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Abstract

The CRONE control (fractional robust control) of a hydraulic actuator whose dynamic model is nonlinear is presented. An

input–output linearization under diffeomorphism and feedback is first achieved for the nominal plant. The relevance of this

linearization when the parameters of the plant vary is then analyzed using the Volterra input–output representation in the frequency

domain. CRONE control based on complex fractional differentiation is finally applied to control the velocity of the input–output

linearized model when parametric variations occur. r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

To design a linear control system for a nonlinear
plant, a linear model can be extracted from the
nonlinear model using the first order linearization. To
avoid this approximation, input–output linearization
under diffeomorphism and feedback (Levine, 1996) is
often used and transforms a nonlinear plant into a linear
plant. Several studies have applied this method to
hydraulic actuators and demonstrated that better
dynamic performance is achieved with an input–
output linearized model than with a first order
linear model. However, the robustness of the control
system when parametric variations or perturbations
occur has been mentioned but not investigated
(Brun, Belghardi, Sesmat, Thomasset, & Scavarda,
1999).

As the linearizing system is computed only for the
nominal parametric state, the plant behavior remains
nonlinear for the other parametric states. The question
is then whether this partially input–output linearized
plant is less sensitive to parametric variations than the
initial nonlinear plant. To evaluate this sensitivity to
parametric variations, the Volterra representation
(Brockett, 1976; Lesiar & Krener, 1978) can be used.
Indeed, an input–output representation of the input–

output linearized plant can be given by a Volterra series.
The first term of the series is the first order linear model,
and the magnitude of the other terms depend on the
nonlinearity: the stronger the nonlinearity, the higher
the modulus of each term.

Once the input–output linearization is achieved, a set
of first order linear models can be computed from the
perturbed input–output ‘‘linearized’’ plant. CRONE
control, which is a robust linear control-system design
based on complex-order differentiation, can then be
applied to the set. Considering the robustness/perfor-
mance-quality trade-off, the plant perturbations can be
taken into account by using fully structured frequency
uncertainty domains to obtain a least-conservative
control system.

The article is organized as following. Section 2
gives a description and a model of the hydraulic
system under study. Section 3 deals with the input–
output linearization under diffeomorphism and static
feedback, and shows the importance of the choice
of the linearizing system in the case of robust control.
In Section 4, the input–output representation using a
Volterra series, particularly in the frequency domain,
is developed. The Volterra representation is then used
to compare the perturbed input–output ‘‘linearized’’
plant to the initial nonlinear plant. Finally in Section 5,
CRONE control (Oustaloup & Mathieu, 1999)
is introduced and applied to the electrohydraulic
system.



2. Electrohydraulic system

2.1. Electrohydraulic system description

The electrohydraulic system under study is part of a
test bench for mechanical structures (Fig. 1). These
structures must be deformed by the electrohydraulic
actuator at constant velocity (Fig. 2). The actuator is a
double-acting 200mm stroke cylinder. A servovalve fed
with a fixed displacement hydraulic pump supplies a
constant pressure. The piston rod is connected to a
mechanical structure modeled by a mass-damper-spring
set. The values of the structure parameters vary during
the test since the structure is deformed. The variations
are assumed to be slow compared to the control loop
dynamic. The cylinder chambers are each fitted with a
pressure sensor. Position, velocity and acceleration are
provided by sensors on the piston rod.

2.2. Plant modeling

The complete plant model is obtained from the
models of the electrohydraulic servovalve, of the
cylinder and of the mechanical part (Cloy & Martin,
1980; Merrit, 1967).

The electrohydraulic servovalve is composed of
several stages whose main ones are the amplification
stage and the flow stage. In the amplification stage, a

spool is actuated by an electromechanical system with
the input current u as control effort. This stage is
modeled by a two-order state-space model where yu is
the spool position and where vu is ’yu:
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In the flow stage, the spool slides in a sleeve which
controls the flows provided to the cylinder chambers. To
model these flows, the Bernoulli equation is applied
between two points of the sleeve.

The mass flow rate Q is thus proportional to S
ffiffiffiffiffiffiffi
DP

p
;

where S is the effective area of the restrictions of the
sleeve and DP the pressure-difference between the two
points. Given that S is proportional to yu and that leaks
can be neglected, the flow mass rates to each cylinder
chamber, Q1 and Q2; are described by

Q1ðyu;P1Þ ¼
yu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ps � P1j j

p
signðPs � P1Þ for yuX0

yu
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p
signðP1 � PrÞ for yuo0

(
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p
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ps � P2j j

p
signðPs � P2Þ for yuo0:

(
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Here, the proportional gain (between Q and S
ffiffiffiffiffiffiffi
DP

p
)

does not appear because it is already taken into account
in parameter k of the amplification stage (1). As the flow
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Fig. 2. Piston rod velocity and trajectory.
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Fig. 1. Electrohydraulic system and test structure.
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stage is symmetric, Q1ðyu;P1Þ ¼ �Q2ðyu;P2Þ; which
implies Ps þ Pr ¼ P1 þ P2 8yu:

The cylinder is modeled using the thermodynamic
equation giving the pressure behavior:

V

B

dP

dt
þ

dV

dt
¼ Q;

where B is the bulk isotherm modulus, and where V ; P

and Q are respectively: volume, pressure and mass flow
rate in a cylinder chamber. For the electrohydraulic
system under study, the mass flow rates Q1 and Q2 are
given by (2). Volumes are: V1 ¼ V0 þ S0y and V2 ¼
V0 � S0y; where S0 is the cylinder rod effective area and
V0 the half-volume. Thus the pressure behaviors in the
two cylinder chambers are described by

dP1

dt
¼

B

V0 þ S0y
ðQ1 � S0vÞ

and

dP2

dt
¼

B

V0 � S0y
ðQ2 þ S0vÞ: ð3Þ

Concerning the mechanical part, the model is
obtained from the fundamental dynamic equation:

ðM þ M0Þ
d2y

dt2
¼ S0P1 � S0P2 � bv � cy � Ff ; ð4Þ

where Ff represents the Coulomb, Static and Stribeck
friction force (Olsson, Astr .om, Canudas de Wit,
G.afvert, & Lischinsky, 1998) and expresses:

Ff ¼ FcsgnðvÞ þ ðFs � FcÞeð�v=vsÞ
2

sgnðvÞ: ð5Þ

Finally, as the controlled output is the velocity, the
state space model of the electrohydraulic system
obtained from Eqs. (2)–(4) is:

’X ¼ f1ðXÞ þ gðXÞu for yuX0

’X ¼ f2ðXÞ þ gðXÞu for yuo0 with X ¼ ð vu yu P1 P2 v y ÞT

Y ¼ hðXÞ

8<
: : ð6Þ

This is a six-order nonlinear model where f1, f2, g and
h are defined by
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gðXÞ ¼ ð ko2
n 0 0 0 0 0 ÞT and hðXÞ ¼ v: ð9Þ

3. Input–output linearization under diffeomorphism and

static feedback of the electrohydraulic system

3.1. Results concerning the input–output linearization of

a square nonlinear system

Let (S) be a square nonlinear system of dimension m:

’X ¼ fðXÞ þ
P

iAm giðXÞui

Y ¼ hðXÞ

(
; uARm;YARm;XARn; ð10Þ

assuming that:

* the vectors fields fðXÞ and giðXÞ are analytic
functions,

* hðXÞ is an analytic submersion. Locally, h is given by
½h1ðXÞ; :::; hmðXÞ	 with hiðXÞ from Rm to R;

* Y ¼ Y1ðXÞ;y;YiðXÞ;y;YmðXÞ½ 	.

Let ðr1;y;rmÞ be the set of row infinite vectors of the
system (S) defined as follows:

ri ¼ finfðlÞAN=(jAm;Lgj
Ll�1
f hia0g; ð11Þ

where Lf being the Lie derivative (Isidori, 1995) (Slotine
& Li, 1991) (Krstic, Kanellakopoulos, & Kokotovic,
1995) with respect to the vector field f given by

LfðXÞ ¼
Xn

i¼1

f iðXÞ
@

@Xi

:

ri corresponds to the first Yi derivative which makes u
appear explicitly and verifies:

YðriÞ ¼ L
ri

f ðXÞ þ LgL
ri -1
f hðXÞu: ð12Þ

Let DðXÞ be the decoupling matrix of the system and
D0ðXÞ the compensation vector respectively defined by

DðXÞ ¼

Lg1
L
r1�1
f h1ðXÞ y Lgm

L
r1�1
f h1ðXÞ

y y y

Lg1
L
rm�1
f hmðXÞ y Lgm

L
rm�1
f hmðXÞ

2
664

3
775 ð13Þ
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and

D0ðX Þ ¼

L
r1

f h1ðXÞ

:::

L
rm

f hmðXÞ

2
64

3
75: ð14Þ

Theorem (Fossard & Normand-Cyrot, 1995). (i) The

system ðSÞ can be decoupled statically on a submanifold

M0 of Rm if and only if rank DðXÞ ¼ m; 8XAM0:
(ii) If this condition for DðXÞ is fulfilled, the state

feedback defined by

uðXÞ ¼ aðXÞ þ bðXÞe ð15Þ

with

aðXÞ ¼ �DðXÞ�1D0ðXÞ and bðXÞ ¼ DðXÞ�1; ð16Þ

decouples the system (S) on Mo:
(iii) Simple calculation from relation (12) shows that the

linearized system is a cascade of ri integrators such as

Y
ðriÞ
i ¼ ei; 8iAm;

ei being a linearized system input. The system is said to

have relative degree vector r ¼ ½r1yrm	
T:

3.2. Choice of the linearizing system for robust control

To ensure stability robustness and to give a better
dynamic behavior to the linearized plant, the following
linearizing system is adopted:
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which leads to the linearized plant:

HiðsÞ ¼
YiðsÞ
EiðsÞ

¼
kui

sri þ
Pri�1

j¼0 aijs j
: ð18Þ

By adding the terms
Pri�1

j¼0 aijY
ðjÞ
i ; the linearizing

feedback contains a part of the tracking feedback.
The choice of coefficients aij is important for stability

robustness. Indeed, when parametric variations occur,
the poles of the transfer function HiðsÞ; iA½1;m	; may
move to the right half-plane if coefficients aij are badly
chosen. Thus, coefficients aij must be chosen so that the
poles of HiðsÞ are not too close to the imaginary axis.

Moreover, kui and aij must be chosen to respect the
natural behavior of the plant so that it is not too
solicited by the linearizing system. Consequently kui and
aij are computed so that the frequency response of HiðsÞ

is comparable to the first order linear model of a
nominal nonlinear plant.

3.3. Input–output linearization of the electrohydraulic

system

For the system under study, fðXÞ is not everywhere
smooth because of the discontinuity in the model at yu ¼
0: In order to take the Lie derivative, the vector field f is
required to be smooth. We assume that the piston rod
trajectory under study is such that yuX0: Thus the
linearization is only achieved for positive yu and hence f
is smooth.

For the SISO electrohydraulic system under study,
computations lead to a relative degree r ¼ 4 and to:

* the decoupling term: DðXÞ ¼ LgL
3
f1hðXÞ;

* the compensation term: D0ðXÞ ¼ L4
f1hðXÞ:

So, according to relation (17) and velocity v being the
considered output, the linearizing system is:

uðXÞ ¼
1

DðXÞ
kue �

X3
j¼0

ajv
ðjÞ � D0ðXÞ

" #
; ð19Þ

which leads to the linearized system:

HðsÞ ¼
ku

s4 þ a3s3 þ a2s2 þ a1s þ a0
:

As explained above, coefficients ku and aj are computed
from the first order linear model of the nonlinear model
given by (6) using the nominal values of Table 1. But, as
the first order linear model has a very low damping
coefficient (z ¼ 0:02), a higher damping coefficient is
chosen (z ¼ 0:2) for HðsÞ to prevent the poles of the
perturbed ‘‘linearized’’ plant from moving to the right
half-plane.

Table 1

Nomenclature

Variable

names

Variable definitions Values

Ps Supply pressure 280 bar

Pr Tank pressure 1 bar

P1;P2 Cylinder chamber pressures Bar

Q1;Q2 Mass flow to the cylinder

chambers from the servovalve

m3/s

V1;V2 Cylinder chamber volumes m3

V0 Cylinder half-volume 5� 10�4m3

M0 Cylinder rod mass 50 kg

S0 Cylinder rod effective area 1.53� 10�3m2

M Test structure mass 20 kg750%

c Test structure spring 100000N/m750%

b Test structure viscous coefficient 200N/m s750%

y Cylinder rod position M

v Cylinder rod velocity m/s

k Servovalve gain 5.1� 10�5m/V

on Servovalve corner frequency 500 rad/s

zn Servovalve damping factor 0.4
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Finally ku ¼ 9:29475� 1012; a0 ¼ 7:25� 1010; a1 ¼
1:7� 108; a2 ¼ 6:28� 105 and a3 ¼ 3:

3.4. Behavior of the perturbed input–output linearized

plant

Since the linearizing system is computed only for the
nominal parametric state of the plant, the input–output
linearized plant remains nonlinear for other parametric
states. Indeed if DnomðXÞ and D0nomðXÞ are the decou-
pling and compensation terms calculated for the
nominal plant, the output (velocity v) of the perturbed
input–output linearized plant is given by

vð4Þ ¼D0ðXÞ þ DðXÞ
1

DnomðXÞ

� kue �
X3
j¼0

ajv
ðjÞ � D0nomðXÞ

" #
: ð20Þ

As this model is nonlinear, to obtain a linear model
for computing controller C(s) of Fig. 8, a set of first
order linear models is computed around the reference
trajectory described in Fig. 2. This set must also be
computed considering the parameter variations of the
tested mechanical structure which are non-negligible
since the structure is deformed during the test. The
parameter variations are estimated at 750% of the
nominal values (given in Table 1) and may occur
simultaneously.

4. Analysis of the input–output linearized

electrohydraulic system using Volterra representation

4.1. Definition

Let (S) be the nonlinear system:

’X ¼ fðt;XðtÞÞ þ gðt;XðtÞÞuðtÞ

Y ¼ hðt;XðtÞÞ

(
ð21Þ

with XARn; uARn; Xð0Þ ¼ X0; f analytic functions on
Rn; g analytic function on Rn; fðXÞ ¼ ½ f 1ðXÞ;y; f nðXÞ	;
and gðXÞ ¼ ½g1ðXÞ;y; gnðXÞ	:

Definition (Lamnabhi-Lagarrigue, 1994). System ðSÞ
admits a Volterra series representation, if there are
locally bounded and piecewise continuous functions:

wn : Rnþ1-R; nAN;

with the following condition:
8T > 0; (eðTÞ > 0 such that for any piecewise con-

tinuous function uð:Þ verifying juðTÞjpe on ½0;T 	;

Y ðtÞ ¼w0ðtÞ þ
XN
n¼1

Z t

t0

y

Z t

t0

wnðt;s1;y; snÞ

� uðs1ÞyuðsnÞds1ydsn ð22Þ

converge absolutely and uniformly on ½0;T 	:

Function wnðt;s1; :::; snÞ is called the degree-n Volterra
kernel.

Remark. A kernel which verifies the relation
wnðt; s1;y;snÞ ¼ wnðt;sPð1Þ;y;sPðnÞÞ; where P is a
permutation of si; wnðt; s1; :::; snÞ; is said symmetric.

Hypothesis. For the next developments, the nonlinear
system to be represented by a Volterra series is supposed
to verify the following conditions:

1. initial conditions are null (which can always be
obtained by a variable change);

2. the system is causal;
3. the system is stationary.

Also:

1. implies that function w0ðtÞ is null;
2. implies that each degree-n kernel is realizable:

wnðt;s1; :::; snÞ ¼ 0 8si > t; iA½1; n	;
3. implies that each degree-n kernel can be written:

wnðt;s1; :::; snÞ ¼ hnðt � si; :::; t � snÞ ¼ hnðt1; :::; tnÞ:

Relation (22) then becomes:

Y ðtÞ ¼
XN
n¼0

Z þN

�N

y

Z þN

�N

hnðt1;y; tnÞ
Yn

i¼1

uðt � tiÞdti:

ð23Þ

4.2. Computation of Volterra kernels in the frequency

domain

The Fourier transform for a mono-variable function
can be extended to a n-variable function hnðt1; :::; tnÞ
(Billings & Jones, 1990):

Hnðjo1;y; jonÞ ¼
Z

N

0

y

Z
N

0

hnðt1;y; tnÞ

� e�jo1t1�y�jontn dt1ydtn: ð24Þ

In the case of a Volterra representation, let
Hnðjo1;y; jonÞ be the Fourier transform of a degree-n
kernel hnðt1; :::; tnÞ:

The Fourier transform can be computed using the
growing exponential approach introduced by (Rugh,
1981).

To describe this approach, take a degree-N system
defined by

Y ðtÞ ¼
Z þN

�N

Z þN

�N

hN ðt1;y; tnÞuðt � t1Þyuðt � tNÞ

dt1ydtN : ð25Þ
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The response of this system to the input signal

uðtÞ ¼
XP

p¼1

ejopt ð26Þ

is defined by

Y ðtÞ ¼
XN

n¼1

XP

p1;:::;pn

Hnðjop1
;y; jopnÞ

Yn

i¼1

eðjopi
tÞ; ð27Þ

which is equivalent to

Y ðtÞ ¼
XN

n¼1

X
all combinations
of P frequencies

by n groups

X
all permutations
of op1;::;opn

Hnðjop1
;y; jopnÞ

�
Yn

i¼1

eðjopi
tÞ: ð28Þ

If P ¼ n; the functionX
all permutations
of op1;y;opn

Hnðjop1
;y; jopnÞ

Yn

i¼1

eðjopitÞ ð29Þ

is the degree-n symmetric Fourier transform of kernel
hN multiplied by

Qn
i¼1 e

ðjopitÞ:
Thus, the Fourier transform of a degree-n symmetric

kernel is given by

Hsym
n ¼

1

n!

X
all permutations
of op1;::;opn

Hnðjop1
;y; jopnÞ: ð30Þ

Thanks to this growing exponential approach, the
Fourier transform of the degree-n term of system (25) is
determined, in a practical way, by replacing the input
signal uðtÞ by relation (26) and Y ðtÞ by the expression:

Y ðtÞ ¼
Xn

i¼1

X
all combinations
of n frequencies

n!Hsym
n ðjop1

;y; jopn
Þ
Yn

i¼1

eðjopi
tÞ

ð31Þ

and then by regrouping the coefficients of the termsQn
i¼1 e

ðjopitÞ:

4.3. Comparison of the perturbed initial nonlinear plant

and the perturbed input–output linearized plant

Using the growing exponential approach the initial
nonlinear plant and the input–output linearized plant
are represented by Volterra series in the frequency
domain. The degree-1 term of the series, which is also
the first order linear model, and the degree-2 term can
both be represented graphically, but not degree-3 and
over.

Fig. 3 compares the frequency responses of the
degree-1 term computed from the initial nonlinear plant
and from the input–output linearized plant, for the
nominal and the perturbed plants. The input–output
linearized plant provides better results than the initial
nonlinear plant, as parameter variations introduce less
uncertainty at high frequencies. At low frequencies,
uncertainties being divided by the open-loop gain, their
increase following the input–output linearization is not a
problem. This result is also visible in the Nichols chart
(Fig. 4). Indeed, the frequency uncertainty domains are
smaller for the input–output linearized plant than for
the nonlinear plant, especially at high frequencies.

Figs. 5 and 6 compare the frequency responses of the
degree-2 term computed from the initial nonlinear plant
and from the input–output linearized plant, for two
different values of the structure. For the input–output
linearized plant, the modulus of the degree-2 term is
smaller at low frequencies than for the input–output
linearized plant and decreases more at high frequencies.
This phenomenon is of course accentuated when the
actual values of the structure parameters approach the
nominal values used for the linearization.

The use of the Volterra representation is not a proof
but an indication that the input–output linearization is
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Fig. 3. Degree-1 term of the Volterra series of: (a) nonlinear plant; (b) input–output linearized plant, for the nominal and the perturbed states.
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efficient to reduce the nonlinear character of the
initial plant. Hence, the input–output linearized plant
is used to design the robust controller of the control-
system structure given in Fig. 8. CRONE control-system

design is then applied to the set of first order
linear models computed from the perturbed input–
output ‘‘linearized’’ model (see Section 3.4 and
Fig. 3b).
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Fig. 4. Nichols locus and uncertainty domains of: (a) initial nonlinear plant; (b) input–output linearized plant.

Fig. 5. Degree-2 term of the Volterra series of: (a) nonlinear plant; (b) input–output linearized plant, for the structure defined by: M ¼ 15 kg,

b ¼ 150N/m s, c ¼ 75000N/m.

Fig. 6. Degree-2 term of the Volterra series of: (a) nonlinear plant; (b) input–output linearized plant, for the structure defined by: M ¼ 10 kg,

b ¼ 100N/m s, c ¼ 50000N/m.
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5. Robust controller design

5.1. CRONE control design method

CRONE control-system design, based on fractional
non-integer differentiation (Oustaloup, Lanusse, &
Mathieu, 1995, Oustaloup, Sabatier, & Lanusse, 1999),
is a frequency approach for the robust control of
perturbed plants using the common unity feedback
configuration. It consists on determining, for the
nominal state of the plant, the open-loop transfer
function which guarantees the required specifications
(precision, overshoot, rapidity,y). While taking into
account the plant right half-plane zeros and poles, the
controller is then obtained from the ratio of the open-
loop transfer function to the nominal plant transfer
function. Three CRONE control generations have been
developed, successively extending the application fields
(Oustaloup & Mathieu, 1999; (Astr .om, 1999). In this
paper, only the principle of the third generation is given.
The interests of CRONE control design are multiple.
The use of fractional non-integer differentiation permits
to define the open-loop transfer function with few high-
level parameters. The optimization problem which leads
to the optimal transfer function to meet the specifica-
tions is thus easier to solve. Moreover, CRONE control
design takes into account the plant genuine structured
uncertainty domains and not the uncertainty domains
given by norms like HN designs. As it is thus less
conservative, better performance can be obtained
(Landau, Rey, Karimi, Voda, & Franco, 1995).
CRONE control design has already been applied to
unstable or non-minimum-phase plants, plants with
bending modes, and discrete-time control problems
(Oustaloup, Mathieu, & Lanusse, 1995).

The third generation CRONE method is based on a
particular Nichols locus called a generalized template

and defined by an any-direction straight line segment
around gain cross-over frequency ocg (Fig. 7). This
generalized template is based on the real part (with
respect to imaginary unit i denoted R=i) of fractional
non-integer integration (Oustaloup, Levron, Nanot, &
Mathieu, 2000):

bðsÞ ¼ cosh b
p
2

� �h i�1

R=i
ocg

s

� �nh i
; ð32Þ

with n ¼ a þ ibACi and s ¼ sþ joACj : In the Nichols
chart at frequency ocg, the real order a determines the
phase placement of the template, and then the imaginary
order b determines its angle to the vertical.

In the version of third generation CRONE control
design used in this article, the open-loop transfer
function defined for the nominal state of the plant,
b0ðsÞ; takes into account the control specifications at low
and high frequencies and a set of band-limited general-
ized templates around resonant frequency or: Thus b0ðsÞ
is defined by

b0ðsÞ ¼K
o�N�

s
þ 1

� �nl YNþ

�N�

1þ s=okþ1

1þ s=ok

� �ak

� R=i Ck

1þ s=okþ1

1þ s=ok

� �ibk

" # !�signðbkÞ

�
1

ð1þ s=oNþþ1Þ
nh
; ð33Þ

where

C0 ¼ ½ð1þ o2
r=o

2
0Þ=ð1þ o2

r=o
2
1Þ	

1=2 and

Ck ¼ ½okþ1=ok	1=2 for ka0: ð34Þ

Fig. 7. Representation in the Nichols chart of the generalized template by an any-direction straight line segment.
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K ensures a gain of 0 dB at ocg; the integer order nl

fixes the steady state behavior of the closed-loop system
at low frequencies, and the value of the integer order nh

has to be chosen equal to or greater than the high
frequency order of the plant.

CRONE control-system design guarantees the robust-
ness of both stability margins and performance, and
particularly the robustness of the maximum M of the
complementary sensitivity function magnitude. Let Mr

be the required magnitude peak of the complementary
sensitivity function for the nominal parametric state of
the plant. An indefinite number of open-loop Nichols
locus can tangent the Mr Nichols magnitude contour.
Also, for perturbed plants, parametric variations lead to
variations of M: Thus, an open-loop Nichols locus is
defined as optimal if the generalized template around or

tangents the Mr Nichols magnitude contour for the
nominal state and if it minimizes the variations of M for
the other parametric states. By minimizing the cost
function J ¼ ðMmax � MrÞ

2 where Mmax is the maximal
value of magnitude peaks M; the optimal open-loop
Nichols locus positions the uncertainty domains cor-
rectly, so that they overlap the low stability margin areas
as little as possible. The minimization of J is carried out
under a set of shaping constraints on the four usual
sensitivity functions. Once the optimal open-loop
Nichols locus is obtained, the fractional controller
Cf ðsÞ is deduced from the ratio of b0ðsÞ to the nominal
plant function transfer. The design of the achievable
controller consists in replacing Cf ðsÞ by a rational
order controller CrðsÞ which has the same frequency
response.

5.2. Discrete-time design for the electrohydraulic system

Fig. 8 shows the control-system structure with an
input–output linearizing feedback (grey tint zone) and a
CRONE controller feedback. As the control system is
implemented numerically, and as CRONE design is a
continuous frequency approach, the discrete-time con-
trol-system design problem is transformed into a
pseudo-continuous problem using the bilinear w-trans-

formation defined by:

z�1 ¼
1� w

1þ w
with w ¼ jv and v ¼ tan

oTs

2

� �

where Ts is the 1ms sample period.
So the open-loop transfer function to be optimized is:

b0ðwÞ ¼K
v�N�

w
þ 1

� �nl YNþ

�N�

1þ w=vkþ1

1þ w=vk

� �ak

� R=i Ck

1þ w=vkþ1

1þ w=vk

� �ibk

" # !�signðbkÞ

�
f ðwÞ

ð1þ w=vNþþ1Þ
nh
; ð35Þ

where f ðwÞ is a function that takes into account plant
right half-plane zeros which appear when the bilinear w-
transformation is applied. For this electrohydraulic
system,

f ðwÞ ¼ ð1� wÞ 1�
w

1:26685

� �
:

Here, optimization uses Nþ ¼ N� ¼ 1; so a set of three
band-limited generalized templates is used. The beha-
vior of the open-loop transfer function at low and high
frequencies is fixed with: nl ¼ 1 and nh ¼ 4: The required
magnitude peak Mr chosen for the nominal plant is
1.2 dB. The constraints on the sensitivity functions are
given by:

* the maximum plant input (100mA),
* the Fourier transform of the required trajectory,
* the maximum magnitude Tmax of the complementary

sensitivity function set at 3 dB,
* the maximum magnitude Smax of the sensitivity

function set at 6 dB.

5.3. Simulation results

Fig. 9 shows the optimal open-loop Nichols locus.
The optimized parameters are: vr ¼ 0:07; v�1 ¼ 0:002;
v0 ¼ 0:03; v1 ¼ 0:05; v2 ¼ 0:38; a�1 ¼ 1; a1 ¼ 0:5; b�1 ¼
0; b1 ¼ 2; Tmax ¼ 1:54 dB and Smax ¼ 5:7 dB:

output  vCrone

controller

C(s)

input  +

              _
∆(X)-1

∆ο(X)

Σαiv
(i)

e u
ku

  +

       _

Electrohydraulic

system

Fig. 8. Control system structure.
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The other parameters, computed from the optimized
ones, are: K ¼ 18:5; a0 ¼ �2 and b0 ¼ �3:8: The pseu-
do-continuous rational controller is then defined by

CrðwÞ ¼ 7:08e�4 1þ
w

0:01

� �
1þ

w

0:15

� �
� 1þ 5:56w þ

w2

0:0324

� �
1þ 1:07w þ

w2

0:0784

� �

� 1þ
w

2:6

� �
w�1 1þ

w

0:02

� ��1

1þ
w

0:05

� ��1

� 1þ
w

1:2

� ��1

ð1þ 1:167wþÞ 1þ 1:11w þ
w2

3:24

� �

� 1þ
w

18

� ��1

:

ð36Þ

The discrete-time controller Cðz�1Þ is obtained from
CrðwÞ using the inverse w-transformation defined above.

Results are presented from a simulation of the
electrohydraulic system. So that the simulation is nearer
to reality as possible, the nonlinear friction force of the
hydraulic cylinder is modeled by a 700N static friction,
a 500N coulomb friction and a Stribeck parameter vs

equal to 0.5m/s. Moreover, by referring to some sensors
data-sheets, noise have been added to the sensor
measurements:

* for the acceleration, noise is 0.24mg and thermal zero
offset is 2mg/1C;

* for the pressure transducers, noise is 60000 Pa and
thermal zero offset is 12000 Pa/1C;

* for the displacement transducer, thermal zero offset is
0.075mm/1C.

* for the velocity transducer, noise is 0.1mm/s and
thermal zero offset is 0.55mm/s/1C.

Fig. 11a presents the simulated output v obtained with
a control-system including the CRONE controller

(Fig. 10a) or a common PID controller (Fig. 10b). The
PID controller is computed to ensure an open-loop gain
crossover pseudo-frequency vr as big as possible with a
gain-margin of 6 dB at least. Its expression is:

CPIDðwÞ ¼
5� 10�4

w 1þ w=0:2
" #: ð37Þ

The CRONE controller gives better results. It permits
to have a quicker response by taking into account plant
right half-plane zeros and model’s uncertainty. Fig. 11b
presents the simulated output for three different
structures and shows that the cylinder rod can track
the trajectory whatever the structure. For the structure
with the maximal values, Fig. 12a shows that the
servovalve input is less than 100mA. The input is not
totally smooth because of the noise. For other loads,
plant inputs are similar. At last, the servovalve
displacement yu is shown on Fig. 12b. yu is positive as
long as the velocity is positive and it happens to be
negative during the remaining time. Thus this assump-
tion for the differentiability of the model is not fully
verified. But it does not seem to prevent the system from
working. The problem of the non-differentiability of the
model is a difficult open problem.

6. Conclusion

The robust control of a nonlinear hydraulic plant can
be designed using both an input–output linearizing
feedback and a linear robust control system. The linear
reference model used by the input–output linearizing
method must be chosen carefully. The advantage of an
input–output linearizing feedback is shown using
Volterra representation and using uncertainty domain
representation in the Nichols chart. Indeed, this
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linearization reduces the effect of the parametric
variations of the plant. Moreover, the linearizing feed-
back can also contain a part of the tracking feedback.
Finally, CRONE control design (based on fractional
differentiation) is used. It takes into account the
uncertainties of the perturbed plant, through a fully
structured description which is less pessimistic than
most of robust control design approaches. Although a
disadvantage of this approach is that it requires state
feedback, it is to be noted, that whereas the process
considered in the paper is exactly input/output feedback
linearizable, the proposed strategy is still efficient when
the process is not exactly linearizable. Indeed, the
remaining nonlinearities are rejected by the velocity
robust feedback.

Final results demonstrate the efficiency of the
proposed control-system design method.
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