57 research outputs found

    Computing Semantic Representation: Towards ACG Abstract Terms as Derivation Trees

    Get PDF
    International audienceThis paper proposes a process to build semantic representation for Tree Adjoining Grammars (TAGs) analysis. Being in the derivation tree tradition, it proposes to reconsider derivation trees as abstract terms (lambda-terms) of Abstract Categorial Grammars (ACGs). The latter offers a flexible tool for expliciting compositionality and semantic combination. The chosen semantic representation language here is an underspecified one. The ACG framework allows to deal both with the semantic language and the derived tree language in an equivalent way: as concrete realizations of the abstract terms. Then, in the semantic part, we can model linguistic phenomena usually considered as difficult for the derivation tree approach

    XMG : eXtensible MetaGrammar

    Get PDF
    International audienceIn this article, we introduce eXtensible MetaGrammar (xmg), a framework for specifying tree-based grammars such as Feature-Based Lexicalised Tree-Adjoining Grammars (FB-LTAG) and Interaction Grammars (IG). We argue that xmg displays three features which facilitate both grammar writing and a fast prototyping of tree-based grammars. Firstly, \xmg\ is fully declarative. For instance, it permits a declarative treatment of diathesis that markedly departs from the procedural lexical rules often used to specify tree-based grammars. Secondly, the \xmg\ language has a high notational expressivity in that it supports multiple linguistic dimensions, inheritance and a sophisticated treatment of identifiers. Thirdly, xmg is extensible in that its computational architecture facilitates the extension to other linguistic formalisms. We explain how this architecture naturally supports the design of three linguistic formalisms namely, FB-LTAG, IG, and Multi-Component Tree-Adjoining Grammar (MC-TAG). We further show how it permits a straightforward integration of additional mechanisms such as linguistic and formal principles. To further illustrate the declarativity, notational expressivity and extensibility of \xmg , we describe the methodology used to specify an FB-LTAG for French augmented with a unification-based compositional semantics. This illustrates both how xmg facilitates the modelling of the tree fragment hierarchies required to specify tree-based grammars and of a syntax/semantics interface between semantic representations and syntactic trees. Finally, we briefly report on several grammars for French, English and German that were implemented using \xmg\ and compare \xmg\ to other existing grammar specification frameworks for tree-based grammars

    A derivational model of discontinuous parsing

    Get PDF
    The notion of latent-variable probabilistic context-free derivation of syntactic structures is enhanced to allow heads and unrestricted discontinuities. The chosen formalization covers both constituency parsing and dependency parsing. By the new framework, one obtains a probability distribution over the space of all discontinuous parses. This lends itself to intrinsic evaluation in terms of cross-entropy. The derivational model is accompanied by an equivalent automaton model, which can be used for deterministic parsing.PostprintPeer reviewe

    Adjunction in hierarchical phrase-based translation

    Get PDF

    Contributions to the Theory of Finite-State Based Grammars

    Get PDF
    This dissertation is a theoretical study of finite-state based grammars used in natural language processing. The study is concerned with certain varieties of finite-state intersection grammars (FSIG) whose parsers define regular relations between surface strings and annotated surface strings. The study focuses on the following three aspects of FSIGs: (i) Computational complexity of grammars under limiting parameters In the study, the computational complexity in practical natural language processing is approached through performance-motivated parameters on structural complexity. Each parameter splits some grammars in the Chomsky hierarchy into an infinite set of subset approximations. When the approximations are regular, they seem to fall into the logarithmic-time hierarchyand the dot-depth hierarchy of star-free regular languages. This theoretical result is important and possibly relevant to grammar induction. (ii) Linguistically applicable structural representations Related to the linguistically applicable representations of syntactic entities, the study contains new bracketing schemes that cope with dependency links, left- and right branching, crossing dependencies and spurious ambiguity. New grammar representations that resemble the Chomsky-SchĂŒtzenberger representation of context-free languages are presented in the study, and they include, in particular, representations for mildly context-sensitive non-projective dependency grammars whose performance-motivated approximations are linear time parseable. (iii) Compilation and simplification of linguistic constraints Efficient compilation methods for certain regular operations such as generalized restriction are presented. These include an elegant algorithm that has already been adopted as the approach in a proprietary finite-state tool. In addition to the compilation methods, an approach to on-the-fly simplifications of finite-state representations for parse forests is sketched. These findings are tightly coupled with each other under the theme of locality. I argue that the findings help us to develop better, linguistically oriented formalisms for finite-state parsing and to develop more efficient parsers for natural language processing. Avainsanat: syntactic parsing, finite-state automata, dependency grammar, first-order logic, linguistic performance, star-free regular approximations, mildly context-sensitive grammar

    Statistical parsing of noun phrase structure

    Get PDF
    Noun phrases (NPs) are a crucial part of natural language, exhibiting in many cases an extremely complex structure. However, NP structure is largely ignored by the statistical parsing field, as the most widely-used corpus is not annotated with it. This lack of gold-standard data has restricted all previous efforts to parse NPs, making it impossible to perform the supervised experiments that have achieved high performance in so many Natural Language Processing (NLP) tasks. We comprehensively solve this problem by manually annotating NP structure for the entire Wall Street Journal section of the Penn Treebank. The inter-annotator agreement scores that we attain refute the belief that the task is too difficult, and demonstrate that consistent NP annotation is possible. Our gold-standard NP data is now available and will be useful for all parsers. We present three statistical methods for parsing NP structure. Firstly, we apply the Collins (2003) model, and find that its recovery of NP structure is significantly worse than its overall performance. Through much experimentation, we determine that this is not a result of the special base-NP model used by the parser, but primarily caused by a lack of lexical information. Secondly, we construct a wide-coverage, large-scale NP Bracketing system, applying a supervised model to achieve excellent results. Our Penn Treebank data set, which is orders of magnitude larger than those used previously, makes this possible for the first time. We then implement and experiment with a wide variety of features in order to determine an optimal model. Having achieved this, we use the NP Bracketing system to reanalyse NPs outputted by the Collins (2003) parser. Our post-processor outperforms this state-of-the-art parser. For our third model, we convert the NP data to CCGbank (Hockenmaier and Steedman, 2007), a corpus that uses the Combinatory Categorial Grammar (CCG) formalism. We experiment with a CCG parser and again, implement features that improve performance. We also evaluate the CCG parser against the Briscoe and Carroll (2006) reannotation of DepBank (King et al., 2003), another corpus that annotates NP structure. This supplies further evidence that parser performance is increased by improving the representation of NP structure. Finally, the error analysis we carry out on the CCG data shows that again, a lack of lexicalisation causes difficulties for the parser. We find that NPs are particularly reliant on this lexical information, due to their exceptional productivity and the reduced explicitness present in modifier sequences. Our results show that NP parsing is a significantly harder task than parsing in general. This thesis comprehensively analyses the NP parsing task. Our contributions allow wide-coverage, large-scale NP parsers to be constructed for the first time, and motivate further NP parsing research for the future. The results of our work can provide significant benefits for many NLP tasks, as the crucial information contained in NP structure is now available for all downstream systems

    Two characterisation results of multiple context-free grammars and their application to parsing

    Get PDF
    In the first part of this thesis, a Chomsky-SchĂŒtzenberger characterisation and an automaton characterisation of multiple context-free grammars are proved. Furthermore, a framework for approximation of automata with storage is described. The second part develops each of the three theoretical results into a parsing algorithm

    Treebank-based acquisition of Chinese LFG resources for parsing and generation

    Get PDF
    This thesis describes a treebank-based approach to automatically acquire robust,wide-coverage Lexical-Functional Grammar (LFG) resources for Chinese parsing and generation, which is part of a larger project on the rapid construction of deep, large-scale, constraint-based, multilingual grammatical resources. I present an application-oriented LFG analysis for Chinese core linguistic phenomena and (in cooperation with PARC) develop a gold-standard dependency-bank of Chinese f-structures for evaluation. Based on the Penn Chinese Treebank, I design and implement two architectures for inducing Chinese LFG resources, one annotation-based and the other dependency conversion-based. I then apply the f-structure acquisition algorithm together with external, state-of-the-art parsers to parsing new text into "proto" f-structures. In order to convert "proto" f-structures into "proper" f-structures or deep dependencies, I present a novel Non-Local Dependency (NLD) recovery algorithm using subcategorisation frames and f-structure paths linking antecedents and traces in NLDs extracted from the automatically-built LFG f-structure treebank. Based on the grammars extracted from the f-structure annotated treebank, I develop a PCFG-based chart generator and a new n-gram based pure dependency generator to realise Chinese sentences from LFG f-structures. The work reported in this thesis is the first effort to scale treebank-based, probabilistic Chinese LFG resources from proof-of-concept research to unrestricted, real text. Although this thesis concentrates on Chinese and LFG, many of the methodologies, e.g. the acquisition of predicate-argument structures, NLD resolution and the PCFG- and dependency n-gram-based generation models, are largely language and formalism independent and should generalise to diverse languages as well as to labelled bilexical dependency representations other than LFG
    • 

    corecore