53 research outputs found

    Data-driven nonparametric Li-ion battery ageing model aiming at learning from real operation data – Part A : storage operation

    Get PDF
    Conventional Li-ion battery ageing models, such as electrochemical, semi-empirical and empirical models, require a significant amount of time and experimental resources to provide accurate predictions under realistic operating conditions. At the same time, there is significant interest from industry in the introduction of new data collection telemetry technology. This implies the forthcoming availability of a significant amount of real-world battery operation data. In this context, the development of ageing models able to learn from in-field battery operation data is an interesting solution to mitigate the need for exhaustive laboratory testing

    Characterizing the degradation process of Lithium-Ion Batteries using a Similarity-Based-Modeling Approach

    Get PDF
    This article proposes a Similarity-Based-Modeling (SBM) approach capable of characterizing the degradation process of a lithium-ion (Li-ion) battery when discharged under different current rates and different State-of-Charge (SOC) ranges. The degradation process can be represented through a biexponential model. In this regard, it is possible to determine the equivalent cycle-by-cycle efficiency which has low values at the beginning of the degradation process until it reaches a higher and steady value. The lifespan of the batteries is analyzed through the use of Monte Carlo simulations which intends to represent a more realistic way of how the batteries are used.This article proposes a Similarity-Based-Modeling (SBM) approach capable of characterizing the degradation process of a lithium-ion (Li-ion) battery when discharged under different current rates and different State-of-Charge (SOC) ranges. The degradation process can be represented through a biexponential model. In this regard, it is possible to determine the equivalent cycle-by-cycle efficiency which has low values at the beginning of the degradation process until it reaches a higher and steady value. The lifespan of the batteries is analyzed through the use of Monte Carlo simulations which intends to represent a more realistic way of how the batteries are used

    Knee-point-conscious battery aging trajectory prediction of lithium-ion based on physics-guided machine learning

    Get PDF
    Early prediction of aging trajectories of lithium-ion (Li-ion) batteries is critical for cycle life testing, quality control, and battery health management. Although data-driven machine learning (ML) approaches are well suited for this task, unfortunately, relying solely on data is exceedingly time-consuming and resource-intensive, even in accelerated aging with complex aging mechanisms. This challenge is rooted in the highly complex and time-varying degradation mechanisms of Li-ion battery cells. We propose a novel method based on physics-guided machine learning (PGML) to overcome this issue. First, electrode-level physical information is incorporated into the model training process to predict the aging trajectory’s knee point (KP). The relationship between the identified KP and the accelerated aging behavior is then explored, and an aging trajectory prediction algorithm is developed. The prior knowledge of aging mechanisms enables a transfer of valuable physical insights to yield accurate KP predictions with small data and weak correlation feature relationship. Based on a Li[NiCoMn]O\ua02\ua0cell dataset, we demonstrate that only 14 cells are needed to train a PGML model for achieving a lifetime prediction error of 2.02% using the data of the first 50 cycles. In contrast, at least 100 cells are needed to reach this level of accuracy without the physical insights

    A critical review of online battery remaining useful lifetime prediction methods.

    Get PDF
    Lithium-ion batteries play an important role in our daily lives. The prediction of the remaining service life of lithium-ion batteries has become an important issue. This article reviews the methods for predicting the remaining service life of lithium-ion batteries from three aspects: machine learning, adaptive filtering, and random processes. The purpose of this study is to review, classify and compare different methods proposed in the literature to predict the remaining service life of lithium-ion batteries. This article first summarizes and classifies various methods for predicting the remaining service life of lithium-ion batteries that have been proposed in recent years. On this basis, by selecting specific criteria to evaluate and compare the accuracy of different models, find the most suitable method. Finally, summarize the development of various methods. According to the research in this article, the average accuracy of machine learning is 32.02% higher than the average of the other two methods, and the prediction cycle is 9.87% shorter than the average of the other two methods

    Interpretable Battery Lifetime Prediction Using Early Degradation Data

    Get PDF
    Battery lifetime prediction using early degradation data is crucial for optimizing the lifecycle management of batteries from cradle to grave, one example is the management of an increasing number of batteries at the end of their first lives at lower economic and technical risk.In this thesis, we first introduce quantile regression forests (QRF) model to provide both cycle life point prediction and range prediction with uncertainty quantified as the width of the prediction interval. Then two model-agnostic methods are employed to interpret the learned QRF model. Additionally, a machine learning pipeline is proposed to produce the best model among commonly-used machine learning models reported in the battery literature for battery cycle life early prediction. The experimental results illustrate that the QRF model provides the best range prediction performance using a relatively small lab dataset, thanks to its advantage of not assuming any specific distribution of cycle life. Moreover, the two most important input features are identified and their quantitative effect on predicted cycle life is investigated. Furthermore, a generalized capacity knee identification algorithm is developed to identify capacity knee and capacity knee-onset on the capacity fade curve. The proposed knee identification algorithm successfully identifies both the knee and knee-onset on synthetic degradation data as well as experimental degradation data of two chemistry types.In summary, the learned QRF model can facilitate decision-making under uncertainty by providing more information about cycle life prediction than single point prediction alone, for example, selecting a high-cycle-life fast-charging protocol. The two model-agnostic interpretation methods can be easily applied to other data-driven methods with the aim of identifying important features and revealing the battery degradation process. Lastly, the proposed capacity knee identification algorithm can contribute to a successful second-life battery market from multiple aspects

    Battery health prediction under generalized conditions using a Gaussian process transition model

    Full text link
    Accurately predicting the future health of batteries is necessary to ensure reliable operation, minimise maintenance costs, and calculate the value of energy storage investments. The complex nature of degradation renders data-driven approaches a promising alternative to mechanistic modelling. This study predicts the changes in battery capacity over time using a Bayesian non-parametric approach based on Gaussian process regression. These changes can be integrated against an arbitrary input sequence to predict capacity fade in a variety of usage scenarios, forming a generalised health model. The approach naturally incorporates varying current, voltage and temperature inputs, crucial for enabling real world application. A key innovation is the feature selection step, where arbitrary length current, voltage and temperature measurement vectors are mapped to fixed size feature vectors, enabling them to be efficiently used as exogenous variables. The approach is demonstrated on the open-source NASA Randomised Battery Usage Dataset, with data of 26 cells aged under randomized operational conditions. Using half of the cells for training, and half for validation, the method is shown to accurately predict non-linear capacity fade, with a best case normalised root mean square error of 4.3%, including accurate estimation of prediction uncertainty

    Estimating Degradation Costs for Non-Cyclic Usage of Lithium-Ion Batteries

    Get PDF
    Estimating the degradation costs of lithium-ion batteries is essential to the designs of many systems because batteries are increasingly used in diverse applications. In this study, cyclic and calendar degradation models of lithium batteries were considered in optimization problems with randomized non-cyclic batteries use. Such models offer realistic results. Electrical, thermal, and degradation models were applied for lithium nickel cobalt manganese oxide (NMC) and lithium iron phosphate (LFP) technologies. Three possible strategies were identified to estimate degradation costs based on cell models. All three strategies were evaluated via simulations and validated by comparing the results with those obtained by other authors. One strategy was discarded because it overestimates costs, while the other two strategies give good results, and are suitable for estimating battery degradation costs in optimization problems that require deterministic models

    Driving behavior-guided battery health monitoring for electric vehicles using machine learning

    Full text link
    An accurate estimation of the state of health (SOH) of batteries is critical to ensuring the safe and reliable operation of electric vehicles (EVs). Feature-based machine learning methods have exhibited enormous potential for rapidly and precisely monitoring battery health status. However, simultaneously using various health indicators (HIs) may weaken estimation performance due to feature redundancy. Furthermore, ignoring real-world driving behaviors can lead to inaccurate estimation results as some features are rarely accessible in practical scenarios. To address these issues, we proposed a feature-based machine learning pipeline for reliable battery health monitoring, enabled by evaluating the acquisition probability of features under real-world driving conditions. We first summarized and analyzed various individual HIs with mechanism-related interpretations, which provide insightful guidance on how these features relate to battery degradation modes. Moreover, all features were carefully evaluated and screened based on estimation accuracy and correlation analysis on three public battery degradation datasets. Finally, the scenario-based feature fusion and acquisition probability-based practicality evaluation method construct a useful tool for feature extraction with consideration of driving behaviors. This work highlights the importance of balancing the performance and practicality of HIs during the development of feature-based battery health monitoring algorithms

    Data-driven nonparametric Li-ion battery ageing model aiming at learningfrom real operation data – Part A: Storage operation

    Get PDF
    Conventional Li-ion battery ageing models, such as electrochemical, semi-empirical and empirical models, require a significant amount of time and experimental resources to provide accurate predictions under realistic operating conditions. At the same time, there is significant interest from industry in the introduction of new data collection telemetry technology. This implies the forthcoming availability of a significant amount of real-world battery operation data. In this context, the development of ageing models able to learn from in-field battery operation data is an interesting solution to mitigate the need for exhaustive laboratory testing. In a series of two papers, a data-driven ageing model is developed for Li-ion batteries under the Gaussian Process framework. A special emphasis is placed on illustrating the ability of the Gaussian Process model to learn from new data observations, providing more accurate and confident predictions, and extending the operating window of the model. This first paper focusses on the systematic modelling and experimental verification of cell degradation through calendar ageing. A specific covariance function is composed, tailored for use in a battery ageing application. Over an extensive dataset involving 32 cells tested during more than three years, different training possibilities are contemplated in order to quantify the minimal number of laboratory tests required for the design of an accurate ageing model. A model trained with only 18 tested cells achieves an overall mean-absolute-error of 0.53% in the capacity curves prediction, after being validated under a broad window of both dynamic and static temperature and SOC storage conditions.This investigation work was financially supported by ELKARTEK (CICe2018 -Desarrollo de actividades de investigacion fundamental estrategica en almacenamiento de energia electroquimica y termica para sistemas de almacenamiento hibridos, KK-2018/00098) and EMAITEK Strategic Programs of the Basque Government. In addition, the research was undertaken as a part of ELEVATE project (EP/M009394/1) funded by the Engineering and Physical Sciences Research Council (EPSRC) and partnership with the WMG High Value Manufacturing (HVM) Catapult. Authors would like to thank the FP7 European project Batteries 2020 consortium (grant agreement No. 608936) for the valuable battery ageing data provided during the course of the project
    corecore