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Lithium-ion batteries play an important role in our daily lives. The prediction of the remaining
service life of lithium-ion batteries has become an important issue. This article reviews the
methods for predicting the remaining service life of lithium-ion batteries from three aspects:
machine learning, adaptive filtering, and random processes. The purpose of this study is to
review, classify and compare different methods proposed in the literature to predict the
remaining service life of lithium-ion batteries. This article first summarizes and classifies
various methods for predicting the remaining service life of lithium-ion batteries that have
been proposed in recent years. On this basis, by selecting specific criteria to evaluate and
compare the accuracy of different models, find the most suitable method. Finally,
summarize the development of various methods. According to the research in this
article, the average accuracy of machine learning is 32.02% higher than the average of
the other two methods, and the prediction cycle is 9.87% shorter than the average of the
other two methods.

Keywords: lithium-ion batteries, remaining useful lifetime, machine learning, adaptive filtering, stochastic process
methods

INTRODUCTION

Among various energy storage solutions, Lithium-ion (Li-ion) batteries are widely regarded as
promising candidates for various applications due to their advantages of high energy density and low
self-discharge (Peng et al., 2019; Gao et al., 2020). However, the life span of Li-ion batteries is not
unlimited, and the cost and aging of Li-ion batteries are the two main factors hindering their
development (She et al., 2020; Zhang et al., 2021; Ren et al., 2021). The performance of Li-ion
batteries will decrease with time (calendar aging) and use (cycle aging), which is called the aging
phenomenon (Jinlei et al., 2019; Liu et al., 2019a). The aging of the battery will increase operating
costs, reduce the service life of the equipment, and affect the safe operation of the equipment (Qi
et al., 2019; Xu et al., 2018; Zhang et al., 2019a). Moreover, there is no ideal solution for the recycling
of Li-ion batteries, and premature failures will lead to a large number of second-hand Li-ion batteries
that cannot be properly handled. Generally, when the capacity drops to more than 80% of the initial
value, the battery has reached the end of its service life (Liu et al., 2020a; White et al., 2021). The
remaining useful lifetime (RUL) is defined as the time at which equipment performance first or first
arrival time drops to the failure threshold. It represents the period from the observation to the end of
life (EOL) (Corno and Pozzato, 2020; Ma et al., 2020a; Liu et al., 2020b). EOL refers to the time and

Edited by:
Kailong Liu,

University of Warwick,
United Kingdom

Reviewed by:
Jinhao Meng,

Sichuan University, China
Zhongbao Wei,

Beijing Institute of Technology, China
Qian Xiao,

Tianjin University, China

*Correspondence:
Shunli Wang

wangshunli@swust.edu.cn
Siyu Jin

sji@et.aau.dk

Specialty section:
This article was submitted to

Engine and Automotive Engineering,
a section of the journal

Frontiers in Mechanical Engineering

Received: 02 June 2021
Accepted: 16 July 2021

Published: 03 August 2021

Citation:
Wang S, Jin S, Deng D and

Fernandez C (2021) A Critical Review
of Online Battery Remaining Useful

Lifetime Prediction Methods.
Front. Mech. Eng 7:719718.

doi: 10.3389/fmech.2021.719718

Frontiers in Mechanical Engineering | www.frontiersin.org August 2021 | Volume 7 | Article 7197181

REVIEW
published: 03 August 2021

doi: 10.3389/fmech.2021.719718

http://crossmark.crossref.org/dialog/?doi=10.3389/fmech.2021.719718&domain=pdf&date_stamp=2021-08-03
https://www.frontiersin.org/articles/10.3389/fmech.2021.719718/full
https://www.frontiersin.org/articles/10.3389/fmech.2021.719718/full
https://www.frontiersin.org/articles/10.3389/fmech.2021.719718/full
http://creativecommons.org/licenses/by/4.0/
mailto:wangshunli@swust.edu.cn
mailto:sji@et.aau.dk
https://doi.org/10.3389/fmech.2021.719718
https://www.frontiersin.org/journals/mechanical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org/journals/mechanical-engineering#editorial-board
https://doi.org/10.3389/fmech.2021.719718


the number of charge-discharge cycles when the battery
characteristic parameters reach the replacement threshold.

Battery degradation is a complex process controlled by
electrochemical reactions. The battery degradation process is
highly non-linear and is affected by many factors, such as
temperature, charge, and discharge rate; many electrochemical
side reactions and operating conditions of the anode, electrolyte,
and cathode will severely affect performance, thereby affecting
the battery life. This complicates battery capacity prediction (Liu
et al., 2020a; Shi et al., 2019). Therefore, how to accurately predict
the RUL under various working conditions is a crucial and
challenging problem in a battery management system. From
an economic point of view, RUL predicts that it will help
reduce the return on investment of the system and increase
the profitability of the system (El Mejdoubi et al., 2019; Wu
et al., 2019). If the RUL can be accurately predicted, the
equipment can be maintained predictively, and battery life can
be extended (Xue et al., 2020; Xiong et al., 2018). Therefore, this
article will conduct a timely and comprehensive review of battery
life pre-diction technology, focusing on the latest developments
based on models, data-driven, and hybrid methods (Hu et al.,
2020a).

Methods include model-based methods (such as physical
models, electrochemical models, etc.) or data-driven methods
(Guha and Patra, 2018a; Khodadadi Sadabadi et al., 2021; Lyu
et al., 2021). Different types of aging models have been proposed
in the literature. The electrochemical model can represent the
internal variables of the battery well, so it can achieve high

accuracy (Wang et al., 2020a). However, this detailed
mathematical representation means an increase in complexity
and computational cost. The development of electrochemical
models assumes a challenging modeling stage that usually
requires the disassembly of cells (Chen et al., 2019; Tian et al.,
2020). Data-driven is a method of building a rough model and
then using a large amount of data to refine the data to make the
model consistent with the data. For the complex electrochemical
dynamics system in LIB, model-based methods are usually
complicated to implement, but the data-driven method does
not consider the electrochemical reactions and failure
mechanisms inside LIB (Hui et al., 2021; Lin et al., 2020; Lipu
et al., 2018).

Therefore, data-driven forecasting methods have become a
research hotspot (Liu et al., 2021; Ren et al., 2021). According to
the principles and applicable conditions of the methods used, this
section refers to the methods used in many documents and
divides the data-driven RUL prediction methods into artificial
intelligence-based methods Ji et al. (2021), filtering-based
methods Xu et al. (2021), and statistical data-driven methods.
These methods can describe relationships and trends related to
degradation based on data. RUL prediction methods can be
divided into three categories. Figure 1 shows the main RUL
prognosis methods for Li-ion batteries (Motaqi andMosavi, 2020;
Xiong et al., 2019; Lucu et al., 2018).

This article aims to guide the search for the most suitable
method to develop an adaptive Li-ion battery aging model and
puts forward specific evaluation criteria based on method
classification. The three methods are compared in terms of
input and output complexity, percentage of the training
period, and prediction accuracy. The intuitive and accurate
comparison results are given based on the calculation and
emphasize the main advantages and disadvantages of each
adaptive model in the special case of Li-ion aging prediction.

MACHINE LEARNING

The artificial neural network has been widely used for self-
organization and self-learning, and it does not rely on the
electrochemical principles inside the battery. Machine learning
algorithms can learn and recognize more complex patterns of
system data in many applications based on experience
(Khumprom and Yodo, 2019). Machine learning is the
preferred method for forecasting by collecting historical data
in the life cycle (Liu et al., 2017). Moreover, they are suitable for
strongly nonlinear systems and approximate the real state of the
system by adaptively optimizing network parameters. But these
methods still have inevitable limitations. They rely to a large
extent on a large amount of historical data to fully train the
model, which may be time-consuming and computationally
intensive in the actual system, and it is also easy to cause data
overfitting (Xiong and Lu, 2018). Figure 2 shows the main flow of
machine learning.

There are three basic methods of machine learning, neural
network, support vector machine, and deep learning. This article
will start with these three basic methods and summarize the

FIGURE 1 | The main RUL prognosis methods.
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progress of using machine learning to predict RUL in
recent years.

Neural Network
The neural network can containmany layers, and each layer can also
contain multiple neurons. Each neuron in the current layer can be
regarded as a node, and the value is obtained by logistic regression
calculation of all neurons in the previous layer. She et al. (2020) used
a combination of incremental capacity analysis (ICA) and a radial
basis function neural network (RBFNN) model to assess battery
aging. Validation based on the electric city bus operation data set
shows that the average prediction error of this method reaches
4.00%, the confidence interval of the derived model is 92%, and the
prediction accuracy is 90%. Wu et al. (2019) proposed a neural
network (NN) degradation model + bat particle filter (Bat-PF)
prediction method to recursively update model parameters and
intelligently estimate RUL. The RUL prediction error in 500
prediction periods is 2 periods. The width of the probability
density function is 35 cycles. In Ref. Wu et al. (2016) proposed a
method for online estimation of Li-ion battery RUL using fast
Fourier transform the neural network, using importance sampling
(IS) to select the feedforward neural network (FFNN) input to realize
the charging curve The accurate reconstruction of, and the number
of hidden layer neurons is set to 40, the prediction error of the actual
RUL in actual operation is less than 5%.

FIGURE 2 | The main flow of artificial intelligence.

FIGURE 3 | Schematic diagram of Elman training process.
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Li et al. (2019a) used grey relational analysis to indirectly
estimate battery capacity and established an indirect prediction
method based on the Ellman neural network to estimate the
feasibility of the application in RUL prediction of Li-ion batteries
under vibration stress. The average error (MAE) of the estimation
results is 0.0243, and the mean square error (MSE) is 0.0278. The
flowchart is shown in Figure 3. Zhou et al. (2020a) proposed a
time convolutional network (TCN)-based Li-ion battery SOH
monitoring and RUL prediction model framework. For the RUL
prediction task, the offline data is denoised through empirical
mode decomposition (EMD), and then some online data is
combined to locally adjust the model to achieve high-precision
prediction of RUL. The average RMSE accuracy of the TCN
model is 5% higher than that of the traditional network with
different starting points. Compared with commonly used models,
the average error of RUL prediction is nearly 8 cycles higher. In
Ref. Tang et al. (2020) proposed a new method of feedforward
migration neural network to predict RUL trajectory. The model is
constructed by the input-output slope and bias correction (SBC)
method, and further integrated into a four-layer feedforward
migration NN and trained via the gradient correlation algorithm.
When only the first 30% of the aging trajectory is used for neural
network training, the root means square error (RMSE) of
prediction under high-noise conditions is within 2.5%.

Zhang et al. (2019b) proposed an online estimation of battery
SOH and RUL by combining partial incremental capacity with an
artificial neural network (ANN) under constant current
discharge. By constructing two neural network models,
Spearman correlation analysis is used to extract the training
set and validation set of the model. The model estimates that
the MAE and RMSE of RUL are less than 4 cycles and 6 cycles,
respectively, and the relative error rate of SOH is not higher than
3%. It has good generalization ability and high prediction
accuracy.

In Ref. Ma et al. (2019a) used the pseudo-nearest neighbor
(FNN) method with a hybrid neural network (HNN) combining
long and short-term memory and convolutional neural networks
to predict battery RUL. The accuracy of the proposed method can
reach 98.21%.Qiao et al. (2020) proposed an RUL prediction
method based on empirical mode decomposition, deep neural
network (DNN), and long-short-termmemorymodel. Compared
with empirical mode decomposition and autoregressive
integrated moving average mixed model, the average error and
root mean square error of this algorithm are reduced by 75 and
90.8%, respectively. The standard deviation of the predicted RUL
is 1.36626. It can accurately and effectively predict the SOH and
RUL of the battery.

Support Vector Machines
The Support vector machine is a linear classifier with the largest
interval defined in the feature space of the basic model. The
learning strategy of SVM is to maximize the interval, which can
be formalized as a problem of solving convex quadratic
programming. Zhao et al. (2018) extrapolated the battery
capacity through equal charge voltage difference time interval
(TIECVD) and equal discharge voltage difference time interval
(TIEDVD), and combined feature vector selection (FVS) and

SVR to form the FVS-SVR algorithm. Realize online prediction of
battery SOH and RUL. The maximum prediction root means the
square error of this method is less than 1%. Du et al. (2018)
proposed an SVR-based ternary Li-ion battery coupling stress
modeling and prediction RUL method, using 6 sets of coupling
stress experimental data to establish an RUL prediction model.
The relative error of 600 cycles is within 5%. Wang and Mamo
(2018) used the differential evolution (DE) algorithm to obtain
the support vector regression (SVR) kernel parameters, and fuse
and predict the RUL of Li-ion batteries. This method has an error
of about 1/99 at the starting point of 80 cycles, which has higher
prediction accuracy. Patil et al. (2015) extracted key features from
the voltage and temperature curves and based on the key features,
established an RUL classification and regression model using
support vector machines (SVM). The RMSE of the model is
0.357%, and the estimated upper and lower errors are 95%, 7.87%,
which are 7.87%, and 10.75%, respectively. The accurate RUL
prediction of multiple batteries is realized.

Wei et al. (2018) established a battery SOH state-space model
based on support vector regression to simulate the dynamic
characteristics of battery aging. The particle filter method is
used to estimate the impedance attenuation parameters and
deal with the measurement noise of current and voltage. Ben
Ali et al. (2020) proposed a combined method based on Quantum
Behavioral Particle Swarm Optimization (QBPSO) and
Incremental Support Vector Regression (ISVR). The RMSE of
this method is 0.0202 ah, and the MAPE is 0.0255%, which is
more robust. Wang et al. (2019a) proposed a method to predict
RUL by using an artificial bee colony (ABC) based on SVR. The
ABC algorithm is used to optimize the SVR core parameters. The
RMSE of the ABC-SVR method is less than 0.05, and the average
value of all units is less than 27%.

Deep Learning
Deep learning is derived from artificial neural networks, and a
multi-layer perceptron with multiple hidden layers is a deep
learning structure. Deep learning forms a more abstract high-
level by combining low-level features to represent attribute
categories or features. Liu et al. (2021) used the empirical
mode decomposition (EMD) method to decompose the data,
then used the long-short-term memory (LSTM) sub-model to
estimate the residuals, and the Gaussian process regression (GPR)
sub-model was fitted to IMFs. Compared with different models,
the LSTM + GPR combined model can obtain accurate one-step
and multi-step prediction results. It has good adaptability and
reliable uncertainty quantification. Qu et al. (2019) based on the
neural network method, fused particle swarm optimization, and
attention mechanism to optimize the long-short-term memory
(LSTM) network to predict battery RUL andmonitor SOH. Using
the CEEMDAN method to denoise the original data, the average
error and RMSE values of PA-LSTM are −3 and 0.0362,
respectively. It can accurately monitor the status of Li-ion
batteries and predict RUL. Li et al. (2019b) combined the
empirical mode decomposition algorithm with long-short-term
memory (LSTM) and Elman neural network and proposed a new
hybrid Kalman-LSTM hybrid model to predict battery RUL.
Using the LSTM model and the EMDLSTM model for
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comprehensive testing, the relative prediction errors are 3.3 and
3.21%, respectively.

Cui and Hu (2020) used machine learning and model filtering
techniques to estimate the SOH and RUL of lithium batteries. The
Unscented Kalman (UKF) algorithm is combined with the LSTM
network and the NN model to form a data model fusion method
to filter out the network output noise. The comparison with other
traditional methods through 4 cell cycle experiments verifies its
superior estimation ability. Zhu et al. (2019) proposed the
DGWO-ELM algorithm to predict the RUL of lithium-ion
batteries, combining ELM, Gray Wolf Optimization (GWO),
and Differential Evolution (DE) to improve input weights and
bias. The algorithm uses the GWO algorithm to optimize the
weights and thresholds of ELM and improves the three defects of
the GWO algorithm. The minimum root means the square error
of this algorithm is 0.43%.

Hong et al. (2020) proposed an end-to-end deep learning
framework to predict the remaining service life of Li-ion batteries.
This framework solves the challenge of predicting the remaining
battery life through short-term measurements. The average
absolute error rate of the proposed framework’s remaining

service life prediction reaches 10.6%. Li et al. (2020a) designed
a variant of long and short memory neural network, called AST-
LSTM NN, to perform multiple battery sharing predictions. The
AST-LSTM neural network has a many-to-one and one-to-one
mapping structure to predict battery SOH and RUL. This method
estimates that the ARMSE of SOH is 0.0216, and the CE of RUL is
0.0831. Yang et al. (2020a) proposed a hybrid neural network to
predict the RUL of Li-ion capacitors (LIC), which combines
convolutional neural networks and bidirectional long-short-
term memory networks (Bi-LSTM) and removes periodic data.
Noise pro-cessing. The minimum error of this method can reach
1.04%. The RNN structure based on LSTM is shown in Figure 4.

Zhang et al. (2018a) proposed a battery RUL prediction
method using long-short-term memory recurrent neural
network (LSTM-RNN). Use elastic mean square back-
propagation (RMSprop) technology to adaptively optimize
LSTM-RNN, and a dropout technique is used to address the
overfitting problem. Park et al. (2020) proposed a new LSTM-
based RUL prediction technology. Use a many-to-one structure
instead of a one-to-one structure to accurately predict RUL. The
mean absolute percentage error (MAPE) of the single-channel
LSTM model is 39.2% higher than that of the baseline LSTM
model. At the same time, the MAPE of the multi-channel LSTM
model is improved by 63.7% compared to the baseline.
Chinomona et al. (2020) proposed a recurrent neural network-
long-short-term memory (RNN-LSTM) model to select the best
subset, and use a partial charge/discharge data set to predict
battery RUL performance. The RMSE is 0.00286 and the MAE is
0.00222. Sun et al. (Sun et al., 2019) proposed a method for hybrid
prediction of battery RUL based on a particle filter (PF)-based
extreme learning machine (ELM) model. The absolute error of
RUL predicted by the PFELM algorithm from the 50th cycle is 0,
which has a good prediction effect. Gou et al. (2020) proposed a
hybrid integrated data-driven battery SOH estimation and RUL
prediction method based on ELM and RVFL networks, using a
nonlinear autoregressive structure to reduce RUL prediction
errors, and designing an uncertainty management method
based on bootstrap To quantitatively evaluate the RUL
prediction interval. Compared with the latest learning
algorithms, this method has smaller prediction errors and
better performance.

Others
Fan et al. (2019) used the Forgotten Online Sequential Extreme
Learning Machine (FOS-ELM) to construct an algorithm and
combined the Hybrid Gray Wolf Optimizer (HGWO) algorithm
and attention mechanism to detect SOC and predict RUL. Use
Variant Mode Decomposition (VMD) to denoise the original
data. The RMSE of this method can reach 0.0121. Ma et al.
(2020b) combined the transfer learning method of an example
with a deep learning method called stacked denoising
autoencoder (SDA). The transferability measurement method
based on average Euclidean distance-based (AED) selects the
battery most similar to the target battery from the historical test
database as the reference battery. Then, its data is used to train a
prediction model based on SDA to estimate the RUL of the target
battery. The proposed optimization method can shorten nearly

FIGURE 4 | LSTM-based RNN structure.
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more than 30% of the test cycles on average. Yang et al. (2020b)
proposed a gradient boosting regression tree (GBRT), which is
used to model complex nonlinear battery dynamics and predict
battery lifetime by extracting various battery characteristics. The
absolute average percentage error is about 7%. Wang and Mamo
(2020) proposed the gradient enhancement regression (GBR)
model of the ABC algorithm to analyze the degradation behavior
of prismatic elements. For the four invisible data sets, the MAPE
of this model is 0.70, 0.62, 0.87, and 0.46%, respectively. The
prediction errors are 0.18, 0.21, 0.21, and 0.17%, respectively,
which can reliably predict prism cells by RUL.

Wang et al. (2020b) proposed an LRD-based FBM model-
based Li-ion battery RUL pre-diction method and optimized the
H of the prediction model through the Fruit-fly Optimization
Algorithm (FOA). The parameters of the Fractional Brownian
Motion (FBM) model are estimated by maximum likelihood
estimation (MLE). And use an FOA to optimize the Hurst
exponent (H). Xu et al. (2021) extracted health indicators
based on the partial charge voltage curve of cells. And based
on the capacity data in the moving window, a linear aging model
is constructed to predict battery remaining useful life, combined
with Monte Carlo simulation to generate prediction
uncertainties. Li et al. (2020b) predicted the RUL of the
engineering system by developing the most suitable meta-
learner for both accuracy and diversity as two conflicting
goals. The selection of meta-learners follows a multi-objective
evolutionary algorithm called non-dominated sorting genetic
algorithm-II to balance two conflicting goals in terms of

accuracy and diversity. Before inputting, select sensor signals,
normalize them in two data sets and process them through the
long-term and short-term feature extraction strategy in the
C-MAPSS data set. The RMSE of the C-MAPSS dataset
increased by 2.215, and the average score increased by 1,617.6.
The RMSE of the Li-ion battery data set increased by 5.45 on
average.

Summary
The comparison of machine learning methods parameters is
shown in Table 1.

As shown inTable 1, eachmethod in the table is improved and
fused in different degrees based on the traditional algorithm. In
addition, the proportion of training data is less than 60% of the
total life cycle. The maximum prediction error is 3.21%. The
average training period is 52.43%. The average error is 1.3684%.
The input feature vector of machine learning is clear and
accurate, and the amount of training period data required is
relatively small.

ADAPTIVE FILTER METHODS

The adaptive filter is a digital filter, and its coefficient changes
with the target to make the filter converge to the best state
(Ahwiadi and Wang, 2019). The optimization criterion is the
cost function, and the most common is the root mean square of
the error signal between the output of the adaptive filter and the

TABLE 1 | The comparison of machine learning methods parameters.

No MAE
(%)

Input Training period in
percentage of

lifetime

Improved

El Mejdoubi et al.
(2019)

2.19 Cycle number Cycle time Not mentioned The NN model’s parameters are recursively updated by the bat-based particle
filter

Zhang et al.
(2019c)

1 The extracted capacities from six
voltage ranges

60% Battery state of health was estimated using a feature extraction-based method
based on the charging voltage curve

Zhou et al. (2020a) 2.46 Capacity 54% Combined causal convolution and dilated convolution techniques
Wang and Mamo
(2018)

1.01 Capacity 48% Combined support vector regression and differential evolution
Cycle
Voltage
Current

Ben Ali et al. (2020) 0.0255 Length (time) of each cycle 48% The quantum-behaved particle swarm optimization is proposed to define
reliably the incremental support vector regression parametersTerminal voltage

Current in the charger
The voltage of the charge
Temperature
Output current

Wang et al.
(2019a)

0.27 Length (time) of each cycle 40 and 50% Combined artificial bee colony (ABC) and support vector regression (SVR)
Terminal voltage
Current in the charger
The voltage of the charge
Temperature
Output current

Li et al. (2019b) 3.21 Intrinsic mode functions 57% Combined the empirical mode decomposition algorithm and long-short-term
memory and Elman neural networks

Liu et al. (2021) 0.6 The current and historical capacity
vector

50% Combined the long short-term memory (LSTM) and the Gaussian process
regression (GPR)

Gou et al. (2020) 1.55 Voltage Current Temperature 50% Combined ELM and RVFL network
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desired signal (Zhang et al., 2018b). When you change the
characteristics of the input data, the filter adapts to the new
environment by generating a new set of coefficients for the new
data (Cadini et al., 2019; Liu et al., 2020c). The adaptive filter can
make an early prediction of the system state based on the
confidence interval. For PF-based methods, the pdf of these
states ap-proximates a large number of particles (Pugalenthi
and Raghavan, 2018). However, for PF-based methods, particle
degeneracy is a common phenomenon, and most particles have
negligible weights after several iterations (Guha and Patra, 2018b;
Kim et al., 2021).

Improved Kalman Filtering Algorithms
The Kalman filter algorithm is essentially a data fusion algorithm,
which fuses data with the same measurement purpose, from
different sensors, and with different units to obtain a more
accurate target measurement value. The biggest advantage of
the Kalman filter is that the amount of calculation is small, and
the state at the previous moment and possible measurement
values can be used to obtain the optimal estimation of the state at
the current moment. Various optimized Kalman filter methods
improve the traditional methods in algorithms or parameters to
enhance performance. Li et al. (2019c) proposed an integrated
hybrid model to predict the RUL of Li-ion batteries through
outlier identification. Based on the UKF model and improved by
the isolation forest algorithm to obtain the final prediction result.
The RMSE of this method can reach 0.0064499. Song et al. (2018)
proposed an iterative update method to improve the long-term
prediction performance of battery RUL prediction. First, when
RVM outputs a new estimator, it will use the KF to optimize the
estimator through a physical degradation model. Then, this
optimized estimator is added to the training set as an online
sample, and the RVMmodel is retrained, and then the coefficient
matrix and correlation vector can be dynamically adjusted for the
next iteration prediction.

Xue et al. (2020) established a double exponential state-space
model to describe the degradation of lithium batteries, and
introduced the adaptive unscented Kalman filter (AUKF)
algorithm to adaptively update the process noise covariance
and the observed noise covariance, and then use genetic
algorithms to optimize the key parameters of SVR to achieve
multiple Step prediction, and introduce the AUKF algorithm to
adaptively update the process noise covariance and the observed
noise covariance. An integrated algorithm combining AUKF and
genetic algorithm optimized support vector regression (GA-SVR)
is formed. The accuracy of the algorithm can reach at least 0.933.
Park et al. (2020) proposed a hybrid prediction method based on
the combination of the kernel adaptive filter (KAF) -based
prediction model and the DGM-based UKF algorithm. Based
on the double Gaussian mixture (DGM) cost function, a robust
KAF algorithm was derived. Understand the mechanism of
capacity reduction and establish a long-term prediction model.
Secondly, a robust UKF algorithm based on the DGM cost
function was developed and then combined with the KAF-
based prediction model. Under the hybrid prediction
framework, the proposed UKF algorithm was used to filter
noisy observations. In Ref. Duong and Raghavan (2018),

Duong and Raghavan (2018) introduced the heuristic Kalman
algorithm, a meta-heuristic optimization method, combined with
particle filtering to solve the problem of sample degradation and
poverty. The maximum RMSE should be 3.9246e-4. Qiu et al.
(2020) proposed the Backward Smoothing Square Root Colony
Kalman Filter (BS-SRCKF). Then the multi-scale hybrid Kalman
filter (MHKF) composed of BS-SRCKF and extended Kalman
filter (EKF) is used for the joint estimation of SOC and SOH. By
transferring the particles in the prior distribution area to the
maximum likelihood area, the improved cuckoo search (ICS)
algorithm is embedded in the standard PF to improve its
performance. Dong et al. (2020a) proposed a new data-driven
Brownian motion model, which uses an adaptive extended
Kalman filter (AEKF) parameter identification method. The
proposed model can update model parameters online and
adapt to uncertain degradation operations. Drift parameters,
system noise covariance matrix, and EKF parameters can be
estimated online adaptively using this method. With the help of
the sliding window adaptive law, the model parameters can be
adjusted online to different degradation speeds (acceleration and
deceleration).

Particle Filtering Prediction Strategies
Particle filtering uses particle sets to represent probability and can
be used in any form of the state-space model. The core idea is to
express the distribution of random state particles drawn from the
posterior probability. Sun et al. (2018) used a combination of
capacitance, resistance, and constant current charging time to
predict the remaining service life with the help of the beta
distribution function. A third-order polynomial model is used
to fit the battery life degradation process, the PF algorithm is used
to predict the remaining service life, and then the probability
density function of the remaining battery life is provided. By
comparing the prediction error of RUL and STD, it can be found
that the RUL prediction of the 500th cycle is more accurate than
the 400th cycle. Chang and Fang (2019) combined a PF and a
relevance vector machine (RVM) to propose a hybrid prediction
scheme with uncertainty evaluation capabilities. This hybrid
method can obtain prediction uncertainty while predicting the
degradation process.

Pugalenthi et al. (2020) proposed a piecewise model to capture
the two-phase degradation trend including linear and exponential
models. The proposed model is incorporated into the particle
filter framework to predict the degradation trajectory of the
battery. The proposed framework may be suitable for online
prediction of slowly degrading systems and can explicitly and
automatically estimate the moment of turning from one
mechanism to another. Yang et al. (2019) proposed a semi-
empirical model based on the relationship between CE and
battery degradation. The proposed model effectively captures
the convexity of the degradation curve and shows better
goodness of fit than the commonly used square root time
model. The PF-based method effectively tracks the model
parameters, and the estimation error quickly converges to
within 0.5%.

Khodadadi Sadabadi et al. (2021) developed a technique based
on an electrochemical model that can estimate the SOH of LMO-
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NMC batteries using simulated in-situ vehicle data. The
composite SOH metric derived from the estimated enhanced
single particle model (eSPM) parameters is used to design the
RUL predictor based on the PF. Based on the features extracted
from the charging process by the dynamic Bayesian network
(DBN), Dong et al, (2020b) used a PF inference algorithm to
perform battery SOH estimation and RUL prediction. The
extension of the DBN-PF method with incomplete battery
operating characteristic information applies to various
practical situations. Song et al. (2017) proposed a hybrid
method of the IND-AR model and the PF algorithm. Non-
linear degradation factors and iterative parameter update
methods can improve long-term prediction performance. The
capacity prediction result is used as the measurement function of
the PF algorithm. The nonlinear degradation factor can make the
linear AR model suitable for nonlinear degradation estimation.
The predictor will continue to iterate until the capacity reaches
the failure threshold to calculate the RUL value.

Zhang et al. (2019d) developed a fusion technology composed
of a correlation vector machine and a PF. Based on the fusion
technology, the training data can be reduced to 30% of the entire
degraded data. The Monte Carlo (MC) method is used as a
benchmark to verify the predictive performance of the PF to
calibrate the particle number of the PF and the model noise level.
Within the predicted range of 560 cycles, the calibrated PF is 18
cycles ahead of the actual value to predict the failure time. Chen
et al. (2020a) proposed an improved RUL prediction method by
combining line-ar optimization resampling particle filter
(LORPF) with sliding window gray model (SGM). The relative
error of SGM-LORPF under constant current discharge
conditions is within 7.20%, and the relative error under
dynamic current discharge conditions is within 2.75%, both of
which can achieve accurate RUL prediction. The PF program
diagram is shown in Figure 5.

Sun et al. (2021) proposed a hybrid method using UPF and an
optimized multiple kernel relevance vector machine
(OMKRVM). After initial estimation and CEEMD
reconstruction through the UPF model, the OMKRVM

algorithm is used to provide predictive information for the
future trend of residual evolution. According to the
OMKRVM model, the initial estimate is corrected by the
prediction trend of residual evolution. Zhang et al. (2018c)
proposed a UPF algorithm based on linear optimized
combined resampling (U-LOCR-PF) (i.e., U-LOCR-PF
algorithm). By using discarded particles and creating new
particles, the U-LOCR-PF algorithm can increase the diversity
of particles. Dong et al. (2018) based on Brownian motion (BM)
degradation model and PF online short-term SOH estimation
and long-term RUL prediction. The long-term RUL prognosis
has a smaller RMSE rather than 25% of all cells. Compared with
GPR, this method has better performance, simpler topology, and
more stable prediction results.

Improved Particle Filtering Algorithms
Many methods optimize the algorithm based on the traditional
particle filter method so that its performance is greatly improved.
In Ref. Wu et al. (2019), El Mejdoubi et al. (2019) based on the
model of Rao-Blackwellization particle filter, a prognostic model
of Li-ion battery considering battery aging conditions is
proposed. The filter can estimate the posterior value of the
aging index and predict RUL. The RUL pre-diction using the
proposed prediction model shows a maximum relative error of
6.64%, which is relatively low compared to 14.3% when using the
simple particle filter prediction model. Yang et al. (2019)
proposed a method for predicting the RUL of non-linear and
non-Gaussian systems of Li-ion batteries based on Gauss-Hermit
particle filter (PDF). Based on the multi-scale extended Kalman
filter method to jointly estimate the SOC and SOH on a dual time
scale, GHPF was developed to update the parameters of the
capacity reduction model in real-time and predict the RUL of
Li-ion batteries.

Zhang et al. (2020a) proposed an innovative F-distribution PF
and Kernel Smoothing (FPFKS). The weight of the particles is
dynamically updated by the F kernel, and a first-order
independent Markov capacity degradation model is
established. Also, the kernel smoothing algorithm is integrated

FIGURE 5 | Prediction flow chart based on Particle filter algorithm.
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into the PF, so that the parameter variance of the capacity
reduction model remains unchanged. The proposed method
has low computational complexity and is suitable for online
pre-diction.

Chu et al. (2020) used the NMC-LMO chemical method to
develop a random prediction model for the capacity loss and
remaining service life of Li-ion batteries. The estimator uses
particle filters to develop an equivalent circuit battery model,
establishes a random prognostic model, and validates it on 11
experimental data units and 250,000 comprehensive data points.
The random model can predict a capacity loss with an RMSE of
less than 1% and an RUL with an RMSE of 1.6 kAh.

Chen et al. (2020b) proposed a second-order central difference
particle filter (SCDPF). By optimizing the importance of the
probability density function, the particle phenomenon of particle
degeneracy can be solved. The maximum error and the RMSE of
the SCDPF fitting method are very small, and the minimum
values are 0.006102 Ah and 0.001599. Cong et al. (2020a)
proposed an improved method for predicting the RUL of Li-
ion batteries using an im-proved UPF Li(NiMnCo)O 2 cathode,
to deal with the problem of capacity decay curve capacity diving
in the future. The model includes a segmented processing
technique that uses inflection point inspection and system
noise sampling in the Gamma distribution. The improved
UPF flowchart is shown in Figure 6.

Chen et al. (2020c) used a novel FRGM to update the state
transition equation in UPF and used UPF to infer the indicator
trend and realize RUL prediction. Developed an innovative
Fractional Gray Model (FRGM) UPF framework. The absolute
error of the FRGM-UPF frame does not exceed ten cycles. Zhang
et al. (2018c) proposed an improved PF algorithm based on the

UPF of linear optimization combined resampling (U-LOCR-PF).
On the one hand, the UKF is used to generate the proposal
distribution as an important function of particle filtering. On the
other hand, the linear optimization combined resampling
(LOCR) algorithm is used to overcome the lack of particle
diversity. In Ref. Wang et al. (2016) first constructed a state-
space model of Li-ion battery capacity to evaluate the capacity
decline. Then, the spherical petri dish particle filter (SCPF) was
introduced to solve the state-space model. A predictive method
was formed to predict the RUL of Li-ion batteries. The main idea
of SCPF is to use a Kalman filter based on spherical culture
integration to provide the important function of a standard PF.
Once the state-space model is determined, the state-space model
is extrapolated to the specified failure threshold to infer the RUL
of the Li-ion battery.

Others
Yan et al. (2017) proposed an online model parameter adaptation
scheme, which is implemented by the recursive least square
method with a forgetting factor. The uncertainty of the RUL
prediction can be managed by adjusting the model noise through
short-term prediction and correction loops. Long et al. (2020)
proposed a Li-ion battery RUL estimation method based on
improved particle swarm optimization (PSO) and the
technique for order preference by similarity to ideal solution
(TOPSIS). Use the moving average filter (MAF) to perform
battery raw data filtering to obtain a smooth battery life
decline curve. Jiao et al. (2020) proposed a new PF framework
based on conditional variational autoencoder (CVAE) and
reweighting strategy to alleviate degeneracy problems. Cong
et al. (2020b) proposed a hybrid method considering error

FIGURE 6 | Prediction method based on Improved UPF algorithm.
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correction to predict the RUL of Li-ion batteries with reduced
capacity. The improved empirical capacity attenuation model is
combined with the improved UPF tracking to obtain the
prediction results. Based on the error sequence prediction of
the Gaussian Process Regression (GPR) algorithm, the error
sequence of the fully integrated empirical mode decomposition
(CEEMD) algorithm is decomposed into the data-driven part.
The average absolute percentage error of predicting battery
capacity degradation does not exceed 0.4%. Based on the
electrochemical mechanism of capacity decay, Liu et al.
(2019b) proposed an improved degradation model for Li-ion
batteries, which takes into account the influence of circulating
current. A genetic algorithm is applied to identify the inaitial
values of model parameters. A data-driven framework based on
particle filters is also designed to track changes in model
parameters and states during the cycle. For RUL predictions,
RMSE results are less than 40 cycles, and MAE results are less
than 35 cycles, which is less than 8% of its cycle life.

Summary
The comparison of adaptive filter method parameters is shown in
Table 2.

As shown in Table 2, the adaptive filtering method combines
with other methods to improve the accuracy based on the
traditional method. The maximum proportion of training data
is 80% of the total life cycle. The maximum prediction error is 5%.
The average training period is 57.71%. The average error is
2.6121%. The training period is relatively long. The input
signal of the entire prediction algorithm is more complicated.

STOCHASTIC PROCESS METHODS

Stochastic process methods are based on statistical theory and
combined with other mathematical principles (Sierra et al., 2019).
Statistics-driven methods are generally divided into three
categories: bayesian estimation, GPR, and wiener process

(WP). GPR is a data-driven method proposed by Williams
and Rasmussen (Wang et al., 2020c). It is a new type of
machine learning method based on Bayesian theory and
statistical learning theory (Wen et al., 2018).

A battery model based on the Thevenin model is used, taking
into account its advantages of low error, long-term testing, and
accounting for polarization effects and transient analysis for
power battery charging and discharging. The Kalman filter
algorithm effectively reduces the influence of nonlinear
equations and successfully realizes the SOC estimation of the
lithium battery at the hole. The experimental results are more
accurate, the experimental steps are simple and convenient, and
the algorithm complexity is moderate. It has a certain reference
value for the rational use and distribution of current power
lithium batteries. However, in this method: the use of EKF will
inevitably introduce linearization errors if the linearization of the
battery is not established. Using this algorithm will cause the filter
performance to drop so that the result will diverge, so if you want
to improve the accuracy and avoid linearization errors, you need
to consider other algorithms. Moreover, the charge-discharge
efficiency η itself is advanced by the charge-discharge experiment,
but the current of the power lithium battery is irregular when it is
applied actually, which may exceed the set data and the estimated
range in the experiment and bring errors.

Bayesian estimation requires the use of posterior prediction
distributions for predictive inference, predicting the distribution
of new, unobserved data points (Zhang et al., 2020b; Karimi Pour
et al., 2021). Instead of a fixed point as a prediction, return the
distribution of possible points (Wang et al., 2020d; Downey et al.,
2019). GPR is suitable for dealing with complex regression
problems, such as high dimensions, small samples, and
nonlinearity (Johnen et al., 2020). WP is a typical random
process, which belongs to the so-called independent
incremental process. It starts with the theory and application
of random processes (Eleftheroglou et al., 2019; Pang et al., 2021).
WP can describe not only the monotonic degradation of
equipment performance but also the non-monotonic

TABLE 2 | The comparison of adaptive filter method parameters.

No MAE
(%)

Input Training period in
percentage of

lifetime
(%)

Improved

Song et al.
(2018)

3.12 MacKay iterative learning algorithm 80 Fusing the RVM model and the KF algorithm

Qiu et al. (2020) 4 Backward smoothing recursive operation 70 Improved cuckoo search (ICS) algorithm is embedded in the standard
particle filter (PF)

Chen et al.
(2020c)

1 Not mentioned 42 The unscented particle filter (UPF) based on linear optimizing
combination resampling (U-LOCR-PF)

Chen et al.
(2020a)

2.75 A linear optimization combination 60 Linear optimization resampling particle filter (LORPF) with the sliding-
window gray model (SGM)

Ma et al.
(2019b)

5 Initial priority probability density 60 Optimized multiscale extended Kalman filter

Zhang et al.
(2018c)

1.9 The Monte Carlo method 42 Fusing linear optimizing combination resampling (U-LOCR-PF) and
unscented Kalman filter (UKF)

Cong et al.
(2020a)

0.515 State matrix and covariance matrix
Gamma distribution

50 Using Savitzky-Golay filtering
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degradation of equipment (Changhao et al., 2020; Hu et al., 2018;
Xiaowei et al., 2019). The RUL prediction framework of the
random process method is shown in Figure 7.

Bayesian Estimation
The Bayesian estimation uses the Bayes theorem to combine new
evidence and previous prior probabilities to obtain new
probabilities. It provides a method for calculating the
probability of a hypothesis, based on the prior probability of
the hypothesis, the probability of observing different data under a
given hypothesis, and the observed data. Mosallam et al. (2016)
proposed a two-stage data-driven RUL prediction method. The
data-driven prediction method based on the Bayesian method
can directly predict the remaining service life. In the offline phase,
the unsupervised variable selection method is used to find
variables that contain information about degradation behavior.
In the online stage, the method uses the k-nearest neighbor
classifier as the RUL predictor variable. Zhang et al. (2018d)
proposed a novel Bayesian reliability analysis framework, which
combines binary degradation data and life data. Combining the
Bayesian method and Markov chain Monte Carlo (MCMC)
simulation, the limited bivariate degradation data is integrated
with the life data of other similar RLBs. Then perform reliability
assessment and RUL prediction for PHM. The Bayesian
nonparametric method of Richardson et al.

Tang et al. (2019a) produced technical novelty by
appropriately using model migration technology to solve the
battery problem. In the presence of noise measurement and
modeling errors, the Bayesian Monte Carlo algorithm is

applied to health prediction tasks. Based on 30 cycles of
training data, the RMSE of the proposed algorithm is within
2.5%, while using only five cycles of data, it is within 5%. Liu et al.
(2019c) proposed a deep learning integrated prediction method
with uncertainty management based on Bayesian model
averaging and long short-term memory network. The
proposed BMA-LSTMN method en-sembled LSTMN sub-
models trained from different sub-datasets and its accuracy
is 0.923.

Tang et al. (2019b) proposed a migration-based framework for
battery modeling, in which the effects of temperature and aging
are regarded as uncertain factors. An accurate model of the new
battery was established and migrated to the degraded battery
through the Bayesian Monte Carlo method. For temperature
changes as high as 40°C and capacity degradation as high as
20%, the typical voltage prediction error can be limited to
20 mV. Based on the accelerated aging model, Tang et al.
(2019c) established a normal speed aging model through the
migration process, and the migration factor was determined by
the Bayesian Monte Carlo method and hierarchical resampling
technology. The RMSE limit of the predicted aging trajectory is
1%, while the cyclic aging data is only 25%. Zhao et al. (2020)
proposed an update method for the Li-ion battery RUL
prediction model based on Bayesian simulator evaluation
theory. Developed some uncertainty quantification methods,
used a simulator to evaluate the statistical structure of the
theory, and incorporated the bias function and the
measurement error into the Bayesian model update in the
form of GP. The modular Markov chain Monte Carlo

FIGURE 7 | The framework of RUL prediction for stochastic process methods.
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method is used to update the model with multiple uncertain
parameters. Because uncertainty is systematically considered in
the inference process, reliable RUL predictions can be provided.

Gaussian Process Regression
Gaussian process regression is suitable for dealing with complex
regression problems such as high dimensionality, small samples,
and nonlinearity. Compared with neural networks and support
vector machines, this method has the advantages of easy
implementation, adaptive acquisition of hyperparameters, and
probabilistic output. Yu et al. (2018) proposed a Li-ion battery
RUL prediction method combining the wavelet denoising (WD)
method and mixed Gaussian process function regression
(HGPFR) model. Remove the original data noise. For the data
repository, the relative error of most predictions is less than 7%.
Compared with the same value of 6.7% of the HGPFR model, the
confidence interval of the hybrid method for predicting RUL is
95%, and an accuracy of 2.2% can be obtained. Li et al. (2020c)
proposed a new multi-time scale framework to calculate short-
term SOH and predict long-term RUL. By analyzing part of the
incremental capacity, four important features are extracted and
input into Gaussian process regression. The nuclear modified
Gaussian process is used to establish a short-term battery aging
model, which is combined with nonlinear regression to predict
the battery SOH. The long-term RUL predicted MAE and RMSE
are less than 26 cycles. The error frequency of battery RUL is
mainly concentrated in the range of 5–20 cycles. Tagade et al.
(2020) proposed a matrix-variate Gaussian process algorithm to
monitor the SOH and EOL predictions of Li-ion batteries. The
Gaussian process is used to model the mapping between layers,
and the matrix variable Gaussian distribution is used tomodel the
correlation between nodes in a given layer. The algorithm
predicts that the coefficient of determination for capacity and
service life is greater than 0.9, and the average absolute error is
less than 0.1 Richardson et al. (2019) using Gaussian process
regression can predict the capacity attenuation under various
usage conditions. In the best case, the standardized root means
the square error is 4.3%.

Hu et al. (2020b) proposed a double Gaussian process
regression model to predict the SOH during the entire life
cycle of the battery pack and the RUL at the end of the life
cycle. For RUL prediction, MaAE, MeAE, and RMSE are 2 cycles,
1 cycle, and 1 cycle respectively. The calculation time required is
less than 5 s. Li et al. (2019e) proposed a new method of synergy
between partial incremental capacity and Gaussian process
regression to predict the health of the battery based on the
double Gaussian process regression model. Using four
different cycles of testing, the short-term SOH estimates that
both MAEs and RMSEs are not more than 1%, and the long-term
RUL predicts that both MAEs and RMSEs are within 23 cycles.
Liu et al. (2019a), Liu and Chen (2019) proposed an RUL
prediction method combining indirect health indicators (HIs)
and multiple GPR models to achieve single-point, different-
period RUL prediction. On the one hand, the three HIs
extracted from the CC and CV charging process can
effectively characterize the battery SOH. On the other hand,
the fusion of the kernel function and multi-dimensional input

is used to optimize the ground-penetrating radar model. For the
long-term RUL prediction of the battery, the RMSE and MAE are
no more than 10 cycles and 6 cycles, respectively.

Kang et al. (2020) proposed an RUL prediction method based
on Fuzzy Evaluation Gaussian Process Regression (FE-GPR).
Combined with the characteristics of the GPR method, the
observation data is preprocessed through fuzzy evaluation. Use
the Gravity Search Algorithm (GSA) and historical data to
effectively combine to optimize the classification node. The
GSA-AS method has strong data extraction capabilities and can
more accurately realize RUL prediction. Moreover, GPR and finite
element methods have effectively improved the accuracy of high-
level small sample data prediction, and the small sample regression
analysis value reached 0.739. Yu (2018) proposed a prediction
method based on the combination of multi-scale logistic regression
(LR) and GPR. Empirical model decomposition is used to extract
the global degradation of battery SOH, local regeneration effects,
and battery capacity time series fluctuations. An LR model with a
variable moving window is provided to capture the overall
degradation trend. A ground-penetrating radar with a lag vector
can recursively estimate local regeneration and fluctuations. This
design captures the degradation behavior of Li-ion batteries over
time and reduces the impact of local regeneration phenomena.

Wiener Process Model
The Wiener process is a typical random process belonging to an
independent incremental process. In any finite time, the change of
the Wiener process obeys a normal distribution, and its variance
increases linearly with the length of the time interval. Liao et al.
(2021) established a multiphase degradation model with jumps
based on the Wiener process to describe the multiphase
degradation model. Under the Bayesian framework, prediction
includes two stages, the offline stage, and the online stage. Feng
et al. (2016) proposed a method that can use online tag data (TCS
and TVS)to predict the RUL of Li-ion battery packs online without
the need for additional capacity measurement. Based on the two-
dimensional Wiener process, damage marking model and an RUL
prediction model is established. Li et al. (2020d) proposed a
sequential Bayesian method to update the random drift
parameters in the Wiener process model. The historical
degradation measurement is used to determine the initial model
parameters based on the maximum likelihood estimation (MLE)
method. Finally, the analytical expression of RUL distribution is
derived based on the concept of the first passage time (FPT).

Wang et al. (2019b) established a general degradation model
based on the nonlinear Wiener process to simultaneously
characterize the inter-unit change, time change, measurement
change, and nonlinearity in RUL estimation and derived the
relevant RUL distribution in an explicit form. Shen et al. (2021)
established a new state-space model and then introduced the UPF
algorithm to post-update the model parameters and RUL
distribution. The two-stage Wiener process model can well
describe the degradation behavior of Li-ion batteries in
different degradation stages and has high prediction accuracy
and robustness. An odor-less particle filter algorithm is
introduced to use the latest online measurements to adaptively
update all the parameters in the model and the remaining service
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life allocation of Li-ion batteries. Zhai and Ye (2017) proposed a
new adaptive Wiener process model, which uses Brownian
motion for adaptive drift. A model estimation method based
on maximum likelihood estimation is proposed, and RUL
prediction is made based on this model. Based on KF
technology, the update formula of implicit adaptive drift is
derived, and the explicit distribution function of RUL is obtained.

Others
Zhang et al. (2020c)c proposed a prediction framework based on
nonlinear drift score Brownian motion and multiple hidden state
variables. All the parameters of the nonlinear function are defined as
the specific hidden state variables of the Li-ion battery degradation
model, and all the state measurement values are used to estimate the
distribution of multiple hidden state variables after the fact through
the tasteless particle filter algorithm. Zhang et al. (2019c) used a
method based on feature extraction to estimate the state of health of
the battery based on the charging voltage curve. The RLS method
with variable forgetting factor can predict accurate RUL in the early
stages of life, and the calculation time for each RUL prediction is
about 0.3 s. After 300 cycles, the prediction error of most cycles is less
than 10, and the 95% confidence interval of each prediction covers
about 20 cycles. Zhang et al. (2020c) proposed an SLEmodel based on
historical CM data and operating data, which is used for the MLE
framework and the SMMmodel of the operating process with elastic
degraded model parameter estimation. Consider the recovery time
and the time dependence of the recovery time and random
properties. The two-state semi-Markov model (SMM) with PHT
distribution interval time has been used to model the random
operation process. Zhang et al. (2019e) developed an RUL
prediction method based on the Box-Cox transformation (BCT)
andMonteCarlo (MC) simulation. Thismethod can be implemented
independently of offline training data. This method can reduce the
acceleration time of the tested cells by 70–85%. Compared with the
particle filtration method, it can save one to 3months of
acceleration time.

Zhou et al. (2016a), Zhou and Huang (2016) proposed a new
method combining empirical mode decomposition (EMD) and

autoregressive integrated moving average (ARIMA) models.
EMD is used to decouple the global deterioration trend and
capacity regeneration from the SOH time series and use it in the
ARIMA model to predict the global deterioration trend and
capacity regeneration respectively. Next, all the individual
prediction results are added to obtain the comprehensive SOH
prediction from which RUL is obtained. Ma et al. (2021)
proposed a test optimization method based on prediction. The
hybrid transfer learning method can best select the trained
predictive model of historical test data and other formulas to
help build a model of the target battery. With different
formulations and test stop thresholds, it can reach an average
accuracy of 89.18% and save 0.7–5.5 months.

Zhou et al. (2020b) developed a remaining service life
estimation model based on k-nearest neighbor regression. The
differential evolution technique is used to optimize the
parameters in the estimation model. The average error of the
remaining service life estimation result obtained by the developed
method is 9 cycles, while the error of the best estimation is only 2
cycles, and the relative error is 0.5%. All these estimates are
completed within 10 ms. Compared with particle filtering and
support vector regression, the developed method reduces the
estimated average error by 83.14 and 89.79%, respectively.

Zhou et al. (2019) proposed a new error correction gray
prediction model. The proposed method uses the error
correction factor ψ to eliminate the inherent error of the
original grayscale model (GM) while retaining the original
simplicity and rapid prototyping capabilities. Compared with
the traditional GM, the accuracy can be improved by at least
11.7%, and for the optimized GM, the accuracy can reach 9.2%.
Shen et al. (2019) proposed a method for predicting the
remaining service life of Li-ion batteries based on a
stochastic model. A new nonlinear degradation model was
established based on the diffusion process to characterize the
degradation process of Li-ion batteries. Use the maximum
likelihood estimation method and historical battery degradation
data to estimate the unknown parameters of the model.
Beganovic and Söffker (2019) proposed a method to estimate

TABLE 3 | The comparison of stochastic process methods parameters.

No MAE
(%)

Input Training period in
percentage of

lifetime
(%)

Improved

Yu et al. (2018) 3.2 Wavelet De-Noising 50 Combined wavelet de-noising (WD) method and the hybrid Gaussian process
function regression (HGPFR) model

Wang et al.
(2019b)

1.6 State-space equation 70 Using a parameter estimation method based on the expectation-maximization
algorithm

Zhang et al.
(2020c)

0.8 Lithium-ion batteries
degradation data

42 Using the nonlinear-drifted fractional Brownian motion

Zhang et al. (2017) 1.43 State-space equation 50 Using a flexible two-state semi-Markov model (SMM) with phase-type distributed
interval times

Zhou and Huang
(2016)

2.3 State-space equation 80 Combined IND-AR model and PF algorithm

Zhou et al. (2019) 0.5 State-space equation 67 Extrapolating the models with renewed parameters
Shen et al. (2019) 0.5 Leave-one-out cross-

validation
50 A differential evolution technique is employed to optimize the parameters in the

estimation model
Cheng et al. (2020) 0.98 State-space equation 60 A new nonlinear degradation model is established based on the diffusion process
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LIB aging indicators using acoustic emission measurements.
Features selected from acoustic emission (AE) measurements
are considered as model input. The proposed method provides
the possibility of obtaining reliable information about the current
RUL/SOH without needing to understand the basic physical
processes that occur in LIB. Cheng et al. (2020) proposed an
inductive ordered weighted average (iowa) operator based on
verification data, which realized the weight distribution that
changes over time, that is, the V-IOWA operator. By
summing the weighted prediction results of each member
prediction algorithm, the overall prediction result is finally
obtained. In terms of root mean square error, average absolute
error, and average absolute percentage error, it reduced the
prognostic error by 5.08, 6.38, and 4.42%, respectively.

Summary
The comparison of stochastic process methods parameters is
shown in Table 3.

As shown in Table 3, the stochastic process method also
improves the original method to a certain extent. The maximum
proportion of training data is 80% of the total life cycle. The
maximum prediction error is 3.2%. The average training period is
58.63%. The average error is 1.4138%. The input signal is complex
and the training period is relatively long.

COMPARISON

Through the above description, we comprehensively compare the
accuracy of the three methods, the complexity of the input feature
quantity, and the length of the prediction period. According to
the calculation of the average training period and average
prediction error of the three methods, the average accuracy of
machine learning is 32.02% higher than the average of the other
two methods, and the prediction period is 9.87% shorter than the
average of the other two methods. The advantages and
disadvantages of each method are summarized in Table 4.

It can be seen from the above comparison that the application
of machine learning to predict RUL has the advantages of high
accuracy, simple input, and a relatively short training period. In
short, the advantages of the artificial intelligence methods are that
it does not require a data model, the algorithm is simple and
feasible, and the algorithm is the best solution for nonlinear
systems. The advantage of the filtering technique method is that it
can be used in any form of the state-space model. The
disadvantage is that it requires a data model (state-space

model). The advantage of the stochastic process method is
that it considers the time dependence of the degradation
process and describes the uncertainty of predictable results.
The disadvantage is high computational complexity and many
uncertain factors.

CONCLUSION

This paper classifies several adaptive Li-ion battery aging models
proposed in the literature. Specific criteria are defined to evaluate
the accuracy and computational cost of such models. According to
the analysis of the results in the research literature and publications
according to these standards, machine learning is considered to
be the most suitable algorithm, with relatively robust and
computationally acceptable predictive ability. The average
accuracy of machine learning is 32.02% higher than the average
of the other two methods, and the prediction period is 9.87%
shorter than the average of the other two methods.

Driven by machine learning algorithms and artificial
intelligence technology, data-driven modeling has made
encouraging progress. However, machine learning algorithms
rely on large amounts of data, and improving the accuracy
and performance of predictions will increase computing time.
The continuous changes in the internal and external
environmental conditions of the battery and the generalization
problem of the prediction method itself are still difficult to
accurately predict the remaining life in practical applications.
In the future, prediction accuracy can be improved by integrating
cloud computing platforms and machine learning technology. At
the same time, this technology can make predictions without
prior knowledge of the system, reducing the data dependence of
prediction methods. Data-driven machine learning based on big
data and cloud computing platforms seems to be the most
promising method for advanced battery modeling in the future.
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