic interface discussed in this article.

All in all, the goal is to make active automata learning a tool to aid widespread
adoption of formal methods in day to day development within the automotive industry, in
much the same way as MATLAB currently is.
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Abstract: The trajectory tracking issue of unmanned vehicles has attracted much attention recently,
with the rapid development and implementation of sensing, communication, and computing tech-
nologies. This paper proposes a nonlinear model predictive controller (NMPC) for the trajectory
tracking application of an unmanned vehicle (UV). First, a two-degree-of-freedom (2-DOF) kinematics
model of this UV is used to derive the desirable controller with two control variables as forward
velocity and yaw angle. Next, the one-step Euler method is employed to establish the nonlinear
prediction model, then a nonlinear optimization objective function is formulated to minimize the
tracking errors of forward velocity and yaw angle from a preset time-varying reference road. Finally,
the effectiveness of the proposed NMPC scheme is assessed under two different driving scenarios
via MATLAB simulations. The simulation results confirm that the proposed NMPC scheme reveals
better control accuracy and computational efficiency than the standard MPC controller under two
different prescribed roads. Moreover, an outdoor field test is conducted to verify the performance of
the proposed NMPC scheme, and the results show that the proposed NMPC can be applied to the
real vehicle and can improve the tracking accuracy and the driving stability of trajectory tracking.

Keywords: unmanned vehicle; nonlinear model prediction controller; trajectory tracking; outdoor
field test

1. Introduction

Currently, the driverless technology of unmanned vehicles (UVs) has attracted more
and more attention from industrial and academic circles because the efficient control
schemes of UVs have great potential in guaranteeing vehicle safety performance and traffic
efficiency [1,2]. Trajectory tracking control [3–5] is a key link connecting environment
perception and motion control for the implementation of UVs, and efficient trajectory
tracking can improve the safety performances and ride comforts of UVs.

In the current research on the trajectory tracking problems, many intelligent optimiza-
tion algorithms have been widely proposed for the trajectory tracking of UVs, such as the
ant colony algorithm [6], particle swarm optimization algorithm [7], genetic algorithm [8],
graphic algorithm [9,10], etc. Although these algorithms can track the prescribed path, they
mainly adopt the infinite iteration method that requires a large amount of computation to
obtain the optimal solutions; therefore, the real-time performance and tracking accuracy of
those methods may not be guaranteed. Herein, as a popular iterative optimized control
approach, model predictive control (MPC) [11,12] can simultaneously incorporate system
state constraints and control input constraints into the controller design process, i.e., at each
sample time, the future system inputs and outputs can be obtained by updating the control
plant and can be optimized via an appropriate optimization algorithm in the predictive
horizon, wherein the system constraints are easily put in an explicit form.
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As reported in the literature [13–20], the MPC method has been widely employed in
the trajectory tracking controller development for different types of UVs. For instance,
in the literature [18], a control plant integrating the kinematic motions and the dynamic
behaviors of an automated guided vehicle was established, and an MPC-based trajectory
tracking controller was then designed. In [19], an MPC method was presented to control
the forward steering of autonomous vehicles by continuously linearizing nonlinear vehicle
models. In addition, a direct data-driven MPC method has been proposed in [20] to relax
the laborious model identification procedure. A linear-parameter-varying MPC approach
was proposed in [21] for UVs, and the control scheme was validated through simulation
and experiment investigations. Similarly, in order to estimate the driver intentions and
the underlying behaviors, an MPC approach integrating with recurrent neural network
and memory cell was proposed for an unmanned vehicle [22], and the simulation results
verified the improvements in trajectory tracking performances for this vehicle.

In short, most of the early literature [18–20,22] mainly focuses on the simulation
investigations on trajectory tracking problems, and the real-platform or field test study is
lacking. Moreover, due to the MPC execution load and extra modeling errors, it is hard to
linearize the original (nonlinear) system around the current working point and then design
an effective model-based predictive controller.

Fortunately, a nonlinear model predictive control (NMPC) approach has been exten-
sively adopted in the practical path planning and trajectory tracking problem due to its
inherent profits to deal with the nonlinear input constraints aiming at speeding up the
online computation. In [23], an NMPC approach was presented to address the safety
issues regarding collision avoidance and lateral stability of unmanned ground vehicles
in high-speed conditions. Further, a trajectory tracking NMPC strategy was proposed
in [24] to address the explicit state and input constraints for autonomous surface craft,
and the real-time implementation of the NMPC was validated through the experimental
results. In [25], a distributed control scheme was provided to achieve the accurate tracking
control of the autonomous underwater vehicle motion by using NMPC techniques. It can
be concluded from these two studies that the NMPC algorithm is very appropriate for
solving the nonlinear optimization problem with lower computational cost. Besides, it is
inevitably encountered with the regular and irregular roads in the real world. With the
NMPC method, the computational efficiency and control accuracy for a nonlinear control
system can be guaranteed [26].

Therefore, inspired by the literature mentioned above, this paper proposes a practical
NMPC controller design for the trajectory tracking application of a UV considering the
nonlinear road trajectory. The main contributions of this work are summarized as:

(1) A novel NMPC controller is proposed to achieve the accurate trajectory tracking of
the UV under different prescribed roads, wherein the one-step Euler method is used
to establish the nonlinear prediction model. As model predictive control is an iterative
process, the Euler method has the advantages of a wide range of numerical solutions,
a simple form that is easy to calculate, thus the tracking errors of forward velocity
and yaw angle are minimized through a nonlinear optimization method;

(2) MATLAB simulations are carried out to verify the control performances of the pro-
posed NMPC controller under two different driving scenarios, and the results show
that the strategy can deal with the nonlinear road trajectory well, and can improve
the tracking accuracy and the driving stability;

(3) A simple test platform consisting of a scaled-down real racing car, sensors, microcon-
troller, and host computer is built up to verify the effectiveness of the designed NMPC
controller in UV trajectory tracking applications.

The rest of this article is arranged as follows. The UV’s kinematic model formulation
is described in Section 2. Next, the design procedure of this expected NMPC controller is
provided in Section 3. Then, in order to verify the control performance of the presented
NMPC controller, both simulation and field test verifications are orderly conducted and
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discussed in Sections 4 and 5. Finally, the conclusions and perspectives of this paper are
presented in Section 6.

2. The Unmanned Vehicle’s Kinematics Model

Here, a kinematic model of UV with two degree-of-freedoms (2-DOF) is adopted
to perform the controller synthesis [21]. To mimic a real unmanned vehicle’s kinematic
behaviors, it is assumed that this UV is driven by a servo motor installed in a rear wheel,
and is steered by a servo motor installed in a front wheel. By ignoring the side-slip angle
when making the front-wheel steering operation, as well as considering the longitudinal
speed to be a constant value, one can construct the 2-DOF kinematic model as shown in
Figure 1, in which point A(Xf, Yf) and B(Xr, Yr) stand for the center positions of the front
axle and rear axle, and the other symbols used in this UV kinematic model are listed in
Table 1.

Figure 1. The 2-DOF kinematic model of UV.

Table 1. The used symbols and parameters of UV.

Symbol Description Symbol Description

A(Xf, Yf) The center of the front axle l The distance from point A to B
B(Xr, Yr) The center of the rear axle ω The yaw rate of UV

δ f The deflection angle of the front axle ϕ The yaw angle of UV
vr The forward speed of point B

In terms of the kinematic relationships of this UV, vr can be expressed by

vr =
.

Xr cos ϕ +
.

Yr sin ϕ, (1)

The kinematic constraints between the rear- and front- axles of this UV are easily obtained

.
Xr sin ϕ =

.
Yr cos ϕ, (2)

.
Xf sin

(
ϕ + δ f

)
=

.
Yf cos

(
ϕ + δ f

)
, (3)

By integrating Equations (1) and (2), one obtains{ .
Xr = vr cos ϕ
.

Yr = vr sin ϕ
, (4)
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By further transformation, we have the geometric relationship between points A and
B satisfying {

Xf = Xr + l cos ϕ
Yf = Yr + l cos ϕ

, (5)

For simplicity, let ω denote the derivative of ϕ, and by substituting Equation (4) into
the derivative of Equation (5), we have{ .

Xf = vr cos ϕ − l
.
ϕ sin ϕ

.
Yr = vr sin ϕ + l

.
ϕ cos ϕ

. (6)

By further integrating Equation (6) with Equation (3), we obtain

.
ϕ= ω =

vr

l
tan δ f , (7)

The expressions for R and δ f can be obtained as follows:{
R = vr

ω

δ f = arctan
(

l
R

) , (8)

By combining Equations (4) and (7), we have⎡⎢⎣
.

Xr.
Yr.
ϕ

⎤⎥⎦ =

⎡⎣ cos ϕ
sin ϕ

tan δ f /l

⎤⎦vr, (9)

Thus, the state-space form of the kinematic Equation for this UV can be formulated as⎡⎢⎣
.

Xr.
Yr.
ϕ

⎤⎥⎦ =

⎡⎣ cos ϕ 0
sin ϕ 0

0 1

⎤⎦[ vr
ω

]
. (10)

Define ξkout =
[

Xr Yr ϕ
]T as the system output vector and ukin =

[
vr ω

]T as
the control input vector, then Equation (10) is further rewritten as

.
ξkout =

⎡⎣ cos ϕ 0
sin ϕ 0

0 1

⎤⎦ukin. (11)

It should be noted that the kinematics model can represent the relationship between
the vehicle’s state of motion and the control input, thus the model predictive controller can
achieve the purpose of predetermined control. Now, the kinematics model of the UV is
completed, and the proposed controller design will be illustrated in the following.

3. Design of Nonlinear Model Predictive Control

As a popular iterative optimization method, model predictive control has been ex-
tensively applied to the trajectory tracking and path-following control of UVs in recent
years. For a common MPC, it consists predictive model, rolling optimization, and feedback
correction. It should be noticed that a predictive model can predict the future system inputs
and outputs according to the current system states, rolling optimization can generate the
optimized control sequence, and feedback correction is usually to feed the system states at a
certain current time back to the control system as the new input to perform the optimization
calculation at the next iteration. Particularly, the NMPC can actually handle the linear and
nonlinear trajectory tracking problems with the upper-lower limits, herein the one-step
Euler method is used to derive the nonlinear model prediction controller with expecting
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to enhance the tracking accuracy and rate of the UV. The proposed NMPC framework is
shown in Figure 2.

Figure 2. Block diagram of proposed NMPC controller.

3.1. Establishment of Nonlinear Prediction Model

To facilitate the expected nonlinear prediction model establishment for this UV, Equa-
tion (11) can be reconfigured as a nonlinear function expression as{ .

x = f (x(t), u(t))
y = g(x(t), u(t))

. (12)

Define x = [ϕ, Xr, Yr]
T as the state vector, i.e., ξkout, u(t) as the control input vector,

i.e., ukin, thus we can have

f (x(t), u(t)) =

⎡⎣ ω
vr cos ϕ
vr sin ϕ

⎤⎦, (13)

g(x(t), u(t)) =
[

0 1 0
0 0 1

]
x(t). (14)

In order to represent the NMPC controller design as a convex optimization problem,
the discretization form of Equation (12) can be derived as{

x(k + 1) = F(x(k), x(k))
y(k) = G(x(k))

. (15)

where F(x(k), x(k)) and G(x(k)) represent the discretized form of f (x(t), u(t)), and g(x(t), u(t)).
Furthermore, by introducing the sampling time T, the one-step Euler method is

employed to describe the prediction model of Equation (15) as follows⎧⎪⎪⎨⎪⎪⎩
x(k + 1) = x(k) +

⎡⎣ ω(k)
vr(k) cos(ϕ(k))
vr(k) sin(ϕ(k))

⎤⎦T = x(k) + f (x(k), u(k))T

y(k) = g(x(k), u(k))

. (16)

Remark 1. If the sampling time T is too short, the calculation burden will increase and the tracking
accuracy of the control system will be affected. In contrast, if T is too large, a large cumulative error
will inevitably be encountered in the control process, which will impose negative impacts on the
dynamical performances of the control system. According to the Shannon sampling theory and the
control periods of the actuators, the sample time is selected as T = 0.02 s in this paper.
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For the control input u(k), it is necessary to introduce its physical constraints, which is
expressed as follows:

umin(k) ≤ u(k) ≤ umax(k), (17)

Note that yre f is the reference road trajectory, Δymin and Δymax represent for the
minimal and maximal errors of the deviation between y(k) and yre f , both of them can be
adjusted in the process of rolling optimization. The constraint relationship between them is
expressed as follows:

Δymin ≤ y − yre f ≤ Δymax. (18)

To make a clear distinguishment, Np and Nc are used to denote the control outputs in
the prediction domain and the control domain, and the control outputs of Equation (16) in
Np are expressed by

y(k + 1) = g(x(k + 1), u(k + 1))
y(k + 2) = g(x(k + 2), u(k + 2))

...
y(k + Nc) = g(x(k + Nc), u(k + Nc))

...
y
(
k + Np

)
= g

(
x
(
k + Np

)
, u
(
k + Np

))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (19)

where the condition of Np and Nc should satisfy Np ≥ Nc. In this paper, we set the control
horizon equal to the prediction horizon, Np = Nc, in all simulations and experiments in
order to predict future UV states as accurately as possible.

Additionally, the system outputs y(k) and the control inputs u(k) can be given by

Y(k + 1) =
[
y(k + 1), y(k + 2), · · · , y

(
k + Np

)]T , (20)

U(k) = [u(k + 1), u(k + 2), · · · , u(k + Nc)]
T . (21)

The main objective of our expected NMPC design in Np is to minimize the tracking
errors between the control output sequence and the reference trajectory sequence. To that
end, the prescribed reference trajectory can be described as:

Yre f (k + 1) =
[
yre f (k + 1), yre f (k + 2), · · · , yre f

(
k + Np

)]T
. (22)

Herein, our main goal is to minimize the tracking error in the prediction time domain
Np, which is expressed by

min‖Y(k + 1)− Yre f (k + 1)‖. (23)

3.2. Formulation of Objective Function

In order to find out the minimized solutions to the tracking error system described in
(23), it is necessary to further transform (23) into a linear-quadratic-regulator (LQR) control
problem. To this end, the weighting factors Q and R are introduced and the following LQR
optimization problem can be formulated, which is expressed by

Jcost(k) = ∑
Np
i=1

{
y(k + i)− yre f (k + i)

}T
Q
[
y(k + i)− yre f (k + i)

]
+

∑Nc
i=1{u(k + i)}TRu(k + i).

(24)

where Jcost(k) is the optimized objective function, i is the prediction step, Q is the weighting
matrix that reveals the system’s ability to follow up the reference road trajectory, R is the
weighting matrix that manifests the stability performance of the trajectory tracking control
problem, at time step k.

194



Electronics 2022, 11, 1110

Therefore, the optimization formulation of the desirable NMPC controller can be
expressed as

min Jcost(k). (25)

Additionally, the physical constraints of the control input u(k) described in (16) and
(17) should be considered to find out the optimized solutions of (25). Finally, the nonlinear
optimization problem of the NMPC controller design can be formulated as

x(k + i) = x(k + i − 1) + f (x(k + i − 1))T
+u(k + i − 1),

(26)

y(k + i − 1) = g(x(k + i − 1), u(k + i − 1)), (27)

umin(k) ≤ u(k + i) ≤ umax(k), (28)

Δymin ≤ y(k + i)− yre f (k + i) ≤ Δymax. (29)

Practically, the optimal control sequence in Nc at the sample time k can be obtained as

u(k + i) = [u(k + 1), u(k + 2), · · · u(k + Nc)]. (30)

4. Simulation Verification

Here, comparative simulations have been performed under MATLAB software with
the purpose of assessing the two MPC controllers: namely the traditional model predictive
controller (TMPC) [27] and the proposed NMPC. The simulations are evaluated on this
2-DOF UV in the case of single-circle and twin-circle trajectory scenarios. Note that three
indexes x, y, and ϕ are used to demonstrate the performances of the two MPC controllers.

4.1. Simulations under a Straight-Line Trajectory

First, we expect this UV to move on a preset straight-line(ST) trajectory from the starting
point (0, 0) at a longitudinal velocity v = 1 m/s. The mathematical expression of the reference
straight trajectory is Yre f = 3, and the simulation time was set as 5 s. Figure 3 displays the
tracking response curves of this UV from the TMPC and the proposed NMPC controllers.

Figure 3. The simulation tracking results under the ST.

As shown in Figure 4, the three motion parameters x, y, and ϕ of this UV followed overall
smooth trends for the two controllers. Meanwhile, the three motion parameters x, y, and ϕ
converged to zero at about 2.5 s for our proposed NMPC and about 4.5 s for the TMPC.
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Figure 4. The tracking errors of x, y and ϕ under the ST.

Furthermore, the root mean square error (RMSE) value for the tracking errors of the
three states is selected to quantitatively evaluate the control performance of the two MPC
controllers, and based on the literature [28], the RMSE is defined by

χRMSE =
‖χj − χre f ,j‖√

n
=

√√√√ 1
n

n

∑
j=1

(
χj − χre f ,j

)2
, j = 1 . . . n. (31)

wherein χ is an n-dimensional state vector, and χj is the value of j-th element in χ, χre f ,j is
the value of j-th element in the reference road trajectory, n is the length of χ.

The results in Table 2 show that the RMSE values of x, y, and ϕ for the proposed
NMPC were reduced by about 51.14%, 1.35%, and 18.16% compared to those of the TMPC.

Table 2. The RMSE comparisons of the tracking errors of x, y, and ϕ under the ST.

Type x y ϕ

TMPC 0.559 1.11 0.8264
NMPC 0.2731 (↓51.14%) 1.095 (↓1.35%) 0.6763 (↓18.16%)

It can be seen from Figure 5 that under the ST condition, the change of the control
input for the proposed NMPC is smoother than that of TMPC.
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Figure 5. The control input of the TMPC and NMPC controllers under the ST.

4.2. Simulations under a Single-Circle Trajectory

A regular single-circle trajectory (SCT) road with a radius of 6 m is chosen as the
reference trajectory road, and the corresponding simulations are conducted in this scenario.
As shown in Figure 6, the simulation results generated by the TMPC and designed NMPC
controller can well follow the prescribed reference road from the starting point (−10, 0).

Figure 6. The simulation tracking results under the SCT.

Additionally, to examine the tracking accuracy of the two MPC controllers against
the reference trajectory road, the tracking errors of x, y, and ϕ for the UV under the SCT
scenario are provided in Figure 7. It is obvious that the tracking errors of these three states
of x, y, and ϕ present a flatter trend with converging to zero. Moreover, in comparison with
the TMPC controller, the tracking errors of x, y, and ϕ for the proposed NMPC controller
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have obviously fewer fluctuations on a whole and can reach a relative stability state in a
shorter time. Particularly, the tracking errors of x, y, and ϕ can converge to zero at about
2 s for the NMPC controller, and at 6 s for the TMPC controller.

Figure 7. The tracking errors of x, y, and ϕ under the SCT.

Herein, Table 3 lists the RMSE comparisons of the tracking errors of x, y, and ϕ
obtained by the TMPC and NMPC controllers under the SCT.

Table 3. The RMSE comparisons of the tracking errors of x, y, and ϕ under the SCT.

Type x y ϕ

TMPC 0.2208 0.3734 0.2515
NMPC 0.1210 (↓45.20%) 0.2284 (↓40.44%) 0.1285 (↓48.95%)

It can be seen from Figure 8 that the oscillation of the control input vr for the NMPC
is much smaller than that of the TMPC under the SCT condition. Meanwhile, the control
input ω of the NMPC can reach the target value faster.

Figure 8. The control input of the TMPC and NMPC controllers under the SCT.
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4.3. Simulations under a Twin-Circle Trajectory

To further evaluate the tracking performance of the NMPC controller, a twin-circle
trajectory (TCT) road is used to conduct the simulations. The related tracking response
curves are presented in Figure 9. It can be seen that both the TMPC and NMPC controllers
can track the preset TCT starting from point (−10, −0.2) closely. The UV is first running
counterclockwise and then clockwise, after the lane change, our designed NMPC controller
can still track another circular trajectory road with relatively higher accuracy. Furthermore,
Figure 10 shows the tracking errors of x, y, and ϕ for the two MPC controllers against the
reference trajectory. It is obvious that the tracking errors of x, y, and ϕ are relatively flat
in this TCT scenario. In particular, the three states of x, y, and ϕ can converge to zero at
around 2 s for our presented NMPC controller, and 6 s for the TMPC controller.

Figure 9. The simulation tracking results under the TCT.

Figure 10. The tracking errors of x, y, and ϕ under the TCT.

Table 4 summarizes the RMSE comparisons of the three states x, y, and ϕ for the two
MPC controllers under the TCT. Compared with the TMPC controller, the RMSE values of
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x, y, and ϕ for the presented NMPC can be reduced by about 65.35%, 54.61%, and 71.10%,
respectively.

Table 4. The RMSE comparisons of the tracking errors of x, y, and ϕ under the TCT.

Type x y ϕ

TMPC 0.1622 0.2743 0.1848
NMPC 0.0562 (↓65.35%) 0.1245 (↓54.61%) 0.0543 (↓71.10%)

It can be seen from Figure 11 that the control input vr for both MPC controllers have
oscillations, but the oscillation amplitude of our proposed NMPC is significantly smaller
than that of the TMPC. At the same time, the control input ω of the NMPC shows a faster
response speed.

Figure 11. The control input of the TMPC and NMPC controllers under the TCT.

In general, our proposed NMPC controller exhibits better performance specifically
for shorter tracking time and smaller fluctuation errors, in comparison with the TMPC
controller. Additionally, according to the quantitative analysis of the tracking indexes
as x, y, and ϕ, it is easily observed that our proposed NMPC controller has significant
improvements in the tracking performance over the TMPC controller, which illustrates that
the proposed NMPC has better control effects under three different driving scenarios.

5. Field Test Verification

In this section, an outdoor field test platform is constructed by ourselves in order to
verify the effectiveness of those two MPC controllers. To facilitate the descriptions of this
test platform, Figure 12 displays the schematic diagram of the experimental setup, and the
outdoor field test photograph of this UV on the different prescribed road trajectories are
provided in Figure 13. Different from the simulation verifications in Section 4, the field
tests are conducted under two different driving scenarios.
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Figure 12. Schematic diagram of the experiment setup.

Figure 13. Outdoor field test setup.

Herein, a scaled unmanned vehicle—a BT-4 racing car, is used as the control plant, and
an Arduino board (MEGA2560R3) is adopted to develop our proposed NMPC controller.
Moreover, there are two DC (direct-current) motors in this BT-4 vehicle, one is used for
steering, and another one is used to drive this UV at the rear wheel. Both DC motors are
rooted in the Arduino (MEGA2560R3) board, using 54 digital I/O pins and 6-bit pulse
width modulation (PWM) drivers. Because of the limitations of this self-established outdoor
field test setup, only the measured points of (x, y) at the ground coordinates are collected
to draw the tracking trajectories for this BT-4 vehicle, which are further utilized to compare
and validate the tracking performances of the two different MPC controllers.

5.1. Test on Irregular Road

For the practical driving scenario, the irregular trajectory road (ITR) is often encoun-
tered. Thus, the outdoor field tests are conducted on a practical ITR, and the tracking
response curves of this UV are shown in Figure 14. In which, the solid green line denotes
the reference trajectory road, the blue-dotted and the red-dashed lines denote the tracking
response curves generated by the TMPC and NMPC controllers, respectively. Moreover,
Figure 15 reveals the tracking errors of x and y for the two MPC controllers regarding the
reference trajectory road. It should be noticed that this UV runs starting from the point
x0 =

[
285 280

]
at v = 1 m/s under the ITR.
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Figure 14. The tracking response curves of the two MPC controllers under the ITR.

Figure 15. The tracking errors of x and y for the two MPC controllers under the ITR.

It is obvious from Figure 14 that the TMPC and proposed NMPC controller can track
the ITR as possible as closely. Specifically, the blue-dashed line (denotes the tracking trajec-
tory obtained by the NMPC controller) is much closer to the green-solid line (the reference
trajectory) in comparison with the red-dashed line (denotes the tracking trajectory obtained
by the TMPC controller). Furthermore, it is observed from Figure 15 that the tracking
errors of x and y generated by the two MPC controllers could gradually converge to zero
states, and the tracking error curves by the NMPC controller present a flatter appearance
compared to the corresponding tracking curves by the TMPC controller. Particularly, the
tracking error ranged from −10 cm to 15 cm for the NMPC controller and −15 cm to 35 cm
for the TMPC controller in the X-direction. Additionally, in the Y-direction, the tracking
errors of x and y are varied from 0 to 25 cm for the NMPC controller, and −20 cm to 50 cm
for the TMPC controller, respectively.

Similar to the analysis of simulation verifications in Section 4, we herein use the RMSE
comparisons of the tracking errors of x and y to evaluate the control performance of the
designed controllers, which is presented in Table 5. In addition to this, the histogram
comparisons of the tracking errors of x and y are also provided in Figure 16 to make
a quantitative improvement of each tracking state for the TMPC and proposed NMPC
controller under the ITR and the prescribed reference trajectory. Compared to the tracking
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performance of the TMPC controller, the UV using the NMPC controller can reduce its
RMSE values of x and y by about 54.72% and 48.65%, respectively.

Table 5. The RMSE of the tracking errors of x, y under the single-circle road.

Type x y

TMPC 1.5800 2.0039
NMPC 0.7155 (↓54.72%) 1.0029 (↓48.65%)

Figure 16. The histogram comparisons of two MPC controllers under the ITR.

5.2. Test on Double-Circle Road

Except for the irregular road trajectory, it is very necessary to validate the control
performances of the proposed NMPC controller under a general double-circle trajectory
road (DCTR). An outdoor field test is performed under a prescribed DCTR with a radius of
2.5 m, which starts from x0 =

[
250 50

]
with v = 1 m/s. Figure 17 displays the tracking

response curves obtained by the TMPC and NMPC controllers, and Figure 18 plots the tracking
error curves of x and y for the two MPC controllers against the reference trajectory road.

Figure 17. The tracking response curves of the two MPC controllers under the DCTR.
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Figure 18. The tracking errors of x and y for the two MPC controllers under DCTR.

From Figure 17, it is easily seen that the two MPC controllers can nearly track the
prescribed DCTR, and the tracking curves of the NMPC controller seem closer to the
reference trajectory road. By a further observation from Figure 18, the tracking errors of x
and y generated by the two MPC controllers are flat on a whole, yet the tracking errors by
the NMPC controller can yield a smoother tendency and can enter into a relatively stable
state at a faster rate compared to the TMPC controller. Besides, the tracking error of x is
varied from −10 to 15 for the NMPC controller, and from −30 cm to 40 cm for the TMPC
controller in the X-direction. Moreover, the tracking error of y is ranged from −20 cm to
10 cm for the NMPC controller and from −40 cm to 30 cm for the TMPC controller in the
Y-direction.

Similarly, the RMSE comparisons of the tracking errors of x and y under this DCTR
are quantitatively compared and provided in Table 6, and the histogram comparisons for
the tracking errors of x and y are provided in Figure 16 to assess the control performance of
the designed controller. It is clear from Table 6 and Figure 19 that the RMSE values of the
tracking errors x and y for the NMPC controller are reduced by about 56.63% and 48.73%,
respectively, in comparison with those of the TMPC controller, which further illustrates
that the NMPC controller has better control effect under the DCTR scenario.

Table 6. The RMSE comparisons of the tracking errors of x and y under the DCTR.

Type x y

TMPC 2.7814 2.8215
NMPC 1.2061 (↓56.63%) 1.4465 (↓48.73%)
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Figure 19. The histogram comparisons of two MPC controllers under the DCTR.

6. Conclusions

In this paper, a practical NMPC design method is proposed to achieve the accurate
trajectory tracking application of a scaled UV. This desirable controller is developed based
on a 2-DOF kinematics model of the UV, and in the framework of a standard MPC, the
one-step Euler method is utilized to construct the nonlinear prediction model, then a
nonlinear optimization objective function is formulated to minimize the tracking errors of
forward velocity and yaw angle from a time-varying preset reference road. Finally, both the
comparative simulations and the outdoor field tests are carried out to confirm the superior
performances of the designed NMPC controller against the TMPC controller for this UV.
The comparison of results demonstrates that the improvements of the tracking indexes
x, y, and ϕ for the UV with the presented NMPC controller are at least 45%, 1.35%, and
18.16%, respectively. Moreover, the field outdoor test results show that the improvements
of tracking indexes x and y for the UV with the proposed NMPC controller are about 54%
and 48%, respectively, compared with those with the TMPC controller. On a whole, it can
be concluded that the NMPC controller outperforms better control performances regarding
the TMPC controller.

Future study will focus on the trajectory tracking controller design of this UV con-
sidering the kinematics and dynamics properties simultaneously, and the experimental
validation of the proposed controller in a real-time outdoor field test platform.
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Abstract: In this paper, the problem of vehicle guidance by means of an external leader is described.
The objective is to navigate a four-wheeled vehicle through unstructured environments, character-
ized by the lack of availability of typical guidance infrastructure like lane markings or HD maps.
The trajectory-following approach is based on an estimate of the leader’s path. For that, position
measurements are stored over time with respect to an inertial frame. A new strategy is proposed to
rate the significance of position measurements and ensure that a certain threshold of stored samples
is not exceeded. Having an estimate of the leader path is essential to prevent the cutting-corner
phenomenon and for exact path following in general. A spline-approximation technique is applied
to obtain a smooth reference path for the underlying lateral and longitudinal motion controllers.
For longitudinal tracking, a constant time-headway policy was implemented, to follow the leader
with a constant time gap along the estimated path. The algorithm was first developed and tested
in a simulation framework and then deployed in a demonstrator vehicle for validation under real
operating conditions. The presented experimental results were achieved using only on-board sensors
of the demonstrator vehicle, while high-accuracy differential GPS-based position measurements serve
as the ground truth data for visualization.

Keywords: vehicle following; path following; path tracking; splines; spline approximation

1. Introduction

Automated-driving solutions and ADAS (Advanced Driver Assistance System) func-
tions promise many advantages for driving comfort and safety, as a result of a reduced
need for driver attention. While fully autonomous driving in the sense of SAE Level-5 [1]
is far away in the distant future, many manufacturers are already bringing ADAS solu-
tions such as emergency braking, adaptive cruise control, or lane keeping to their vehicles,
due to the obvious safety and comfort benefits. However, there are other use cases for
automated driving, which are not typically considered in everyday-driving scenarios. One
such use case is the navigation of a vehicle by means of an external leader through an
unstructured environment, such as a construction site, or in a convoying application, where
trucks need to transfer loads several times. For an agriculture use case refer to [2]. In such
environments, infrastructure elements like lane markings, vehicle-to-infrastructure com-
munication or HD maps are not available to serve as a source for the automated vehicle’s
reference path. Lane markings also often exhibit the drawback of poor visibility due to
wear and tear, occlusion by other vehicles, or lighting and weather conditions that result in
an intermittent perception.

1.1. Problem Statement

The starting point is a convoy of two vehicles, where the preceding leader vehicle is
manually driven, and its driven path defines the reference path for the automated follower
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vehicle. It is the leader’s responsibility to avoid obstacles and take a collision-free path.
Consequently, the follower’s task is to track the leader’s path as close as possible, to keep
a safe distance to obstacles. The follower’s longitudinal motion has to be controlled such
that a safe distance is kept from the leader. For the special case of constant leader speed, a
constant distance has to be maintained. For the practical implementation, two additional
requirements need to be satisfied:

(R1) The vehicle-following system must not rely on vehicle-to-vehicle communication.
Consequently, it was decided to only rely on on-board sensors for leader observations
as well as follower-state estimation.

(R2) The vehicle-following system must not rely on GPS to avoid narrowing the driving
function’s operational-design domain to environments where undisturbed communi-
cation to GPS satellites can be guaranteed.

1.2. Literature Review

The problem statement of tracking a leader vehicle’s trajectory dates back to at least
1998. In the framework of platooning, [3] discusses the drawbacks of direct-vehicle follow-
ing, i.e., following the current leader position. Using this approach, the path between the
follower and leader needs to be interpolated, causing the autonomous follower vehicle to
deviate from the leader vehicle’s path. Considering e.g., a straight-line interpolation [4],
this effect scales with the distance from the leader vehicle. To overcome this issue, the
authors propose an algorithm that makes use of the time history of stored leader positions.
Results from field tests on a circular path, entered via a clothoid transition curve, showed a
reduction of the maximum lateral deviation from approximately 1.2 m to 0.8 m, by applying
the proposed algorithm. Unfortunately, a comparison of the leader/follower path as well as
the exact path-tracking error model used for the implementation are not presented, making
interpretation of and benchmarks against the results difficult.

A military convoying scenario in [5,6] motivates the goal of following a leader vehicle’s
trajectory with large inter-vehicle spacing without cutting corners. The authors propose
following the leader vehicle by a constant time delay utilizing the stored trajectory of the
leader obtained from on-board sensors consisting of a camera, a heading gyroscope, and
wheel encoders. To deal with noisy measurements, cubic splines are proposed, motivated by
their property of minimum curvature. The actual fitted curve is constructed as a weighted
sum of identical splines and introduces parameters for the spline width, the separation
between each spline, and the number of splines. Unfortunately, the strategy to obtain the
leader trajectory in the first place is not covered in [5,6].

The issue of measurement dropouts that is often experienced with vision sensors is
addressed in [7]. The authors apply a particle filter, utilizing observations from a vision
sensor and the odometry data of the follower/leader pair, to estimate the leader’s trajectory.
A simple trajectory-reconstruction approach is presented in [8], basically implementing
a first-in–first-out buffer where the oldest measurement is removed from the list of mea-
surements before the current measurement is added. Unfortunately, both works [7,8] only
present results obtained from simulations lacking experimental data.

With a focus on lateral-string stability in platooning applications, [9] also proposes
a path-following approach over the direct-vehicle following approach, to avoid cutting
corners. To estimate the path of the leader vehicle, position measurements are stored over
time considering the following vehicle’s moving reference frame. The actual reference path
for the underlying lateral controller is constructed via polynomial fitting. A third order
polynomial was chosen as this seemed “to be a good compromise between having enough
degree of freedom to describe the actual path and filtering out the measurement noise” [9]
(p. 61). In contrast to the works discussed above, the process to obtain the leader path is
presented in quite a lot of detail. The stored leader measurements are maintained based on
a first-in–first-out method similar to [8].

A sophisticated approach to generate a continuous-curvature trajectory using Sequen-
tial Quadratic Programming (SQP) is presented in [10]. The vehicle’s maximum curvature,
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limits of the lateral and longitudinal acceleration, and the vehicle’s maximum steering
rate are considered in the optimization problem. The generated trajectory is represented
as a sequence of clothoid arcs, with cartesian coordinates that are defined by Fresnel in-
tegrals. Unfortunately, Fresnel integrals cannot be solved analytically, which complicates
the calculation of path-tracking errors. Although there are approximations for the Fresnel
integrals [11], we decided to come up with another approach, also due to the fact that this
topic was not addressed in [10].

An “integrated longitudinal and lateral control framework in vehicle following sce-
narios” is presented in [12]. In contrast to the work at hand, they use a radar sensor instead
of a camera sensor to measure the inter-vehicle distance, velocity difference, and azimuth
of the leader vehicle. Furthermore, the leader’s velocity and yaw rate buffered at the host
vehicle are obtained via vehicle-to-vehicle (V2V) communication. The leader path is then
calculated backwards iteratively and tracked by a model-predictive controller (MPC).

There are further publications related to vehicle following. In contrast to the work at
hand, they and the above discussed works differ at least in one of these points:

• They focus on the design of lateral and/or longitudinal controllers [5,12–15].
• They rely on V2V communication [12–16] or GPS [6].
• They lack experimental results [7,8,13–15].
• They focus on the design of a camera system for leader tracking [2], handling intermit-

tent vision observations [7], or state-estimation techniques [16].

With this work, mainly two shortcomings observed in the literature are addressed
with the following contributions:

1. A detailed explanation to obtain an estimate of the leader path from the on-board
measurements, which are stored in a buffer, is given. To support the process of
obtaining and maintaining the stored leader path, a new strategy to consider the
importance of each measured sample for the estimated path is proposed. (Section 2.1)

2. To handle noisy position measurements, we propose smoothing the estimated path
resulting from (1) via a computationally inexpensive spline-approximation approach.
(Section 2.2)

In this respect, the most relevant existing works are [8,9,12] regarding contribution (1)
and [9,10] regarding contribution (2).

1.3. Structure of the Article

The overall system architecture of the vehicle-following system is presented in Section 2.
The main components are covered in detail in Section 2.1 (path estimation) and Section 2.2
(path smoothing). The control architecture is presented in Section 2.3. Section 3 deals
with vehicle deployment of the proposed vehicle-following system, starting with the
demonstrator vehicle in Section 3.1, state estimation in Section 3.2, leader-vehicle selection
in Section 3.3, and experimental results in Section 3.4. The conclusion and outlook are given
in Section 4.

2. System Architecture and Design

The overall system architecture of the developed vehicle-following system is shown in
Figure 1. The Object Sensor attached to the follower vehicle is assumed to provide relative
position and speed measurements (Δsx, Δsy) and (Δvx, Δvy) of the leader vehicle. The
Planner component estimates the leader path and applies a spline-approximation algorithm
to achieve a certain geometric continuity. Based on the state-of-the-art approach outlined in
Section 1.2, the estimate of the leader path is obtained by storing the position measurements
over time. Additionally, the relevance of each position measurement, with respect to the
estimated leader path, is taken into account. Since the position measurements are in relation
to the object sensor’s frame, the motion of the follower needs to be taken into account. We
decided to state the leader path with respect to an inertial frame, making it necessary to
estimate the follower’s position and orientation. As indicated by the State Estimation block
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and in compliance with the requirements from Section 1.1, position estimates (x̂, ŷ) and
orientation estimate ψ̂ as well as estimates of lateral and longitudinal velocity v̂x and v̂y
were obtained from the on-board vehicle measurements speed v, yaw rate ψ̇, and steering
angle δ.

Path
estimation

&
smoothing

Planner

Lat.
control

Lon.
control

Follower

Object
Sensor

State
Estimation

[
Δsx
Δsy

]
,
[

Δvx
Δvy

]
[

x̂
ŷ

]
, ψ̂,

[
v̂x
v̂y

]
ref.
path

s, vset

δset

brake/
throttle

v, ψ̇, δ

Figure 1. System architecture of the developed vehicle-following system. Shaded components are
addressed in this paper, while the main contribution is regarding the Planner component.

The estimated leader path then servers as the reference path for the lateral and lon-
gitudinal controller. In addition to the control law, the lateral control component also
implements the related error model, which calculates the control errors based on the ref-
erence path and the current vehicle position and orientation. The longitudinal controller
maintains a constant time-gap to the leader by regulating the follower’s speed v and the
inter-vehicle distance s. Since the follower aims to track the estimated path as close as
possible, it is reasonable to determine the distance s to the leader along the path. For that, a
Frenet transformation is applied to the follower position with respect to the reference path.

The corresponding control signals, in terms of desired steering angle δset and pedal
actuations, are then passed to the vehicle. For further details on the vehicle interfaces refer
to Section 3.1.

2.1. Leader-Path Estimation

This section details the procedure to obtain the leader path from a series of position
measurements. For that, the first step is to convert the position measurements from the
sensor frame to an inertial frame, considering the motion of the follower vehicle. Given
a follower position (x, y) and heading ψ, this is achieved by a rotation and translation
according to

p =

[
x
y

]
+

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

][
Δsx
Δsy

]
. (1)

In the second step, these measurements are collected over time, resulting in a list

P(t) = (p1, p2, . . . , pN) (2)

of N points pi, i = 1, . . . N, at time t. The following is worth noting here:

• To guarantee the real-time capability of this strategy, the number N of points in the list
P must not exceed an upper bound N, i.e., N ≤ N, where N depends on the memory
and computing resources of the target hardware.

• New position measurements might not contain relevant information in terms of the
estimated path, due to low speed or standstill maneuvers and/or measurement noise.
That is, a new point pN+1 is equal or very close to the most recent point pN ∈ P.

The measure to address both constraints is motivated by a point-reduction algo-
rithm [17] that determines the “importance” of a point within a polygonal chain, by the
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area of the triangle created by the point itself and its immediate neighbors. According to
that, the point pN+1 is appended to the list P if the area

A = 0.5
∣∣∣∣det

([
pN−1 pN pN+1

1 1 1

])∣∣∣∣ (3)

of the triangle formed by the points pN−1, . . . , pN+1 exceeds a certain threshold A, other-
wise pN is replaced by pN+1. In the case of N = N and A > A, pN+1 is appended to the
list P after removing the point associated with the smallest area.

This procedure results in a list P(t) that represents the leader’s path as a polygonal
chain, with respect to an inertial frame at a certain time t. This polygonal path could already
serve as the reference path for the underlying path-tracking controller. However, path-
tracking controllers usually require geometric derivatives of the path such as heading and
curvature. From that perspective, the polygonal path representation is disadvantageous as it
is only G0 continuous. For more details regarding the impact of specific path representations
on the path-tracking performance, refer to [18].

2.2. Smoothing the Estimated Path

To achieve a specific continuity of the estimated path, an analytic representation satis-
fying the corresponding continuity requirements is required. For that, a parametric path

γ : R → R
2, τ �→ γ(τ) (4)

with path parameter τ is advantageous, as it allows the definition of arbitrary paths. There
are two basic possibilities to obtain γ(τ): interpolation or approximation of the underlying
data points. The fact that an interpolant would pass through every point makes the first
one an inappropriate choice, especially considering the presence of measurement noise. On
the other hand, similar arguments can be made to justify the approximation approach.

Eventually, a spline-approximation algorithm [19] that relies on least-squares adjust-
ment was implemented. Based on the estimated leader path given by (2), the algorithm
calculates a parametric, two-dimensional spline

Γ(τ) =

⎧⎪⎪⎨⎪⎪⎩
γ1(τ) τ0 ≤ τ < τ1

...
γn(τ) τn−1 ≤ τ ≤ τn

(5)

of n spline segments γi with n + 1 strictly monotonic breaks τ0 < τ1 < · · · < τn (also
known as knots), where the degree k for the spline segments

γi(τ) =

[
χi,k τk + · · ·+ χi,1 τ + χi,0
υi,k τk + · · ·+ υi,1 τ + υi,0

]
(6)

as well as the order l of geometric continuity Gl at the breaks τi can be specified. This
requires solving a system

AX = B, A ∈ R
α×α, B ∈ R

α×2 and α = (k + 1)n + (l + 1)(n − 1) (7)

of linear equations, which can be easily achieved under real-time requirements. Matrix A
is composed of the independent variable of the underlying data, i.e., the path parameter τ,
while B is composed of the corresponding dependent variable, i.e., pi(τ). The unknown
polynomial coefficients χi,j and υi,j, j = 0, . . . , k, are represented by X. Notice that (7) could
be extended to higher dimensional paths, e.g., 3D paths, at almost no computational cost,
since the inversion of matrix A is independent of the number of columns of B, i.e., the
number of dimensions. Furthermore it is worth noting, that the size of A does not depend
on the number of data samples per spline segment, but only on the number n of spline
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segments, the polynomial degree k and the order l of geometric continuity. In addition
to [19], the spline-approximation algorithm was extended by the possibility to also specify
boundary conditions for the differential continuity of the path’s (5) terminal points, Γ(τ0)
and Γ(τn).

Choosing the breaks τi in (5) is a research topic on its own [20,21]. For the presented
work, the calculation of a spline segment γi is triggered if the list (2) contains a certain
number ν of points, i.e., N = ν ≤ N. The points p1, . . . , pν are then removed from the list
P and the procedure is repeated if the condition N = ν is satisfied again, and so on. This
strategy has two advantages at the cost of one disadvantage over calculating the whole
spline Γ for all N points each iteration:

• Unfortunately, the resulting spline from the spline-approximation algorithm, accord-
ing to [19], lacks the local support property. That is, a variation of a single data point
not only affects the related spline segment but all spline segments, if just a single
point of the underlying approximation data changes. Considering that the spline Γ
serves as the reference path for the path-tracking controller, as shown in Figure 1,
this could result in jumps of the control reference and eventually of the control error
every time the spline is updated. Although there are controllers that implement bump-
less transfer functionality that could handle steps in the control reference to some
extent [22], this is usually not the case; see, for example, the well known Stanley [23]
and Pure-Pursuit [24] path-tracking controllers. Therefore, the iterative approach
mentioned above was implemented, since it enables the extension of the spline path Γ
by a spline segment γi+1, while letting the segments γ1, . . . , γi be unaffected.

• According to (7), the computational effort mainly depends on the number n of spline
segments, considering k and l as fixed. Therefore, the computational effort can be
reduced compared to calculating the spline Γ for all points p1, . . . , pN during each
iteration, depending on the actual values of ν and N.

• These improvements are at the cost of only achieving continuous zeroth derivatives at
the spline’s breaks. Simulation results showed that requesting higher order continuity
at the breaks results in a spline approximation becoming unstable over time. During
field tests, this disadvantage turned out to be neglectable.

This smoothing strategy is demonstrated in Figure 2 based on real-world measurement
data, where the leader/follower convoy was driving from the top-right corner to the bottom-
left corner of the graph.

−80 −75 −70 −65 −60 −55 −50 −45 −40

−42

−40

−38

x (m)

y
(m

)

Estimated path
Spline path

Figure 2. Estimated path from sensor measurements and resulting spline path after applying the
spline-approximation algorithm.

The black dotted line shows the estimated path, according to Section 2.1, where each
dot represents a position measurement obtained from a camera sensor. The red line shows
the resulting spline consisting of four spline segments, where the segment’s terminal points
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are highlighted by dots. Although the spline is only G0 continuous at the breaks, the overall
smoothness is significantly improved in contrast to the estimated path.

2.3. Vehicle Control

From a control-design point of view and according to Figure 1, the lateral and longitu-
dinal motion of the follower vehicle was considered to be decoupled. The corresponding
controllers are presented in the following.

2.3.1. Lateral Control

The theoretical background of the lateral control component used in the context of the
presented vehicle-following system was published in [22,25]. Since then, it was successfully
applied to several practical implementations such as lane keeping [26]. Therefore, only the
essence is recapitulated here.

Based on the linear single-track model [27] and a linearized and time-discretized
path-tracking error model [25,26], a state-feedback control law

δset = −[v̂y ψ̇ elat eψ χ
]
klat (8)

is obtained via LQR design. The path-tracking error model, according to the classification
introduced in [18], is as follows: The reference is located in the vehicle’s center of gravity,
the look-ahead distance is along the vehicle heading, while the lateral error elat and heading
error eψ, with respect to the reference path, are perpendicular to the vehicle heading.
To account for a varying vehicle speed and a speed-dependant look-ahead distance, the
feedback law (8) was gain scheduled and implemented using a look-up table. The dynamics
of the demonstrator vehicle’s steering actuator were considered by a first-order transfer
function [26], introducing one additional state χ.

The choice of the actual path-tracking controller was predetermined by the related
error model, which should fit the problem statement. For the present application, the task
is to follow the leader path as close as possible, to avoid cutting curves. As this requirement
can only be fulfilled for a single point of a four-wheeled vehicle, a reasonable choice is the
center of gravity along the vehicle’s longitudinal axis, in conjunction with zero look-ahead
distance. Given this configuration, a vanishing control error would imply that the center of
gravity perfectly tracks the reference path. Unfortunately, the look-ahead distance cannot
be decreased arbitrarily as this also reduces the closed-loop phase margin [28] and can
eventually lead to instability. The actual values used during deployment are given in
Section 3.

It is also worth noting, that with the presented design, it would have been easily
possible to replace the current controller with any other controller based on the same error
model. A classification of path-tracking controllers from the literature, regarding their
underlying error model, is given in Table 2 of [18].

2.3.2. Longitudinal Control

The task of the longitudinal controller is to maintain a constant time gap th from the
leader vehicle, according to the constant time-headway policy [29]

sset = max{vsetth, smin} (9)

given a desired speed vset and a minimum safety distance smin. The desired speed vset
refers to the leader vehicle’s speed and was estimated according to

vset =

∥∥∥∥[v̂x + Δvx − ψ̇r sin(θ)
v̂y + Δvy + ψ̇r cos(θ)

]∥∥∥∥ (10)
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from on-board measurements, where

r =
√

Δs2
x + Δs2

y (11a)

θ = atan2(Δsy, Δsx) (11b)

are the distance r and bearing θ to the leader.
Considering that the distance s from the follower to the leader vehicle is negative,

proportional with respect to the follower speed v, the follower’s longitudinal dynamics can
be modeled as

ẋ =

[
0 −1
0 0

]
x +

[
0
1

]
a, (12)

with acceleration a and state x = [s v]t. The distance s to the leader is with respect to the
reference path and determined via a Frenet transformation of the ego vehicle’s position.
The error model then reads as

e = xset − x (13)

with distance error es = sset − s and velocity error ev = vset − v. For the model (12),
a controller

aset = kt
lone (14)

can be designed via, e.g., pole placement.
The follower’s longitudinal-control strategy was eventually implemented as a cas-

caded control loop, according to Figure 3, where the desired acceleration (14) is tracked by
the inner loop, implementing a PI controller.

[
es ev

]
klon

PI
Controller

aset eas, v, vset

−
a

brake/
throttle

Figure 3. Longitudinal dynamics control structure consisting of an outer control loop that regulates
spacing error es and speed error ev as well as an inner loop regulating acceleration error ea.

This architecture was mainly motivated by the brake and throttle interfaces available
in the test vehicle, in terms of pedal positions.

3. Test-Vehicle Integration and Field Trials

Until here, the vehicle-following system was mainly presented from a simulation-
based perspective. This section discusses practical aspects related to the deployment of the
proposed following system and also presents test results obtained under real operating
conditions utilizing a series-production demonstrator car.

3.1. Demonstrator Vehicle

The demonstrator vehicle is a Ford Mondeo 2.0 Hybrid equipped with additional
sensors and hardware; an overview is shown in Figure 4.

A so-called ADAS Kit from Dataspeed Inc. gives access to the vehicle’s CAN-bus. This
allows for control of the steering wheel angle as well as brake and throttle via pedal-position
commands. It also provides on-board sensor measurements like speed, acceleration, yaw
rate, and series-production GPS readings.

The developed algorithms were deployed to a dSPACE MicroAutoBox II, equipped
with a DS1401 processor board and 1511/1512 I/O boards. This setup served as the
real-time control hardware executing the planning, state estimation, and vehicle-control
algorithms. Additionally, RTMaps running on an industrial-grade PC was used as the
interface to the Novatel differential GPS. This data was then transmitted to the MicroAuto-
Box via ethernet. Since the Mobileye 630 camera sensor provided the most robust object
detection and classification, it was used during the field tests.
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Figure 4. Ford Mondeo demonstrator vehicle with additionally installed sensors. For the implemen-
tation presented in this paper, only the Mobileye 630 was used.

3.2. State Estimation

As pointed out in Section 2, estimates of the followers position (x̂, ŷ) and orientation ψ̂
with respect to an inertial frame are required. This was accomplished by a dead-reckoning
approach using a kinematic vehicle model [30] (p. 26)

x̂(t) =
∫ t

0
v(ξ) cos(β̂(ξ) + ψ̂(ξ))dξ (15a)

ŷ(t) =
∫ t

0
v(ξ) sin(β̂(ξ) + ψ̂(ξ))dξ (15b)

ψ̂(t) =
∫ t

0
ψ̇(ξ)dξ (15c)

β̂(t) = atan2(lr tan(δ(t)), lf + lr). (15d)

In compliance with the requirements from Section 1.1, the implementation of (15) only
requires measurements from on-board sensors, namely the vehicle speed v, the front-wheel
steering angle δ, and the yaw rate ψ̇. Additionally, the front and rear axle offset from the
center of gravity, denoted by lf and lr, are required.

Over time, this approach causes the estimates to deviate from the true position (x, y)
and true orientation ψ. Assuming that the follower is tracking the leader vehicle with
a steady-state time gap th, the error between the actual and estimated values must be
sufficiently small. In other words, the estimation error that accumulated during the time
between obtaining a specific leader position until reaching this position is required to
be small, to ensure satisfactory path tracking. This also implies that an upper bound for
the time gap th exists, depending on the estimation accuracy of the follower’s position
and orientation.

3.3. Leader Selection

To simplify the development of the vehicle-following system, the task of identifying
the leader vehicle from a list of multiple objects was neglected in simulations. Instead, just
a single object was used as the leader vehicle. For the practical implementation during the
field tests, object sensors mounted to the test vehicle were used for object detection. These
sensors, like a camera, radar, or lidar, typically provide object lists containing not only the
leader vehicle but also stationary objects or ghost objects. Therefore, a measure to identify
the actual leader vehicle utilizing the spline path (5) was implemented.

From the path estimation and smoothing, an analytic formula of the leader path is
available, given by the spline (5). Taking advantage of its analytic form, the path can easily
be extrapolated by means of path parameter τ. For the actual implementation, the path
parameter τ, referring to the arc length and the breaks τ0 < τ1 < · · · < τn, was obtained
from the length of the polygonal path formed by the position measurements (2).
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For the field tests, the actual path extrapolation distance was obtained by overestimat-
ing the traveled distance Δs of the leader vehicle, according to Δs = vsetTs, where vset is
the estimated leader speed (10) and Ts is the sample time of the vehicle-following system.
Given the extrapolated leader path and a list of objects, the leader vehicle was chosen as the
closest object to the follower vehicle that intersects the extrapolated path. At initialization
of the vehicle-following system, the estimated path is not available and the leader vehicle
is selected according to the object type.

3.4. Experimental Results

The vehicle-following system was verified on a graveled land area at the campus of
the Technical University of Graz, Austria. The tests were performed using two of Virtual
Vehicle’s Automated Drive demonstrators; the automated follower vehicle is shown in
Figure 4 and a bird’s-eye view of the test setup is shown in Figure 5.

Figure 5. Bird’s-eye view of the leader (left) and follower (right) vehicle setup, taken during the field
tests. Video footage is available online at https://youtu.be/0EnHqTouIuc (Accessed on 1 May 2022).

Both the leader vehicle and the follower vehicle were equipped with DGPS to provide
ground truth data. The vehicle-following system was executed on real-time hardware,
as mentioned in Section 3.1, executing at a sample time of 20 ms. The complete list of
parameters is stated in Table 1.

Table 1. Parameter values used throughout the field trials.

Name Symbol Value

Sample time Ts 20 ms
Max. number points N 100

Area threshold A 1 × 10−4 m2

Min. clearance smin 5 m
Time gap th 2 s

Look-ahead time – 300 ms
Samples per spline segment ν 12

Polynomial degree k 3
Geometric continuity l 2

The test procedure was as follows: both vehicles were at a standstill, with the leader
vehicle in front of the follower vehicle and within the object sensor’s field of view. After
confirming leader detection, both vehicles started driving manually, meaning the follower
vehicle needed to start idling before enabling the drive-by-wire mode.

Results of one exemplary trial are shown in Figure 6. Figure 6a shows a comparison of
the leader and follower paths, while Figure 6b shows qualitative lateral and longitudinal
control signals.
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Figure 6. Results from an exemplary field trial run. (a) Leader and follower path obtained from differential
GPS. The close-up (right figure) also shows an outlier around coordinate (57, 27). Due to its minor character
and time constraints, we did not investigate the root cause. (b) Speed-dependent look-ahead distance,
related lateral-tracking error, and longitudinal control signals in terms of distance and speed.

It should be pointed out, that the closed-loop lateral error elat in Figure 6b is with respect
to the reference path obtained from the spline-approximation algorithm. Since this path is an
approximation of the estimated leader path, which is itself an estimate of the true leader path,
the lateral error elat does not reflect the follower’s offset from the true leader path. However,
it reflects the performance of the path-tracking controller. According to the follower’s speed,
the look-ahead distance varies during the trial. Although the related lateral-path tracking error
elat varies between roughly −0.5 m to 1 m, the lateral offset with respect to the follower’s center
of gravity stayed well between −0.4 m to 0.4 m (Figure 6a). Around 7 s to 8 s, the actual inter-
vehicle distance s shows noisy characteristics. At this point in time, the follower reached the
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leader’s initial position, which was starting from a standstill. Due to that, several similar position
measurements were added to the list (2), although the leader was not moving. This could have
been avoided by tuning the area threshold parameter A with respect to the noise characteristics
of the object sensor as well as the follower state estimation. Unfortunately, time constraints did
not allow further investigation of this topic, as these effects are not easily reproducible during
field trials. For future tests, recreating these effects in simulation to tune the related parameters
beforehand is planned.

4. Conclusions and Outlook

In this work we have presented the concept, architecture, and real-world implementa-
tion of a state-of-the-art vehicle following a system relying on on-board sensors only. For
detection of the leader vehicle, an optical sensor mounted to the follower vehicle was used.
To obtain an estimate of the leader path, a new algorithm was proposed that considers the
importance of new leader measurements with respect to the currently estimated path.

The smoothness of this estimated path was improved by a spline-approximation
algorithm, which closes the gap between simple polynomial-fitting approaches [9] and
computational-demanding ones, like presented in [10]. For the proof of concept of the
proposed algorithms, field trials were performed on a graveled area achieving path-tracking
errors between −0.4 m to 0.4 m. We assume that these values can be improved by either
tuning the existing path-tracking controller or implementing a more sophisticated one,
which would be easily possible with the presented architecture.

For the future, it is planned to perform more extensive field trials utilizing various
sensors for object detection. Another branch of investigation is regarding the path-tracking
controller. The generic interface between the planning and the path-tracking component
allows to benchmark various controllers from the literature and investigate the influence of
their specific error models.
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The following abbreviations are used in this manuscript:
CAN Controller Area Network
DGPS Differential Global Positioning System
GPS Global Positioning System
HD High Definition
LQR Linear Quadratic Regulator
MPC Model Predictive Control
PI Proportional-Integral
SQP Sequential Quadratic Programming
V2V Vehicle-to-Vehicle
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