253 research outputs found

    Prediction of lithium-ion battery capacity by functional monitoring data using functional principal component analysis

    Get PDF
    Lithium-ion batteries have been a promising energy storage technology for applications such as electronics, automobiles, and smart grids over the years. Extensive research was conducted to improve the prediction of the remaining capacity of the lithium-ion battery. A robust prediction model would improve the battery performance and reliability for forthcoming usage. To develop a data-driven capacity prediction model of lithium-ion batteries most of past studies employed capacity degradation data, yet very few tried using other performance monitoring variables such as temperature, voltage, and current data to estimate and predict the battery capacity. In this thesis, we aim to develop a data-driven model for predicting the capacity of lithium-ion battery adopting functional principal component analysis applied to functional monitoring data of temperature, voltage, and current observations collected from NASA Ames Prognostics Center of Excellence repository. The result of capacity prediction has been substantiated with past studies and obtained root mean square error (RMSE) of 0.009. The proposed data-driven approach performs well to predict the capacity employing functional performance measures over the life span of a lithium-ion battery

    Reliability Study of Battery Lives: A Functional Degradation Analysis Approach

    Full text link
    Renewable energy is critical for combating climate change, whose first step is the storage of electricity generated from renewable energy sources. Li-ion batteries are a popular kind of storage units. Their continuous usage through charge-discharge cycles eventually leads to degradation. This can be visualized in plotting voltage discharge curves (VDCs) over discharge cycles. Studies of battery degradation have mostly concentrated on modeling degradation through one scalar measurement summarizing each VDC. Such simplification of curves can lead to inaccurate predictive models. Here we analyze the degradation of rechargeable Li-ion batteries from a NASA data set through modeling and predicting their full VDCs. With techniques from longitudinal and functional data analysis, we propose a new two-step predictive modeling procedure for functional responses residing on heterogeneous domains. We first predict the shapes and domain end points of VDCs using functional regression models. Then we integrate these predictions to perform a degradation analysis. Our approach is fully functional, allows the incorporation of usage information, produces predictions in a curve form, and thus provides flexibility in the assessment of battery degradation. Through extensive simulation studies and cross-validated data analysis, our approach demonstrates better prediction than the existing approach of modeling degradation directly with aggregated data.Comment: 28 pages,16 figure

    Prognostics and health management for maintenance practitioners - Review, implementation and tools evaluation.

    Get PDF
    In literature, prognostics and health management (PHM) systems have been studied by many researchers from many different engineering fields to increase system reliability, availability, safety and to reduce the maintenance cost of engineering assets. Many works conducted in PHM research concentrate on designing robust and accurate models to assess the health state of components for particular applications to support decision making. Models which involve mathematical interpretations, assumptions and approximations make PHM hard to understand and implement in real world applications, especially by maintenance practitioners in industry. Prior knowledge to implement PHM in complex systems is crucial to building highly reliable systems. To fill this gap and motivate industry practitioners, this paper attempts to provide a comprehensive review on PHM domain and discusses important issues on uncertainty quantification, implementation aspects next to prognostics feature and tool evaluation. In this paper, PHM implementation steps consists of; (1) critical component analysis, (2) appropriate sensor selection for condition monitoring (CM), (3) prognostics feature evaluation under data analysis and (4) prognostics methodology and tool evaluation matrices derived from PHM literature. Besides PHM implementation aspects, this paper also reviews previous and on-going research in high-speed train bogies to highlight problems faced in train industry and emphasize the significance of PHM for further investigations

    Enhanced Gaussian Process Dynamical Models with Knowledge Transfer for Long-term Battery Degradation Forecasting

    Full text link
    Predicting the end-of-life or remaining useful life of batteries in electric vehicles is a critical and challenging problem, predominantly approached in recent years using machine learning to predict the evolution of the state-of-health during repeated cycling. To improve the accuracy of predictive estimates, especially early in the battery lifetime, a number of algorithms have incorporated features that are available from data collected by battery management systems. Unless multiple battery data sets are used for a direct prediction of the end-of-life, which is useful for ball-park estimates, such an approach is infeasible since the features are not known for future cycles. In this paper, we develop a highly-accurate method that can overcome this limitation, by using a modified Gaussian process dynamical model (GPDM). We introduce a kernelised version of GPDM for a more expressive covariance structure between both the observable and latent coordinates. We combine the approach with transfer learning to track the future state-of-health up to end-of-life. The method can incorporate features as different physical observables, without requiring their values beyond the time up to which data is available. Transfer learning is used to improve learning of the hyperparameters using data from similar batteries. The accuracy and superiority of the approach over modern benchmarks algorithms including a Gaussian process model and deep convolutional and recurrent networks are demonstrated on three data sets, particularly at the early stages of the battery lifetime

    Data-driven nonparametric Li-ion battery ageing model aiming at learning from real operation data – Part A : storage operation

    Get PDF
    Conventional Li-ion battery ageing models, such as electrochemical, semi-empirical and empirical models, require a significant amount of time and experimental resources to provide accurate predictions under realistic operating conditions. At the same time, there is significant interest from industry in the introduction of new data collection telemetry technology. This implies the forthcoming availability of a significant amount of real-world battery operation data. In this context, the development of ageing models able to learn from in-field battery operation data is an interesting solution to mitigate the need for exhaustive laboratory testing

    Data-driven nonparametric Li-ion battery ageing model aiming at learning from real operation data - Part B : cycling operation

    Get PDF
    Conventional Li-ion battery ageing models, such as electrochemical, semi-empirical and empirical models, require a significant amount of time and experimental resources to provide accurate predictions under realistic operating conditions. At the same time, there is significant interest from industry in the introduction of new data collection telemetry technology. This implies the forthcoming availability of a significant amount of real-world battery operation data. In this context, the development of ageing models able to learn from in-field battery operation data is an interesting solution to mitigate the need for exhaustive laboratory testing. In a series of two papers, a data-driven ageing model is developed for Li-ion batteries under the Gaussian Process framework. A special emphasis is placed on illustrating the ability of the Gaussian Process model to learn from new data observations, providing more accurate and confident predictions, and extending the operating window of the model. The first paper of the series focussed on the systematic modelling and experimental verification of cell degradation through calendar ageing. Conversantly, this second paper addresses the same research challenge when the cell is electrically cycled. A specific covariance function is composed, tailored for use in a battery ageing application. Over an extensive dataset involving 124 cells tested during more than three years, different training possibilities are contemplated in order to quantify the minimal number of laboratory tests required for the design of an accurate ageing model. A model trained with only 26 tested cells achieves an overall mean-absolute-error of 1.04% in the capacity curve prediction, after being validated under a broad window of both dynamic and static cycling temperatures, Depth-of-Discharge, middle-SOC, charging and discharging C-rates

    Smart Data Selection and Reduction for Electric Vehicle Service Analytics

    Get PDF
    Battery electric vehicles (BEV) are increasingly used in mobility services such as car-sharing. A severe problem with BEV is battery degradation, leading to a reduction of the already very limited range of a BEV. Analytic models are required to determine the impact of service usage to provide guidance on how to drive and charge and also to support service tasks such as predictive maintenance. However, while the increasing number of sensor data in automotive applications allows for more fine-grained model parameterization and better predictive outcomes, in practical settings the amount of storage and transmission bandwidth is limited by technical and economical considerations. By means of a simulation-based analysis, dynamic user behavior is simulated based on real-world driving profiles parameterized by different driver characteristics and ambient conditions. We find that by using a shrinked subset of variables the required storage can be reduced considerably at low costs in terms of only slightly decreased predictive accuracy.

    Combined classification and queuing system optimization approach for enhanced battery system maintainability, A

    Get PDF
    2022 Spring.Includes bibliographical references.Battery systems are used as critical power sources in a wide variety of advanced platforms (e.g., ships, submersibles, aircraft). These platforms undergo unique and extreme mission profiles that necessitate high reliability and maintainability. Battery system failures and non-optimal maintenance strategies have a significant impact on total fleet lifecycle costs and operational capability. Previous research has applied various approaches to improve battery system reliability and maintainability. Machine learning methodologies have applied data-driven and physics-based approaches to model battery decay and predict battery state-of-health, estimation of battery state-of-charge, and prediction of future performance. Queuing theory has been used to optimize battery charging resources ensure service and minimize cost. However, these approaches do not focus on pre-acceptance reliability improvements or platform operational requirements. This research introduces a two-faceted approach for enhancing the overall maintainability of platforms with battery systems as critical components. The first facet is the implementation of an advanced inspection and classification methodology for automating the acceptance/rejection decision for batteries prior to entering service. The purpose of this "pre-screening" step is to increase the reliability of batteries in service prior to deployment. The second facet of the proposed approach is the optimization of several critical maintenance plan design attributes for battery systems. Together, the approach seeks to simultaneously enhance both aspects of maintainability (inherent reliability and cost-effectiveness) for battery systems, with the goal of decreasing total lifecycle cost and increasing operational availability
    corecore