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ABSTRACT

This article proposes a Similarity-Based-Modeling (SBM) ap-
proach capable of characterizing the degradation process of
a lithium-ion (Li-ion) battery when discharged under differ-
ent current rates and different State-of-Charge (SOC) ranges.
The degradation process can be represented through a biex-
ponential model. Understanding the degradation process is
a matter of utmost importance since the after each time the
battery is used, the availability to store and deliver energy
decreases. Even though manufacturers provide important in-
formation that explains the degradation process of the Li-ion
batteries when used always under the same conditions, this
information many times is not enough due to the different
ways a single battery can be used through its lifespan. This
behavior creates the necessity to use the available information
and extrapolation techniques to model the degradation pro-
cess when variable operating conditions are present in each
cycle. This will allow the user to understand when the Li-ion
battery will complete its lifespan with a known uncertainty,
aiding a possible decision-making task. In this regard, it is
possible to determine the equivalent cycle-by-cycle efficiency
which has low values at the beginning of the degradation pro-
cess until it reaches a higher and steady value. The lifespan
of the batteries is analyzed through the use of Monte Carlo
simulations which intends to represent a more realistic way
of how the batteries are used.

1. INTRODUCTION

The popularity of Li-ion rechargeable batteries is increasing
day by day due to all the applications in which they are used.
Some of the possibilities are: cell phones, tablets, notebooks,
small electronics, satellites, wireless sensor networks, or even
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electromobility solutions such as electric bicycles electric cars
(Olivares, Munoz, Orchard, & Silva, 2013). Regardless of
the application in which Li-ion batteries are used, two ma-
jor concerns require full attention by the user. The first of
the concerns has to do with the short term performance of
the battery. In this sense, an indicator known as the SOC is
useful since it quantifies the amount of energy available in
the battery prior to reaching the discharge threshold (Hannan,
Lipu, Hussain, Saad, & Ayob, 2018). The other concern is
related to the long time performance of the battery and how
much lifespan it has before reaching is End-of-Life (EOL).
The indicator used to quantify the degradation process is the
State-of-Health (SOH) (Guha & Patra, 2018). Usually manu-
facturers inform the users through datasheets about how much
lifecycles they can expect from a battery under certain oper-
ating conditions. However the information provided is not
enough to understand the degradation process if the operating
conditions are changed. For example, typically the datasheets
illustrate the degradation process of the batteries when dis-
charged at nominal current, under constant ambient tempera-
ture, and completing fully discharge cycles. This means that
each cycle is defined as going from a fully-charged state to
a fully-discharged state (without over charging or over dis-
charging the battery). Although this information is useful, it
might not be enough to characterize the degradation process
of the batteries since the use might not always be the same
(Perez et al., 2017). Even more, (Yang, Wang, Xing, & Tsui,
2017) states that the degradation process of Li-ion batteries
can follow two types to trends, convex or concave depend-
ing on the chemistry of the Li-ion battery. A clear example
of how the operating conditions are not uniform, is the use
of cell phones or tablets since most users charge the battery
while resting, and the next charge period might start before
the SOC reaches a 0%. One of the reasons for doing this, is
that most users desire to have as much energy available for
those times in which charging the batteries is not possible.
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Another example are electric cars since the majority of e-car
owners don’t wait until the battery is discharged for recharg-
ing it. Even though there are no references for this behavior,
it is something that can be justified by observing the typical
usage patterns of the users. For this reason, it is important
to find a method that characterizes the degradation process
of Li-ion batteries when the operating conditions are differ-
ent as the ones from reported by the manufacturer. This ar-
ticle proposes a methodology that characterizes the degrada-
tion process of Li-ion batteries using a SBM approach when
discharged at different current rates regardless of the SOC at
which they are used.

2. THEORETICAL BACKGROUND

2.1. Similarity-Based-Modeling

Performing system analysis can either be a simple or difficult
task depending on the available information to build a model
that describes the process dynamics. Access to information is
a high value asset, and sometimes access to this information
is costly due to economic, computational reasons to mention
a few, or simply because the unavailability of historical data
or different operating conditions. For these reasons, the use
of SBM becomes of relevant support. As defined by (Tobar,
Yacher, Paredes, & Orchard, 2011), SBM consists of a non-
parametric modeling approach capable of estimating a sys-
tem’s output using historical data and compare it with the ac-
tual, measured output once it is available. The main intention
of this comparison is to determine if the system is perform-
ing in a similar manner as expected by the historical data.
If this is not the case, it means that the historical database
does not represents all the possible operating conditions, and
it this regard, the database must be modified to include all
the new information. It is imperative to always keep updating
the database when new operating conditions are present. Per-
haps, the main advantage of SBM is that it does not require
information from the system to formulate a set of equations to
explain the system behavior. In other words, SBM estimates
the output of the system by comparing the measured input
variables with the available information in database, regard-
less if it is a low or high dimension system. Consider a system
described through Equation 1, where x denotes the input of
the system while y is used for the corresponding output, and
f(·) represents an unknown function.

y = f(x), x ∈ Rm, y ∈ Rp (1)

Using the information gathered from the database, the differ-
ent input and output values must be separated in two different
matrices. Equation 2a is used for all the known inputs and
equation 2b for the corresponding output.

Di = [x1 x2 ... xn] ∈ Rm×n (2a)

Do = [y1 y2 ... yn] ∈ Rp×n (2b)

Since it is possible to relate all the known inputs to their cor-
responding output value through the unknown function de-
scribed by equation 1. Thus, the idea behind SBM is that for
any given set of inputs x∗, the output y∗ can be estimated
through a a linear combination of matrix Do and a weighing
vector denoted w. In other words, the estimated output ŷ∗ is
equal to the product between Do and w, hence ŷ∗ = Dow.
Equations 3 and 4 show how to calculate w. For equation 3
the use of a similarity operator is required, which corresponds
to the variable ∆.

ŵ = (DT
i ∆Di)

−1(DT
i ∆x∗) (3)

w =
ŵ

~1T · ŵ
(4)

According to (Tobar et al., 2011), it is possible to use any
similarity operator, however several important characteristics
must be present in a SBM approach. Unfortunately, there
are not frameworks present in the literature to help the user
choose a similarity operator depending on the available on
the information. Although the user must consider that for
two elements A,B ∈ R+ the following conditions must be
satisfied for the result of applying the similarity operator :

• A∆B ∈ R+

• Must be symmetric.

• The maximum value must be reached in A = B.

• Monotonically decay with ‖A−B‖

In this regard, one of the simplest ways to implement the sim-
ilarity operator ∆ is through a saturated triangular function,
see equation 5.

A∆B =

{
d− ‖A−B‖ ‖A−B‖ ≤ d+ ε

ε ‖A−B‖ > d+ ε
(5)

The values of ε and d in equation 5 must be selected accord-
ingly to the available data:

• The value of ε is equal to a very small positive number
that ensures A∆B > 0.

• The variable d is a threshold and its value (greater than
0) is calculated using the variance of the observations.
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2.2. Different Uses for SBM

Since SBM consists of a non-parametric modeling technique
it can be used in different applications throughout the liter-
ature. A very insightful technical document, that explores
the diverse uses that can be given to SBM methods is found
on (Duch, 2000). In this technical paper, the author cov-
ers a great amount of applications, such as: classifiers, ad
methods for approximating and associating. For example,
neural-like techniques, nearest-neighbors methods, and fea-
ture extraction, to mention some. Another example is ap-
proached on (Tobar et al., 2011), where the authors propose
the use SBM to represent the process behavior in a natural
gas power generation plant, and in this way creating a tool
suitable for anomaly detection. In their study, the variables
included for the modeling were: pressures, temperatures, po-
sition of valves, speed of rating parts, among others. Other
use of SBM is proposed on (León Olivares, 2012). Similar
as before, in this case the author uses SBM as a tool for fault
detection on an multivariate industrial process. A different
application is presented on (Bhardwaj, Srivastava, & Gupta,
2015). In this case the authors propose the use of patterns and
shapes combined with a clustering method based on SBM to
predict time series, avoiding the problems associated with au-
toregressive techniques.

2.3. Battery-Related Concepts

Besides the previously explained general concepts, the fol-
lowing terminology must be understood by a battery user.
The first concept is the Depth of Discharge (DoD). The DoD
is related to the SOC, since it represents the percentage of
how much energy is delivered by the battery. For instance if
a fully charged battery is used to a point where the final SOC
is 80%, it is said that the DoD is equal to 20%. However, if
a battery starts at a 70% SOC, and it is used until it reaches
a final SOC of 50%, the DoD would be a DoD of 50%, since
the starting point to quantify the DoD is 100%.

Since not always the starting point is a SOC equal to 100%,
two concepts become helpful. The first one is called the SOC-
swing (SOC-S), and is similar to the DoD. It measures the
total difference between the starting SOC value and the low-
est value in a cycle. Hence, the SOC-S is reported by just a
percentage, for example 20% or 50%. Describing the DoD or
the SOC-S is not always enough since this percentage can be
calculated starting from any value of the SOC. This is why,
defining the swing range (SR) is important. The SR indicates
the range in which the SOC-S varies. Using both concepts
(SOC-S and SR) is important since the effect on the degra-
dation is different depending on the SR that the battery is
used. In other words, if the SOC-S is defined as 50%, the
degradation would be smaller if the SR goes from 50%-0% of
the SOC than if it goes between [100%-50%] or [75%-25%]
(Perez et al., 2017).

When talking about charging and discharging knowing how
to interpret a concept known as the C-rate. The C-rate is a
factor of the charge/discharge current in terms of the rated ca-
pacity expressed in Ampere-hours [Ah]. This factor indicates
the amount of current used to charge or discharge the battery.
For example, if a battery has a rated capacity of 2 [Ah], and it
is discharged with a constant current of 1 [A] then the C-rate
is equal to C/2. The C-rate is always expressed in terms of the
capacity C. Continuing with the same example, if the battery
is discharged using a current of 6 [A], then the the C-rate is
equal to 3-C (Wong, Wetz, Mansour, & Heinzel, 2015).

2.4. Battery-Degradation Concepts

According to (Xu, Oudalov, Ulbig, Andersson, & Kirschen,
2018) battery degradation is a non-linear process that depends
on both time and the operating characteristics of its use. This
process can be influenced by factors such as temperature,
charge/discharge cycles, DoD, among others (Balagopal &
Chow, 2015). To characterize the degradation process suf-
fered by the battery, several models have been proposed in
the available literature, and they can been classified into two
main groups: theoretical and empirical. The first group uses
the loss of ions and active materials, as well as internal chem-
ical reactions to model the degradation process while the sec-
ond group uses experimental data (Xu et al., 2018). Some
examples of proposed model to characterize the degradation
process of Li-ion batteries can be found in (Perez et al., 2017),
(May & El-Shahat, 2017), (Stroe, Swierczynski, Stroe, Kaer,
& Teodorescu, 2017) and (Perez et al., 2018).

A traditional method to measure how much energy is stored
or delivered during a defined time interval (in most of the
cases the time interval equals a cycle) is the Coulomb-count
method. Since the delivered energy is less in each cycles, the
degradation process can be calculated as the ratio of energy
delivered in two consecutive cycles (without considering the
existence of the self-regeneration phenomena that sometimes
occur in Li-ion batteries). Typically the degradation process
of Li-ion batteries follow one of two trends, convex or con-
cave depending on the chemistry of the battery (Yang et al.,
2017). No matter which of the trends the battery follows, it
is possible to calculate the Coulombic efficiency (denoted by
the Greek letter η) by dividing the delivered energy at time k,
by the delivered energy at time k-1. Although some authors
prefer to define it as the ratio between the delivered energy at
discharge time k and the stored capacity during charge at the
same cycle (Yang, Wang, Zhao, Tsui, & Bae, 2018). Ideally,
η should have values close to 1, but since batteries degrade
with use (without considering the regeneration phenomena),
the highest this value is, the less degradation after one cycle.

Moreover, it is still unknown what is the correct time instant
when a Li-ion battery reaches its EOL. However, a rule-of-
thumb indicates that a Li-ion battery must be replaced when
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the delivered capacity reaches an user-defined threshold. The
value of this threshold must be between the range of [70%-
85%] of the nominal capacity of the battery, since after this
point most the energy stored by the battery instead of being
delivered, it is dissipated in the form of thermal energy. In
other words, the user must decide which percentage will be
the desired threshold. Although it is important to mention
that regardless if the degradation process follows a convex or
a concave trend, that an inflection point will appear towards
the EOL, causing η to drop its value. However, this inflection
point it is not always present on the information provided by
manufacturers on datasheets. On the experiments performed
on (Yang et al., 2018) the existence of this inflection point
can be noted. This lack of information is what makes difficult
the estimation of the EOL of Li-ion batteries, and thus, other
techniques must be approached to estimate the RUL of the
batteries.

3. METHODOLOGY

3.1. Data sets

This research uses data provided in (Ning, Haran, & Popov,
2003), where the authors cycled a Sony US18650 1.4 Ah Li-
ion battery using different discharge rates (1-C, 2-C and 3-
C), at a controlled ambient temperature. After 300 cycles,
battery capacities were reduced by 9.5%, 13.2% and 16.9%
when using 1-C, 2-C and 3-C, respectively. Figure 1 shows
the capacity fade results measured every 50 cycles (please
note that actual measurements are connected by straight lines
in the figure). The same information of Figure 1 can be used
to build the associated capacity degradation curve (see Fig-
ure 2). Presenting the information of the degradation process
by manufacturers in this way is typical because it is simple
to understand how the performance of the battery is affected
through its lifespan. For instance, it is possible to note on 2
that during the first 50 cycles there is more degradation than
in the rest of the cycles. Hence, this characteristic indicates
that the initial cycles have a major impact on the rest of life
of the battery. Usually, degradation curves are built using ob-
tained data from discharge experiments under controlled con-
ditions (DoD, temperature, C-rates). Although this informa-
tion is helpful to compare the expected performance of bat-
teries from different brands, it does not suffice to characterize
the impact of the degradation when higher currents are used
for discharging, or in other words, when the load connected
to the battery is variable.

Using the information of Figure 2 is possible to calculate the
equivalent η on a cycle-by-cycle basis. For this particular case
and since the information regarding the charge process is not
available, the η is calculated as the rate between the delivered
energy at cycle k and cycle k-1. Figure 3 shows the evolution
of the obtained η for the three Li-ion batteries cycled at dif-
ferent discharge current rates. Due to a greater degradation

Figure 1. Capacity fade measured every 50 cycles for differ-
ent discharge current rates. Adapted from (Ning et al., 2003).

Figure 2. Capacity degradation process for different dis-
charge current rate.

during the first cycles, the value of η has to be lower during
those cycles. An important characteristic to note from Figure
3 is that the three curves reach and inflection point and after
that the value of η remains practically constant. It is impor-
tant to keep in mind that these curves only shows the first 300
cycles and that Li-ion degradation curves have another inflec-
tion point towards the EOL which is not present in this case.
For this reason it would be erroneous to think that η will settle
at certain point, when the correct thing is that once the battery
reaches that second inflection point, its value will drop again,
but as mentioned, this second inflection point is not always
presented on the datasheets.

An interesting concept related to η is that it can be charac-
terized using a biexponential expression of the form y(k) =
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Figure 3. Evolution of the Coulombic efficiency for different
discharge currents.

αe(β·k) + γe(δ·k), whithout considering the part of the curve
when the second inflection point is present. Table 1 shows the
mean value and confidence bounds of the four coefficients
that explain the evolution of its value. These values were
obtained using the Curve Fitting Tool of Matlab®, and for
three cases the sum of squares due to error (SSE) was less
than 1 · 10−11 and the the coefficient of determination (R2)
was equal to 1. Each of the two summands from the previ-
ous equation, have a very specific trend. For instance, the
summand αe(β·k) consists of a straight line which its highest
value is given by the value of α at time instant 0. In other
words, the highest value of η is constrained by this result. On
the other hand, the other expression, γe(δ·k) is the one that
gives η its final shape, as shown in Figure 3. Note that, that
as cycles advance, this expression will increase its value to-
wards zero (since it is a negative term), and the final value of
η is given by the term αe(β·k).

3.2. Estimating the Degradation Process with SBM

Since the degradation curves shown in Figure 2 illustrate the
result of discharging the battery from a 100% SOC to a 0%
SOC in each cycle for three different batteries, this section is
intended to explain the use SBM to estimate the degradation
process of a Li-ion battery, when it is discharged at different
current rates during its cycle life. The first step is to determine
the required matrices for the SBM approach. In this proposal,
the input matrix Di consists of the following variables: the
cycle count, the discharge current, the SOC-S and the average
SOC SR. On the other hand, the output matrix Do is equal
to the equivalent η value. Equations 6 and 7 describe the
matrices used on this article.

Di =
[
Cycle C − rate SOC − S SR

]
(6)

Do = [η] (7)

For illustrative purposes, in this article the total amount of
cycles considered is equal to 1000. In the case of the C-rate,
the three different values (1-C, 2-C and 3-C) shown in figure
2 are used. For the SOC-S and its corresponding average,
the same eleven cases as described on (Perez et al., 2017).
Considering this data, the total amount of rows of Di is equal
to 1000 · 3 · 11 = 33000.

For the values corresponding to the output matrix Do, the
scaling factors described on (Perez et al., 2017) are used to
determine the equivalent η at each cycle for each discharge
current. The scaling factors are associated to each of the pro-
posed SR cases, and depending how the battery is discharged
the effect of the degradation is different. Furthermore, the
scaling factors are different depending on the degradation per-
centage threshold defined by the manufacturer or the user. Ta-
ble 2 shows the scaling factors used to calculate the equivalent
η.

The main idea of this scaling factors is the following. If a
battery is considered to be degraded when its deliverable ca-
pacity reaches 85% of its nominal value, then the correspond-
ing scaling factors to column 0.85 must be used. Moreover, if
during cycle 1 the battery is discharged at 1-C, with a known
η value (extracted from the datasheet) of 0.998407581, and
its used with a SR equal to 100-25, then the equivalent η
of that cycle will be equal to 0.998407581 · 1.00001354 =
0.998409508. Using this technique, and the obtained η val-
ues from figure 3 is possible to create the output matrix. For
this article, this process was performed extracting the η val-
ues for each of the three discharge currents of Figure 3, and
then each of those values was multiplied by the correspond-
ing scaling factor. Hence, the equivalent η is different for
each combination of variables: cycle count, discharge current
and SOC-S. Table 3 shows an extract of the input and output
matrices constructed with this technique, considering a 0.85
degradation percentage threshold. The first four columns on
Table 3 correspond to Di, while the last column is equal to
Do.

As mentioned before, a total of 1000 cycles were simulated.
For each cycle, the SOC-S and SR as well as the C-rate were
randomly generated. However, an important restriction was
incorporated to the simulation, and it consists that the initial
SOC on a any cycle could not be lower than the final SOC
of the prior cycle. This was intended to avoid a discharges
in between continuous cycles. Figure 4 shows the obtained
efficiency values when simulating 1000 cycles. As expected,
the trend of the figures is similar to the observed in Figure 3,
meaning that the results obtained with the SBM proposal are
reasonable and within the reference values.

Furthermore, the distribution of the discharge currents for the
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Table 1. Mean value and confidence bounds of the Coulombic efficiency characterization curves.

Coefficient 1-C 2-C 3-C

α
0.9999
(0.9999, 0.9999)

0.9998
(0.9998, 0.9998)

0.9996
(0.9996, 0.9996)

β
−1.711 · 10−8

(−1.79 · 10−8,−1.631 · 10−8)
−2.415 · 10−8

(−2.541 · 10−8,−2.289 · 10−8)
−3.75 · 10−8

(−3.852 · 10−8,−3.647 · 10−8)

γ
−1.533 · 10−3

(−1.533 · 10−3,−1.533 · 10−3)
−1.996 · 10−3

(−1.996 · 10−3,−1.996 · 10−3)
−1.288 · 10−3

(−1.288 · 10−3,−1.288 · 10−3)

δ
−0.02684
(−0.02685,−0.02683)

−0.02801
(−0.02802,−0.028)

−0.01922
(−0.01923,−0.01921)

Table 2. Scaling factors for three degradation thresholds de-
pending on the SR. Adapted from (Perez et al., 2017)

SR 0.7 0.8 0.85

100-0 1.000000 1.00000000 1.00000000

100-25 1.000003 1.00000266 1.00000193

75-0 1.000024 1.00001860 1.00001354

100-50 0.999989 0.99999203 0.99999420

75-25 1.000019 1.00001521 1.00001108

50-0 1.000037 1.00002874 1.00002093

100-75 1.000027 1.00002146 1.00001563

75-50 1.000011 1.00000881 1.00000642

62.5-37.5 1.000008 1.00000620 1.00000451

50-25 1.000043 1.00003347 1.00002438

25-0 1.000054 1.00004184 1.00003047

Figure 4. Evolution of η when a battery is discharged at dif-
ferent discharge current rates in each cycle.

Table 3. Example of the some cases of Di and Do

Cycle C-rate SOC-S SR η

1 1 1 0.5 0.998407581

1 1 0.5 0.25 0.998428478

1 2 1 0.5 0.997859108

1 2 0.25 0.5 0.997863609

1 3 0.5 0.25 0.998357377

2 1 1 0.5 0.998447088

2 2 0.25 0.625 0.9979191

2 3 0.25 0.5 0.998364999

3 3 0.25 0.375 0.998408394

3 3 0.25 0.125 0.998414474

1000 cycles is verified with Figure 5, where the discharge
current is constrained between 1 [A] and 3 [A].

Figure 5. Distribution of the discharge currents for the per-
formed simulation.
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Once the distribution of the currents is done verified and the
efficiency values of figure 4 follow the trend of the measured
data, and the operational SOC policies are set as explained
previously it is possible to plot the resulting degradation curve
for the simulation.

One major consideration when proposing this method is that
the degradation caused when charging the battery is neglected.
Since this approach uses information provided by the manu-
facturer, it is typical that the charging protocol follows the
constant current- constant voltage method (CCCV). Another
consideration was the temperature. For this article, the tem-
perature was considered constant throughout the lifespan. It
is known that temperature has two different effects on Li-ion
batteries. One of them being the amount of energy that can
be stored and delivered, and the other effect has to do with
the characteristics of the degradation curve. Despite this, if
a different charging method or different temperatures were to
be considered, one of the main advantages of SBM is that the
information database can be created considering these charac-
teristics without the need of finding a different type of model.

4. RESULTS

To determine the amount of cycles that the battery will op-
erate before reaching the EOL at the threshold of 85% of its
nominal capacity, a Monte Carlo simulation is performed. As
mentioned before, the operating conditions during the Monte
Carlo simulation include that for each cycle a different dis-
charge current and SOC range were randomly generated. How-
ever, the initial SOC of one cycle could not be lower than the
final SOC of the previous cycle. This is intended to represent
that on consecutive cycles the battery could be charged. For
example, cycle 1 can have an initial SOC value of 90% and
a final SOC value of 30% using a discharge current of 2 [A],
while cycle 2 can be considered using a discharge current of
1.5 [A] and SOC values between 45% and 10%. A total of
25000 realizations were simulated in this case, and for each
realization all the C-rates and SOC values are different.

Figure 6 shows the degradation process during the first 300
cycles of one realization of the Monte Carlo simulation and
the measured data. As seen, the structure of the degradation
process curve follows the trend of the measured data, very
similar to the 2-C case, since it is the average value between
1 [A] and 3 [A].

From figure 6 it can be noted that only the curve correspond-
ing to the degradation process at 3-C crosses the established
threshold after nearly 250 cycles. If the curves for the degra-
dation processes at 1-C and 2-C were extended for more cy-
cles, the EOL will occur at nearly 980 cycles for the 1-C case,
and at almost 450 cycles when discharged at 2-C. Neverthe-
less these three cases illustrate the EOL when the battery is
always fully discharged starting from a fully charged state,
while the proposed methodology in this article considers any

combination for the SOC range, in each cycle. Figure 7 shows
the obtained EOL cycle values after completing the Monte
Carlo simulation.

Figure 6. Degradation process for different discharge currents
between 1 [A] and 3 [A], and one Monte Carlo realization.

Figure 7. Distribution of the EOL in terms of cycles of a Li-
ion battery after a Monte Carlo simulation.

It can be noted that the resulting amount of cycles before
reaching the 85% threshold fits a normal distribution, with the
following characteristics: N(454.06, 125.97). It is clear that
theses results can change for is the battery, if it is discharged
among other SOC ranges or discharge currents. What be-
comes important is that the expected EOL can be estimated
after extending the operating region of a Li-ion battery within
a manageable uncertainty.

Furthermore, to illustrate the degradation process when a dif-
ferent range of discharge currents are set, a similar procedure
is proposed. The procedure is the same as before regarding
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the generation of the random SOC and discharge current val-
ues, however the discharge current is set to values between 2
[A] and 3 [A]. Figure 8 shows the obtained result of one re-
alization of this case. In this case, the degradation process of
the simulation shifts to a trend between the 2-C and 3-C case.

Figure 8. Degradation process for different discharge cur-
rents, and one Monte Carlo realization. The random current
is constrained between 2 [A] and 3 [A].

These results show that the SBM methodology is capable of
characterizing properly the degradation process, when oper-
ating at different discharge currents and variable SOC ranges.

5. CONCLUSIONS

A non-parametric methodology that characterizes the degra-
dation process of Li-ion batteries when discharged at various
C-rates and SOC-S was proposed. This characterization is
based on the calculation of the equivalent η at each cycle.
Evidence shows that the evolution of this efficiency can be
separated in two exponential coefficients that have different
effects on the overall trend.

Using the concepts of C-rate, SOC-S, average SR and η, it
is possible to model degradation in a simple manner through
interpolation techniques. This method uses the cycle by cycle
efficiency to determine an equivalent value for the efficiency
depending on the cycle count, SOC limits and discharge cur-
rent.

SMB is a technique that allows the characterization of the
degradation process of a Li-ion battery when used under vari-
able operating conditions. If a Monte Carlo simulation is
combined with the SBM method, it is possible to estimate the
EOL through the obtained probability distribution function.

The proposed SBM approach can be adapted to different types
of Li-ion batteries since the values are normalized, and through
the assistance of scaling factors. Also, when new measure-

ments are present they must be compared to the available data
to verify if they must be incorporated to the historical dataset.
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