12,528 research outputs found

    In-flight simulation study of decoupled longitudinal controls for the approach and landing of a STOL aircraft

    Get PDF
    In this decoupled concept, the natural interactions of the flight variables were suppressed, and the pilot operated a separate controller for each (fore-and-aft control column for flight path angle without speed or pitch attitude change, for example). The handling qualities of the decoupled airplane were judged to be very favorable. The precise path control led to small touchdown point dispersion along with consistently low sink rates. The decoupled control system provided significantly better flying qualities than did conventional SAS applied to the same basic airframe

    Proportional-integral-plus (PIP) control of the ALSTOM gasifier problem

    Get PDF
    Although it is able to exploit the full power of optimal state variable feedback within a non-minimum state-space (NMSS) setting, the proportional-integral-plus (PIP) controller is simple to implement and provides a logical extension of conventional proportional-integral and proportional-integral-derivative (PI/PID) controllers, with additional dynamic feedback and input compensators introduced automatically by the NMSS formulation of the problem when the process is of greater than first order or has appreciable pure time delays. The present paper applies the PIP methodology to the ALSTOM benchmark challenge, which takes the form of a highly coupled multi-variable linear model, representing the gasifier system of an integrated gasification combined cycle (IGCC) power plant. In particular, a straightforwardly tuned discrete-time PIP control system based on a reduced-order backward-shift model of the gasifier is found to yield good control of the benchmark, meeting most of the specified performance requirements at three different operating points

    Crone control of a nonlinear hydraulic actuator

    Get PDF
    The CRONE control (fractional robust control) of a hydraulic actuator whose dynamic model is nonlinear is presented. An input-output linearization under diffeomorphism and feedback is first achieved for the nominal plant. The relevance of this linearization when the parameters of the plant vary is then analyzed using the Volterra input-output representation in the frequency domain. CRONE control based on complex fractional differentiation is finally applied to control the velocity of the input-output linearized model when parametric variations occur

    Disturbance decoupling for singulars systems by proportional and derivate feedback and proportional and derivate outputm injection

    Get PDF
    We study the disturbance decoupling problem for linear time invariant singular systems. We give necessary and su±cient conditions for the existence of a solution to the disturbance decoupling problem with or without stability via a proportional and derivative feedback and proportional and derivative output injection that also makes the resulting closed-loop system regular and/or of index at most one. All results are based on canonical reduced forms that can be computed using a complete system of invariants that can be implemented in a numerically stable way.Postprint (published version

    Solving disturbance decoupling for singular systems by p&d-feedback and p&d-output injection

    Get PDF
    Singular systems are an important class of systems from both point of view theoretical and practical. In this paper we analyze the problem of constructing feedbacks and/or output injections that suppress this disturbance in the sense that it does not affect the inputoutput behavior of the system and makes the resulting closed-loop system regular and of index at most one. All results are based on the canonical reduced forms that they can be computed using a complete system of invariants and can be implemented in a numerically stable way.Peer ReviewedPostprint (published version

    The application of a new PID autotuning method for the steam/water loop in large scale ships

    Get PDF
    In large scale ships, the most used controllers for the steam/water loop are still the proportional-integral-derivative (PID) controllers. However, the tuning rules for the PID parameters are based on empirical knowledge and the performance for the loops is not satisfying. In order to improve the control performance of the steam/water loop, the application of a recently developed PID autotuning method is studied. Firstly, a 'forbidden region' on the Nyquist plane can be obtained based on user-defined performance requirements such as robustness or gain margin and phase margin. Secondly, the dynamic of the system can be obtained with a sine test around the operation point. Finally, the PID controller's parameters can be obtained by locating the frequency response of the controlled system at the edge of the 'forbidden region'. To verify the effectiveness of the new PID autotuning method, comparisons are presented with other PID autotuning methods, as well as the model predictive control. The results show the superiority of the new PID autotuning method

    A geometrical approach to the motion planning problem for a submerged rigid body

    Get PDF
    The main focus of this paper is the motion planning problem for a deeply submerged rigid body. The equations of motion are formulated and presented by use of the framework of differential geometry and these equations incorporate external dissipative and restoring forces. We consider a kinematic reduction of the affine connection control system for the rigid body submerged in an ideal fluid, and present an extension of this reduction to the forced affine connection control system for the rigid body submerged in a viscous fluid. The motion planning strategy is based on kinematic motions; the integral curves of rank one kinematic reductions. This method is of particular interest to autonomous underwater vehicles which can not directly control all six degrees of freedom (such as torpedo shaped AUVs) or in case of actuator failure (i.e., under-actuated scenario). A practical example is included to illustrate our technique

    Design of the Annular Suspension and Pointing System (ASPS) (including design addendum)

    Get PDF
    The Annular Suspension and Pointing System is an experiment pointing mount designed for extremely precise 3 axis orientation of shuttle experiments. It utilizes actively controlled magnetic bearing to provide noncontacting vernier pointing and translational isolation of the experiment. The design of the system is presented and analyzed

    Virtual Constraints and Hybrid Zero Dynamics for Realizing Underactuated Bipedal Locomotion

    Full text link
    Underactuation is ubiquitous in human locomotion and should be ubiquitous in bipedal robotic locomotion as well. This chapter presents a coherent theory for the design of feedback controllers that achieve stable walking gaits in underactuated bipedal robots. Two fundamental tools are introduced, virtual constraints and hybrid zero dynamics. Virtual constraints are relations on the state variables of a mechanical model that are imposed through a time-invariant feedback controller. One of their roles is to synchronize the robot's joints to an internal gait phasing variable. A second role is to induce a low dimensional system, the zero dynamics, that captures the underactuated aspects of a robot's model, without any approximations. To enhance intuition, the relation between physical constraints and virtual constraints is first established. From here, the hybrid zero dynamics of an underactuated bipedal model is developed, and its fundamental role in the design of asymptotically stable walking motions is established. The chapter includes numerous references to robots on which the highlighted techniques have been implemented.Comment: 17 pages, 4 figures, bookchapte
    • …
    corecore