4,131 research outputs found

    Reasoning About Knowledge of Unawareness

    Full text link
    Awareness has been shown to be a useful addition to standard epistemic logic for many applications. However, standard propositional logics for knowledge and awareness cannot express the fact that an agent knows that there are facts of which he is unaware without there being an explicit fact that the agent knows he is unaware of. We propose a logic for reasoning about knowledge of unawareness, by extending Fagin and Halpern's \emph{Logic of General Awareness}. The logic allows quantification over variables, so that there is a formula in the language that can express the fact that ``an agent explicitly knows that there exists a fact of which he is unaware''. Moreover, that formula can be true without the agent explicitly knowing that he is unaware of any particular formula. We provide a sound and complete axiomatization of the logic, using standard axioms from the literature to capture the quantification operator. Finally, we show that the validity problem for the logic is recursively enumerable, but not decidable.Comment: 32 page

    Refinement Modal Logic

    Full text link
    In this paper we present {\em refinement modal logic}. A refinement is like a bisimulation, except that from the three relational requirements only `atoms' and `back' need to be satisfied. Our logic contains a new operator 'all' in addition to the standard modalities 'box' for each agent. The operator 'all' acts as a quantifier over the set of all refinements of a given model. As a variation on a bisimulation quantifier, this refinement operator or refinement quantifier 'all' can be seen as quantifying over a variable not occurring in the formula bound by it. The logic combines the simplicity of multi-agent modal logic with some powers of monadic second-order quantification. We present a sound and complete axiomatization of multi-agent refinement modal logic. We also present an extension of the logic to the modal mu-calculus, and an axiomatization for the single-agent version of this logic. Examples and applications are also discussed: to software verification and design (the set of agents can also be seen as a set of actions), and to dynamic epistemic logic. We further give detailed results on the complexity of satisfiability, and on succinctness

    Matching Logic

    Full text link
    This paper presents matching logic, a first-order logic (FOL) variant for specifying and reasoning about structure by means of patterns and pattern matching. Its sentences, the patterns, are constructed using variables, symbols, connectives and quantifiers, but no difference is made between function and predicate symbols. In models, a pattern evaluates into a power-set domain (the set of values that match it), in contrast to FOL where functions and predicates map into a regular domain. Matching logic uniformly generalizes several logical frameworks important for program analysis, such as: propositional logic, algebraic specification, FOL with equality, modal logic, and separation logic. Patterns can specify separation requirements at any level in any program configuration, not only in the heaps or stores, without any special logical constructs for that: the very nature of pattern matching is that if two structures are matched as part of a pattern, then they can only be spatially separated. Like FOL, matching logic can also be translated into pure predicate logic with equality, at the same time admitting its own sound and complete proof system. A practical aspect of matching logic is that FOL reasoning with equality remains sound, so off-the-shelf provers and SMT solvers can be used for matching logic reasoning. Matching logic is particularly well-suited for reasoning about programs in programming languages that have an operational semantics, but it is not limited to this

    Transparent quantification into hyperpropositional contexts de re

    Get PDF
    This paper is the twin of (Duží and Jespersen, in submission), which provides a logical rule for transparent quantification into hyperprop- ositional contexts de dicto, as in: Mary believes that the Evening Star is a planet; therefore, there is a concept c such that Mary be- lieves that what c conceptualizes is a planet. Here we provide two logical rules for transparent quantification into hyperpropositional contexts de re. (As a by-product, we also offer rules for possible- world propositional contexts.) One rule validates this inference: Mary believes of the Evening Star that it is a planet; therefore, there is an x such that Mary believes of x that it is a planet. The other rule validates this inference: the Evening Star is such that it is believed by Mary to be a planet; therefore, there is an x such that x is believed by Mary to be a planet. Issues unique to the de re variant include partiality and existential presupposition, sub- stitutivity of co-referential (as opposed to co-denoting or synony- mous) terms, anaphora, and active vs. passive voice. The validity of quantifying-in presupposes an extensional logic of hyperinten- sions preserving transparency and compositionality in hyperinten- sional contexts. This requires raising the bar for what qualifies as co-denotation or equivalence in extensional contexts. Our logic is Tichý’s Transparent Intensional Logic. The syntax of TIL is the typed lambda calculus; its highly expressive semantics is based on a procedural redefinition of, inter alia, functional abstraction and application. The two non-standard features we need are a hyper- intension (called Trivialization) that presents other hyperintensions and a four-place substitution function (called Sub) defined over hy- perintensions

    Clauses as Semantic Predicates: Difficulties for Possible-Worlds Semantics

    Get PDF
    The standard view of clauses embedded under attitude verbs or modal predicates is that they act as terms standing for propositions, a view that faces a range of philosophical and linguistic difficulties. Recently an alternative has been explored according to which embedded clauses act semantically as predicates of content-bearing objects. This paper argues that this approach faces serious problems when it is based on possible worlds-semantics. It outlines a development of the approach in terms of truthmaker theory instea
    corecore