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Abstract: State of health is one of the most critical parameters to characterize inner status of lithium-ion 

batteries in electric vehicles. In this study, a uniform estimation framework is proposed to simultaneously 

achieve the estimation of state of health and optimize the healthy features therein, which are excavated based 

on the charging voltage curves within a fixed range. The fixed size least squares-support vector machine is 

employed to estimate the state of health with less computation intensity, and the genetic algorithm is applied 

to search the optimal charging voltage range and parameters of fixed size least squares-support vector machine. 

By this manner, the measured raw data during the charging process can be directly fed into the estimation 

model without any pretreatment. The estimation performance of proposed algorithm is validated in terms of 

different voltage ranges and sampling time, and also compared with other three traditional machine learning 

algorithms. The experimental results highlight that the presented estimation framework cannot only restrict the 

prediction error of state of health within 2%, but also feature high robustness and universality. 

Key Words: state of health; lithium-ion batteries; fixed size least squares-support vector machine; genetic 

algorithm; feature extraction. 

NOMENCLATURE 

Abbreviations   

EVs electric vehicles  SVR support vector regression 

BMSs battery management systems LS-SVM least square-SVM 

SOH state of health BPNN back propagation NN 

SEI solid electrolyte interface CC constant current 

EIS electrochemical impedance 
spectroscopy IC incremental capacity 

EKF extended Kalman filter CV constant voltage 
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AEKF Adaptive EKF GA genetic algorithm 

PF particle filter RBF radial basis kernel function 

HIF H-infinity filter DOD depth of discharge 

RLS recursive least square RMSE root mean square error 

SVM support vector machine PSO particle swarm optimization 

NN neural networks ME maximum absolute error 

ELM extreme learning machine MAE mean absolute error 

Symbols    

,X Yρ  Pearson correlation iα  Lagrange multiplier 

X , Y  random variable matrices = ( ) ( )T
i jZ h x h x  kernel transformation matrix 

cov( , )X Y  covariance of X  and Y  ( , )iK x x  kernel function 
σ  standard deviation γ  width of RBF 

N  length of data RH  maximal quadratic Renyi entropy 

( )h x  
maps from low-dimensional 
training set data to a high-
dimensional space 

( )p x   density distribution of x  

y∈ℜ   estimation values M  size of working set  
ω  coefficients of LS-SVM *x  support vector 

b  kernel parameter t*x  a random point  

D  training set RealSOH  reference SOH 

ie   error variance ModelSOH  output SOH of mode 
c  regularization parameter n  cycle number 

l  sample number   
 

I. INTRODUCTION 

Currently, lithium-ion batteries are main power sources of electric vehicles (EVs) [1]. To ensure safe 

reliable and efficient operation of lithium-ion batteries, battery management systems (BMSs) are usually 

deployed to monitor battery status and conduct necessary management including charging control [2], fault 

diagnosis and prognostic as well as thermal management [3]. An important function of BMS is to accurately 

estimate state of health (SOH) of batteries [4], which is vital to indicate their degradation status [5]. 

Degradation of lithium-ion batteries indispensably occur with operation due to formation and 

development of anode solid electrolyte interface (SEI), deposition of anode metal lithium, mechanical crushing 

of electrode active materials and other side reactions [6]. On the other hand, it can be aggravated by abused 

electrical and mechanical operations as well as improper surrounding thermal management [7]. Generally, 

battery aging often refers to decreased capacity and increased resistance, which are directly employed to 

characterize deterioration of electrical performance of batteries [8]. Due to intricate electrochemical reactions 

and various application conditions, it remains a challenging task to estimate SOH accurately [9]. To now, a 
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variety of estimation approaches have been put forward, and they can be simply classified into three categories: 

direct calibration methods, model-based estimation methods and machine learning methods. 

Since battery aging can be reflected in decrease of capacity or increase of resistance, the most simple and 

direct manner of evaluating SOH is the accumulating current integration until full charge or discharge [10]. 

However, in practice, this method is susceptible to sampling accuracy of current, and rare occurrence of full 

charge/discharge leads to infeasibility of application. Measurement of electrochemical impedance 

spectroscopy (EIS) is another direct manner, as the impedance spectrum can indicate the aging variation trend. 

Nevertheless, EIS measurement requires specific pattern and excitation of current, and usually high frequency 

is indispensable [11], thus hindering its online application. Model-based estimation methods can predict SOH 

by means of building transfer functions with the inputs of measured voltage and current. A variety of model 

based estimation algorithms have emerged, including extended Kalman filter (EKF) [12] and its adaptive 

format (AEKF), particle filter (PF) [13], H-infinity filter (HIF), sliding model [14] and recursive least square 

(RLS) [15]. In [16], the Thevenin model is firstly established to characterize the dynamic and static behaviors 

of batteries, and then the battery capacity is considered as a model parameter and identified by the HIF. 

Compared with physical models, the electrochemical model that is composed of a series of partial differential 

equations can more accurately describe the electrical characteristics of the battery. In [17], a conventional 

pseudo-two-dimensional model is simplified by the finite analysis method, and the parameters in the whole 

lifespan are identified by the genetic algorithm (GA). Then, the quantitative relationship between the battery 

degradation and five inner parameters is constructed to help prediction of the battery capacity. These 

algorithms have already been intensively exploited to estimate SOH online. However, robustness of these 

algorithms cannot be guaranteed all the time, and credibility and reliability of battery models require in-depth 

understanding of degradation mechanism. To improve estimation accuracy, the model needs to contain more 

inner electrochemical information of batteries; whereas, the calculation intensity will no doubt increase, and 

the real-time fast application potential will be discounted [5].  

With the development of computer science, machine learning methods, as alternative solutions to SOH 

estimation, attract substantial attention. Support vector machine (SVM) [18], Gaussian process regression [19], 

neural networks (NN) [20] and extreme learning machine (ELM) [21] have declared to estimate SOH by 

mapping external features/measurements into capacity loss [22]. Among these methods, NN algorithms feature 
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strong nonlinear fitting capability [23]; however, they require a large amount of sample data to excavate 

enough hidden information between SOH and electrical measures. As operation of lithium-ion batteries are 

stochastic, and it is a challenging task to consider all the operation aspects when selecting the training data. To 

lessen the dependence on data amount and mitigate the calculation intensity, SVM is introduced to attain SOH 

estimation [24]. Different from other machine learning methods with huge data requirement, SVM is more 

appropriate for small sample nonlinear problems and is less insensitive to dimensionality and variability of test 

data [25]. In [26], a support vector regression (SVR) based model is constructed to characterize the battery 

aging mechanism, and the PF is introduced to estimate the impedance degradation parameters. In [27], a 

multistage SVM algorithm is proposed to conduct SOH prediction. First, the SVM is leveraged to categorize 

object batteries into four types according to the cycle times. Then, the SVR is proposed to estimate the 

remaining useful life. The conventional SVM translates the controlling issue into a convex quadratic 

programming problem, and finally attains the optimal solution. Nonetheless, when the amount of data is large, 

intensive computation entails for finding solutions. To cope with it, the least square-SVM (LS-SVM) is 

introduced to transform the quadratic programming problem into a linear programming problem. Consequently, 

its solution speed is faster, and the computing labor becomes less, compared to the traditional SVM. On this 

account, the LS-SVM begins to be employed for SOH estimation. In [28], ten features after screening are 

selected as the inputs of LS-SVM, and the estimation results of SOH outperforms that of the conventional 

SVM and the back propagation NN (BPNN). In view of preferable performance of SOH estimation and less 

computation burden, the LS-SVM is continually employed and further investigated for the SOH estimation in 

this study.  

To apply machine learning algorithms to estimate SOH, a critical task is to find proper feature variables 

that can capture the variation of SOH with acceptable precision. In addition, a high-quality feature variable 

should be easy to be extracted and contain abundant degradation information. To now, a number of feature 

variables have been employed for SOH prediction. In [29], the SOH is mapped by the time interval variation 

between the same discharge voltage intervals at each cycle. Since the discharging current profiles in EVs are 

usually stochastic, constant current (CC) discharging operations in a relative long duration rarely happen when 

driving. Similarly, it is difficult, and even impossible, to gauge the discharging time interval or the discharging 

voltage variation in a specially pre-determined range. Instead, the charging current is usually stably regulated 
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by chargers and the CC condition can be easily met. Consequently, CC charging voltage increase in a certain 

interval and/or capacity variation in between are often referred to highlight capacity variation. In [30], the 

second-order differential voltage signal is extracted to predict the SOH during the CC charging phase. In [25], 

partial incremental capacity (IC) curves are extracted as a health index, and the Gaussian process regression is 

employed to estimate the SOH. However, the testing sampling frequency may give rise to passive impact on 

accuracy of IC curves. In other words, the confidence interval of IC curves will reduce when the sampling 

frequency is low, thus undoubtedly deteriorating estimation precision of SOH. Furthermore, it is time 

consuming thanks to data processing and abstraction of health index [31]. In [3], four features including 

duration of the CC charging mode, duration of the constant voltage (CV) charging mode, the slope at the end 

of CC mode and the vertical slope at the corner of CC mode are regarded as the inputs of Gaussian process 

regression model. A common knowledge is that too many features will increase computational complexity in 

operation. In [32], two characteristic variables, i.e., the increase of ohmic internal resistance and polarized 

internal resistance, are regarded as the healthy indicators; and then ELM is applied to achieve the SOH 

estimation online. Although the discussed algorithms can estimate SOH with certain reliability and feasibility, 

it is still intractable to find effective features. For instance, to obtain IC, small current excitation and filtering 

operations are indispensable, leading to increase of estimation complexity; and improper selection of voltage 

ranges may arise deterioration of estimation accuracy [33]. In addition, it will be more practical to estimate 

SOH by partial charge voltage information, as full charge operations seldom happen in practice.  

Motivated by this, the charging time for a fixed voltage range is quantitatively analyzed and selected as 

the feature variable in this study. The LS-SVM is further exploited to achieve the SOH estimation. 

Nevertheless, the support vectors in traditional LS-SVM are selected randomly, leading to lack of sparseness 

[34]. To compensate the defect, the quadratic Renyi criterion is developed to select the support vector, which 

forms a fixed size LS-SVM in this study. Meanwhile, the voltage range and crucial parameters of fixed size 

LS-SVM are simultaneously optimized in a unified framework solved by the GA, considering both estimation 

accuracy and practicability. The proposed approach contributes to existing manners of estimating SOH in the 

following three aspects: 1) The fixed size LS-SVM is applied to train offline parameters and furnish online 

SOH estimation with satisfactory precision, compared with the conventional SVM, LS-SVM and NN. 2) The 

charging time variation within a fixed voltage range in each cycle is extracted as the health indicator to quantify 
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the capacity degradation. Furthermore, GA is exerted to simultaneously find the optimal voltage range and the 

parameters of fixed size LS-SVM. 3) The proposed method is verified effective at different sampling steps and 

under the unacquainted test data set of the same type of battery cells, thereby proving its robustness and 

universality. 

In the reminder of this study, Section II introduces the aging experiments and selects the feature variables. 

In Section III, the uniform framework for SOH prediction is elaborated and solved by the GA. The verification 

results are illustrated in Section IV. Some principal conclusions and future works are drawn in Section V. 

 

II. AGING EXPERIMENT AND FEATURE EXTRACTION 

A. Aging Experiment 

The experiments are carried out on commercial 21700 NCM/graphite cells using a battery test system. 

The rated voltage and capacity are 3.6 V and 4 Ah, respectively; and the operating voltage ranges from 2.75 

V to 4.2 V. A CC discharge test after the standard CC-CV charge action is scheduled to accomplish the cycle 

experiment. In the charging mode, the 0.5C current, wherein C denotes the rated capacity value of battery with 

the unit Ampere-hour, is applied to charge the battery until the terminal voltage reaches the pre-set voltage 

value. After that, the CV mode is applied to eliminate the polarization until the current declines to the cut-off 

current of 0.02C. After shelving for 5 minutes, the battery is discharged with the 1C current to its pre-set lower 

threshold. Note that all the experiments are conducted at room temperature (25 °C), which remains unchanged 

during the experiment. 

B. Experiment Data Analysis and Feature Extraction 

In actual applications, the discharging behavior of battery is a random and uncontrollable process; and 

instead, the CC-CV scheme is usually employed in battery’s charging process. Given this, the electrical 

characteristics during the charging process is investigated to determine health features. The battery charging 

voltage evolutions at different SOH are depicted in Fig. 1. It can be seen the CC charging time is significantly 

shortened as the battery ages, this is because the polarization becomes more obvious with the degradation of 

battery capacity. The fresh battery takes 6270 s to reach its pre-set cut-off voltage, while the battery with 80% 

SOH merely requires about 4320 s, only 68.9% of that of fresh battery.  
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Fig. 1. The charging voltage evolution curves. 

As described in [6], there is a strong correlation between battery life and depth of discharge (DOD). Ends 

users usually limit battery operations within a proper voltage range, and furthermore, to avoid range anxiety, 

batteries in EVs are seldom fully discharged. Thus, it is more reasonable to take advantage of partial charge 

and discharge data to estimate SOH. Apparently, a partial charging voltage profile is easier to acquire than the 

whole curve. Fig. 2 shows the charging time variation for a fixed voltage range variation when the battery ages. 

The blue and green lines respectively represent the charging time when the voltage increases from 3.4 V to 

4.15 V and from 3.6 V to 4.1 V. It can be clearly found that the duration of selected voltage ranges shows a 

consistent agreement with the reduction of capacity.  

 

Fig. 2. Charging time for a fixed voltage range and capacity with cycle numbers. 

To better assess the relational grade of selected partial charging duration and capacity variation, the 

statistic information is introduced. Although the covariance can characterize linear correlation of random 

variables, it cannot describe the degree of correlation. Here, the Pearson correlation [35] is employed, as: 

. 
( )( )

1

, 2 2 2 21 1

cov( , )

( ) ( )
N

X Y
X Y N N

XY X YX Y

X X Y Y
ρ

σ σ
−

= =
− −

∑ ∑ ∑
∑ ∑ ∑ ∑

  (1) 

0 2000 4000 6000 8000 10000
Time (s)

3.4

3.6

3.8

4

4.2

V
ol

ta
ge

 (V
)

SOH = 100%
SOH = 98%
SOH = 95%
SOH = 93%
SOH = 90%

SOH = 88%
SOH = 85%
SOH = 83%
SOH = 80%
SOH = 75%

0 100 200 300 400 500 600 700 800 900

Cycle

2000

4000

6000

Ti
m

e 
(s

)

2.5

3

3.5

C
ap

ac
ity

 (A
h)

[3.4 4.15]
[3.6 4.1]
Capacity



 8 of 21 
 

where X  and Y  represent the two random variable matrices, cov( , )X Y  denotes the covariance of X  

and Y , σ  is the standard deviation, and N  denotes the length of data. The Pearson correlation grades 

between different voltage ranges and capacity of tested battery are listed in Table I. As can be found, the 

selected charging voltage ranges all show high relational grade, which means the feature extracted from the 

duration of selected voltage range is well-suited for establishing the degradation model and contributing to 

SOH estimation. In addition, the results clearly express that wider voltage range will bring higher correlation 

with the price of more intensive calculation. Therefore, proper selection of voltage range should be tailored to 

trade-off the correlation degree and calculation complexity, thereby ensuring the preferable aging 

characterization and acceptable calculation requirement. In the next step, GA is applied to find the optimal 

voltage range to ensure the estimation accuracy of SOH.  

Table I. Pearson Correlation grades between different voltage ranges and capacity. 

Voltage range (V) Pearson Correlation Voltage range (V) Pearson Correlation 
[3.4 3.5]  0.8368 [3.5 3.6] 0.9927 
[3.4 3.7] 0.9983 [3.5 4.1] 0.9989 
[3.4 3.9] 0.9985 [3.6 4.1] 0.9970 
[3.4 4.1] 0.9994 [3.6 4.15] 0.9971 

 

III. STATE OF HEALTH ESTIMATION ALGORITHM DESIGN 

In this section, a brief derivation procedure of fixed size LS-SVM is provided, and then the GA is 

employed to search the optimal parameters and optimal voltage range. 

A. Least Squares-Support Vector Machine 

LS-SVM can be regarded as a special form of SVM with quadratic loss functions. In addition, LS-SVM 

uses equality constraints, rather than inequality constraints, and turns the solution process into a set of 

equations, thereby reducing the calculation amount [36]. For a nonlinear system, 

 ( ) ( )Ty x h x bω= +   (2) 

where ( )h x  hnnℜ →ℜ  maps low-dimensional training set data to a high-dimensional space, y∈ℜ  

denotes the estimation values, ω  and b  represent the coefficients. For a given training set 

{ }( , ), 1,2,3,i iD x y i= =  , nx∈ℜ , y∈ℜ , LS-SVM is employed to solve the loss function of optimization 

target, which is described by the quadratic term of error. The objection function can be formulated as: 
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where ie  is the error variance, c  denotes a regularization parameter, and l  represents the sample number. 

By introducing the Lagrange multiplier, the problem can be translated into an equivalent unconstraint problem, 
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where iα  represents the Lagrange multiplier. The optimization conditions can be formulated, as: 
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Thus, the dual problem can be formulated as: 

 
0 1
1

b b
Z I c yα

     
=     +     
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where = ( ) ( )T
i jZ h x h x  denotes the kernel transformation matrix. Now, the model can be reformulated as: 

 ( ) ( , )T
i i iy x K x x bω α= +   (8) 

where ( , )iK x x  represents the kernel function. Among all popular kernel functions, the radial basis kernel 

function (RBF) usually features the ability of mapping non-linear samples to high-dimensional space with less 

numerical calculation. Hence, the RBF is selected as the kernel function, as: 

 
2

2

||( ) exp( )
2

x xx, x i
iK

γ
−

= −
‖   (9) 

where γ  denotes the width of RBF. 

B. Fixed Size Least Squares-Support Vector Machine 

To avoid lack of sparseness and robustness, the fixed size LS-SVM is employed to predict the SOH, 

where the support vectors are selected from the training set according to the quadratic Renyi criterion [34]. In 
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it, only a subset of the training data is utilized as support vectors. Moreover, the maximal quadratic Renyi 

entropy is exerted to optimize the selection of data in the working set [34], as: 

 2lg ( )RH p x dx= − ∫   (10) 

where ( )p x  represents the density distribution of x , and  

 2
2

1 1

1( ) ( ) = ( , )
M M

i
i j

p x dx p x dx K x x
M = =

≈ ∑∑∫ ∫
   (11) 

Furthermore, equation (10) can be rewritten as: 

 2
1 1

1lg ( , )
M M

R i
i j

H K x x
M = =

 
≈ −  

 
∑∑   (12) 

To apply the fixed size LS-SVM, a step-by-step process is listed as follows, and the implementation flowchart 

is depicted in Fig. 3. 

1) Determine the training data set ( , )i ix y , nx∈ℜ , ny∈ℜ ; 

2) Select a working set with a fixed size of M , where M l<< ; 

3) Randomly choose a support vector *x  from the working set; 

4) Randomly select a point t*x  from the l  training set, and replace t*x  by *x  in the working set; 

5) Calculate the Renyi entropy. If the entropy increases, keep t*x  in the working set; otherwise, the point 

is abandoned and keep the support vector *x  in the original working set; 

6) Terminate the process if the number of iterations is outstripped or the Renyi entropy is too small. 

Otherwise, go back to step 2). 
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Fig. 3. The flowchart of fixed size LS-SVM algorithm. 

C. The SOH Estimation Framework  

When selecting the regression parameters, the parameters of fixed size LS-SVM should be appropriately 

determined to establish the SOH estimation model. The generalization ability is decided by the kernel 

parameter c , and the stability and complexity of this algorithm are influenced by the regularization parameter 

b  [37]. By means of the arbitrary or empirical parameters selection, the performance of SOH estimation based 

on the fixed size LS-SVM cannot be ensured all the time. Here, GA is applied to simultaneously search the 

optimal voltage range, c  and b . The overall framework of proposed SOH estimation method is illustrated 

in Fig. 4. As can be observed, an additional optimization procedure is added to find the optimal voltage range 

and parameters of fixed size LS-SVM. All the targets, including the SOH estimation, search of the optimal 

voltage range as well as determination of c  and b , can be integrated into a unified optimization problem 

which can be solved simultaneously. After initializing the voltage range and parameters of the fixed size LS-
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SVM, an initial SOH value will be set. Here, the root mean square error (RMSE) is regarded as the fitness 

criterion, as: 

 ( )
1

1 ( ) ( )
n

Real Model
i

RMSE SOH i SOH i
n =

= −∑   (13) 

where RealSOH  is the reference SOH, ModelSOH  is the output SOH of built model, and n  denotes cycle 

number. According to the basic principle of GA, an initial population is generated randomly. After a series of 

selection, crossover and mutation evolution operations, the evolutionary mechanism will find the optimal 

(most of times sub-optimal) combination of feature variable and parameters [38]. The individuals that receive 

the best fitness assessment is utilized to estimate the SOH. 

In the next step, the experimental validations and discussions are performed to manifest the feasibility of 

proposed algorithm. 
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Fig. 4. The framework of proposed SOH estimation algorithm. 

 

IV. RESULTS AND DISCUSSION 

In this section, a series of experiments were carried out to validate the effectiveness of proposed uniform 

estimation framework. Firstly, four groups of features and parameters extraction methods are compared to 

assess the impact of voltage range and parameters on the SOH estimation. After that, to evaluate the 

effectiveness of proposed fixed size LS-SVM algorithm, traditional algorithms including NN, SVM and 

conventional LS-SVM are employed to estimate the SOH based on the same healthy indicators. Afterwards, 

the results at different sampling time estimation results are addressed to demonstrate the bottom requirements 

of proposed algorithm on the sampling time. Finally, partial data is utilized for offline training and the 
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remaining unacquainted data is applied online to validate the model, thereby manifesting the universality 

capability of proposed algorithm. 

A. Comparison with Random Voltage Range and the Optimized Voltage Range 

To verify the effectiveness of developed feature and parameters optimization method, four groups of 

features and parameters are employed to predict the SOH.  

1) The voltage range and the parameters of fixed size LS-SVM in the first group are designated randomly.  

2) The voltage range in the second group is extracted randomly, whereas the parameters of fixed size LS-

SVM are set the same as those optimized by the GA.  

3) The voltage range and parameters in the third group are optimized by the particle swarm optimization 

(PSO) [39].  

4) The last group of the voltage range and parameters are optimized by means of the GA.  

In the first case, 50% experimental data set of the test battery are chosen as the training set to refine the 

fixed size LS-SVM algorithm, and the rest data are used to evaluate the prediction performance. The training 

and evaluation results are shown in Fig. 5. It is worth noting that the SOH in this paper is defined as the 

percentage of current maximum capacity over the rated value [3]. The initial SOH value is lower than 100% 

thanks to the operating environment and discharge conditions. As can be found from Fig. 5, although the 

estimation results with the voltage interval of [3.6 4.15] and [3.6 4.1] can roughly track the reference SOH, the 

estimation error is still more than that based on the PSO and GA. In contrast, the GA algorithm enables more 

accurate SOH estimation, which can track the reference value more precisely. The RMSE, maximum absolute 

error (ME) and mean absolute error (MAE) are calculated to quantify the prediction results. The statistical 

results of different voltage ranges listed in Table II exhibit that the GA can achieve the minimum ME, which 

is only one third of those by the randomly selected parameters. In addition, the MAE and RMSE by GA are 

both only half of those of the random selection approach of parameters. It can also be found that the MAE and 

RMSE of GA method are slightly higher than those of the PSO method. However, the voltage range obtained 

by the PSO is much wider than that by the GA. In practice, the voltage range is anticipated to be as narrow as 

possible for reducing the storage space and computation intensity in the premise of ensuring the precision. 

Moreover, the narrower voltage range under the constant current mode is easier to encounter in charge 
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operations. Hence, we can conclude that the proposed method shows satisfactory performance in terms of SOH 

estimation and parameters determination.  

Table II. Statistical results of different voltage ranges. 

Method Voltage range 
(V) c  b  ME (%) MAE (%) RMSE (%) 

Randomly 
[3.6 4.15] 0.75 1 3.1 0.39 0.495 

[3.6 4.1] 0.0257 14.2459 3.09 0.403 0.508 

PSO [3.4 4.15] 0.1173 16.1908 1.23 0.123 0.174 

GA [3.467 4.106] 0.0257 14.2459 1.11 0.18 0.23 

 
(a)            (b) 

Fig. 5. SOH prediction results and errors at different voltage ranges: (a) SOH prediction curves; (b) SOH prediction errors. 

B. Comparison with Different Algorithms 

To further evaluate the performance of proposed algorithm, the NN, SVM and LS-SVM algorithms are 

respectively applied. For fair comparison, the feature variables remain the same; that said, the charging time 

ranging from 3.467 V to 4.106 V is selected as the inputs of all participant algorithms. The comparison results 

of different algorithms and experimentally measured values are illustrated in Fig. 6. As can be seen, the 

prediction results of proposed algorithm can track the actual profile most precisely, and the NN method leads 

to the largest fluctuation of estimation error. Table III lists the statistical results of different algorithms. It is 

clear that the proposed method provides the minimum MAE, ME, and RMSE. The ME, MAE and RMSE of 

the NN are respectively 1.93%, 0.22% and 0.29%; and nonetheless, the values by the fixed size LS-SVM are 

1.11%, 0.18% and 0.23%. Particularly, the ME of proposed fixed size LS-SVM is only about 58% of that by 

the traditional NN algorithm, highlighting its preferable estimation capability. Moreover, the estimation results 

also demonstrate the superiority of the proposed fixed size LS-SVM in disposing of small sample nonlinear 

problems. 
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(a)            (b) 

Fig. 6. SOH estimation results and errors at different estimation algorithms: (a) SOH prediction curves; (b) SOH prediction errors. 

Table III. Statistical results of different algorithms. 

Algorithm ME (%) MAE (%) RMSE (%) 

NN 1.93 0.22 0.29 

SVM 1.54 0.20 0.29 

LS-SVM  1.23 0.20 0.26 

Proposed 1.11 0.18 0.23 

C. Verification on Different Sampling Time 

To verify the practicability of proposed feature extraction and SOH estimation algorithms, different 

sampling time is taken into account to demonstrate their influence on estimation precision. To do so, the 

verification data at different sampling time are firstly extracted from the original measurement data. Then, the 

different sampling time data corresponding to the test battery is exerted to estimate the SOH evolution. Here, 

the feature of voltage range is still set to [3.467 4.106], and the parameters of fixed size LS-SVM are also the 

same as those in Section 4.1. Five SOH curves are attained based on the proposed method, wherein the 

sampling time are set to 1 s, 5 s, 10 s, 20 s and 30 s, respectively.  

Fig. 7 demonstrates the estimation results and errors of SOH with different sampling time, and the 

statistical results are presented in Table IV. It is clear that the predicted SOH can track the reference values on 

the whole throughout the operating cycles, and it can also indicate from these similar error curves that they 

have the approximate estimation results. To be specific, the RMSEs when t∆  equals 1 s, 5 s, 10 s, 20 s and 

30 s are 0.24%, 0.21%, 0.24%, 0.26% and 0.23%, respectively. It can be intuitively found that higher sampling 

accuracy does not lead to better estimation performance all the time. The ME is 1.37% with the sampling time 

of 1 s; nevertheless, the ME is only 1.11% when the sampling time is 30 s. Thus, we can conclude that the 

proposed feature extraction method does not strictly rely on the sampling time. From these results, we can 

summarize that the sampling time of 5 s is more suitable for SOH estimation, as it can not only guarantee the 
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estimation performance, but also reduce the calculation burden and storage space to a great extent. From this 

point of view, the proposed estimation framework shows certain potential for practical application. 

 
(a)            (b) 

Fig. 7. SOH estimation results and errors at different sampling time: (a) SOH prediction curves; (b) SOH prediction errors. 

Table IV. Statistical results at different sampling time. 

Sample time ME (%) MAE (%) RMSE (%) 

1 s 1.37 0.17 0.24 
5 s 1.13 0.16 0.21 
10 s 1.27 0.18 0.24 
20 s 1.43 0.19 0.26 
30 s 1.11 0.18 0.23 

D. Universality Validation 

After training the fixed size LS-SVM model, the test data set of other three batteries (labeled as Bat. 2, 

Bat. 3 and Bat. 4) are chosen as the testing set to validate the universality of proposed algorithm. The capacity 

attenuation profiles with cycle numbers of these three batteries are shown in Fig. 8. Note that the initial capacity 

is only 3.76 Ah as the battery is not fully charged. When the cycle number reaches approximately 650, the 

battery approaches the end of life (80% rated capacity).  

  

Fig. 8. Battery capacity degradation curves. 

The SOH prediction curves and errors of Bats. 2 to 4 are plotted in Fig. 9, where the subfigures (b), (d) 

and (f) show the estimation errors of SOH, and it can be found that the error of the test battery is larger than 

that of the training battery. In particular, the output SOH of Bat. 2 based on the proposed estimation framework 
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can track the reference curve precisely in the whole process, and the estimated error is evenly distributed and 

less than 1% all the time. With respect to Bats. 3 and 4, the estimated SOH is slightly lower than the reference 

value and therefore leads to the negative errors between the estimated result and the reference value in most 

cases. As can also be found, the cycle times of Bat. 4 is much larger than that of Bat. 3, and after 650 cycles, 

the estimation error of Bat. 4 shows larger fluctuation, which can be reasoned by inconsistency of battery 

capacity and influence of temperature during the cycling experiment. Even so, the results in Bats. 2, 3 and 4 

still indicate acceptable estimation precision, and furthermore the estimation error, as depicted in Fig. 9 (b), 

(d) and (f), is all less within 2%. Table V summarizes the RMSE, ME and MAE of the SOH estimation results. 

The maximum RMSE and MAE in the three testing batteries are 0.44% and 0.34%, respectively. All of them 

are fairly low, highlighting the proposed method can be extended to other batteries. From this point, we can 

conclude that the presented uniform SOH estimation framework shows favorable universality capability. 

Bat. 2 

 
(a)           (b) 

Bat. 3 

 
(c)           (d) 

Bat. 4 
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(e)           (f) 
Fig. 9. SOH prediction curves and errors: (a) Bat. 2 prediction SOH; (b) Bat. 2 prediction errors; (c) Bat. 3 prediction SOH; (d) 

Bat. 3 prediction errors; (e) Bat. 4 prediction SOH; (f) Bat. 2 prediction errors. 

Table V. Statistical results of Bat. 2, Bat. 3 and Bat. 4. 

Battery ME (%) MAE (%) RMSE (%) 

Bat. 2 1.00 0.19 0.25 

Bat. 3 1.98 0.28 0.42 

Bat. 4 1.64 0.34 0.44 

 

V. CONCLUSIONS 

In this paper, a framework is presented to achieve the state of health estimation for lithium-ion batteries 

using fixed size least square-support vector machine and genetic algorithm. In the proposed framework, the 

charging time for a fixed voltage range in the constant current charging process is taken as the input feature 

for the fixed size least square-support vector machine training. To prevent inaccurate prediction incurred by 

inappropriate parameters of fixed size least square-support vector machine, the genetic algorithm is harnessed 

to achieve the combined optimization of voltage range and algorithm parameters. Different voltage ranges and 

parameters are compared to verify the effectiveness of the developed framework and the estimation results 

prove that the voltage range and parameters optimized by the genetic algorithm is the best combination 

considering the estimation precision and practicability. We compare fixed size least square-support vector 

machine with three traditional methods and the fixed size least square-support vector machine is confirmed to 

achieve the satisfactory estimation performance. Further validations are carried out on different sampling time, 

comparative results indicate that the proposed feature excavation method does not rely on the sampling time. 

Additionally, the experimental validations are also conducted on other three unfamiliar batteries to check the 

universality of the proposed framework. The experimental results manifest that the present framework obtains 

desired estimation precision of state of health with a boundary of prediction error of 2%. In summary, the 

presented uniform state of health estimation framework features the advances of low sampling time 

requirement, high accuracy, robustness and universality capability. 

In the future, we will endeavor to investigate state of health estimation principles at different 

environmental temperatures, and moreover finding an authentic manner to characterize the change of state of 

health in the battery packs is also the focus of our next step research. 
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