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ABSTRACT

A COMBINED CLASSIFICATION AND QUEUING SYSTEM OPTIMIZATION

APPROACH FOR ENHANCED BATTERY SYSTEM MAINTAINABILITY

Battery systems are used as critical power sources in a wide variety of advanced platforms

(e.g., ships, submersibles, aircraft). These platforms undergo unique and extreme mission

proőles that necessitate high reliability and maintainability. Battery system failures and

non-optimal maintenance strategies have a signiőcant impact on total ŕeet lifecycle costs

and operational capability.

Previous research has applied various approaches to improve battery system reliability

and maintainability. Machine learning methodologies have applied data-driven and physics-

based approaches to model battery decay and predict battery state-of-health, estimation

of battery state-of-charge, and prediction of future performance. Queuing theory has been

used to optimize battery charging resources ensure service and minimize cost. However, these

approaches do not focus on pre-acceptance reliability improvements or platform operational

requirements.

This research introduces a two-faceted approach for enhancing the overall maintainabil-

ity of platforms with battery systems as critical components. The őrst facet is the im-

plementation of an advanced inspection and classiőcation methodology for automating the

acceptance/rejection decision for batteries prior to entering service. The purpose of this łpre-

screeningž step is to increase the reliability of batteries in service prior to deployment. The

second facet of the proposed approach is the optimization of several critical maintenance plan

design attributes for battery systems. Together, the approach seeks to simultaneously en-

hance both aspects of maintainability (inherent reliability and cost-effectiveness) for battery

systems, with the goal of decreasing total lifecycle cost and increasing operational availability.
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Chapter 1

Introduction

The United States military uses various types of large platforms (e.g., ships, submersibles,

ground and air vehicles) to execute a wide range of operational missions throughout the

world. These platforms are equipped with weapons, communication, surveillance and/or

other critical systems used to carry out speciőc operational needs. Batteries are a key power

source for many of these systems providing either primary or critical back up power that is

essential for system execution and platform safety. These battery systems differ from those

seen in commercial applications due to the unique operational and environmental require-

ments that they must meet. These requirements and the need to ensure high reliability and

performance (often through short replacement cycles) provide a primary driver for mainte-

nance and procurement planning, which can result in signiőcant lifecycle costs.

Most batteries today are complex systems made up of cells, a battery management system

(BMS), and packaging; the complexity of which is dependent on many factors. A cell is

the simplest part within the battery (e.g,. AA commercial łbatteryž). Multiple cells are

connected into series and/or parallel conőgurations to construct the battery. The BMS

is used to monitor and support the management of the battery/cells. Depending on the

battery chemistry (e.g., lead acid, lithium-ion, etc.) the cells and/or the battery is packaged

in speciőc ways to support the desired performance and safety mitigation.

The Navy faces challenges with battery systems due to the growing need for more power,

longer operating time, and higher reliability. As new capabilities are added to platforms or

existing ones are advanced, platform power needs grow, increasing the importance in battery

systems. For many platforms the battery system operates as a secondary source of power

in order to meet operational capability and to support platform safety. In these situations

battery failures can lead to loss of operational time or a possible loss of the platform and

personnel. This makes the battery systems performance and maintainability critical.
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In order to maintain the platform critical systems, the Navy must take a proactive and

conservative approach in regards to system lifecycle management. This requires signiőcant

resources and funding at various support levels to maintain the battery systems. However,

a large impact to the platform availability and program costs can occur when unscheduled

maintenance actions are required due to unforeseen performance issues or lead to issues with

the host system/platform. Premature battery failures can result in loss of operational time,

unplanned costs, and risk to platform safety as well as impacts to other mission and program

requirements.

Because maintenance costs are directly inŕuenced by the reliability of subsystems and

components, a path for reducing these costs and achieving overall higher system maintain-

ability is considered. The research here proposes a dual focused approach where classiőcation

methodology is applied to battery pre-acceptance screening in order to improve system relia-

bility and then a maintenance strategy optimization is analysis is applied to reduce lifecycle

costs and increase platform operational readiness.

The proposed classiőcation method is the identiőcation of cells (components within the

battery) which are likely to fail earlier than planned and to prevent their installation or

continued use. The act of discriminating between cells which are more likely to fail from

those which are not (in a probabilistic sense) is referred to herein as the cell classification

problem. Because there are costs associated with repairing or replacing failed batteries,

it is desirable to perform classiőcation as part of a pre-deployment acceptance test and

evaluation. For batteries already őelded, the approach can identify those platforms at risk

and allow for corrective actions to be scheduled proactively to better support the platform

within the identiőed maintenance cycles. Desirable attributes of the classiőcation method

are (i) the ability to classify parts based on easy to perform and minimally invasive battery

cell measurements and (ii) use of a mathematically simple and computationally efficient

algorithm.
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Further lifecycle cost reductions and operational availability improvements are considered

through maintenance strategy optimization. Here the maintenance strategy refers to the

application of resources (e.g., organizational, intermediate, and depot maintenance facilities)

to balance system maintenance and total program costs in support of the őelded systems. The

approach will optimize several critical maintenance plan design attributes through modeling

and simulation in order maximize platform operational availability (łuptimež) and minimize

lifecycle costs.

To demonstrate this approach, an example case study will be utilized where a battery

system has been őelded and supported in a generic platform that has show performance

issues. There are always several of these platforms in various operational or deployed states

and batteries are procured periodically to meet the planned battery lifecycle replacements

plan. Battery systems have experienced early life failures were a signiőcant number of cells

have declined in capacity prior to their expected end of life. This failure requires unscheduled

maintenance actions that have a signiőcant lifecycle cost and operational schedule impact.

However, not all cells within the failing system exhibit this earlier in life performance decay.

This suggests that issue is related to cell variations that may fall within classes, łgoodž and

łfailure prone.ž

This dissertation is organized as follows. In Chapter 2 a background on general cell and

battery technology, machine learning approaches for cell and/or battery health prognostics

as well as a review of the maintenance planning optimization is provided. Chapter 3 details

the case study battery system, applied maintenance strategy, and example baseline main-

tenance strategy for the case study review. Chapter 4 outlines the classiőcation techniques

investigated for battery screening. Chapter 5 shows the implementation and comparison

of results of the selected classiőer techniques. Chapter 6 describes the impacts of critical

parameters changes to a battery system maintenance strategy. The dissertation concludes

with a summary conclusion and identiőed future research in Chapter 7.
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Chapter 2

Background

2.1 Battery Technology Overview

In order to develop and asses the battery or cell classiőcation approaches, an under-

standing of battery systems and related features is required. The following section describes

the general characteristics, functions and important performance parameters associated with

battery systems and their components.

A battery is an electrochemical energy storage device where energy is transformed be-

tween a stored chemical and electrical state [1]. A battery is the combination of cells electri-

cally connected in a series and/or parallel conőgurations. The cell is the basic electrochemical

unit that provides electrical energy to the system. Battery conőgurations vary depending

on the voltage, current, and capacity requirement of the application as well as the speciőc

chemistry (e.g., lead acid, lithium-ion, etc.) being used. Energy is contained in the active

material of the positive (cathode) and negative (anode) electrodes and is released or stored

through oxidation-reduction (redox) reactions. Typically, the terms łbatteryž and łcellž are

interchangeable, but for this dissertation a cell will be considered as the lowest unit manu-

factured and provided by a vendor. For this review, the battery shall be considered to be

multiple cells assembled electrically in a series parallel conőguration once installed on the

platform to be discussed. Cells are made up of four basic elements; the anode electrode,

cathode electrode, separator, and electrolyte. Figure 2.1 provides a general diagram of the

charge and discharge reactions occurring in a typical cell.

The material, production and design of the core components of the cell are selected to

achieve speciőc performance goals [1ś4]. Speciőc cell chemistries (e.g., lead acid, lithium

ion, etc.) are selected based on the performance characteristics associated with the anode

and cathode material which are assembled to make the cell. Cell chemistry is selected to
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Figure 2.1: Basic Cell Diagram; a) discharging and b) charging.

meet key performance parameters (KPP) and support program requirements like lifecycle

costs, system performance, and maintainability. Table 2.1 [1] provides a comparison of

common rechargeable battery chemistries and their associated characteristics to highlight

the variation in performance that can be found.

Table 2.1 highlights an important fact that cell performance, even within the same chem-

istry type, can be altered. This is typically done to produce cells that support speciőc

applications or environments. An example is in the development of lead acid batteries for

engine start applications as compared to uninterrupted power sources (UPS) [3]. In this ex-

ample, a vendor may change parameters within the manufacturing process in order to modify

the active material porosity in order to achieve higher rate discharge currents or improve

overall energy densities. These manufacturing processes are part of establishing the design

of the cell and thus inŕuence performance. The understanding of this relationship is im-

portant as uncontrolled variation within the manufacturing process can lead to performance

inconsistencies and premature failures within the same cell type.

The battery manufacturing process varies depending on the battery chemistry and ven-

dor. Manufactures collect speciőc data during the manufacturing process that are used for

in process quality control and for historical records in case there are performance issues once

the cells/battery is őelded. This information is typically traced by assigned serial numbers
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Table 2.1: Cell chemistry characteristics comparison

Lead Acid Nickel Cadmium Lithium-ion

Chemistry SLI Portable
Vented Pocket

Plate
Sealed Cobalt Based

Cell Voltage 2.0 2.0 1.2 1.2 4.0
Operating

Temperature
-40 to 55 -40 to 60 -20 to 45 -40 to 45 -20 to 50

Wh/Kg 35 30 20 35 150
Wh/L 70 90 40 100 400

Cycle Life 200 - 700 250 - 500 500 - 2000 300 - 700 1000+
Cost Low Low Moderate Moderate High

or lot groups. Variation within these manufacturing process can lead to differences between

individual cell performance. While variation cannot be eliminated, the goal is to minimize it

to provide consistent performance. This is important as large performance variation between

individual cells can have a negative impact on overall battery systems.

Pavlov [2] describes the impact of performance to valve regulated lead acid (VRLA) cells

and batteries based on changes to manufacturing process and cell design. As an example, his

research evaluated how the electrolyte soaking process (the time between the electrolyte őll

and the start of cell formation) inŕuenced the micro-structure of the active material as well

as the gird (cathode and anode current collector) to active material interface. It also showed

that the time allowed for the electrolyte to react to the cathode and anode material effected

the amount of alpha and beta PbO2 formed on the positive plate, which has a direct impact

on cycle life. Pavlov and other researchers have conducted additional research on lead acid

technology to show how changes in the manufacturing process and design (e.g. electrolyte

concentration, electrolyte temperature, curing temperature) can have signiőcant effect on a

cell’s performance [2ś4].

Several authors [1ś5] discussed general impacts to battery performance, cell aging, and

end of life failure modes. Cell or battery capacity decay is typically due to material aging

but can be accelerated by several factors including how often it is cycled (discharged and

charged), the environment (e.g., temperature), and being used outside normal operational
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parameters [1ś4]. The cell aging process can be classiőed into two categories: (i) aging

that involves a gradual degradation over time that is possible to be monitored, and (ii)

those which do not have any speciőc mode or observable sign until a major problem or

rapid changes in performance occur (e.g., internal shorts). The sudden change in battery

performance can be difficult to model as the ability to determine the exact failure mode or

collect data from a failure is often difficult to obtain. The most signiőcant factors to cell

aging and performance decline include the following:

• Environment temperatures

• Discharging current rates

• Depth of Discharges (DoD)

• Charging rates (fast charging)

• Time intervals between full charge cycles

The most effective and simplest method of monitoring battery behavior that was discussed

by these authors included observing voltage, current, temperature, and in some cases internal

cell pressure. Some of these variables can be measured during battery operation without

impacting the operations of the battery or the system it is supporting. This is refereed to as

online measurement. These online measurements can suffer from signal noise, disturbances

and poor quality, which can be a result of degraded sensors from harsh environments.

2.2 Valve Regulated Lead Acid Chemistry Overview

The case study used in this research employs data from a VRLA battery. A fundamental

review of the chemistry and typical failure modes [1ś4] was conducted to gain knowledge

potentially helpful in the classiőcation development efforts. The following section provides

an overview of the VRLA battery chemistry.
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The VRLA cell design utilizes a highly porous separator mat made from micro-glass

őbers which are soaked in sulfuric acid (H2SO4). The VRLA battery utilizes a starved

or limited electrolyte design and does not require routine water addition, unlike ŕooded

lead acid batteries, due to limited water loss during charging. As in the basic lead acid

battery design, the positive plate active material is lead oxide (PbO2), while the negative

plate active material is lead (Pb) [1]. During discharge, the sulfuric acid is consumed and

both the positive and negative electrodes are converted to lead sulfate (PbSO4) while water

is produced. During charge, the reaction is reversed, converting the PbSO4 back to the

respective PbO2, Pb and sulfuric acid. The overall chemical reaction is shown below.

PbO2 + Pb + 2H2SO4
−−⇀↽−− 2PbSO4 + 2H2O (2.1)

The starved electrolyte condition allows for uniform gas transfer between the plates which

is required to support the recombination reactions which prevent electrolyte water loss. A

pressure release vent is used to maintain an internal pressure, retaining gases long enough

to allow for diffusion to take place. This allows for water to be retained in the cell, rather

than being lost as in ŕooded lead acid batteries. However, excessive charging at high rates

will generate gas buildup at such a rate that the recombination process will be inefficient

and cause H2 and O2 to vent out of the cell. This will lead to the traditional failure mode

of łcell dry-outž.

Literature review [2, 4, 6] into VRLA failure modes was conducted in order to relate

performance issues seen in the system used for this research to possible features identiőed

within the manufacturing process and cell design. Research identiőed three major VRLA

failures that resulted from what was termed premature capacity loss (PCL); (i) PCL-1:

interface effects, (ii) PCL-2: active material effects, and (iii) PCL-3: negative plate effects.

The research [2,4,6] showed that PCL-1 was caused by the formation of non-conductive

layers between the grid and active material. Non-conductive layers cause high resistance at

the grid-to-active material interface. This creates heating during cycling and expansion of
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the positive active material adjacent to the grid allowing localized discharge near the grid

which limits capacity of the electrode. The cells exhibiting this issue showed a sudden loss

of capacity during the őrst 10 to 50 cycles. This issue is often called the łantimony-freež

effect because it was őrst seen on cycled lead calcium alloy cells.

PCL-2 was described [2, 4, 6] as being a deterioration of the connections between PbO2

particles of the positive active material and is caused by the expansion of the positive active

material (PAM) during cycling. Expansion causes an increase in the resistance in the active

material as conductivity between particles is lost. Expansion leads to reduced capacity,

material degradation, and an inability to convert the PbO2 into usable material. This is

made worse by high current rates and the amount of overcharge.

PCL-3 is due to an inability to recharge the negative plate [2, 4, 6]. It occurs late in

life at about 200-250 cycles. Due to water consumption during cycling, the saturation of

the separator decreases. With decreased saturation in the separator, there is an improved

transfer of oxygen through the separator to the negative plate where it recombines and

reduces the polarization potential of the negative electrode. Increased oxygen recombination

requires higher amounts of overcharge.

Okada’s PCL investigations [7] provided additional detail on the possible failure mode.

It stated that PCL occurs when batteries were discharged frequently to a shallow depth of

discharge (DoD). The failure mode occurred when the adhesion between grid and the PAM

was poor, increasing the resistance at the interface. The paper suggested that this was due

to high acid concentration around the grid-to-PAM interface, interacting with a corrosion

layer that was mainly consisted of Beta-PbO2.

2.3 Machine Learning Overview

With the advancements and reduction in cost of data acquisition capability and data

storage devices, there exists new opportunities to collect signiőcant amounts of data on the

production and operational use of battery systems. Battery manufactures collect in process
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production data in an effort to reduce variability and ensure product quality. Most batteries

utilize a BMS to monitor KPPs (e.g., voltage, current, temperature, etc.) in order to ensure

safety and optimize performance through automated actions or providing information to

the users who in turn take action to manage the battery. Given the availability of this

information, the opportunity exists to apply machine learning and classiőcation methods

to improve performance and lifecycle maintainability. These approaches could be utilized

to evaluate manufacturing and performance features in an effort to identify issues, predict

battery performance, and allow for preventative actions based on the recognition of patterns

within the various data sets. The following section describes literature review on general

machine learning information.

Literature review [8ś12] in machine learning and classiőcation identiőed several com-

mon high level pattern recognition approaches. A statistical model is one of the simplest

approaches available. It is based on statistics and probabilities where the focus is in iden-

tifying possible feature sets which are chosen in such a way that different patterns occupy

non-overlapping feature spaces. The effectiveness of the feature set is determined by how

well patterns from different classes can be separated. After performing the analysis of the

probability distribution of a pattern belonging to a certain class, a decision boundary is de-

termined. Here the patterns are projected to some pre-processing operations to make them

suitable for training purposes. The system learns from the training patterns and adapts

itself to recognize or classify the unknown test patterns. The distance between the patterns

is determined in the statistical space and then these feature values are presented to learned

system and in this way classiőcation is performed.

Structure or syntactic models [8, 9] utilizes the relation between features and can take

into account more complex relationships between features then the numerical feature sets

used in statistical models. The patterns to be recognized are called primitives and the

complex patterns are represented by the inter-relationship formed between these primitives

and the deőned rules associated with this relationship(s). This model is used in pattern
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recognition to provide a description of how the primitives are interconnected based on the

overall hierarchical structure. However, the implementation of a structure model approach

may lead to issues due to noise within the data sets and the conclusions derived from the

training data. Thus, very large training sets may be required.

Template matching models [8ś10] are used in image processing to determine the similarity

between two samples, pixels or curves to localize and identify shapes within an image. In

this approach a template of the pattern of interest is stored and is compared to the image

under review. This is done with each pixel while also taking into account all possible position

in the input image. In image processing the template is compared to the image of interest

by maximizing the spatial cross-correlation or by minimizing a distance. After calculating

the matching rate for every possibility, the largest one which exceeds a predeőned threshold

is selected. This process does not work efficiently in the presence of distorted patterns.

Template matching is used mainly for the identifying the location of objects within an

image, tracking of moving objects, registration of images between different spectra or different

photography time.

Neural networks models [8ś10] are a series of algorithms trained to resolve complex prob-

lems based on available information. The model is loosely based on the human brain and is

designed to recognize patterns within the data set. The nodes of the network are formed from

artiőcial neurons where the directed edges (with weights) are connections between neuron

outputs and neuron inputs. A training process is used to identify the importance of the con-

tribution of the preceding neuron and thus develop weighting factors for the various nodes.

Neural networks have the ability to learn complex non-linear relationships, use sequential

training procedures, and adapt themselves to the data. The number of neuron layers can

improve the performance of a system, but trade-offs must be maintained between the size of

network and the resulting complexity. The layers must be large enough to adequately repre-

sent the problem domain and small enough to permit the variation within the training data.

Neural Networks were reported to have been successfully applied to data mining, document
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classiőcation, őnancial forecasting, the őeld of industrial product testing as well as many

other applications.

A maximum entropy classiőer [9, 13] is a logic regression model that is used to predict

the probabilities of more than two possible outcomes. The approach assumes that a linear

combination of the observed features and some problem-speciőc parameters can be used

to determine the probability of each particular outcome. Training data is used to develop

the best possible values of the parameters for a given problem. The training data used to

describe the distribution is typically a set of real-valued variables or łfeatures.ž The features

values are expected to match the average value for a set of sample points taken from the

target distribution. The derived entropy from the data set (i.e., that is most spread out or

closest to uniform) is used to determine the probability and classify the information.

The k-nearest neighbor algorithm (k-NN) [9,12] is a method for classifying objects based

on closest training examples in the feature space. The k-NN approach classiőes objects based

on an example-based learning approach where the function is only approximated locally. The

object is assigned to the class that is most common to its surrounding k-nearest neighbors.

The model is developed by utilizing training data that has been pre-classiőed to points within

an n-dimensional Euclidean space. New data sets needing a class label are placed into the

space and classiőcation is conducted at this time. Classiőcation of the new data is done by

assigning the label which is most frequent among the k-training samples nearest its location.

The selection for k is dependent on the available data set. The k determination value can

be based on an analysis of best őt, where multiple k value can be evaluated to provide the

best sum squared error (SSE) of differences.

Support vector machines (SVM) [9,10,12] classify objects by constructing a N -dimensional

hyper-plane that optimally separates the data into two categories. SVM attempts to create

decision boundaries that maximize the distances between the two classes. SVM is an effi-

cient method of őnding an optimal hyper-plane for separating non-linear data. SVM training

algorithm builds a model based on provided training data where the examples have been
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correctly classiőed within the categories. The standard SVM is a two-class SVM which takes

a set of input data and predicts the possible class, for each input, among the two possible

classes. However, SVM can be combined with ensemble approaches (e.g., decision tree, vot-

ing) in order perform higher level classiőcations. It was noted that SVM can be sensitive to

noise in small and medium data sets due to the data set being used to set the boundaries

for the system.

Principal Component Analysis (PCA) [14] was identiőed as an important tool in sup-

porting various efforts including data visualization, pattern recognition, risk management

and multiple statistical based efforts. It is a methodology to support dimensional reduction

where data transformation is done in order to identify a lower dimensional space. PCA uti-

lizes the variation within a data set to establish a new axis, beginning with the direction of

the largest variation. It centers the data by subtracting off the mean and then chooses the

direction with the largest variation. It őnds another axis orthogonal to the őrst by reviewing

the remaining variation. This is continued until all the needed axis are deőned. The last few

axes are typically found with very little variation and thus can be removed without affecting

the variability in the data leading to a reduction in dimensional space. The new axis are

called the principal components (PC). Standard PCA approaches are sensitive to outliers or

noise data which can have an effect on the solutions.

Linear Discriminant Analysis (LDA) [9, 15] utilizes a linear combination of features to

classify two or more groups or events. It is a dimensionality reduction technique similar

to PCA were features in high dimensional spaces are placed in lower dimensional space.

LDA attempts to őnd an optimized decision boundary for data classiőcation by utilizing

the covariance and probability of the classes within the data set. It attempts to deőne the

scatter of data within each class and then maximize the distance between the two classes

while minimizing the within class space. This is used to deőne the classes and can reduce

the number of dimensions.
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PCA and LDA have been utilized together in [16] to support facial recognition efforts to

improve general accuracy, especially when the sample size is small. Here the authors used

the PCA approach to project the facial image to a new subspace in order to resolve the

identiőed generalization problem. By applying the PCA algorithm to the initial data set,

the authors are able to reduce the within class variance for classiőcation. With the initial

image (x) transformed into the subspace (y), the LDA can then perform classiőcation into

a new space (z). Using a large data set of images for training and testing, the authors were

able to show signiőcantly higher accuracy with LDA using PCA inputs over LDA alone.

Other research [17] combined PCA and LDA in an effort to improve image recognition

accuracy. The authors had identiőed that LDA alone had issues in the classiőcation of

images where there were high-dimensions and small sample sizes. To resolve this issue an

approach referred to by the authors as łPCA plus LDAž was utilized. The authors’ goal

for the paper was to show the theoretical foundation on why this approach was successful.

The authors performed PCA analysis using the training data set and chose to use all the

generated PCs’s. The were used to transform the space into Rm where m = rankSt. Here m

represents the łrank of the total scatter matrixž and St represents the łtotal scatter matrix.ž

Once the space has been transformed, the authors derived the optimal discriminant vectors

to act as projection axes to form the new feature extractor.

Utilizing a small number of training samples, the authors compared the accuracy of the

proposed approach to other more established methods (e.g., ősherface, enhanced ősher linear

discriminant model, optimal ősher linear discriminant). Using an available database of 40

distinct subjects each with 10 different images for experimentation, the authors were able to

show higher classiőcation accuracy with the proposed approach with training sample sizes

of 3, 4, and 5 images.

An approach titled the łnormalž method for classiőcation [12, 18], which here will be

referred to in this dissertation as the simple generalized classiőer (SGC), is a statistical based

classiőer that assigns samples to classes based on their distance from the expected value of
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each class. The łnormalž or SGC classiőer utilizes the relationship of the data associated with

a feature or metric by developing a critical point (xc) in order to determine class selection.

The process allows for multiple features or metrics to be used and then allows for assignment

of relative weights to each of the individual feature/metric classiőcations. This allows for

improved accuracy of the classiőcation. While this approach utilizes a simple procedure, it

is able to distinguish between more than two classes of data, allows the creation of non-

correlated data features from a smaller set of features, and can include rules based on expert

system knowledge.

The type and use of training data is essential in the development of any of the discussed

approaches. Several authors [9,11,12] shared that there were three main approaches types for

the utilization of training data; (i) supervised learning, (ii) unsupervised learning, and (iii)

semi-supervised learning. Supervised learning is described as utilizing training data that has

been interpreted or labeled with the correct predeőned outputs by someone with available

knowledge. The data is utilized to generate models that are veriőed with the training data

as well as used to accept and correctly assign new data. In contrast, unsupervised learning

assumes the training data has not been organized or labeled and attempts to identify inherent

patterns within the data set that can be used to develop a model that can determine the

correct output of new data. Finally, a semi-supervised approach combines the supervised and

unsupervised approaches by using a combination of labeled and unlabeled data (i.e typically

a small set of labeled data combined with a large amount of unlabeled data).

2.4 Battery Health Prognostics

Previous literature has applied modeling and machine learning techniques to monitor,

assess, and predict the cell/battery performance in an effort to extended operational life,

identify issues, and improve reliability. Battery performance issues can lead to system or

platform operational loss, mission interruptions, and/or full system malfunctions that could

lead to disastrous consequences for the host system or platform. Given this, it is important
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to be able to determine the batteries current and future performance. The following sec-

tion describes information collected through literature review related to the use of machine

learning techniques for battery health prognostics.

Several authors [19ś21] provided an overview of stat of the art approaches used to de-

termine the battery system state of health (SOH). The őrst general approach discussed was

the direct measurement approach where speciőc tests are conducted on the cells or battery

to gauge speciőc performance characteristics. One of the most common approaches is to

conduct a full discharge at a speciőc constant current rate to determine capacity as wells

collect data on performance features like individual cell voltage. This approach provides

only an understanding of the current system’s SOH and alone can not project the remaining

useful life (RUL) or forecast future issue. Another direct measurement test discussed was

monitoring internal impedance changes over time in order to predict SOH. However, internal

impedance can be effected by various environmental conditions (e.g temperature) and thus

it is difficult to provide a dependable estimate of the SOH. This is especially true for speciőc

battery chemistries like lithium-ion. Electrochemical impedance spectroscopy (EIS) has also

been used as a noninvasive method used in laboratory testing to observe the performance

degradation of cells and batteries. The test can reŕect internal cell impedance and electro-

chemical reactions which change as the battery ages or if there are internal defects. While

these SOH tests described here are straight forward in laboratory environments, they can be

very difficult to implement in őelded systems.

Another general methodology discussed [5, 19, 20] was model based approaches. Here

the performance data from the battery is compared to a developed model. There are several

model types that have been used to support cell and battery health prognostics. Experienced

based models correlate expert knowledge and experience with observed situations to deter-

mine the RUL from historical data. These models rely heavily on the experts to specify the

system rules and the ability to create the fuzzy data sets to deőne the system characteristics.
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Data driven models [5,19,20] rely on previously observed data to predict the projection of

a system’s state or to match the derived pattern to a historical one in an effort to determine

the RUL. The results obtained from this type of model are generally better than those from

an experienced based model. However, these results are not easily explained or related to

physical meanings within the cell as they are developed as łblack boxž models. These models

generally require signiőcant amounts of data to describe the full range of scenarios that the

system can be subjected too. A critical issue with data driven techniques is that when the

data availability is not satisőed, or the data is biased, the results can be imprecise or even

incorrect entirely.

Physics based models [5,19] rely on an understanding of the system’s failure mechanisms

to build mathematical description of the performance degradation to predict RUL. The mod-

els are derived directly from őrst principles and an understanding of the physical mechanisms

occurring within the cells. In order to determine the model parameters for the degradation,

speciőc experimentation and analysis is typically required. However, if the failure modes

are not clearly understood or the behavior of the system over the full range of operating

conditions is not known, then this model may be difficult to construct. Model parameter

identiőcation also requires extensive experimentation. A physics-based model is often built

case by case meaning that different cell chemistries or even cells built from different vendors

will require tailored modiőcations to the model.

One paper [19] highlighted that the optimal approach would be to utilize hybrid models

that would combine these model types together to best describe the battery system and the

impacts from its environment. Their efforts assessed each of the potential hybrid types to

provide an overview of the related beneőts and risks.

A combined experience-based and data-driven model is one where the domain knowledge

used to deőne the system‘s fault states while the data driven models are used to reőne

the rules created by the expert knowledge and to estimate the RUL. This approach can

provide ŕexibility of integrating domain knowledge into data driven models for system state
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or health estimation that can be used to derive RUL. However, expert knowledge may not

be able to describe the system performance in all states which could lead to issues in the

predictive capability of the reasoning system. However, this issue may not be signiőcant from

the practical point of view because the ultimate goal is to estimate RUL using long-term

prediction instead of predicting intermediate life residual time.

A combined experience and physics based Model [19] utilizes both models in which the

output of the experience based model is often used to enhance the physics-based model. The

experience based model can also be found to estimate the system health state based on which

RUL can be predicted. Expert knowledge is mainly used to support the determination of

system failure while the physics based models are used to perform the actual RUL prediction.

A combined multiple data driven models [19] can take the form of two possible approaches.

The őrst is where a data driven model can be used to estimate the internal system state

when it is not directly measurable from the sensor signals. The estimated system state

can then be used to extrapolate the future system state to predict RUL using another data

driven model. The other approached outlined in the paper is where different competing

data driven models can be developed for RUL prediction purposes. The results of different

models can be aggregated to improve the prediction performance by a carefully designed

fusion mechanism. Combining the results of multiple models can yield marked reduction in

the prediction error as discussed in the above examples. However, it is critical to carefully

design a fusion mechanism to ensure that the information is correctly combined. In addition,

building multiple models is time-consuming and computationally intensive, which can be

limiting in certain applications.

Finally, the paper [19] discussed the potential use of combining data driven model and

physics based model, which could take several shapes. The authors discussed the several

ways that the individual models may be combined to provide battery health prognostic

information. For example, a data driven model could be used to establish a correlation

between the online measurement to the internal cell state, which makes it possible to use a
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mathematically sound physics based model to predict the system’s internal health. Another

approach discussed utilizing a data driven model to predict future measurements that are

then used as inputs to a physics based model to predict RUL. This hybrid approach further

addresses the issue of data availability when updating a physics based prediction model

during long-term operations using a data driven model to predict future measurements. If

the future measurement can be accurately predicted by the data driven model, it indeed can

correct the physics based model in long-term operations, especially when the performance

degradation does not quite follow the fault growth model. The trade-off is that if the data

driven prediction performs poorly on future measurement prediction, the prediction result

can signiőcantly derail, and it could be worse than the physics based model.

The authors also discussed the potential of combining all three model types; experience

based, data driven, and physics based models. It was stated that it can be extremely difficult

and impractical to implement this approach due to the difficulty that might be encountered

by each model type. However, it is potentially beneőcial to leverage the strengths of all

types of models and fuse all types of information (e.g., domain knowledge, maintenance

feedback, and condition data and physics). Challenges remain in how to aggregate results

from different competing models, how to design an appropriate fusing mechanism to integrate

heterogeneous information, and how to utilize data driven models to reduce the prediction

uncertainty. The authors demonstrated that the use of a hybrid approach for determining

the RUL of a lithium-ion cell by combining the physics based and data driven models. This

approach showed improved accuracy and conődence over a standard particle őlter used for

prediction performance.

These methodologies have been used in various forms in an effort to determine battery

SOH, RUL, and other important performance parameters. Research [20] was conducted on

the use of machine learning approaches in developing a SOH estimator for predicting battery

performance in electric vehicles. The authors identiőed health indicators based on the battery

performance data to deőne signatures related to capacity degradation. The authors utilized
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the change in internal cell ohmic and polarized resistances as key indicators for battery health.

An extreme learning machine (ELM) was used to identify the correlation between the health

indicators and capacity decline to improve the speed and accuracy of the estimation of SOH.

The identiőed relationships between cell capacity and internal cell impedance was signiőcant

based on the results, but will not be the same for all battery technologies nor correlate to

all the potential end of life failure modes. There may be scenarios were internal impedance

is not changing in proportion to the capacity degradation due to unique failure conditions.

In addition, environmental conditions like cold temperature could have a signiőcant impact

on the estimator. Lower temperatures slow the internal chemical reactions and thus impact

the ability of some cells to respond to discharges or charges. This would impact the internal

resistance parameters and thus affect the results of the estimator.

Authors Barsali and Ceraolo [22] provided details on the development of lead acid cell

models and a review of which models may őt speciőc purposes. Their model was represented

as an equivalent electrical circuit combined with dynamic equations representing internal cell

parameters. The cell‘s resistance and capacitance were deőned as a function of the cell’s state

of charge (SOC) and electrolyte temperature. One approach discussed to determining the

parameters of the model was by starting from a set of lab tests of a real cell or battery. Testing

would consist of a several speciőc discharges and charges at different constant currents and

environmental temperatures, along with a digital simulator of the model.

However, given the number of parameters that may affect cell performance, the authors

felt that it was very difficult to develop reasonable results based on testing alone. The authors

suggested that parameter identiőcation should be broken into smaller tasks, where elements

of the equivalent electrical circuit would be deőned independently and then combined later.

The testing and parameter development were divided into the following [22]:

• Parameters referring to the battery capacity. Battery capacity was deőned by a speciőc

equation that accounted for electrolyte temperature, current, and internal cell param-

eters. The parameters are deőned by cycling the battery at various temperatures at

20



deőned capacities. The currents and temperatures chosen to perform the tests are

representative of the possible operating conditions foreseen for the battery.

• Parameters referring to the main branch of the electric equivalent circuit. These param-

eters are related to state of charge and the cell’s resistances associated with discharging

the cell. These parameters can be derived from a series of constant current discharges

for a set period of time and then documenting the subsequent transient response up

to the complete stabilization of voltage, so that the stabilized voltage can be equated

to the battery electromotive force.

• Parameters referring to the parasitic reaction branch of the electric equivalent circuit.

This refers to the internal resistance that causes self discharge. The parasitic reaction

current can be determined by completely charging the battery to a set voltage and

őnding the stabilized current.

• Parameters referring to the battery thermal model The proposed battery thermal model

is a simple capacitance-thermal resistance model. These two parameters can be de-

rived experimentally or obtained from the manufacturer. Approximate estimates of

the parameters can be obtained by means of the usual techniques for heat transfer

problems, based on the battery mass, shape, and case material.

The other approach the authors discussed used manufacture’s speciőcation sheets to aid

in deőning the cell’s parameters. Battery manufactures will provide average or expected

performance data on their products. This will typically include rated capacities at different

currents and end-of-discharge voltages that could be used in place of deriving the values

from testing. The manufacturer may also supply additional information on the impact of

temperature on the cell’s capacity, often in terms of a łtemperature coefficientž values. Other

parameters such as internal resistances may also be available by the vendor if the vendor are

willing to or able to share the data. The parameters are then derived based on the vendor

provided information.
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Within the same paper [22], the authors provide an example of an approach on the

development of an equivalent electrical circuit model including how to derive the needed

parameters. The model parameters did include the impact of temperature and current

draw, which are important to accurately simulate cell performance. However, the described

approach did not account for the impact of performance based on aging or of the various

possible failure modes. The model would only support simulation of a new, good performing

cell that would never degrade.

Chen and Rincon-Mora [23] conducted a review of several battery model approaches as

well. They began with a discussion of electrochemical models which are mainly used to

optimize the physical design aspects of batteries, characterize the fundamental mechanisms

of power generation and relate cell operational parameters such as voltage and current with

design parameters such as electrolyte concentration. While informative, these model types

are complex and time-consuming because they involve a system of coupled time variant

partial differential equations. The authors felt that these mathematical models were too

abstract to be used to support őelded battery systems.

The authors [23] also discussed electrical equivalent models that utilize a combination of

voltage sources, resistors, and capacitors for design and simulation. There have been many

electrical models of batteries, but most fall within the following categories: (i) Thevenin,

(ii) impedance, and (iii) run time based models.

A Thevenin based model utilizes resisters in series combined with resistor-capacitor (RC)

parallel network circuits to predict battery response to transient load at a particular SOC

by assuming a constant open circuit voltage (OCV). The assumption of a constant OCV is

an issue as it prevents the model from capturing steady state battery voltage variations and

continual operating information.

The impedance based models utilize EIS to obtain an AC equivalent impedance model

within a speciőed frequency domain and then use a complicated equivalent circuit to őt the

recorded impedance spectrum. The őtting process is difficult, complex, and non-intuitive.
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Impedance based models only work for a őxed SOC and temperature setting, and therefore

they cannot predict DC response or battery RUL.

A run time based model uses a complex circuit network to simulate battery run time and

DC voltage response for a constant discharge current. They can predict neither runtime nor

voltage response for varying load currents accurately.

A comparative study [24] was done on various prediction techniques in order to deőne

their strengths and weaknesses as well as reviewing model accuracy against various trade-

offs, like complexity and computational burden. The authors’ study focused on showing

how regression, classiőcation and state estimation algorithms can help in battery health

management. In order to compare the different approaches the authors began with the

evaluation of lithium-ion cells to collect performance data for training and validation.

For the effort data was used from lithium-ion cells that were cycle life tested at 60% SOC

at temperatures corresponding to 25◦C and 45◦C. EIS measurements were made periodically

to determine impedance changes in the electrode-electrolyte interface as a function of cell

life. EIS measurements were conducted by discharging the cells from a fully charged state

to the speciőed OCV corresponding to the target SOC. Changes in the internal parameters

of the battery were observed as shifts in EIS data plots and battery capacity degradation.

Following an eight to twelve-hour rest at the deőned OCV, which allowed the cells to reach

electrochemical equilibrium, the impedance was measured using a four-terminal connection

over a frequency range of 10 kHz to 0.01 Hz, with a minimum of eight points per decade of

frequency. This test was performed on all cells at 60% SOC. Features are extracted from

the collected data and were used to create a circuit equivalent model. The parameters of

interest were the double layer capacitance CDL, the charge transfer resistance RCT , the

Warburg impedance RW , and the electrolyte resistance RE. The values of these internal

parameters change with various aging and fault processes like plate sulfation, passivation,

and grid corrosion.
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The data collected from this testing was used to support multiple prediction techniques

with the following observations:

• Statistical based baseline model. The initial approach used was a simple data driven rou-

tine to establish a baseline for battery health prediction performance and uncertainty

assessment. This was based on the calculated linear relationship between RE + RCT

and the capacity decline over time at baseline temperature, 25◦C. However, through

validation experimentation it was shown that the predictive RUL was off by őve (5)

week.

• Probabilistic regression model. The authors evaluated a Gaussian process regression

(GPR) method to estimate the RUL. GPR is a technique for non-linear regression that

computes posterior degradation estimates by constraining the prior distribution to őt

the available training data. The relationship between the internal parameters RE+RCT

and the battery capacity was again learned from experimental data at 25◦C. Analysis

showed that the amount of training data was important to support good predictions.

Predictions only using data points from early in life training data failed to accurately

predicted the end of life. However, as additional training data was added to show

continued aging of the cell, the data accuracy increased signiőcantly.

• Particle filter model. The authors decided to evaluate the use of particle őlters (PF) as

they identiőed the need to track cell performance trends as they changed over time and

then modify the predictions to conform to established degradation models. PF uses

both the information collected from the process measurements but also incorporate

any models available for the process. The authors combined PF with relevance vector

machines (RVMs) which uses Bayesian inference to obtain sparse solutions for regres-

sion and classiőcation. Utilizing training data, the RVM regression was performed to

őnd representative aging curves which were used to develop relevant decay parameters.
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These decay parameters then inŕuence the model’s internal cell parameters like RCT

or RE.

• Sequential Monte Carlo (SMC) method. Another PF technique implemented a re-

cursive Bayesian őlter using Monte Carlo (MC) simulations and is known as a SMC

method. The state and measurement equations that describe the battery model in-

clude the decay parameters, the internal battery parameters (derived from measured

data), and the potential system noise. This approach accommodates for the sources

of uncertainty in feature extraction, regression modeling, and measurement. The PF

framework is triggered by a diagnostic routine. The algorithm incorporates the model

parameter as an additional component of the state vector and performs parameter

identiőcation in parallel with state estimation. Predicted values of the internal bat-

tery model parameters were used to calculate expected battery capacities. The current

capacity estimate was used to compute the SOC while the future predictions are com-

pared against end of life thresholds to derive RUL estimates. In the authors review

the error in RUL improved as additional online (or real time) data was taken, showing

an end of life error of 5.9 weeks compared to actual at the week 32 point and an end

of life error of 2.6 weeks compared to actual at week 48.

The approaches outlined by the authors provided potential solutions to predicted battery

end of life. Since aging can be effected by several outside inŕuences (i.e., temperature,

operational proőle, etc.) a robust set of training data seems to be required. The training

and testing/validation data used in this effort may have been too similar to accurately assess

the approaches and it would be recommended that additional independent test data be used

for additional validation. It should also be noted that performing periodic EIS evaluations

on őelded systems is also difficult due to the type of equipment and test proőles required.

Chen and Rincon-Mora [23] also showed the development of an electrical equivalent model

capable of predicting both the operational run time and the cell’s current and voltage char-

acteristics. A resistor and capacitor, RC, network simulates the current voltage response
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based on the applied load. In order to correlate the SOC or available capacity to the OCV

of the cell, a voltage-controlled voltage source was used.

While the authors were able to develop a workable model and show positive results

as compared to an actual cell, the validation efforts did not include some of the critical

parameters that are needed for battery modeling. The validation effort failed to evaluate the

impacts of self discharge and cycle life to cell performance. It is unclear what the model’s

accuracy would have been after comparing the results to long term cycling. While the model

does take into account dynamic loading, it did not account for the impact of environment

on accelerating battery aging and thus impacting performance.

Authors [25] interested in determining battery SOH and RUL for electrical systems also

utilized discharge curves to correlate identiőed indicators to the cell’s expected capacity. In

their effort they modeled the discharge curves of a lead acid cell, deőning how the voltage

decayed when a constant current load was applied. The voltage decay was then modeled

by an equation that represented the two main sections of the voltage curve, a linear voltage

interval followed by a non-linear voltage period. This analysis was conducted multiple times

as the cells were aged, allowing the authors to evaluate and correlate the change in the

discharge curves, capacity loss, and cell age.

The authors accumulated 51 cycles on a cell and evaluated 11 discharge curves within

that time frame. As the cell aged, the performance (cell capacity) declined and was reŕected

as a change within the linear and non-linear portions of the discharge curve. This data was

used to deőne a linear relationship to the change in the parameters of the model to the cycle

age. Based on this relationship, cycle age could be projected and the model could then be

used to predict the future voltage curve given a speciőc cycle. Capacity is then calculated

based on the length (or time) of the curve as it decays to a set voltage cutoff. This approach

may have some issues for implementation as it did not take into account any impacts on

temperature or cycling variation in predicting cell capacity, both of which can effect the cells

age and performance.
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While these model approaches have been used to simulate and predict battery perfor-

mance, other techniques utilizing various machine learning methods have also been used for

battery health prognostics. Several authors have utilized entropy as the bases for forecasting

battery health. One paper [26] utilized sample entropy (SampEn) and the estimated SOH

to train SVM and RVM in order to determine a cell/battery decay rates. SampEn was used

to monitor the variation within battery performance since an aging or degrading battery

will have a higher variation in cell voltages at the end of the discharge, causing increased

entropy values. The SOH is calculated by dividing the nominal capacity at present time by

the nominal capacity at some initial time. The SampEn was used as the data input while the

SOH is used as the target vector. The SampEn and the SOH were used to train the Support

SVM and RVM, whose results were then compared. In the paper RVM outperformed SVM

in predicting SOH in the experimentation.

The research conducted in this paper [26] was limited in several ways. First, discharge

curves will vary depending on several factors such as battery chemistry, discharge current

rate, depth of discharge, and environment (i.e., temperature) which would alter the SampEn

value and skew results. Also, battery monitoring accuracy in the őeld may not provide

precise enough data to calculate the SampEn value to the degree required and thus there

may be a need for speciőc discharge routines to compare the information correctly. While

additional work may be required, the SampEn approach could be used to identify other

battery markers like shorted cells or undercharge conditions that can be found in battery

systems.

SampEn was also reviewed by other researchers [27] in an effort to develop a reliable

way of determining an accurate SOC and SOH in electric vehicle applications. The SOH

and SOC for electric vehicles is important to ensure proper utilization and safety due to

the use of lithium-ion batteries. Determining this information through direct testing like a

capacity test is often time-consuming and sometimes impossible to conduct depending on the

platform or application. The additional cycling to achieve the information can also reduce
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the battery life. Therefore the authors felt that it was important to develop an accurate and

robust capacity estimator for a rapid and reliable battery health management.

The authors proposed an enhanced sample entropy based capacity estimator for a lithium-

ion cells. They deőned sample entropy as a process to quantify the regularity and complexity

of a time series data set. The proposed approach determines the sample entropy based on

the measured cell voltage while being subjected to a developed discharge proőle described as

a hybrid pulse power characterization (HPPC). This calculated entropy is used as the input

to the estimator. The sample entropy and the capacity of a reference cell at three different

temperatures are adopted to train the estimator by non-linear least-squares optimization.

The capacity estimator is őrst offline calibrated based on the representative aging data

sets of a reference battery. The reference battery is tested at different temperatures so that

the associated sample entropy would include the variation in capacity. The correspondence

between the capacity and sample entropy of the reference cell at each temperature is modeled

using a third-degree polynomial function optimized by the non-linear least-squares numer-

ical optimization algorithm. When deőned by the representative battery, the estimator is

deployed to other systems.

The approach attempts to account for the variations in temperature, but the approach

taken does not seem to combine the results adequately. The error in results differ based

on the temperature that the cell is operating at. This means the system accuracy may be

difficult to determine in a real world application where the temperature is not consistent

across the battery/cell’s life. In addition, the speciőc proőle used to develop the data set,

the HPPC proőle, requires special equipment to monitor the individual cell’s response within

the battery. Not all őelded BMS will be able to accomplish this.

Research in [28] continued this work by attempting to derive SOH through a data driven

SOH forecasting model based upon a combination of sample entropy and Bayesian reasoning.

This approach was refereed to as a spares Bayesian predictive model (SBPM) and was in-

tended to capture the correlation between the capacity loss and sample entropy. The authors
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performed testing on multiple lithium-ion cells against different cycle (charge/discharge) pro-

őles and temperature environments. The sample entropy values of the reference cells under

these various proőles were correlated to their respective ages. After obtaining the input

target relationships from the reference cells, the SBPM approach was used to learn the un-

derlying mapping mechanism, giving rise to the SOH estimation model. The key focus of

the SBPM was on reconstruction of the static non-linear function between the capacity loss

and the sample entropy. The authors identiőed three original contributions.

• The Bayesian scheme in a univariate or one variable form was compared with the prior

polynomial model at three different temperatures.

• A multivariate Bayesian SOH estimation model was developed to analytically integrate

temperature effects and a comparison with the SVM scheme was made.

• The prediction of RUL for lithium-ion batteries was performed via a combination of

SBPM and a bootstrap sampling concepts.

The authors use of training data that encompassed different temperature and operational

proőles provides an improved model that was more reŕective of real world applications, which

should provide improved accuracy once deployed. The authors also used data from different

cells during their model testing to strengthen the validation of their approach. It would be

recommended to validate or test the model on different operating proőles which can effect

cell age and performance differently to ensure the model’s robustness.

Research [29] was conducted on approximate entropy (ApEn) to estimate the SOH for

lead acid batteries which are used in in multiple applications ranging from back up power

for telecommunication equipment to energy buffering for wind farms. The proposed ApEn

method is a statistical approach that requires an adequate amount of data for analysis.

The method is used to quantify differences in the regularity of signals, with the greater

the irregularity reŕecting larger ApEn values. The approach looked at the end of discharge

voltage of individual cells within a lead acid battery containing multiple cells that were
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arranged in series electrically. Aging or degraded cells will cause other cells within the same

series connection to supply more energy which leads to a decrease in overall battery capacity.

In addition, the voltage of aging or degraded cells may fall below the vendor speciőed end

of discharge voltage level which leads to an over-discharge condition. The voltage variation

of an aging or degraded cell during a discharge will result in a higher ApEn value.

The authors’ approach provided a straight forward methodology for identifying and deter-

mining the aging and degradation of cells within a lead acid battery. However, the described

approach and experimentation seemed limited. The approach did not account for expected

variations in operations that may cause errors. For example, discharge current and depth of

discharge will change the discharge curves of the cells and thus make the correlation more

difficult. In addition, some of the assumptions made on how cells connected in long series

conőgurations are not accurate in all applications. This might lead to errors in the SOH or

issues in applying the approach to all scenarios. Additional testing with a larger range of

data may improve the system.

Another approach evaluated by several researches was the use of SVM and RVM in

determining battery performance. In research conducted by Hansen and Wang [30], the

authors developed an SVM for SOC estimation by choosing and processing training data,

őnding the optimal SVM parameters, and then selecting and processing the testing data.

Training data for this paper was taken from cell testing of a lithium polymer cell that was

designed for use in electrical vehicles. Processing consisted of scaling the data so that all

input vector elements were in the range of 0.0 to −1.0. The training data consisted of a

four-element vector which included current, voltage, the cell SOC and the change in voltage

during the őnal part of the discharge. The training data was then used to őnd the optimal

parameters for the SVM. A second degree polynomial kernel function, K(a, b), was derived

where a and b were vectors and s a linear factor and r a constant. SVM validation was

conducted utilizing data from a simple SOC test followed by a dynamic SOC test based
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on a proőle from a hybrid electric vehicle. The proposed second degree polynomial kernel

function was as follows:

K(a, b) = s · (a · b)2 − r (2.2)

The authors’ approach provided a method to determine battery SOC utilizing an inex-

pensive micro-controller. However, the described SVM does not take into account several

important factors that inŕuence SOC like temperature and open circuit time which was iden-

tiőed as an area needing additional work by the authors. The training data used also seemed

very limited compared to the wide range of possible discharge loads that the battery may see,

which could cause greater errors in unique situations. The SVM has only been trained for

one battery chemistry and thus may have larger errors with other battery chemistry types.

Another paper [31] utilized support vector machine for regression (SVR) as an automated

learning tool with a different focus to predict the SOC of a lithium-ion cell. Their goal was

to develop a method to determine battery SOC, which is an important parameter when

using battery systems. The SOC provides the user/system with information on the amount

of energy left in a battery compared with the energy it had when it was fully charged. This

gives the user an indication of how much operational time is still available with the battery

before a recharge is required.

In order to utilize SVM to solve a regression problem for data that is not linearly sepa-

rable, the authors used a radial basis function (RBF) kernel. The authors were required to

select the correct parameters that could then be expected to map the non-linearly separable

data into a feature space where it would then be linearly separable. The SVM techniques

were strongly dependent on the SVM hyper-parameters (C,δ ,γ); the regularization factor

C, the hyper-parameter δ that deőnes the SVM type regression, and γ that represents the

kernel parameter when a RBF is chosen. In this paper, each combination of hyper-parameter

choices were checked using cross-validation, and the parameters with the best cross-validation

accuracy were selected. Battery voltage, temperature, and current measurements were se-
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lected as the input variables to the SVM model. Model training was based on laboratory

experimentation on a speciőc cell type. A 10-fold cross validation was used to predict the

őt of a model to a hypothetical validation set.

The authors approach was based on both steady state and dynamic discharge of a lithium-

ion cell. However, their validation of the model and predictive approach was based on data

from the same proőle. Testing the approach with a different dynamic discharge proőle would

have shown its robustness to real operational conditions. It is unclear if the SOC prediction

would work for an alternative discharge proőle, or if the system has been trained for just

one speciőc set of discharge curves.

The researchers conducted follow-on work [32] with SVR to predict the SOC of a lithium-

ion cell utilizing cell voltage, current, and temperature. Sample cells were cycled with various

discharge rates to obtain the training data with another set of discharge rates used to collect

the test data. The voltage, current, and temperature collected during the cycling for the

training data were used as inputs to the SVR model. Again, a 10-fold cross validation algo-

rithm was used to guarantee the predictive ability of the SVR model. The cross-validation

was used to predict the őt of a model to a hypothetical validation set when an explicit vali-

dation set was not available. In doing this the authors were able to őnd the combination of

the hyper-parameters with the best performance.

However, the discussed approach did not seem to take into account all the potential

variables that can impact the state of charge. Temperature can impact the electrochemical

reactions within the cells and cause inefficiencies in charging and discharging. While the

approach discussed does utilize temperature as an input parameter there was little discussion

on how that training data or the algorithm would account for the temperature variation.

Other researchers [33] also proposed a data driven approach to battery diagnostic and

health prognostics utilizing SVM. Their approach utilizes a data processing method by gen-

erating the input and output SVM vectors from measurements taken during cell discharge
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testing. These methods was expected to take into account the environmental and dynamic

loads seen in real operations.

The authors began by generating training data by cycling cells under a dynamic load

proőles with varying temperatures. Their goal was to simulate real world operations as

closely as possible. Once the data was collected, the authors processed the data by scaling

it such that the input vector elements were within the range of -1.0 and 1.0. They then

reduced the dimensionality of the input vector using Fisher ratio. The Fisher ratio provided

information on if a particular attribute affects the regression result or not.

The authors suggested the use of łload collectivesž as a new method for obtaining the

training data. The authors described load collectives as a process where actual operational

data is collected from a őelded unit and the frequency of a certain combination of two

signal (e.g., current, state of charge, and temperature) is counted. This type of load cycle

counting of two signals is also refereed to as two parameter instantaneous value (dwell time)

counting. The authors also discussed and utilized another type of load counting called rain

ŕow counting. During the training process, the SVR tries to establish a relationship between

the load the battery is subjected too and a corresponding capacity decay. Utilizing these

approaches allows for the use of a linear SVR kernel. The parameters of the SVR are selected

using the cross-validation method.

To determine the SOH and RUL estimations the gathered data was utilized as the input

vector together with the nominal value of the battery capacity. The SVR is able to estimate

the actual capacity after it is has been cycled over a set time frame and then repeated over

time. A future capacity, and thus SOH, can be determined by using the historical data

to determine a mean load value over operational time. Other options could be to use the

last several discharge cycles to project forward or select several of the deepest discharges to

provide a worst case scenario.

The authors approach provided a unique methodology to determining the SOH and RUL.

The approach attempts to account for the impact that the cycling and temperature variation
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can have on battery and cell performance. The drawback that was identiőed was that the

approach will require a signiőcant amount of training data to account for the full operational

scenario range that the battery could experience. If őelded systems are not equipped with

the capability to monitor, record and store cell/battery performance data, then this could

be difficult to obtain without signiőcant testing.

SVR was used to determine battery SOC by other researchers [34]. Here the authors

were working to obtain accurate SOC to support system operations and maximize battery

life. The authors utilized SVR to őnd the relationship between the deőned inputs (voltage

and current) to a single valued output target (SOC). The authors compared both the grid

search (GS) and the particle swarm optimization (PSO) methods in őnding the optimal

hyper parameters that are used for the objective function. These parameters are used in the

objectives function to determine the best őtting curve to estimate the SOC. Training data

generated from a simulated battery was used to develop the parameters. The testing data

was taken from a completely different simulation on a battery with a randomly selected test

load. This data was used to compare the developed projected SOC derived using the GS

and PSO methods.

The authors utilized SVR to map battery parameters to the SOC of the battery. In the

study they assumed that the temperature of the battery remained within a speciőc range.

This is an issue as it should be expected that the temperature of the environment will change

given the real world conditions and that the battery itself will warm and cool during cycling

due to the internal exothermic electrochemical reactions.

The authors did not use actual battery performance data, but simulated data from

SIMULINK. Utilizing simulated data does not provided the expected noise associated with

manufacturing variation and the surrounding environment. It should not be expected that

this would provide an adequate representation of an actual battery system. This approach

would also fail to account for cell/battery aging over time.
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Given the use of SVM and RVM for battery applications, one set of researchers [35]

conducted a comparison study to examine the results of the two methods based the same

data sets. The authors felt that it was necessary to examine and compare performance

through an uncertainty analysis. Performance variation was evaluated by inducing small

changes in the input parameters, measuring the output, and comparing the mean, standard

deviation, skewness, and kurtosis of the results. The authors used a relative mean square

error (RMSE) in order to compare the SVM and RVM regression approaches.

The authors began by providing a general overview of SVM and RVM. SVM is used for

both classiőcation and regression analysis. It can develop complicated decision or response

functions while using a small number of sample points. SVM will construct an optimal

linear decision function to separate each set of training points. For linear decision functions

the approach attempts to maximize the margin between two parallel hyperplanes which

separate the data into two classes. The hyperplanes were determined by solving a quadratic

programming optimization problem with quadratic object function and linear constraints.

For regression analysis SVM is similar to the classiőcation approach discussed. However,

to address non-linear issues, kernel functions were used for either classiőcation or regression

approaches. A kernel function shifts the data to a new hyperplane where linear separation

can be found.

The RVM approach utilized a Bayesian probabilistic framework in developing the model.

RVM generally utilizes fewer kernel functions than SVM. The probabilistic formulation was

formed through the training data set and includes an additional noise factor. For the RVM

classiőcation, the parameter weights cannot be analytically derived and a Laplace based

method was used to determine them.

The authors determined through the SVM and RVM comparison that RVM performed

best in their evaluation for deterministic context and that SVM performed better for uncer-

tainty analysis when the sample size was increasing. However, RVM provided an estimation

of the data set noise in order to deőne the potential uncertainty of the decision function.
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Utilizing an example data set the authors were able to show the results in performance

between the two approaches and provide observations on the strengths and weakness. Addi-

tional detail on the data sets (e.g., sample sizes) would have provided more clarity on when

it might be more appropriate to use SVM versus RVM. Their use of only one application

type for the analysis limits the reliability of the authors’ conclusion on the performance com-

parison. It would be recommended that similar data sets from different system be utilized

to further validate the paper’s conclusion.

The lithium-ion cells SOH was researched [36] using what was referred to as a particle

swarm optimization - least square support vector regression (PSO-LSSVR) approach. The

authors developed a model using an OCV model combined with a Thevenin equivalent circuit

model to deőne the cell parameters that related to the battery state. A joint extended

Kalman őlter-recursive-least squares (EKF-RLS) was then used to determine the battery

SOC with the model parameters and the OCV. The PSO-LSSVR approach was then used to

provide an accurate SOH. The authors tested ten lithium-ion iron phosphate cells to acquire

both training data and to validate the processes. They compared the results to a more

common neural network approach to show an increase in accuracy with the PSO-LSSVR

approach.

This approach proposed some novel input on non-traditional features to consider for bat-

tery health prognostics, speciőcally in looking at the charge curves associated with the cells.

It also introduced the concept of the particle swarm optimization algorithm. However, upon

review of the paper, there was some concern about the approach. First, the method appears

to focus on electric vehicle applications or similar systems/platforms where the battery is

starting from a resting or open circuit point. For battery systems that are maintained on

a ŕoat charge (e.g., power grid applications) the deőned model would need to be modiőed.

Another parameter used for the analysis are derived from the recharge curve of the battery.

This can become an issue as the recharge curve can vary depending on the depth of discharge
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and the available currents for the recharge. Speciőc state of health experimentation may be

required to obtain the needed performance parameters from a őelded battery.

The approach also appears to be focused on lithium-ion technologies and other battery

chemistries would need different parameters to be considered for the process to be as effective.

The SOC used for the SOH estimation had a high error when SOC values were above 90%

and less than 20%. For some application the needs to maintain 100% SOC is important,

so the inability to accurately show that the battery system is at or near 100% would be an

issue in those applications. The approach also did not include parameters associated with the

environment (e.g., Temperature) which can have an impact on both SOC and acceleration

of performance degradation.

Researchers [37] discussed the use of RVM to predict RUL and improve operational

efficiency of a lithium-ion cells. RVM utilizes a Bayesian treatment of a SVM which allows

for a probabilistic prediction that increase ŕexibility with kernel functions. The authors

obtained cell performance data from publicly available battery lifecycle testing data from

an online and open sources NASA repository. The authors utilized an iterative expectation

maximization (EM) algorithm for RVM training as they felt that large amounts of training

data could lead to issues in deriving the relevance vectors.

The authors used capacity degradation data from the NASA open source data base as

inputs and the RVM was used for regression analysis. The deőned relevance vectors were

used by the EM algorithm to generate a capacity prediction for a future cycle. The new

predictive information was put together with the original relevance vectors to form a new

training set for the RVM model.

The authors evaluations attempted to take into account variation in performance that

can occur due to environmental or operational variations. The training data that was used

included variation in temperature and depth of discharges. This approach improves the

potential for better accuracy in őelded systems. However, additional validation testing with

varying discharge proőles may be needed to ensure the impact of non-static cycle proőles.
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A different group of researchers [38] evaluated the potential of combining entropy and

a RVM in order to predict a battery’s SOC, SOH, and State of Life (SOL). The authors

proposed a data driven approach for SOH and remaining life predictions using mean entropy

and RVM. The mean entropy is used to select the input variables for the RVM prediction

model. RVM adopts kernel functions to project the input variables into high-dimensional

feature space, so that the latent information can be extracted. RVM provides the probabilis-

tic interpretation of its output which provides a better prediction given dynamic changes in

the cycling proőle and environment.

The authors collected experimental data from two cells that were cycled to failure. Each

cell was operated at two different cycle proőles at ambient temperature. Cell capacities were

determined through periodic full depth of discharge cycles where coulomb counting was used.

The SOH was calculated using the ratio between the performed capacity test and the initial

capacity.

The data collected from the experiment was processed to reduce the noise and to extract

trend information which was accomplished with a Wavelet Denoising method. The denoising

method was described as a łsoft threshold denoising based on db5 Wavelet at decomposi-

tion level six (6) with the mixed threshold selection rulež, which could be implemented in

MATLAB.

An embedding dimension is required for the time series prediction. The embedding

dimension was selected based on the representation structure of the measured SOH data.

The algorithm for optimal embedding dimension selection began by scanning through the

time series SOH data with different embedding dimensions. The mean entropy of all the

data set having a speciőc embedding dimension was estimated and plotted in relation to the

size of the data set. The mean entropy increased signiőcantly initially and then proceeded

to ŕatten out as an optimal embedding dimension was achieved.

The RVM model was trained by using historical data, which resulted in weights and bias.

The developed RVM model was then used to make a speciőed number of predictions and
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determine the remaining life of the battery. In general, the remaining life was used as the

relevant metric for determining SOL.

Another approach researched [39] utilized a relevance vector machine-particle őlter (RVM-

PF) in an effort to accurately predict the battery capacity for the current and future cycles

while not requiring signiőcant computation. The authors used a Rao-Blackwellized particle

őlter (RBPF) in order to reduce uncertainty in the results. This RBPF approach divided the

state space into deterministic and probabilistic parts and analytically solved for the former

while using PFs for the latter, thus reducing the variance in the state estimate.

The approach began with an łofflinež training based on historical data where the cell’s

operation was expressed in the form of a structural and functional model. EIS testing was

conducted to identify features that could be used to estimate the internal parameters which

were then used to develop an equivalent circuit battery model. For this paper the features

that the authors selected were electrolyte resistance RE and charge transfer resistance RCT

which the authors believed showed signiőcant change due to the aging processes observed.

RVM regression was performed on data collected from a group of cells which were cycled

over a long period of time to őnd representative aging curves. The use of probabilistic kernels

in RVM helped to reject the effects of outliers and varying number of data points at different

time steps, which could bias conventional model-őtting methods like least-square-based.

The models developed łofflinež were fed into an łonlinež (real time battery monitoring)

PF process. The input data was used to estimate the battery SOC and SOH. The PF

incorporates the aging parameters of RE and RCT along with the battery capacity, at a

standard discharge current as components into a state vector. The current capacity estimate

was used to compute the SOC, whereas the future predictions were compared against end-

of-life (EOL) thresholds to estimate SOL.

The RUL was used as the relevant metric for determining SOL. This was derived by pro-

jecting out the estimated capacity of each particle from the time of prediction into the future

until they hit the predetermined EOL threshold. Both PF and RBPF prognostic frameworks
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were implemented, with the latter having an estimated capacity as the deterministic state

variable and the former assigning an additive zero-mean Gaussian noise of variance 0.001 to

it. The battery’s RUL probability density function was computed by őtting a mixture of

Gaussian to the RUL values generated by the particle population.

The authors’ approach provided a solid method to developing a performance based model

that could be used for predicting cell aging or degradation. The approach appeared to also

include a path that could account for performance variation due to temperature and various

cycling proőles which can effect the aging rate. However, the parameters RE and RCT

needed to predict the battery health may not be easily determined during normal battery

operations. The EIS utilizes special equipment and charge/discharge proőles. To be effective,

the parameters need to be determined based on normal battery operations or an easily

executable charge/discharge proőle. This may be difficult to apply in some applications.

A different paper [40] proposed to develop an incremental online learning strategy for

RVM and an online dynamic RUL estimation framework. The authors proposed an incremen-

tal optimized relevance vector machine (IP-RVM) algorithm to support online lithium-ion

battery RUL predictions. In the IP-RVM method, the algorithm only utilizes the relevance

vectors and the new on-line data sample as the training data set. The authors began by

choosing initial training data sets that were used to initialize the RVM model parameters

and establish a prediction error bound (PEB). The RVM training was then done offline with

the selected initial training data set. Sensor data from an online system was compared to

the developed RVM model and the prediction error to the derived PEB. If the prediction

error was larger than the established PEB, the new data was included as new training data

and the RVM model was updated, otherwise the RVM was unchanged.

The authors’ approach provided a potential opportunity to incorporate online data into

the training set to update the RVM model in real time. This could be applied to increase the

accuracy of the model when subjected to varying load proőle and temperatures. However,

the impact of varying load proőles or environments was not discussed. The approach still
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requires training data that represents the operational proőle in order to obtain an initial

RVM model that can be useful in the őeld. This means that upfront work in developing the

offline model is still required.

Research [41, 42] on battery aging and the estimation of RUL was a topic addressed as

an important part of prognostics and health management (PHM) and reliability engineering.

The authors proposed the use of non-linear transformation and optimization of the extracted

features to enhance the correlation between the selected parameters and battery capacity.

They also presented an optimized RVM algorithm to improve the accuracy and stability of

RUL estimation. Their approach began with feature selection based on operational data

from cycled cells. Feature selection was based on monitoring voltage, current, and cycle

count (age) in each charge/discharge cycles under a constant voltage and restricted current

operating proőle test. They deőned an equal time interval in which to normalize the data

under review in order to extract the desired parameters. After the raw feature data was

collected a Box-Cox transformation was applied to improve the linearity of the features and

battery capacity (SOH). Finally, the optimized feature set was utilized in RUL estimation.

The authors’ approach provided a sound way to identify unique features that could be

used to estimate battery RUL. However, the limitation on dynamic cycling was identiőed as

a concern that might be resolved by performing periodic maintenance cycling that provides

comparable discharge performance characteristics. Operations between these points could

be as dynamic as needed but still provide stable points for comparison.

A potential issue of the reviewed paper was that the evaluation data of the test cells

all showed good results except for one. The authors were unable to explain why this cell’s

performance did not conform with the prediction model. Given this, there may be addi-

tional conditions that the selected features were unable to correlate too. This suggests that

additional evaluation is needed.

The use of PF was explored by researches [21] in an effort to estimate the SOH and

predicting the RUL of an energy storage devices. The authors presented an approach to es-
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timating SOH and predicting RUL by utilizing particle őlters while also taking into account

the sudden regeneration phenomena that has been seen during lithium-ion battery opera-

tions. The authors utilized a state-space model that provides an empirical representation of

the system that also includes the ability to incorporate the impact of a sudden regeneration

phenomena. The model takes the output from a real time PF-based detection system which

determines if a regeneration has taken place or not and modiőes the predicted RUL accord-

ingly. The PF-based detection system determines the state of the cell (regeneration or not)

based on the position of the particles associated to the empirical a priori state distribution.

The authors provided a novel approach to including the inŕuence of the sudden regen-

eration phenomenon. However, the impact of this issue seems small in comparison to other

inŕuences (e.g., temperature) that can effect cell/battery capacity and RUL. Based on the

data provided in the paper, the overall decline curve for the cell still appears to be very

constant even with the regeneration phenomenon. The approach also required a capacity

test for the estimation of the SOH and RUL. The ideal desire would be to minimize capacity

tests as the deeper discharge increases cell aging. The inclusion of temperature and other

cycle proőles also have an impact on SOH and RUL. Those effects need to be taken into

account for a battery that is deployed on various systems.

Another approach [43] that was used for battery health prognostics utilized a Verhulst

model that would account for the capacity degradation of a lithium-ion cell. The model

was based on data collected from constant current discharge cycling of cells to measure

capacity decline over time. The Verhulst model was selected as the authors determined that

it described the capacity decline trends of a cell better than other models such as a SVM or

Grey Model (GM) based on experimental data.

The authors proposed an improved Verhulst model for implementation. The Verhulst

model was used to őt the training data in order to obtain the model parameters. In an

effort to improve the őtting precision of the model the authors utilized a PSO combined

with the euclidean distancing to deőne the upper and lower bands of the Verhulst model
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parameters. In this approach the őtting parameters are estimated by least square method.

The authors proposed a method to improve the PSO algorithm by utilizing an adaptive

weight method. The goal was to optimize the PSO performance by utilizing a bigger weight

coefficient early within the searching, but reduce the value later in the searching to speed

up the convergence. The authors noted that the őtness function was a primary factor that

inŕuenced the performance of the PSO algorithm.

The authors’ approach provided increased accuracy and precision based on their com-

parison of the more traditional approaches they selected to review. The modiőcations to the

Verhulst model and the use of PSO seemed to be key to these improvements. However, there

may be some concern regarding the data used in the development and validation. The same

data sets seemed to be utilized interchangeably for training and testing. This may lead to

over training of the system. More validation testing with independent data sets would be

recommended. In addition, the models do not appear to take into account external impacts

to battery aging (i.e., temperature) and validation of the process at various temperature

should be done.

Other researchers [44] have incorporated the use of PF in determining battery health as

well. These authors established a mathematical relationship between battery age (number of

cycles) and the capacity (performance) while then determining RUL through a PF algorithm.

Cycling performance data from a lithium-ion cell was collected and a speciőc predicted

starting point within the data set was selected. The data prior to this selected point was

used as the training data parameters to develop the model while the follow-on information

was used for validation.

The PF algorithm was used to track the battery capacity prior to the predictive starting

point which then updates the parameters associated with the lithium-ion cell degradation.

For new data obtained after the prediction start point, each particle was iterated and then

it was determined whether or not their end points where reached. If all points were not

reached, the unimplemented particles are extrapolated until all particles reached an end.
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The authors calculated the RUL of each particle and then performed statistical analysis to

obtain a RUL distribution histogram of all the particles reaching the threshold and ending

the iteration.

The authors identiőed some speciőc contributions based on their work. They showed that

the prediction method based on the PF requires less prior information for individual cells and

was therefore more convenient to implement. The algorithm can adapt to the degradation

difference between different cells, and at the same time provided a relatively accurate residual

life prediction value of individual cell capacity degradation. As more prediction data becomes

available with the passage of time, the prediction error gradually decreases. Compared

with the point estimation, the interval estimation of the probability density has a greater

reference value for a maintenance strategy because the uncertainty factor always exists, and

the probability density function provides a good potential solution.

The development of the predictive model appeared to be based on a single data set,

utilizing earlier performance for model and algorithm development. The follow-on data set

was then used validate the method. It did not appear that other data sets were used which

would limit the model’s ability to predict RUL in other operational scenarios. Also, the

distribution function appears to be limited in scope and does not account for the impact of

temperature or different operating proőles.

A deterministic Bayesian approach [45] was evaluated for estimating a battery’s SOH as

well. Training data was used to deőne a Gaussian prior distribution that represented the

historical performance degradation of the cell performance. As real time data was collected

it was combined with a łlikelihoodž capacity that was also modeled with a Gaussian distri-

bution. With this information a posterior distribution function was found that lead into the

predictive degradation. From this information the RUL was derived.

The authors provided an approach that could be used for SOH estimation. However,

the accuracy of the approach seems fairly large early in the cell’s life. It appeared that a

signiőcant amount of training data is required to develop the distribution curves and ensure
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adequate SOH accuracy. The approach does not take into account the impact that the

environment might have on cell/battery performance. The validation of the approach was

limited due to the sample cells failing due to testing issues that lead to unusable data. The

additional data may have provided better clariőcation into the application of the algorithm.

Other research [46] combined an electrical model with an extended Kalman őlter (EKF).

The authors initially developed an electrical model that could be used to represent a cell’s

main electrochemical characteristics. The EKF was utilized for the observation of the param-

eters of a lithium-ion lumped model. The authors developed the cell model by őrst collecting

cell parameter data through EIS testing. The data collected provided information on the

internal impedance and electrochemical diffusion rates. These were used to create a lumped

model that represented the internal cell diffusion phenomenon. The method consisted of

developing an analytically model of Warburg impedance in a series expansion of functions

and combining this with an equivalent impedance composed of capacitance and resistance.

The authors than used an EKF to update the battery model. First, the internal cell

resistance was determined by evaluating the cell through a constant current step charge and

measuring the corresponding voltage variation. Once the value of the resistance was deter-

mined, the EKF was used to identify the usable parameters. The other model parameters

were determined by the equivalent circuit relationship and the cell voltage over time.

This approach attempted to take into account important elements of battery aging (i.e.,

temperature and cycling) which was promising. However, the effort did not address the

development/calculation of the SOC or SOH of the cells. The effort provided a way to

update the impedance values of the cell over time but did not show how this information

could then be applied to predict the cell’s life. Additional research would be needed to take

this information and apply it in a way that could support prognostic efforts.

In [47] the authors utilize a Walbot radio sensor with machine learning algorithms to

determine cell/battery voltage via a contact-less monitoring. The Walbot sensor used in the

research is a three-dimensional radio-frequency sensor typically used to support such efforts
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as in-wall 3D imaging. The sensor was applied to a lithium-ion battery (LIB) in order to

monitor the internal electrochemical changes that occur within the cells during charge or

discharge with a focus on electrolyte states changes. Using the training data that linked

electrolyte stage change to LIB voltages, the investigators used PCA, LDA, and stochastic

gradient descent (SGD) machine learning algorithms in an effort to develop a classiőcation

approach to determine cell voltage.

The author compared the three approaches using initial training data to develop the

classiőcation modes. For the PCA method, PCA was used to support a reduction in di-

mensions while still trying to maintain the variance in the original data set. The developed

PCs that are then used as input to a k-neighbor linear classiőer in order to assign future

sample data. The LDA approach is used to support dimensional reduction, but also creates

a hyperplane to maximize separation between classes and minimize within class distance. In

this way the assignment of new sample data can be made to the correct class with higher

expected accuracy. The SGD method is a linear classiőer where gradient of the voltage loss

is estimated based on each sample received. The model is updated based on the new data,

decreasing the learning rate.

The three machine learning approaches were compared through experiment via cycling

LIB and comparing the data to a real-time voltage monitor connected to the cells. The

results showed that the PCA and LDA approaches had 93% and 94% accuracy while the

SGD approach was only accurate up to 31%.

While the PCA and LDA approaches showed high accuracy in determining cell voltage,

the approach would most likely not be viable in őelded applications. Voltage monitoring,

speciőcally for lithium batteries, is key to safety as overcharging cells can lead to catastrophic

events. Direct monitoring of the cell/battery voltage would be preferred to ensure a mitiga-

tion can be accurately executed. The machine learning approaches do not appear to account

for electrolyte or voltage changes that may be effected through temperature variation or cell

aging which will change the performance of the cell.
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Other research [48] attempted to use machine learning algorithms coupled with incremen-

tal capacity analysis in order to determine SOH and RUL under different temperatures and

SOC. Incremental capacity analysis utilizes speciőc charge and discharge regimens to collect

data that is transformed into dQ/dV −V curves where dQ is the capacity difference and dV

is the relates incremental change in voltage. The dQ/dV relationship is then plotted against

the mean voltage to develop the curves. Curve features are related to transformation of a

lithium cell’s anode and cathode material. These features are normalized by standardizing

and re-scaling the data around a mean of 0 and a standard deviation of 1 in order to apply

to the machine learning algorithms.

Here the authors attempted to use PCA and LDA algorithms to classify the batteries in

terms of temperature and SOC. The PCA approach was used to develop PCs, with the őrst

two (PC1 and PC2) used in an effort to show clustering of the batteries correlated to the

same temperature and SOC. However, this approach was not successfully as the őrst two

PCs only accounted for 48% of the variance within the data set. The authors then chose to

apply an LDA approach to the identiőed features and data set. Using the őrst two derived

linear discriminates (LD), the LDA algorithm was able to provide a 89% accuracy for the

temperature classiőcation and 67% SOC accuracy. The analysis showed that temperature

was the feature of greatest variance within the data set.

The authors work showed that the LDA approach could be used to support classiőcation

of batteries by temperature and SOC using features collected from the incremental capacity

analysis. However, temperature classiőcation was the only group with an accuracy high

enough to potentially be useful. Follow on work would need to couple this approach and

data with other research in order for it to provide useful information in the performance and

safety management of a battery system by end users.
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2.5 Maintenance Strategy Optimization

Queuing systems [49,50] have been used to study a wide range of service systems. It is a

branch of applied probability theory that is used to represent and predict operations within

a system were congestion may occur. The queuing system can be described as containing a

population of units or customers that are supported by a service facility. When the demand

for service by the units exceeds the capabilities of the service facility(s), then a queue or

waiting line develops. Multiple queuing systems can be described in order to simulate various

real world systems such as production lines, service center, and computer networks by varying

key parameters (e.g, arrival time, service time, service channels).

In [51] the authors utilized a M/M/s/N queuing model in order to determine the optimal

cost and service for plug-in electric vehicles (PEVs) at fast battery chairing stations by

determining the right number of charging and waiting spaces. It was assumed that at any

given time slot, a PEV could be found in one of four possible states: normal charging state

(Snch), fast charging state (Sfch), driving state (Sd) and parking state (Sp). The departure

and arrival times for PEV in thge mornings and evenings (assuming both private owners and

companies using PEVs) were determined to follow a normal distribution of

f(x) =
1

σ
√
2π

exp

(
−(x− µ)2

2σ2

)
, (2.3)

which was tied to the expected energy consumption to the battery (0.159kWh/km) and the

maximum battery capacity Cb(kWh) where N(µ, σ2)(µ = 28.5 and σ = 14.7).

The authors utilized a Monte-Carlo simulation and Markov model to estimate the PEV

travel behavior and determine charging demands (arrival rates) for the station(s). A Monte-

Carlo simulation determined the PEV usage (private user or commercial group) and the

individual vehicle battery capacities through the probability distributions and other deőned

assumptions. A Markov transition probability matrix was used to determine each PEV

vehicle’s state at a set incremental time interval during a given day. It was noted that
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since some transition between speciőc state may not occur, the transition probabilities can

be explicitly determined for each identiőed time slot. Given the known PEV probabilities

for each time slot and a known PEV population (n) within an area, then the demand for

charging PEVs (V ) can be determined as follows:

V = Pn × n× Sti
nch + Pf × n× Sti

fch, (2.4)

where Pn × n × Sti
nch represents the expected normal charging demand and Pf × n × Sti

fch

represents the fast charging demand.

Queuing theory was then used to optimize the sizing of the fast charing stations. The

arrival rate (λ) followed a Poisson distribution with the charing service time following an

exponential distribution of 1/µ (i.e., 30 min). Using the discussed Markov chain, the authors

were able to determine the probability state of the charges were P0 represented the probability

that the charger was empty and that Pk was the probability of k PEVs at the station. Based

on this information the authors were able to then determine the number of cars waiting

for chairing, the number of PEVs that leave due to wait time, and the number of vehicles

serviced. An analysis could then be conducted based on cost and proőt information to

determine the correct number and type of the charging stations to maximize proőt.

The authors work provided a thorough example of how a queuing model could be used

to support a battery system maintenance strategy. The determination of the arrival and

departure times for the vehicle could have been better deőned as not all the analysis was

provided. However, the queuing analysis showed the potential beneőt of simulating the

environment in an effort to optimize the costs and maximize proőt.

In [52] an algorithm was proposed to optimize charging facilities for PEV vehicles. The

authors utilized a M/M/C/S queuing optimization approach to model PEV charging fa-

cilities in order to right size the number of available charges and queuing spaces. In the

presented case study, the facility contains a set number of PEV charging stations and queu-

ing or waiting spaces. If all spaces are őlled, new vehicles will leave or reject the facility for

49



a different location. For these rejected customers the simulation includes a penalty cost. By

factoring in the various costs and service proőt, the queuing simulation is used to optimize

the number of charging stations and waiting spaces.

Th PEV arrival rate (λ) was based on a Poisson process which was conőrmed through

observational data. The battery charge time (service) was modeled from an exponential

distribution with an average recharge duration of 1/µ. The facility will utilize multiple

charging stations, which is limited by the available total power from the grid, as well as

multiple waiting spaces. The facility size (S) is the deőned by total number of charging (C)

and waiting (W ) spaces. Given a random number of vehicles (N(t)) at a time t, {N(t), t ≥}

is a Markovian process with őnite state set N = {1, 2, ..., S}. The steady state probability of

vehicles at the station (Pn) and the probability of rejected vehicles (PS) are used to determine

the number of vehicles able to enter the facility (waiting or being charged) as well as the

number of vehicles rejected. By changing the number of charging station and waiting areas

as well as factoring overall costs and sales, the authors are able to determine the optimal

number stations and waiting spaces to maximize proőt.

The authors approach provided a straight forward method to optimize a PEV charging

facilities to ensure the highest expected proőt is reached. The authors utilized experimental

data to verify the vehicle arrival rates but made assumptions on the charging duration.

The model could be expanded to include various charge time that would correspond to the

different battery capacities due to vehicle types and battery ages.

Research [53] proposed an analytical model in order to optimize costs and resource se-

lection for a wind farm maintenance support organization. The analysis utilized a queuing

simulation based on a Markov chain to model the maintenance activities while investigat-

ing the impact of using alternative types of transportation. The Markov chain simulated

the backlog of maintenance activities in support of performing actions on the various wind

turbines. The Markov chain consisted of i number of failed turbines where the failure tran-

sitions rate was proportional to the number of operating turbines. The service rate was
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proportional to the minimum number of turbines being repaired and the number of mainte-

nance teams. Using the model, the authors were able to examine the use of different types

of maintenance teams, transportation schemes to reach the turbines, and the application of

preventive maintenance in an effort to minimize costs.

The authors provided a detailed analysis of their optimization of wind turbine support

teams. The authors were able to clearly show the impact to the maintenance strategy in

evaluating the cost and proőt impacts in implementing different methods of the maintenance

team staging, the number of maintenance teams, and the transportation choices.

In [54] stochastic simulations of queuing networks were utilized to evaluate staffing levels

through the life cycle of a project to determine the dynamic right sizing of resources through

a project and the likelihood of project success. The authors provided an overview of main-

tenance project related to the Y2K problem foe a őnical software system. Three different

models were deőned in order to evaluate the staffing levels for project execution and cost;

(i) a single-queuing model, (ii) a two queue system with one node dedicated to problem

assessments and the other for all other actions, and (iii) a three queue system with one

dedicated to assessments, one for technical analysis and the third for enactment and unit

testing.

The authors used historical data to develop both training and test data sets for model

development. Historical data was used to derive the appropriate arrival and service times

by generating histograms of the data and then verifying the shapes through a Kolmogorov-

Smirnov and Chi-square goodness of őt tests. Following this analysis the deőned arrival time

was estimated using the maximum likelihood estimator (MLE). The service time estimation

required no speciőc estimator as it could be determined based on the statistical review of

the data set (e.g., mean and standard deviation).

With the established models, the authors were then able to evaluate the different queuing

systems as well as the staffing requirements, costs, and the project completion likelihood by

a speciőc date. The simulated results were compared to the actual historical data to identify
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the error in likelihood estimation between the different model approaches. The authors were

able to demonstrate that the approach was highly capable of estimating the project timeline,

that issues such as rework could be included into the model to determine staffing needs, and

the project ramp up and shutdown could also be modeled with the appropriate simulated

time sequence.

The authors provide a detailed case stated that exempliőed the use of queuing theory

for maintenance strategy decision making. The authors utilized historical data to develop

time sequence changes and deőne the changing arrival and service times based on project

maturity. However, the approach appeared to be developed to address the speciőc case study

and it was unclear how projects with different resources and tasking could be modeled to

provide an accurate project schedule. A different approach may be needed to assess future

work and/or to monitor ongoing projects more accurately.

Research conducted in [55] modeled a őnite capacity queue with a buffer partition in

order to reduce end-to-end delay for network signal traffic (e.g., voice over IP, video stream-

ing, etc). In the developed model the external traffic was deőned with a compound poisson

process (CPP) with traffic transmission times expressed as generalized exponential (GE)

intervals. The network followed a őst-come-őrst-service (FCFS) service plan. In order to

reduce queuing lengths which impacts delays and delay jitters, a separate buffer was given to

different classes of traffic. The class arrival was determined based on state probability func-

tions and deőned constraints. A maximum entropy function was used in order to characterize

a universal form of the state probability function.

The authors conducted initial validation of the approach by using video steaming and

data packets for a two traffic class system. Here the arrival rates of the two classes differed

while the service rate remained consistent. The initial results showed that even with a wide

range of input data that the proposed model showed an accuracy similar to others models

used for this purpose.
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The authors provided a good overview of their approach. The model represented a two

class system well with a straight forward implementation approach. However, it remains to

be seen how a more complex data set with more than two classes would function. It also

assumes available prior information to establish the arrival times and data classes which may

not be available.

In [56] the authors utilized queuing theory to determine an optimum number of charges

along a trunk road with multiple intersections where PEVs are entering and exiting. The

vehicle arrival rate (λ) followed a Poisson process with the charging time (service) represented

by a negative exponential distribution for µ. Given c chargers available, the service rate is

described as nµ(n < c) for n vehicle population and the stations occupancy is ρ = λ/(cµ).

The balance equation of the queuing system then provides the probability of n vehicles being

charged as Pn. This allowed the authors to derive the average wait queue length

Lq =
∞∑

n=c+1

(n− c)Pn, (2.5)

an average queue length

Ls = Lq +
λ

µ
, (2.6)

and an average customer waiting time

Wq = Lq/µ. (2.7)

This queuing analysis was combined with a model of the expected number of vehicles

that may need charging at each intersection of the trunk road. The authors determined the

probability (Pk) of electric vehicles requiring a charge at a location (li) that corresponds to

a intersection (k) along the trunk road. Based on Pk the expected (Ek) number of electric

vehicles needing to be charged at an intersection k can be deduced. From this the authors

determined the number of facilities needed along the deőned trunk road. Utilizing the
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queuing analysis already discussed, the authors could deőne the entire PEV charging system

in order to maximize proőts.

The authors provided a straight forward implementation of the queuing theory in order to

determine the number of charging stations needed per facility. The approach to determining

the number of facilities along the location also showed how the overall support strategy

could be developed. However, there appeared to be some continuity differences between the

probability distributions of the vehicles on the road needing charging and those arrival rates

at the charging stations. It was unclear if the differences would cause an impact in a real

world application.

Research [57] in revenue optimizations was conducted where different vehicle classes were

considered in the optimization of PEV charging stations. The authors used a M/G/S/K

queuing system to model a PEV charging facility under different scenarios. The authors

evaluated the opportunity to maximize proőt under two frameworks consisting of a single-

class customer and a multi-class customer scenario. In the single class system one charging

stations type is used to support all customers where customers gain rewards by reaching

high SoC level and battery degradation, waiting times, blocking events, and other fees were

included in the model cost. In the multi-class scenario, the customers are grouped by the

battery size, the class demand, and the available charger technologies (shared chargers or

class speciőc chargers).

For single-class analysis the authors deőned a battery degradation cost that is represented

as a function of the charging power and the charge duration. This is due to the fact that when

charging with high charge rates there is a negative impact to the battery cycle life which

leads to inefficiencies. Other costs included into the analysis were the wait time and a reward

cost. This scenario includes a reward (R) for the customer after the completion of service

if they have paid an admission fee p. The queuing system used in the analysis assumed S

chargers and r waiting spaces. PEV arrival rates (λ) followed an exponential distribution

while the service or charging time was a function of the vehicles SoC and available charging
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power. A new customer arriving at the facility when no charging stations are available would

be blocked which was represented by blocking probability of PK . The optimal number of

chargers were deőned for the system based on generating the highest revenue given the costs

and sales as well as the admissions fees for the reward program.

In the multi-class analysis the authors examined the impact of speciőc chargers available

for deőned vehicle classes. The different class vehicles represent the variability in SoC,

charge duration and vehicle types that could occur in actual deployed systems. The analysis

conducted evaluated the impact of all vehicle classes being charged by one charger type or the

opportunity to have dedicated chargers per class. The same M/G/S/K queuing model was

used for this analysis with varying arrival rates and service rates depending on the vehicle

class. Cost differences were also applied based on the single charger type and dedicated

vehicle class chargers which impacted the overall revenue. In comparing the two scenario

types the authors found that in order to maximize revenue the strategy to be utilized was

dependent on the traffic intensity in the area. It was determined that in a low traffic intensity

environment a shared charging model was most effective while a dedicated class charger was

optimal in high traffic intensity environments.

The authors showed that the application of the queuing theory could be used to deőne the

optimal service strategy for a PEV system. This was beyond the concept of establishing the

optimal number of chargers, but also the type of chargers depending on various contributing

factors. The authors provided little detail on how the different class arrival and service

rates were deőned, but the assessment showed that by factoring in these differences an ideal

strategy could be identiőed based on the population’s needs.

In [58] queuing theory is used to model the charging demand of plug-in hybrid electric

vehicles (PHEV) in order to derive the overall probabilistic power ŕow (PPF) required to sup-

port a charging facility or residential area. The authors choose to illustrate the approach by

modeling PHEV demand at an electric vehicle (EV) charging station and within a residential

community due the differences in expected usage patterns. In order to model the standalone
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EV chairing facility the authors applied a M/M/c queuing model where both the arrival

and service times followed an exponential distribution with a maximum service capability

c. The EV charging station scenario assumes an inőnite vehicle population. The residential

community model followed a M/M/c/k/Nmax queuing system where c ≤ k ≤ Nmax. Here

k represents the number of customers being serviced or in a queue waiting for service while

Nmax represents the total numbers of customers to be serviced. In the residential scenario

the charging stations are privately owned by residents which means that there is a őnite

population to be serviced.

The authors also assumed that there were four PHEV classes, each with different sized

batteries and quantities within the population. The population of each vehicle class was

considered to be discrete distributions and thus the PHEV vehicle type was randomly selected

based in its share within the population. The authors utilized a randomly generated sampling

as the PHEV vehicles coming to the charging facility. It was assumed that the charging

facility utilized two types of chargers for different power needs and that the charging duration

(service) followed a Weibull distribution. The residential charging concepts follow the same

charging distribution with chargers distributed to the the various customers. This assumed

that each vehicle either had their own charging station or was sharing a station with a small

subset. The queuing model was able to simulate the number of vehicles being charged and

the peak power ŕow required to support them.

The authors used queuing theory to determine the estimated power need for a charging

facility or residential area by simulating the PHEV charging needs. This was done by deriving

the different attributes for the scenarios as well as accounting for varying battery types.

However, the differences in usage patterns for a charging facility and a residential community

did not appear to be fully explored. It would be expected that the charger types and the

peak charge time would be different and may require additional detail to be added to the

models.
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Researchers in [59] utilized queuing theory to support a comprehensive review of opti-

mizing power usage at an eclectic vehicle charging facilities by utilizing solar panels and

a battery storage systems. The authors took a two stage approach with the őrst utilizing

a queuing model (M1/M2/N) to determine the optimal number of stations to have at the

facility. The authors őrst utilized an algorithm to determine the population of vehicles based

on the constraint of maximum travel distance from one charge point to the next. The vehicle

arrival rate is inŕuenced by a spatial-temporal model that deőned the expected traffic along

the road way. The queuing model aids in simulating the total power demand needs at various

times. The model is used to simulate the dynamic conditions of the charging facility and

optimize the number of stations to minimize customer weight time.

The authors model the potential contribution from solar panels and a battery storage

system in order to minimize total grid power consumption. The solar panels’ contribution is

dependent upon solar radiation which varies from season to season. Therefore the authors

included a seasonal irradiance pattern to the total power generated from the solar panels in

order to account for this variation. In addition, since it is expected that peak eclectic vehicle

charging demand does not follow maximum solar power generation, the authors factored in a

battery storage system to off set the power need at those times. The battery storage system

is designed with a capacity able to take the excess charge from the solar radiation that is not

directly used in order to apply it during the peak charging times. The combination of the

various models allowed the authors to optimize a charging station that allowed for minimal

wait time to customer as well as reducing grid power usage to the lowest level by deőning

the solar panel and battery storage system size. This leads to an overall reduction in power

costs during steady state facility operations.

The authors demonstrated the beneőt of utilizing queuing theory in order to optimizing

an electric vehicle charging facility strategy. The authors determined the number of charging

stations to support an expected need while minimizing the customer wait time as well as

deőning the overall power need. The authors approach then allowed for the combination
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of an alternative power sources to reduce grid power usage. The authors included multiple

variables that would effect the power demand and the solar power generation to provide a

complete analysis.

The authors in [60] proposed a method to identify the optimal location and number of

charging stations for an electric vehicle charging facility with the focus of minimizing costs

through a M/M/sj/N queuing model. Unlike many other applications of a queuing model in

electric vehicle charging application, the authors assumed that the queuing length would be

őnite with a max length of N . The authors also chose to vary the charging station quantity

per location, to be dependent on expected demand at the location. They used Manhattan,

New York as a case study location to demonstrate the method.

The work conducted by the authors focused on the initial construction and infrastructure

costs associated with facility location and optimizing charger stations. The associated costs

(Cstation) under review included the facility construction costs, equipment installation, and

equipment depreciation at a rate of r per year. The number of installed chargers were deőned

as sj per charging facility j. The capacity at each facility site was deőned as

Nj = sj + [
sj
γ
], (2.8)

where Nj represents the maximum number of vehicles that can be at the location and sj
γ

is

the maximum queuing length. The vehicles arrival rate (λ) at the charging facility follows

a Poisson distribution while the charging service follows a negative exponential distribution

with a mean µ. Given a service density ρ of

ρ

S
=

λ

µS
, (2.9)

where S represents the number of chargers, the authors are able to determine the queuing

length Ljq and the associated queuing wait time Wj per charging facility j.
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The costs associated with the users were deőned as the distance traveled cost and the

queuing wait time cost which is used to determine if a candidate location should hold a

charging facility. The authors used the distance traveled costs and potential queuing wait

cost per potential location j to determine a binary decision variable for build location based

on the fact that the electric vehicle can only drive a set distance based on the battery SoC.

The authors used New York State electric vehicle market data from multiple sources in

order to test their approach. Using a layout of Manhattan the authors identiőed locations

throughout the city to optimize charging facility location as well as the number of charging

stations per location based on the expected populations within those areas. Through opti-

mization and sensitivity analysis the authors were able to deőne a strategy to minimize total

costs.

The authors approach provide a straight forward method of determining the optimal

locations and the number of charging stations within a deőned area. The authors approach

focused on keeping initial infrastructure costs at a minimum by ensuring customers were well

serviced. This analysis showed that this approach could provide a strong initial deployment

strategy. However, including the operational costs of the various charging facility locations

may provide greater details on location acceptability and long-term proőtability.

In [61] a multi-class queuing system combined with a charging threshold strategy was

applied to an electric vehicle charging facility in order to minimize customer wait time and

maximize revenue. Here the authors divide the electric vehicle population into C classes

based on battery size. Each class is assumed to have a speciőc arrival rate (λc) that follows a

Poisson process. The charge time (Tc) per class is a function of the battery’s arrival state of

charge (SoCAC) and departure state of charge (SoCDC) when assuming a consistent charge

rate. The SoCAC was deőned as a random variable that follows a Cumulative Distribu-

tion Function (CDF) of Fc(X) = P (SoCAc ≤ X) which allows for the derivation of the

probability distribution function and the mean TC . To determine the mean waiting time for

customers, the authors chose to combine each C class into a single class by the deőning the
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superposed arrival time and charging time as well as the total system load. Through this

approach the authors simpliőed the analysis and are able to determine the mean waiting

time through Little’s Law

W =
L

λ
, (2.10)

where L is the number of customers waiting in the queue based on the deőned queuing model

and λ is the derived superposed arrival rate. The authors could then use the derived wait

time to alter the number of charging stations in order to minimize the customers wait.

The authors utilized the queuing model in determining the impact on revenue by applying

an incentive to customers in order to reduce service times. The authors recommended an op-

tion where customers would revive an incentive if battery charging stopped at 80% SOC. The

rational being that charging beyond this point increased charge inefficiencies and increased

service time. Terminating charging at 80% SOC provide adequate power for customers and

reduced service time. The authors assumed that some customers would participate in the

incentives while others would not, which was factored into the distribution of the service

time. The inclusion of the incentive meant an increase in other parameters like the arrival

rate λC . These additional factors were added to the queuing model in order to deőne a

strategy (e.g., number of chargers, incentive) that would maximize the charging facilities

revenue.

The authors approach attempted to validate a charging strategies to maximize revenue

through incentivizing customers to reduce charge times through queuing modeling. This

approach provided a straight forward method that attempted to utilize the impact of varying

sized batteries by using a multi-class approach. However, the authors combined the arrival

and service rates of each class to simplify the problem to a single class analysis. This may

not accurately highlight the impact of the varying battery types and may not provide an

accurate analysis to deőne the best strategy.
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Chapter 3

System and Maintenance Case Description

3.1 Overview

The Navy utilizes a wide range of battery technologies to support a multitude of sys-

tems and platforms. These batteries vary in size, conőguration, chemistry and operational

use. However, even with the variety of battery systems there is a unifying need to improve

performance, efficiency, and cost-effectiveness. The Navy’s Science and Technology (S&T)

Strategy [62] outlined by the Office of Naval Research (ONR) has highlighted łPower and

Energyž as one of the core development areas for the Navy. Part of the strategic goal is

to develop and advance łefficient power and energy systems,ž łincrease combat capability

through high energy and pulsed power systems,ž and develop łnew materials and methods

to increase reliability and reduce maintenance costs.ž

In order to demonstrate how an acceptance classiőcation approach combined with main-

tenance optimization may advanced the Navy’s goal, a large platform battery system will

be described as a case study in the following chapters. An assumed őnite population of 60

platforms will be considered with each platform containing one battery system. A battery

system is made up a large number of cells in a parallel, series conőguration. In this example,

all platforms are deployed and operational. Maintenance requirements associated with the

platform speciőcally or other non battery systems are not considered at this time. This case

study leverages information obtained from őelded systems, but due to sensitivity with some

aspects of the programs, the data shown here will be modiőed in order to protect the raw

information while still demonstrating the approaches.

For this case study, a speciőc battery system has experienced premature cell failures that

have resulted in impacts to the system lifecycle maintenance plan. The system’s expected

mean time before failures (MTBF) was projected to be 60 months or őve (5) years based
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on reliability analysis and testing conducted during system development. However, due to

a signiőcant subset of cells within the battery showing early failure, the battery MTBF

has shifted to 48 months or three (4) years. This has required the execution of unplanned

maintenance actions similar to those described in the previous chapter in order to extend

operational use. Electrical cycling maintenance actions are conducted in order to recover

declining performance, but recovery is expected to be short-lived and decline re-emerges

within a short time frame. Longer recovery can be accomplished through the costly and

time-consuming process of targeted cell replacements. However, the mixture of different

aged cells leads to other performance issues that must then be addressed with different,

signiőcant maintenance efforts [63]. The technical issues have also resulted in the increase

of scheduled maintenance actions in an effort to monitor system degradation. Platforms are

required to conduct SOH tests and provide performance data to the in-service engineering

team more frequently in order to monitor system readiness and to determine if corrective

actions are required.

3.2 Battery System Description

The battery system used in this case study is an uninterrupted power sources for systems

on a Navy platform. The battery is comprised of cells connected in a series and parallel con-

őguration to provide the desired voltage and power requirements. The battery will provide

current as required to key systems to ensure the continued operations when the main power

source is not available. Upon completion of the identiőed task the battery is recharged. A

BMS provides passive monitoring of the battery by recording battery voltage, individual

cell voltages, battery current and individual cell temperatures. No active cell management

is conducted by the BMS in this system. Active cell management, typically required for

lithium-ion based systems, is used to ensure that all cells are fully charged and balanced

safely. A conceptual diagram of a battery system is shown in Figure 3.1.
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· · ·

Figure 3.1: Notional diagram of battery system.

Fig. 3.1, the symbols vk, ik, Tk, k ∈ {1, 2, . . . , N} are the actual voltages, currents, and

temperatures, respectively, of the N individual cells within the battery. Individual cells

are placed in series electrically to obtain a total battery voltage. Each series set of cells

will provide a current with groups placed in parallel to provide the overall battery capacity.

Symbols ṽk, ĩk, T̃k are the measured voltages, currents, and temperatures, respectively, of

the corresponding cells. These measurements are collected in real-time (łonlinež) by the

BMS with basic prognostic functions to identify cells requiring actions to prevent damage

through operations (e.g., overdischarge) and to ensure safety. Measurements collected by the

BMS are also recorded for later inspection by an engineering organization responsible for the

performance, reliability and maintenance of the battery system throughout its lifecycle. Each

system includes a control interface which allows the batteries to be individually accessed,

charged and discharged, and to enable maintenance tests for estimating battery SOH.

Batteries are procured and placed into storage until ready for installation on the identiőed

platform. Prior to Government acceptance of the battery, a deőned set of screening actions
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that include speciőc electrical cycle tests are conducted on each cell to ensure that they meet

the functional baseline requirements. These actions only highlight the current performance

of each cell at the time of acceptance and do not forecast future life. There are some

programs that will obtain multiple cell samples from a production run for lot acceptance

testing (LAT), where longer term cycle testing is conducted to validate potential future

expected life. However, due to the cost of cells and the battery life cycle replacement schedule

this cannot be done for the system addressed in this case study. Once the battery is accepted

it is placed into storage until it can be installed on the platform. Battery installation is

performed by speciőcally identiőed organizations and requires unique equipment and trained

personnel. Battery replacements follow a lifecycle replacement plan that is established to

maximize the operational use but minimize risk of end of life performance issues. Program

budgets for battery procurement and replacement are aligned to support these lifecycle

milestones per platform.

For this case study, as the battery ages not all cells are performing consistently. A set

number of cells within the battery are declining in performance earlier than the rest of

the battery and speciőc performance markers have been identiőed to indicate łgoodž and

łfailingž cells. Premature cell failures occurs over time as the battery is used and can lead

to overall battery performance issues. The performance assessment to classify the cells as

łgoodž or łfailingž is based on a review of voltage, current, and temperature collected by

the BMS during normal operations and the routine SOH testing. These performance issues

lead to increased maintenance actions in order to improve overall battery performance in an

effort to meet platform and program requirements. However, premature cell failures have

lead to earlier than planned full battery replacements due to the performance declining to

unacceptable levels.
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3.3 Maintenance Strategy Overview

The goal of maintenance efforts is to improve or maintain the available battery capacity

in order to meet platform operational requirements. Without a battery capable of support-

ing the identiőed system requirements, the platform must operate at a reduced capability,

which impacts it operational availability. Maintenance actions [1, 4] associated with most

battery technologies begin with speciőc electrical recovery procedures. These involve apply-

ing a charge or cycle regimes (discharge and charge) on the battery in an effort to improve

performance. Common maintenance actions include a constant current (CC) or constant

voltage (CV) boost charges, pulse charging, and speciőc low rate discharge and recharge

proőles.

If electrical recovery actions do not adequately improve battery performance, a targeted

cell replacement may occur. In this case, failing cells that are limiting the overall battery’s

performance are replaced with higher preforming spares. This can be a difficult and time-

consuming process depending on the cell types and the battery system design. The mixing

of different aged cells is not considered a best practice as the cells will respond differently to

charges and discharges which will affect the overall battery, leading to further performance

issues [63]. If these actions do not maintain battery performance, an earlier than planned

battery replacement may be required.

For this case study, the battery system maintenance concept is outlined in Figure 3.2.

The platform and the trained users act as the organization/site maintenance level support for

the battery system. The users or site maintenance personnel on the platform are provided

speciőc guidance to perform maintenance actions on the battery by the battery vendor

and/or an engineering in-service organization. A SOH cycle is conducted periodically to

deőne battery performance at the time of the test. The SOH cycle is a deőned discharge and

charge routine that provides reference data on the battery’s overall performance and of the

individual cells within it. Data collected by the BMS is sent off the platform to the designated

engineering in-service organization who tracks the battery performance for all platforms and

65



issues additional guidance as needed to improve operations. If battery performance were to

improve, the periodicity of these action could be reduced. For this case study the assumed

that scheduled maintenance conducted by the site maintenance team includes the following:

• Constant Voltage Boost (CV). Ensure battery is kept at a full state of charge and cells

are balanced together.

• Maintenance Cycle (MC). Ensures that the battery is being exercised on a routine

bases that helps stabilize performance.

• State of Health (SOH) Test. A discharge and charge cycle that provide performance

information on individual cells and the overall battery. Given the performance concerns

with the battery for this case study, the periodicity of the SOH test is set to obtain

data as frequently as possible.

The role of the engineering in-service organization is to provide battery performance

monitoring and engineering support. This organization will use the operational data form

the BMS to evaluate battery performance trends and provide recommended maintenance

actions to sustain battery operations. They maintain the battery operating procedures and

work with the vendors to routinely update them as needed. The engineering in-service

organization also conducts engineering investigations into issues related to the battery in

an effort to improve system capability, monitoring vendor product quality, and implement

technical program improvements. In the case of early declining performance, they provide

recommendations to the platforms that take the shape of unscheduled maintenance actions

that are used to maintain or improve battery performance.

If battery performance cannot be maintained utilizing the described site maintenance

actions, more aggressive performance recovery efforts are required. In these cases the plat-

form must be supported by an intermediate maintenance group that has been established to

provide speciőc support during these unscheduled maintenance actions as well as conducted

other platform support efforts like the lifecycle battery replacements. The intermediate
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Figure 3.2: System Maintenance Concept.
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maintenance team will execute actions identiőed by the engineering in-service maintenance

organization to improve performance. Actions such as individual cell charging, aggressive

recovery charging proőles [e.g., low rate discharges (LRDD), low rate charges (LRC)], and

individual cell replacements must be coordinated with assigned intermediate maintenance

organizations due to the need to establish conditions that cannot be done while the platform

is under normal operating conditions. These actions are typically very invasive and require

speciőc training and equipment. Performing these actions not only reduces the available op-

erational time of the battery but also impacts the platform’s availability. For this case study

we will assume that the unscheduled maintenance actions carried out by the intermediate

maintenance organization will include the following:

• Constant current (CC) boost. An aggressive CC charge used to recovery battery capac-

ity by driving higher overcharge in order to recover capacity and balance the battery.

• Recovery cycle regimen (cr). A speciőed discharge and charge regime used to recovery

battery capacity through low discharge and charge rates. The process takes several

days and requires the platform to be under speciőc conditions that must be supported

by the Intermediate Maintenance facilities.

• Targeted cell replacement (rf). Speciőc low performing cells are replaced in order to

improve or maintain battery performance. Given the battery size, design, and platform

integration requirements, neither a spare battery or spare cells are available on the

platform. This effort requires specialized equipment and trained personnel, thus the

site level personnel cannot execute the work. This effort is typically done as a last

resort and in order to maintain the lifecycle replacement periodicity.

If batteries cannot be recovered or maintained by the described maintenance actions,

en early or out of cycle battery replacement must be conducted to ensure platform oper-

ational readiness. This is usually due to the fact that a signiőcant number of cells or the

overall battery has declined in performance due to some issue and the performance cannot
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be recovered or sustained. Most battery lifecycle replacement plans deőne the replacement

periodicity based on the expected battery end of life. The period of performance is set to

maximize battery useful life while minimizing the risk that performance will fall below the

identiőed operational thresholds. Battery replacements and/or refurbishment occurs typi-

cally at the depot maintenance level for some systems. However, in this case study a majority

of the removed cells are disposed of while the best performing cells placed in a spare pool.

3.4 Program Cost and Operational Availability

This section describes the maintenance costs and operational availability calculations used

in this research. The current total maintenance cost, CTotal, per battery set was derived by

determining the scheduled, Csm, and unscheduled, Cus, maintenance costs to the program.

The scheduled maintenance actions for this case study are well-deőned and documented. For

this research the identiőed unscheduled maintenance actions were determined by reviewing

the actions conducted on multiple platforms, the resource and time required to execute them,

and the average number of actions completed per the life of a battery set. These actions

included efforts conducted by the user (site maintenance) or intermediate maintenance teams.

These costs do not include logistical and administrative actions associated with those efforts.

The scheduled maintenance cost for a platform over the battery’s life, Csm, is:

Csm = Ccv + Cdd + Csh (3.1)

where CCV is the cost to conduct a CV maintenance boost, Cdd is the cost associated with

conducting a maintenance cycle, and Csh accounts for the cost to conduct a monthly SOH

test. The SOH test is considered as part of the maintenance actions as it requires the battery

be operated a speciőc way and provides information required to asses the battery.

The cost parameter for each scheduled maintenance actions is based on the number of

actual hours to conduct the action, ta, the number of actions conducted per year, NAY , the
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number of personnel required to execute the action, NP , the associated labor rates, RL, and

the expected number of years of planned use, NY . The cost for each maintenance action was

determined by the following:

Ccv = ta ·NAY ·NP ·RL ·NY (3.2)

Cdd = ta ·NAY ·NP ·RL ·NY (3.3)

Csh = ta ·NAY ·NP ·RL ·NY (3.4)

The average unscheduled maintenance cost for a platform over the full cycle life of a

battery, Cum, is:

Cum = Ccc + Ccr + Crf (3.5)

where Ccc is the cost to conduct the CC maintenance boost, Ccr is the cost associated with

conducting the recovery cycle regimen, and Crf accounts for the cost to conduct a targeted

cell replacement.

For the unscheduled maintenance actions the cost parameters are based on an analysis

of the unplanned maintenance actions over multiple platforms. The cost for the CC boost

charge, Ccc, and the recovery cycle regimen, Ccr, is:

Ccc = ta ·NAY ·NP ·RL ·NY (3.6)

Ccr = ta ·NAY ·NP ·RL ·NY (3.7)

where ta is the number of actual hours to conduct the action, NAY is the number of actions

conducted per year, NP the number of personnel required to execute the action, RL the

associated labor rates, and the expected number of years of planned use, NY .

A review of multiple platforms showed that for a battery to reach the targeted replacement

plan, that at least one (1) targeted cell replacement would be need during a projected 60
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month life. However, the signiőcant cost associated with this action must be accounted for

due to the high impact to the maintenance budget since the actions are typically unplanned.

The targeted cell replacement cost, Crf , is:

Crf = (ta ·NAY ·NP ·RL ·NY ) +M (3.8)

where ta is the number of actual hours to conduct the action, NAY is the number of actions

conducted per year, NP the number of personnel required to execute the action, RL the

associated labor rates, NY the expected number of years of planned use, and M is the

material cost need for the replacements.

Operational availability, Ao, is the percentage of actual operating hours to the maximum

nominal operating hours [49]. The Ao per battery system is determined similar to that of

the maintenance cost already described. The maximum nominal operating hours, Tmax, is

determined through a review of operational logs from multiple historic platforms. The total

maintenance time Ttotal is determined by summing the total time required to support all

scheduled, Ts, and unscheduled, Tus, maintenance actions.

The scheduled maintenance time for a platform over the battery life, Ts is

Tsm = Tcv + Tdd + Tsh (3.9)

where TCV is the time to conduct a CV maintenance boost, Tdd is the time associated with

conducting a maintenance cycle (DD), and Tsh accounts for the time to conduct a SOH

test. These efforts are standard cycling regimes placed on the battery and do not require

administrative or logistic actions that would add to the maintenance time.

The time parameter for each scheduled maintenance actions is based on the number

of total hours to conduct the action including administrative and logistic actions, tal, the

number of actions conducted per year, NAY , and the expected number of years of planned

use, NY . The cost for each maintenance action was determined by the following:
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Tcv = tal ·NAY ·NY (3.10)

Tdd = tal ·NAY ·NY (3.11)

Tsh = tal ·NAY ·NY (3.12)

The average unscheduled maintenance cost for a platform over the full cycle life of a

battery, Tum, is:

Tum = Tcc + Tcr + Trf (3.13)

where Tcc is the time to conduct the CC maintenance boost, Tcr is the time associated with

conducting the recovery cycle regimen, and Trf accounts for the time to conduct a targeted

cell replacement.

For the unscheduled maintenance actions the cost parameters are based on an analysis

of the unplanned maintenance actions over multiple platforms. The time taken for the CC

boost charge, Tcc, the recovery cycle regimen, Tcr, and the targeted cell replacement, Trf is:

Tcc = ta ·NAY ·NY (3.14)

Tcr = ta ·NAY ·NY (3.15)

Tcr = ta ·NAY ·NY (3.16)

where tal is the total number of hours to conduct the action including administrative and

logistic efforts, NAY is the number of actions conducted per year, and the expected number

of years of planned use, NY .

The Operational availability, Ao, was thus calculated by

Ao =
Tmax − Ttotal

Tmax

(3.17)
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3.5 Maintainability in the Baseline Maintenance Plan

The following section describes the program and maintenance impacts associated with

the baseline maintenance plan and a scenario where early failure prone cells are present.

The presence of early failing cells drive additional unscheduled maintenance actions which

have impacts to systems lifecycle costs. These unplanned events impact operational avail-

ability and require intermediate maintenance resources to be reassigned from ongoing work

to support efforts to improve battery performance, impacting other programs.

The maintainability metrics of lifecycle costs and operational availability are provided

for the baseline maintenance plan. Herein, it is assumed that the number of battery systems

deployed is 60 and the cost to a platform waiting for service or while being repaired during

unplanned maintenance is $100k per month. The maintenance system contains a single repair

channel with a baseline average number of units waiting or in service at 13. The MTBF

of a battery system is 48 months with a mean time to repair (MTTR) of a battery system

being one (1) month, which includes downtime hours by the maintenance team, limited to

one 12 hrs shift per day. The intermediate team labor costs are $200 per hour. The nominal

maximum operating hours for a battery system is 6, 900 hrs per year. Average scheduled and

unscheduled maintenance actions over a őve year expected lifetime, their maintenance costs

(including labor, materials, and waiting costs) and operational downtime in the baseline plan

are shown in Tables 3.1 and 3.2.

Table 3.1: Scheduled Maintenance Actions

Action
Maintenance

Duration (hrs)
Actions
per Year

Personnel
Required

Material
Cost ($k)

Operational
Time Lost (hrs)

Maintenance
Cost ($k)

CV Boost 12 12 2 ś 720 $288
Maintenance
Cycle

6 50 2 ś 1500 $600

SOH Test 6 12 2 ś 360 $144
Total 2580 $1,032

From Tables 3.1-3.2, implementation of the baseline maintenance plan has total mainte-

nance costs of $1, 876k per system. The total cost penalty for systems being non-operational
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Table 3.2: Unscheduled Maintenance Actions

Action
Maintenance

Duration (hrs)
Actions
per Year

Personnel
Required

Material
Cost ($k)

Operational
Time Lost (hrs)

Maintenance
Cost ($k)

CC Boost 24 1 2 0 456 $48
Recover Cycle 120 0.8 2 0 816 $192
Targeted Cell
Replacement

252 0.2 12 100 1056 $605

Total 2328 $844

is $1, 300k, resulting in an LCC of $3, 176k per system. Operational availability (percentage

of actual operating hours to maximum nominal operating hours) in the baseline maintenance

plan is 86%.
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Chapter 4

Classifier Reviews

4.1 Overview

This chapter describes the classiőcation methods considered for pre-screening batteries as

the initial effort to improve reliability and lifecycle maintenance improvement. The overall

approach is to utilize (offline) pattern recognition method(s) to screen cells that are predicted

to become poor performers (failure prone) prior to acceptance and deployment in a battery

system. Pre-acceptance classiőcation is to be performed with features based on minimally

invasive cell measurements collected during the manufacturing process and initial acceptance

testing conducted by the vendors. The selected algorithm should provide high classiőcation

accuracy, be mathematically simple and computationally efficient.

The classiőcation algorithms selected for evaluation were (i) SGC, (ii) SVM, (iii) LDA,

and (iv) PCALDA. The SGC method was selected due to the statistical bases of the approach

and that ability to identify signiőcant features correlated to failure prone cells. The SVM

method was selected for its ability to deőne optimal margin between two class in a linear

or non-linear data sets. The SVM is a method that classiőes sample vectors through the

determination of hyperplanes that maximize the separation of training data into classes [26ś

28,30ś33,38,39,43]. SVM can be used to solve both linear and non-linear binary classiőcation

problems. The LDA method was selected as it has shown good accuracy in classiőcation

efforts by deőning the scatter of data within each class and then maximizing the distance

between the two classes while minimizing the within class space [9, 15, 47, 48, 64]. PCA

dimensional reduction followed by LDA, referred to herein as PCALDA, was selected based

on the potential increase in overall accuracy identiőed in literature [16,17].

In the description which follows, bold faced letters are used to denote matrices or vectors;

non-bold letters are used for scalar quantities; for a matrix X,X(i;j) represents the element
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in row i and column j; for vector x,x(i) represents the element in row i; for an n× 1 vector

x, diag(x) is an n × n matrix with x(i) in the (i; i) positions and zeros in the (i; j); ∀i ̸= j

positions; {·}T represents the matrix transpose operator; | · | symbolizes the absolute value

of a number or cardinality of a set; g(x;α) symbolizes the evaluation of function g with

variable input x and őxed parameter(s) α.

4.2 Simple Generalized Classifier Method

The simple generalized classiőer (SGC) is a classiőcation algorithm that assigns samples

to classes based on their distance from the expected value of each class. While the SGC

employs a simple procedure, it is able to distinguish between more than two classes of data,

allows the creation of non-correlated data features from a smaller set of features, and can

include rules based on expert system knowledge [12].

The SGC employs the notion of critical points, which specify boundaries between the

classes. To illustrate the concept, Figure 4.1 shows the overlap of data from two distinct

classes. While the distributions depicted in Figure 4.1 appear statistically similar and nor-

mally distributed, this is not required in the SGC algorithm.

Figure 4.1: Conceptual diagram of data from two classes.

In 4.1, µ1 and µ2 are the expected mean values for class 1 (left curve) and class 2 (right

curve) respectively; xc is the critical point between classes; the shaded region A represents

the łerror areaž of miss classiőcation of data actually from class 2 to class 1; the shaded area
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B represents the error area from miss classiőcation of data actually from class 1 to class 2.

The sum of the error areas is minimized when xc is the same multiple of standard deviations

away from the means of both classes, when expressed in standard deviations speciőc to each

class. At point xc the number of standard deviations away from the mean(s), ησ, is given as

ησ =
µ2 − µ1

σ1 + σ2

, µ1 < µ2 (4.1)

where µ1 and µ2 are the standard deviations of the data from classes 1 and 2, respectively.

The critical point is therefore located at

xc = µ1 + ησσ1 = µ2 − ησσ2 (4.2)

Here Nc denotes the number of possible data classes associated with the cells. The iden-

tiőcations of the classes and the assignment of training data is based on expert knowledge

from the review of cell performance during laboratory testing or results from deployed sys-

tems. For each class, Ns training samples for the Nf data features have been collected and

assigned.

The sample data is stored for the k’th class in a Ns×Nf matrices denoted as Dk. Expert

knowledge on cell manufacturing and the electrochemical processes can be used to develop

new features from these existing ones. These new features are created by augmenting the

original features’ data by performing mathematical operations (e.g., multiplying, dividing,

etc.) on the columns of Dk. For example, the ratio of positive active material (PAM) and

negative active material (NAM) used within the cell could be a new feature (PAM/NAM)

used by the classiőer. These augmented features are collected in matrices Ak and assigned

Dk ← [Dk | Ak] if available.

For each class, the mean, µ, and standard deviation, σ, of each feature data set (consisting

of Ns sample observations) is determined. These values are collected into Nc×Nf matrices µ
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and σ. The means are then placed in order based on the class number to ensure the correct

inequality for pairwise evaluations when calculating the critical point.

The critical point, xc, and number of standard deviations between the Nc− 1 contiguous

pairs of ordered features are determined by using the correctly order pairs. The deőned

standard deviations are collected into a Nf × (Nc− 1) matrix, N. For each pair-wise feature

comparison identiőed, a t-statistic according to a two-sided t-test is performed with df =

2(Ns − 1) degree of freedom. Each associated p-value for each t-statistic is collect in Nf ×

(Nc − 1) matrix P.

In order to determine the critical features, sum the p-values for each feature by summing

the rows in P. Down-select features with p-values for which distinction by class is statistically

signiőcant (e.g., p < 0.05). Rank order the down-selected features, with the highest rank

assigned to the lowest p-value, second highest rank to next lowest p-value, etc. Of the rank

ordered features, one may select a subset if fewer features are desired. Denote the őnal

number of łcritical featuresž is Ncf ≤ Nf . With the critical features selected, prune the

matrices η, σ, N to contain only the Ncf rows of critical feature data.

The identiőed critical features are then assigned a weight in order to ensure features

with higher potential accuracy provide greater inŕuence on the classiőcation. The Ncf × 1

elements of the feature weight vector w is determined as

w(i) =

∑
j (N(i,j))

2

∑
i

∑
j(N(i,j))2

(4.3)

The weighted critical features can now be applied to newly obtained data for classiőcation.

For a single test sample example, the new data collected for a cell is reviewed and any new

data generated from augmentation of the sample vector is conducted. The data set is then

pruned to only the critical factors which were determined in training. Let x denote the

resulting Ncf × 1 sample vector.

A z-score (distance) of each sample feature to the recorded training feature means for all

classes is calculated. The parameterized z function is:
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z(y : µ, σ, η) =
| y − µ |
σ/
√
η

(4.4)

where y is the input data; µ,σ, and η are parameters specifying the mean, standard deviation,

and number of samples used to compute the mean and standard deviation parameters. The

z-score for each feature is computed and collected in a Nc ×Ncf z-matrix as

Z(i,j) = z(X(i);µ
T
(i,j),σ

T
(i,j), Ns), (4.5)

where it is noted that µ, σ, and Ns are associated with the training samples.

An element-wise evaluation of function f(z) is applied to each entry of Z and the values

are collected in matrix F. For example, the function f(z) = 1
z2

may be used to achieve

increasing function values with decreasing z-scores, i.e., as the samples get closer to the

feature means. F is normalized by the column. The weighting factors w(i) determined

during training are applied to F by assigning F ← F· diag(w). The weighted values are

summed for each class to obtain the Nc×1 vector s(i) =
∑

j F(i;j). The classiőcation decision

is obtained by selecting the row of s with the largest value; this row number corresponds to

the assigned class number.

4.3 Support Vector Machine

The SVM is a method that classiőes sample vectors through the determination of hyper-

planes that maximize the separation of training data into classes [9, 10, 15, 20, 30ś32, 34ś36,

40,42]. SVM can be used to solve both linear and non-linear binary classiőcation problems.

In linear binary classiőcation problems the training set to the SVM consists of pairs

denoted {xi, yi}, i = 1, 2, . . . , Ns, yi ∈ {1,−1} where, xi is the Nf × 1 vector for training

sample i and yi is the class indicator for xi. The SVM algorithm is used to determine

hyperplanes that separate the data into the two classes, described by the equations wTxi+b ≥
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+1 (for yi = +1) and wTxi + b ≤ +1 (for yi = −1), where w is a vector orthogonal to both

hyperplanes and b is the bias, as depicted in Figure 4.2.

Figure 4.2: Optimal Separating Hyperplane with Support Vectors.

Identiőcation of the hyperplanes that maximize the separation distance between the

classes is determined by solving the constrained optimization problem:

min

{
1

2
||w||2

}

s.t. yi
(
wTxi + b

)
− 1 ≥ 0. (4.6)

The ‘support vectors’ lie along the hyperplanes described by the equations wTxi + b± 1

and have separation distance 2/|||w|. In nonlinear separable problems slack variables, ξi, are

used to augment the constraints in (4.6) as

yi
(
wTxi + b

)
> 1− ξi, (4.7)

and the optimal separation distance is determined through solution of the optimization

problem:
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min




1

2
||w||2 + C

Nf∑

i=1

ξi



, (4.8)

with constraints given in (4.7), and where the second term in (4.8) is a cost penalty. SVM

can also be applied to nonlinear classiőcation problems by introducing nonlinear functions

that map the vector space containing the training vectors to a higher-dimensional space

that allows linear classiőcation; symbolically, let ϕ : RNf → R
Nk denote the mapping where

Nk > Nf is the dimension of the higher-dimensional space.

A positive deőnite ‘kernel’ function k : RNf × R
Nf → R is deőned as:

k(x,xi) := ⟨ϕ(x),ϕ(xi)⟩ (4.9)

which is then used to form the kernelized decision classiőcation function:

ŷ(x) = sgn

(
Ns∑

i=1

αiyik(x,xi) + b

)
, (4.10)

where ŷ is the estimated class and αi are scalar coefficients with upper-bound C [65].

4.4 Linear Discriminant Analysis

The LDA method is used to determine a linear combination of the data features that

can then be used to separate input samples into two or more classes [9, 15, 47, 48, 64]. As

with SVM, the true classiőcations of the training vectors are assumed to be known a priori.

Let K denote the number of possible classes of the data set, nk the number of possible

classes and Πk = {xj}, j = 1, 2, . . . , nk contain the data vectors assigned to each class. The

total number of samples in all classes Ns =
∑K

k=1 nk. The mean features for each class are

computed as:

µk =
1

nk

∑

j∈Πk

xj, (4.11)

The covariance matrix for vectors xj ∈ Πk is computed as:
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Σk = cov(xj,xj) = E[(xj − µk), (xj − µk)
T ], (4.12)

where E[·] is the expectation function. In the case of K = 2 classes, each input vector

x (including the training vectors) are assumed to be a member of class y = 0 or y = 1.

The LDA approach assumes that the conditional probability density functions p(x | y = 1)

and p(x | y = 2) are normal distributions with mean and covariance parameters (µ1,Σ1),

(µ2,Σ2), respectively. Under the additional assumption that the two covariance matrices

are equal, i.e., Σ1 = Σ2 = Σ, the classiőcation decision function can be expressed:

wTx > c, (4.13)

where

w = Σ−1(µ2 − µ1), (4.14)

and c is a scalar threshold computed as:

c =
1

2
wT(µ2 − µ1). (4.15)

4.5 PCALDA

The proposed PCALDA approach combines the LDA approach described in the previous

section with PCA. n particular, the dimension of the data are őrst reduced using PCA by

computing the PCs in the manner described in this section. The transformed data are then

used as inputs to the LDA algorithm which performs the classiőcation according to [31].

PCA is a method used to transform data to ‘principal component’ (PC) bases, where the

basis vectors are in the direction of maximum variance of the underlying data set. PCA can

often be used to reduce the dimensionality of the data, by selecting a subset of computed

basis vectors while maintaining sufficient variance within the data set [9, 15,64].
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To determine the PCs from training samples, the raw sample data is őrst collected in

Ns × Nf matrices, denoted as X. Expert knowledge can be applied to develop augmented

features by performing mathematical operations on the original data sets. These augmented

features are collected in matrix A and the sample matrix is updated as X ← [X | A]. The

mean for each feature is computed and subtracted from the corresponding feature in the

sample matrix, resulting in a matrix denoted B. The covariance matrix C is then calculated

as

C =
1

Nf

BTB. (4.16)

A reduction in dimensions is accomplished by determining the eigenvalues and eigenvec-

tors of C in the equation E−1CE = Λ, where the columns of E contain the eigenvectors of

C and the eigenvalues are contained along the principal diagonal of (diagonal) matrix Λ.

The eigenvectors are ordered according to their corresponding eigenvalues; eigenvalues less

than a predeőned threshold are removed, and those above the threshold are assigned as the

remaining, PC vectors.

The selected PCs are used to transform the data set to which is then used as input to

the LDA method. The LDA method őnds a linear combination of the data features that

can be used to separates input samples into two or more classes [9, 15, 47, 48, 64]. LDA

implementation will follow the same process as outlined in the previous section.

83



Chapter 5

Classifier Implementation and Comparison

5.1 Data Preparation

In this chapter the classiőcation approaches are evaluated for implementation using sam-

ple battery data from the case study system outlined earlier. The data used in this study

represents measurements of various battery cell features taken prior to acceptance and where

eventual maintenance records and end-of-life (EOL) performance were known. Feature data

for the batteries include pre-acceptance test measurements of cell attributes such as: cell

weight, acid concentration, formation temperature, open circuit cell voltage, initial capacity,

etc. Using the maintenance records and EOL performance information for the deployed sys-

tems, selected sample cells were classiőed into ’good’ (class 1) and ’failure-prone cells’ (class

2).

For the evaluation an acceptable sample size was determined through a statistical review

of the total available population [66]. For each feature a sample size n was determined per

n =
(zα/2)

2σ2

E2
, (5.1)

where (zα/2) is the z-value correlated to the desired conődence value, σ is the estimated

feature population standard deviation, and E is the width of the conődence interval. For

this analysis the desire is to achieve a 95% conődence interval (α = 0.05) where the standard

deviation (σ) was derived from the total available feature population. The conődence interval

error is expressed as E = W/2 where W is the tolerable error (W ) for the conődence interval

of each feature.

The sample size was further reőned by conducting a power of the test analysis for each

feature [66]. Power is considered the probability of rejecting H0 (the null hypothesis), when

H0 is in fact false. Power is deőned as
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Power = 1− β, (5.2)

where

β ≈ P (z ≤ zα/2 −
|µ0 − µa|
σ/
√
n

). (5.3)

Here µ0 denotes the null value of µ and µa denotes the actual value of the mean in Ha (the

alternative hypothesis) with the other variables previously described [66]. A power of 85% or

greater was selected in order to provide conődence in the data set and follow on analysis. If a

power value less than 85% was calculated, the sample size was increased until the minimum

power requirement was achieved. Once the sample values were calculated for all features,

the optimal sample size was selected so that each feature encompassed the same number of

samples. For the efforts conducted in this research 200 cells was selected as the sample size

with eight identiőed features for classiőcation training. The 200 samples consisted of 100

class 1 and 100 class 2 cells that were classiőed based on known historic performance and

end of life failure mode. For validation, 200 additional cells were selected consisting of the

same class 1 and class 2 population sizes. This is an increase in the number of samples used

in previous research [67]. The same sample sets were used in the training and testing of each

classiőcation model for consistency and comparison.

To better visualize the actual data set used, Figure 5.1 shows the raw class 1 and class

2 training data within a comparison of each feature used in this research. The őgures

highlight the presence of some clustering or possible spacial separation between the classes

when comparing individual feature together. This initially suggested that a classiőcation

technique may aid in identifying class 1 and class 2 cells. A detailed view of example

comparisons can be seen in Figure 5.2 and Figure 5.3.
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Figure 5.1: Individual comparison of all features.

Figure 5.2: Feature 1 vs Feature 2 comparison of classes.
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Figure 5.3: Feature 3 vs Feature 4 comparison of classes.

Ten example training vectors used to illustrate classes 1 and class 2 are shown in Tables

5.1 and 5.2 respectively.

Table 5.1: Class 1 Example Training Data

n f1 f2 f3 f4 f5 f6 f7 f8

1 2.0 1.8 1.2 2.2 2.8 2.5 1.9 2.4

2 3.0 0.1 0.9 0.8 0.4 0.3 0.6 1.0

3 0.0 0.8 2.5 0.7 1.3 2.2 2.0 1.8

4 1.7 1.0 2.1 0.2 1.7 1.0 0.9 0.9

5 2.0 0.5 0.1 2.5 5.1 1.3 1.7 5.0

6 4.6 2.4 4.2 1.5 6.4 0.3 0.7 1.1

7 0.7 1.1 1.3 0.3 0.0 1.8 18.2 1.9

8 5.3 8.3 4.0 1.9 12.0 33.6 3.6 0.8

9 0.9 1.0 1.4 1.4 1.6 1.4 1.4 1.4

10 1.3 0.6 0.2 0.2 0.3 0.9 0.1 0.0
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Table 5.2: Class 2 Example Training Data

n f1 f2 f3 f4 f5 f6 f7 f8

1 1.9 3.8 2.4 2.7 3.2 2.0 3.4 2.3

2 3.7 0.7 1.8 1.6 1.0 0.8 1.4 1.4

3 1.7 1.4 1.4 2.6 1.4 2.0 2.0 3.5

4 2.2 3.2 2.8 1.4 6.9 3.8 2.6 2.7

5 4.9 2.7 5.1 5.0 2.5 10.0 3.4 5.5

6 7.0 5.3 5.1 9.3 10.3 1.0 4.8 2.3

7 1.7 4.7 2.2 2.5 5.5 3.8 2.5 2.1

8 2.8 3.8 1.5 2.4 2.0 1.7 2.7 1.4

9 1.6 1.4 1.7 0.6 2.2 1.1 0.9 1.3

10 0.7 1.1 0.5 0.4 0.4 0.9 0.5 0.6

In Tables 5.1 and 5.2, fi correspond to the i’th data associated with the speciőc feature

for the n = 1, . . . , 10 cell samples. The Nf = 8 features include six łrawž features, fi, i ∈

{1, 2, 3, 4, 5, 6}, based on direct measurements and two augmented features, fi, i ∈ {7, 8},

derived using pair-wise multiplication and division of raw features selected based on expert

knowledge.

The test vectors, which were applied to the classiőer models after training, were prepared

in the same manner as the training vectors, i.e., they contained the same raw and augmented

features in the same order. An example test vector is shown in Table 5.3

For the classiőer evaluation the same data sets with augmented features were used in all

cases. Depending on the approach taken, the vectors were augmented further as required by

the approach discussed.
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Table 5.3: Sample Test Data.

n f1 f2 f3 f4 f5 f6 f7 f8

1 2.2 3.3 3.7 2.0 4.0 3.5 3.2 3.4
2 1.4 2.0 1.7 1.1 2.9 1.3 2.6 1.9
3 2.7 1.9 0.6 1.9 1.3 1.5 1.2 1.0
4 0.9 1.7 1.3 1.7 2.6 2.0 1.6 3.1
5 2.3 1.5 2.7 4.3 2.0 7.0 2.6 5.8
6 2.5 0.3 0.0 0.9 0.6 0.5 0.4 0.8
7 3.3 5.5 2.0 4.7 2.9 5.6 9.7 3.9
8 0.1 1.0 0.8 2.2 2.3 1.6 2.0 1.2
9 1.4 0.8 1.7 0.5 0.1 1.6 0.7 1.5
10 2.2 1.4 0.3 2.5 1.1 4.5 4.1 1.8

5.2 SGC Implementation

The SGC classiőer was coded in MATLAB® R2020b, and implemented the algorithm

described in chapter 4, section 4.2. As stated, Tables 5.1 and 5.2 represent the class 1

and class 2 training data sets. Here fi correspond to the i’th data associated with the

speciőc feature for the n = 1, . . . , 10 data samples. The Nf = 8 features include six łrawž

features, fi, i ∈ {1, 2, 3, 4, 5, 6}, based on direct measurements and two augmented features,

fi, i ∈ {7, 8}, derived using pair-wise multiplication and division of raw features selected

based on expert knowledge. However, note that any operation or mathematical function of

the raw features could have been used to obtain the augmented features (a stated advantage

of the SGE algorithm [12]). The augmented feature data in Tables 5.1 and 5.2 constitute

training data matrices D1 and D2 as discussed in the previous section.

Applying the classiőer training process yielded mean and standard deviation matrices

µ =




2.1 2.8 0.5 1.3 1.7 2.3 1.2 3.8

6.5 0.8 3.1 9.0 2.3 1.4 1.3 0.6


,

σ =




0.6 0.7 0.4 0.4 0.6 0.7 0.8 1.7

2.7 0.5 1.5 10.1 0.7 0.5 0.4 0.4


,
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respectively. The őrst three critical features were selected by rank-ordered p-value, and were

identiőed as features f2, f4 and f6. The associated feature weighting vector was computed

as w = [ 0.32 0.34 0.35 ]T .

The trained classiőer was then applied to measurement data obtained during cell screen-

ing evaluations, similar to the example vectors in Table 5.3. Here the augmented features

f7 and f,8 were calculated in the same manner as described above. The determined critical

features (f2, f4 and f6) of the test data were evaluated and assigned the appropriate com-

puted vector weights in order to classify the new samples. The results of the classiőer using

the full data set of 200 test cells, 100 class 1 and 100 class 2 samples, is summarized in the

‘confusion’ matrix shown in Table 5.4.

Table 5.4: SGC Confusion Matrix

Classifier Output

Class 1 Class 2

True Class 1 76 24

Class Class 2 1 99

As shown in Table 5.4, the classiőer correctly identiőed 76 of the 100 samples actually

from class 1 as being in class 1 and incorrectly assigned 24 class 1 samples to class 2 (76.0%

accuracy for classifying class 1 samples). The classiőer correctly identiőed 99 of the 100

samples actually from Class 2 as being in Class 2 and incorrectly assigned 1 class 2 samples

to class 1 (99.0% accuracy for classifying class 2 samples). Thus the algorithm provided an

overall accuracy of 87.5%.

5.3 SVM Implementation Method

The SVM classiőer was developed and executed using R programming language, version

3.5.1 which followed the implementation outlined in chapter 4, section 4.3. When train-
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ing the SVM classiőer, the svm() function from the e1071 package was used to develop a

classiőcation model with the following parameter options: the type option was set to łC-

Classiőcationž (to perform classiőcation), the kernel function type was set to linear, and cost

(corresponding to C in function 4.8) was initially set to high value (>1) with all other options

used as default values. A tuning analysis was conducted to optimize the cost function in

order to maximize accuracy.

The training vectors were applied to the svm() function for training purposes. The

training vectors were applied to the classiőcation model as new inputs according to 4.10

using the predict() function in order to optimize the cost value. The initial classiőcation

accuracy was low given, which was expected given the high cost rate. To improve the overall

accuracy the optimal cost deőned in equation 4.8 by completing a sensitivity analysis to

minimize the classiőcation error (Class_Error) which can be seen in Figure 5.4. It shows

that the optimal cost value was determined to be 0.95 which was then used to update the

parameters of the svm() function and retrain the model.

Figure 5.4: Sensitivity Analysis for Best Cost Value.

The test vectors were then classiőed with the trained classiőer model also using the

predict() function from the R stats package. The results of the classiőer using the full
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test vectors of the 200 test cells, 100 class 1 and 100 class 2 samples, is summarized in the

‘confusion’ matrix shown in Table 5.5.

Table 5.5: SVM Confusion Matrix

Classifier Output

Class 1 Class 2

True Class 1 91 9

Class Class 2 10 90

Table 5.5 shows that the SVM classiőer correctly identiőed 91 of the 100 samples actually

from class 1 as being in class 1 and incorrectly assigned 9 class 1 samples to class 2 (91.0%

accuracy for classifying class 1 samples). The classiőer correctly identiőed 90 of the 100

samples actually from class 2 as being in class 2 and incorrectly assigned 10 class 2 samples

to class 1 (90.0% accuracy for classifying class 2 samples). Thus the algorithm provided an

overall accuracy of 90.5%.

5.4 LDA Implementation Method

The LDA classiőer was developed and executed using R programming language, version

3.5.1 which followed the implementation outlined in chapter 4, section 4.4. When training

the LDA classiőer, the lda() function from the MASS package was used to compute w and c

in the classiőcation function 4.13 with the standard R default parameter options selected.

Applying the training vectors to the lda() function the means for each feature was

calculated as deőned in function 4.11. Given that only two class are being compared, only

one LD is required to be deőned. The coefficients of the LD for the actual training data set

consisting of 100 class 1 and 100 class 2 cells were deőned as shown in Table 5.6.
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Table 5.6: Derived Coefficients of Linear Discriminant

Feature LD1 Coefficients

f1 3.91e+ 01

f2 −1.85e+ 03

f3 3.67e+ 03

f4 −3.67e+ 03

f5 −6.29e− 02

f6 2.54e+ 01

f7 1.04e+ 02

f8 1.70e− 01

The test vectors were then evaluated through the trained classiőcation model that applied

the function 4.13 through the predict() function in the R stat package. The results of the

classiőer using the full data set of 200 test cells, 100 class 1 and 100 class 2 samples, is

summarized in the ‘confusion’ matrix shown in Table 5.7.

Table 5.7: LDA Confusion Matrix

Classifier Output

Class 1 Class 2

True Class 1 93 7

Class Class 2 2 98

As shown in Table 5.7, the classiőer correctly identiőed 93 of the 100 samples actually

from class 1 as being in class 1 and incorrectly assigned 7 class 1 samples to class 2 (93.0%

accuracy for classifying class 1 samples). The classiőer correctly identiőed 98 of the 100

samples actually from class 2 as being in class 2 and incorrectly assigned 2 class 2 samples
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to class 1 (98.0% accuracy for classifying class 2 samples). Thus the algorithm provided an

overall accuracy of 95.5%.

5.5 PCALDA Implementation Method

The PCALDA classiőer was developed and executed using R programming language,

version 3.5.1 which followed the implementation outlined in chapter 4, section 4.5. When

performing dimension reduction using PCA, the prcomp() function from the stats package

was used to perform the operation with the following parameter options: centering was set

to łtruež, and scale was set to łtruež; all other options used the default values. In this case,

centering was used to give zero mean of the data and scaling was done to ensure the data

were scaled to have unit variance.

The training vectors are transformed via PCA for dimensional reduction and as inputs

to the LDA classiőer. As described, the mean value of each feature is determined and then

subtracted from each feature set to center and scale the vectors, thus normalizing the data

which forms the new matrix B as discussed in chapter 4. The PCs scale and format the

data to be represented in a new plane, with PC1 explaining the largest variation within the

matrix. The standard deviations and variances for each PC is deőned in Table 5.8. The

table shows that the őrst őve PCs account for 92% of the variation within the data set. The

derived PC coefficients using the prcomp() function are deőned in Table 5.9.

Table 5.8: PCs Variance and Standard Deviation

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Standard Deviation 1.747 1.374 0.993 0.9189 0.769 0.615 0.511 0.000

Proportion of Variance 0.382 0.236 0.123 0.106 0.074 0.047 0.033 0.000

Cumulative Proportion 0.382 0.617 0.741 0.846 0.920 0.967 1.000 1.000
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Table 5.9: Principal Component Coefficients

Feature PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

f1 0.471 0.052 -0.048 -0.189 -0.174 0.840 -0.048 -2.27e-06

f2 -0.514 0.041 -0.037 0.030 0.224 0.298 -0.688 -0.345

f3 -0.149 0.698 -0.034 0.063 -0.002 0.043 -0.163 0.676

f4 0.119 0.702 -0.016 0.050 -0.121 -0.114 0.195 -0.651

f5 -0.103 0.046 0.968 -0.206 -0.060 0.052 0.022 -8.81e-06

f6 0.400 0.093 0.0878 -0.047 0.904 -0.050 -0.028 9.56e-06

f7 0.478 0.004 0.006 -0.307 -0.272 -0.431 -0.646 3.26e-06

f8 0.279 -0.061 0.222 0.904 -0.096 0.032 -0.202 2.76e-05

The variance for each PC is plotted in Figure 5.5 which includes a boundary line for an

eigenvalue equal to one. Typically, PCs with an eigenvalue less than one would be discarded

since it suggests that the PC explains less then what one variable would [14]. However,

Figure 5.6 and Table 5.8 conőrms that using only the őrst three PCs would only provide an

explanation for a cumulative variance of 78%. In order to achieve higher accuracy in the

analysis, the őrst őve PCs were selected and explain 92% of the variation.

Figure 5.5: Eigenvalues for the associated PCs.
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Figure 5.6: Cumulative variance of the PCs.

Using the deőned PCs, the original training vectors are transformed with reduced dimen-

sionality to be used as the training set for the LDA model. The transformed training vectors

are used as inputs to the lda() function from the MASS package. The coefficients of the LD

for the actual transformed training vectors for the 100 class 1 and 100 class 2 cells is deőned

in Table 5.10.

Table 5.10: Derived LD from PC Input

Principal Components LD1 Coefficients

PC1 −1.529

PC2 −0.279

PC3 −0.090

PC4 0.130

PC5 0.358

With the LDA algorithm trained, the test vectors are transformed using the identiőed

őve PCs. The transformed test vectors were then evaluated using the trained model and

test vectors as inputs to the predict() function in the R stat package. The results of the
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classiőer using the full data set of 200 test cells, 100 class 1 and 100 class 2 samples, are

summarized in the ‘confusion’ matrix shown in Table 5.11.

Table 5.11: PCALDA Confusion Matrix

Classifier Output

Class 1 Class 2

True Class 1 99 1

Class Class 2 5 95

As shown in Table 5.11, the classiőer correctly identiőed 99 of the 100 samples actually

from class 1 as being in class 1 and incorrectly assigned 1 of the 100 samples actually in

class 1 to class 2 (99.0% accuracy for classifying class 1 samples). The classiőer correctly

identiőed 95 of the 100 samples actually from Class 2 as being in Class 2 and incorrectly

assigned 5 of the 100 samples actually in class 2 to class 1 (95.0% accuracy for classifying

class 2 samples). Thus, the algorithm provided an overall accuracy of 97.0%.

5.6 Classification Comparison Summary

Per Table 5.4, the SGC approach provided an overall accuracy of 87.5% with 76 out of 100

Class 1 samples (76.0%) and 99 out of 100 Class 2 sample (99.0%) accurately classiőed. Table

5.5 shows that the SVM classiőer provided an overall accuracy of 90.5% with 91 out of 100

Class 1 samples (91.0%) and 90 out of 100 Class 2 sample (90.0%) accurately classiőed. The

LDA classiőcation method, as shown in Table 5.7, provided an overall accuracy of 95.5% with

93 out of 100 Class 1 samples (93.0%) and 98 out of 100 Class 2 sample (98.0%) accurately

classiőed. Finally, the PCALDA method provided an overall accuracy of 97.0% based on

accurately classifying 194 out of 200 cells from the test data set, as shown in Table 5.11.

As can be seen, the PCALDA approach correctly classiőed 99 out of 100 Class 1 samples
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(99.0%) and 95 out of 100 Class 2 sample (95.0%). Classiőer accuracy is summarized in

Table 5.12.

Table 5.12: Classifier Accuracy

Classifier Overall Class 1 Class 2

SGC 87.5% 76% 99%

SVM 90.5% 91% 90%

LDA 95.5% 93% 98%

PCALDA 97.0% 99% 95%

PCALDA, one possible fusion between algorithms, yielded the highest overall accuracy

and the highest success rate in correctly classifying good (Class 1) cells. In pre-acceptance

screening, a small percentage of failure- prone cells may be deployed, but the smaller ex-

pected size of this population after pre-screening would be expected to result in decreased

corrective maintenance actions and a subsequent decrease in unscheduled maintenance costs

and operational downtime. In practice, the SVM, LDA and PCALDA approaches were easier

to implement since they used built-in R functions. However, one beneőt of the SGC approach

over the others is that features impacting cell performance can be more readily identiőed;

this information can also potentially be used to inform product or process improvements.

It should also be note that the SGC and LDA approaches showed the highest accuracy

in correctly classifying failure-prone or Class 2 cells. Depending on the system, platform,

and lifecycle management priorities, this accuracy may be more important than the overall

classiőer accuracy. For example, lifecycle management priorities may require an emphasis

on reliability or reduction of maintenance cost, at the expense of a higher procurement cost

associated with identifying and selecting a greater set of good cells, while rejecting others.
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5.7 Maintainability After Pre-Screening

This section considers LCC and operational availability impacts where the baseline main-

tenance plan is augmented with pre-screening using the PCALDA classiőcation algorithm

described above. Herein, it is assumed that the pre-screening classiőer provides 97% accuracy

in identifying failure-prone cells (cf. [68]). In this scenario, cost and operational availability

improvements result from the increase in MTBF of the in-service battery population after

pre-screening. In particular, there are signiőcant reductions in required unscheduled and

scheduled maintenance actions and the associated costs for waiting and repairs (labor and

materials). For example, the need to conduct SOH testing is diminished as battery reliability

improves. In addition, while not all failure prone cells may be eliminated from the popu-

lation, the number is sufficiently reduced by the high classiőer accuracy that targeted cell

replacement effortsÐthe most expensive and time-consuming actionÐare effectively elimi-

nated.

In this study, it is assumed that pre-screening results in a MTBF of the battery population

of 60 months, and there are 6 units waiting or being repaired at any given time. A summary

of computed costs under this maintenance plan are shown in Tables 5.13 and 5.14.

Table 5.13: Scheduled Maintenance Actions with Screening

Action
Maintenance

Duration (hrs)
Actions
per Year

Personnel
Required

Material
Cost ($k)

Operational
Time Lost (hrs)

Maintenance
Cost ($k)

CV Boost 12 12 2 ś 720 $288
Maintenance
Cycle

6 50 2 ś 1500 $600

SOH Test 6 6 2 ś 180 $72
Total 2400 $960
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Table 5.14: Unscheduled Maintenance Actions with Screening

Action
Maintenance

Duration (hrs)
Actions
per Year

Personnel
Required

Material
Cost ($k)

Operational
Time Lost (hrs)

Maintenance
Cost ($k)

CC Boost 24 0.8 2 0 432 $38
Recover Cycle 120 0.6 2 0 696 $144
Targeted Cell
Replacement

ś ś ś ś ś ś

Total 1128 $182

From Tables 5.13-5.14, implementing the baseline maintenance plan with pre-screening

has a total maintenance costs of $1, 142k per system. The total cost penalty for non-

operational systems is $600k, resulting in an LCC of $1, 742k per system (a 45% reduction

from baseline). Operational availability (percentage of actual operating hours to maximum

nominal operating hours) of 90% (a 4% increase from baseline).
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Chapter 6

Maintenance Plan Parameter Optimizations

6.1 Overview

In this chapter it is demonstrated how a combination of pre-screening with optimization

of maintenance plan parameters using a őnite queuing system model are used to further

enhance the maintainability of a ŕeet of battery systems. In these studies, the őnite queuing

system model described in section 6.2 was used to simulate stochastic part failures and

repairs. Using the nominal costs and lost operational time for scheduled and unscheduled

maintenance actions given in 3.5 and 5.7, the queuing system dynamics (e.g., part failures,

queuing, exit of repaired parts) were used to compute simulated costs for various maintenance

plans. These studies focus on the optimization of the statistical expectation of lifecycle

cost, E[LCC], obtained over all study runs. Analysis of the impact of pre-screening is also

performed. In these studies, ŕeet MTBFs of 48 and 60 hrs were used for non-screened and

pre-screened battery systems, respectively.

Case Study I demonstrates the use of the őnite queuing system model to optimize the

number of repair channels in the maintenance concept, and the speciőc impact of pre-

screening on maintainability in this scenario. Case Study II demonstrates the optimization

of mean service time in the maintenance concept and the impact of pre-screening.

6.2 Finite Queuing System Model

This section describes the őnite queuing system model that was used to represent battery

pre-screening, in-service, failure and repair dynamics. The system is depicted in Fig. 6.1.

In Fig. 6.1, No is the number of batteries that are pre-screened (the łInitial Populationž).

The N batteries that are classiőed as łgoodž enter the in-service population (łScreened

Populationž), while batteries classiőed as łfailure pronež do not enter the service population
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(łRejectedž). After batteries are placed in service, they fail and enter the repair queue

according to the probability density function of their actual classiőcation (good or failure

prone). Failed batteries enter the repair queue to wait upon the next available repair channel.

After repairs are attempted, batteries are either stored in inventory (if repairable) or wasted

(if not repairable). In this research it was assumed that all parts could be repaired, and all

repaired parts immediately reentered the service population.

···

···

···

No

Initial

Population

Reject

N

Screened

Population

Y

N Repair

Queue

Repair

Channels

Screen
Pass?

Y

N

Repairable?

Waste

Inventory

λn µn

Figure 6.1: Battery service and repair queuing system model.

In the queuing system model, the number of failed parts currently in either the repair

queue or a repair channel are enumerated by the symbol 0 ≤ n ≤ N . A new part failure

was represented as an łarrivalž into the system, modeled as a random variable described by

a Poisson process where:

1. Probability of more than one new failure in time interval (t, t+∆t) as ∆t→ 0 is zero;

2. Probability of a single new failure in time interval (t, t+∆t) is λn∆t.

The above conditions result in stochastic arrival timesÐtimes between part failuresÐ

that are described by an exponential distribution. Herein, the time required to complete an

individual repair was also modeled as a random variable with exponential distribution. Under

the assumption of Poisson arrivals into the system and exponentially distributed repair times,

it can be shown (cf. [69]) that the probability of either an arrival or exit (completed repair)

from the system does not depend on the time associated with the preceding event, i.e., arrivals
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and exits are łmemorylessž processes. Viewing n as a ‘state’ of the queuing system, state

transitions were therefore modeled using a Markov chain (łbirth-deathž) process, depicted in

Fig. 6.2.

0 1 2 · · · M − 2 M − 1 · · · M · · · N − 1 N

Nλ

µ

(N − 1)λ

2µ

(N −M + 2)λ

(M − 1)µ

(N −M + 1)λ

Mµ

λ

Mµ

λn:

n:

µn:

Figure 6.2: Markov chain model for finite queuing process.

In Fig. 6.2, quantities shown above the arrows pointing from left-to-right are failure

rates for parts entering the queuing system; quantities shown below the arrows pointing from

right-to-left are repair rates parts exiting the queuing system and reentering the population.

Letting the failure rate of a single battery be denoted λ = 1/MTBF, the failure rate of the

population after n items are in queue or being repaired is:

λn = (N − n)λ, 0 ≤ n ≤ N. (6.1)

Letting the repair rate of a single channel be denoted µ = 1/MTTR, where MTTR is the

mean time to repair, the repair rate of the entire facility after n items have already failed is:

µn =





nµ, n = 1, 2, . . . ,M − 1

Mµ, n = M,M + 1, . . . , N

, (6.2)

where M is the number of service channels.

When simulating the queuing system dynamics, state transitions were determined in the

following way. Let tf ∼ exp(λn) be a random variable representing the time of the next

part failure, sampled from an exponential distribution with rate parameter λn; a speciőc

occurrence of the random variable is denoted tf . Similarly, let tr ∼ exp(µn) be a random
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variable representing the time of the next part exit from repair with rate parameter µn,

with speciőc occurrence tr. At time t, with the system in state 0 ≤ n ≤ N , samples are

obtained for tf , tr using inverse transform sampling. If tf ≤ tr, then n is incremented by

one; otherwise, n is decremented by one.

To validate the code (written in MATLAB®) used in this research to represent the őnite

queuing system, simulations of the stochastic system behavior of the system were compared

to theoretical expressions. The theoretical steady-state probability of there being n items in

the őnite multi-channel queuing system, denoted Pn, can be expressed as:

Pn = P0Cn, (6.3)

where P0 is the probability that zero units have failed:

P0 =

(
N∑

n=0

Cn

)−1

, (6.4)

where

Cn =





N !
(N−n)!n!

(λ
µ
)n, n=0, 1, 2, . . . ,M

N !
(N−n)!M !M(n−M) (

λ
µ
)n, n=M+1,M+2, . . . , N

. (6.5)

The expressions in (6.3)ś(6.5) describe the probability mass function associated with

observing n parts in the system. To quantify the degree of similarity between theoretical and

simulated probability distributions in this research, an overlapping index was used [70]. For

two probability density functions fA(x), fB(x), with random variable x ∈ R, the overlapping

index η : R× R→ [ 0, 1 ] is deőned as:

η(A,B) =

∫

R

min [ fA(x), fB(x) ] dx, (6.6)

where η(A,B) = 0 indicates distinct distributions, and η(A,B) = 1 indicates identical dis-

tributions. In the discrete case, the density functions in (6.6) are represented by probability
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mass functions and the integration reduces to a summation. Fig. 6.3 shows histograms of

the theoretical vs. simulated number of parts (denoted by x) in the system in an example

study. In this validation effort, λ = 1/32 units/s, µ = 1/8 units/s, N = 20, M = 4 and the

queuing system was simulated over 1000 s.
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Figure 6.3: Histogram of theoretical (dark gray) vs. simulated (light gray) number of parts in the
system, over 1000 simulated seconds.

In Fig. 6.3, the theoretical histogram is shown in dark gray, simulated histogram in

light gray; overlapping is shown in medium gray. In this study, the overlapping index was

computed as 86.4%. Fig. 6.4 shows the results with the same study parameters, except

simulated over 100, 000 simulated seconds.

The overlapping index of the histograms in Fig. 6.4 was computed as 99.5%. These stud-

ies show that the őnite queuing system model produces stochastic behavior that converges

to the theoretical probability distribution as number of the number of queuing operations

(i.e., length of time) increases, as expected.

6.3 Case Study I: Optimization of Service Channels

This case study considers potential maintainability improvements by selecting the number

of intermediate maintenance locations or service channels (repair bays) in the battery system
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Figure 6.4: Histogram of theoretical (dark gray) vs. simulated (light gray) number of parts in the
system, over 100, 000 simulated seconds.

maintenance concept. If the number of service channels results in excess waiting times,

the maintenance costs and operational availability will be negatively impacted. However,

if the number of channels is greater than what is required, additional resource costs will

be required. The minimal number of channels must therefore be determined to support

maintenance activities while minimizing overall cost.

To determine the optimal number of service channels, the őnite queuing system was used

to simulate the maintenance plan over the őve year (60 month) battery lifecycle using a range

of service channels, M ∈ {1, 2, 3, 4}. The study was repeated 2, 000 times and the results

were averaged to yield a total of 120, 000 queuing simulation months. The total maintenance

cost from the studies was computed, and the alternative with the lowest expected LCC was

designated as the optimal channel number, M∗.

Table 6.1 presents expected unscheduled maintenance costs versus service channels with-

out pre-screening. In Table 6.1, queue length, non-operational unit costs and service costs

are averaged over all studies. It can be seen from Table 6.1 that M∗ = 2. With two channels,

the battery systems are able to be fully serviced with a small average number of units waiting

in the queue (0.6). Table 6.1 further shows that with service channels beyond two, queue

length decreases, but maintenance costs increase. Implementing two channels without pre-
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screening results in an expected LCC of $2, 906k, a cost reduction of $270k versus baseline

(a 9% improvement). Operational availability was computed as 86% per system.

Table 6.1: Expected Maintenance Costs Versus Number of Service Channels (MTBF = 48)

Service
Channels

Avg Queue
Length

Non-Operating
Unit Cost ($k)

Service
Cost ($k)

E[LCC]
($k)

1 12.2 1,314 844 3,190
2 0.6 186 1,688 2,906
3 0.1 134 2,532 3,698
4 0.0 127 3,376 4,535

Table 6.2 summarizes the costs versus number of service channels while also implementing

the battery pre-screening stage. Here the optimal number of channels to support the ŕeet

is also M∗ = 2. However, comparing Tables 6.1 and 6.2 show that the implementation of

pre-screening in combination with channel optimization also results in a lower expected LCC

versus channel optimization alone. In this case, the expected LCC is $1, 452k per system (a

54% reduction from baseline). Operational availability in this scenario is 90%.

Table 6.2: Expected Maintenance Costs Versus Number of Service Channels (MTBF = 60)

Service
Channels

Avg Queue
Length

Non-Operating
Unit Cost ($k)

Service
Cost ($k)

E[LCC]
($k)

1 4.78 569 182 1,711
2 0.3 128 364 1,452
3 0.1 105 546 1,611
4 0.0 101 728 1,789

6.4 Case Study II: Optimization of Mean Service Time

This case study considers potential maintainability improvements by adjusting the mean

service time to őnd the optimal service rate, µ∗. In this study the same number of queu-

ing simulations as Case Study I were performed, over a range of service times 1/µ ∈

{0.25, 0.50, . . . , 1.25}. Mean service time can be changed by altering the number of ser-
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vice personnel, tooling, training and other resources. In practice, these resources contribute

to additional unscheduled maintenance costs, which are a function of the service rate. Herein,

the cost function used to model this relationship was: Cus(µ) = Cusn/µ+ e2.5µ
2
, where Cusn

is the nominal unscheduled maintenance cost. The sharp cost increase at 1/µ = 0.25 is due

to the duplication of specialized equipment and personnel not required prior to that point.

To focus only on the impact of service time, the number of service channels was őxed

at M = 1 in these studies. Table 6.3 shows the computed unscheduled maintenance costs

without implementation of pre-screening. From Table 6.3, it can be seen that µ∗ = 1/0.75 = 3

per month. Table 6.3 also indicates that implementation of this plan results in an expected

LCC of $2, 626k per system (an 18% reduction versus baseline). Operational availability in

this scenario is 86% per system.

Table 6.3: Expected Maintenance Costs Versus Service Times (MTBF= 48)

Mean Service
Time (Months)

Avg Queue
Length

Non-Operating
Unit Cost ($k)

Service
Cost ($k)

E[LCC]
($k)

0.25 0.0 45 3,978 5,055
0.5 0.5 154 1,693 2,879
0.75 3.7 466 1,127 2,626
1.0 11.8 1,277 845 3,155
1.25 21.0 2,197 676 3,905

Table 6.4 shows computed costs versus service time when also implementing the pre-

screening stage. As shown in Table 6.4, µ∗ = 1/0.5 = 2 per month in this scenario is

optimal, with additional reduction in costs compared to Table 6.3. Implementation of this

plan results in an expected LCC of $1, 425k per system (a 55% cost reduction versus baseline).

Operational availability in this scenario is 90%.

As demonstrated in these case studies, the implementation of pre-screening with mainte-

nance plan parameter optimization resulted in signiőcant cost reductions and improvements

in operational availability compared to the baseline maintenance plan, with optimization of

channel number or service time yielding similar maintainability metrics.
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Table 6.4: Expected Maintenance Costs Versus Service Times (MTBF= 60)

Mean Service
Time (Months)

Avg Queue
Length

Non-Operating
Unit Cost ($k)

Service
Cost ($k)

E[LCC]
($k)

0.25 0.0 33 1,330 2,323
0.5 0.0 96 369 1,425
0.75 1.4 240 245 1,444
1.0 5.1 605 182 1,748
1.25 11.6 1,234 147 2,371
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This research was proposed in order to identify an approach to improving battery system

reliability in an effort to reduce lifecycle maintenance costs and improve system operational

availability. Literature review conducted in this area identiőed several łon-linež methods to

predict battery health prognostics. However, these approaches focused on batteries already

deployed into the őeld where system reliability could not be changed. Maintenance optimiza-

tion techniques for batteries were also reviewed as correctly sizing maintenance resources to

ensure ŕeet operational availability supports reducing lifecycle costs while ensuring an őelded

ŕeet. The majority of the battery research in this area focused on optimizing charging fa-

cilities for electric vehicles. The research in this area focused on maximizing proőt with

acceptable wait times. While this approach is justiőable for many applications, the scenar-

ios discussed in this dissertation focus on minimizing the wait times of platforms as well as

reducing lifecycle maintenance costs.

The research conducted in this dissertation proposed a two-faceted approach for enhanc-

ing the overall maintainability of battery systems, measured by total LCC and operational

availability. The approach included a battery classiőcation pre-screening stage with the op-

timization of maintenance design parameters using a őnite queuing system model. Queuing

system simulation outputs were used to compute cost and availability metrics under alterna-

tive design options. To isolate the impact of pre-screening, optimizations of the maintenance

parameters were also analyzed with and without the screening stage.

The initial efforts evaluated the potential effectiveness of classiőcation algorithms for

pre-acceptance screening of batteries [67, 68]. Ultimatly, four classiőcation methods (SGC,

SVM, LDA, and PCALDA) were evaluated utilizing easily measurable physical and electrical
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features in an effort to conduct pre-acceptance screening of batteries. It was determined that

the PCALDA approach yielded the greatest overall classiőer accuracy (97%), while SGC

showed the greatest accuracy (99%) in identifying failure-prone cells. It was additionally

noted that the SVM, LDA and PCALDA approaches were easier to implement over SGC as

they are available as built-in functions in some software tools (e.g., R programming language).

However, it was observed that the SGC approach can be used to readily-identify features

affecting cell performance and potentially inform product or process improvements to further

increase product reliability.

Optimization of the number of intermediate maintenance facilities (service channels)

showed that the optimal number of both with and without the cell screening process was

two (2). However, the addition of the pre-screening stage resulted in a cost savings of

$1, 454k, while ensuring the majority of the ŕeet was operational. It was also shown that

pre-screening resulted in an optimal mean service rate of 2 per month, versus 3 per month

required without pre-screening, while providing a cost savings of $1, 201k and waiting cost

reduction of $370k. These results show that implementation of the pre-screening classiőcation

method combined with optimization of maintenance plan design parameters can be used to

achieve a reduced LCC compared to pre-screening alone, while maintaining or increasing

operational availability.

7.2 Future Work

The acknowledged limitations of this research are: the methodology was demonstrated

on only four scenarios (two case studies with non-screened and pre-screened batteries). The

research only considered one type of pre-screening classiőcation algorithm; batteries were

assumed to always be repairable as well as the times for the next failure and repair times

were assumed to be exponentially distributed.

Future research includes further reőnements in the queuing system model to include re-

pairability of batteries and different failure and repair time density functions. Additional
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investigation of coupled optimization studies (e.g., combined channel number and service

time) and other maintenance plan parameters. Additional work would also focus on improv-

ing the pre-screening algorithms by reviewing additional classiőcation methods as well as

the combination of algorithms to improve accuracy (an ensemble approach).
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Appendix A

Modeling and Analysis Code

A.1 Simple Generalized Classifier MATLab Program

%-----------------------------------------------------------%

% Description: this script trains a simple binary classifier

% (SBC), See Chapter 4.

%

% Code developed using MatLab

%

% Inputs:

% - trainingdata.csv : feature data for N classes

% Outputs:

% - D : data structure including

% D.fw = feature weights

% - Cunfusion matrix of test data

%

% Written by:

% Rudy Pirani

% Colorado State University

% Contact: rudy.pirani@colostate.edu

% James Cale, Ph.D.

% Colorado State University

% Contact: jcale@colostate.edu

%
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% References: [12] S. Simske, "Meta-analytics: consensus

% approaches and system patterns for data analysis,"

% Massachusetts, MA: Morgan Kaufman, 2019.

%

% Revision Date: 19 April 2019

% Revision Notes:

% - 19 April 2019: initial release

%------------------------------------------------------------%

clear all; clc; close all;

%------------------------------------------------------------%

% Collect Feature Data for All Classes From Training Data

%------------------------------------------------------------%

% import training data (skip first 2 lines of header)

Fa = csvread(’./trainingdata/trainingdataClassA.csv’, 2);

Fb = csvread(’./trainingdata/trainingdataClassB.csv’, 2);

NumSamples = size(Fa,1);

NumFeatures = size(Fa,2);

NumClasses = 2;

%-------------------------------------------------------------%

% Compute Derived Features

%-------------------------------------------------------------%
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Ic = combnk(1:NumFeatures,2);

% n choose NumClasses (indices of all combos)

% Class A

% add features for products of all combos

Fap = [];

for k = 1:size(Ic,1)

Fap = cat( 2, Fap, Fa(:,Ic(k,1)).*Fa(:,Ic(k,2)) );

end

% add features for divisions of all combos

Fad = [];

for k = 1:size(Ic,1)

Fad = cat( 2, Fad, Fa(:,Ic(k,1))./Fa(:,Ic(k,2)) );

end

% concatenate all feature data for Class A

Fa = cat( 2, Fa, Fap, Fad);

% Class B

% add features for products of all combos

Fbp = [];

for k = 1:size(Ic,1)

Fbp = cat( 2, Fbp, Fb(:,Ic(k,1)).*Fb(:,Ic(k,2)) );

end

% add features for divisions of all combos
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Fbd = [];

for k = 1:size(Ic,1)

Fbd = cat( 2, Fbd, Fb(:,Ic(k,1))./Fb(:,Ic(k,2)) );

end

% concatenate all feature data for Class B

Fb = cat( 2, Fb, Fbp, Fbd);

%-------------------------------------------------------------%

% Compute Sample Statistics

%-------------------------------------------------------------%

% Class A

mua = mean(Fa);

siga = std(Fa);

% Class B

mub = mean(Fb);

sigb = std(Fb);

% collect all means

MU = cat(1,mua,mub);

SIG = cat(1,siga,sigb);

%-------------------------------------------------------------%

% Order All Populations By Means

%-------------------------------------------------------------%
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% obtain indices for sorted means

[ MUs, I] = sort(MU,’ascend’);

%-------------------------------------------------------------%

% Compute Critical Points

%-------------------------------------------------------------%

NumCpt = NumClasses - 1;

NumFeatures = size(MU,2);

CPt = zeros( NumFeatures, NumCpt);

NSTD = zeros( NumFeatures, NumCpt);

% calculate CPt’s and nSTD-CPt’s

for m = 1:NumFeatures

NSTD(m,1) = ( MU( I(2, m), m ) - MU( I(1, m), m ) ) /...

( SIG( I(2, m), m ) + SIG( I(1, m), m ) );

CPt(m,1) = MU( I(1, m), m ) + NSTD(m,1)*SIG( I(1, m), m );

end

% obtain sums of nSTD-CPt’s

sumNSTD = sum(NSTD,2);

% obtain indices for sorted nSTD-CPt’s

[ ~, InSTD] = sort(sumNSTD,’descend’);
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%-------------------------------------------------------------%

% Compute t-statistics and their p-values

%-------------------------------------------------------------%

% define inline functions for t-statistic

t = inline ( ’(u1-u2)/(sqrt( (

(n1-1)*s1^2+(n2-1)*s2^2)/(n1+n2-2))*sqrt((1/n1)+(1/n2))

)’, ’u1’,’u2’,’s1’,’s2’,’n1’,’n2’);

p4tdist2T = @(t,v) (betainc(v/(v+t^2),v/2,0.5)/2);

% p-value for 2-tailed t-distribution

T = zeros( NumFeatures, NumCpt);

P = zeros( NumFeatures, NumCpt);

n1 = NumSamples;

n2 = NumSamples;

df = n1 + n2 - 2;

% calculate t-statistics

for m = 1:NumFeatures

u2 = MU( I(2, m), m );

u1 = MU( I(1, m), m );

s1 = SIG( I(2, m), m );

s2 = SIG( I(1, m), m );

T(m,1) = t( u2, u1, s2, s1, n2, n1);
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P(m,1) = p4tdist2T(T(m,1),df);

end

%-------------------------------------------------------------%

% Compare nSTD-CPt’s and t-statistic p-values

%-------------------------------------------------------------%

TnP = [sum(NSTD,2) sum(P,2) ]

% obtain indices for sorted nSTD-CPt’s

[ ~, ITnP] = sort(sum(P,2),’ascend’);

%-------------------------------------------------------------%

% Compute Weighting Factors

%-------------------------------------------------------------%

Wds1 = NSTD(ITnP(1:3),1);

Wsqr = Wds1.^2;

W = Wsqr / sum(Wsqr);

Icc = [ zeros(12,2); Ic; Ic;];

% display factor numbers and weights

W = cat(2,ITnP(1:3),W)

Icc(W(1:3),:)
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% save testing + validation data statistics

MU_testing = MU; SIG_testing = SIG; W_testing = W;

save MU_testing MU_testing

save SIG_testing SIG_testing

save W_testing W_testing

%------------------------------------------------------------%

% Collect Feature Data for All Classes From Test Data

%------------------------------------------------------------%

% import training data (skip first 2 lines of header)

Fa = csvread(’./testingdata/testingdataClassA.csv’, 2);

Fb = csvread(’./testingdata/testingdataClassB.csv’, 2);

NumSamples = size(Fa,1);

NumFeatures = size(Fa,2);

NumClasses = 2;

%------------------------------------------------------------%

% Compute Derived Features

%------------------------------------------------------------%

Ic = combnk(1:NumFeatures,2);

% n choose NumClasses (indices of all combos)
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% Class A

% add features for products of all combos

Fap = [];

for k = 1:size(Ic,1)

Fap = cat( 2, Fap, Fa(:,Ic(k,1)).*Fa(:,Ic(k,2)) );

end

% add features for divisions of all combos

Fad = [];

for k = 1:size(Ic,1)

Fad = cat( 2, Fad, Fa(:,Ic(k,1))./Fa(:,Ic(k,2)) );

end

% concatenate all feature data for Class A

Fa = cat( 2, Fa, Fap, Fad);

% Class B

% add features for products of all combos

Fbp = [];

for k = 1:size(Ic,1)

Fbp = cat( 2, Fbp, Fb(:,Ic(k,1)).*Fb(:,Ic(k,2)) );
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end

% add features for divisions of all combos

Fbd = [];

for k = 1:size(Ic,1)

Fbd = cat( 2, Fbd, Fb(:,Ic(k,1))./Fb(:,Ic(k,2)) );

end

% concatenate all feature data for Class B

Fb = cat( 2, Fb, Fbp, Fbd);

%------------------------------------------------------------%

% Compute Sample Statistics

%------------------------------------------------------------%

% Class A

mua = mean(Fa);

siga = std(Fa);

% Class B

mub = mean(Fb);

sigb = std(Fb);

% collect all means
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MU = cat(1,mua,mub);

SIG = cat(1,siga,sigb);

%------------------------------------------------------------%

% Ensure Data Has Not Drifted

%------------------------------------------------------------%

load MU_testing

load SIG_testing

% define function for computing t-statistic

t = inline ( ’(u1-u2)/(sqrt( (

(n1-1)*s1^2+(n2-1)*s2^2)/(n1+n2-2))*sqrt((1/n1)+(1/n2)) )’,

’u1’,’u2’,’s1’,’s2’,’n1’,’n2’);

% define function for computing p-value for t-statistic

%(two-sided)

p4tdist2T = @(t,v) (betainc(v/(v+t^2),v/2,0.5)/2);

T = zeros( NumClasses, NumFeatures );

P = zeros( NumClasses, NumFeatures );

n1 = NumSamples;

n2 = NumSamples;

df = n1 + n2 - 2;

% calculate t-statistics
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for m = 1:NumClasses

for n = 1:NumFeatures

u2 = MU( m, n );

u1 = MU_testing( m, n );

s1 = SIG( m, n );

s2 = SIG_testing( m, n );

T(m,n) = t( u2, u1, s2, s1, n2, n1);

P(m,n) = p4tdist2T(T(m,n),df);

end

end

%------------------------------------------------------------%

% Compute z-values

%------------------------------------------------------------%

% obtain dominant factors from testing

load W_testing;

criticalFactors = sort(W_testing(:,1),’ascend’);

z = inline ( ’sqrt(n)*abs(x-mu)/sigma’, ’x’,’mu’,’sigma’,’n’);

% calculate z-values for Classes

for m = 1:length(criticalFactors)

for n = 1:NumSamples
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zA_A(n,m) = z( Fa(n,criticalFactors(m)),

MU_testing(1,criticalFactors(m)),

SIG_testing(1,criticalFactors(m)), NumSamples );

zB_A(n,m) = z( Fa(n,criticalFactors(m)),

MU_testing(2,criticalFactors(m)),

SIG_testing(2,criticalFactors(m)), NumSamples );

zA_B(n,m) = z( Fb(n,criticalFactors(m)),

MU_testing(1,criticalFactors(m)),

SIG_testing(1,criticalFactors(m)), NumSamples );

zB_B(n,m) = z( Fb(n,criticalFactors(m)),

MU_testing(2,criticalFactors(m)),

SIG_testing(2,criticalFactors(m)), NumSamples );

end

end

%------------------------------------------------------------%

% Compute f(z) values and normalize

%------------------------------------------------------------%

fzA_A = 1./zA_A.^2;

fzB_A = 1./zB_A.^2;

fzA_B = 1./zA_B.^2;

fzB_B = 1./zB_B.^2;
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% collect f(zA), f(zB) for each feature - Class A

fz2_A = [fzA_A(:,1) fzB_A(:,1) ];

fz6_A = [fzA_A(:,2) fzB_A(:,2) ];

fz7_A = [fzA_A(:,3) fzB_A(:,3) ];

% collect f(zA), f(zB) for each feature - Class B

fz2_B = [fzA_B(:,1) fzB_B(:,1) ];

fz6_B = [fzA_B(:,2) fzB_B(:,2) ];

fz7_B = [fzA_B(:,3) fzB_B(:,3) ];

% normalize

for n = 1:NumSamples

fz2_A(n,:) = fz2_A(n,:) / sum(fz2_A(n,:));

fz6_A(n,:) = fz6_A(n,:) / sum(fz6_A(n,:));

fz7_A(n,:) = fz7_A(n,:) / sum(fz7_A(n,:));

fz2_B(n,:) = fz2_B(n,:) / sum(fz2_B(n,:));

fz6_B(n,:) = fz6_B(n,:) / sum(fz6_B(n,:));

fz7_B(n,:) = fz7_B(n,:) / sum(fz7_B(n,:));

end

% matrix of normalized f(z) values for each class

fzAn = [fz2_A fz6_A fz7_A];

fzBn = [fz2_B fz6_B fz7_B];
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%------------------------------------------------------------%

% Weight f(z) values by features weights

%------------------------------------------------------------%

W = W_testing(:,2);

[~,indices] = sort(W_testing(:,1),’ascend’);

W = W(indices);

fzAw = [fz2_A*W(1) fz6_A*W(2) fz7_A*W(3)];

fzBw = [fz2_B*W(1) fz6_B*W(2) fz7_B*W(3)];

%------------------------------------------------------------%

% Sum weighted feature f(z) values for each class

%------------------------------------------------------------%

for k = 1:NumSamples

sumWa_A(k,1) = sum(fzAw(k,1:2:6));

sumWb_A(k,1) = sum(fzAw(k,2:2:6));

sumWa_B(k,1) = sum(fzBw(k,1:2:6));

sumWb_B(k,1) = sum(fzBw(k,2:3:6));

end
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swA = [ sumWa_A sumWb_A ];

swB = [ sumWa_B sumWb_B ];

%------------------------------------------------------------%

% Classify

%------------------------------------------------------------%

SA = zeros(NumSamples, 1);

SB = zeros(NumSamples, 1);

for k = 1:NumSamples

if (find(swA(k,:)==max(swA(k,:))) == 1)

SA(k) = 1;

end

if (find(swB(k,:)==max(swB(k,:))) == 2)

SB(k) = 1;

end

end

S = [ SA SB ];

%------------------------------------------------------------%

% Testing Classifier on Testing Data

%------------------------------------------------------------%
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% overall accuracy with testing data

indices = find(S(:)==1);

Accuracy = length(indices)/length(S(:))

% build confusion matrix

for k = 1:NumSamples

index = find(swA(k,:)==max(swA(k,:)));

Ct(k,1) = index;

index = find(swB(k,:)==max(swB(k,:)));

Ct(k,2) = index;

end

for k = 1:NumClasses

C(k,1) = length(find(Ct(:,k)==1));

C(k,2) = length(find(Ct(:,k)==2));

end

C

% compute recalls

Ra = C(1,1)/sum(C(1,:));

Rb = C(2,2)/sum(C(2,:));
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% compute precisions

Pa = C(1,1)/sum(C(:,1));

Pb = C(2,2)/sum(C(:,2));

A.2 SVM R Program

#-----------------------------------------------------------

# Description: this script trains a simple binary classifier

# (SVM), See Chapter 5.

#

# Code developed using R Studio and documented in R Markdown

#

# Inputs:

# - trainingdata.csv : feature data for N classes

# - testingdata.csv : feature data for N Classes

#

# Outputs:

# - Confusion matrix of training Data

#

# Modifed by:

# Rudy Pirani

# Colorado State University

# Contact: rudy.pirani@colostate.edu

#

# References: R Documentation

# https://www.rdocumentation.org/packages/e1071/versions/1.7-9/topics/svm

#
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# Revision Date: 8 March 2022

#------------------------------------------------------------

‘‘‘{r}

# Imported Libraries

library(e1071)

library(ggplot2)

library(factoextra)

library(caret)

library(kernlab)

‘‘‘

‘‘‘{r}

# Importing the training data set

dataset <- read.csv("C:/Users/b_pir/Desktop/SVM/...

SVM Train May 2021.csv", quote = "’")

str(dataset)

‘‘‘

‘‘‘{r}

# Check training data has been received

dataset$Status <- factor(dataset$Status)

str(dataset)

‘‘‘

‘‘‘{r}

# Importing the Test data set

dataset2 <- read.csv("C:/Users/b_pir/Desktop/SVM/...
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SVM TestB May 2021.csv", quote = "’")

str(dataset2)

‘‘‘

‘‘‘{r}

# Check test data has been received

dataset2$Status <- factor(dataset2$Status)

str(dataset2)

‘‘‘

‘‘‘{r}

# Train SVM model

svm.model<- svm(formula = Status ~ ., data = dataset,...

type = ’C-classification’, kernel = ’linear’, cost = 100, gamma = 1 )

# Test model with training data

svm.pred <- predict(svm.model, dataset[,1:9])

svm.pred

‘‘‘

‘‘‘{r}

# Output Confusion Matrix for training data

classificationTable=table(pred = svm.pred, true = dataset2$Status)

classificationTable

‘‘‘

‘‘‘{r}
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# Determine optimal cost

costs = seq(from=0.005, to=1,by=0.005)

pseudor2 = double(length(costs))

for (c in 1:length(costs)){

epsilon.svr = svm(Status ~ ., data=dataset,cost=costs[c], gamma = 1)

svm.pred <- predict(epsilon.svr, dataset2[,2:9])

classificationTable=table(pred = svm.pred, true = dataset2$Status)

correctRate[c] = sum(svm.pred==dataset2$Status)/length(dataset2$Status)

misRate[c]=1-correctRate[c]

}

Class_Error = misRate

plot(costs,Class_Error, type="l")

‘‘‘

‘‘‘{r}

# Print cost associated with minimum error rate

k=which.min(misRate)

print(costs[k])

‘‘‘

‘‘‘{r}

# Retrain model with new cost value

svm.model<- svm(formula = Status ~ ., data = dataset, type = ’C-classification’,

kernel = ’linear’, cost = 0.95, gamma = 1 )
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# Run model with test data

svm.pred <- predict(svm.model, dataset2[,1:9])

svm.pred

‘‘‘

‘‘‘{r}

# Test data confusion matrix

confusionMatrix(table(svm.pred, dataset2$Status))

‘‘‘

A.3 LDA RStudio

#-----------------------------------------------------------

# Description: this script trains a simple binary classifier

# (LDA), See Chapter 5.

#

# Code developed using R Studio

#

# Inputs:

# - trainingdata.csv : feature data for N classes

# - testingdata.csv : feature data for N Classes

#

# Outputs:

# - Test_Result_Mar 2021A.csv: Classification results

#

# Written by:
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# Rudy Pirani

# Colorado State University

# Contact: rudy.pirani@colostate.edu

#

# Refernce: Linear Discriminant Analysis (LDA) 101,

# using R, Peter Nistrup - https://towardsdatascience.com/

# linear-discriminant-analysis-ld#a-101-using-r-6a97217a55a6

#

# Revision Date: 8 March 2022

#

#------------------------------------------------------------

‘‘‘{r}

# Imported Libraries

library(plyr)

library(dplyr)

library(emmeans)

library(tidyverse)

library(broom)

library(BSDA)

library(epitools)

library(lawstat)

library(metafor)

library(car)

library(coin)

library(MASS)

‘‘‘
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‘‘‘{r}

# Importing the training data set

MTrain <- read.csv("C:/Users/b_pir/Desktop/Train May 2021.csv", quote = "’")

str(MTrain)

‘‘‘

‘‘‘{r}

# Importing the Test data set

MTest <- read.csv("C:/Users/b_pir/Desktop/Test May 2021.csv", quote = "’")

str(MTest)

‘‘‘

‘‘‘{r}

# Convert data in matrix to factors

St <- factor(MTrain[,1])

str(St)

‘‘‘

‘‘‘{r}

# Format all training data

train.df <- as.data.frame(MTrain)

str(train.df)

‘‘‘

‘‘‘{r}

# Format all test data

test.df <- as.data.frame(MTest)
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str(test.df)

‘‘‘

‘‘‘{r}

# Train lda model

MidChk.lda <- lda(Status ~ . , data = train.df)

# Apply test data to LDA model

Midchk.lda.predict <- predict(MidChk.lda, newdata = test.df)

# Add the classification to the new test matrix

Midchk.lda.predict$class

# Format assigned class values

Midchk.lda.predict.show <- as.data.frame(Midchk.lda.predict$class)

# Show classification of test data

MTest.show <- cbind(test.df, as.numeric(Midchk.lda.predict$class)-1)

colnames(MTest.show)[9] <- "Class"

‘‘‘

‘‘‘{r}

# Write data to new file

write.csv(MTest.show, "C:/Users/b_pir/Desktop/LDA/Test_Result_Mar 2021A.csv")

‘‘‘

‘‘‘{r}
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# Show LD Function

MidChk.lda

‘‘‘

A.4 PCALDA RStudio

#-----------------------------------------------------------

# Description: this script trains a simple binary classifier

# (LDA with PCA), See Chapter 5.

#

# Code developed using R Studio

#

# Inputs:

# - trainingdata.csv : feature data for N classes

# - testingdata.csv : feature data for N Classes

#

# Outputs:

# - PCs for training and testing

# - Plot of eigenvalues associated with the PCs

# - Plot of cumulative variance of the PCs

# - 2D plot of PCs 1 vs PC2

# - 3D plot of PCs 1 vs PC2 vs PC3

# - Output classification

#

# Written by:

# Rudy Pirani

# Colorado State University

147



# Contact: rudy.pirani@colostate.edu

#

# References: [49] A. Tharwat, T. Gaber, A. Ibrahim, and

# A. E. Hassanien, “Linear discriminant analysis: A

# detailed tutorial,”AI Communications, vol. 30,

# no. 2, pp. 169–190, 2017.

#

# Refernce: Linear Discriminant Analysis (LDA) 101,

# using R, Peter Nistrup - https://towardsdatascience.com/

# linear-discriminant-analysis-ld#a-101-using-r-6a97217a55a6

#

# Revision Date: 25 March 2022

#

#------------------------------------------------------------

‘‘‘{r}

# Import Library

library(plyr)

library(dplyr)

library(emmeans)

library(tidyverse)

library(broom)

library(BSDA)

library(epitools)

library(lawstat)

library(metafor)

library(car)
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library(coin)

library(MASS)

library(psych)

‘‘‘

‘‘‘{r}

MTrain <- read.csv("C:/Users/b_pir/Desktop/Train Jan 2021.csv", quote = "’")

str(MTrain)

‘‘‘

‘‘‘{r}

MTest <- read.csv("C:/Users/b_pir/Desktop/Test Jan 2021.csv", quote = "’")

str(MTest)

‘‘‘

‘‘‘{r}

# Create principal components (PC) and show summary information

MTrain.pr <- prcomp(MTrain[c(2:9)], center = TRUE, scale = TRUE)

summary(MTrain.pr)

‘‘‘

‘‘‘{r}

# Show PC coefficients and standard deviations

print(MTrain.pr)

‘‘‘

‘‘‘{r}
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# Plot variance for the PCs

screeplot(MTrain.pr, type = "l", npcs = 8, main = "Screeplot of the first 8 PCs")

abline(h = 1, col="red", lty=5)

legend("topright", legend=c("Eigenvalue = 1"),

col=c("red"), lty=5, cex=0.6)

# Plot cumulative variance for PCs

cumpro <- cumsum(MTrain.pr$sdev^2 / sum(MTrain.pr$sdev^2))

plot(cumpro[0:8], xlab = "PC #", ylab = "Amount of explained variance",

main = "Cumulative variance plot")

abline(v = 5, col="blue", lty=5)

abline(h = 0.9, col="blue", lty=5)

legend("topleft", legend=c("Cut-off @ PC5"),

col=c("blue"), lty=5, cex=0.6)

‘‘‘

‘‘‘{r}

# Reduce PCs to be used to the first 5 PCs and attach the known classification

# for training

MTrain.pcst <- MTrain.pr$x[,1:5]

MTrain.pcst <- cbind(MTrain.pcst, as.numeric(MTrain$Status)-1)

colnames(MTrain.pcst)[6] <- "Status"

str(MTrain.pcst)

‘‘‘

‘‘‘{r}

# Transform training data using selected PC
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train.df <- predict(MTrain.pr, newdata = MTrain)

train.df <- as.data.frame(MTrain.pcst)

str(train.df)

‘‘‘

‘‘‘{r}

# Transform test data using selected PC

test.df <- predict(MTrain.pr, newdata = MTest)

test.df <- as.data.frame(test.df)

test.df <- test.df[1:5]

str(test.df)

‘‘‘

‘‘‘{r}

# Train LDA classifier with PCs and transformed training data

MidChk.lda <- lda(Status ~ PC1 + PC2 + PC3 + PC4 + PC5, data = train.df)

# Classify test data using trained LDA model

Midchk.lda.predict <- predict(MidChk.lda, newdata = test.df)

# Pull assignments

Midchk.lda.predict$class

# Format assignment data

Midchk.lda.predict.show <- as.data.frame(Midchk.lda.predict$class)

# Show assignments of the test data
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MTest.show <- cbind(MTest.pcst, as.numeric(Midchk.lda.predict$class)-1)

colnames(MTest.show)[8] <- "Class"

‘‘‘

‘‘‘{r}

# Write modeling results to file

write.csv(MTest.show, "C:/Users/b_pir/Desktop/Test_Result_Jan 2021I.csv")

‘‘‘

A.5 Service Channel Optimization Finite Queuing Model

%-------------------------------------------------------------------------%

% Description: This evaluates the Number of Service Channels under control

% in both the simulated environment and theoretical as defined in section

% 10.6.3 of Blanchard. This follows the book to validate the code.

%

% Inputs:

% - none

%

% Outputs:

% - Table of Simulated Preventative Maintenance Polices

% - Table of Theoretical Preventative Maintenance Polices

%

% Written by: James Cale & Rudy Pirani

% Systems Engineering Department

% Colorado State University

% Email: jcale@colostate.edu; pirani@colostate.edu
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%

% Revision Date: 19 December 2021

%-------------------------------------------------------------------------%

clear all; clc; close all; format long;

% define fixed parameters

params.lambdab = (1/48); % base arrival rate, per unit [units/month]

params.mub = 1/1; % base service time, per unit, per channel [units/month]

params.Npop = 60; % number of units in the population

M = 4; % number of service channels

%define time array

dt = 1e-2; % time increment [s]

t = 0:dt:100000; % time array (secs in one day)

ArriveT = 0; % the arrival time

ServiceT = 0; % the sercive time completion

% initialize discrete state variables

n = 0; % total number of units in system

nb = 0; % number of units in buffer

ns = 0; % number of units in service

% allocate memory for saved states

B = zeros(1,length(t)); % array to store buffer length

N = zeros(1,length(t)); % array to store total units in system
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Ns = zeros(1,length(t)); % array to store units in service

NB_S = zeros(1,length(t)); % array to store total of service and queue

Wc = zeros(1,length(t)); % array to store waiting cost

Sc = zeros(1,length(t)); % array to store service cost

Tc = zeros(1,length(t)); % array to store total cost

M_Table = zeros(1,length(M)); % array for channel number in table

B_Table = zeros(1,length(M)); % array for buffer length per # of channels

Ns_Table = zeros(1,length(M)); % array for units in service per # of channels

MB_sTable = zeros(1,length(M)); % array for service and queue per # of channels

Wc_Table = zeros(1,length(M)); % array for Wait Cost per # of channels

Sc_Table = zeros(1,length(M)); % array for Service cost per # of channels

Tc_Table = zeros(1,length(M)); % array for Total cost per # of channels

results = zeros(1,length(M)); % array for Total cost per # of channels

Arrival_Time = zeros(1,length(t)); % array of arrival times

Service_Time = zeros(1,length(t)); % array of service times compelted

%--------------------------------------------------------------------------

% Process Queue

%--------------------------------------------------------------------------

for i = 1:M

params.M = i;

for k = 1:length(t)

154



% compute failure rate (i.e., from population into system)

lambda_n = (params.Npop-n) * params.lambdab;

% compute service rate (i.e., from service channel(s) into population)

if n <= params.M-1

mu_n = params.mub * n;

else

mu_n = params.M * params.mub;

end

% check for arrivals/deparatures

if rand <= dt*lambda_n % arrival from population

n = n + 1;

ArriveT = ArriveT + dt*lambda_n; % Incementing arrival times

Arrival_Time(k) = ArriveT; % Tracking arrival times

Service_Time(k) = 0; % No Service complete

elseif (rand <= dt*mu_n) && (n >= 1) % departure from service

n = n - 1;

Arrival_Time(k) = 0; % No Arrival

ServiceT = ServiceT + dt*mu_n;

Service_Time(k) = ServiceT;

end

% update state counters

if n == 0

nb = 0;
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ns = 0;

elseif (n >= 1) && (n<=params.M)

nb = 0;

ns = n;

elseif (n>params.M)

nb = n-params.M;

ns = params.M;

end

% save states

B(k) = nb;

N(k) = n;

Ns(k) = ns; %added to track service numbers

NB_s(k) = nb+ns; %added to track queue and service numers

Wc(k) = (nb+ns) * 100; %added provides waiting cost

Sc(k) = params.M * 844; %added to track service cost

Tc(k) = ((nb+ns) * 100) + (params.M * 844) + 1032; %add to track total cost

end

%--------------------------------------------------------------------------

% Calculate Statistics and Compare to Theory

%--------------------------------------------------------------------------

% compute supplementary probability coefficents

C = zeros(1,params.Npop+1);

P = zeros(1,params.Npop);
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for n = 0:params.M

index = n + 1;

C(index) = (factorial(params.Npop)/(factorial(params.Npop-n)...

*factorial(n)))*(params.lambdab/params.mub)^n;

end

for n = params.M:params.Npop

index = n + 1;

C(index) = (factorial(params.Npop)/(factorial(params.Npop-n)...

*factorial(params.M)*params.M^(n-params.M)))...

*(params.lambdab/params.mub)^n;

end

% compute probability of no failures in system

P0 = 1/sum(C);

% compute probability of n>0 failures in system

for n = 1:params.Npop

P(n) = P0 * C(n+1);

end

P = cat(2,P0,P);

% compute expected number of failures in system

n_hat = 0;

for n = 1:params.Npop
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n_hat = n_hat + P(n+1) * n

end

%find points where the queue is zero (no failures)

indices_nofailures = find(N(:)==0);

%find points where the queue has 4 failures (P_4)

indices_4failures = find(N(:)==4);

Sim_Table(i) = round(n_hat,2);

N_Table(i) = round(mean(N),2);

M_Table(i) = params.M;

B_Table(i) = round(mean(B),2);

Ns_Table(i) = round(mean(Ns),2);

NB_sTable(i) = round(mean(NB_s),2);

Wc_Table(i) = round(mean(Wc),2);

Sc_Table(i) = round(mean(Sc),2);

Tc_Table(i) = round(mean(Tc),2);

ServT(i) = round(mean(Service_Time),5);

end

disp(sprintf(’Table Showing Simulated Data’));

T = table(M_Table’, B_Table’, Ns_Table’, Wc_Table’, Sc_Table’, Tc_Table’);

T.Properties.VariableNames = {’Number_of_Channels’,’Avg_Queue_Length’,...

’Avg_Being_Serviced’,’Waiting_Cost’,’Service_Cost’,’Total_Cost’}
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[M,I] = min(Tc_Table);

Min_Channel = M_Table(I);

disp(sprintf(’Table Showing Simulated vs Theoretical Data’));

T = table(M_Table’, N_Table’, Sim_Table’);

T.Properties.VariableNames = {’Number_of_Channels’,...

’Simulated_Failures’,’Theoretical_Failure’}

disp(sprintf(’Number of channels providing the least ...

total cost (simulated): %1.0f’, Min_Channel));

A.6 Service Time Optimization Finite Queuing Model

%-------------------------------------------------------------------------%

% Description: This evaluates the Mean service time under control

% in both the simulated environment and theoretical as defined in section

% 10.6.4 of Blanchard. This follows the book to validate the code.

%

% Inputs:

% - none

%

% Outputs:

% - Table of Simulated Preventative Maintenance Polices

% - Table of Theoretical Preventative Maintenance Polices

%
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% Written by: James Cale & Rudy Pirani

% Systems Engineering Department

% Colorado State University

% Email: jcale@colostate.edu; pirani@colostate.edu

%

% Revision Date: 19 December 2021

%-------------------------------------------------------------------------%

clear all; clc; close all; format long;

% define fixed parameters

params.lambdab = (1/60); % base arrival rate, per unit [units/sec]

params.mub = 1/0.25; % base service time, per unit, per channel [units/sec]

params.Npop = 60; % number of units in the population

M = 1; % number of service channels

S_T = 5; % maxiumum minutes per unit servissed

%define time array

dt = 1e-2; % time increment [s]

t = 0:dt:100000; % time array (secs in one day)

ArriveT = 0; % the arrival time

ServiceT = 0; % the sercive time completion

% initialize discrete state variables

n = 0; % total number of units in system

nb = 0; % number of units in buffer

ns = 0; % number of units in service
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% allocate memory for saved states

B = zeros(1,length(t)); % array to store buffer length

N = zeros(1,length(t)); % array to store total units in system

Ns = zeros(1,length(t)); % array to store units in service

NB_S = zeros(1,length(t)); % array to store total of service and queue

Wc = zeros(1,length(t)); % array to store waiting cost

Sc = zeros(1,length(t)); % array to store service cost

Tc = zeros(1,length(t)); % array to store total cost

Fld = zeros(1,length(t)); % array to store number of units still operating

GrosP = zeros(1,length(t)); % array to store gross profit of operating units

NetP = zeros(1,length(t)); % array to store net profit of operating units

S_T_Table = zeros(1,length(S_T)); % array for service time in table

M_Table = zeros(1,length(S_T)); % array for channel number in table

B_Table = zeros(1,length(S_T)); % array for buffer length per # of channels

Ns_Table = zeros(1,length(S_T)); % array for service length per # of channels

MB_sTable = zeros(1,length(S_T)); % array for servce & queue per # of channels

Wc_Table = zeros(1,length(S_T)); % array for Wait Cost per # of channels

Sc_Table = zeros(1,length(S_T)); % array for Service cost per # of channels

Tc_Table = zeros(1,length(S_T)); % array for Total cost per # of channels

Fld_Table = zeros(1,length(S_T)); % array for fielded untis

GrosP_Table = zeros(1,length(S_T)); % array for gross profit

NetP_Table = zeros(1,length(S_T)); % array for net profit

SF = zeros(1,length(S_T)); % array service Factor

Arrival_Time = zeros(1,length(t)); % array of arrival times
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Service_Time = zeros(1,length(t)); % array of service times compelted

%--------------------------------------------------------------------------

% Process Queue

%--------------------------------------------------------------------------

for i = 1:S_T

params.M = M;

for k = 1:length(t)

% compute failure rate (i.e., from population into system)

lambda_n = (params.Npop-n) * params.lambdab;

% compute service rate (i.e., from service channel(s) into population)

if n <= params.M-1

mu_n = ((params.mub)/i) * n;

else

mu_n = params.M * ((params.mub)/i);

end

% check for arrivals/deparatures

if rand <= dt*lambda_n % arrival from population
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n = n + 1;

ArriveT = ArriveT + dt*lambda_n; % Incementing arrival times

Arrival_Time(k) = ArriveT; % Tracking arrival times

Service_Time(k) = 0; % No Service complete

elseif (rand <= dt*mu_n) && (n >= 1) % departure from service

n = n - 1;

Arrival_Time(k) = 0; % No Arrival

ServiceT = ServiceT + dt*mu_n;

Service_Time(k) = ServiceT;

end

% update state counters

if n == 0

nb = 0;

ns = 0;

elseif (n >= 1) && (n<=params.M)

nb = 0;

ns = n;

elseif (n>params.M)

nb = n-params.M;

ns = params.M;

end

% save states

params.S = 1/((params.mub)/i);
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%+(161*((1-params.S)))//(161*((exp(params.S))/100))

B(k) = nb; % store buffer length

N(k) = n; % store total units in system

Ns(k) = ns; %added to track service numbers

NB_s(k) = nb+ns; %added to track queue and service numers

Wc(k) = (nb+ns) * 100; %added provides waiting cost

Sc(k) = (182 / params.S)+(exp(1/(((params.S)^2)*2.5)));

%added to track service cost

Tc(k) = ((nb+ns) * 100) + (Sc(k)) + 960; %add to track total cost

Fld(k) = params.Npop - (nb+ns);

%add to number of fieled units still operating

GrosP(k) = (params.Npop - (nb+ns))*100;

% Gross profit of operaiting units

NetP(k) = ((params.Npop - (nb+ns))*100) - (((nb+ns) * 100) + (Sc(k)));

%Incldes Waiting and Service Cost

end

S_T_Table(i) = params.S;

M_Table(i) = params.M;

B_Table(i) = round(mean(B),2);

Ns_Table(i) = round(mean(Ns),2);

NB_sTable(i) = round(mean(NB_s),2);

Wc_Table(i) = round(mean(Wc),2);

Sc_Table(i) = round(mean(Sc),2);

Tc_Table(i) = round(mean(Tc),2);
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ServT(i) = round(mean(Service_Time),5);

Fld_Table(i) = round(mean(Fld),2);

GrosP_Table(i) = round(mean(GrosP),2);

NetP_Table(i) = round(mean(NetP),2);

end

disp(sprintf(’Table Showing Simulated Data’));

T = table(S_T_Table’, NB_sTable’, Wc_Table’, Sc_Table’, NetP_Table’,...

Tc_Table’);

T.Properties.VariableNames = {’Service_Time’,’Queue’,’Wait_Cost’,...

’Service_Cost’,’Net_Profit’,’TC_Cost’}

[M,I] = max(NetP_Table);

Max_Net_Profit = S_T_Table(I);

disp(sprintf(’Number of channels providing the maximum net profit...

(simulated): %1.0f’, Max_Net_Profit));
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