19 research outputs found

    Prospective motion correction of 3D echo-planar imaging data for functional MRI using optical tracking.

    Get PDF
    We evaluated the performance of an optical camera based prospective motion correction (PMC) system in improving the quality of 3D echo-planar imaging functional MRI data. An optical camera and external marker were used to dynamically track the head movement of subjects during fMRI scanning. PMC was performed by using the motion information to dynamically update the sequence's RF excitation and gradient waveforms such that the field-of-view was realigned to match the subject's head movement. Task-free fMRI experiments on five healthy volunteers followed a 2×2×3 factorial design with the following factors: PMC on or off; 3.0mm or 1.5mm isotropic resolution; and no, slow, or fast head movements. Visual and motor fMRI experiments were additionally performed on one of the volunteers at 1.5mm resolution comparing PMC on vs PMC off for no and slow head movements. Metrics were developed to quantify the amount of motion as it occurred relative to k-space data acquisition. The motion quantification metric collapsed the very rich camera tracking data into one scalar value for each image volume that was strongly predictive of motion-induced artifacts. The PMC system did not introduce extraneous artifacts for the no motion conditions and improved the time series temporal signal-to-noise by 30% to 40% for all combinations of low/high resolution and slow/fast head movement relative to the standard acquisition with no prospective correction. The numbers of activated voxels (p<0.001, uncorrected) in both task-based experiments were comparable for the no motion cases and increased by 78% and 330%, respectively, for PMC on versus PMC off in the slow motion cases. The PMC system is a robust solution to decrease the motion sensitivity of multi-shot 3D EPI sequences and thereby overcome one of the main roadblocks to their widespread use in fMRI studies

    Acquisition of sensorimotor fMRI under general anaesthesia: Assessment of feasibility, the BOLD response and clinical utility

    Get PDF
    We evaluated whether task-related fMRI (functional magnetic resonance imaging) BOLD (blood oxygenation level dependent) activation could be acquired under conventional anaesthesia at a depth enabling neurosurgery in five patients with supratentorial gliomas. Within a 1.5 T MRI operating room immediately prior to neurosurgery, a passive finger flexion sensorimotor paradigm was performed on each hand with the patients awake, and then immediately after the induction and maintenance of combined sevoflurane and propofol general anaesthesia. The depth of surgical anaesthesia was measured and confirmed with an EEG-derived technique, the Bispectral Index (BIS). The magnitude of the task-related BOLD response and BOLD sensitivity under anaesthesia were determined. The fMRI data were assessed by three fMRI expert observers who rated each activation map for somatotopy and usefulness for radiological neurosurgical guidance. The mean magnitudes of the task-related BOLD response under a BIS measured depth of surgical general anaesthesia were 25% (tumour affected hemisphere) and 22% (tumour free hemisphere) of the respective awake values. BOLD sensitivity under anaesthesia ranged from 7% to 83% compared to the awake state. Despite these reductions, somatotopic BOLD activation was observed in the sensorimotor cortex in all ten data acquisitions surpassing statistical thresholds of at least p < 0.001uncorr. All ten fMRI activation datasets were scored to be useful for radiological neurosurgical guidance. Passive task-related sensorimotor fMRI acquired in neurosurgical patients under multi-pharmacological general anaesthesia is reproducible and yields clinically useful activation maps. These results demonstrate the feasibility of the technique and its potential value if applied intra-operatively. Additionally these methods may enable fMRI investigations in patients unable to perform or lie still for awake paradigms, such as young children, claustrophobic patients and those with movement disorders

    Flexible head-casts for high spatial precision MEG.

    Get PDF
    BACKGROUND: In combination with magnetoencephalographic (MEG) data, accurate knowledge of the brain's structure and location provide a principled way of reconstructing neural activity with high temporal resolution. However, measuring the brain's location is compromised by head movement during scanning, and by fiducial-based co-registration with magnetic resonance imaging (MRI) data. The uncertainty from these two factors introduces errors into the forward model and limit the spatial resolution of the data. NEW METHOD: We present a method for stabilizing and reliably repositioning the head during scanning, and for co-registering MRI and MEG data with low error. RESULTS: Using this new flexible and comfortable subject-specific head-cast prototype, we find within-session movements of <0.25mm and between-session repositioning errors around 1mm. COMPARISON WITH EXISTING METHOD(S): This method is an improvement over existing methods for stabilizing the head or correcting for location shifts on- or off-line, which still introduce approximately 5mm of uncertainty at best (Adjamian et al., 2004; Stolk et al., 2013; Whalen et al., 2008). Further, the head-cast design presented here is more comfortable, safer, and easier to use than the earlier 3D printed prototype, and give slightly lower co-registration errors (Troebinger et al., 2014b). CONCLUSIONS: We provide an empirical example of how these head-casts impact on source level reproducibility. Employment of the individual flexible head-casts for MEG recordings provide a reliable method of safely stabilizing the head during MEG recordings, and for co-registering MRI anatomical images to MEG functional data

    Activity or Connectivity? Evaluating neurofeedback training in Huntington's disease

    Get PDF
    Non-invasive methods, such as neurofeedback training (NFT), could support cognitive symptom management in Huntington’s disease (HD) by targeting brain regions whose function is impaired. The aim of our single-blind, sham-controlled study was to collect rigorous evidence regarding the feasibility of NFT in HD by examining two different methods, activity and connectivity real-time fMRI NFT. Thirty-two HD gene-carriers completed 16 runs of NFT training, using an optimized real-time fMRI protocol. Participants were randomized into four groups, two treatment groups, one receiving neurofeedback derived from the activity of the Supplementary Motor Area (SMA), and another receiving neurofeedback based on the correlation of SMA and left striatum activity (connectivity NFT), and two sham control groups, matched to each of the treatment groups. We examined differences between the groups during NFT training sessions and after training at follow-up sessions. Transfer of training was measured by measuring the participants’ ability to upregulate NFT target levels without feedback (near transfer), as well as by examining change in objective, a-priori defined, behavioural measures of cognitive and psychomotor function (far transfer) before and at 2 months after training. We found that the treatment group had significantly higher NFT target levels during the training sessions compared to the control group. However, we did not find robust evidence of better transfer in the treatment group compared to controls, or a difference between the two NFT methods. We also did not find evidence in support of a relationship between change in cognitive and psychomotor function and NFT learning success. We conclude that although there is evidence that NFT can be used to guide participants to regulate the activity and connectivity of specific regions in the brain, evidence regarding transfer of learning and clinical benefit was not robust. Although the intervention is non-invasive, given the costs and absence of reliable evidence of clinical benefit, we cannot recommend real-time fMRI NFT as a potential intervention in HD

    Acquisition of sensorimotor fMRI under general anaesthesia: Assessment of feasibility, the BOLD response and clinical utility

    Get PDF
    We evaluated whether task-related fMRI (functional magnetic resonance imaging) BOLD (blood oxygenation level dependent) activation could be acquired under conventional anaesthesia at a depth enabling neurosurgery in five patients with supratentorial gliomas. Within a 1.5 T MRI operating room immediately prior to neurosurgery, a passive finger flexion sensorimotor paradigm was performed on each hand with the patients awake, and then immediately after the induction and maintenance of combined sevoflurane and propofol general anaesthesia. The depth of surgical anaesthesia was measured and confirmed with an EEG-derived technique, the Bispectral Index (BIS). The magnitude of the task-related BOLD response and BOLD sensitivity under anaesthesia were determined. The fMRI data were assessed by three fMRI expert observers who rated each activation map for somatotopy and usefulness for radiological neurosurgical guidance. The mean magnitudes of the task-related BOLD response under a BIS measured depth of surgical general anaesthesia were 25% (tumour affected hemisphere) and 22% (tumour free hemisphere) of the respective awake values. BOLD sensitivity under anaesthesia ranged from 7% to 83% compared to the awake state. Despite these reductions, somatotopic BOLD activation was observed in the sensorimotor cortex in all ten data acquisitions surpassing statistical thresholds of at least p < 0.001uncorr. All ten fMRI activation datasets were scored to be useful for radiological neurosurgical guidance. Passive task-related sensorimotor fMRI acquired in neurosurgical patients under multi-pharmacological general anaesthesia is reproducible and yields clinically useful activation maps. These results demonstrate the feasibility of the technique and its potential value if applied intra-operatively. Additionally these methods may enable fMRI investigations in patients unable to perform or lie still for awake paradigms, such as young children, claustrophobic patients and those with movement disorders

    Reprint of: Minimizing noise in pediatric task-based functional MRI; Adolescents with developmental disabilities and typical development

    Full text link
    Functional Magnetic Resonance Imaging (fMRI) represents a powerful tool with which to examine brain functioning and development in typically developing pediatric groups as well as children and adolescents with clinical disorders. However, fMRI data can be highly susceptible to misinterpretation due to the effects of excessive levels of noise, often related to head motion. Imaging children, especially with developmental disorders, requires extra considerations related to hyperactivity, anxiety and the ability to perform and maintain attention to the fMRI paradigm. We discuss a number of methods that can be employed to minimize noise, in particular movement-related noise. To this end we focus on strategies prior to, during and following the data acquisition phase employed primarily within our own laboratory. We discuss the impact of factors such as experimental design, screening of potential participants and pre-scan training on head motion in our adolescents with developmental disorders and typical development. We make some suggestions that may minimize noise during data acquisition itself and finally we briefly discuss some current processing techniques that may help to identify and remove noise in the data. Many advances have been made in the field of pediatric imaging, particularly with regard to research involving children with developmental disorders. Mindfulness of issues such as those discussed here will ensure continued progress and greater consistency across studies

    Methods for cleaning the BOLD fMRI signal

    Get PDF
    Available online 9 December 2016 http://www.sciencedirect.com/science/article/pii/S1053811916307418?via%3Dihubhttp://www.sciencedirect.com/science/article/pii/S1053811916307418?via%3DihubBlood oxygen-level-dependent functional magnetic resonance imaging (BOLD fMRI) has rapidly become a popular technique for the investigation of brain function in healthy individuals, patients as well as in animal studies. However, the BOLD signal arises from a complex mixture of neuronal, metabolic and vascular processes, being therefore an indirect measure of neuronal activity, which is further severely corrupted by multiple non-neuronal fluctuations of instrumental, physiological or subject-specific origin. This review aims to provide a comprehensive summary of existing methods for cleaning the BOLD fMRI signal. The description is given from a methodological point of view, focusing on the operation of the different techniques in addition to pointing out the advantages and limitations in their application. Since motion-related and physiological noise fluctuations are two of the main noise components of the signal, techniques targeting their removal are primarily addressed, including both data-driven approaches and using external recordings. Data-driven approaches, which are less specific in the assumed model and can simultaneously reduce multiple noise fluctuations, are mainly based on data decomposition techniques such as principal and independent component analysis. Importantly, the usefulness of strategies that benefit from the information available in the phase component of the signal, or in multiple signal echoes is also highlighted. The use of global signal regression for denoising is also addressed. Finally, practical recommendations regarding the optimization of the preprocessing pipeline for the purpose of denoising and future venues of research are indicated. Through the review, we summarize the importance of signal denoising as an essential step in the analysis pipeline of task-based and resting state fMRI studies.This work was supported by the Spanish Ministry of Economy and Competitiveness [Grant PSI 2013–42343 Neuroimagen Multimodal], the Severo Ochoa Programme for Centres/Units of Excellence in R & D [SEV-2015-490], and the research and writing of the paper were supported by the NIMH and NINDS Intramural Research Programs (ZICMH002888) of the NIH/HHS
    corecore