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Abstract
Battery electric vehicles (BEV) are increasingly used

in mobility services such as car-sharing. A severe prob-
lem with BEV is battery degradation, leading to a re-
duction of the already very limited range of a BEV. An-
alytic models are required to determine the impact of
service usage to provide guidance on how to drive and
charge and also to support service tasks such as predic-
tive maintenance. However, while the increasing num-
ber of sensor data in automotive applications allows
for more fine-grained model parameterization and bet-
ter predictive outcomes, in practical settings the amount
of storage and transmission bandwidth is limited by
technical and economical considerations. By means of
a simulation-based analysis, dynamic user behavior is
simulated based on real-world driving profiles param-
eterized by different driver characteristics and ambient
conditions. We find that by using a shrinked subset of
variables the required storage can be reduced consid-
erably at low costs in terms of only slightly decreased
predictive accuracy.

Keywords
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1. Introduction

Battery electric vehicles (BEV) are increasingly used
in mobility services such as car-sharing. Often, these
services are offered and operated by Original Equipment
Manufacturers (OEMs) themselves, taking Drive Now
or Car2Go as examples. OEMs are seeking to reduce
costs, improve quality and customer satisfaction by of-
fering advanced services. Managerial actions are man-
ifold, ranging from guidance and incentive schemes on
how to use a mobility service in a way that extends its

lifetime (thereby exploiting potentials to offer the ser-
vice at lower fees) to predictive maintenance to avoid
service level degradation or even car breakdowns during
service usage.

One primary means of achieving these goals is the
exploitation of the vast amount of on-board data gath-
ered from vehicles in the field through telematics or at
periodic inspections. Vehicle sensor data is acquired
and processed by the respective electronic control unit
(ECU) and on-board-diagnostics (OBD) are performed
for the sake of vehicle design validation and verification,
to identify warranty relevant information and for the de-
tection of system faults. Meeting the requirements for
real-time processing, the ECU is an embedded system,
which has very limited storage capabilities in an order
of magnitude of kB to MB [1]. On the contrary, data
loggers that allow for a recording and storage of sensor
signals with a high frequency, are limited to the devel-
opment phases, and therefore rarely represented in se-
ries vehicles [2], [3]. Overall, the collection of required
sensor signals for the development of new customer ser-
vices is highly limited by the storage capabilities of to-
day’s ECUs used as well as the transmission capacity of
telematics.

Hence, to reveal the potentials of smart data analyt-
ics, intelligent methods are required to extract the infor-
mation from sensor data that is most relevant to a re-
spective descriptive or predictive analytical task. In this
paper we focus on the collection of data of BEVs in the
context of battery degradation.

The propagation of currently available BEVs is
mainly impeded by the storage system - the lithium-ion
battery - which limits range and leads to long recharging
times as well as high costs. Apart from the issues aris-
ing with a new BEV, the battery experiences degradation
with time and cycling. This manifests in a gradually de-
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creasing battery capacity and implicates an irreversible
reduction of battery capacity, i.e. available range. The
progression of battery degradation is highly driven by
the user behavior, in terms of driving, charging and en-
vironmental factors such as the ambient temperature, as
well as the battery management system. Whereas func-
tional dependencies and interactions of degradation rel-
evant variables are not yet fully understood, it is key to
make use of the already large amount of BEVs yet in the
field to overcome this lack of knowledge. Comprehen-
sion of the interplay between dynamic user behavior in a
car sharing scenario, is not only crucial for guarantee de-
signs, but also for the development of services such as
predictive maintenance, eco driving assistance systems
or vehicle to grid (V2G) approaches. Therefore, we pro-
vide decision support for OEMs on how to collect sensor
data for accurate prediction of system states in terms of
capacity fade

The paper is structured as follows. In Section 2 we
provide an overview of relevant literature. Subsequently,
Section 3 introduces our degradation simulation model
and the modeling of user behavior and driving profiles
at different levels of detail and data selected. In Section
4 we then provide and discuss the simulation outcomes,
in particular the influence of parameter values on degra-
dation. We close with a conclusion and overall recom-
mendation in Section 5 and 6.

2. Related Work

In this Section we will overview services in electric
mobility and review work on battery degradation and its
main drivers. We will then briefly review approaches to
reduce the amount of sensor data.

2.1 Services in the Electric Mobility Sector

In the near future, many vehicles will be transmit-
ting data stored in the ECU on-board by telematics.
This development is supported by the EU-guideline for
eCall that needs to be fulfilled by 2018 [4] and provides
the technical prerequisits for many other data based ap-
proaches.

These include predictive maintenance strategies,
which aims at forecasting of failure rates of technical
devices, guarantee and service design [5]. As a result
the occurrence of faults is minimized and consumer sat-
isfaction is increased. Furthermore, location based ser-
vices benefit from the increasing amout of data and in-
formation, such as locating or placement of charging sta-
tions, routing, fleet management and car sharing [6].

Literature in the field of smart charging strategies fo-
cuses on the flexibility of the EVs storage system while

in idle mode, but mostly builds upon data from vehicles
with an internal combustion engine. Strategies that aim
at balancing the energy grid (vehicle to grid - V2G) [7],
[8] or degradation optimized charging strategies [9] will
considerably benefit from a large database arising from
EV currently in the field.

2.2 Drivers of Li-Ion Battery Degradation

Li-Ion batteries have become the standard storage
system for currently available BEVs, due to their high
energy density, low self-discharge rate and not exhibit-
ing a memory effect. However, the battery is heavy,
costly and furthermore degradation is a severe problem
[10].

Battery degradation occurs under both cycling and
storage, as cyclic and calendaric aging, respectively
[11]. Both types of aging lead to a decrease of the ini-
tially available capacity denoted by the state of health
(SoH). SoH is typically a relative measure correspond-
ing to the ratio between current capacity and the capacity
of a new cell (both at full charge). For automotive appli-
cations, the end of life (EoL) for batteries is frequently
defined at 80% of the initial capacity (SoH = 80%) [11],
[12]. The time and distance covered before the thresh-
old is reached, varies considerably depending on the us-
age profile. Besides the capacity decline, degradation
exhibits an increase of the internal resistance, which af-
fects the power draw capabilities, required e.g. for ac-
celeration. Since the capacity decline is especially chal-
lenging for users, needing to deal with the limited range
in every day situations, this paper is focused on the ca-
pacity fade.

From accelerated aging tests, the main degradation
drivers have been analyzed. Calendaric aging has been
found to be driven by the state of charge (SoC) and tem-
perature (T). Many analyses have revealed a doubling
of the degradation when temperature increases by 10◦C.
This relationship is usually described by the Arrhenius
law (∼ exp(− Ea

RT )) (with the universal gas constant R
and the activation Energy for the capacity fade process
Ea) (for example: [12], [13], [14]). Recapitulatory, cal-
endaric aging leads to a monotonically declining capac-
ity with time, while the decline is typically fostered with
higher temperatures and higher SoCs [11].

Cyclic aging leads to a monotonic decline of the ini-
tially available capacity with the charge throughput (Q),
i.e. the accumulated ampere-hours the battery has ex-
perienced. The functional relationship is frequently de-
scribed by a square root function (

√
Q) [13], [14]. A

high depth of discharge (DoD) – the SoC range in which
cycling occurs – increases degradation rate, while a low
DoD around a medium SoC (SoC) is expected to de-

1593



crease degradation rate [11], [10]. It has been shown by
[15] that operation is still possible, but beyond reaching
the EoL criterion, degradation rate may increase consid-
erably [12].

Accelerated aging tests constitute a standard method
to evaluate battery degradation, but lack to cover the dy-
namic load that a battery experiences in real world ap-
plications. Data from the field allows to overcome this
gap of information. However, the potential vast amount
of data from BEVs in the field yields to issues with on-
board data storage and transmission. Therefore, in the
next subsection we will briefly review work on different
approaches for the reduction of sensor data.

As aforementioned, to estimate or predict battery
degradation, sensor data is required to gather the re-
quired parameterization of the respective models. These
data needs, however, to be compressed for technical and
economical reasons, which impacts the accuracy of a
model.

2.3 Sensor Data Acquisition and Reduc-
tion

Due to increasing numbers of sensors in different
fields such as the automotive industry, industrial pro-
duction, health sector, mobile devices, fitness and life
tracking (quantified self) [16], suitable data acquisition
and processing is becoming increasingly relevant in or-
der to make use of the data. However, data reduction is
necessary to meet the challenges of energy consumption
of sensors at high sampling frequencies, the communi-
cations costs that arise when data is transmitted to the
base station and the limited storage on embedded sys-
tems [17], [3]. Reducing the amount of data can be
achieved with different approaches of supervised and
unsupervised approaches. Reduction of data (unsuper-
vised) can be achieved with principal component analy-
sis and Fourier- and Wavelet-transformations.

In contrast, if the goal is to explain or predict a par-
ticular target variable –in our realm the capacity fade–
using the remaining data variables as explanatory fea-
tures, the nature of the data reduction problem changes.
Here, we are in a regression setting where the loss func-
tion is solely related to error when approximating or pre-
dicting the target variable (supervised reduction of infor-
mation). Here, for instance, methods to select relevant
subsets of sensor-signals are advised, using for example
shrinkage methods such as the Lasso regression. Also,
a coarser-grained representation of the explanatory vari-
ables might be beneficial, given a low increase of pre-
dictive error. Filtering data by means of sampling tech-
niques has also been successfully applied in regression
settings [17].

Degradation 
Model

EV User 
Behavior / 

Battery Management

I, SoC, Q, T
SoHc

Unknown 
Functional 

Dependencies and 
Interactions

EV User 
Behavior / 

Battery Management

I, SoC, Q, T
SoHc

Measurable Variables

a)

b)

Figure 1: Battery stress factors follow from user behav-
ior and battery management system and the correspond-
ing SoHC results from the degradation model.

Aiming at a predicting the battery degradation as ac-
curate as possible, under the given restrictions of on-
board storage as well as transmission capabilities, trans-
formations and selection of relevant variables needs to
be performed and evaluated. To evaluate the trade-off
between predictive accuracy and sampled and shrinked
subsets of features, we introduce a simulation model
based on real-word driving profiles and a degradation
model from literature in the following Section.

3. Degradation Simulation Model

Figure 1a indicates how battery stress factors, such
as I, SoC (and correspondingly DoD, SoC), Q and T re-
sulting from a certain user behavior and battery manage-
ment system strategy are input to a certain degradation
model.

The degradation model of the respective type of bat-
tery reacts on the stress factors and outputs the respec-
tive SoH in terms of capacity (SoHC). Figure 1b depicts
the measurable variables, i.e. stress factors and SoHC.
The degradation model, however is not known in all de-
tail for currently available BEVs.

The following subsections detail the simulation of re-
alistic BEV user behavior, the parameterization of driver
types and ambient conditions as well as the degradation
model.

3.1 Trip Generation

The simulation of user behavior, throughout the ex-
pected battery life of several years, requires a data set
of driving profiles of such length with high resolution
(acquired by data-loggers). However, to the best of
our knowledge, such a dataset is not publicly available.
Therefore, our analyses are based on a combination and
extension of data from the German mobility panel [18]
as well as GPS data logs from the publicly available
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Uber Data Set including 25,000 taxi trips within the San
Francisco Bay area [19].

The German mobility panel (MOP) is based on the
reporting of driving behavior in terms of distance trav-
elled and vehicle location of more than 17.000 house-
holds over a period of one week with a resolution of 15
minutes. The mobility panel is separated by the socio-
economic background of the participants, while in this
paper we focus on the most divers groups of full-time
employees and retired. Nine different locations are in-
cluded in the MOP dataset: home, work, businesstrip,
company trainingcenter, leisure, second home, service,
shopping and vacation.

In order to create driving profiles throughout the life-
time of a BEV battery, the one week MOP driving pro-
files need to be extended to several years. Therefore,
based on the MOP dataset, three empirical distributions
are created.

Duration of a stay: Based on all one week MOP
profiles, an empirical distribution is created for each 15
minute time slot of a day, differentiated by weekdays
and weekends, resulting in 2 ·4 ·24 = 192 tables for any
of nine available locations.

Destination: Similar to the approach for duration of
stay 2 · 96 tables are created for weekdays and week-
ends. Furthermore, the empirical, relative frequencies
of occurrences of trips from a start location to an end
location are added up to empirical distributions.

Distances: For each start and end location (9 · 9),
where start and end location might be identical, relative
frequencies are cumulated to empirical distributions.

With the start of the simulation each specific trip is
assigned a distance by drawing a random number. That
distance remains constant for a given amount of time,
typically one year. We choose this design to account for
the constancy of many daily distances, for example the
trip from home to work or shopping, assumed to be typ-
ically similar for a certain period of time. The duration
of a stay as well as the next destination are being chosen
randomly after each trip, based on the empirical distri-
butions. However, SoC restrictions are being taken into
account, when a driving sequence is calculated and it is
only allowed to charge the vehicle at defined locations
according to the charging strategy (cf. section 3.2).

The driving profile, in terms of velocity, is deter-
mined based on the Uber data set. Therefore, GPS logs
are transformed to distances, with a resolution of one
second. The resulting speed profiles are then clustered
based on their specific speed and acceleration levels to
create different levels of aggression. Increased maxi-
mum speed and an increased gradient of speed (acceler-
ation) correspond to increased aggressiveness.

3.2 Driving Profile Parameterization

The modeling of realistic user behavior and temper-
ature is crucial to solve the aim of feature selection.
Therefore, table 1 depicts parameters and values used
to generate different driving profiles.

T is coupled to the ambient temperature, but may dif-
fer in case of cooling or high current load. In this anal-
ysis we assume the ambient temperature to correspond
to the temperature on cell level. The employed temper-
ature profiles are based on the year 2015 of the cities of
Munich, Madrid and Phoenix, with a resolution of one
hour and are repeated annually [20, 21, 22].

The battery current I depends on the driver aggres-
siveness and topological conditions which lead to differ-
ent accelerations as well as the chosen charging power,
in which fast charging corresponds to high currents.
Here, we focus on driver aggressiveness which is clus-
tered in five different groups as described in section 3.1.
Charging current is considered constant and rather low,
assuming 3.6 kW which corresponds to the power of
a standard home socket. High power, fast charging is
not considered in this analysis, since to the best of our
knowledge no degradation model exists that includes
current as a parameter (compare section 3.3).

Implicitly, driver aggressiveness impacts Q, which
corresponds to the cumulated Ah-throughput. However,
charge throughput is primarily related on the distance
travelled.

SoC, DoD and SoC depend on the overall driving and
charging behavior of the user in terms of distance trav-
elled, energy consumption, timing of trips and charg-
ing. Distance travelled is defined by trip generation as
described in section 3.1. Furthermore, we differentiate
between four different charging strategies. Just-in-time
charging corresponds to a strategy for charging the BEV
as late as possible, whereat all trips need to be feasi-
ble with the available SoC. AFAP (as fast as possible)
charging, corresponds to a maximization of SoC. With
corridor charging two bounds are defined for the start
and end of charging, lower bound charging instead only
considers a lower bound.

In total, subsequent analysis are based on
(2

1

)
·
(5

1

)
·(4

1

)
·
(3

1

)
= 120 different combinations of the parameters

considered.

Table 1: Parameters and values for driving profile gen-
eration.

Parameters Values

driver type Fulltime; Retired
Aggressiveness cluster 1; 2; 3; 4; 5
Charging strategy Just-in-Time; AFAP; Corridor; Lower Bound
Ambient temperature Munich; Madrid; Phoenix
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3.3 Degradation Model

This paper is not supposed to provide an exact or
more detailed understanding of battery degradation. In-
stead, we provide the prerequisites for subsequent re-
search by identifying a suitable representation of degra-
dation relevant variables, by meeting the constraints of
storage and transmission capacities. Furthermore, this
paper presents methods on how to transform and process
BEV degradation related variables in order to achieve a
high predictive accuracy.

In a real world scenario the case of Figure 1b ap-
plies. The variables arising from user behavior bounded
by the battery management system as well as the result-
ing SoHc are measurable, but the underlying degrada-
tion model with it’s functional dependencies and inter-
actions are unknown. To date no real-world measure-
ments are available due to the novelty of the technol-
ogy. Therefore, a degradation model from the literature
is employed in order to simulate the respective ground
truth of SoHc based on simulations of user behavior.

Representing usage based degradation, a degradation
model needs to be found that includes all relevant vari-
ables of calendaric (t, T and SoC) and cyclic aging (Q,
DoD, SoC and I). Several models have been reported
in literature, that are based on accelerated aging tests of
cells. Whereas all models presented here, include calen-
daric degradation, the cyclic term does either not include
SoC [23], [24] or does not include DoD [25], [26]. How-
ever, no model, to the best of our knowledge, exists that
includes the current I, in terms of C-rate (a C-rate of 1
C corresponds to the current required to fully charge the
battery within the time of one hour, e.g. the 1 C rate of
a 2 Ah battery equals 2 A).

The degradation model developed by [14] includes
all relevant variables except for C-rate, and is therefore
found to be most useful to simulate the usage related
degradation progress. The model consists of a calen-
daric (equation (2)) as well as a cyclic component (equa-
tion (3)), leading to a monotonically decline of the ini-
tially available capacity with t0.75 and the square root of
Q, respectively. Equation (1) depicts the relationship.

Capacity = 1−αcal(T,v) · t0.75 (1)

−βcyc(v,DoD) ·
√

Q

αcal(T,v) = (7.543 · v−23.75) ·106e−
6976K

T (2)

βcyc(v,DoD) = 7.348 ·10−3(v−3.667)2+ (3)

7.6 ·10−4 +4.081 ·10−3DoD

The degradation model is based on cell level, there-
fore SoC and SoC correspond to the cell voltage v and v,
which we assume to be linearly mapped ([0-100%] →
[3.2 - 4.1 V]). The temperature is measured in Kelvin
(K).

The battery capacity deployed in the analyses of [14]
are much lower (2.15 Ah) than that of a typical traction
battery in a BEV (in this work we assume a battery ca-
pacity of 18.8 kWh - Table 2). However, interconnect-
ing many cells in series, results in an overall capacity,
meeting the requirements for a traction battery. In total
18800Wh/(2.15Ah ·3.6V )≈ 2430 cells need to be con-
nected in series to model the considered traction battery
of 18.8 kWh. Practically, the battery stress factors are
divided by the number of cells.

3.4 Simulated Data Set

The energy required for propulsion results from sum-
ming the energy required for acceleration, rolling and air
resistance ([10]) and we assume the power drawn from
the battery corresponds to the power required to propel
the vehicle Pbat = Ppropulsion.

Vehicle specific parameters required for deriving the
battery current from a driving profile (velocity) include
drag coefficient cw, vehicle frontal area A, vehicle mass
m, nominal battery voltage Unom and battery capacity
CBat . Furthermore, constants are required and include
air density ρ, rolling resistance coefficient cr and grav-
itational constant g. Table 2 depicts the parameters and
constants.

Ppropulsion = [Facc +Fdrag +Froll ] ·V (4)

Facc = m ·a (5)

Fdrag =
ρ

2
cw ·A ·V 2(t)

Froll = cr ·m ·g

The battery current finally results from Ohm’s law
(I = P/U).

Table 2: Assumed vehicle specific parameters and con-
stants.

Parameters Constants

cw 0.29 ρ ρ(T ) kg
m3

A 2.38 m2 cr 0.013
m 1195 kg g 9.81 m

s2
Unom 360 V
CBat 18.8 kWh

The resulting battery current is derived from trips
(chapter 3.1, i.e. velocity and acceleration) and is di-
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vided by the number of cells as described in chapter
3.3. The SoC results from ampere-hour counting based
on charge (positive) and discharge (negative) battery
current. Similarly, the charging throughput is derived,
employing absolute values for ampere-hour counting.
Whereas, the degradation model derived from [14] de-
ploys the SoC in terms of the cell voltage v, the SoC
is assumed to be linearly related to v and mapped from
[0,100]%→ [3.2,4.1] V, with 3.2 and 4.1 V correspond-
ing to the upper and lower cell voltage bounds, respec-
tively.

SoC and DoD are derived from SoC. However, one
cycle is defined such that it contains at least one time slot
of driving as well as charging, and starts/ends before the
next trip. DoD corresponds to the SoC delta within one
cycle and SoC is calculated as the min(SoC)+DoD/2
within a cycle.

The procedure of trip generation in each time slot,
followed by deriving the battery current, and the calcu-
lation of battery degradation is repeated until the EoL
criterion of 80% is reached. Cumulating time slots cor-
responds to the respective battery age t. The battery tem-
perature is assumed to correspond to the ambient tem-
perature (T ).

An overview of the simulated dataset of 120 com-
binations of the parameters charging strategy, drivers
occupation, level of aggressiveness and temperature is
given in the descriptive analysis of the following Sec-
tion.

3.5 Descriptive Analysis

On average the lifetime of a car is 10 years and it cov-
ers 80,307 km, corresponding to 3,931 Ah of through-
put. Comparing the covered distance and the overall
battery lifetime at the point of reaching the EoL crite-
rion, Figure 2 depicts considerable differences compar-
ing full-time employees and retired. For each parameter
combination that includes ’retired’, the covered distance
at the same lifetime is in nearly all cases lower than that
of ’employees’. For example a lifetime of 10 years leads
to approximately 50,000 km covered for ’retired’, and
approximately 100,000 km for ’employees’. This find-
ing becomes especially interesting when thinking of the
guarantee design of currently available BEVs. The guar-
antee that OEMs currently provide, is expected at least
with 5-8 years (Nissan Leaf 24 kWh: 5 years or 100,000
km, www.nissanusa.com; BMW i3 18.8 kWh: 8 years or
100.000 km, www.bmw.com; Tesla Model S 85 kWh: 8
years and no range limitation, www.teslamotors.com).

Most OEMs tailor the guarantee on the battery’s age
or covered distance, but as can be seen from Figure 2 the
variables considerably diverge depending on the driver

Figure 2: Relationship between the lifetime and the dis-
tance covered of each parameter combination at the EoL
criterion.

type. From the perspective of a full-employed person,
it would be more useful to consider a BEV for purchase
that guarantees a certain battery lifetime instead of a dis-
tance covered. The contrary applies for retired persons.

Analyzing the influence of each parameter value,
two linear regression models with categorical vari-
ables have been fitted according to equation 6, for
the lifetime f (EoL) = t(EoL) corresponding to coef-
ficients β0, ...,β4 and the distance covered f (EoL) =
Distance(EoL), corresponding to coefficients β̃0, ..., β̃4.

f (EoL) =β0+ (6)
β1 ·DriverType+

β2 ·ChargingStrategy+

β3 ·AggressivenessCluster+

β4 ·T

Table 3: Combination of parameters and the effect on
degradation in terms of lifetime in years and distance
covered in km.

t(EoL) Distance(EoL)
Coefficient Estimate β Estimate β̃

Intercept 19.01∗∗∗ 172180∗∗∗
ChargingStrategy:AFAP −10.59∗∗∗ −68182∗∗∗
ChargingStrategy:Corridor −8.54∗∗∗ −53599∗∗∗
ChargingStrategy:LowerBound 11.09∗∗∗ −72955∗∗∗
AggressivenessCluster:2 −1.69∗∗ −24501∗∗∗
AggressivenessCluster:3 −0.15(ns) −8026∗∗
AggressivenessCluster:4 0.62(ns) 2200(ns)
AggressivenessCluster:5 −0.14(ns) −3507(ns)
DriverType:Retired 4.0∗∗∗ −24477∗∗∗
T:Madrid −2.74∗∗∗ −21248∗∗∗
T:Phoenix −6.67∗∗∗ −51304∗∗∗

The intercept β0 and β̃0 of both presented regressions
with categorical variables corresponds to the reference
scenario with ChargingStrategy: Just-inTime, Aggres-
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sivenessCluster: 1, DriverType: Fulltime and the tem-
perature T: Munich (Table 3). Coming from the refer-
ence scenario with an average lifetime of 19.01 years,
battery lifetime is reduced significantly by 10.59 and
8.54 years for AFAP and Corridor charging, respec-
tively. On the contrary, Lower bound charging signifi-
cantly increases lifetime by 11.09 years. Comparing Ag-
gressivenessClusters indicates that only cluster 2 yields
significant reduction of lifetime of 1.69 years, affecting
the lifetime much less than the ChargingStrategy. Re-
tired on average lead to an increase in lifetime of 4 years
compared to fulltime profiles. Both temperature profiles
derived from the ambient temperature in Madrid and
Phoenix lead to a decrease of lifetime of 2.74 and 6.67
years, respectively. Looking at the distance covered, any
parameter combination deviating from the reference sce-
nario leads to a reduction of the distance throughout the
battery’s lifetime, as indicated by Table 3. However, co-
efficients for AggressivenessClusters 4 and 5 are non-
significant.

In summary, battery lifetime and distance covered
before the EoL criterion is reached differs depending
on the driver behavior and temperature. This is sig-
nificantly depending and mainly driven by the charg-
ing strategy. In real-world applications it is most likely
to observe AFAP charging [27] and currently hardly
any smart charging strategy is applied in a large scale.
Therefore, it is unlikely to observe large spreads of life-
time as compared to our simulation. However, to the
best of our knowledge, no broad results of empirical
degradation in EVs have been reported in literature.

After providing descriptive analysis (in-sample),
we aim at the evaluation of predictive accuracy (out-
of-sample) and evaluate different transformations and
shrinkage of features as well as the required data vol-
ume in the following.

4. Prediction Model

In this Section transformed, selected and compressed
versions of relevant stress factors are evaluated on their
predictive accuracy on battery degradation.

As compared to the previous section, not only the
time and distance covered to EoL is supposed to be ex-
plained, but instead functional dependencies are seeked.

In order to predict the SoHC progression we differen-
tiate between two approaches. First, the dependent vari-
able corresponds to the monotonously decreasing SoHC
progress. Second, the delta of SoHC between two subse-
quent time slots is used as the dependent variable. In the
following the first and second approach are called global
and delta model, respectively.

The features created from the trip generation, as

Table 4: Complete feature set. (*) including minimum,
maximum, mean, median, 25 and 75% quartiles

Feature Description Frequency
t Battery age trip
disttotal Covered distance trip
Ntrip Total number of trips trip
ftrip Frequency of trips in trips per year trip
Q Charge throughput trip
DoD Depth of discharge per cycle cycle
SoC Average voltage per cycle cycle
locbe f oreTrip Location before trip trip
SoCbe f oreTrip SoC before trip trip
SoCa f terTrip SoC after trip trip
disttrip Length of trip in km trip
distcycle Distance covered per cycle in km cycle
QperMeter Average consumption per meter trip
QperTrip Average consumption per trip trip
SoCrest SoC during rest trip
SoCtrip SoC during driving trip
SoC∆ SoC consumption per trip trip
Trest Average Temperature during rest (*) trip
Tcharge Average temperature during charging (*) cycle
V Average velocity (*) trip
acc Average acceleration (*) trip

summarized in Section 3.1, and the thereupon resulting
40 different battery stress factors are shown in Table 4.

In order to evaluate the predictive accuracy of fea-
tures described in Table 4 linear regression models are
employed. A 10-fold cross validation was carried out to
evaluate the out-of-sample prediction error. Models are
compared based on their normalized root mean squared
deviation (NRMSD).

For variable selection and shrinkage the variance in-
flation factor (VIF), Lasso, Ridge and Elastic Net regres-
sion (ENR) is applied. VIF is a measure that identifies
collinearity and features are excluded from the model
in case the VIF is greater than 10. Lasso is a method
for coefficient estimation comparable to ordinary least
squares (OLS). However, instead of just minimizing the
residual sum of squares as done in OLS, a penalty is put
on the sum of L1-norms of coefficients. The penalty is
chosen, such that the test error is minimal. Coefficients
that are shrunken to zeros correspond to features that are
excluded from the model. Ridge regression is compara-
ble to Lasso, and coefficients are shrunken towards zero
but will not become exactly zero, and no feature selec-
tion is performed. ENR is a combination between Lasso
and Ridge Regression and therefore performs feature se-
lection.

Furthermore variable transformation and selection of
linear combinations of variables is performed using a
combination of principal component analysis and VIF.

Each models predictive accuracy as well as the num-
ber of features or dimensions (PCA) is depicted in Ta-
ble 5. Comparing global regression models, none of the
shrinked or in dimensionality reduced models outper-
form the full model – containing 39 features in total ac-
cording to Table 4 – in terms of test NRMSD. However,
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Global Lasso and Global Elastic result in a comparable
predictive accuracy compared to the Global model, re-
quiring only 24 and 27 out of 39 features, respectively.
Similar to the observations for global regression mod-
els, Delta Lasso and Delta Elastic result in low RMSD
but do not outperform the Delta model including all 40
features.

Delta models are based on the differentiated and log-
transformed SoHc. NRMSD allows for the comparison
of results in different scales, therefore NRMSD allows
us to compare global and delta models. However, based
on NRMSD delta models overall show better predictive
performance as compared to global models. However,
Delta Lasso and Delta ENR models result in NRMSD
very close to that of the full model and require only a
subset of 32 and 33 variables of the originally 40 vari-
ables.

Table 5: Test error (derived from cross validation) for
different regression approaches.

Modell Features/ RMSD NRMSD
Dimensions

Global 39 0.0097 0.0486
Global VIF 15 0.0131 0.0657
Global Lasso 24 0.0105 0.0521
Global Ridge 39 0.0128 0.0640
Global Elastic 27 0.0105 0.0524
Global PCA 12 0.0164 0.0822
Global Cycle 39 0.0143 0.0531
Global Cycle VIF 15 0.0203 0.1017
Global Cycle Lasso 29 0.0149 0.0748
Global Cycle Ridge 39 0.0177 0.0885
Global Cycle Elastic 30 0.0150 0.0750
Global Cycle PCA 13 0.0268 0.1344
Delta 40 0.3909 0.0418
Delta VIF 23 0.3942 0.0422
Delta Lasso 32 0.3912 0.0418
Delta Ridge 40 0.4025 0.0430
Delta Elastic 33 0.3912 0.0418
Delta PCA 15 0.6609 0.0707

Global models generally are based on features gener-
ated per trip. Delta models, however, imply cycle based
feature updates. According to the definition of a cycle,
serval trips can be included within one cycle and the up-
date frequency is reduced. Therefore, also global mod-
els are evaluated by using a cycle based feature update
frequency, as depicted in Table 5, but did not outperform
delta or global models.

The models presented in Table 5 either include all
variables derived from our simulation or are based on
shirinked subset of variables or linear combinations of
models with reduced dimensionality. However, shrinked
models that underwent Lasso regression or variable se-
lection using VIF, do no longer include all variables.
These models allow for a reduction of signal recording
and are therefore compared to relevant stress factors that
were used for simulation in Table 6.

Table 6: Remaining features in each prediction model
(*Distance per cycle, only relevant for Delta Models)
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t x x x x x x x x
trest x x x x x x x
disttotal x x x x x x x
Ntrip x x x x
ftrip x x x x x x x
Q x x x x x x x x
DoD x x x x x x x x
SoC x x x x x
SoCbe f oreTrip x x x x x
SoCa f terTrip x x x x
disttrip x x x x x x x x x
distcycle* - - x - - x - - x
QperMeter x x x x x
QperTrip x x x x x x
SoCrest x x x x x
SoC∆ x x x x
Trest x x x x x x x x x
Tcharge x x x x x x x
V x x x x x x x x x
acc x x x x x x x x x

Each model that underwent variables selection by us-
ing VIF allows to leave out variables related to one or
more different, relevant stress factors. The Delta Lasso –
the model performing best in terms of NRMSD – explic-
itly includes the all features except for: SoCbe f oreTrip,
the mean and 75% quartile of Trest , the 25% and 75%
quartiles, median and mean of Tcharge and the 25%
quartile of acc. SoCbe f oreTrip is highly correlated with
SoCa f terTrip (0.92), SoCrest (0.85) and SoCTrip, such that
the information content is reduced. The statistical mo-
ments of Trest and Tcharge are correlated up to 0.99 such
that the selection of moments it not surprising. The 25%
quartile of acc does not show an absolute correlation
greater than 0.67, but might often be close to zero, ex-
plaining the low predictive relevance of this feature. In
order to allow for a high predictive accuracy considering
a minimum amount of features, it is recommended to fo-
cus of the presented, shrinked feature set for degradation
prediction purposes.

After evaluating the predictive accuracy of different
reduced sets of features, the required data volume needs
to be analyzed.

4.1 Data Volume Estimation

By now, we have evaluated the predictive accuracy
of different models given the number of predictors or
dimensions included in the model. However, we aim at
minimizing the required storage that the underlying sub-
set or representation of variables requires, and evaluate
the data volume in this Section.

Data reduction is initially achieved by sampling
based on trips or cycles. Assuming a sampling of 1
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Hz of four relevant signals (SoC, I,T,Q) corresponds
to (4 · 24 · 60 · 60s · 1Hz = 354600) data points per day.
Having 2.4 and 1.7 trips per day for fulltime employees
and retired, respectively, the number of data points per
day reduces considerably by factor 354600/(40 ·2.4) =
3600 and 354600/(40 ·1.7) = 5082.

We investigate on the models accuracy by predic-
tions in terms of the lifetime in years and distance cov-
ered in km at EoL (SoH = 80%). Results are presented
in Table 7 using the most promising models of Table 5,
considering the models with all features included as well
as VIF and Lasso models.

Table 7: Prediction error in lifetime and distance cov-
ered

Model Data volume Prediction error
[kByte/day] age [years] Dist. covered [km]

Global 410 2.48 17,416
Global VIF 146 2.64 17,239
Global Lasso 244 2.49 17,277
Global Cycle 291 1.7 12,077
Global Cycle VIF 109 2.15 15,370
Global Cycle Lasso 164 1.7 12,268
Delta 290 1.72 12,843
Delta VIF 156 1.85 13,516
Delta Lasso 212 1.72 12,842
Parameter model 0 3.7 23,151

Evaluating the simplest model as a benchmark, a re-
gression is performed based on the parameter config-
uration according to Table 1, indicated by Parameter
model in Table 7. Throughout the battery lifetime, one
constant combination of parameters needs to be derived
from driving and charging style and the ambient temper-
ature conditions. Therefore, the required data volume
is nearly zero. Any other model, indicated in Table 7,
requires considerably larger data volume due to trip or
cycle based variable updates. Comparing the predictive
accuracy of EoL prediction in terms of lifetime and dis-
tance covered, the cycle based, shrinked global models
Global Lasso Cycle yields the best predictive accuracy –
with an average prediction error of 1.7 years and 12,268
km – under minimal data volume of 164 kB per day. As
indicated by Table 6, Global Lasso Cycle model omits
features related to SoC which therefore reduces the data
volume. The required data volume is well in line with
the storage capabilities of a standard ECU for battery
management systems, laying in an order of magnitude
of kB to MB. Similar results can be achieved by apply-
ing the Delta Lasso model.

5. Discussion

A simulation of battery degradation has been de-
veloped, that considers dynamic user behavior. Based
thereupon, we are able to derive implications for battery

BEV guarantee design from an OEMs point of view and
guarantee (corresponding to BEV) choice from an users
point of view, that may differ considerably depending on
the driving habits of users. Furthermore, different mod-
els have been evaluated based on their predictive accu-
racy and required storage.

We found that Lasso regression models perform best
– compared to dimensionality reduction using PCA and
feature selection using VIF – in order to select features
with a high predictive accuracy. Moreover, Lasso re-
gression models allow for considerable storage reduc-
tions. A higher predictive accuracy can be achieved
based on Delta models as compared to Global mod-
els. Resulting subsets of features can be stored onboard
a standard ECU assuming daily submission through
telematics.

Our analysis currently is simulation based, and can
be enhanced through real-world measurements of degra-
dation related signals. Different real-world degradation
effects, such as cell inhomogeneities or capacity regen-
eration has not been considered in this work, but may
change the observed degradation process.

6. Conclusion

Using analytical models we have derived a reduced
set of features that allows for an accurate prediction of
battery degradation in BEVs based on standard equip-
ment. This allows for efficient data acquisition in a
fleet of BEVs for example of a car sharing service
provider, assuming daily data transmission to a home
station through telematics.

Such a resulting database allows for detailed analy-
sis of BEV user behavior and the related battery degra-
dation. Using prescriptive analytics, optimal behavior
can be recommended to the user, which will increase
the overall efficiency of BEVs including battery lifetime
as well as the available range. Car sharing providers
may use the insights to map different users, depending
on their driving and charging behavior, to the best suited
type of BEV. The location of newly build charging sta-
tion can be optimized based on data gathered from a fleet
of BEVs.

From an OEMs point of view, the data allows accu-
rate predictions of the time to EoL and the development
of predictive maintenance approaches. Accurate models
will result in greater customer satisfaction and therefore
increase the retention. It will also cause customers to
use the OEMs proprietary service garages and increase
revenue.
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