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Abstract: Estimating the degradation costs of lithium-ion batteries is essential to the designs of
many systems because batteries are increasingly used in diverse applications. In this study, cyclic
and calendar degradation models of lithium batteries were considered in optimization problems
with randomized non-cyclic batteries use. Such models offer realistic results. Electrical, thermal,
and degradation models were applied for lithium nickel cobalt manganese oxide (NMC) and lithium
iron phosphate (LFP) technologies. Three possible strategies were identified to estimate degradation
costs based on cell models. All three strategies were evaluated via simulations and validated by
comparing the results with those obtained by other authors. One strategy was discarded because it
overestimates costs, while the other two strategies give good results, and are suitable for estimating
battery degradation costs in optimization problems that require deterministic models.
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1. Introduction

This study aims to determine which cell technology models are most suitable for estimating batteries’
degradation costs to determine the most appropriate model for use in optimization problems. It is
common to consider two types of battery degradation: calendar and cyclic. Calendar degradation occurs
when a battery is at rest, i.e., when it is neither being charged nor discharged. Cyclic degradation occurs
when the battery is being charged or discharged. In lithium-ion batteries, the main reason for calendar
degradation is an increase in the solid electrolyte interface layer on the negative (graphite) electrode.
In cyclic degradation, the most crucial reason is the accumulation of lithium on the negative electrode [1].

In this work, we reviewed and applied the most suitable models for estimating calendar
degradation and for evaluating cyclic degradation.

Battery degradation costs can be an essential economic variable when designing an installation
with battery power storage [2]. Several models in the technical literature can estimate batteries’
degradation costs, sometimes including thermal and electrical aspects [3–7]. Depending on the
significance of the degradation costs, the best solutions may or may not include extensive use of the
batteries. These solutions often include random battery use that differs from standard cyclic usage. It is
necessary to estimate degradation costs accurately. While selecting the models studied, the fact that the
feedback of values in real-time is not available when mathematical models are used for optimization
problems were taken into account [6,7].

There are several papers with literature reviews of degradation models. Pelletier et al. [3] analyzed
several models, including those of Wang et al. [8–10]; Sarasketa-Zabala et al. [11–14]; Hoke et al. [15];
Omar et al. [16], and; Han et al. [17]. In other reviews, Thompson [4] studied and identified three main
models: NREL, Wang, and MOBICUS; and Lucu et al. [5] reviewed adaptive aging models, which are of
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interest for on-board systems but not for our objective. The review carried out by Jafari et al. [6] is useful
for optimization problems; this review presented deterministic models that are easy to apply, as they
provide functions fitted to real data. Finally, a review by Ahmadian et al. [7] is of interest, in which
several classifications of mathematical model studies related to battery degradation were presented.

Several degradation models have been applied to optimization problems. Dufo-López et al. [2]
applied several battery aging models developed for the optimization of lead-acid batteries, and García
Vera et al. [18] also applied various battery life models to the optimization of off-grid systems,
considering both lead-acid and lithium-ion batteries. Due to their increasing use, a detailed study of
lithium-ion battery life models is necessary in order to be able to apply them to this type of problem.

The degradation of lithium nickel cobalt aluminum oxide (NCA) cells is treated by Hoke et al. [15]
with a simplified lifetime model applied to the optimization of electric vehicle charging. The battery
life model estimates both energy capacity fading and power fading due to temperature, state of charge
profile, and daily depth of discharge (DoD).

In another study of lithium-ion batteries, Schmalstieg et al. [19] fitted functions for capacity and
internal resistance based on data obtained from Ecker et al. [20]. They modeled calendar loss and cyclic
loss. Capacity fade and resistance growth due to calendar degradation depend on cell voltage (V),
absolute surface cell temperature (T), and the actual time of cell life (t). Capacity fade and resistance
growth due to cyclic usage depend on average voltage, DoD or depth of cycle for NMC (DoD), and total
Ah-throughput from the beginning of cell life (Q). Considering another cell technology, the Zabala
model provides cyclic and calendar degradation of an LFP/graphite 26650-type cell of 2.3 Ah and
3.3 V. It is described in four studies by Sarasketa-Zabala et al. First, calendar degradation and cyclic
degradation models were introduced [11], then only the calendar model was studied [12]. The cyclic
degradation model was adjusted again [13], and finally, the two degradations were revisited [14].
Modeling of total degradation was achieved, including cyclic and calendar types.

Electrochemical models are usually very complex, so they are unsuitable for optimization problems
because there are many possible solutions, a high number of evaluations, and therefore excessive
calculation times. The models of Astaneh et al. [21,22], Xiong et al. [23], Wijewardana et al. [24],
Suresh et al. [25,26], and Ashwin et al. [27,28] are examples. A simplified electrochemical model is
provided by Rechkemmer et al. [29]. They proposed a hybridization of the single-particle model and
an electrical equivalent model, with better computation time than a single-particle model and more
accuracy than an electrical equivalent model. Pelletier et al. [3], to include variations in operating
conditions, determined that based on the work of Sarasketa-Zabala et al. [12,13], the heterogeneous
use of a cell can be taken into account by considering the conditions of a specific use of the cell at an
initial degradation state resulting from the end of its previous use.

Other studies, on the health prognosis of lithium batteries, achieved very satisfactory results predicting
batteries’ end of life, such as one carried out by Li et al. [30]. In the present work, however, we have not
considered that study, or similar ones, because no studies about the prognostics and health management
applicable to our purpose are founded. Previous studies use some parameters adjusted to replicate
experimental data, with expressions that depend on full equivalent cycles and on other abstract parameters.
It is not clear the relation with cell properties and with usage conditions like DoD, CR; or temperature can
be used to parametrize cell charges/discharges and rest time. The revised works are based on experiments
performed that considered little cyclic usage and a reduced variety of conditions.

In addition to the availability of degradation models, the cost associated with the reduction of
battery life needs to be appropriately assessed. Several authors have applied various methodologies in
order to assess this cost.

Han et al. [17] used a ratio of total energy transferred over the complete lifetime of the battery.
Song et al. [31] used the derivative of capacity loss over time and applied it at the current point in time
of cell life. Wang et al. [10] applied a similar strategy; they used the derivative of capacity loss over
time and multiplied it by the time of use.
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Two indicators commonly used to measure battery degradation are the capacity fade (CF), which
relates to capacity loss, and the power fade (PF), which relates to the increase of internal resistance.

Uddin et al. [32] obtained the degradation cost (Costdeg) from CF, PF, and battery replacement
cost (Costbat). CF is a function that depends on several parameters of the equivalent circuit model: cell
remaining capacity at a given time (C), capacity at the beginning of life (CBOL), and the cell capacity
factor at the end of life compared to the beginning of life (µCF). Furthermore, they defined PF as a
function that depends on ohmic resistance of the cell (R0), charge transfer resistance of the cell (R1),
the ohmic resistance of the cell at the beginning of life (R0,BOL), charge transfer resistance of the cell
at the beginning of life (R1,BOL), and the cell total resistance factor at the end of life compared to the
beginning of life (µPF).

CF = 1−
C(t) − µCFCBOL

CBOL − µCFCBOL
=

CBOL −C(t)
CBOL − µCFCBOL

, (1)

PF =
1

µPF − 1

(
R0(t) + R1(t)

R0,BOL + R1,BOL
− 1

)
, (2)

Costdeg = max(CF·Costbat, PF·Costbat), (3)

where µCF is 0.8, as the capacity degradation at the end of life is 20%. Moreover, µPF is 2, as the increase
in total resistance at the end of life is 100%.

In Equations (1) and (2), the terms C, R0,BOL, and R1,BOL are expressed as C(t), R0(t), and R1(t) to
reinforce the idea that they change over time, and the other terms are constants.

Other authors applied different methodologies. Weitzel et al. [33] multiplied the Costbat by the
ratio of magnitude involved in actual use to the same magnitude over the battery lifetime. For the
calendar cost, the magnitude used is time, and for cyclic cost, it is Ah-throughput. Liu et al. [34]
used battery degradation to achieve better strategies in charging batteries, applying a multi-objective
approach in a market with different hourly energy prices. They obtained degradation cost as a fraction
of battery replacement cost, proportional to the used Ah-throughput.

Sometimes calculating degradation costs requires a dynamic simulation of the cell during the
charge, discharge, and rest periods. Using a simulation with the current applied and ambient
temperature as inputs, the output values of voltage and cell temperature can be obtained. For this
purpose, the most commonly used electric model is the Thevenin model. It consists of a voltage source
named open circuit voltage (OCV), a serial resistance, and an RC circuit, as seen in Figure 1.
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Figure 1. Thevenin cell model.

This model is extensively described in the literature; for example, by Hu et al. [35], where the
Thevenin model uses hysteresis. A more traditional formulation can be found in Mansour et al. [36],
which uses it for the state of charge (SoC) for NMC estimation with adaptive filters, Xiong et al. [37],
or Zheng et al. [38].

A similar formulation to that of the above studies was developed by Cordoba-Arenas et al. [39].
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Cell temperature depends on cell use and ambient temperature. Models that evaluate the cell
temperature take into account that heat generation affects temperature variation. Thus, Jalkanen et al. [40]
differentiate reversible heat generation, which is due mainly to entropy change, from irreversible heat
generation, which depends on internal resistance and current.

The temperature model applied by Wang et al. [10] uses the thermal heat generated by internal
resistance. It models heat transference from/to the battery, ambient atmosphere, and cabin, based on
the work of Neubauer et al. [41]. They provide values for the heat transfer coefficient and thermal
mass of the battery.

Another study on heat generation is Balasundaram et al. [42], which tests the temperature
model on an LFP cell. Song et al. [31] use entropy variation, based on a Forged et al. [43] study that
calculates the internal temperature of an LFP/graphite 26,650 cell depending on surface temperature
and ambient temperature.

Cordoba-Arenas et al. [39] developed a thermal model with air convection. Wijegardana et al. [24]
present a complete thermal model with coefficients for Panasonic 17,500 cells. Furthermore, Uddin et al. [32]
report a thermal model applied to 18,650 cells.

Rechkemmer et al. [29] adapted the Schmalstieg model to another cell technology, lithium
manganese oxide (LMO); they used a thermal model without entropy variation.

The Thevenin model can also be adapted to reflect degradation. For example, Tang et al. [44]
adapted non-degraded cell models to degraded cell models based on data from cell usage.

A thermal model based on reversible and irreversible heat generation and heat transfer from
the cell to the ambient atmosphere (useful for our purposes) is available from Wang et al. [10],
Balasundaram et al. [42], and Song et al. [31].

2. Materials and Methods

2.1. Electrical and Thermal Models

The electrical model applied in this work is the Thevenin model, as described by Equations (4)–(6),
extracted from Cordoba-Arenas et al. [39]. They express the variation over time of the voltage of an RC
Thevenin circuit (U), the variation over time of the SoC, and V.

dU(t)
dt

=
−1

R1C1
U(t) +

I(t)
C1

, (4)

dSoC(t)
dt

=
−I(t)
CBOL

, (5)

V(t) = OCV −R0I(t) −U(t), (6)

The Thevenin model for LFP cells is the model proposed by Hu et al. [35], which uses hysteresis.
For NMC cells, the formulation can be found in the study by Zheng et al. [38], but also in other
studies, for example, that by Mansour et al. [36]. The convention used in this work is that I is positive
while discharging.

In the work presented in this paper, the thermal model used is based on reversible and irreversible
heat generation and heat transfer from the cell to the ambient atmosphere. The model is derived from
Wang et al. [10], Balasundaram et al. [42], and Song et al. [31]. The values used in the model are cell
mass (m), the specific heat capacity of the cell (Cp), T, cell-ambient heat transfer coefficient (h), heat
transfer surface area of the cell (A), t in seconds, ambient temperature (Ta), OCV, V, and cell current (I).
The whole model is expressed in Equation (7).

mCp
dT
dt

= hA(Ta − T) + I(OCV −V) + IT
∂OCV
∂T

, (7)
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where the term I (OCV − V) is the irreversible heat generation, and I T (∂OCV/∂T) is the reversible
heat generation due to entropy variation. Heat interchanged between the cell and the atmosphere
is modeled by the term h A(Ta−T). The thermal model used is based on Equation (7). The reversible
term is always lower than the irreversible term, as stated by Balasundaram et al. [42], and for high CR,
the irreversible term is much higher than the reversible one. The reversible heat generation due to
entropy variation is ignored.

Simulations were performed applying Equations (8)–(11) with a δt of 15 s.

Tk = Tk−1 +
δt[hA(Ta − Tk−1) + Ik−1(OCVk−1 −Vk−1)]

mCp
, (8)

SoCk = SoCk−1 −
Ik−1δt

3600·CBOL
, (9)

Uk = exp
(

−δt

R1,k−1C1,k−1

)
Uk−1 +

[
1− exp

(
−δt

R1,k−1C1,k−1

)]
R1,k−1Ik−1, (10)

Vk = OCVk −R0,kIk −Uk, (11)

where T, I, V, SoC, and U were discretized. While OCV, R0, R1, and surface layer capacitance of cell (C1)
values depend on SoC and T, they were fitted by using several studies on different cell technologies.

2.2. Degradation

In the present study, NMC and LFP cells are used. For NMC cells, the primary reference
is Schmalstieg et al. [19], while for LFP cells, the references are Sarasketa-Zabala et al. [11] and
Weitzel et al. [32].

Some studies provide two different models, one for CF and another for PF. Nevertheless, several
authors, for example, Sarasketa-Zabala et al. [12], Schmalstieg et al. [19], and Uddin et al. [32] conclude
that in limiting the cell life, the CF is a better determinant than the PF. Thus, the present study only
uses capacity loss and not an increase in internal resistance.

2.2.1. Degradation of NMC Cells

The Schmalstieg et al. [19] study is based on UR18650E commercial NMC cells. It needs a function
fitted for OCV, and simulation of SoC and V. It also requires ambient temperature and current profiles.

The calendar capacity loss depends on voltage, cell temperature, and time. Furthermore, cyclic
capacity loss depends on an average voltage, DoD, Q, and the total Ah-throughput, but not on
charge/discharge current rate (CR).

Equations (12)–(14) formulate, respectively, the remaining cell capacity for NMC technology at a
given point in time normalized with CBOL (CNMC), calendar capacity loss of NMC technology from the
beginning of life normalized with CBOL (CNMC

loss,cal), and cyclic capacity loss of NMC technology from the

beginning of life normalized with CBOL (CNMC
loss,cyc).

CNMC = 1−CNMC
loss,cal −CNMC

loss,cyc, (12)

CNMC
loss,cal = αcap·t0.75, (13)

CNMC
loss,cyc = βcap·

√
Q, (14)

The expressions for αcap and βcap depend on V, T, DoD, and quadratic average voltage (Vqa),
as shown in Equations (15) and (16).

αcap(T, V) = (7.543V − 23.75)·106
·e
−6976

T , (15)
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βcap
(
Vqa, DoD

)
= 7.348·10−3

·(Vqa − 3.667)2 + 7.6·10−4 + 4.081·10−3
·DoD, (16)

For Vqa, we apply the value of OCV at the mean SoC of the cycle.

2.2.2. Degradation of LFP Cells

The cell studied by Sarasketa-Zabala et al. [11] and Weitzel et al. [33] is an LFP/graphite 26650-type
cell of 2.3 Ah and 3.3 V.

The calendar degradation model is described by Sarasketa-Zabala et al. [11,12,14]. The value of
calendar capacity loss of the LFP technology from the beginning of life normalized with CBOL (CLFP

loss,cal),
a function that depends on SoC, T and t, can be calculated using Equation (17).

CLFP
loss,cal = S· exp(α·100·SoC)· exp

(
−
β

T

)
·tγ, (17)

where S, α, β, and γ values are defined by [11] (S = 165400, α = 0.01, β = 4148 K, and γ = 0.5). All these
parameters were experimentally determined by Sarasketa-Zabala et al. [11].

Sarasketa-Zabala et al. [11] defined a cyclic degradation model that depends on time. Moreover,
Weitzel et al. [32] modified this model. The latter study provides an expression for cyclic degradation
of capacity while maintaining the same coefficients as those used by Sarasketa-Zabala et al. [11].
The dependency on time is changed to dependency on total Ah-throughput. The cycles used are
constant current (CC) cycles.

The value of cyclic capacity loss of LFP cells from the beginning of life normalized with CBOL
(CLFP

loss,cyc) as a function of DoD, CR, and Q, can be performed using Equations (18)–(20).

CLFP
loss,cyc = B·K1·K2·Qz, (18)

K1 = α1 + α2·100·DoD + α3·(100·DoD)0.5 + α4· ln(100·DoD), (19)

K2 = β1·CR2 + β2·CR + β3, (20)

where the coefficients B, α1, α2, α3, α4, β1, β2, β3, and z are extracted from Sarasketa-Zabala et al. [11]
and Weitzel et al. [32], this model is valid for CR values above 0.77 and DoD above 3.6%.

2.3. Degradation Cost

Degradation costs at a certain point in time of the cell life are obtained by multiplying the Costbat
by a value extracted from the degradation model. The methods are obtained from three different
visions from the literature and homogenized in the present work. The methods that have been applied,
by various authors, for the determination of degradation costs are described below.

Weitzel et al. [33] used the Zabala model, which uses an aging life loss function (ε) divided into
a calendar aging life loss function (εcal) and a cyclical aging life loss function (εcyc) as the factor by
which the Costbat is multiplied to obtain the Costdeg. It can be calculated using Equation (21) and is a
non-dimensional number.

Costdeg =
(
εcal + εcyc

)
Costbat, (21)

Assuming that all cells in a battery are identical, εcal and εcyc can be obtained for a single cell,
and then used as the εcal and εcyc of the entire battery. It is important to note that, in order to obtain a
battery Costdeg, the degradation study of only a single cell is needed.

Weitzel et al. [33] used a replacement cost, uniformly distributed over the whole lifetime of the
battery, for the calendar cost, and over the total Ah-throughput used in the cell lifetime for the cyclic
cost. A cost proportional to the elapsed time of current use of the battery (∆t) is applied to obtain the
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calendar cost, and in order to obtain the cyclic cost, a cost proportional to the elapsed Q of the current
use of the battery (∆Q) is applied. The end of battery life is reached when the capacity loss is 20%.

εcal =
∆t

t(Closs = 20%)
, (22)

εcyc =
∆Q

Q(Closs = 20%)
, (23)

where t(Closs = 20%) and Q(Closs = 20%) can be obtained from the degradation model.
Uddin et al. [32] applied another strategy, where Costdeg is related to CF. Applying Equations (1)

and (3), as the PF is considered less than the CF, Equation (24) is obtained.

Costdeg = CF·Costbat, (24)

Song et al. [31] and Wang et al. [10] used the derivative of capacity over time applied at a certain
point in time during the battery life, using Equations (25) and (26).

∆Closs,cal(t) =
∂Closs,cal(t)

∂t
∆t, (25)

∆Closs,cyc(t) =
∂Closs,cyc(t)

∂t
∆t, (26)

where t is the actual time in the life of a battery.
In this work, we have considered the mathematical models used by other authors, but without

using capacity derivatives. Instead of that, the capacity fade increment between two points in time of
the cell life before and after a given use of the cell (∆CF) is used. Then the degradation cost due to the
use of a battery can be expressed as:

Costdeg = ∆CF·Costbat =
C(t) −C(t + ∆t)
(1− µCF) CBOL

·Costbat, (27)

where t is the lifetime previous to the given use of the cell, and t + ∆t is the time after that use.
In order to estimate the cost, three different methodologies have been considered (versions 1, 2,

and 3). Each of these has different epsilon values. All of them are described below.

2.3.1. Version 1 to Calculate Degradation Costs

Degradation at a particular point in time of cell life is approximated as if the cell were always used
at the beginning of its life. The attractiveness of this version is the ease of calculation. As the majority
of models predict, degradation speed is higher at the beginning of battery life; thus, an over-estimation
for degradation costs is expected.

In version #1, ε is considered to be approximately equal to CF. Thus, using Equation (1) we get
Equation (28).

εx =
CBOL −Cx

CBOL(1− µCF)
, x ∈

{
cal, cyc

}
, (28)

where Ccal is the capacity reached if only calendar degradation exists, and Ccyc is the capacity reached
if only cyclic degradation exists.

Using Equations (9), (10), and (24), the values of the calendar aging life loss function (εNMC
cal ) and

cyclical aging life loss function (εNMC
cyc ), for NMC cells, can be expressed by Equations (29) and (30).

εNMC
cal =

CNMC
loss,cal

1− µCF
=

αcap(T, V)·t0.75

1− µCF
, (29)
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εNMC
cyc =

CNMC
loss,cyc

1− µCF
=

βcap
(
Vqa, DoD

)
·
√

Q

1− µCF
, (30)

where Vqa and DoD can be approximated using the maximum SoC over the whole cycle for NMC
(SoCmax) and the minimum SoC over the whole cycle for NMC (SoCmin) as in Equations (31) and (32).

Vqa = OCV((SoCmax + SoCmin)/2, T), (31)

DoD = SoCmax − SoCmin, (32)

Figure 2a shows εNMC
cal as a function of the SoC for a range of cell temperatures from 25 to 50 ◦C,

and Figure 2b shows εNMC
cyc as a function of the DoD, for mean SoC value.
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From this, the calculation of cyclic degradation cost due to a single charge or discharge can be
realized in one only step. Nevertheless, estimation of calendar degradation cost, if cell parameters
change, needs subdivision of time in small increments, considering the parameters as constant over
time. This is valid for rest time and for charging or discharging the cell, as well for NMC and LFP cells.

For LFG cells the procedure is similar to that applied to NMC cells, but the supplied capacity loss
is expressed as a percentage.

Using Equations (17), (18), and (28), the values of the calendar aging life loss function (εLFP
cal ) and

cyclical aging life loss function (εLFP
cyc ) can be expressed by Equations (33) and (34):

εLFP
cal =

CLFP
loss,cal

100·(1− µCF)
, (33)

εLFP
cyc =

CLFP
loss,cyc

100·(1− µCF)
, (34)

Figure 3a shows εLFP
cal as a function of the SoC for a range of cell temperatures from 25 to 50 ◦C,

and Figure 3b shows εLFP
cyc as a function of the DoD for CR values of 0.77, 0.8, 1, and 2.
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2.3.2. Version 2 to Calculate Degradation Costs

This version is based on a uniformly distributed cost over all the life of the battery. It is an
approximation used by some authors, for example, Weitzel et al. [33], which estimates that the cost
associated with using a battery is the same throughout its life.

In version #2, ε can be estimated using Equations (22) and (23). It is necessary to calculate
tcal(Closs = 20%) and Ccyc(Closs = 20%), and at end of life CF is equal to 1. This is expressed in
Equations (31) and (32):

tx
cal(Closs = 20%) = tx

cal(CF = 1), x ∈ {NMC, LFP}, (35)

Qx
cyc(Closs = 20%) = Qx

cyc(CF = 1), x ∈ {NMC, LFP}, (36)

Using Equations (1) and (13), we can obtain Equation (37), which allows calculation of the
time elapsed, throughout the life of the cell, until a certain CF is reached, considering only calendar
degradation for NMC cells (tNMC

cal (CF)).

tNMC
cal (CF) =

CNMC
loss,cal

αcap


1/0.75

=

(
(1− µCF)CF

αcap

)1/0.75

, (37)

Using Equation (14) we can then obtain Equation (38), which allows calculation of the total
Ah-throughput used by the cell until a given CF is reached, considering only cyclic degradation for
NMC cells (QNMC

cyc (CF)).

QNMC
cyc (CF) =

CNMC
loss,cyc

βcap


2

=

(
(1− µCF)CF

βcap

)2

, (38)

Using Equations (22), (23), (37), and (38), we obtain Equations (39) and (40), which allow the
calculation of εNMC

cal and εNMC
cyc , with CF equal to 1.

εNMC
cal =

(
αcap

1− µCF

)1/0.75

·∆t, (39)

εNMC
cyc =

(
βcap

1− µCF

)2

·∆Q, (40)

Figure 4a shows εNMC
cal as a function of the SoC for a range of cell temperatures from 25 to 50 ◦C,

and Figure 4b shows εNMC
cyc as a function of the DoD.
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Using Equations (1) and (17), we can obtain Equation (41), which allows calculation of the time
elapsed throughout the life of the cell until a given CF is reached, considering only calendar degradation
for LFP cells (tLFP

cal (CF)).

tLFP
cal (CF) =

 CLFP
loss,cal

f LFP
cal (SoC, T)


1/γ

=

100(1− µCF)CF

f LFP
cal (SoC, T)

1/γ

, (41)

where f LFP
cal is evaluated by Equation (42).

f LFP
cal = A· exp(α·100·SoC)· exp

(
−β

T

)
, (42)

From Equation (18) we obtain Equation (43), which allows calculation of the total Ah-throughput
used by the cell until a given CF is reached, considering only cyclic degradation for LFP
chemistry (QLFP

cyc (CF)).

QLFP
cyc (CF) =

 CLFP
loss,cyc

f LFP
cyc (CR, DoD)


1/z

=

100(1− µCF)CF

f LFP
cyc (CR, DoD)

1/z

, (43)

where f LFP
cyc is evaluated by Equation (44).

f LFP
cyc = B·K1·K2, (44)

Using Equations (22), (23), (41), and (43), we can obtain Equations (45) and (46), which allow
calculation of εLFP

cal and εLFP
cyc , for a ∆t throughout the life of the cell, where CF is equal to 1.

εLFP
cal =

 f LFP
cal (SoC, T)

100(1− µCF)

1/γ

·∆t, (45)

εLFP
cyc =

 f LFP
cyc (CR, DoD)

100(1− µCF)

1/z

·∆Q, (46)

Equations (45) and (46) are the expressions used by Weitzel et al. [32].
Figure 5a shows εLFP

cal as a function of the SoC for a range of cell temperatures from 25 to 50 ◦C,
and Figure 5b shows εLFP

cyc as a function of the DoD for CR values of 0.77, 0.8, 1, and 2.
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2.3.3. Version 3 to Calculate Degradation Costs

Version #3 aims to obtain the degradation caused by the use of the battery up to a specific moment
in its life, using models that allow a high degree of accuracy.

Using Equation (27), we can obtain Equation (47), which allows the evaluation of ε.

ε
y
x(CF) =

CBOL −Cy
x,act+∆

CBOL(1− µCF)
−

CBOL −Cy
x,act

CBOL(1− µCF)
=

CBOL −Cy
x,act+∆

CBOL(1− µCF)
−CF,x ∈

{
cal, cyc

}
, y ∈ {NMC, LFP}

(47)
where Cy

x,act and CF represent, respectively, the current capacity and the capacity fade just before the
current use, and Cy

x,act+∆ represents the capacity just after the current use if the only degradation of
type x exists.

Using Equations (13), (14), and (47) we can obtain Equations (48) and (49) for NMC cells.

εNMC
cal (CF) =

CNMC
loss,cal

(
T, V, tNMC

cal (CF) + ∆t
)

1− µCF
−CF, (48)

εNMC
cyc (CF) =

CNMC
loss,cyc

(
Vqa, DoD, QNMC

cyc (CF) + ∆Q
)

1− µCF
−CF, (49)

Figure 6a shows εNMC
cal as a function of the SoC for a range of cell temperatures from 25 to 50 ◦C,

and Figure 6b shows εNMC
cyc as a function of the DoD for CF values of 0.9, 0.5, and 0.1.
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Using Equations (17), (18), and (47), we can obtain Equations (50) and (51) for LFP cells.

εLFP
cal (CF) =

CLFP
loss,cal

(
SoC, T, tLFP

cal (CF) + ∆t
)

100(1− µCF)
−CF, (50)

εLFP
cyc (CF) =

CLFP
loss,cyc

(
CR, DoD, QLFP

cyc (CF) + ∆Q
)

100(1− µCF)
−CF, (51)

Figure 7a shows εLFP
cal as a function of the SoC for a range of cell temperatures from 25 to 50 ◦C,

and Figure 7b shows εLFP
cyc as a function of the DoD for CR values of 0.77, 0.8, 1, and 2.
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2.3.4. Cost Discretization

The costs are evaluated after the electrical and thermal simulations, taking time intervals (δt)
into account. The methodology applied in this work is based on the idea from Pelletier et al. [3] and
Sarasketa-Zabala et al. [12,13], that the heterogeneous use of a cell can be taken into account considering
the conditions of a specific cell use, with the cell being at an initial degradation state resulting from the
end of the previous cell use.

The εcyc values are evaluated once for each time interval δt with constant current charge or
discharge, but not for other intervals. The εcal is evaluated at every time interval with null current
(when the battery is at rest). Finally, all values for all intervals are accumulated to obtain the total εcal
and εcyc for that simulation.

2.3.5. Comparison of Results

An initial comparison of the results obtained (Figures 2–7) shows that εLFP
cal and εLFP

cyc are very
similar to the data from the original studies of Weitzel et al. [33]. The values of εNMC

cal and εNMC
cyc are

similar to the data from Schmalstieg et al. [19].
For all cell technologies, version #1 supplies much higher values than versions #2 and #3, while

version #2 gives very similar values to #3 when CF is set to 0.5.
The influence of CF in εNMC

cyc , for version #3, is shown in Figure 6b. The εNMC
cyc values are higher for

a lower CF. For CF = 0.9 or 0.5, the results are similar, but for CF = 0.1, values are much higher than for
0.5 and 0.9.

Figure 8 shows the results of several charging and discharging simulations; for SoC = 0.5, the OCV
obtained after a charge is approximately 3.7 V for NMC and 3.3 V for LFP, near the respective nominal
voltage. The temperature grows while charging and discharging and decreases during rest time,
approaching 22 ◦C, the ambient temperature.
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Figure 8. Voltage and temperature values. Simulation for NMC and LFP cells for 30 min periods of
rest, charge, rest, discharge, rest, charge, and rest. Charging and discharging at CC, I 1.5 A, δt 15 s.,
and Ta 22 ◦C.

2.4. Data Used in the Simulation

All simulations were performed applying the models described in the previous sections.
For NMC cells, models and data are extracted from literature. For Sanyo UR18650E cells, the cited

Schmalstieg et al. [19] degradation model was used. In the present work, OCV is modeled as the
fourth-grade polynomial described in Equation (52) fitted with data extracted from Ecker et al. [20].
The cells used by Ecker et al. [20] and Schmalstieg et al. [19] are the same. The Thevenin values used
came from Zheng et al. [38], which uses INR18650-20R cells. Thevenin values are considered constants.
The nominal voltages of UR18650E and INR18650-20R cells are the same at 3.6 V; thus, it is expected
that they are compatible.

OCVNMC = −3.0208·SoC4 + 7.3282·SoC3
− 5.4919·SoC2 + 2.0406·SoC + 3.3339 (52)

Table 1 shows the main characteristics of the NMC cell used in the simulations.

Table 1. Characteristics of the NMC cell used in the simulations (UR18650E).

Rated Capacity
at 20 ◦C

Nominal
Voltage

Maximum Continuous Current
Electrodes

Charge Discharge

2050 mAh 3.6 V 1C 3C Graphite/Li(NiMnCo)O2

For LFP cells, the data and models are also extracted from literature. The degradation model used
was the Sarasketa-Zabala et al. [11] model fitted for 26,650 cells, and also Weitzel et al. [33], which is
based on the Sarasketa-Zabala et al. model [11]. Thevenin values and OCV came from Hu et al. [35],
and are fitted for APR18650M1A cells. The models provide functions dependent on SoC and T, and also
take into account the hysteresis of LFP cells.

Table 2 shows the main characteristics of the LFP cell used in the simulations.

Table 2. Characteristics of the LFP cell used in the simulations (26650).

Rated Capacity Nominal Voltage
Maximum Continuous Current

Electrodes
Charge Discharge

2300 mAh 3.3 V 1C 3C Graphite/LiFeOP4
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Parameters of the thermal model were obtained from Cordoba-Arenas et al. [39] and
Wijewardana et al. [24].

The same thermal coefficients were used for both cell technologies.

3. Results

3.1. Simulations Performed

The first objective was to reproduce the original results reported in the papers containing the
models. This was accomplished for calendar degradation in Figures 2a–7a, using Equations (25), (29),
(35), (41), (44), and (46), respectively. For cyclic degradation, the results are in Figures 2b–7b, using
Equations (26), (30), (36), (42), (45), and (47), respectively.

In order to test electrical and thermal models, a simulation of combined charge, discharge, and rest
time was carried out using Equations (48)–(51). With the current profile and ambient temperature
as inputs, the outputs were cell voltage and cell temperature. The simulation involved consecutive
30 min periods of rest, charge, rest, discharge, rest, charge, and rest, with charging and discharging at
CC, I = 1.5 A, δt = 15 s., and Ta = 22 ◦C. Figure 8 shows the results of the simulation.

Further, the charging of an LFP cell from 0.1 to 0.9 of the SoC was simulated to verify the
temperature model at low CR with Ta = 22 ◦C, and CR = 0.1 C. Figure 9 shows the temperature variation
with respect to SoC.Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 20 
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In order to evaluate individual differences between versions #1, #2, and #3, the root mean square
error (RMSE) was applied using version #3 as a reference. Version #3 is used as a reference in order to
compare values due to the presumption that version #3 provides results close to real values. Three values
of CF were taken into account with version #3: 0.9, 0.5, and 0.1. RMSE was calculated for several values
of SoC from 0.0 to 1.0 for calendar degradation and for several values of DoD from 0.0 to 1.0 for cyclic
degradation. Parameters used in the RMSE for calendar degradation are shown in Tables 3 and 4 for
cyclic degradation. Tables 5 and 6 show the resultant RMSE values.

Table 3. Parameters used in root mean square error (RMSE) calculation for calendar degradation.

cal ∆t (h) Ta (◦C)

NMC, LFP 1 25
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Table 4. Parameters used in RMSE calculation for cyclic degradation.

cyc ∆Q (Ah) Vqa (V) CR

NMC 1 OCV at 0.5 SoC -
LFP 1 - 1C

The primary applicability of this study is in optimization problems where the computational time
is significant. All calculations in this study were performed on an i5-3340M CPU machine with 4 cores
at 2.70 GHz. In order to evaluate computational time for calculation, a single cell charge was simulated.
Simulations used to measure the execution time consist of 100 cycles of half an hour rest time, then
discharge from 0.9 SoC to 0.2 SoC at 1 CR, then another rest time and then a charge from 0.2 SoC to
0.9 SoC at 1 CR. Table 5 shows, in detail, the computational times for the simulations.

Table 5. Computational time in seconds for 100 cycles of rest, discharge, rest, and charge obtained for
the three versions.

Technology V1 V2 V3

NMC 3.86 3.87 3.95
LFP 14.2 14.3 14.4

3.2. Interpretation of Simulation Results

As mentioned previously, the results for εLFP
cal and εLFP

cyc in Figures 2–7 are very similar to the data
of Weitzel et al. [33], and the same is true for version #2. Furthermore, the values of εNMC

cal and εNMC
cyc

agree with the results of Schmalstieg et al. [19].
From Figures 2–7, it is clear that in all cases, model version #1 supplies higher values than versions

#2 and #3 by several orders of magnitude. Thus, using version #1 as a simplified approximation to
degradation cost results in over-estimated values. Moreover, version #2 gives very similar values to #3
with CF = 0.5.

In one case only, εNMC
cyc in Figure 6b, a visual comparison between the results of version #3 with

several CF values shows the influence of actual capacity fade on degradation costs. It clearly shows
that lower CF values result in higher degradation costs for the use of a cell. Cell degradation is higher
at the beginning of life than at any other time during the cell life.

Version #2 can be considered as an average value taking into consideration the whole cell life.
Version #3 with CF = 0.5 is closer to this average value than version #3 with CF = 0.9 or with CF = 0.1.

The results from several charge and discharge cycles shown in Figure 8 are compatible with the
cell characteristics. For example, for SoC = 0.5, the OCV value is 3.7 V for the NMC cell. Moreover,
the nominal voltage is 3.3 V for the LFP cell. The temperature during rest periods goes to ambient
temperature, while it increases during charging and discharging, to a more or less stable value.

A more detailed comparison between the versions can be carried out by looking at the RMSE.
The RMSE is shown in Table 6 for NMC, and in Table 7 for LFP. After reviewing the data in these tables,
the following can be stated:

• The estimated degradations using versions #2 and #3 are very similar. All the values of RMSE (#2,
#3) are very low, with the only exception of εNMC

cyc with CF = 1.

• Using version #1, the estimated degradations present the highest values, and applying versions
#2 and #3, in all cases, the RMSE is lower than using versions #1 and #3.

• The lowest RMSE between versions #2 and #3 is reached when CF = 0.5 in almost every case,
and when it is not, the difference is not relevant. This result is congruent since version #2 is based
on constant degradation over all the battery life, degradation estimated by version #3 is higher at
the beginning of life, and the degradation grows at a rate that decreases with usage.
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Table 6. RMSE values of εNMC, versions #1 and #2. Version #3 as a reference.

Function CF = 0.9 CF = 0.5 CF = 0.1

εNMC
cal RMSE(V3,V1) 1.46 × 10−4 1.45 × 10−4 1.39 × 10−4

εNMC
cal RMSE(V3,V2) 1.92 × 10−6 4.72 × 10−7 5.30 × 10−6

εNMC
cyc RMSE(V3,V1) 1.52 × 10−2 1.51 × 10−2 1.40 × 10−2

εNMC
cyc RMSE(V3,V2) 1.31 × 10−4 1.35 × 10−7 1.17 × 10−7

Table 7. RMSE values of εLFP, versions #1 and #2. Version #3 as a reference.

Function CF = 0.9 CF = 0.5 CF = 0.1

εLFP
cal RMSE(V3,V1) 2.74 × 10−3 2.73 × 10−3 2.70 × 10−3

εLFP
cal RMSE(V3,V2) 3.87 × 10−6 1.12 × 10−10 3.48 × 10−5

εLFP
cyc RMSE(V3,V1) 2.41 × 10−4 2.33 × 10−4 2.06 × 10−4

εLFP
cyc RMSE(V3,V2) 1.20 × 10−5 3.62 × 10−6 2.33 × 10−5

Figure 9 shows that discharging at lower CR, cell temperature first increases, then becomes lower
before growing again. This effect is also described by Balasundaram et al. [42].

The time consumed by calculations is listed in Table 5. There are no significant differences between
versions #1, #2, and #3. In all three cases, the computational time is similar. However, the computational
time for NMC is lower than that for LFP. This is due to the complexity of functions fitted for OCV and
Thevenin parameters; for the NMC cell, they are quite simple, but for LFP, they are very complex,
involving not only a dependency on SoC but also hysteresis and T.

Version #3 is more accurate than versions #1 and #2, and its computational time is only
slightly higher than that for the other versions. Thus version #3 is an excellent option to estimate
degradation costs.

Other simulations were performed in order to study the performance for a long time.
Simulations consist of 100 cycles of rest, discharge, rest, and charge, with the computational time
shown in Table 5. After each period of constant current, we calculate the epsilon values, then all of
them are used to calculate the RMSE between the reached results (Table 8). Comparing Tables 6–8, it is
clear that the RMSE values are higher in long time periods. In Table 8, versions #2 and #3 provide
similar results, and version #1 has a clearly different behavior from the other two versions.

Table 8. RMSE values of εcal + εcyc, versions #1 and #2 obtained after 100 cycles. Version #3 as
a reference.

Function CF = 0.9 CF = 0.5 CF = 0.1

NMC RMSE(V3,V1) 1.78 × 10−2 1.64 × 10−2 1.49 × 10−2

NMC RMSE(V3,V2) 2.13 × 10−4 4.16 × 10−5 5.38 × 10−4

LFP RMSE(V3,V1) 1.59 × 10−2 1.59 × 10−2 1.59 × 10−2

LFP RMSE(V3,V2) 9.53 × 10−6 3.07 × 10−6 1.99 × 10−5

4. Discussion

The present study shows a method to evaluate degradation costs of cells used in irregular
non-cyclic charges, discharges, and rest times at periods of constant current. The scale of application is
ideal for the optimization of randomized strategies to charge and discharge batteries in the time scale
of a day.

Previous models were reviewed for calculating the degradation costs of battery cells. They are
based on degradation models. Some congruent deterministic models were found in the literature
for two cell technologies, NMC and LFP, combining thermal, electric, and degradation models for
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compatible cells. They consist of a combination of models and parameters selected to provide a
complete solution.

The models were used in simulations, and the results were compared with similar results published
by other researchers.

Three strategies for degradation cost estimation were selected, homogenized and evaluated, and it
was found that one of them, version #1, based on calculating degradation as if the cell were at the
beginning of life, can be discarded due to over-estimation of the costs. Version #2 is based on uniformly
distributed degradation throughout the cell life and results in excellent cost estimation. Version #3
uses actual capacity fade as an estimate of the actual age of the cell, and the cost is calculated using
degradation models at that CF. The three versions have a similar computational cost. Versions #2 and
#3 can estimate more accurate values because they depend on cell CF, providing both similar results.
However, version #1 provides results that differ from the other two.

It can be concluded that versions #2 and #3 are good candidates for estimating battery degradation
costs in problems where deterministic models are needed, as in the case of optimization problems,
since complete charge/discharge cycles are not applied to the batteries.
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Abbreviations

CC Constant Current
LFP Lithium iron phosphate
LMO Lithium manganese oxide
NCA Lithium nickel cobalt aluminum oxide
NMC Lithium nickel cobalt manganese oxide
RMSE Root mean square error

Nomenclature

A Heat transfer surface area of the cell in m2

C1 Surface layer capacitance of cell in Farads

CBOL Capacity at the beginning of life in Ah

CLFP
loss,cal

Calendar capacity loss of LFP chemistry from the beginning of life normalized with
CBOL in %

CNMC
loss,cal

Calendar capacity loss of NMC chemistry from the beginning of life normalized with
CBOL without dimensions in the range [0,1]

CLFP
loss,cyc

Cyclic capacity loss of LFP chemistry from the beginning of life normalized with CBOL
in %

CNMC
loss,cyc

Cyclic capacity loss of NMC chemistry from the beginning of life normalized with
CBOL without dimensions in the range [0,1]

Cp Specific heat capacity of the cell in J(kg K)−1

C Cell remaining capacity at a given time in Ah

CNMC Cell remaining capacity for NMC chemistry at a given time normalized with CBOL

CF Capacity Fade
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Costbat Battery Replacement Cost in €

Costdeg Degradation Cost in €

CR Charge/discharge current rate

∆CF
Capacity fade increment between two points in time of the cell life before and after a
given use of the cell

∆Q Elapsed Q of the actual use of the battery

∆t Elapsed time of actual use of the battery

DoD Depth of discharge or depth of cycle for NMC without dimensions in the range [0,1]

µCF Cell capacity factor at the end of life compared to the beginning of life, usually 0.8

µPF
Factor of the cell total resistance at the end of life compared to the beginning of life,
usually 2

h Cell-ambient heat transfer coefficient in W K−1 m−2

I Cell current in Amperes

ε Aging life loss function without dimensions in the range [0,1]

εcal Calendar aging life loss function without dimensions in the range [0,1]

εLFP
cal

The calendar aging life loss function of LFP chemistry without dimensions in the
range [0,1]

εNMC
cal

The calendar aging life loss function of NMC chemistry without dimensions in the
range [0,1]

εcyc Cyclical aging life loss function without dimensions in the range [0,1]

εLFP
cyc

The cyclical aging life loss function of LFP chemistry without dimensions in the
range [0,1]

εNMC
cyc

The cyclical aging life loss function of NMC chemistry without dimensions in the
range [0,1]

m Cell mass in kg

OCV Open Circuit Voltage in Volts

PF Power Fade

Q Total Ah-throughput from the beginning of cell life in Ah

QLFP
cyc (CF)

Total Ah-throughput used by the cell until a given CF is reached with only cyclic
degradation for LFP chemistry in Ah

QNMC
cyc (CF)

Total Ah-throughput used by the cell until a given CF is reached with only cyclic
degradation for NMC chemistry in Ah

R0 Ohmic resistance of cell in Ohms

R0,BOL Ohmic resistance of cell at the beginning of life in Ohms

R1 Charge transfer resistance of cell in Ohms

R1,BOL Charge transfer resistance of cell at the beginning of life in Ohms

SoC State of Charge for NMC without dimensions in the range [0,1]

SoCmax Maximum SoC over the whole cycle for NMC without dimensions in the range [0,1]

SoCmin Minimum SoC over the whole cycle for NMC without dimensions in the range [0,1]

Ta Ambient temperature in K
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tLFP
cal (CF)

Actual cell lifetime until a given CF is reached with only calendar degradation for LFP
chemistry in days

tNMC
cal (CF)

Actual cell lifetime until a given CF is reached with only calendar degradation for
NMC chemistry in days

T Absolute surface cell temperature

t Actual time in cell life in days

δt Time step of simulation in seconds

U Voltage of the RC Thevenin group in Volts

V Cell Voltage in Volts

Vqa Quadratic average Voltage in Volts
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