-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by Helsingin yliopiston digitaalinen arkisto

CONTRIBUTIONS TO THE THEORY OF
FINITE-STATE BASED GRAMMARS

Anssi YLI-JYR A

Academic dissertation to be publicly discussed, by due igsiom
of the Faculty of Arts at the University of Helsinki, in auitim XII,
on the 20" of June, 2005, at 12 o’clock.

University of Helsinki PUBLICATIONS
Department of General Linguistics No. 38
P.O.Box 9 2005

FIN-00014 University of Helsinki
Finland


https://core.ac.uk/display/14914794?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Author: Yli-Jyra, Anssi M.

Title: Contributions to the Theory of Finite-State Based Lingoi&rammars
Type:Dissertation

Publisher:Department of General Linguistics, University of Helsinki
Address:P.O. Box 9, FIN-00014 University of Helsinki, Finland
Series:Publications of Department of General Linguistics, Unsigrof Helsinki
Number:38

Supervisors:
— Professor Kimmo Koskenniemi
Department of General Linguistics, University of Helsinkinland
— Professor Lauri Carlson
Department of General Linguistics, University of Helsinkinland
Pre-Examiners:
— Professor Kemal Oflazer
Faculty of Engineering and Natural Sciences, SabancitsityeTurkey
— Adjunct Professor Andras Kornai
Budapest Institute of Technology, Hungary
OpponentAndras Kornai
Custos:Kimmo Koskenniemi
Representative of the Faculty:
— Professor Arvi Hurskainen
Institute for Asian and African Studies, University of Hels, Finland

First printing, June 2005
Copyright(© 2005 Anssi Yli-Jyra

Typeset by the author iRTgX. The figures were drawn witKfig, xpic, graphvizand

DGgraph

The contributed articles have been included to the papknrsion with permission
from their respective publishers. Springer owns the caghrof the article published
in the series of Lecture Notes in Computer Science. Porfabeiment Format (PDF)
is a trademark of Adobe Systems INE=STsoftware is owned by Xerox Corporation.

Fsmlibraryis owned by AT&T.Eng-FSIGgrammar is owned by Connexor Oy.

ISSN 0355-7170
ISBN 952-10-2510-7 (PDF) — http://ethesis.helsinki.fi
ISBN 952-10-2509-3 (paperback)
Helsinki University Printing House
Helsinki 2005



Abstract

This dissertation is a theoretical study of finite-stateebdagrammars used in natural
language processing. The study is concerned with certaiaties offinite-state in-
tersection grammar¢FSIGs) whose parsers define regular relations betweeacsurf
strings and annotated surface strings. The study focustedollowing three aspects
of FSIGs:

(i) Computational complexity of grammars under limiting parameters In the
study, thecomputational complexitin practical natural language processing is ap-
proached through performance-motivated parameters ootstal complexity. Each
parameter splits some grammars in @gomsky hierarchinto an infinite set of sub-
set approximations. When the approximations are reguiay, $eem to fall into the
logarithmic-time hierarchyand thedot-depth hierarchypf star-free regular languages.
This theoretical result is important and possibly relevargrammar induction.

(i) Linguistically applicable structural representatio ns Related to thdinguisti-
cally applicable representatiortf syntactic entities, the study contains new bracketing
schemes that cope with dependency links, left- and righitdirimg, crossing dependen-
cies and spurious ambiguity. New grammar representati@s¢ésemble thEhomsky-
Schutzenbergerepresentation of context-free languages are presentid study, and
they include, in particular, representations for mildlyntext-sensitive non-projective
dependency grammars whose performance motivated appatigims are linear-time
parseable.

(iif) Compilation and simplification of linguistic constraints Efficient compila-
tion methoddor certain regular operations such as the generalizedatsh are pre-
sented. These include an elegant algorithm that has alteeely adopted as the ap-
proach in a proprietary finite-state tool. In addition to t@npilation methods, an
approach to on-the-flgimplificationsof finite state representations for parse forests is
sketched.

These findings are tightly coupled with each other under tieene of locality. |
argue that the findings help us to develop better, lingwhjioriented formalisms for
finite-state parsing and to develop more efficient parsersdtural language process-

ing.
Keywords: syntactic parsing, finite state automata, dependency geanfirst-

order logic, linguistic performance, star-free regulaprximations, mildly context-
sensitive grammars






Preface

Efficient linguistic communication is our best interfacethe rest of the world. It can
give us a feeling of safety and identity. Meanwhile inefficig in the communication
tends to isolate people from each other, causing misuradetistgs, insecurity and even
wars. Efficient communication is, however, not free. Formegke in the European
Union, where legislative documents are translated intoestmenty official languages,
a large number of professionals are needed in the translatisiness.

Computer-aided human translation and language learniulgl & used to reduce
the economical costs of efficient cross-linguistic comroation. In such systems,
various computerized grammars play a crucial role, andaasihe computationally
efficient grammars have received growing interest durirggl#ist few years. Many
researchers hope to find ways to use various approximatidghote together with
their mathematical idealizations. This work is along tivig lof research.

Acknowledgements

I am especially thankful to Esa Nurro for introducing me tophll at the Seinajoki
Senior Secondary School when | was a 9-year old kid. | wislhaolk Saara Jarvinen
(Kenya), Ritva Lehonkoski, Geoffrey Hunt, Johan Autio, &fatri Saarikoski for help-
ing me to find a linguist within me. My idea of studying compiidaal linguistics arose
in 1980’s when | had accidentally met a Finnish field lingwikiose portable computer
was equipped with a speech analyzer and a lexical databasek tBen, | realized
that computational linguistics is an important instrunfenthe tomorrow’s globalized
society where the living languages have to co-exists irtalifprm.

In 1990, | was a fresh student of computational linguistic$ha University of
Helsinki. Then, during the Pre-COLING tutorials that weieeq in Helsinki, Lauri
Karttunen from Xerox gave a short, but very impressive ihiction to Kimmo Kos-
kenniemi’s two-level model of finite-state morphology. Widater started my full-
time studies after my military service, | studied under thilgnce of professor Kimmo
Koskenniemi. At his department, | withessed the enthusiatthe pioneers of the
Constraint Grammar and Finite-State Intersection Gran{f@aiG).

In mid-1990’s, | was responsible for language technology iproject that pro-
duced morpheme-level aligned bilingual texts for RistiritddoPublishing House. In
the project, | made an attempt to use Tarja Heinonen’s FSiG-ifmish, under the
auspices of Krister Lindén at Lingsoft in 1994. Back theB8|& was very slow in
practice and | also encountered these problems with Firff8® parser. As a reac-

\Y



Vi Preface

tion, | wrote a heuristic, deterministic parser based oralldeinonen’s elegant FSIG
rules in 1993-1994, but its grammar soon became too difftouthaintain because it
was procedural.

Jussi Piitulainen, a co-student of mine, was courageousgmto try alternative
approaches to FSIG parsing, and he told me about his localyshaped automata in
1994. In the wake of his example, | also started to dream of B8l data structures
and ended up with a largely different approach. My earliestla in this thesis is
actually a short paper describing the essentials of theoappr When | had written
it, Kimmo suggested that changing my master’s thesis tapimfbilingual alignment
to finite-state parsing might be advisable, and | was willoglo so. Even now, ten
year after the article, we feel that it still prompts furttetudies. During my early
investigations for this thesis, Atro Voutilainen providia source file for Eng-FSIG
and Pasi Tapanainen made his parser available, and | am rephydedebted to them.

The research behind this Ph.D. dissertation was made edoaifyrpossible by
the Ph.D. scholarship (ref.no. 010529) that | received ftbenlanguage technology
programme of thé&ordic Academy of Advanced Stug@yorFA) for the years 2002 —
2004. | am grateful to Henrik Holmboe in NorFA and Helge Dyfdk their personal
concern and interest in my project. Besides NorFA, | am fuafer the considerable
flexibility of my employer, the Finnish IT Centre for Scien@SC), where my bosses
Leif Laaksonen and Manne Miettinen arranged my researciesea

| am deeply indebted to my two supervisors whose instrustand interest in my
research topic has been a tremendous encouragement andPnefpssor Kosken-
niemi provided a sound, experienced view on finite-staterétlyms and FSIG-related
scenarios. Professor Lauri Carlson’s vast knowledge asetand logic was very useful
when my adventurous ideas needed some pre-evaluation.lsanmdebted to Magnus
Steinby, Matti Nykanen, and Kerkko Luosto for instructimg in their expertise areas.
| am thankful to Lauri Karttunen, André Kempe, and Ronalgka for their help and
reference concerning the restriction operation. | wisthamk G. Pullum, B. Watson,
T. Lager, J. Nivre, A. Dikovsky, A. Joshi, B. Ravikumar, JzBzowski, P. Kolaitis, G.
Morril, J. Kari, S. Yu, A. Maletti, U. Petersen, A. Okhotin, Kindén, K. Heljanko, and
S. Turunen for helpful discussions. | am also thankful formgetings with Maurice
Gross when he still lived.

On a more personal level, | am grateful to Hanna W., Johanparil. Kirsti K.,
Pirkko S., Orvokki H., Fred K., Martti V., Graham W., Matti MJan-OlaO., Martti
N., and Arto A. for their support when | was a student, and toamstudents in KIT,
ESSLLI, SIL and NorFA courses for the shared time.

Finally, my warmest thanks go to my parents and sisters feir telief in me.
Through their loving example, | have been able to developstitrg relationship to
the Highest One, my Heavenly Father. | believe that He hasngime the strength to
complete this work.

Above all, | want to thank my dear wife, Heli, for her infinitafience to stand by
me through my research process and my little sons, Risto @ainal, Jor bearing my
long working days at home, and for their eagerness to pldymé whenever possible.

A.Y.-d.
June 2005



Contents

List of Tables Xi
List of Figures Xiii
List of Acronyms XV
1 Introduction 1
2 Introduction to the FSIG Framework 5
2.1 Background . . . . .. .. 5
2.2 PreviousWork. . . . ... 6
2.2.1 The Original FSIG Grammars . . . . . .. ... ... .... 6
2.2.2 The Original FSIG Representation . . . . ... ... ... .. 6
2.2.3 ParsingAlgorithms . . . . . ... ... .. ... ... .... 7
2.3 Some Design Aspects of the Framework . . . . ... ... ...... 8
2.3.1 Generative or Non-Generative Grammar? . . . . ... .. .. 8
2.3.2 TheAssertions . . .. .. ... ... ... ... .. 9
2.3.3 The Sets Defined by Grammars . . . .. ........... 11
2.3.4 String Encoding of Syntactic Entites . . . .. ... ... .. 12
2.3.5 Layers, Planes and Projections . . . .. ... ......... 13
2.3.6 The Generative Capacity — How to Characterize It . . ... .13
2.3.7 ParsingwithFSIG . ... ... ... ... .......... 14
2.4 Relevance of FSBased Grammars . . . . ... . ... .. ...... 16
2.4.1 CanFS Grammars Be Linguistically Motivated? . . .. .. 16
2.4.2 Importance of Finite-State Based Grammars. . . . . . . .. 18
2.5 The Main Open ProblemsinFSIG . ... ... ............ 18
2.5.1 Computational Complexity and Parsing Strategy . . ..... 18
2.5.2 Linguistic Adequacy . . . ... . ... ... 19
2.5.3 OtherOpenProblems. ... ... ............... 20
3 Complexity Analysis 21
3.1 Orientation . . . . . . . . .. 21
3.1.1 Problem. .. ... .. ... 21
3.1.2 Articles . . . ... 21
3.1.3 OQutline . .. ... ... . 23



viii Contents
3.1.4 PreviousWork . ... .. ... ... ... 23
3.2 Star-Freeness of Eng-FSIG Constraints . . . . . . .. ... ... 27
3.21 Plan . . . . .. e 27
3.2.2 Introduction. . . . .. ... ... .. o 27
3.23 MainResults . . ... ... ... .. .. ... . . 28
324 Relevance . . . . . . . . . e 29
3.25 OtherUsefulResults . . .. ... ... ... ......... 31
3.3 Approximations of Context-Free Grammars . . . ... ... ..... 32
3.3.1 Introduction. . . ... ... . .. ... . 32
332 MainResults . ... .. ... ... ... .. ... .. ... 33
333 Relevance . . . . . . . . . e 35
3.34 OtherUsefulResults . . .. .. ................ 36
3.4 Approximations of Dependency Grammars . . . .. ... ... .. 39
3.4.1 Introduction. .. . .. ... . .. ... .. 39
342 MainResults . ... ... ... .. ... .. ... .. ... 40
343 Relevance . . . . . . . . . e 41
344 OtherResults . . .. ... ... .. . .. .. ... .. ... 41
35 Conclusions . . . . . . .. 43
4 Linguistic Applicability 45
4.1 Orientation . . . . . . . . . . . .. e 45
411 SUMMANY . . . . o e e e e e 45
4,12 Problem. .. .. ... ... 45
4,13 Articles . . . ... 46
414 Outline . . ... .. . . . . e a7
4.2 A Measure for Syntactic Complexity . . . . . . ... .. ... 48
421 Introduction. . . . . .. . .. . .. .. e 48
422 MainResults . .. ... ... ... .. ... .. . 0. 49
423 Relevance . . . . . . .. .. . e 50
424 OtherResults . . . ... ... .. ... .. . .. .. ... 51
4.3 Design of the Underlying Formal Model . . . . . ... ... ... .. 52
4.3.1 Introduction. . . . . .. .. . . .. ... e 52
43.2 MainResults . . ... .. .. .. ... .. ... . 0 53
433 OtherResults . . . ... ... ... .. .. . .. .. ... 54
4.4 An FSIG Approach to Non-Projectivity . . . . ... ... ...... 55
441 Introduction. . . . . .. ... . ... 55
442 MainResults . . ... .. .. .. ... .. .. e 55
4.4.3 LinguisticRelevance . . . .. ... ... ... ... ... .. 56
44,4 OtherResults . . . ... ... .. ... .. . .. .. ..., 57
45 Conclusions . . . . . . .. e 58
5 Parsing Strategies 59
5.1 Orientation . . . . . . . . . . . ... e 59
51.1 Summary . . . . ... e 59
512 Problem. .. ... ... ... 59
5.1.3 Articles . . . .. . e 60



Contents

5.1.4 Outlineofthe Chapter . . ... ...............
5.2 Decomposing Grammar with Respect to Bracketing Depth. . . .
52.1 Introduction. . .. .. ... ... . ... ...,
522 Results . .. ...
5.3 Keeping Sub-grammarsin Separation . . ... ... ..... ..
53.1 ntroduction. . .. ... ... ... .. ... ...,
5.3.2 ProposedSolution . ... ..................

5.4 Solving Hard Portions Separately . . . . ... ... ........
541 Article .. ... ...
5.4.2 Introduction. . .. ... .. ... .. .. ... .. ...
5.4.3 Results

5.5 OtherParsing Strategies. . . . . . . . .. ... .. .. ......
5.5.1 SearchingMethods . . .. ... ...............
5.5.2 Automata Construction Methods . . . . . . ... ... ...
5.5.3 Parsing with Consistency Enforcing Techniques . . .. ...

56 Conclusions . . . . . .. .. ...

6 Concluding Remarks and Further Issues
6.1 Interconnections between the Articles
6.2 GainedlInsight. . . . . . .. ... .
6.3 Some Future Directions . . . . . .. ... ... ... .. ...

Bibliography
List of Contributed Articles
Errata for Contributed Articles

Index of Acronyms

85

99

101

103






List of Tables

2.1 Some example rules taken from Eng-FSIG. . . .. ... ... ... 11

3.1 Comparison of different ways to represent the same éees . . . .

4.1 The hierarchies for CNDGs and CMLGs.

Xi






List of Figures

11

2.1

3.1
3.2
3.3

51
5.2
53
5.4
5.5
5.6
5.7
5.8
59

6.1

The overall structure of the dissertation. . . . . .. .. ...... .. 3
Alternative ways to implement parsersforFSIG. . ... ....... 15
The world of descriptive complexitg . Inmerman, 1999). . . . .. 26
An automaton for an LBB like in Eng-FSIG. . . . . .. ... ..... 31
A semi-planar D-graph (an imaginary situation). . . . ...... ... 39
A single tape containing a bracketed dependencytree.. ... . . . 65
Decomposing a string into three languages. . . . . . ... ... 65
Thereferenceautomaton. . . . . . ... .. ... ... ........

A single tape with an expanded alphabet. . . . .. ... ... ... 68
The projection operation: some extractedtapes. . . . . . .. .. 69
A run of a simple multi-tape automaton. . . . . .. ... ... ... 69
Missing letters are inserted to projections during.jain . . . . . .. 71
One-tape automaton with a horizontally extended alptab. . . . . 73
Extracting horizontally defined portions of the sentenc. . . . . . . 74
A (slightly more) detailed overview of the dissertation. . . . . . . 81

Xiii

67






List of Acronyms

AC............ arc consistency

BDD........... binary decision diagram

B-FSIG........ Bracketed finite-state intersection grammar

BITG:5)...... true if and only if bitj in the binary representation afis 1 —a
predicate for accessing extended variables in FO queries

CCG........... combinatory categorial grammar

CFBG......... context-free bracketing grammar

CFG........... context-free grammar

CF-L-EDL-S-G . context-free linear storage grammar with extended dom#bioaal-

ity

CH............ Chomsky hierarchy — a hierarchy of Types 0 - 3.
CLo............ computational linguistics

CLSG.......... complicate locally, simplify globally
CMLG......... colored multiplanar link grammar
CNDG......... colored non-projective dependency grammar
CP............. constraint propagation

CRAM......... concurrent random access machine
CSP........... constraint satisfaction problem
DDH.......... dot-depth hierarchy

DFA........... deterministic finite automaton
DFCA......... deterministic finite cover automaton
DFS........... depth-first search

XV



XVi List of Acronyms

DGP........... derivational generative power

DL............ domain of locality

ECFG.......... extended context-free grammar

EDL........... extended domain of locality

Eng-FSIG...... English finite-state intersection grammar— a specific FSIG con-
straint set designed by Atro Voutilainen in 1990's.

ESSLLI........ European Summer Schoolin Logic, Language and Information

FA........ ... finite automaton

FCFBG........ flat context-free bracketing grammar

FG............. formal grammar

FL..oooooot formal language

FO............. first order boolean queries

FO(DTC) ...... first order queries with deterministic transitive closure

FO(LFP)....... first order queries with least fixed point operator

FO<]......... first-order logic with linear order

FO[ROM]...... first order queries with BIT and polynomial number of extaehde
variables

FO[(logn)®™M]. first order queries with BIT and poly-logarithmic number of e
tended variables

FO(TC)........ first order queries with transitive closure
FS.....ooit. finite-state

FSIG.......... finite-state intersection grammar
GES........... generative-enumerative syntax
HGDG......... Hays-Gaifman dependency grammar
IFSM.......... incomplete finite-state machine
LBB........... limited balanced bracketing

LCFRS ........ linear context-free rewriting system
LF-AFA........ loop-free alternating finite automata

LH............ logarithmic-time hierarchy .



List of Acronyms XVii

LOGSPACE. ... deterministic logarithmic space

MCS........... mildly context sensitive
MCSG......... mildly context-sensitive grammar
MSOL......... monadic second-order logic
MT............ model-theory

MTS........... model-theoretic syntax
NC............ node consistency
NL............ natural language

NLOGSPACE .. non-deterministic logarithmic space

NLP ........... natural language processing

NP............. nondeterministic polynomial time

PC............. path consistency

PCG........... parallel constraint grammar

PNF........... prenex normal form — A formula is in a prenex normal form if it

consists of a string of quantifiers applied to a quantifiez feemula.

POS........... part-of-speech
PSG........... phrase-structure grammar
PSPACE ....... polynomial space
PTIME......... polynomial time
Reg............ regular language
RLG........... right-linear grammar
SCG........... sequential constraint grammar
SGP........... strong generative power
SMTA......... simple multi-tape automaton
SRA........... specialized rule automaton
TAG........... tree-adjoining grammar
TypeO......... unrestricted phrase-structure grammars and recursivelyreerab-

le languages



Xviii List of Acronyms

Typel......... context sensitive grammars and languages
Type2......... context-free grammars and languages
Type3......... right-linear grammars and regular languages

WGP .......... weak generative power

WMSOL[S]..... weak monadic second-order logic with one successor
XEST.......... Xerox Finite-State Tool

XRCE......... Xerox Research Centre



Chapter 1

Introduction

Regular expression®Regexps)finite automatgFAs) and other means for expressing
regular languages and other regular sets are an attraeteanch area, although they
have an established value in computer science. An intatgstiea of the research
concentrates on methods needed in various applicatiodsnaratural language pro-
cessingNLP) in particular. In NLP, grammars and related methodshdaon this kind
of finite-state(FS) technologies have become very popular and their agiits vary
from computational phonology and morphology to syntacticsmg and information
extraction.

This dissertation belongs to the fieldadmputational linguisticéCL), and it stud-
ies foundations of FS based grammars and methods that alieadybp to syntactic
parsing ofnatural languags (NLs). The new results are presented in the accompany-
ing articles that vary in length, formal rigour and field-sifie style. Some of them
are more convenient for natural language engineers, and stimers for mathemati-
cal linguists and computer scientists. Nevertheless, ehbpt, despite the multiple
fields that intersect in this dissertation, this dissestatvould be received by people
with CLs orientation, and contribute, thus, to our underdiag of approaches that FS
based grammars provide for syntactic analysis.

In NLP, several approaches to syntactic parsing and digamabion using FS based
grammars have been proposed. In this dissertation, | wildmeerned with the theo-
retical aspects dinite-state intersection gramm4&FSIG). FSIG is widely perceived
as a formally very elegant framework, but it also containsi@ber of important prob-
lems which have remained open for several years. While dacgée FSIG grammars
were developed in some earlier FSIG studies, interest isetleaterprises faded be-
cause of these irritating, foundational problems. In thésetation, my purpose is to
investigate only the foundational problems rather thanuitdba descriptive grammar
or a fully implemented parser.

The Problems in Focus

The general goal of this dissertation is to address thevfatig three closely interrelated
problems in the FSIG framework:



2 1 Introduction

1. Complexity Analysis — How much computational complexgyeally implied
by the languages defined by various kinds of FSIGs? Analyeamgplexity of
FSIG has earlier been based on a particular automaton inepletion of finite-
state constraints.

2. Linguistic Applicability — Can some sort of FSIGs repnesappropriate struc-
tural descriptions for natural languages? Linguistic aablility of FSIG has
been restricted to flat surface syntax, where syntactitioes between words
are not explicated and transformations that change the ofdeords are not
assumed.

3. Parsing Strategies — How FSIG parsing algorithms could&ee more efficient
and well-behaving? All FSIG grammars make use of consgarhbse represen-
tations agleterministic finite automat@FAs) may become rather big. Compact
representation of individual constraints and intermediasults in FSIG parsing
require new approaches.

My aim has been to gain more understanding of the possibleeraso these problems.

The Articles

The dissertation consists of this introductory part andioé @mrticles that are numbered
from 1 to 9. The accompanying articles are:

[1] Yli-Jdyra, 2003a, “Describing Syntax with Star-Freedréar Expressions.”

[2] Yli-Jdyra, submitted 2003, “Regular Approximationgaigh Labeled Bracketing (revised
version).”

[3] Yli-Jdyra, 2005a, “Approximating dependency gramm#rsugh intersection of regular
languages.”

[4] Yli-Jdyra, 2003c, “Multiplanarity — a Model for Dependey Structures in Treebanks.”

[5] Yli-dyra and Nykanen, 2004, “A hierarchy of mildly ctaxt sensitive dependency gram-
mars.”

[6] Yli-dyra, 2004a, “Axiomatization of restricted norrgyective dependency trees through
finite-state constraints that analyse crossing bracketing

[7] Yli-dyra and Koskenniemi, 2004, “Compiling contextwastrictions on strings into finite-
state automata”

[8] Yli-Jdyra, 2004d, “Simplification of Intermediate Re&uduring Intersection of Multiple
Weighted Automata.”

[9] Yli-Jyra, 1995, “Schematic Finite-State Interseati®arsing.”
The articles are grouped under the three problems. The g@igpillustrated in

1.1 and it shows how the articles included in the dissematmntribute to at least one
of these problems.



1 Introduction 3

PROBLEM 1:
COMPLEXITY ANALYSIS
‘ [1] Describing... ‘ ‘ [2] Regular... ‘ ‘ [3] Approximating.|

PROBLEM 2:
LINGUISTIC APPLICABILITY

‘[4] Multiplanarity...‘ ‘[S]AHierarchy.A. ‘ ‘ [6] Axiomatization...
PROBLEM 3:
PARSING STRATEGIES
|[7]Compi|ing... | |[8] Simplification...l | [9] Schematic... |

Figure 1.1: The overall structure of the dissertation.

Contributions of this work

This dissertation contributes new insights and a numbeewfresults in relation to the
above problems.

Complexity Analysis: Perhaps the most important result in this dissertatioras th
the languages of structural descriptions defined by marmgyeasting FSIGs [1,2,3,6]
are computationally simpler than one would have thoughin&of these grammars
are approximations [2,3,6] of new Chomsky-Schitzenhestyée representations for
context-free [2], projective dependency [3] and certairtdinicontext-sensitive [6]
grammars. | analyzed the computational complexity of aifipeenglish finite-state
intersection gramma(Eng-FSIG) through distinctions provided by the theory ef d
scriptive complexity [1], but it is remarkable that the dhtsd complexity result extends
also to other kinds of FSIG grammars. Furthermore, the stidgscriptive complex-
ity (Immerman, 1999) is able to give more structure to coipfeanalysis when we
work on very low complexity classes. Because Eng-FSIG [H] @mr new grammars
[2,3,6] could be written using star-free regular exprassjoheir string-based encoding
for trees can be defined using first-order logic with line@gadence which means that
the computational complexity of these sets belondsgarithmic-time hierarchyLH).

Linguistic Applicability: The second important result of this work is that FSIGs
can be used to give structural descriptions that can bepirtad in terms of fine-
grained constituency trees [2], projective dependen®stf8] and interesting classes
of general dependency graphs [6]. | carried out [4] some mx@ats in the Danish
Dependency Treebank containing some 5500 sentences. ifleasarements motivate
some performance limits and demonstrate that an apprep#IG [6] can cover non-
trivial dependency trees in a dependency treebank. SucBd8] are closely related
to some mildly context-sensitive grammars [5] that we pnéesttas a formalization of
the complexity measure for crossing dependencies [4].



4 1 Introduction

Efficient Compilation and Representation of Linguistic Gereralizations: Fi-
nally, this dissertation contributes to the efficient colatjgon and representation of lin-
guistic constraints by presenting new compilation aldponis [7] and a decomposition
technique [7] for FSIGs with bracketing [1,2,3,6]. The x&lace of the new, efficient
compilation method expands beyond the FSIG framework, texisting commercial
product,Xerox Finite-State ToqXFST). Based on the decomposition technique [7],
| sketch an approach [9] that reduces the size of intermedéestults [8] during FSIG
parsing using an automaton model that resembles incorpégtecified asynchronous
automata. This approach [8,9] implements a representfdiolocal trees in a FSIG
parse forest where trees are represented through bracteteyks.

An Excluded Possibility: The results obtained in relation to the above three prob-
lems suggest that algorithms for supervised or unsupetwisehine learning of FSIG
constraints could be restricted to low dot-depth constsand to representations that
support extended tree locality, and a flexible mixture ofetefencies and constituents.
The focus of the dissertation excludes intentionally thisaative possibility. Our ini-
tial experiments with dependency grammars [3,4,5] touthedearning problem only
superficially. In the future, the methods presented in thasattation could be comple-
mented with techniques for data mining and probabilistidelling of the data.

The Overview of the Dissertation

The current chapter (chapter 1) started the introductigchécaccompanying articles,
but a further level of orientational material will be pretaghin the remaining chapters,
characterised as follows: In chapter 2 | give an introductmthe FSIG framework,

and relate this framework to some other grammar framewarllsssues in computa-
tional linguistics. In chapter 3 | discuss, on the basis e8] lcomplexity analysis and

representation of various kinds of FSIGs and charactetdsa@v grammars by a com-
plexity result. In chapter 4 | motivate, on the basis of [4t6¢ representation that can
encode dependency-based structural descriptions, susenthe related corpus stud-
ies and performance restrictions and formalise a class wfpmojective dependency
grammars and their FSIG approximations. In chapter 5 | pmihtsome problems in

efficient FSIG parsing and illustrate how the algorithmsspreed in [7-9] could help

to solve them. The conclusions are presented in chapter 6.



Chapter 2

Introduction to the FSIG
Framework

The framework ofinite-state intersection grammgFSIG) is afinite-state(FS) based
approach for syntactic parsing and disambiguation. Thaptdr presents a general
overview of the FSIG framework.

2.1 Background

The basic ideas of the FSIG framework were introduced by Kinwskenniemi

(1990). Important contributions to the development of thiginal FSIG formalism and
the first parsing algorithms can be found in a number of furetaal papers (Kosken-
niemi, 1990, 1997; Tapanainen, 1992, 1997; Koskennieml.efl@92; Voutilainen,

19944, 1997).

Along with FSIG, there are many grammars and efficient parad¢rose designs
have some aspects in common with it. For example, let us orelutcal grammars
(Gross, 1997) and a reductionistic, fixed-point disamhiigmaapproach with con-
text conditions insequential constraint grammg6CG) (Karlsson, 1990). Because
of some similarities between FSIG and SCG, Lauri Karttuneggssted for FSIG the
nameparallel constraint grammafPCG) in 1994, but the framework got its current,
more widely known name FSIG from Piitulainen (1995b%et intersection and tree
automata for specification of grammars has been employetlidies of descriptive
complexity of NL grammarsg.g. Rogers, 1998), in the implementationlo€al con-
straintsof Joshi and Levy (1982) and even earlier in computer scién€eThatcher,
1967, Peters and Ritchie, 1969).

piitulainen (1995ajlsocalls FSIG by the namsaanndllinen leikkauskieliopphat translates to English
asregular intersection grammar



6 2.2 Previous Work

2.2 Previous Work

2.2.1 The Original FSIG Grammars

Between 1992 and 1998, Atro Voutilainen developed at theséigity of Helsinki a

large-scale description for English — the Eng-FSIG — ushmg driginal FSIG for-

malism (Koskenniemi et al., 1992; Voutilainen and Tapaeajnl993; Voutilainen,
19944a,b, 1997, 1998). In addition to this, very similar expental grammars exist
for French (Chanod and Tapanainen, 1994, 1995b, 1996a,a19986b, 1999) and
Finnish (Heinonen, 1993).

2.2.2 The Original FSIG Representation

The original FSIG parse representation was developed inagiion with the Eng-
FSIG system. To illustrate the prior art in FSIG, | use thigioal representation as
an example, although it looks in many respects differem tha new parse represen-
tations that will be briefly referred to in section 2.3.4 arniscdssed in the subsequent
chapters on the basis of my contributed articles.

The Multi-Layered Representation of Parses One of the main innovations in the
original FSIG was to combine different annotation layerthefanalysis into a unified,
one-level representation (Koskenniemi, 1990; VoutilairnE994a). This is in contrast
to a more popular modular architecture in NLP, where we Iparéof-speecfPOS)
disambiguation, clause boundary recognition and symtadétambiguation in separate
modules. The unified representation gives several advestagd opens interesting
scenarios for further development. For example, POS digamation rules can now
have access to the syntactic functions of words, and claosadaries can be used
to disambiguate these syntactic functions, or alternigtitke dependencies can also
work in the opposite directions.

An Example of the Unified Representation When all different annotation layers of
the analysis are combined we get a rich representation @ rthlysis as an annotated
surface string. A portion of such a string is shown in thedwihg (I wrapped the
string on multiple lines and added the tabbing):

@@
in < x> PREP @ADVL @
the <Def> DET CENTRAL ART SG/PL @>N @
1950s <1900s> NUM CARD @P<< @<

@comma @
as CS @CS @
african < *> <Nominal> A ABS @>N @
nation N NOM PL @SUBJ @
prepare <SVOO> <P/for> V PAST VFIN @MV ADVL@ @
for PREP @ADVL @
independence <-Indef> N NOM SG @P<< @

@comma @>



2.2 Previous Work 7

An lllustration of Different Annotation Layers  If we want, we can also view this
unified representation through different projections vehfeatures irrelevant to a par-
ticular layer are hidden. For example, we can view the clatrseture, in which case
I may get the following string:

@@ In the 1950s @< , as African nations prepared ADVL@
for independence, @> these highly charged poetic

images @< , which emphasized N<@ the humanity of black
peoples, @> gave MAINC@ way to prose @/ that

satirized N<@ the colonizer and the colonized. @@

In this string, the tag® @@/, @<and@>denote, respectively, sentence boundaries, it-
erative clause boundaries, and embedding clause bousdahie syntactic function of
each clause is shown with tag®VL@N<@andMAINC@that indicate, respectively
an adverbial clause, an attributive clause and the mairselau

Another view would show the main syntactic functions in ealatuse:

In @ADVL the 1950s, as @CS African nations @SUBJ
prepared @MV for @ADVL independence, these highly
charged poetic images @SUBJ, which @SUBJ
emphasized @MV the humanity @OBJ of black peoples,
gave @MV way @OBJ to prose that satirized @SUBJ
the colonizer @OBJ and the colonized @OBJ.

In this view we see adverbialg{ADV), subordinate conjunction@C¥ subjects
(@SUB)l main verbs @M)/ and objects@OB)l We could also have a look at mod-
ifiers of nouns @>N@N<N<@, and complements of prepositior®@P<¥, in which
case we get the following view:

In the @>N 1950s @P<<, as African @>N nations prepared

for independence @P<<, these @>N highly @>A charged @>N
poetic @>N images, which emphasized N<@ the @>N humanity
of @N< black @>N peoples @P<<, gave way to @N<

prose @P<< that satirized N<@ the @>N colonizer and

the @>N colonized.

Morphological analysis of each word is given using a lemmd arfairly standard
morphological tags such & DET, A, ADV etc. This information andk.g. sub-
categories of the verbs, such asS{VO> <P/for> , <P/with> ) is indicated right
after each lemma.

2.2.3 Parsing Algorithms

The first parsing algorithms for FSIG have been developeddsy Papanainen who
worked at the University of Helsinki in Finland (Koskennieghal., 1992; Tapanainen,
1991, 1993, 1997, 1999), and at tKerox Research CentXRCE) in Grenoble,
France (Chanod and Tapanainen, 1994, 1995b, 1996a, 1%¥%1),11999).

2Both the lemma and the surface form could have been indida&sl\Voutilainen, 1994a). The surface
form is not necessarily identical to the phonological fomt means any kind of string that is used to
interface the syntax to the morpho-phonological companent



8 2.3 Some Design Aspects of the Framework

Besides Tapanainen, alternative approaches to FSIG gdraue been proposed by
several other authors (Piitulainen, 1995b; Voutilaine998; Lager, 1999; Lager and
Nivre, 2001; Yli-Jyra, 1995, 1997, 2001, 2004d) but mosthase parsing methods
are poorly tested Using FSIG as a preprocessor for deep-syntactic parseriseen
investigated by Lounela (1993).

2.3 Some Design Aspects of the Framework

2.3.1 Generative or Non-Generative Grammar?

| suspect that many non-mathematically oriented linguidts do not like generative
linguistics tend to think automatically that evéprmal grammanFG), such as FSIG,
is based on the generative framework. Because | would likedtivate us to see how
much the basis of FSIG really differs from tigenerative-enumerative synté@ES)
approach, | have to explain this distinction.

Generative-Enumerative Framework The notion of a FG was introduced by
Chomsky (1957). In particular, Chomsky introduggdase-structure grammdPSG)
as a formal device that enumerates the sentences of a lamgoagfter another. This
kind of grammar generates (derives, produces) the sergémtiee language and only
those. These PSGs use so-called production rules and theytheir formal basis in
Post’s inference rules (Post, 1943). Post’s inferenceadeange and rewrite strings of
symbols, which serves as a combinatorial foundation fooftioeory — the syntactic
side of logic. The approach where grammars are based on gatdcc inferences
will be called here GES.G.f. Pullum and Scholz, 2003.)

When GES grammars are used for NL description, they takextansionalview
to NL: they identify the described NL with a unique set of mfy$. Utterances that
do not belong to the identified set are not considered to belraesrof the language
being described. Kornai (1985) points out that the samewdeaimplicit in much of
the work of the structuralist period, in writings of Bloomfleand Harris for example.
Also some early computational linguists, including Abrah@ 965), have claimed that
the only reasonable way to define infinite sets of utterarece<3ES grammar.

The Chomsky Hierarchy A standard and very useful measure of the complexity
of formal languags (FLs) is provided by th&€homsky hierarchyCH) (Chomsky,
1956). CH consists of the following four classes of gramnzanrd languagesunre-
stricted phrase-structure grammars and recursively emaivle languagegType 0),
context sensitive grammars and langua®ge 1), context-free grammars and lan-
guages(Type 2), andright-linear grammars and regular languag€3ype 3). All
classes contain infinite languages and their grammarshbugtgest class is Type 0
and its capacity corresponds to Turing machines. Detengitiie smallest class con-
taining a language described by a grammar is often diffictilte Type 3 languages

3Some of the methods that were presented by Yli-Jyra (19987)lhave been tested in practice, but
there is no publication on these experiments. Furthermdmetilainen (1998) combines SCG and FSIG in
thorough experiments.



2.3 Some Design Aspects of the Framework 9

correspond tdinite automatgFAs). Finite-state models have been used to model the
capabilities of language users (Miller and Chomsky, 1963).

Many aspects of FSIGs can be approached through formalnsatioFGs and CH.
For example, the idea of finite memory such as in FAs is buli$ihG, and the capacity
of FAs correspond to the Type 3 languages.

FSIG Is Not a GES Framework FSIG constraints can potentially express any reg-
ular set over the given alphabet, being thus similaiigbt-linear grammas (RLGS).
However, there are several reasons why FSIG as a whole isasedlon the GES
approach, or that it is at least ambiguous:

¢ It does not directly define phrase structures,
e It does not use productions, and

¢ It does not derive the sentences with syntactic inferences.

FSIG Is Based on Model-Theory Instead of having productions, FSIG contains as-
sertions. The basis of FSIGs is, thus, in set-theoryraodel-theoryMT) — the se-
mantics of mathematical logic. MT studies the relationddgépveen logical assertions
and the interpretations that are defined for them. An in&gion of an assertion (or
a corresponding set of objects) is given by saying whetha@vengstructure satisfies
it. A structure that satisfies the assertion is one of its nsodEehis is very similar to
the one-level view of PCG as presented by Koskenniemi (1,98fgre the input is
classified by the yes/no answer by syntactic assertions.

Some basic ideas of model-theoretic frameworks were ajr@aglsented in the
1960's by Elgot (1961) and Thatcher (1967) and later by mahgrs, especially those
working e.g. on constraint-based linguistic formalisms. A recent wayléfine the
framework ofmodel-theoretic syntafMTS), and its linguistic aspects in particular,
has been advocated for instance by Pullum and Scholz (208BMTS frameworks
are sets of assertions about the syntactic propertiesgfibitic utterances. | do not see
any reason why FSIG could not be recognized as a particutéersyin the framework
of MTS.

2.3.2 The Assertions

Universal and Parochial Constraints In FSIG, all assertions are usually called con-
straints or (constraint) rules. The first subset of thesestraimts containedminis-
trative constraintor axiomsthat define general structural properties (encodings; tree
ness, rootednesstc) of the domain of models we are restricting with other afses.
These constraints should not not differ from language tguage, because they form
syntactic theories that could be associated with partidylzes of FSIG. Beside the
axioms, there are assertions that are true only for paatidahguages. These assertion
could be callegarochial constraintgPullum and Scholz, 2003).

4There must be better references to MTS, such as (Miller, @0 this is the one | am acquainted with.
Unfortunately, the availability of this ESSLLI reader (Rwh and Scholz, 2003) is not the best possible.



10 2.3 Some Design Aspects of the Framework

Example For instance, we can mention the following axioms that dbute to the
specification of the possible parses in Eng-FSIG:

¢ All the analyses begin and end with t@@
¢ If a string contains a ta@<it is followed by at least one ta@>in the string.

e At any position of the strings, the number of op@xbrackets does not exceed
a given limit.

The Logical Formalisms In MTS the assertions are normally expressed in a logical
formalism. However, Biichi (1960) showed that regular espions are equivalent to
weak monadic second-order logic with one succe$adSOL[S]) interpreted over
finite strings. Due to this result, regular expressions @gseen as a notational variant
for wMSOL][S].

The constraints in FSIG grammars are normally expressed ggiecial FSIG reg-
ular expressions, which contain some extensions. The srtehimake them more con-
venient for expressing some constraints. The most impbetedansion is the so-called
context restriction operatiofarrow rule, implication rule) (Yli-Jyra and Koskenniemi
2004) that has always been part of the FSIG framework (Kaskem, 1990).

None of these two formalisms directly make a reference toraata or production
systems. However, regular expressions can be compiledairttomata oe.g. inter-
preted lazily as grammars. Similarly, wWMS(H] can be interpreted lazily using a
recursive function or implementexdg. by compiling the formulas into automata.

Normally, the structures that satisfy wMS3] formulas are calledhodels How-
ever, strings being described by a regular expression drearmally called models,
although it is quite common to say that such strings matclyalae expression, or sat-
isfy a constraint. When we refer to a string that satisfiesrstraint and, equivalently,
belongs to a constraint language, | will call such a strimgaalel string.

By a constraint language in FSIG, | will refer to the set ofstiting that satisfy the
given constraint. Thus constraint languages do not refdrddogicaletc formalisms
that are used for expressing constraints.

The Essentials of the Constraint Formalism Some examples of possible uses of
context restrictions are in figure 2.1. The first implicatirote says that the leftmost
auxiliary verb @AUXmust be a finite verb(FIN). The second rule illustrates the fact
that the left-hand side can be a rather complicated regyfaessions. The third rule
illustrates the fact that the context conditions on thetritdnd-side can be multiple,
bilateral and rather complicated. Special symbols such.ds ".. ’, '>.< ' and
..not/1 " inthese rules denote specially defined regular languagésreacros that
make the formalism slightly easier to use.

In addition to context restrictions, various FSIG formalis have two important
features in common: (i) special variables (during the gramoompilation they are
fixed constants) provide an easy way to make reference todedabracketing. (ii)

5This is perhaps not the best term, but terms suateesgnized stringindmatched stringparse string
annotated stringvould not be any better.



2.3 Some Design Aspects of the Framework 11

@AUX => VFIN ._, @AUX ..
@MV SUBJ@ >.< @> .. @MV MAINC@ => <SUBJ> >.<
@oc =>

OC . @mv >.< @obj ..not(@AUX | @MV) _
make . @mv . @ . Adj . _
Adj . _

@ . [@AI@A] + @ . @obj ,
WH . .

@to. @. OC. @mv >.< @obj

Table 2.1: Some example rules taken from Eng-FSIG.

left- or right tail recursion in nested bracketing is elimied by using an appropriate
bracketing schema.

2.3.3 The Sets Defined by Grammars

Grammatical Model String Sets Defined by FSIGs The set ofgrammaticalmodel
strings for an FSIG grammar consists of those strings thafgall individual con-
straints in the grammar. Obviously this set of strings isa¢di the intersection of all
constraint languages in the grammar. In the case of the BiG;Rhe intersection has
the structure

B(WFB)T N C; N Cy---N Cpp N Crypyr N Cppgo--N Ch,

“domain” local lexical constraints other constraints

where B is analphabet of delimitergdboundaries)}¥ is a finite set of morphologi-
cal analysesF is a finiteset of syntactic functionandCi, Cs,...C,, aresets of
model stringgdefined by different constraints. Thacal lexical constraintsare those
whose function is to relate word forms with their possibletagtic functions (Yli-dyra,
2003a).

Intersection of Constraint Languages Is Effective It is a classical result that reg-
ular languages are closed under intersection. Because ¢Bi§traint are regular ex-
pressions they describe regular expressions and theis@utgon will beregular lan-
guages (Regs) as well. One way to compute the intersection of tRegs is to compile
the regular expressions first into FAs, then to compute trectiproduct of these au-
tomata (Rabin and Scott, 1959). The direct product of theraata is an automaton
that recognizes the intersection of the languages desidoipthe corresponding regular
expressions. Although this is formally an elegant definitids practical implementa-
tion is quite complicated.

Gradient lll-Formedness An over-constrained FSIG grammar defines an empty set
and is, thus, uninteresting as a GES grammar. Pullum andi5¢@03, p.59,60)
argue, however, that the MTS framework offers an elegamtistgpoint for think-

ing about the comparative ungrammaticality of ill-formeshgences. Thus, it is not a
task of MTS grammars to define the set of grammatical modelgstand only those.

In fact, over-constrained grammars may still be usefulesithey define gradients of
ill-formedness (if constraints are turned on and off) anelytbould be used for ro-
bust parsing. This is one of the most important differencetsvben GES and MTS



12 2.3 Some Design Aspects of the Framework

grammars (optimality theoretic grammars in particulan).fdct, Voutilainen (1994a)
already included some heuristic constraints as parts d&tigeFSIG system. Weighted
constraints can reduce the ambiguity that remains aftéraatl constraints have been
applied in parsing.

In order to keep my current investigations within reasoeamplexity, | do not
consider gradient ill-formedness nor parse ranking. Nbedgss, such notions might
be necessary for robust parsing (and for text parsing) wihé&émportant to find the
best candidate analyses. In this dissertation, the larggofapch FSIG will be uniquely
the set of grammatical model strings, which makes FSIG diggsly comparable to
GES grammars.

2.3.4 String Encoding of Syntactic Entities

FSIG encodes all the parses as strings rather than as tt@ess &n important feature
that differentiate FSIG from approaches using tree-autarfoshi and Levy, 1982;
Rogers, 1998). Strings and string sets (and regular eXprssand automata) have
been used both inside most FSIG parsers and in their apphicaterfaces. Internal
and external representations are not necessarily idéntica

External Representation of Parses In section 2.2.2, | already described the original
representation of parses used in the original FSIG. Thisesgmtation is in many
respects under-specified and it avoids many difficult syittdecisions concerning the
linking of words. Such under-specification can be usefuhilsw and partial parsing
methods and provide a compact representation for unredalwdiguity €.f. Church
and Patil, 1982).

In a number of applications, we would prefeil syntactic structures as analyses
produced by the parser. Fully specified syntactic strustofgarious sorts (constituent
trees, dependency trees) can also be encoded as stringis ditssertation, a few such
encodings are proposed. At this point, | merely make ref@é¢a the accompanying
articles (Yli-Jyra, submitted 2003, 2005a, 2004a) thdk e discussed in the subse-
guent chapters of this dissertation. Sometimes these argoldecome so complicated
that their direct inspection by the grammar developed is ncerwery convenient and
decoding to trees and other more user-friendly visuabnatis needed.

Internal Representation of Parses Classical finite-state automata are useful in rep-
resenting sets of parses inside FSIG parsers. Sometimeatbehowever, compact
enough for practical implementation. In chapter 5, | wilkaliss methods that are
motivated by the optimization of the automaton based implatiations. Some of the
methods change the representation of parses as stringidguning new details into
the letters in the strings. The resulting representatiios/asimplifications to the au-
tomata in a surprising way: individual strings become marmplex but the added
details make the string sets simpler and thus easier togepreompactly as paral-
lel decompositions of automata. This technique makes usigedfict that the regular
languages are closed under string homomorphisms (Homordfliman, 1969).



2.3 Some Design Aspects of the Framework 13

2.3.5 Layers, Planes and Projections

The idea of multiple layers in the original FSIG can be braugtther. We can define
and use layers in many different ways:

1. When verifying that bracketing used in the annotationaibced as unlabeled
bracketing, we can project labeled brackets to unlabeleg Ovili-Jyra, 2005a).

2. In order to implement a bracketing scheme dofored non-projective depen-
dency grammas (CNDGS) | separated “planes” that correspond to diffeceht
ors of the dependency links (Yli-Jyra, 2004a).

3. As suggested in the end of one of my articles (Yli-Jyr&4), several gram-
mars can be used in paralle.§. a dependency grammar and a grammar for
topological fields) if they share the same one-level repriegion, but use partly
different layers (or tapes).

4. In order to optimize the automata that define constramguages, | sometimes
need methods that can decompose constraints in an FSIG imtmber of sub-
constraints (Yli-Jyra and Koskenniemi, 2004). Accordtogny proposal, the
sub-constraints see everything in the one-level reprasentbut they define
generalizations of the original constraint and accept more

5. The alphabet in the encoding can be extended so that intEspossible to
extract a layer from the extended one-level representatiointo express a sub-
constraint even without seeing the whole string. Alphabe¢resions can be
bound to a measure of parameterized structural complexish as number of
nested brackets (Yli-Jyra, 2004d), or it can be done one¢h&esice-by-sentence
basis (Yli-Jyra, 1995).

2.3.6 The Generative Capacity — How to Characterize It

The notion ofstrong generative powdSGP) of a grammar formalism is often used to
talk about appropriateness of a grammar. One approach tu#stion of appropriate
models for syntactic structures is considering how much 8@®@ally necessary when
certain kinds of structures are being described.

The Basic Definition for GES Grammars The classical notion of generative capac-
ity — weak generative powdWGP) and SGP — were introduced by Chomsky (1963)
in the context of the theory of formal grammars and automata.

e The WGP of a GES grammar is defined as the language generatied gsam-
mar. For other formal grammars, the WGP of a grammar is defisdtle set of
strings defined by the grammar.

e The SGP of a GES grammar is defined as the set of structuraiptésts that
the grammar assigns to the strings it generates.



14 2.3 Some Design Aspects of the Framework

These notions generalize to grammar theories or classeswingars. The WGP and
SGP of a GES theory are respectively the set of WGPs and thef &EPs of the
grammars that are encompassed under that theory or classnofrars.

Defining SGP of MTS Grammars In order to generalize the notion of SGP to cover
both GES and MTS grammars, Miller (2000) proposes that S@BIdibe understood
as the model-theoretic semantics for a linguistic fornmaéi®r syntactic theories. Be-
fore defining SGP of all these syntactic theories, we neecetimel abstract interpre-
tation domains defined for such common notions as labelestiteancy, dependency,
endo-centricity, and linking. This must be done in a thearytral way, using.g. set
theoretical terms. With respect to such an interpretatmmain, the SGP of a class
of grammars is characterized as a range of a specific intatjzne function that maps
structural descriptions of that class of grammars to thmefds of this interpretation
domair?.

Defining SGP of FSIGs The SGP of an FSIG is obtained from the set of structures
that are obtained by interpreting the set of grammaticalehstilings. Different types

of FSIG use different representations, and their SGP ismdxdeby choosing an inter-
pretation function that is defined appropriately for eagiety

2.3.7 Parsing with FSIG

The Proper FSIG Parser and Other Requisites FSIG can be used for parsing.
Preparing an inputsurface stringfor application of FSIG constraints, is a process
that is carried out by using possibly a (tokenizeryphological analyzeand lexi-

cal lookup or inverse homomorphism mappingsuch a way that we obtain a set of
potentialdeep strings Then FSIG constraints are used for selection of grammatica
model strings out of the set of deep strings. Although thelevpoocess is related to
FSIG parsing, theroper FSIG parserconsists only of the lexical lookup or inverse
homomorphism and the set of FSIG constraints. This is st in figure 2.1.

Reduced and Holistic Definitions for FSIG (Koskenniemi, 1990) distinguishes two
views on PCGi.e. FSIG: according to thene-level FSIG, being a combination of
constraints, is also itself a complex constraint. It worke lan acceptor, telling us
whether a deep string satisfies the grammar or not. Althasglutput is really a binary
yes-or-no answer, the “yes” answer will indicate that theplstring is a grammatical
model string. Therefore | have depicted the combination $fG-constraints as a
relation between all deep strings and those deep stringsathagrammatical model
strings. According to théwo-level viewof FSIG, | consider the proper FSIG parser
as the FSIG. | can also defimeholistic viewaccording to which any process can be
called an FSIG parsing system if its output is an output ofcgper FSIG parser that is
embedded into it. The output that consists of the deep sttimat satisfy the grammar
are practically callegparsesof the surface string.

6This terminology originates from the notions in denotatiosemantics of logical formalisms.



2.3 Some Design Aspects of the Framework 15

surface strings surface strings surface strings surface strings

‘ morph.analysis‘ ‘ morph.analysis‘ ‘ morph.analysis‘ 7‘76(;;117(;m707r7p?hilér7n?‘§
morph. readings  morph. readings morph. readingsi deep strings i
|exica|ﬁookup‘ ] [ homomorphism]: §
deep gtrings i FSIG parser i deep strings i FSIG constraintsi
" modelstings_modblsuings _ movelsvings _ modelstings
(Koskenniemi 1990) (Koskenniemi 1997}Yli-Jyra 2003a) (Yli-Jyra 2003k

Figure 2.1: Alternative ways to implement parsers for FSIG.

In this dissertation, | will concentrate on the one-levelwiof FSIG €.f. Yli-Jyra,
submitted 2003, 2005a, 2004a).

Sentence Automaton For each surface string, its all deep strings the set of po-
tential model strings, will be called according to Piitman (1995a) as thiaitial set
(alkujoukkain Finnish), and it is usually represented bgeterministic finite automa-
ton (DFA) that is called aentence automatdim fact the initial version of it).

According to Tapanainen (1997), the constraints caagpiedto a version of the
sentence automaton. This means that a constraint langeggesented as an DFA, is
intersected with the language recognized by the sentertoenaton by computing a
new automaton that is similar to the direct product of the automata except that it
can be minimized. This new automaton becomes then the nesibweof the sentence
automaton. During the parsing process, we may obtain, ¢heeies of versions of the
sentence automaton so that the number or deep strings izeddry them monotoni-
cally decreases.

Specialized Grammar and SRAs In the approach of Piitulainen (1995b), the con-
straint automata and the initial sentence automaton ardeedpuring the parsing pro-
cess to construct a special data structure. In Yli-Jyr@%) ¢his data structure is rep-
resented distributively bgpecialized rule automai®RAS) whose collection is called
a specialized grammar. Specialized grammar can be seeroaspact representation
for ambiguity although it may require further processingl amplifications before it
reaches the point where it is efficient to consult it for fidgrammatical model strings
by a lazy intersection algorithm.



16 2.4 Relevance of FS Based Grammars

2.4 Relevance of FS Based Grammars

2.4.1 Can FS Grammars Be Linguistically Motivated?

Practical Point of View Itis a common belief that finite-state grammars are linguis-
tically inadequate for natural languages. Due to this widelcepted standpoint, there
is a tension between finite-state based syntax and non-§itsite frameworks such as
Transformational Grammar (TG), Categorial Grammars (0®e-Adjoining Gram-
mars (TAG) and Lexical Functional Grammar (LFG).

I would like to see that this tension is mostly a practical gfiom, and | would
probably agree with many about the advantages of non-fatétee formalisms. In my
dissertation, we actually see that non-finite-state fraomkgssuch asontext-free gram-
mars (CFGs), dependency grammars and mildly context-seagjtammars are very
useful for modeling tree locality and co-occurrence caists in linguistic structures,
but finite-state grammars, and FSIG in particular, are at test when used to ap-
proximate computationally expensive formalisms undeguistically appropriate per-
formance limits. Such limits are well-motivated when thegaage is being processed
by humans as well as by computers.

The Myth about Non-Regular Natural Language A less practical, but theoretically
interesting question is whether natural languages, asgys$ets, could be modeled by
a finite-state mechanism. Adequateness or inadequatehéisftesstate or regular
grammars for modeling the surface of natural languagedmsetiscussed critically in
the contemporary linguistic literature, and some may bdatito think that it has been
been proven that natural languages are not regular langubeigevever, some decades
ago there was a time when inadequateness of finite-statentgesiwas not taken for
granted by linguists. Arguments against the adequacy défstate grammars were
presented by several authors, most notably by Chomsky {1&%F Bar-Hillel and
Shamir (1964).

I will now rewind back to that discussion and recall some im@ot reasons due
to which the adequateness problem has actually remainepeam perhaps unsolvable
problem.

Some Problems in Non-Regularity Arguments Chomsky (1959b,a) and Bar-Hillel
et al. (1964) showed that arbitrarily deep self-embeddedstres require unbounded
memory in general. However, even if the self-embed@ivfga context-free grammar
is not bounded, the language of the grammar can still be aeginl fact, the problem
of regularity is, in that case, undecidable (Ullian, 196 This means that showing that
a grammar is self-embedding does not prove that the langsage regular.

In formal language theory, a proof method that makes useeo$dhcalled pump-
ing lemma is useful in showing that certain languages areemtlar. However, this
method is particularly difficult to apply validly to natudainguages.

"Phrase A is aelf-embedding it is embedded into another phrase B of the same categatgamounded
by lexical material in B.

8The problem becomes decidable when the context-free grarsgeterministic (Stearns, 1967) or
strongly regular (Nederhof, 2000).



2.4 Relevance of FS Based Grammars 17

Chomsky’s original attempt to demonstrate that FS modelsradequate (Chom-
sky, 1957, ch. 3.1) was based, first, on a crucial assumgitetrNLs are self-embed-
ding to an arbitrary degree, and, second, on a fallaciousgstson that if a subset of
a natural language is not regular then the whole naturallage is not regular. A bet-
ter argument can be based on the first assumption and thén&aegular languages
are closed under intersection: if the intersection of theeirsh language and a regu-
lar language is not regular, then the natural language istareis not regular either.
This improvement have been proposed by Brandt CorstiusRgiem 1984). Chom-
sky’s original argument (1957) is problematic also becatusssumes that the best
generalization of the linguistic examples is among thosergnars that are brought
into the discoursec(f. the critique Pullum and Gazdar, 1982; Wintner, 2001 rel&ted
certain similar arguments that have been presented againttxt-freeness of natural
languages).

The Crucial Assumption In the above, the crucial assumption was that NLs are self-
embedding to an arbitrary degree. This assumption invaubdle problems. In the
following, | summarize some of the possible approaches.

e Because the self-embedding problem is connected to cefitsdtess, the con-
clusions will be dependent on the types of PSGs availablesihomsky hierar-
chy. Accordingly, Joshi et al. (2000) notes that only parfance constraints can
limit self-embedding depth, but he claims, at the same tihreg, limited scram-
bling complexity can be captured by competence differeffjdiferent classes
of mildly context-sensitive grammars). There might be wiaysee this kind of
performance-competence division as an artefact of thatuky induced by the
types of PSGs.

¢ In order to have unbounded self-embedding, | have to asshatdhe natural
language is infinitej.e. there is no upper bound for the length of the strings
in the language. While Pullum and Scholz (2003) argue thatyntdassical
arguments for infinitude of natural language are circulaothierwise without
independent support, statistical (Zipfian) models (Karti899, 2002) seem to
provide arguments according to which languages — at leagt lgxicon — is
infinite.

e On one hand, it has been noted that the data of certain novpEan languages
of the world demonstrates that several clauses can be syttaity be inserted
(self-embedded) in the middle of each other (Pullum, 198@n the other,
corpus-based studies and psycholinguistic studies danatathat there is a per-
formance degradation in the case of deep embedding.

e Some “magic” limits for the depth of self-embedding has bpesposed (De
Roeck et al., 1982; Lewis, 1996). A better grounded hypashisgpresented in
a recent corpus study (Karlsson, 2004 (in print)) that psagahat the catego-
rial restrictions on clausal embedding become tighter wdrehedding becomes
deeper. Such restrictions would mean that self-embeddingtiallowed at all.



18 2.5 The Main Open Problems in FSIG

It seems to me that the assumption of the existence of sddedding in competence
remains as a possible hypothesis. What makes us anxiouatiithhypothesis may
even remain unfalsifiable. We need, thus, a more practidat pbview.

2.4.2 Importance of Finite-State Based Grammars

The Principle of Scientific Parsimony In science, the most easily falsifiable but
not yet falsified theory is preferred to theories that aralharfalsify (Popper, 1959).
As pointed out by Kornai (1985), the principle of scientifiarpimony suggests the
minimal language family suitable for the defining naturaldaage string sets. For
this purpose, regular languages provides a generous uppedbbecause they contain
every finite language and they are closed under regular tipesa

Efficient Parseability Ejerhed and Church (1983) point out very illustrativelyttha
in NLP the motivation for finding restrictions to the theorfysyntax is quite different
from Chomsky’s motivation, as he uses the universal coimstrto give an explanation
for grammar acquisition process. In natural language asddpprocessing, | aim at
efficient implementation of the parsing process:

parsing
process

sentences — — structural description aof'.

The need to make parsing more efficient motivates restristibat make the theory of
syntax less powerful and the grammars easier to process.

Ejerhed and Church (1983) are convinced that the explamafar parsing speed
and acquisition speed are related, and not separate anldtedreRather than viewing
limitations as something that does not belong to linguistimpetence, we can, if we
want to, consider limitations as constituting the very assef an explanation for why
languages are structured the way they are.

In order for linguistic theory to have psychological realitis necessary to build
a variety of performance limitations, like memory limitatis, into the grammar. Hale
and Smolensky (2001) have shown that a simple performarogytican be constructed
that incorporates a competence theory in a relativelygttiorward way into a proce-
dural specification for parsing. Still, there is no logicatessity that performance and
competence will ultimately converge in every area (Chut&g0).

2.5 The Main Open Problems in FSIG

2.5.1 Computational Complexity and Parsing Strategy

The most important open problem in the FSIG framework is @ssing inefficiency.
When a parser for Eng-FSIG was implemented using an autorsgtdhesis approach,
the computation took an unbearable amount of time (Kosleninet al., 1992, Tapa-
nainen 1991, 1993, 1997). In this approach the product aattmmis build from
the sentence automaton and the automata recognizingdodiMionstraint languages.



2.5 The Main Open Problems in FSIG 19

According to Tapanainen (1997), depth-first searcHDFS) algorithm, which has
exponential-time complexity (according to the sentencgtlie), is in practice much
faster than a number of linear-time construction algorghvhich he also investigated
from many different perspectives. The DFS algorithm is ntmm@monly known as the
backtracking search algorithm. The backtracking searchdsever, prone to unex-
pectability and it could not guarantee, for example, that#word sentences would
have been parsed in a reasonable time with the current ENg-R&t contains 2600-
assertions. For example, in 1998 Tapanainen’s simplifie8-D&sed parser that was
made available to me required roughly one week to complatgnpof a 35-word
sentence. In 1997-1998, | implemented a parser that wasabigdbased on an im-
provement of Tapanainen’s search algorithm. It needed #sttowdo the same task on
the same machine.

Several alternative approached to the parsing problem In@ee proposed (Piitu-
lainen, 1995b; Voutilainen, 1998; Lager, 1999; Lager angd®&i2001; Yli-Jyra, 1995,
1997, 2001). However, none of these seem to provide a suiffisieategy for solving
the whole parsing problem efficiently.

The Ground for Optimism  Are there any grounds for being optimistic with respect
to the complexity of FSIG?

Yes, we can be optimistic. The prior experiments have gikerfallowing encour-
aging observations:

e Sometimes computing intersection of languages of hundvett®usands of fi-
nite automata can be done within a reasonably short timek@uogemi et al.,
1992). If this had not been possible at all, it had been inmiptessr at least very
difficult to develop Eng-FSIG, which now contains as many&3®rules.

e Although parsers can construct large automata during tipdicagion of the
grammar rules, their final result — if the parsing can be cetepl — is a very
small automaton.

The second observation provokes an optimistic dream: tluetate of English
and the analyses of Eng-FSIG perhaps imply a favourablegptyphat guarantees
a small number of parses for each sent€ndehas been an open problem whether
this suggested nice property could be explained with a bastgmptotic bound for the
computational complexity of the grammar or parser.

In this dissertation | will investigate the computationahtplexity of the parse
language of FSIGs and how structural properties of thisaete made use of during
FSIG parsing.

2.5.2 Linguistic Adequacy

The second important open problem in the FSIG frameworkagtiestion of its lin-
guistic applicability. It has been thought that FSIG is abié¢ only for tagging and

9The PP attachment ambiguity was never a problem in Eng-F8t@use of its structural annotation was
under specified.



20 2.5 The Main Open Problems in FSIG

shallow syntax. By shallow syntax one usually means: (i) th@grammar is so loose
that it cannot be used for specification of a set of grammlasicangs (in the GES
sense), or (ii) that a grammar does not describe long distdapendencies, crossing
dependenciestc complex phenomena, or (iii) that the representation optirses are
build upon the surface string by means of functional animtabracketing, and traces.

It is true that FSIG does not define a deep representatiom lalyere the word
order of the sentence would be in a canonical form. Howekergtare certainly other
reasons to think that FSIG can give adequate structuratigéeas to the sentences.

As to the linguistic adequacy of FSIG, this dissertation imestigate what kind
of descriptions can be obtained by means of new kinds of ESIGs

2.5.3 Other Open Problems

In connection to FSIG, there remain many interesting gaestthat cannot be ad-
dressed here. For example, | would like to investigate hovGRgammars could be
learned by a machine from a corpus or a treebank. Machinedbdity of natural lan-
guages is an important and very popular research subjeelievb that although the
current work leaves the question almost intact, it convexh snsight on locality in
FSIG grammars that may be valuable when we approach the nealg@rnability of
FS based NL grammars.



Chapter 3

Complexity Analysis

3.1 Orientation

3.1.1 Problem

This chapter investigates the computational complexitgtedcking whether a deep
string (annotated surface string) satisfies FSIG cons&ai@hecking a property of
deep strings is often easier than parsing from surfacegstrirHowever, even easy
problems differ in complexity and such differences are uideécause they can suggest
new parsing strategies.

My approach to investigate the computational complexityrainmars differs from
the usual approaches. The computational complexity oftcaing languages will be
measured here in the light of descriptive complexity, edezhstar height, and thaot-
depth hierarchyfDDH) of star-free regular languages.

3.1.2 Articles
The investigations will cover, basically, the following#e different FSIGs:

e one-level Eng-FSIG [1],

e regular approximations dfat context-free bracketing grammérCFBG) [2]

e regular approximations dflays-Gaifman dependency gramm@HGDGS) [3]
These grammars have been investigated in three accomaanyicles, in the follow-

ing way:

Eng-FSIG

[1] Yli-dyra, 2003a, “Describing Syntax with Star-Freedréar Expres-
sions”

21



22 3.1 Orientation

The article is the first in a series of articles omeav familyof finite state intersection
grammars. All the grammars in these articles have a spedalanship with star-free
regular expressions.

In this article, | employheuristic techniquethat can be used for reducing regular
expressions or extended regular expressions into extaedethr expressions whose
star-height is zero. On the basis of these techniques, | garedhat all FSIGs in
this dissertation (with some reservations on FCFBGs) aptessible without stars,
although | prove this explicitly only for Eng-FSIG. Due toetltonnection between
extended star-freeness, first-order logic and descriptiveplexity, the result implies
animproved uppebound for the parallel time complexity of recognition of gestring
languages that are expressed by star-free grammars.

In addition to these results, the article also gives somé&lsesight into limited
balanced bracketingLBB) and into thecontext restriction operatiothat is a useful
extension to regular expressions in the original FSIGs. sihesequent articles in this
dissertation develop these themes further.

FCFBG

[2] Yli-dyra, submitted 2003, “Regular Approximationgéligh Labeled
Bracketing (revised version)”

In the article, | relate production schemata of extended €te®Bracketing restric-
tionsthat are assertions in FCFBGs. The resulting grammars capgreximated with
FSIGs by restricting the depth of bracketing in these grarsnghe article proposes a
measure for the complexity of the resulting approximatiortse measure is based on
the DDH of star-free languages (Cohen and Brzozowski, 1974 article also dis-
cussegleterministic state complexibf bracketing restrictions and whole grammars.

Besides these complexity results, the article contribaitemcketing scheme, called
reduced bracketingthat can be employed to retain linguistically interestiogerage
of tail recursion in approximations, and proposes a nonegted, intersection based
compact representation for regular approximations of exdriree bracketing gram-
mars.

HGDG

[3] Yli-dyra, 2005a, “Approximating dependency grammtareugh inter-
section of regular languages”

In this article, | develop a novel string-basedcoding for dependency treaad
a unique Chomsky-Schiitzenberger sglemmar representatiofor HGDGs. From
such a grammar representations | obtain a special clasd G8Hfy limiting the nested
brackets. Dependency parsing with the obtained FSIG appetions hadinear time
complexity In these FSIGs, most constraints are combinatorially eésap because

1This article is a heavily revised version of an article (3¥ira, 2003d) that was presentedFormal
Grammar 2003 The proceedings of the revised conference papers wererstiér construction when this
dissertation was printed.



3.1 Orientation 23

their combination is reduced to thestrictly locally testable properti@srather than
cross-product of their state spaces. The remaining cantstreheck that the bracket-
ing in strings is well formed. This illustrates a very impaort point that the hardest
part in FSIG parsing is to match brackets with each otheraliinl argue that there
is some hope for overcoming the state space explosion afetdiate results. The
paper reports tiny parsing experiments with some gramrhatsiere extracted from
a corpus. (Due to space limitations, the paper does not gftadymar extraction as a
problemper se)

Besides these results and proposals, the article commerasiomatisations and
properties of planar and projective dependency graphs dsawecyclic projective
dependency grapHs

3.1.3 Outline

I will introduce the three articles in sections 3.2 - 3.4. @efthat, | include in the
following a short summary of previous results on computela@omplexity of FSIG
parsing. The whole chapter is closed by section 3.5.

3.1.4 Previous Work

Computational complexity measures the amount of commurtatiresources (such as
time, space, parallelism and random bit$, van Melkebeek, 2000) that are needed, as
a function of the size of input, to compute an answer to a query

The Inclusion of FSIG Grammars into the Linear Time Complexity Class It is
well known that a direct product of two deterministic finitetemata — and the inter-
section of their languages — is computable in a linear tincertng to the sizes of the
automata (Rabin and Scott, 1959). During the FSIG pardiregsét of constraints in the
grammar is fixed and the intersection of the constraint laggs can be implemented
by an automaton that does not change. The direct productofémstant automaton
with the initial sentence automaton can also be computeihé@at time according to
the length of the sentence (Tapanainen, 1997)

One can arrive at the same conclusion by thinking about thelaety of FSIG.
Because each fixed FSIGs describes a regular language, wetkabthere is some
non-deterministic or deterministic automaton acceptirad it can, thus, be accepted
in linear time. Combining finite-state morphological arzdy; lexical lookup and a

2Actually, many constraints are not strictly locally teséaan sichbut only when we take into account
the admissible language where the annotation added to agfeleestoken is bounded.

3A revised version of this paper has been accepted for ptiblica International Journal of Foundations
of Computer Sciencgrli-Jyra, 2005b). It contains a slightly wider and moreustured discussion on these
classes of graphs.

4A comparison to different situations can be made. In the géoase where the number of automata and
their size bound are not constants, emptiness of inteoseofiautomata is ipolynomial spacéPSPACE)
(Kozen, 1977), and imondeterministic polynomial timg\P) if one of the automata is acyclic. When the
numbem of automata is fixed, the problem becomes solvable in polyaldime according to the largest size
of automata. If some of the automata are fixed, their sizes@wstant, and they affect only the coefficient
of the polynomial. If all but one automaton are fixed, theestaimplexity becomes a linear function.



24 3.1 Orientation

homomorphism with the grammar retains the linear time cexipj, because the re-
sulting parser will be a finite-state transducer.

Estimating the State Complexity of an Example Grammar As it is now (at the
latest) obvious that the time and the state complexitiesStEGrare linear to the size of
the sentence automaton, | turn my attention to the size ofdledficient. Obviously,
any large-scale FSIG would correspond to a huge automatbas been estimated that
such FSIGs as Eng-FSIG may need evei??° states when represented as a minimal
deterministic automaton (Tapanainen, 1997). This is a kaungh estimate, motivated
just on the basis of the fact that a grammar contain some #@mousiore or less di-
agonal rules, each of which compiles into an automaton lgatyipically 2 - 5 states
or sometimes even thousands of states. The experimenisccatrt by Tapanainen
(1992, 1997) suggest that combining all Eng-FSIG condti@itomata into a single
(non-symbolically represented) DFA would be impossiblptiactice.

Estimating the State Complexity of A Class of Grammars It is also important to
understand how the complexity of the grammar is related éonthy the grammar is
designed. This area is perhaps most interesting becauss/igive some insight into
the state complexity of various grammatical constraintd mpresented dimensions
such as embedding, tree rank, the number of rules and ceeggic

State complexity of set intersection (by means of minimatdainistic automata)
has been studied in (Ravikumar, 1990; Leiss, 1991; Birgg®lb,a, 1992; Yu and
Zhuang, 1991). Currently there is a large body of literatipeut state complexity
of basic finite automata operations. However, extendedlaegxpressions used in
NLP applications have not been addressed by automata stenrithese studies well
enough. As far as regular expressions in FSIG are concerhedle published some
initial results on bracketing restriction (Yli-Jyra, 286, submitted 2003) and context
restriction operations (Yli-Jyra and Koskenniemi, 2Qdabt there is certainly a need
for further studies. According to our experiments (Yli-dyand Koskenniemi, 2004),
the size of each automaton obtained from context-resiriatiles grows, in the worst
case, exponentially according to the maximum depth of destaecketing, and proba-
bly also to the number two-sided contexts.

The Lack of Insight into Locality and Parallelism in FSIGs Applying the state
complexity analysis to FSIGs gives some information on #lative size of the co-
efficient hidden in their deterministic time complexity. Wever, | need substantially
different kinds of insights in order to make the design ofoégfit FSIG parsers possi-
ble. I argue in the following that the insight we have lackeakiris the understanding
of the hidden structural locality in FSIGs.

For purposes of parsing where we often need to build the commppresentations
for ambiguity, it is extremely important to understand liityén the grammars that we
parse. For example, the state of the art context-free gansake use of tree locality
in the derivation trees in order to present a Catalan numittee@s (Church and Patil,
1982) in a polynomial @ (n?)) space according to the length of the parsed surface
string. The tabular representations for ambiguity thatiavelved in the parsers are



3.1 Orientation 25

obviously related to Gaifman graphs describing the firsieoproperties of structures
(Immerman, 1999) and the quantifier rank, but this connadtas not been extensively
studied in computational linguistics.

Another obvious and important application of locality cameg when we paral-
lelize and solve problems using multi-processor computersblems that parallelize
very well have locality properties that make this possiSle, in order to study locality
in FSIG, we could try to study its parallel computational qoexity.

In other words, there is a tremendous need to study locatityparallel compu-
tational complexity of FSIGs. Although these questionsracee abstract than state
complexity issues, the answers do have a close relatiotsbiefficients of determin-
istic time complexity as well. These connections can irespew ways of looking at
parsing in the FSIG framework.

Studying Parallelism by Means of Descriptive Complexity How the parallel com-
putational complexity of FSIG parsing could be analyzedhaitt assumptions on com-
putational models?

The computational complexity can be understood as the eghof a formalism
needed to specify the problem. The close relationship ltwemputational complex-
ity of problems and the richness of languages needed toideshem was established
when Ron Fagin (1974) showed that the complexity class NPqftbblems computable
in nondeterministic polynomial time) is exactly the clagpmmblems describable in ex-
istential second order logic. Today, this approach to caatfpnal complexity is called
descriptive complexity Neil Immerman (Immerman, 1999, p.2) summarizes the role
of descriptive complexity as follows:

It [descriptive complexity] gives a mathematical struetwith which to
view and set to work on what had previously been engineeriegtipns.

Illustration

Descriptive complexity has already characterized manypiexity classes that are
shown in figure 3.1. Immerman (1999) gives precise defintifor all these com-
plexity classes, but | include here, for the reader’s coiarese, rough definitions for
the classes of NP and co-NP. FO is the set of first-order boajeeries. It corresponds
exactly to LHi.e. the class of boolean queries computabl®ifiog ») time by alter-
nating Turing machines with restriction to a bounded nuntfedternations between
existential and universal states. While FO uses a boundetbeuof simple vari-
ables, classes FQpgn)°M] and FOR°(M)] use, respectively, poly-logarithmic and
polynomial number of extended variables that are querigtyysredicate BIT: : j).
BIT (i : j) holds if and only if bitj in the binary representation éfis 1. FO(TC) is
the closure of FO queries with arbitrary occurrences of xefte transitive closures
of a binary relation, and FO(DTC) is its restriction to detaristic transitive closures.
FO(DTC) and FO(TC) correspond, respectively, to LOGSPAGH HLOGSPACE.

5In different contexts, descriptive or descriptional coexitly of formal systems may also meary. state
complexity of regular languages.



26 3.1 Orientation

L Arlthmetlc hlerarchy
co re r.e.
: Recurswe e
Primitive Recursive
EXPTIME
PSPACE
CONP Polynomlal T|me>HA|¢‘ra_r‘qhy ,,,,,,,,,,, NP
VSO 350
FO[nO(l)] FO(LFP) PTIME
FOJ(log n) ©M)] NC
NC2
FO(TC) NLOGSPACE
FO(DTC) LOGSPACE
“regular e NC1
EO Logarlthmllcr 'pgg‘(?‘egd%rarchy ~ACO T

Figure 3.1: The world of descriptive complexity.f. Immerman, 1999).

The class LOGSPACE is the set of boolean queries computalgarithmic space by
a deterministic, multi-tape Turing machine. Class NLOGGEASs the sets of boolean
queries computable in logarithmic space by a nondetertianiulti-tape Turing ma-
chine. Class PTIME is the sets of boolean queries computalg@lynomial time
by a deterministic, multi-tape Turing machine. PTIME cepends exactly to class
FO(LFP), the closure of first-order logic under the power stkminductive definitions.
NC* is the set of boolean queries accepted by a uniform sequéboeinded-depth,
binary fan-incircuits whose size is polynomial according to the size efitiput, and
ACP if the set of boolean queries accepted by a uniform sequeiiceunded-depth
k, unbounded fan-irircuits whose size is polynomial according to the size efith
put. AC* is included toNC**!, andNC is the union of allNC* wherek > 0. The
definitions for the non-PTIME complexity classes are nottqddnere.

One of the strengths of descriptive complexity is its apili analyze locality and
structure of parallel time complexity classes. When we agtricted to regular lan-
guages, we find connections from logic (Thomas, 1997) andrigige complexity
classes to many varieties of star-free regular languagettve been studied in alge-
bra (Pin, 1986) and in category theory (Eilenberg, 1974)s World will be opened to
us when we turn our attention to the question of star-freeime&SIG and show that
this property holds for many interesting types of FSIG.

After this motivation, we are ready to look into the conttibns more carefully
with slightly more verbose comments given to each article.



3.2 Star-Freeness of Eng-FSIG Constraints 27

3.2 Star-Freeness of Eng-FSIG Constraints

Article

“Describing syntax with star-free regular expressionsEACL 2003

3.2.1 Plan

This article, like the two other articles, are treated heith the following structure.
First, the Introduction contains tHeummary Motivationsand Definitions It is fol-
lowed by sections oflain ResultandRelevanceand finally a section fobther Use-
ful Results The results sections often incluemarls that connect the result to the
literature or clarifies it. Some results are accompanietl it optionalllustration
section.

3.2.2 Introduction
Summary

This paper proves star-freeness of Eng-FSIG. On the wayidadsult, regular ex-
pressions are investigated and new methods for repregeamih processing grammar
constraints are discovered.

Motivations

According to the abstract of the paper, the star-freenessdtrpresented in this arti-
cle is an essentiamprovemento the descriptive complexitgf English Finite State
Intersection Grammar.

Definitions

What does star-freeness mean? Extended regular expréssiss concatenation,
empty set, complement, union and concatenation closure sfr-height of extended
regular expressions is zero if it does not contain conc#itamalosures (the Kleene
star or plus). The extended (or generalized) star-heightrefyular language is zero,

if it can be expressed using an extended regular expressioseyextendetde. gen-
eralized) star-height is zerbe. with star-free extended regular expressions. Star-free
(regular) languages are the regular languages whose extestdr-height is zero.

6There are many kinds of extended regular expressions (ample the FSIG regular expressions that
include the context restriction operation) but this is thdest and the most standard meaning. Sometimes
extended regular expressions are termed generalizedaregdressions.

"The attributeextendedbr generalizeis important in order to make the difference to the resticttar-
height (Eggan, 1963). The adjectistar-freehere as well as in my articles is equivalent to adjectivabpbs
extended star-freer generalized star-freevhenever | do not explicate whether | mean the restricted sta
height or not.



28 3.2 Star-Freeness of Eng-FSIG Constraints

3.2.3 Main Results
() Expressibility in FO [<]

Theorem 1. Eng-FSIG as a whole is a regular expression that describts-free
regular language.

Note that this result concerns the one-level definition ofHE$1G. It implies that
the constraints in Eng-FSIG is definabldiirst-order logic with linear orde(FO[<]).
The first-order expressibility of FSIG is an essential inyerment over thenonadic
second-order logi§MSOL) expressibility of FSIG.

A Remark Itis well known that the satisfiability problem for first-ardlogic is in
general undecidable, even for finite structures, but ndirfde sets. This might worry
some readers. However, the satisfiability problem for MS©Hecidable for strings,
trees and other context-free graphs. MSOL for finite stmastis called weak. Regular
string sets are exactly those string sets definablewwisk monadic second-order logic
with one successqwMSOL|[S]) (Buchi, 1960; Elgot, 1961).

The F(J<] definable languages are a subset of wM$£)definable languagesin a
similar way as star-free languages are a proper subset wirdgnguages. The result
that Eng-FSIG defines star-free. a FO<] definable language is, thus, a genuine
improvement over the descriptive complexity of the genE&G.

(I1) New Restriction to the FSIG Framework

In the section Discussion of the article, | wrote as follows:

Finally, the main contribution of this paper is to show tha8lGFSIG de-
scribes a star-free set of strings. It seems probable thiatrrrowing
could be added to the FSIG framework in general.

In the subsequent papers, | kept in mind that the constrmitgrammar that belongs
to this new class should be easily reducible to star-freala@gxpressions. | think
that the idea of star-freeness was a handy view that helpadalyzing what kind of

relations various constraints should express.

A Remark It is interesting to note that Kornai (1985) has argued tlatiral
languages are non-counting. star-free regular languages. According to him, this
restriction might be useful in language acquisition:

Hopefully, this special position of NLs in the Chomsky hignmg can be
utilized in streamlining the (oracle) algorithms modelilagguage acqui-
sition, because such algorithms (if actually implemenigdyld greatly
simplify the descriptive work of the linguist, and, at letsst certain ex-
tent, would finally fulfil the structuralists’ promise of d@very procedure.



3.2 Star-Freeness of Eng-FSIG Constraints 29

(1l Grammar Building Blocks that Maintain Star-Freeness

The article identified some idioms in regular expressioasdine useful when we write
other star-free FSIGs:

e limited balanced bracketinl.BB)® expressed through a parameterized star-free
language,

e context restriction operation,
e languages likeX* whereX is an alphabet, and

e marked iterations of a language.

A Remark It is perhaps necessary to make clear that the article is nogog-
ing star-free regular expressions as a tool for those whtewriguistic descriptions.
I am not against extending the linguist’s grammar formalisith various syntactic
extensions, and using the Kleene star. Syntactic extemsioregular expressions are
desirable and even necessary because they can hide tdd®stails and make the user
interface more intuitive. In Introduction | wrote:

Regular expressions in FSIG can be viewed as a grammaragritol
that should be as flexible as possible. This view point hadddthe]

introduction of new features into the formalism. — A comgletary view
is to analyze the properties of the languages described b F&yular
expressions.

3.2.4 Relevance

In the sequel, | try to answer to the question “why star-fessis important?”.
Star-free FSIGs Define a Natural Class of Languages In addition to star-free ex-
tended regular expressions, the star-free regular larguean be defined using many

other equivalent ways that characterize the same classgfiées. The alternative
characterizations for star-free languages include tHeviohg:

e counter- or permutation-free finite automata (McNaughtwh Rapert, 1971),

finite aperiodic monoids (Schiutzenberger, 1965),

e cascade product of reset semi-automata (Meyer, 1969),

languages definable with FQ] (McNaughton and Papert, 1971),

linear temporal logicd.f. Perrin and Pin, 2001),

the smallest variety closed under the pure star operatiériPjn, 1986),

¢ the concatenation hierarchiesf( Pin, 2003),

8The term LBB does not occur in the article.



30 3.2 Star-Freeness of Eng-FSIG Constraints

o first-order string automata, (Schwentick and Barthelmanag),
¢ loop-free alternating automata (Salomaa and Yu, 2000), and

¢ the forbidden-pattern hierarchy (GlaRer, 2001).

Star-free FSIGs Define Local Properties The expressibility in FQ<] opens new
scenarios for FSIG parsing, because first-order propatesocal. For example, ac-
cording to a famous theorem by W. Hanf (Immerman, 1999, pll@®), first order
sentences with Aounded quantifier rartkcannot distinguish between two graphs of
bounded degree if the graphs have the same number of logddb@hoods of all pos-
sible types where the number of possible types depends erpialty on the quantifier
rank . It is, thus, no wonder that dependency on the neighborhooder the suc-
cessor or linear precedence relation is the basis for definif many special classes
of regular languages (McNaughton and Papert, 1971) anché&r tecognition with
tabulating methods.

Star-free FSIGs Have Lower Computational Complexity According to Immer-
man (1999), the following complexity classes are equivalen

AC® = FO = LH = CRAM[1]

| explained the meaning oAC°, FO and LH already on page 25. The less known
complexity class CRANI] is the set of boolean queries computable in constant paralle
time on a CRAM. Aconcurrent random access machif@RAM) is a machine that
consists of a large number of processors, all connected tonmon, global memory.

At each step, any number of processors may read or write amgl afothe global
memory. If several processors try to write the same word estme time, then the
lowest numbered processor succeeds.

Among all regular languages, there are some that do not §ébanC?, but all are
included inNC! (NC'! is the set of boolean queries accepted by a uniform sequence
of binary polynomial-size circuits)AC?, FO, LH and CRAM[1] are proper subclasses
of NC*t. AC? containsall star-free regular languages (Thomas, 1997) and, thexef
we actually see that star-free languages have a smallerutatignal complexity than
regular languages in general.

Star-free FSIGs Have Certain Compact Representations We can make use of par-
allelism even in conventional computers:

e We can represent the grammar in a fashion that makes usealfgtiam. The
article suggests that a compact grammar representatiold weuased ofoop-
free alternating finite automat@d.F-AFA) by (Salomaa and Yu, 2000).

9The quantifier rank of a first-order formula is basically thenber of nested quantifiers in it.
10This result is perhaps easier to understand if we recallttiee are only finitely many inequivalent
formulas of quantifier rank (Immerman, 1999, p.96).



3.2 Star-Freeness of Eng-FSIG Constraints 31

e A very good compact representation would also allow the gaita of a parse
forest in a manner that resembles parallelism, by turningligism of recog-
nition into dynamic programming in the parse forest genenatin chapter 5
we will, in fact, suggest a representation where the pansimgld be carried out
in linear time with a constant number of parallel processdijsammar layers.
Each of these layers would represent some of the local stemghborhoods in
a very compact manner.

So far, we still understand only a surface of the relation&lgtween FO expressivity
and compact representation of ambiguity in parsing. It miigim out that circuit depth
or parallel time — although they are constants for each laggun CRAM[1] and
AC° — corresponds to the depth of a tree that describes how sarbrgars should be
joined or made consistent during parsing.

3.2.5 Other Useful Results
The Star-Freeness of LBB

The LBB language recognized by the automaton of figure 3.faisfeee. The same
language can be described using the following definitioa dfinition is not star-free)
for the corresponding star-free regular language? C ©*, where@<@> @< %:

[y -riesere@ =0
T (=4 U @<l @3 whend > 0.

The article itself contains a star-free regular expresiorthis language. The star-
freeness of --1¢ was not at all obvious to me. | used the AMORE program to prove
the star-freeness af--]¢. The automatically obtained star-free expression was .huge
For illustrative purposes, | needed a shorter one whichrdahrough a trial-and-error
approach. Similar languages had been studied in connectithe DDH of star-free
languages, but | was not aware of this connection at the tifmblication of this
article.

Remarks on Context Restriction

It turned out later when | was writing the article that | idéet a difference in the
XFST implementation of the restriction operation and my riemnula that did not
rely on transducers or substitutions. These results ledftother publication (Yli-
Jyra and Koskenniemi, 2004) where the different implemgons are documented as

@<

@< @<
4@@ @> ‘@'
P2 z z z

non-brackets “~non-brackets non-brackets “~non-bracke

Figure 3.2: An automaton for an LBB like in Eng-FSIG.



32 3.3 Approximations of Context-Free Grammars

carefully as well as possible. When testing the differenttesregular expressions of
Voutilainen’s Eng-FSIG constituted a really useful magkri

3.3 Approximations of Context-Free Grammars

Article

“Regular approximations through labeled bracketing (¢fia, submitted
2003)”

This article has been submitted to the post-proceedingstioalld become an on-
line proceedings published by CSLI Publications. A precuds this heavily revised
article was presented in FGVienna 2003 (Yli-Jyra, 2003d).

3.3.1 Introduction
Summary

The article introduces FCFBGs and their approximationsdbastitute a new type of
FSIGs.

Motivations

In general, implementing good parsers of star-free FSIGS) as Eng-FSIG, is a diffi-
cult task because very little is known about the class of waims that can be used in
the grammar — star-freenessis still a very rough charaetéoin. However, if we con-
sider some well-understood and restricted kinds of FSI@anay have better chances
of understanding the structure of the grammar and of findingficient parsing algo-
rithm. As a promising alternative, we could get FSIGs medatadly from context-free
grammars by approximating them.

Definitions

When we say that we approximate context-free grammars wa thedit is the SGP
of CFGs that is approximated. Some other approximationsare suited for approx-
imation of the languages generated by context-free gras(éGP of CFGs) than for
obtaining an approximation for sets of parse trees (SGP &<JF

For us, constituenX is center embeddetb a larger constituerit” if the yield of
Y is of the formaX 3, wherea and 3 are nonempty. Such a center-embedding is
a self-embeddingf both X andY are of the same categdfy If center-embedded
constituents are nested, all of them do not have to be of time sategoryi(e. the
self-embedding depth may be lower).

11The terms self-embedding and center-embedding are ofeshinerchangeably. If we talk, for example,
about center-embedding Sfwe actually talk about self-embedding as well, becatigeassumed to be also
the root.



3.3 Approximations of Context-Free Grammars 33

Extended context-free grammgiSCFG) are an extension of CFGs. In ECFGs,
right-hand sides of normal CFG productions are replacet vagular expressions.
Due to this extension, the rules of ECFG that are called prtoginschemas.

Dyck languages in the article are actually also semi-Dyokleges. Because the
class of Dyck languages contains the semi-Dyck languagessagset, semi-Dyck
languages are often imprecisely referred to as Dyck langsia¢n Dyck languages,
the only requirement is that the number of opening braclse¢gjual to the number of
closing brackets, while in semi-Dyck languages each oggmiacket must also match
a closing bracket that is on the right (Harrison, 1978).

3.3.2 Main Results
(1) An Approach for Obtaining FSIG Approximations

In this article, FSIG is presented for the first time as a fraork for representing
regular approximations of non-regular grammars. The apgreonsists of

e encoding structures of the original grammar through brisgke

e representation of the surface string language as a homdrieanpage of the set
of the bracketed deep strings,

e describing the set of all bracketed strings by a derivativa eemi-Dyck lan-
guage,

e representation of the grammar through a “Chomsky-Schiveeger style rep-
resentation” where the semi-Dyck derivative is combinethwinite languages
using concatenation and boolean operations,

e Wrathall’s technique for obtaining any semi-Dyck langudgefrom the semi-
Dyck languagéD,, and

o star-free approximation of the semi-Dyck langudge

This same approach has been used later in two other appriasira¢hat are included
in this dissertation.

ARemark The original Chomsky-Schuitzenberger represent&tismot linguis-
tically appealing as such. Also, it is not based on a finergiéiset of assertions such
as in MTS (it compiles the original productions into a sing¢ght-linear grammar that
describes the string local properties of the so-cafitethdard context-free language
that is obtained from the grammar). Furthermore, it is ideghfor representing sur-
face languages only. If we also want to obtain phrase-markembracketed strings
representing derivation trees — we need to do some extra.work

12The set of context-free phrase-structure trees can beredptuith a bracket string language — a so-
called semi-Dyck language. Chomsky and Schitzenber@&3jlpresented a theorem according to which
each context-free language can be represented as a hontomionpge of an intersection of a semi-Dyck
language and a regular language.



34 3.3 Approximations of Context-Free Grammars

A virtue of our approach is that it uses the string encodedrif@sons of linguistic
structures directly which means that we do not need to sfyntiie bracketing used
in the grammar representation in order to obtain the desitedttural descriptions.
Moreover, our representation can be adapted for reduce#dtiag.

(I Reducing Tree-Locality into Star-Free Constraints

The article shows that when the height of derivation tredsriged, the local trees
correspond to regular set properties of bracketed stridgder the assumption that the
right-hand sides of the approximatedntext-free bracketing gramma(CFBGSs) rep-
resent star-free regular languages, the properties binoitéracketed strings encoding
local trees are not only regular, they will actually cormesg to star-free sets.

An lllustration  Star-free approximations can specify balanced brackétied)s
from inside (bottom-up) even if the the total depth of bratigis not known. How-
ever, the same does not hold for from outside to inside (mpr). Rather, we need
to know the limit for nested brackets (of the same type). Thiblustrated as follows.
According to the article, the bracketing restriction coaisit #Lc__ Rc# = f2(E)
(page 10), can be approximated through the formula (on pape 1

Vr — Le(Ax — f3(f2(E))) Re

According to this formula, a substring betweenlanprefix and arR¢suffix should
represent a well formed subtree. However, it is not possblese the following for-
mula to restrict the top side of the tree becausé thgrefixes and th&csuffixes match
each other in order to constitute well-formed contexts fditeees.

A — Le (Vi = f3(f2(E))) Re

The first formula is a bottom-up alternative. The second fdepthat was intended to
be the top-down alternative, fails to define a tree propesygausé/;: is not a set of
trees.

A Remark Peters and Ritchie (1969) showed that the derivation tré€-Gs
can be described through context sensitive rules that astednstraints rather than
productions. My bracketing restriction constraints egténis old idea to unranked
context-free grammars. | have realized that the pre-pdings version of my article
(Yli-Jyra, 2003d) involved some fundamental problemsawse the result of Peters
and Ritchie was limited to ranked context-free trees.

It would be interesting to see in future, whether we couldrapimnate also some
non-tree-local tree properties.(). proper analysis predicates (Joshi and Levy, 1982),
and logical constraints (Rogers, 1998)) with star-freest@ints on bracketing.

13These constraintanalyzeor validate the context-free trees. | used the historiaah e analyzein the
title of (Yli-Jyra, 2004a) in order to indicate the conrientto this approach.



3.3 Approximations of Context-Free Grammars 35

(1l The Connection to the Dot-Depth Hierarchy

The article points out the connection to the DDH (Brzozowaskil Knast, 1978) of
regular approximations. Although the class of star-fregleges corresponds exactly
to this hierarchy | may be the first to carry DDH over to compiotzal linguistics
and to regular approximations in particular. | believe tthat dot-depth of grammars
measures their parsing complexity in an interesting way.

The DDH of star-free subsets &f can be defined inductively as follows. The first
level, By, contains subsets 6f U {¢}. Every further leveB,, i > 0, is obtained from
the languages dB;_; by closing them first under concatenation, and then closiag t
resulting family of languages under union and complemantat

The dot-depth measure is not generally available for redafguages. When |
made the restriction to star-free FSIGs, | actually madertbasure of dot-depth avail-
able. Unfortunately, determining the exact dot-depth dba&ee regular language is,
in general, a difficult problem (Pin, 2003).

A Remark The DDH has to do with complementation in star-free expogssi
and quantifier alternations in the corresponding first-od#scription. Thomas (1982)
showed that there is a very natural way in which the DDH cqwesls to the quantifier
alternation hierarchy. This classical hierarchy of firser logic is based on alternation
of existential and universal quantifiers: a star-free laggis of dot-deptHt if and only
if it is defined by a boolean combination bfformulas (. is a first order logic in which
star-free languages are described) prenex normal fornfPNF)* with a X, prefix.

Star-free FSIGs make heavy use of complementation. For geam Yli-Jyra
and Koskenniemi (2004), | define context restrictions aratketing restrictions using
generalized restrictions. On one hand, the generalizadatém is defined using a
regular expression with a double complementation, and enother hand, context
restrictions ipid.) correspond to a first-order formula, where existential anitersal
quantifiers alternate. Furthermore, alternations ocaw il the generalized definition
of Eng-FSIG constants that express LBB languages (Y&J2003a). In the current
article (Yli-Jyra, submitted 2003), | realised that autdensimilar to the one shown in
figure 3.2 are similar to those that are used to establismfirétude of the DDH.

3.3.3 Relevance

State Complexity and Dot-Depth The usual way to measure the complexity of reg-
ular languages is their deterministic state complexity, Ibstarted by studying the
star-freeness property. The dot-depth of star-free lagesialso gives a useful view on
state complexity.

It is a well known result of Meyer (1975) that when a wMS@Lformula is com-
piled into an automaton, the worst-case state complexityefesult is non-elementary
according to the length of the formula (Klarlund, 1998). Wthaes this mean? Aon-
elementaryfunction grows faster than exponentially: when its argutggows, the

14A formula is in prenex normal form if it consists of a string qfiantifiers applied to a quantifier free
formula.



36 3.3 Approximations of Context-Free Grammars

next value of the function will infinitely often be exponaeaity larger than its previous
value.

The result that is available for wWMSQ&] could be compared to what happens
when we compile first-order formulas into deterministiccanata. However, the au-
thor is not aware of results that would associate non-eléangstate complexity with
FO[<], although there is some related resuttS.(Frick and Grohe, 2004). We note
also that each level of the DDH concatenates at least twaikeges of a lower level.
Concatenation of DFAs of two languages has, in general, rexpital state complex-
ity (Yu, 1999) and exponential blow-up is possible even whtam-free languages are
concatenated (Mohri, 1995). We can expect, thus, that dpthchierarchy is related to
rapidly growing — if not non-elementary — state complextgrhaps further studies (or
missing references) on state-complexity would be in place.

In degenerate cases, suchAs(figure 1 in the article), the state complexity is not
non-elementary nor exponential but linear to the dot-depth in grammar representa-
tions using a semi-Dyck approximation we get ficdevels in the DDH almost for free.
When Ay is then used in the bracketing restriction rules we reallyelem exponential
blow-up. Due to this, the state complexity of regular appr@ations discussed in this
article is no worse than exponential to their dot-depth.

Another degenerate case would use different bracket |&re¢ésnbedded phrases.
This does not decrease the the state complexity, but malkateamative, more succinct
finite-state representations available as we will see ipiehd.

3.3.4 Other Useful Results
(1) Reduced Bracketing Solves the Tail Recursion Problem

If the nesting of brackets is limited — as it is necessary for @gular approximation
— full bracketing fails to capture unbounded left- or rigihtleedding (it may still de-
fine infinite languages because the bracketing can represeamked trees, but some-
times we do not want to reduce tail-recursion into iterafiothe syntactic analysis).
The article solves this incapability of bracketing gramsnby introducing a reduced
bracketing scheme to context-free bracketing grammaris. Wawy to solve the encod-
ing of tail recursion does not have anything to do with regafgproximation although
regular approximation will take advantage of the resu#t réduced bracketing scheme.

A Remark Reduced bracketing is not a new thing (Krauwer and des Tombe,
1980, 1981; Johnson, 1996, 1998). According to Ejerhed dmach (1983), a similar
representation was proposed by Ronald Kaplan (Church apthKa1981) in Xerox.

In INTERLISP (Teitelman, 1978), super-parenthesis (aketd’) was used to close
any number of open parentheses. Chomsky (1963, sectiosalyaggests optimising
brackets in certain contexts.

An lllustration  Here is an example of reduced bracketing:

([[[[a]o]c]d][e][[f1) g[n[[[ k[t mI]]]n]]]]
[ a)b)e)d)el[(f ] g{h(i[j(k{Um ]n ]



3.3 Approximations of Context-Free Grammars 37

The example shows two bracketed strings: a fully bracketedamd a reduced one.
They can be transformed into each other in linear time usidgtarministic two-way
stack machine.

(1) Definitions for Bracketing Grammars

The paper introduces two kinds of non-regular grammarsricheted strings: CFBGs
and FCFBGs.

CFBGs are a subclass of so-called ECFGs. They have a lot imeorwith brack-
eted context-free grammars (Ginsburg and Harrison, 19%if)also some important
differences that makes this new definition necessary. CFH@&&rate context-free
sets of bracketed string where the bracketing in stringeesgmts (possibly) unranked
derivation trees. CFBGs have been defined in such a way tisatdtsy to make some
modifications to the bracketing scheme and, especiallyséoraduced bracketing in
some productions.

The main difference between FCFBGs and CFBGs is that FCFBG®tiuse a
rewriting mechanism. Thus, FCFBGs can be seen as an MTS gegmiile CFBGs
is a GES grammar.

A Remark The following discussion argues that the proposed gramarareel-
evant to linguistics and computer science. Ejerhed andd@h{1i983) advocate the use
of extended context-free grammars for flat syntax. AlthoGgi@Gs have been largely
replaced by mildly context-sensitive grammars as the syicttheory in the state of the
art of NLP, CFGs have still a lot of practical relevance amd,example, probabilistic
CFGs have been used recently in treebank construction. efisinee trees capture,
for example, the topological structure or recursive chunkaerman syntax, as well as
models information structures whexg). Theme, Rheme, Background and Focus in the
sentence form a relatively shallow recursive structureg)-ESIG is related to CFBG
because the bracket®&@> in Eng-FSIG can mark flat clause structures whose tree-
rank is unbounded. Furthermore, combining a FCFBG with &ddpncy-based FSIG
in a multi-tape finite-state system would provide a way to lengent a topological
dependency grammatr.

Bracketing restrictions have deepened our understandihg possible restrictions
and inspired our study of their state complexity. Moreogeme computer science
applications for these grammars may be found in XML (and SGpthcessing, where
the parse trees may be unranked and the markup may miss sgen@ika in SGML
document types). FCFBGs might be extended, for examplewiayethat corresponds
to regular frontier check in tree automata (Jurvanen etl@B3). In fact, Joshi and
Levy (1982) advocate the use of local tree constraints iguiistics, some of which
(proper analysis predicates) might now be representediwibketing restrictions in
FCFBGs. This might imply that FCFBGs can define sets that atoe defined with
CFBGs.

Finding this connection to CFGs was very instructive to titkar. It helped later to
relate FSIG parsing with standard parsing techniquessdétleld to the question of en-
coding of projective dependency grammars. Moreover, th@igations of Chomsky-
Schutzenberger style representations turned out to jEed#san expected, extending



38 3.3 Approximations of Context-Free Grammars

full bracketing reduced bracketing
S = NPV
S — [sNP VP]g \E — (wV |{wV NP
8 VP —  [wV]w|[wV NPl NP —  Jim)np| Sue)np
3} NP — [\ Jdim]ne | [np Suelne Nj —  (wpJim| (yp Sue
m V. — [vranly V = (yran
\Y — [vranly
#_# = [sAls
) #_ = [s4] [s__1Is = A)ne(veA
g [s__]s = [nPAlnplveAlve (vv__Br = (vA | [vA]v{neA
Q v = [VAlv | [vA]v[neAlne B, __)np = Jim|Sue
E INe__Ine = Jim|Sue (vv__Br = Jim|Sue
© Vv = ran (v__Br = ran
L v__] = runghits
2 ({Jim,Sue,runs,hitsU By, U Bg)* g.{l;[%'g“tesmp’ e, (e, MEBLUB”)*
|5 Jim|Sue = [np—]np imSue = <L';P—> n |
§ [NPA]NP = % [ []‘A] ]]VF'l >NP = [SLA_ ?‘\;’A]
= . VANV
4 runshits = [v__Jv gerhits - EVP[V]A} ABg
- [vAly = [w__]vp| N <V ARB tv—Br
3 [vp__[npA]nplve VA - <VP ( KB
‘g‘ vPAlve = [s[npAlnp__]s <¥/P - [V >NPiA]§
S8 [sAls = #H__# [Als - 4

Table 3.1: Comparison of different ways to represent theesaee set

to somemildly context-sensitive gramm&a(MCSGs) in contributions discussed in the
next chapter. Learning about bracketing schemes for ctfrees constituents was use-
ful for understanding more complex representations.

An lllustration  Table 3.1 illustrates two kinds of bracketing languagestanee
kinds of bracketing grammars. Both languages — a full bragdanguage and a re-
duced bracketing language — represent the same set oftireegh different kinds of
bracketed strings. These two languages are describedhwith tlifferent grammars: a
CFBG, a FCFBG and a grammar that uses context restrictiomlagh one is included
here for the sake of completeness asllastration that shows that bracketing restric-
tion constraints are not the only way to validate bracketiigwever, it is interesting to
see that only grammars with bracketing restrictions allonrtiles that resemble CFGs
rules. It should be noted that FSIG approximations are nbthfrom these last four
grammars by replacing with a regular language.



3.4 Approximations of Dependency Grammars 39

3.4 Approximations of Dependency Grammars

Article

“Approximating dependency grammars through intersectibrregular
languages” (Yli-Jyra, 2005a)

A precursor of this revised article was presented in thegooeeedings of CIAA
2004 (Yli-Jyra, 2005a). A further extension has been atzkfor publication inin-
ternational Journal of Foundations of Computer Scief\®rld Scientific) in a CIAA
follow-up issue. The journal version emphasizes stamfess of the approximations
and discusses the structural properties of dependencyrivere carefully.

3.4.1 Introduction
Summary

The article introduces an approach for full (projectivepeledency syntax within the
FSIG framework.

Motivations

| am not aware of any finite-state approaches to dependemsingahat is based on
intersection or assertions, although approaches with pawerful constraint program-
ming techniquesg.g. Duchier, 1999; Maruyama, 1990) were available and FSIG ap-
proximations existed for context-free grammars (Ylialygtibmitted 2003).

Definitions

A D-tree or a dependency graph (D-graph) is said tesémi-planar(or planar ac-
cording to Sleator and Temperley, 1991) if the links do naissreach other when
drawn above the sentence. The sentence line drawn on a plésdtse plane into two
halves, thus we should have teemi-prefix. For example, the D-tree in figure 3.3 is
semi-planar. The article specifies the projective graptes ausoset of the semi-planar

D-graphs.
de’tésMo j

that man ate an apple

Figure 3.3: A semi-planar D-graph (an imaginary situation)



40 3.4 Approximations of Dependency Grammars

3.4.2 Main Results
() A New Class of FSIGs

The article introduces a new class of FSIG: approximatidrependency grammars.
Star-freeness of these regular approximations can be peagly using the heuristics
developed earlier.

The new class illustrates how classes of structural dagmmgpcan be axiomatized
using FSIG constraints. The idea of definitive constraiakspms, evolve from “ad-
ministrative” constraints used earlier in FSI@sf(Chanod and Tapanainen, 1996b).

A Remark Although star-freeness of the resulting approximatiomagketed
languages) is not mentioned in the paper, it is “inheriteldhg with the FSIG ap-
proach. Kleene stars are used in the regular expressioh® @frticle in such a way
that it is easy to reduce these regular expressions into-&etaformat.

(1) String Locality of Rules

The article formulates dependency rules of HGDG as regulastcaints. These con-
straints validate finite substrings that occur between twodwboundaries#) in the
annotated string8.

A Remark String locality gives rise to a new parsing approach thatsuagested
in the paper. According to it, automata representing loesickl constraint$ will
be applied during parsing before automata that check motgagproperties such as
balanced bracketing.

Furthermore, the new grammar representation makes icpkatly easy to analyze
the upper-bound for the dot-depth of the resulting grammstances: the maximum
dot-depth in the set of constraints is an upper-bound fodtitedepth of the whole
set, because each level of the DDH is closed under inteosediiccordingly, we need
only to consider the dot-depth of constraint (3b) and of ¢hog5), which have a very
simple definition that depends ah the limit for nested brackets. This points to the
same direction as suggested in the case of FSIG approxmsaifd-CFBGs: the state
complexity would not be non-elementary although the dgthieloes not seem to be
bounded.

The actual dot-depth can be lower than the upper bound foréasons: (i) the
described language can be empty or (ii) it does not necéssappen at all that a
dependency link embraces another link of the same category.

(Il A Novel Dependency Bracketing Scheme

The article presents a novel string-based representatiatependency trees.

15There are some constraints and constraint schemata thafrcéteene’s closures, and are not, strictly
speaking, string local. In these constraints, the closcoetd be replaced, however, with finite languages,
as the constraints restrict substrings between word boigsdand these substrings are otherwise bounded,
which is a combined effect of several constraints.

16Constraints whose domain of locality is bounded by two wardridaries (#).



3.4 Approximations of Dependency Grammars 41

A Remark This representation is closely related to a recent, but raonepli-
cated representation by Oflazer (2003), but in a strict eshto traditional representa-
tions (Lecerf, 1961; Hays, 1964; Nasr and Rambow, 2004).

Oflazer (2003) has presented a representation that is glosleted to ours. In
contrast to it, the most previous string-based encodingreels for dependency trees
are based on phrase markers of context-free grammars. Tdwdy vepresent the parse
tree as follows:

e According to Lecerf (1961):
[ ([([that]) .[man]]) . [[ate].([ ([an]) .[apple] ) ]]

e According to Hays (1964):
*(pred( subj(det(x),*), x, obj(det(x),x) ))

e According to Nasr and Rambow (2004):
[pred [subj [det that ]det man ]subj ate [obj [det an ]det apple]obj ]pred

3.4.3 Relevance
The Significance of the New Bracketing Scheme

My new encoding scheme differs radically from the classiralcket-based notations
for dependency trees. Choosing this new encoding is metivay the following two
arguments;

First, in the classical notation (Lecerf, 1961; Hays, 19¢dsr and Rambow, 2004),
the brackets for dependent nodes do not generally appda in¢al neighborhood of
their governors. In my encoding, labeled brackets for al dependents of a gover-
nor wordw are indicated close ta. Due to this locality, the HGDG rules over the
bracketed representation can be expressed using reguipuages.

Second, the representation is “almost” capable of encosimge non-projective
trees and semi-planar graphs. Namely, the encoding cantéedsd to non-projective
dependency trees and graphs by relaxing certain constraior example if | do not
include the irreflexivity constraint, the outside-to-isiconstraint and all Robinson’s
axioms, | get a much larger set of graphs.

Furthermore, this new bracketing scheme can be extendemtpiojective D-trees
and D-graphs. These possibilities are made explicit in-gyt&, 2003c, 2004b,a; Yli-
Jyra and Nykanen, 2004). Non-projective D-graphs canelpeesented with strings
by splitting them to semi-planar subgraphs each of whiches tdescribed by brack-
eted strings that share the same sequence of word nodes bBitaeketed strings for
semi-planar graphs can be written on different input tapeabey can be layered (or
interlaced) to a single string, provided that each semgoigraph is encoded with a
different set of brackets.

3.4.4 Other Results
Axiomatization of Planar D-graphs and D-trees

The paper axiomatizes the following classes of graphs ar $kvéng representations:



42 3.4 Approximations of Dependency Grammars

e semi-planar graphs (axioms 1-5),
e acyclic semi-planar graphs (axioms 1-5,10,12,13), and
e projective dependency trees (all axioms).

Moreover, the paper comments on Jane Robinson’s axiortiatizznd shows that her
four axioms or the usual projectivity condition, as theynstado not themselves imply
acyclicity of the D-graph. In fact, acyclicity is not firstaer expressible (Immerman,
1999, p.101), thus, not a local property, but, of course,essmbsets of the acyclic
graphs may be expressiblefirst order boolean querie@-0) logic.

In my representation, the context-free language for baldrracketing enforces
a necessary global condition (semi-planarity) for acytglicAn important, but simple
observation that is exploited in the paper is that even dichitracketing will enforce
this condition to the represented graphs. When the numbeesigd links is limited,
this condition becomes first-order expressible.

A Remark Projectivity condition has been studied perhaps first byekiec
(Lecerf, 1960; Ihm and Lecerf, 1963) Differences between previously defined pro-
jectivity conditions have been studied by (Marcus, 196%79

Semi-planar graphs can be seen as an extension of treesarehggsely connected
to proof-nets, although there are also proof nets that arplanar (Gaubert, 2004).

A Representation for Context-Free Languages

The article presents a flat representation for HGDG’s. This be used as a new
Chomsky-Schiitzenberger style characterization foredsftee languages. A peculiar
property with my representation is that it starts from dejssrty grammars rather than
from context-free phrase-structure grammars.

A Remark Correspondence between CFGs and dependency grammargand th
integration into the same framework has been studied inifl®oh, 1967; Covington,
1994c,a; Hofler, 2002; Bohnet, 2003; Robinson, 1967; TdieB8; Nivre, 2003b; Dras
etal., 2004).

An Open Problem Manydeterministicdependency parsers (Arnola 1998; Elwor
thy, 2000; Nivre, 2003a; Nivre and Scholz, 2004) producggqutive analyses. This
is, however, not a necessity (Covington, 1990, 1992, 192@81). It is not clear how
the output of these parsers could be characterized as a stuofures, because the
deterministic parsers usually lack a declarative spetifica

17According to Marcus (1965), the notion of projectivity appein 1959 in the work of Harper and Hays,
and the first projectivity-based dependency grammar wesepted in May 1960 by D. E. Hays at the Rand
Corporation, Santa Monica, California. H. Gaifman’s 196p¢r had already appeared in 1961.



3.5 Conclusions 43

3.5 Conclusions

I have summarized articles that investigate three kindssé@is: (i) Eng-FSIG, (ii) and
approximations of FCFBGs and (iii) HGDGs. The articles eimtby themselves, new
approaches and contributions to finite-state methods iraldanguage processing.

The Most Important Contribution

The class of star-free FSIGs is a new, important discoveaidlves more insight into
how some FSIGs are structured, how new FSIGs should be desard what is the
computational complexity of these grammars. The articlegiad to each other under
the theme of star-freeness, although this was not madeciplihe selected version
of the third article.

In this chapter, we have been asking what kinds of insiglgsetarticles can give
about computational complexity of their grammatical maogteihgs. The complexity
of regular languages is, in any case, low, but descriptiveexity allows for defining
finer distinctions for low complexity languages. When | skedwin the first article,
that the model string set of Eng-FSIG is star-free, | acjualitained also a result
on its computational complexity. The approach of regularession equivalences as
presented in the first article are also applicable to my nelGESalthough | do not
elaborate the details of their star-freeness proofs.

The star-freeness of sets of model strings for assertiopléiathat the model string
languages are in DDH and LH. This means that the analysis oite-Btate approxima-
tion can be made more refined by studying its dot-depth, thaben of quantifier alter-
nations in its first-order description, or the number of adstomplementation needed
in the star-free regular expression. Finally, | argued ffiat dot-depth is connected to
worst-case deterministic state complexity of star-frengnars.






Chapter 4

Linguistic Applicability

4.1 Orientation

4.1.1 Summary

This chapter will present an approach to modeling complgeddency-based struc-
tural descriptions using FSIGs.

4.1.2 Problem

The Quest for Appropriate Grammars Defining a new class of grammars that
could give appropriate syntactic descriptions for natlaajuage sentences is not an
easy task. Different hypotheses for possibly adequatedbgrammars exist, rang-
ing from finite-state models to certain context-sensitieasses of grammars, and con-
textual grammars. Currently the best characterizationsdtural language syntax is
given in terms of mildly context-sensitive grammars an@dincontext-free rewriting
systems. At the same time, these models are challenged byeagreen approach:
dependency syntactic grammars that are not limited to ptiegeconstituent structures
but associate words according to their valencies.

How does FSIG relate to these approaches? Can FSIG giveatdemappropriate
syntactic descriptions to natural language sentencesiblingted to approximations
of context-free equivalent grammars? Can FSIG contriboyghéng interesting to the
state-of-the art with this respect?

Adequacy of Structural Descriptions What do | mean by adequacy or appropriate-
ness of structural descriptions? Obviously adequacy meigidged by some external
criteria. Joshi et al. (2000) maintain that adequate siratdescriptions should be
semantically coherent. Accordingly, syntactic analysiedd be compared against
the semantic structure. The idea of coherence is taken ewthef in the tradition of
combinatorial categorial grammars, where the syntax is asen artefact rather than
an independent level of representation: the syntacticttre is build as the result of

45



46 4.1 Orientation

inferences over categories, but these categories are efidgtions of the underlying
meaning.

Adequacy of classes of grammars has been usually discustadis of two formal
properties: WGP and SGP. Such measures tend to bias thesimttowards CH and
other properties of the set described. However, sematiereoice is not measured
directly by WGP or SGP.

Becker et al. (1992) introduced a third way of arguing abbesemantic coherence
and the adequacy of formal systems. They call this measerketivational generative
power(DGP). They motivate it as follows:

The starting point for our definition is the observation thahile the
specifics of a syntactic analysis of a particular constrogtinay be subject
to controversy, the (semantic) predicate-argument stmacbf sentences
is fairly uncontroversial. Furthermore, what characteszmany syntac-
tic phenomena in natural languages is the way in which thelipege-
argument structures map onto the surface strings.

According to this view, semantical coherence can be undedsis the simplicity of the
transformation between structural descriptions and copeedicate-argument struc-
tures.

Dependency syntax (Tesniere, 1969 (1959)) is a syntaetiadwork that captures
the predicate-argument structures.

Approximated dependency syntax Our problem is to investigate whether star-free
FSIGs could be used successfully (i) as a performance-atetivgrammar fotin-
guistically adequate sets of dependency structuaes (ii) for representation of pa-
rameterized subsets of the SGP of mildly context sensitiaengiars. This problem
is difficult because the star-free FSIGs, a framework for&te sets of grammatical
model strings and regular surface languages, is not miloihtext sensitive, although
it might allow approximations for such grammars.

4.1.3 Atrticles

I have investigated the stated problem by examining deperyd&ructures in a tree-
bank and then building a formal account that is suited foiG-&pproximations. The
investigations cover, basically, the following three adp®f the problem:

e a measure for complexity of used syntactic structures [4]

¢ the design of the underlying formal grammar [5]

e an FSIG approach to non-projective dependency grammars [6]

These aspects have been investigated in three contrilsutidhe following way:



4.1 Orientation 47

Measuring the Syntactic Complexity of Linguistic Data

[4] Yli-dyra, 2003c, “Multiplanarity — a model for dependey structures
in treebanks”

This article presents a model that measures the complekiigpendency trees.
Then the author conjectures that dependency trees thaitgalg bomplex according to
the measure are either very rare, incorrect or fall outsidlesoperformance of language
users. The measure is tested against an existing treetstrdotitains dependency trees
for a few thousand Scandinavian (Danish) sentences.

Designing the Underlying Formal Model

[5] Yli-dyra and Nykanen, 2004, “A Hierarchy of mildly ctext-sensitive
dependency grammars”

This article elaborates the core of the model sketched inTA§ resulting compu-
tational modelgolored multiplanar link grammafCMLG), is designed here so that it
is mildly context sensitivlMICS) but describes dependency structures rather than con-
stituency structures. This aspect makes CMLG linguidticateresting: it might be
able to give adequate structural descriptions to natungiuage sentences.

Another class of dependency grammardpred non-projective dependency gram-
mar (CNDGs), enforces heuristic acyclicity and treeness domr on dependency
structures. The motivation for heuristics is that acytfidf the derived structures is
not a consequence of the tree-shaped (in fact a string-dhepsgvation tree.

Defining an FSIG Approximation

[6] Yli-Jyra, 2004a, “Axiomatization of restricted nonggective depen-
dency trees through finite-state constraints that analyassing bracket-
ings”

This article is a dense description of a new FSIG type thatlmmsed to ap-
proximate CNDGs. The deep strings of this FSIG are partibutiesigned to encode
CNDGs derivations — as well as the derived strinddecause the essential properties
of valid deep strings are difficult to describe without asctsthe original CNDG, |
am forced to specify their properties through complex axi@ach of which is defined
both verbosely and using a regular expressions as the nmefadge.

4.1.4 Outline

The three articles correspond to respective sections 42wHere they are discussed
in more detail. This chapter is concluded by section 4.5.

1A peculiarity of CNDG is that the strings are derived front kefright and it is the link structure that is
interesting from the syntax point of view.



48 4.2 A Measure for Syntactic Complexity

4.2 A Measure for Syntactic Complexity

Article

“Multiplanarity — a model for dependency structures in traeks,” in
TLT 2003

4.2.1 Introduction
Summary

This article sketches a model that is is capable of encodirdgpendency structures
of a dependency treebank. The amount of resources consuyntieel encoding defines
a complexity measure for dependency structures.

The article — despite some of its technical confusions thatcammented on in
Appendix A — contains a number of important innovations. Sehaanovations have
already given rise to several follow-up publications whiiese innovations have been
used and developed further (Yli-Jyra, 2004b, 2005a, 2084alyra and Nykanen,
2004).

Motivations

The main limitation of earlier FSIGs has been the represientaf syntactic analyses.
Due to this limitation FSIG has been regarded as a surfadasymapproach.

An important requirement for a less limited FSIG represiutais to keep the
string alphabet fixed in the representation. Due to thisirement, a representation or
encoding whose alphabet size grows according to the sizeecgricoded structure is
not appropriate.

Definitions

Treebank is a linguistic corpus of sentences with attaclaeskeprees.

The termtree is ambiguous. A warning on conceptual confusion is perhaps r
quired: A so-called dependency tree in linguistic analgaisbe in fact mathematically
a non-tree or at least ordered dependency tree, if we takim#dse precedence relation
associated with the dependency tree nodes into consioler&ven if we add so-called
secondary links to dependency trees, linguists still ofsdinabout trees.

The article talks about planarity, but a better term wouldehaeen semi-planarity,
because each plane can actually contain two semi-planphgir@ne which is drawn
above the sentence and the one that is drawn below. Howéeecutrent choice in
the article is motivated because it is more convenient toahbut multi-planarity than
multi-semi-planarity.



4.2 A Measure for Syntactic Complexity 49

4.2.2 Main Results
(I) A String Representation for General Dependency Graphs

The article generalizes the idea of planar graphs to nomaplas follows: A non-
planar graph can be represented as a union of semi-plargegiis. Each semi-planar
dependency graph can be represented as a bracketed string.

A Remark This is a generalization of the dependency bracketing sehtiat was
presented in (Yli-Jyra, 2005a).

(1) Alignment Constraints

The article introduces plane alignment constraints fortmpléinar graphs, which con-
stitute a basis for the other two articles in this group:

e Plane Locking — only the top-most semi-plane is active fatiag new edges;
¢ Left Conjoin — right-ward links of each word are stored to s#aene semi-plane;

e Continuous Tiling — starting with a higher semi-plane is alldwed unless this
avoids a collision with a link stored in the current plane.

(1) A Measure for Structural Complexity

The article defines a measure for structural complexity gfetbelency graphs. This
measure is obtained as follows:

e A non-planar graph can be represented as a union of senadabgraphs.

e Alignment constraints regulate how the non-projectivgpgeaare split into semi-
planar subgrapRs

e The number of these subgraphs is measured.

A Remark The number of (semi-)planes depends on the presence ofigfmenaint
constraints. Without alignment constraints we would naaobthe same measure. If
we had wanted we could have abandoned the alignment coristeaid searched for
the optimal decomposition into semi-planar graphs, buth @atimization would have
been too expensive.

Although alignment constraints prevent us from using theigdanes in the opti-
mal way, they also guarantee for each graph a unique waydceddt semi-planes. As a
consequence of uniqueness, the constraints also prevalibcating more planes than
are necessary for obtaining this unique representation.

The experiments carried out in this paper suggest that thbauof (semi-)planes
(or pushdown stacks) needed to capture the examples in thaswas quite small
(between 3 and 5).

2The decomposition into subgraphs is unambiguous, and thereleterministic algorithm that imple-
ments the alignment constraints as a function that mapsxdepey graphs to multi-planar representations
(Yli-dyra, 2004b).



50 4.2 A Measure for Syntactic Complexity

(IV) Rough Parameters for Danish

For 5540 Danish sentences in the studied treebank (Kromiaah, €003), | found
that a 5538/5540 coverage will be achieved with three plangs(l did not represent
secondary links).

A Remark Accordingto M. Kromann (personal communication, 2003)tred com-
plex sentences depicted in the article have been actuallgatty analyzed in the tree-
bank. This indicates, on one hand, that even the complexo$etsuctures can be
real sentences, and on the other hand, that the model coufgbimt out errors in the
treebank by picking up these distinguished examples — itrapnto our expectations.
The model might detect errors, however, in some mode dynseiting e.g.during the
annotation process. Alternatively, the complexity meastan be used for automatic
ranking of alternative analyses.

At TLT 2003, | was asked for the actual distribution of sereswith different
numbers of semi-planes. Afterwards, | carried out more nmessents and embedded
a short answer to the inquiry inside a popularizing artidi-Jyra, 2004b). A further
study on the multiplanarity complexity of various languaged dependency treebanks
would undoubtedly be a nice follow-up.

4.2.3 Relevance

Linguistic Interpretation of the Measure  Setting a particular bound for the number
of semi-planes would claim a fixed property in the language us. performance.
Could such a bound also be a competence propiegtycharacterized by a naturally
class of grammars?

The following points suggest, in fact, that a restrictiortio@ number of scrambled
items (which corresponds to the restriction on the numbeseofi-planes) is more
naturally a competence feature thag.a limit for clausal center-embedding.

First, Joshi et al. (2000) argued that a low bound for scrargldomplexity could
be motivated as a competence property rather than seeis@iparformance property
as is usually done. However, the variduse-adjoining grammag (TAGS) that Joshi
has in his mind do not have a parameter such as the numberitsftde@asemi-planes,
unless multi-component TAGs are not taken into considematAccordingly, Joshi’'s
argument does not necessarily apply to the measure thaelihaur mind.

Second, Rogers (2003, 2004) argues that in mildly contensitive tree sets the
competence and performance could in a certain sense ceincid

Here [in multidimensional trees] we have additional flektlgi In choos-
ing the level of the competence grammar in the multi-dineevadihierar-
chy, we set the boundary on the complexity of the scramblagamit.
On the other hand, given that the level of the grammar cooesg to
the number of hierarchical relations we use in encoding tinecsure of
the utterances, one could make a plausible argument thadetre of the
grammar might be determined by performance consideratisnsh as
working memory limitations. In this way one might arrive ataccount



4.2 A Measure for Syntactic Complexity 51

of the limits on the complexity of scrambling that was siamausly per-
formance based — a consequence of bounds on working memong— a
competence based — a consequence of the complexity of timengra
which can be processed within those bounds.

A similar approach has been presented by Kallmeyer and Y2004().

Third, there exists another account of scrambling wheréopmance limits and
classes of dependency grammars are related to each othlan(etaal., 1998; Holan,
2002).

However, our hierarchy differs crucially from Roger’s apach: we do not relate
semi-planes to hierarchical relations (of different outsed in encoding the structure
of utterances. Instead, the planes are determined purelyeobasis of the unlabeled
structure. The alignment constraints are completely bliitth respect to the types
of different grammatical relations, and it seems that cimgpselectivity within this
respect would severely reduce the coverage unless theradigiconstraints — and un-
ambiguity — are not relaxed.

Connectionto FSIG In the article (Yli-Jyra, 2003c, p.198), we suggest thatphe-
sented model lends itself to finite-state approximations:

Our model suggests a basis for the complexity hierarchy péddency
grammars, and motivates a class of efficient parsers thag edgfh mildly
context-sensitive sets of dependency trees. Finallyeinsefeasible that
such a parser can be easily approximated using finite-stathoas.

This suggestion has actually been realized in our lateringst (i) the complexity
hierarchy was presented in (Yli-Jyra and Nykanen, 2004)(@) a finite-state approx-
imation of the hierarchy was presented in (Yli-Jyra, 2004a

4.2.4 Other Results

A Suggestion for a Heuristic Acyclicity Testing In addition to the multi-planar
model, the article suggests a heuristic method for detengacyclicity of dependency
graphs. The method involves the so-called Cycle Cuttingtramt that was meant to
rule out all cycles (at the expense of losing some acycliecstires as well). Such a
heuristic test would be useful when implementing a polyradméarser, because with it
we could avoid defining acyclicity in general (it would befitifilt because acyclicity
is not definable in first-order logic (Immerman, 1999)).

The article presented ad hocmethod for acyclicity testing. The method did not
exploit multi-planar representation of dependency grapha subsequent paper (Yli-
Jyra and Nykanen, 2004), we abandoned this method andoge¢kanother that is
more tightly coupled with the multi-planar representatidnhe graphs and the align-
ment constraints. The third paper (Yli-Jyra, 2004a) madateempt to generalize this
method even more, by taking advantage of articulation nodes



52 4.3 Design of the Underlying Formal Model

4.3 Design of the Underlying Formal Model

Article

“A Hierarchy of mildly context-sensitive dependency graars)’ in Pro-
ceedings of Formal Grammar 2004, Nancy

In this article, the contributions of the two authors coutddistinguished as follows:
we worked for several days writing definitions togethercdising a lot and developing
mathematical basis for the new concepts. The second authréed on section 11.2
and the first author worked mainly on the other sections. Tise duthor suggested
several extensions in some definitions in 11.2 as neededhanskcond author sug-
gested presentational improvements to some formulas dirtheuthor and did some
proof reading. The final version, as it stands, was prepaydtiéfirst author during

the last few days before its final submission.

4.3.1 Introduction
Summary

The paper proposes new classes of link and dependency gramma

Motivations

Formal language hierarchies for dependency grammars haveeen studied exten-
sively, but researchers are interested to see work on secarbhies (Kruijff, 2002).
The measure presented in (Yli-Jyra, 2003c) was a promisassgibility for defining
such hierarchies. The measure and the multi-planar reqsm were developed be-
cause we needed a more general and linguistically moreestteg dependency-based
grammars in order to obtain better FSIG approximations.

Definitions

Link Grammars(Sleator and Temperley, 1991) present structures as damp
graphs. The edges that are incident with a lexical node azeifsgd in lexical en-
tries of Link Grammar. Each lexical entry specifies types kfidright-directions of
the incident edges.

A lexicalized grammais usually a grammar whose rules are practically moved to
the lexicon by inserting lexical anchors to the rules.

Joshi (1985) defines MCSGs loosely as grammars

¢ that are polynomially parseable,
¢ that are capable of describing some limited crossing degesies,
o that generate a superclass of context-free languages,

e whose languages have the constant (linear) growth praperty



4.3 Design of the Underlying Formal Model 53

This definition cover®.g. various classes of TAGs. Such usual requirements as the
capability of generating copy languages are secondaryeptiep, and therefore.g.

TAG without local constraintgould be seen as a mildly-context sensitive grammar
although it lacks this capability (Joshi 2004, private commigation).

Each grammar formalism specifieslamain of locality(DL) i.e. a domain over
which various dependencies can be specified. In a CFG theidahbcality is the
one-level tree corresponding to a rule in a CFG. Formalisns Aaiid to provide an
extended domain of locali§EDL) as compared to a formalism B if there is a linguistic
constraint which is not specifiable in the local domains eiséed with B but which is
specifiable in the domains associated with A.

4.3.2 Main Results
(I) A Generalization of Link Grammars

The paper presents CMLGs, a generalization of Link Gramm@elLGs presents
structures in a way that is similar to the multiplanaritymalignment constraints (Yli-
Jyra, 2003c).

(I A Parameterized Acyclicity Condition

The paper presents new heuristics that can be used to emforckcity in the graphs,

if the links are directed (from governor to dependent). Thesrristics is based on a
measure of non-projectivitydepth. Non-projectivity depth measures, roughly, how
many times an incoming edge of a node is embraced by an ogtgoige when the
paths from the root are followed to the leaves. The grammplaments this acyclicity
condition by measuring the non-projectivity depths of aldas up to a parameter-
specified bound.

Remarks It is probable that a very small bound for the non-projetfidepth is
sufficient for natural languages.

The non-projectivity depth, as presented in the paper, ileared (set to zero)
at the “articulation” nodes. “Articulation” nodes are warthat are not crossed by any
dependency links and for which all the in-coming arcs are pposite sides than the
out-going arcs. Clearing the non-projectivity depth of-going arcs at such articula-
tion nodes would be a nice technique to reduce the numberyofiagraphs that now
have been discarded. In the companion paper (Yli-Jyra42Q0he articulation nodes
have been processed in this more optimal way.

(1IN Hierarchies for These Mildly Context-Sensitive Grammars

The article introduces two parametersested crossing deptand non-projectivity
depth— that define classes of mildly context-sensitive link graamsrand dependency

3The namenon-projectivity depttior the measure is particularly unmotivated. There are prajective
trees for which this measure gets value 0 (see figure 7 of Mafk®67). Obviously, a better name for our
measure would be needed. Note that this measure is a geagaaliof axiom 12 of (Yli-Jyra, 2005a).



54 4.3 Design of the Underlying Formal Model

CNDGs CMLGs
Directed Acyclic Graphs Directed Graphs
c=3|3a""c"d"
c=2| 2a"b"c"
c=1| DHGDG LinkG
t=20 t=1

Table 4.1: The hierarchies for CNDGs and CMLGs.

grammars in two different dimensions. The hierarchy basedested crossing depth
(the number of colors needed) had already been implicityg@nt in my experimental
paper (Yli-Jyra, 2003c). The non-projectivity depth ieda a new hierarchy that had
not been presented earlier.

lllustration  The obtained hierarchies are illustrated in figure 4.1. tifigng the first
level of CMLGs-hierarchy to the Link Grammar (depicted asi®) requires a certain
simplistic notion of Link Grammars that differs slightlyoin the really implemented
Link Grammars for English.

A Remark Some mildly context-sensitive hierarchies for cert@ear context-free
rewriting systera (LCFRSSs) existd.g.Weir, 1992; Wartena, 2001; Rogers, 2003).

4.3.3 Other Results
(I) Extending the Domain of Locality in the Underlying Gramm ar

The new grammar systems, CMLG and CNDG, have been impleahéntbe paper,
by conversion to an underlying grammars whose technicakriagontext-free linear
storage grammar with extended domain of locafi@F-L-EDL-S-G). This class gen-
eralizes the class of grammars that has been defined by \Wg&60A1) by extending
its domain of locality to cover all dependency links that aeeded when one word is
processed.

A Remark The approach callecomplicate locally, simplify globallfCLSG) (Joshi,
2004) pushes non-local dependencies into the local neigbbd. The goal of the
CLSG approach is to find a formalism that would provide loaahains large enough
so that, in principle, all linguistic constraints (piecesliaguistic theory) such as
predicate-argument structures could be specified ovee the@snded local domains.
The new grammar systems presented in the paper seems torieniléhe CLSG
approach with respect to the predicate-argument struetiie can also say that the



4.4 An FSIG Approach to Non-Projectivity 55

derivational generative power of our new grammars is sefficior exactly expressing
the dependency links of any finite set of dependency treesdosly a CNDG grammar
fitted to a treebank would also generalize and describe soseen trees as well).

However, there may be other linguistic constraints thahatexpressible by means
of dependency links. Such constraints are mainly relatetigadescription of word
order. Word order constraints in particular are one of thetrddficult areas in depen-
dency syntax, as well as in CNDG grammars.

(1) Include Alignment Constraints to Storage Grammars

The alignment constraints guarantee an unambiguous tleriviar each dependency
tree. The current paper formalizes these constraints awvdsstat they are reducible to
CF-L-EDL-S-G productions. It also suggests a new storage tgpanalized storage
that encapsules this reduction.

4.4 An FSIG Approach to Non-Projectivity

Article

“Axiomatization of restricted non-projective dependetrees
through finite-state constraints that analyze crossingidetings,” inCOL-
ING DG Workshop 2004

4.4.1 Introduction
Summary

This article presents a regular approximation for CNDGse @pproximation is given
in the form of an FSIG, where a number of parameters deterthimdevel of com-
plexity captured in dependency structuresedluced bracketingcheme for bracketed
dependency structures was sketched.

Motivations

As | already axiomatized HGDGs (Yli-Jyra, 200%ajhe next challenge suggested
itself: can | extend the approach to CNDGs where we have iogs&pendencies? In
order to make the extension, several encoding issues héesolved.

4.4.2 Main Results
(I) String-Encoding of CNDG Derivations

The article demonstrates that all the information that isdeel to represent deriva-
tions of CNDG can be encoded into annotated surface strihigsparticularly nice to

4This paper was written first.



56 4.4 An FSIG Approach to Non-Projectivity

see that alignment constraints (Yli-Jyra, 2003c) (cqroesling to the normalized stor-
age) can be formalized without big difficulties as constringuages when we use a
bracket-based representation for the content of each pushd

A Remark The obtained bracket-based representation is very simoildre original
sketch (Yli-Jyra, 2003c): it adds only (i) the wall node) ifhdication for active color at
each position, and (iii) non-projectivity-depth countefbie presentations would have
been even more similar if we had not employed our reducedkbtimg scheme that
caused some complications.

The string representation encodes derivations as a segjoétaral, multi-dimen-
sional trees. This resembles the super-tagging approagested for TAG parsing,
but here each “super-tag” — the subsequence surroundirigwa between two
word boundaries — consists of smaller pieces that couldrintiple, be assigned by
separate taggers.

(I) FSIGs and CNDG Can Give Equally Adequate Structural De<riptions if
There Are Appropriate Performance Limits

In addition tonested crossing deptéind non-projectivity depththat are defined for
CNDG, the FSIG approximation obtained in the article uses mnew performance-
oriented parameters to restrict the complexity of nongxtiye dependency trees:

e The first oneproper embracement deptis built on top of the reduced bracket-
ing scheme.

e The second, which does not have any name (in section 5 of tickeris used
to restrict the amount of subcategorization informaticat tban be transmitted
from string-local domains of words to the actual depend@arid the governors)
in the sentence through labels of brackets.

These additional limits provide a way to extract performenompatible FSIG restric-
tions from CNDGs.

A Remark Most of the parameters presented measure the amount ofriafion
that can be transmitted between two positions through lifikés comes very close to
the narrowness of short-term memory and to the graph-tliem@mplexity measure
calledpath-width which is reflected in some parsing approaclees.Kornai and Tuza,
1992) and observed in psycholinguistic experimeatg.Gibson, 1998).

4.4.3 Linguistic Relevance

Structures Axiomatizable through Their String Encoding The article suggests
that very complex graphs such as those generated by milditexbsensitive gram-
mars could be axiomatized through their string encodingvéier, further research in
this area is needed: it would be tantalizing to find out whesiirailar representations
were available for TAGs atombinatory categorial grammarCCGs).



4.4 An FSIG Approach to Non-Projectivity 57

In the axiomatization presented in the article, | assumatidértain parameters are
fixed. However, if the special languages for balanced btawkevould be idealized
to context-free languages — recall that context-free Dyahvatives were our starting
pointin two earlier grammar representations (Yli-Jytdymsitted 2003, 2005a) — then
we could get the coverage of CNDGs. However, we did not trnjieitly to build a
Chomsky-Schiitzenberger style representation for CND@si$ article.

One More Star-free Grammar If the axioms were studied more carefully using
the methods presented in (Yli-Jyra, 2003a), it would batietly easy to show that
they define star-free, HQ] definable regular languages. Of course, studying these
directions is not the subject of this article, nor the therfihe current chapter.

Is Embedding More Complex than Crossing? A surprising and possibly very im-
portant observation on the structure of the axiom set candsermalthough the brack-
eting with multiple colors simulates multi-pushdown auttie different subsets of the
resulting scheme stay relatively independent, as eacheof ttorrespond to disjoint
sets of axioms.

Although the separation increases the number of axioms]iistus to see that the
dot-depth of the whole grammar is not higher than of any ofe¢hgub-grammars. In
fact, we would get a lower dot-depth complexity if we couldri@ase the number of
colors while reducing the depth of bracketing (we cannothitods long as we rely on
the alignment constraints).

This suggests that our approach to non-projective trees miaemake FSIG gram-
mars computationally more complex. The effect could be weeyl be the oppo-
site. This leaves us with the following challenging queassiols thedot-depth hier-
archy(DDH) more robust than thehomsky hierarchfCH) when performance of nat-
ural language is studied? Is multiplanarity (the numbertaélss) a minor dimension
compared to the dot-depth (the stack size)?

4.4.4 Other Results
(I) Reduced Bracketing Does Not Give Much Advantage

The article contains some indication of possible problesfeted to the new represen-
tation. The problems concern, in particular, reduced keticy. Reduced bracketing,
while useful in some respects, is also a source of additidiffitulties: according
to section 5, the number of axioms grows linearly to a dedjkeebound ) for the
dependency graphs.

A Remark The extraneous axioms could have been avoided if full brtawkdnad
been used. Then, however, the required proper-embracetaptit would grow to
compensate for the lost advantage of reduced bracketing.

In dependency bracketing, both sides of the brackets needrty information
of the bracket label. The bracket labels are needed on bdds $0 implement co-
occurrence constraints specified for lexical categoriagh Ml bracketing, constraints
can be enforced in the local bracket neighborhood of eacd.wor



58 4.5 Conclusions

The effect of reduced bracketing is in strict contrast wiihr@ximations of context-
free bracketing grammars, where reduced bracketing givesimmore than it takes.
Similar reduced bracketing would be too unredundant foeddgncy structures, and it
would require inelegant compensation techniques, edpectpying of labels. There-
fore, reduced bracketing does not seem to be a good idearsegations for depen-
dency structures.

(1) The Bracketed Strings Could Be Processed with a Multi-ape Model

The introduction of the article presents an annotated serftring (deep string) by
partitioning it into subsequences. These substrings asepted as if they were on
synchronized tapes. We wroteWhen these subsequences are put on top of each
other we obtain the following combination’..This implicitly anticipates a possible
implementation of the grammar using multiple, synchroditapes. InFuture Work
section of the article, a multi-tape automaton is menticased possible framework for
combining different kinds of deep strings into the same famrk.

ARemark The idea of special synchronized multi-tape automata — @canivalent
model — is elaborated further in chapter 5 of this book.

45 Conclusions

In this chapter, | have summarized the results of the threéeles mentioned in the
beginning of this chapter. These publications investidpai® to extend flat represen-
tations of dependency structures to cover non-projeceypeddency trees. The results
indicate that the new star-free FSIG framework (Yli-Jyébmitted 2003, 2005a) can
be extended towards non-projective dependency trees.

As | approach non-projective dependency parsing and geiseriof free word-
order languages, | reach a difficult area where many newastielg and open problems
start to come up much faster than can be exhausted in thissthdy.

I have dealt with some of these problems with considerableess and defined
same new concepts, grammars, measures, hierarchies andengfations that can be
applied in the FSIG framework. The main practical outconmenew type of FSIG. It
is probably widely applicable to free-word order languaged potentially efficiently
parseable in practice.

The result also reveals many theoretical questions abautdhresentations of
mildly context-sensitive grammars and on the computatiomaplexity of their regu-
lar, performance-compatible approximations.



Chapter 5

Parsing Strategies

5.1 Orientation

5.1.1 Summary

This chapter basically proposes three optimization teses for FSIG parsing. These
techniques are closely related to some generalized cotiopilmethods for FSIG con-

straints and they optimize the FSIG parsing through decaitipos that reduce the

size of the manipulated automata.

5.1.2 Problem

The current chapter investigates some parsing strategfieshe aim of reduction the
overall parsing time complexity of FSIG parsing.

FSIG parser development is a huge challenge that cannothiezisuerely through
employment of code-level optimizations in a library of eamtta operations. During
the period 1995 — 2002, | actually did quite a bit low-levebgramming (more or
less as a hobby) with the aim to implement better FSIG par&us| achieved only
relatively small improvements that are not of interest i¢hrrent dissertation.

However, more abstract investigation of parser designigesvus with a com-
plementary approach that does not try to implement the wpatser before finding
essential strategic improvements. This complementaryoggh has now turned out
to be very fruitful in terms of the gained insight. In orderattack, in the sequel, the
grand challenge of FSIG parser development, | will focusaivisg three fundamental
problems. These problems have to do with the succinctnefasitef automata during
FSIG parsing and they are the following:

1. state blow-up of the constraint automata as a functioheéiepth of bracketing,

2. state complexity of the intermediate and final results fametion of the brack-
eting depth, and

59



60 5.1 Orientation

3. state complexity of the intermediate results when a higlhlver of sparse con-
straints interact at a small number of distant string posti

5.1.3 Articles

Considering the three succinctness problems mentionegabpropose, respectively,
the following three techniques or strategies:

1. Decomposing the Grammar with Respect to Bracketing Depth
2. Keeping Sub-grammars in Separation,
3. Solving Hard Portions Separately.

These strategies have been discussed in the contribuigldsim the following way:

Decomposing the Grammar with Respect to Bracketing Depth

[7] Yli-Jyra and Koskenniemi, 2004, “Compiling contextuastrictions
on strings into finite-state automata”

The article contains many neeompilation methodfor restriction operations. It
presents, in particular, an efficient solution to a longydiag problem that concerns
compilation ofcontext restriction operation with overlapping centefBhis solution
has already been adopted into a proprietary finite-statgpitern{XFST), but some of
the further methods in the paper are better motivated in 8i&Rpplication context.

In addition to the new compilation methods for context iiegtms, the article in-
troducegyeneralized restrictionra conceptually elegant extension of the context restric-
tion operation. The generalized restriction operationlmamsed in many ways. For
example, | can solve with it the problem where some contesttictions grow expo-
nentially according to the depth of bracketing. The grovaghrmot be avoided as long
as the context restriction is represented as a single atwoma@he generalization can
be used to obtain parallel decompositiof a context restriction. Each slice in the
decomposition can be compiled into substantially smaliéomata than we would get
by compiling the original constraint into a single autonmato

The smaller, decomposed representation helps to reducantbent of memory
that is needed to store constraint automata and their catibis. When the whole
grammar is decomposed according to different bracketinejde we obtain, for each
bracketing level, a set of constraints that will be calledhis chapter, aub-grammar
Each sub-grammar contains smaller automata than the arigiammar. In contrast
to the collection of original, monolithic constraints, sgtammars have slightly better
chances for combining a large number of constraints intoglsiautomaton.

Keeping Sub-grammars in Separation

[8] Yli-Jyra, 2004d, “Simplification of Intermediate Rdtuduring Inter-
section of Multiple Weighted Automata.”



5.1 Orientation 61

This article, or actually an extended abstract, sketchesthadological framework
for optimizations that are related to computation of inéetgn of multiple automata

The motivation for the presented approach comes from FSi&ima Typically,
FSIG parsing admits a quite small result containing onlyva &éternative parses —
especially if the grammar is Eng-FSIG. However, this is moétin the worst case
scenarios. With certain pathological grammars such asoappations for FCFBGs
and other Bracketed finite-state intersection gramregB-FSIGs)”, the final result
grows, in the worst case, exponentially according to thetdepbracketing realized in
the sentence, if the grammar (or its bracketing depth patexiris part of the input. To
avoid exponential state-space blow-uprdérmediate resultsve need to

e compute intersections with the sentence automaton sepafat each brack-
eting level (sub-grammar) to obtaincempact representatiofthat consists of
several revised sentence automata), and

e enforce consistency in the compact representation befqansion to thdinal
intersection resultvhose size can be, in the worst case, exponential.

Enforcing consistency between the revised sentence ataoraa be done through
appropriatestructure sharingechniques.

Implementatiorof structure sharing between separate automata requicéeaffi
simplification methods. The simplifications presented ie #mticle are capable of
extracting from automata generalisations that functiosreseable interfaces for the
original automata. Different pairs of automata give risdiféerent interfaces between
them. Two automata can be made consistent (i) by making tegrective interfaces
consistent through intersection, (ii) by restoring thedeid letters in the interfaces and
(iif) by combining the resulting interface automaton wittetoriginal automata.

Solving Hard Portions Separately

[9] Yli-dyra, 1995, “Schematic Finite-State Interseati®arsing”

This paper is, as a publication, in a different category ti@nother eight articles
in this thesis. It is, however, the original reference wheiest proposed an alphabet
extension and minimization method for FSIG. Some resttictethods presented in
this paper constituted a methodological background forengeneral approach that we
presented in [8].

In contrast to the new generalized simplification framewf@kthat focuses on
“vertical” consistency between different levels of bratikg, this older paper discusses

IMany automata theorists would see intersection as an épem languages rather than on automata
recognizing them. However, the direct product operatioab{R and Scott, 1959) is too much associated
with certain automaton construction while we would like tayshere at a higher level of abstraction. Recall
that for example union of automata can be implemented in ndiffgrent ways: with or without epsilon
transitions, with optional determinization and with opd minimizationetc The same holds for intersec-
tion of automata that can be computed also usiggDeMorgan’s lawetc My early article (Yli-Jyra, 1995)
is, unfortunately, even more confusing as | identified irh& intersection automatomith the accessible
subset of the direct product.



62 5.2 Decomposing Grammar with Respect to Bracketing Depth

“horizontal” consistency — long distance dependencies/éen position of the anno-
tated stringg. Long distance constraints constitute a problem for exarifiphee con-
straints that relate the beginning and the end of the arg#itings are applied to a
sentence automaton that has of lot of alternative statégimtddle positions of the an-
notated strings. Such “thickness” in the middle may be alre$an earlier application
of constraints to the sentence automaton. Changing the ofdenstraint application
may help in some cases, but better ordering does not neitggeaneralize across sen-
tences. However, there are some simplification methodsémagxtract portions of the
sentence automata and admit a much more general solution.

In the article, the idea of alphabet expansion was introddcghe FSIG frame-
work. The expansion was done here on the sentence-by-senasis. It makes
the sentence automaton and its restrictionsspetialized rule automat@GRAS)” —
structurally simplet. The alphabet expansion transforms each annotated strithe i
sentence automaton into a string that represents an uedrdet of position-symbol
pairs. Although the original linear order is retained in glifications, absolute posi-
tions of the symbols are now less crucial than in the origmd#bmaton. This leads
to two simplification methods that take advantage of the nplabet: (i) the folding
procedure and (ii) an implicit representation of hiddensitions.

5.1.4 Outline of the Chapter

The substance and relevance of those methods that arise thréee accompanying
articles is discussed more broadly in sections 5.2 — 5.4.ettien 5.5, | will give
a summary of some other approaches to FSIG parsing. Thesmdsetvill not be
considered in my dissertation. The chapter is summarizeddtion 5.6.

5.2 Decomposing Grammar with Respect to Bracket-
ing Depth
Article

“Compiling contextual restrictions on strings into fingéate automata”,
Proceedings of Eindhoven FASTAR Days

The paper contains a remark outlining the relative effoftsaeh author.

5.2.1 Introduction

Summary The article presents new compilation methods. Some of thasebe
used to decompose constraints in FSIGs into separate aonstthat will compile
into smaller automata.

2Note that long-distance dependencies in strings do not éwlincide with long-distance dependencies
in constituent-based structures.

SAfter the extension, the original sentence automaton mizeg a local string set, and tempact
folded SRAs represent languages whose structure reminds of p&éestable languages (Simon, 1975)
(cf. (Yli-dyra, 2001).



5.2 Decomposing Grammar with Respect to Bracketing Depth 63

Motivations Decomposing FSIG assertions into components accorditgtorack-
eting level is expected to have a big impact on the size of eanhbtraint, and the way
the constraints in the grammar can be grouped together.hislimight contribute to
parsing efficiency.

The idea of levels in FSIG originates from Kimmo Koskenniépgrsonal com-
munication, 2001), but it has counterparts in other finitges parsing frameworks
(including parsing with cascaded chunk parsers or iterapgalication of finite-state
transducers.f. Roche, 1997).

Previous Work Before we discovered the solution presented in the artickegd
made the following findings:

¢ |introduced a depth parameter that determined how mankétamay be nested
in each FSIG (Yli-dyra, 2003a). This made it possible tauargbout an expo-
nential state complexity with respect to the bracketingllep

¢ Different ways to compile bracketing restriction of FCFB4i-Jyra, 2003d,
submitted 2003) were foufidinvestigation of their state complexity helped us to
understand how the size of automata grows as a function afagpth parameter.

e In(Yli-dyra, 2003a) | defined the semantics of general cdslee context restric-
tion operation using concatenation and boolean operatidhs was a correct
method and a precursor for the new, simpler methods presen(¥li-Jyra and
Koskenniemi, 2004).

5.2.2 Results
() A New Compilation Method for Context Restrictions

The article presents a compilation method that has an elegahsimple structure.
Due to its efficiency and correctness, the method replagas gwevious compilation
algorithms in some finite-state tools.

A Remark The compilation method does not need the full implementatiocon-
catenation closures nor transducers. Itis a good exampiteafse of finite number of
mark symbols as well as simple homomorphisms and Booleatic@tions, in con-
trast to the iterated marking that is used in many regularagjpns in natural language
processing.

(II) Generalized Restriction Was Introduced

The article shows that many different kinds of restrictions be seen as special cases
of a relatively simple operation, generalized restriction

40One more compilation method was used in a toy grammar thabéas put available on the web at
http://www.ling.helsinki.fi/"aylijyra/BracketingCFG s/ .



64 5.2 Decomposing Grammar with Respect to Bracketing Depth

A Remark Generalized restriction operation opens new possitslfte the descrip-
tion of discontinuous structures such as idioms. Furtheemasing it with bracketed
string sets might allow for capturing tree adjoining gramsr(a.f. Roche, 1997).

(1l1) Decomposition of Context Restrictions

The paper presents a flexible and correct method for decangposntext restriction
constraints into separate constraints according to thekbtimg level. Decomposition
can make a DFA-based implementation of individual constsaxponentially smaller
according to the bound for bracketing depth.

A Remark Decomposition does not require any changes to the parsiogitim,
but it takes one constraint and replaces it with a number lopfcanstraints. The inter-
section of the sub-constraints will return the original oHewever, the resulting sub-
constraints can be grouped and combined in new ways, whiempally improves the
efficiency of applying the constraints to the sentence aatomas the constraints can
be synthesized with each other earlier than otherwise.

The parsing can be split into well motivated subproblemstapdbtained results
can then be combined with each other. For example, it is aféeier to construct an
algorithm that checks several assertions at a certaindébehcketing than to construct
an automaton that checks one assertion at several levelacidiing ¢.f. Yli-Jyra,
2004a).

A Related Open Problem ltis, in fact, an interesting open problem whether all sub-
constraints affecting the same bracketing level could nettoed with each other. This
would allow the efficient processing of a chain of bracketgat the same nesting level
by one pass of an automaton. At the same time, constraintsduted bracketing at
the same level could be checked.

Explanation Decomposing an FSIG constraint set with respect to brauetepth
means splitting the whole grammar into sub-grammars suéthagrammar for sen-
tence level clauses”, “the grammar for the embedded clausgammar for the dou-
ble-embedded clause®tc In a subgrammar corresponding to a particular bracketing
level, the new assertions will not interfere with other lev& he only exception is pre-
sented by those context conditions that are dependent ckdiiag levels other than
the primary level of the subgrammar they belong to. Suchecdrtonditions are han-
dled correctly with our decomposition method, which is aparant achievement and

necessary for implementing the original idea of the secarkla correctly.

lllustration: Fully Specified Tape Figure 5.1 shows a string or an input tape of a
one-tape sentence automaton. This annotated string isasegresent a dependency
tree in (Yli-Jyra, 2005a).



5.3 Keeping Sub-grammars in Separation 65

(i) A Tape of One-Tape Automaton:

i

felms[ Lo Ly Tl ¢ [ [o [y L] ¢ Lo fan[ o oo L oomel

Figure 5.1: A single tape containing a bracketed dependieaey

The highest bracketing level:

Al A (1] Aafl] A 1] A ]
The one-but the highest bracketing level:
AfB] a [UJA[T AU AT Be[A]B] & [U]A[T[Bs] A |

The lowest bracketing level:
L | B [#]this[Bi | # [Bi|man|Bi] # [ By [ate[Bi] # [an][Bi| # | Bi |apple]

Figure 5.2: Decomposing a string into three languages.

lllustration: Under-Specific Tapes Figure 5.2 illustrates the effect of decomposition
of constraints in a very informal and rough way.

In the decomposition each tape becomes a language thatisetby abstracting
away all the bracketing levels that are not to be specifiedtixan the level to which
the tape corresponds. The outer brackets are specifiét} land Bz and the embed-
ded bracketing is depicted with symb@l This symbol,A, stands for the set of all
substrings with balanced bracketing up to a fixed depth. &ketape represents the
surface string as well as under-specified slots from whigbegiic bracketing can be
drawn (B and By, stand for any sequences of left or right brackets). Note ttit
intersection of the tapes in figure 5.2 results in the tapegimré 5.1.

In this illustration, we see that each sub-grammar confaihbracketing, but only
one level of bracketing is fully specified. In addition to fludly specified level, there
are some information on the other bracketing levels.

5.3 Keeping Sub-grammars in Separation

Article

“Simplification of intermediate results during intersectiof multiple
weighted automata,” ilVATA 2004 YIi-Jyra, 2004d).

The algorithms promised in the abstract have been initiatllylemented, but the
code is not included in this dissertation.

5.3.1 Introduction
Summary

The extended abstract sketches a framework for local sicgtions of automata dur-
ing FSIG parsing. The proposed simplifications allow for baédding of a consistent
compact representation for the ambiguity in the sentendehatp avoidinside the



66 5.3 Keeping Sub-grammars in Separation

parser the kind of state-space explosion that would be Iples$ithe ambiguity was
presented using a single DFA as usual.

Problem

A first part of the problem is that decomposition of the gramoh@es not make the
final result of the parser smaller. Sub-grammars create@dtion 5.2 can be used
to do partial parsing in separate sub-parsers. These sgbrpavould apply a sub-
grammar to their own copies of the sentence automaton. Tale/insions of sentence
automata in different sub-parsers will represent partiegsts only. The whole parser
needs to enforce consistency between the versions of tieneemnautomaton. A naive
way is to combine the final versions of the sentence automatatirect product. A
better way would be to enforce consistency between theoresgif sentence automata
and to produce, as a result, a setraftually consisterdentence automata. The strings
common to all these sentence automata can be found eagilp Wécktrack-free search
that starts from the left “corner” of the bracketed strings.

Another part of the problem is that DFA are, as represemtatid ambiguity, less
succinct thare.g. non-self-embedding context-free grammasd. ( Anselmo et al.,
2003).

The following example shows a pathological FSIG grammar wauld make an
exponential state-space blow-up when the depth of brauketiincreased:

#_# = [aAlal[BA]B;
[a_]a = a|[aA)a|[BA]B;
(_lp = al[aA]al[BA]B;

Assume that\ is a regular approximation for the set of bracketed strirty wiaximum
bracket depttk. When these constraints are compiled and intersectedhétiahguage
{[a,[B>]a, 18} a{[a, [B,]4,]B}*, we obtaire* different bracketed strings. The result
will require O(2*) states.

Pathological grammars are relevant objects of consideratcause they can lead
to substantial improvements that are advantageous to thernfsoverall efficiencyd.f.
Maxwell and Kaplan, 1996). If bracketing depth was still ixe 1, as in the original
Eng-FSIG, we could not find an interesting worst-case séemdth exponential blow-

up.

Approach

We can recognize some possible cures for the ambiguity septation problem by
considering how FSIG represents its parse forests. WhiteE3IG is very difficult
to analyze due to its flat structure, a more promising obsiervaan be made from
our new classes of FSIGs. The new classes of FSIGs make a hsawfbracketing
and thus there is an unexploited analogy to non-finite-gia@mmars and parsers. It is
important that FSIG parsing algorithms also make use of efeary trees, even if they
are encoded through bracketing.

In many non-regular grammars, elementary trees have atbi&inction:



5.3 Keeping Sub-grammars in Separation 67

e Elementary trees constitute the basisdbiguity packing and structure sharing
in compact representations of parse forests.

e Co-occurrence constraints can be expressed iddhaain of locality of elemen-
tary trees

e Parsing algorithms can make use of locality of elementagsmwhen they en-
forceconsistencyf parse forests.

When these ideas are transformed to the FSIG, we need, iilcylart a better
method for structure sharing. (Ambiguity packing for aligtive sub-trees is already
implementable by minimal automata.) For parsing purpds8#; grammars must be
transformed to a format that allows efficient consistendgmming techniques between
partial parse forests that are obtained by parsing the injtlatsub-grammars.

This format should be based on the notion of elementary itaast or dependency
trees, although each phrase or dependency link will be septed in FSIG through
matching brackets.

5.3.2 Proposed Solution

The extended abstract does not describe the proposedosointietail. In order to
interpret the abstract properly, | have to recapitulateibunstrate the crucial aspects in
the proposed solution.

(I) Expanding the Common Alphabet of Automata Enables Refering to the States
of the Reference Automaton

The abstract says “we expand the common alphabet of the ataomsuch a way that
it is possible to determine the states of the reference aattmmit Alphabet extension
gives a simple technique through which the reference autmmean share its state
space with other automata.

An lllustration: The Reference Automaton According to the article we need also a
reference automaton. In our example, the reference autonsas in figure 5.3. Each
transition that changes state in this automaton has a utageé

L L L
Nofionieone

>

non-brackets z non-brackets z non-brackets znon—brackels

Figure 5.3: The reference automaton.



68 5.3 Keeping Sub-grammars in Separation

An lllustration: Annotated String with Extended Alphabet When the alphabet
of the grammar is expanded according to correspond to tieeerede automaton (this
expansion is a regular relation), we obtain a new one-tapesentation where the
brackets have been differentiated according to their lef/aksting. To illustrate this,
we expanded the alphabet of the input tape in figure 5.1. Tgeedhtained is depicted
in figure 5.4.

A Remark Note that the brackets in the expanded alphabet indicateoiinee state
of the reference automaton (or, in fact, both).

(1) Implementing Projections by Homomorphisms

Simplifications (such as merging of states and substitutioietters with the empty
string) resemble “the projection operation of relationealthat is used in query opti-
mization in modern database systems”.

The abstract proposes a set of special simplifications dyr#irwise products of
automata. Some of the simplifications would change lettess dre ignored by one
input automaton to empty strings. This makes the stringstshavhich often leads
(through epsilon removal and minimization) to smaller inputomata. By means of
the following illustration we see how hiding of letters cam bsed to extract simpler
languages.

An lllustration

Projections in the Simplification Framework The proposed simplification
methods can be used to extract projections of the one-tapenaton that was shown
in figure 5.4. In the simplification framework, a projectiopevation could be a string
homomorphism that preserves the symbols that belong to spewfied equivalence
classes and maps the others into the empty string. Such aatigpecorresponds to
the simplification that substitutes some letters with th@gmstring.

The equivalence classes of alphabet of the shown referemmeaton are{[}, {]}.
10, 0% A1} {1}, and{mi, #this,man,ate,an,apple, }. S

We can use projections to extract simpler tapes from theshpwn in figure 5.4.
Some resulting projections are shown in figure 5.5.

Simple Multi-Tape Model We need some grounding for the terminological
choiceprojectionwhen we talk about extracted tapes. Projection often rédetlsop-
ping of attributes or tapes, but is also used for operatioatsreturn subintervals (Bow-
man and Thompson, 2000). In our case we actually might havetbe interpretations.

nn

#

#

#

#

#

L this| [ 1 |man| [ ]__‘]_ ate | [ an| [ ]__‘]_ apple

Figure 5.4: A single tape with an expanded alphabet.



5.3 Keeping Sub-grammars in Separation 69

Extract only ] (an unmotivated projection):
1

Extract first-level brackets:

L 1 L

Extract all brackets:

1 L 11 L

Extract all non-bracket symbols:
KK # this # man # ate # an # apple |

Figure 5.5: The projection operation: some extracted tapes

mi [ #this [ # ] man [ # ] ] ate [ # an [ # ] ] apple
[

1 1

i # this # man # ate # an # apple

Figure 5.6: A run of a simple multi-tape automaton.

We can actually talk about dropping of tapes. To illustraie,twe interpret the
single tape depicted in figure 5.4 as a combination of tapesassed by a multi-tape
automaton. Let us first define a simplified model of multi-taptomata as follows:

e We call one of the tapes (tape 0) tfiest tapeand the other tapes are called
additional tapes

e The first tape ipartitionedto the other tapes so that each input symbol on tape
0 has a unigue copy on some of the other tapes.

e The symbols that are stored to the additional tapes areagligacording their
corresponding position in the first tape. The empty spacdgeepfor a cell)
stand for an empty string in the input. When one of the addititapes is being
read, the respective head skips automatically to the nexbel

e The tapes are synchronized. Reading operations on thegfirstreads also the
corresponding copy from an additional tape. Reading ojperabn an additional
tape also reads the symbol from the first tape. Reading beyenehd of a tape
is not permitted.

Figure 5.6 illustrates how the tapes operated lsinaple multi-tape automaton
(SMTA) may be filled. The figure represents tapes in a 4-tapenaaton of the pro-
posed special type.

Figure 5.4 showed an example of an automaton with an extesigbdbet. This
one-tape automaton is also an alternative representaiiothé SMTA of figure 5.6.
Thanks to alphabet extension, a tuple of tapes that are setbp a SMTA can be rep-
resented by means of a string in a one-tape automaton. Wiclbrose-tape automata
are interpreted as SMTAs, we gain access to crucial notiatsare normally available
only in the SMTA model.



70 5.3 Keeping Sub-grammars in Separation

The states of the reference automaton (figure 5.3) are eddogdicitly by the
letter equivalence classes, and now those classes comnckalso to the additional tapes
of the SMTA.

A Remark The idea about “synchronized” SMTA has some earlier apfiina in
computational linguistics. The KIMMO model or so-calledi¢gnal) two-level model
of morphology (Koskenniemi, 1983) implemented a specia$glof finite-state trans-
ducers as finite-state automata. These transducers spegifiee length relations (Ka-
plan and Kay, 1994). More general, but also “synchronizeatisducers and SMTAsS
have been studied in partition-based morphology ésgKiraz, 1994, 1996b,a, 1997,
2000; Kiraz and Grimley-Evans, 1998). Some other possiblgsvo interpret one-tape
automata as SMTAs are very powerful (Tamm et al., 2004; Tap®4).

It is important that the projections contain enough infotiorafor recovering the
full, synchronized structure when put together. The auihaxvare of these problems
that arise when projections are combined, but the curré¢isteadoes not reveal suffi-
cient conditions for resynchronization of projectionsrdtational databases, we need
to share key attributes while here we have to keep some aschor

Relational Projections The projection operation is used in relational database sys
tems to optimize join queries (Ullman, 1988). Especiallyltmaay join queries are
often optimized by computing first auxiliary tables wherdyahe common attributes
of each pair of tables are joined.

A projection of an SMTA is an SMTA that specifies only a subdethe original
tapes. Th@rojectionoperation has been recently defined for a more general tapki-
automaton model (Kempe and Champarnaud, 2004; Kempe 20a4a,b).

(1N The Simplification Method Implements Structure Shari ng

According to the article (the extended abstract), simgitfans make it possible to rep-
resent the language of the final sentence automaton as @mséction” of separate
[sentence] automata that correspond to the decomposititained in (Yli-Jyra and
Koskenniemi, 2004). According to the this article, simphfiion method will imple-
ment “a kind of structure sharing”.

Structure sharing in the relational context could perhapsriderstood as follows:
a cross-product or a join of tweetsof structures is represented implicitly or lazily
in its decomposed form, without actually expanding the @spntation into its normal
representation. Structure sharing is enabled by a mecghahet connects the sets in
an efficient manner. The question is: can we implement jaipfojections of SMTAs?

The article gives an answer: we can use intersection foragh®act representation.
This requires, however, that the intersected automataitiaméical tape alphabets. For-
tunately, trivial cycles on the missing letters can be addetie one-tape automaton,
as proposed in the article. With this cheap technique thertethat have been removed
in earlier projections can be re-introduced to the automafithe obtained result au-
tomaton can now be intersected with the other automata.



5.4 Solving Hard Portions Separately 71

The outmost brackets projection with reservations:

1 2;,3‘ L ‘ 23,3 |],|E§s| L ‘ 25,3 ‘l| E;,x ‘
The inner brackets projection with reservations:
2 Tis \ L |ET,3| 1 \2;3\ L \21,3\ ]:| Sis | L \Et,x\ J:\ Sis \
The non-bracket projection with reservations:
o [m [2io]#| this[Sf,] # [Sia]man|sis] # | 5, ate|Sis] # [an[2f,] # | £{, | apple]

Figure 5.7: Missing letters are inserted to projectionsrdyjoin.

lllustration  Figure 5.7 illustrates a few possible tape sets of one-tafmnaata that
are obtained by introduction of the missing letters. Thage tsets can be intersected
(joined) with the tape set of the fully specified one-leveicamniata such as the one in
figure 5.4.

A Remark The simplification method proposed in the abstract (andsifniterpre-
tation as multi-tape decompositions) are a special kindanéltel representations of
regular languages. The underlying idea is not, howeverpbetely new, because par-
allel and serial decompositions of finite-state machine teen known for almost
fifty years, and a lot has been written about cascades ofduaess (and sequential
machines) as well.

Relevance

Given the Boolean operations, projection and the join dperdhat is implemented
through re-introduction of letters, we now have a prettydjoelational calculus that
is implemented by means of one-tape automata, but can aisteopreted in terms of
SMTA. The details of this calculus go beyond the contribwtbstract.

5.4 Solving Hard Portions Separately

5.4.1 Article

“Schematic finite-state intersection parsing,” a shortgugmesented in
NODALIDA 1995Yli-Jyra, 1995).

A short comment on this article is perhaps needed. The aiatot fully compa-
rable with the other articles included to this dissertatiblne article is composed in an
admittedly naive style, using some confusing terminolabahoices that doubtlessly
reflect my limitations at the time, 1995, when the article waiten. For the time be-
ing, the article is, however, the latest and the only avélalescription of some tech-
niques that are part of the methodological framework of ngrlpublication (Yli-Jyra,
2004d.

51 have described these methods more comprehensively in mstersathesis (Yli-Jyra, 1997), but the
thesis has been written in Finnish.



72 5.4 Solving Hard Portions Separately

As far as we are concerned with the techniques presentectiartitle, we can
still say that the article presents fundamental insight kbé to our further methods.
Unfortunately, the article’s connection to minimizatidnimcompletely specified asyn-
chronous automata became obvious as late as in summer 2@Dthese connections
are now an area of further research (Yli-Jyra, 2004c).

5.4.2 Introduction
Problem

Decomposing the grammar according to the bracketing lealpktonly if the complex-
ity of the grammar is mainly caused by deep bracketing. Tiheggsammars obtained
by decomposition may still have a large number of complexstraimts.

Moreover, the length of the deep strings processed by treepgrammars are a
multiple of the length of the input sentence, and the striray montain as many as
a dozen or twenty multi-character symbols per word. Whersttamt automata are
being applied to the sentence automaton, the size of thersmautomaton can grow
exponentially as a function of the sentence length, alth@ugh a growth will be lim-
ited by a linear function that is determined by the immensagestomplexity of the
grammar (Tapanainen, 1997). Accordingly, long sentenaesbe, in practice, sub-
stantially more difficult to parse (with unoptimized algbms) than short sentences,
although we use finite-state techniques.

It is, however, interesting that most constraints autonratdne compiled FSIG
ignore {.e. never change state on) many letters in the deep strings ity enforce
constraints that deal only with some tiny details of the wehsiting. Therefore, a lot
of extra work is spent when the ignored portions of the despgst are carried forward
by constructing new states and transitions for them whiteafiproducts are being
computed.

Definitions

In the paper, SRAs refers to temporary constraint autonhataatre computed during
parsing from the sentence automaton and a constraint atdomntet is in the grammar.

5.4.3 Results
(1) Admissible Languages of Automata
The article proposes keeping the original sentence autoniixed (as a reference au-

tomaton) during parsing.

A Remark In (Yli-Jyra, 2004d) | introduced a notion of reference@utta as a ba-
sis for (i) alphabet extensions and (ii) automata simplifices. Because intersection

8This is partly a consequence of the preferred tendency tissgarsimonious analysis and elegancy in
grammar writing.



5.4 Solving Hard Portions Separately 73

One-Tape Representation with Extended Alphabet:

Smal" of 136[6‘ 14

Figure 5.8: One-tape automaton with a horizontally exteralphabet.

Wi o[ |s#|4this 5[__ o# | 7] 10# |11] |12] 15% [16an| 17[ | 18# |10]]20] 2|app|4

(identity mappings) is a special case of composition ofti@te, we can view a se-
quence of pairwise intersections as a transducer cascadeanksducer cascades, the
output language of previous transducer is the admissibigulage of the next trans-
ducer. The finite-state automata for which the admissiblguage is given can be
incompletely specified, which means that target statesndicetransitions in the au-
tomaton are not specified. The unspecified target state afaasition can be inter-
preted as a set of states one of which will be chosen by an imitation (the choice
can be fixed or randomly changing).

(1) Incompletely Specified Automata

The article proposes adding some failure transitions tmeamplete automaton. The
transitions that were not added were not specified at allGhvisiin contrast to the usual
interpretation of state diagrams. According to the usutrpretation, the invisible

transitions correspond to transitions to a useless state.

A Remark Forincompletely specified finite automata these there®aitarge body
of literature on minimization algorithms (the fundamerpabpers include Paull and
Unger, 1959; Grasselli and Luccio, 1965). The problermobmplete finite-state ma-
chine(IFSM) minimization is in NP and NP-hard (Pfleeger, 1973;&yaand Johnson,
1979), but some special classes of IFSM have efficient miatian algorithms (Huff-
man, 1954; McCluskey, 1962; Paull and Waldbaum, 1967; P4§&1; Ehrich, 1972;
Tomescu, 1972). These classes include the incompletebjifigoeasynchronous se-
gquential machines, which are closely related to the confpéird SRAS.

(1n) Simplification of Specialized Rule Automata

The basic technique (Yli-dyra, 1995) allows for simplifgi SRA. It consists of the
following steps:

1. Expansion of the alphabet of the SRA (Yli-Jyra, 1995).ekample is shown in
figure 5.8 that illustrates the effect of horizontal alphabeension.

2. Setting the language of the reference automaton to arn meptriction for the
SRA.

3. Make the paths in the SRA shorter. This can be done thrimidimg’ reductions
(similar to minimization) that do not change the intersectof the reference
automaton and the SRA (Yli-Jyra, 1995).

"The use of this term in the article was new rather than preljodefined.



74 5.4 Solving Hard Portions Separately

The initial portion of the sentence in focus:

A e o [5 e s [ P[5 [ 5 [l & |
The center portion of the sentence in focus:
‘ > sL ‘ > | il | > ‘ oL ‘ o |11]_-| D ‘ by ‘ 18#‘ =* |
An final portion of the sentence in focus:
[ | v [1satd £ [ 15# [1san 17 [ " [10][S" [21applg

Figure 5.9: Extracting horizontally defined portions of emtence.

Several modifications to the basic scenario can be made. Xaonm@e, we can
make simplifications before the SRA has been constructediujang its construction)
(Yli-Jyra, 1997). Furthermore, in our new FSIG grammaesdlntence automaton can
contain trivial cycles (cycles of length 1), which requistight modifications to these
algorithms.

A Generalization: Projections In addition to these we can include projection into
the set of available operations. Projections could be usezktract sub-constraints
over a subset of the expanded alphabet. The resulting sudiramts will ignore the
remaining part of the expanded alphabet. (An efficient mtae method for sentence
automaton was presented by Yli-Jyra, 1997, and a simildhotecould be developed
for extended alphabet.)

Some examples of what can be done with projections are shofiguire 5.9. The
extension allows selecting symbols of interest into pridjers where other symbols are
simply ignored. Under certain assumptions we can actuliiwaanysymbol to occur,
thus we usé&_*, the universal language, in tllen’t careportions.

The idea of sub-grammar interaction through simple rurettamputed constraints
in a conjunctive representation resembles query optimoizatith projections in data-
base systems (Ullman, 1988).

In the literature there are examples of efficient and compamtesentations for
string sets where strings or tuples contain don’t care posti These include Patricia
trees (Morrison, 1968) arlsinary decision diagram(BDDs) (Bryant, 1986).

The first linear-time minimization algorithm for acyclic fie automata is due to
(Godlevskii and Krivoi, 1986)d.f. Revuz (1991, 1992)) An algorithm that combines
the “folding” reduction with an acyclic minimization algtdrm has been presented in
(Yli-Jyra, 1997).

A Remark: Implementation The presented approach has been implemented par-
tially (Yli-Jyra, 1997), but its effectiveness was limitdbecause we did not separate
different bracketing levels into different sub-grammaréi-Qyra and Koskenniemi,
2004), which is a more important optimization. When we impdated an experi-
mental parseSkeemaParselin 1995-1996 we used only folding reductions, but the
advantages of the reductions were lost when we combinecdteedBRASs with each
other. This is in analogy with the problem of sub-grammafterahey are combined,
the state blow-up may occur again. The recent optimizataset on subgrammars



5.4 Solving Hard Portions Separately 75

makes individual constraints and versions of sentenceraatsubstantially simpler,
which makes both vertical (Yli-Jyra, 2004d) and horizévdi-Jyra, 1997) simplifi-
cation methods effective.

(IV) Horizontal Expansion of the Alphabet

Perhaps the most interesting and obvious contribution efatticle is the alphabet
expansion that is done for the sentence automaton and the.SRA

Remarks Horizontal alphabet extension (based on string positizna)very power-
ful method. In fact, it squeezes more power out of finite tégphas than one might
have thought: alphabet expansion thgtadynomiallydependent on the size of the in-
put (polynomial to the number of string positions?")) could be used to transform
polynomial time(PTIME) complete problenmstancednto a form where finite-state
techniques could be used to carry out the problem solvinghdrworld of first order
definability and descriptive complexity (figure 3.1) polynial alphabet extension is
closely related to precomputed variables and tofits¢ order queries with BIT and
polynomial number of extended variabi@0[r°)]) complexity class (Immerman,
1999). Note, however, that in the article | made only lindphabet expansion, which
is a special case of polynomial expansions.

Another interesting, but not a completely new observatmoh Medvedev, 1964)
concerns the structural complexity of regular languageshemmomorphic represen-
tations: horizontal and vertical alphabet extensions camided to represent regular
languages with simpler regular languages and a homomonpdmgping.

There is one more reason why extended alphabets are nicegek Epace of sym-
bols in the sentence automata leads to efficient heuristadscain be used to simplify
the versions of the sentence automata by computing thesteegenmon subset of their
input alphabets and removing all transitions whose lakebatside of this subset.

It would be naive to forget that input alphabet size is alsdmportant source
of complexity. It may affect the practicality of finite-statiutomata because the in-
volved input alphabets can become very large when horitafghabet extension is
used. We have, however, learned in experience that the Sthe iput alphabet is a
much smaller practical problem than the size of the statelsetto many compression
techniques available at the implementation level.

The technique that uses an extended alphabet to encodisooteach letter is
analogous to

o the use of intermediate alphabets in transducer pairs d&95),

e cascade decompositions using covers (Zeiger, 1968),

o factored extraction of constraints (Maxwell and Kaplar93p and

e named disjunctions and contexted unification (Maxwell aaglgn, 1991).

The above techniques provide an extremely flexible framkvi@rcomputing in-
tersections, but it has been long an open problem how it doeilgsed in the most effi-
cient way. The cure will be the same in both cases: use piojecto extract tapes and



76 5.5 Other Parsing Strategies

positions where sub-grammars overlap and solve the irtoseproblem separately
in this new auxiliary grammar. Afterwards consistency tegwthe sub-grammars will
have to be enforced. loonstraint satisfaction problefCSP) solving, this approach
corresponds to the so-callegicle cut-sebr tree-clusteringschemes.

5.5 Other Parsing Strategies

There remain a number of parsing strategies that we do nesiigate in this disserta-
tion. These are listed in this section because it is impoitaknow that | have been
aware of them when choosing those that are in my articlesoftiniately, the space
does not allow discussing pros and cons of each method.

5.5.1 Searching Methods

Backtracking Search Tapanainen (1997) has presented several methods thah searc
individual strings from the intersection of the sentencaiaton and the constraints.
His depth-first algorithm that enumerates paths in the tpeaduct of the automata is
perhaps better characterized as a backtracking seardtitlafgo

Depth-first search with thousands of automata and rathey $earch paths calls
for a lot of stack storage, but if the constraint automataeweplaced with SRAs, one
could perhaps implement a more sparce data structure fatdbk as well.

Improved Backtracking Search A backtracking search can be improved using so-
called intelligent backtracking (see Bruynooghe, 2004} ttaches information about
failure causes (memoization). Tapanainen (1997) imprbisedepth-first search algo-
rithm by combining the sentence automata with a set of clyefelected rules before
the depth-first search starts. In fact, | took a further steyatds that direction in my
master’s thesis (Yli-Jyra, 1997) and in 1997-1998 in myosecFSIG parser, by sug-
gesting that automata representing the constraints st@utchnsformed into acyclic
automata (by combining the sentence automaton to themjéfe search starts. Vari-
able ordering is another optimization technique, whichhhige implemented with
compactspecialized rule automatgsRAS) (Yli-Jyra, 1995): the original string posi-
tion of each letter (a position corresponds to an attributeasiable) is indicated in
each extended symbols that is used in SRAs.

Some FSIG parsers allowed soft constraints (Voutilain@944) that were used
to reduce the ambiguity on the basis of heuristic consgaiBbft constraints can be
evaluated by using the best-first search strategy, but #ey $o be feasible only after
the hard constraints have been applied and there remaiasanably small number of
potential parses.

Dynamic Elimination of Useless Constraints Typically there are many constraints
that may affect the parsing result only if certain specialaation features are pre-
sented in the sentence automaton. Based on this observasipanainen (1993) de-
vised a method that determines dynamically, on a sentepseiitence basis, which
constraint automata are actiize. can reject a string that is accepted by the original



5.5 Other Parsing Strategies 77

sentence automaton. Inactive constraint automata cantlzesigie when the search for
parses is performed. Furthermore, more inactive rules eatetected by computing a
tentative intersection (Tapanainen, 1997) or an SRA (¥1&,)1997).

5.5.2 Automata Construction Methods

Parsing by Breadth-First Intersection Tapanainen (1993) has investigated some
intersection algorithms that computed the initial-stateessible states in the direct
product of the sentence automaton and all constraint augor8ame of his algorithms
worked in the breadth-first order. He also investigated thstruction of the mini-
mized automaton through union and complementation (Tapenal991).

The transition matrix of the huge automata can be repredesumpactly with
BDDs. Symbolic BDD-based breadth-first traversal methadgsdiscussed in (Ca-
bodi and Camurati, 1997). Representing FSIG very compastly LF-AFA (Salomaa
and Yu, 2000) was suggested by Yli-Jyra (2003a). Inteizedf a LF-AFAs with the
sentence automaton resembles a breadth-first search.

Optimizing the Order of Constraint Application The direct product of the sen-

tence automaton and the constraint automata, or its mienfrégjuivalent, can be com-

puted in a pairwise manner, by combining two automata ate.timthe parser, this can

be done by combining a constraint automaton with the cufrersion of the sentence

automaton, which gives rise to a sequence of restrictedorer®f the sentence au-

tomaton. The order in which the constraints are appliedeéstntence automaton can
make considerable differences to the parser’s efficienagious strategies for selecting
an economical order on the sentence-by-sentence basishesdy been investigated
(Tapanainen, 1991, 1993, 1997).

Finite Cover Automata In FSIG parsing, the length of deep strings are linearly
bounded by the length of the input sentence. Thus, the settehpal deep strings
is finite. Minimal deterministic finite cover automa(®CFAs) are an optimized rep-
resentation for finite languages (Campeanu et al., 199@}tam set of DFCAs is ef-
fectively closed under language intersection (Campeail,€1999), which suggests
a possible application in FSIG parsing.

Optimizations in the Grammar Optimizations in the grammar preprocessing can
lead to substantial improvements as we will demonstratai;iadhapter. Tapanainen
started investigation of grammar optimizations by considgtechniques that helped to
find constraint automata whose combination remain smafidiainen, 1992). These
combination techniques are complemented with techniduatsiecompose constraints
into a conjunction of simpler constraints. My first compibait algorithm for context
restrictions (Yli-Jyra, 2003a) could be used for that msg

Furthermore, there are techniques that simplify condtraittomata under state
compatibility that is determined by computing tentativalgirect product of two con-
straint automata. The tentatively computed product carpneted as an incompletely



78 5.5 Other Parsing Strategies

specified automaton and minimized using appropriate alyns. The approach re-
sembles simplification through folding (Yli-Jyra, 1998)ith three exceptions: (i) It
can merge states that do not share common paths, (ii) it tesescovers rather than
state partitions, and (iii) it does not take advantage dialgt expansions. Tapanainen
(1992) discusses simplifications that just erase statess afilmmaton on the basis of a
tentative intersection with some fixed constramf.(our reference automaton).

Local Reductions In 1995-1996, | implemented a parser, called $keemaParser
which contained the reduction method (“folding”) for SRAIPIyra, 1995, 1997). It
turned out that although the method often reduced the si&Re# to a tenth of the
original, the benefits did not carry over to the intersectibseveral SRAs. Because
almost all constraints interacted with bracketing, reuns of automata failed to de-
compose the whole intersection problem into small sub4prob that would have been
persistent.

5.5.3 Parsing with Consistency Enforcing Techniques

Basic Definitions Automata are a useful representation for constraint melat{\Vem-
paty, 1992; Amilhastre et al., 2001; Yli-Jyra, 2001), aheyt can be used for solving
CSPs (Vempaty, 1992). It should be noted, however, that @BMng through au-
tomata is a more general problem than FSIG parsing, becaubd=8IG is fixed rather
than a part of the parser’s input.

We can also reduce FSIG parsing to CSPs. First we transfarodhstraints into
deterministic acyclic automata as explained in sectioril5then add padding to make
the recognized strings equal in length. After this, we iptet eactpositionin padded
deep strings as a constrainaitribute We can now either (i) interpret theetsrecog-
nized by the acyclic automata as constraint relations dwee attributes, (ii) align the
states in each automaton, let attributes represent theesand target states and input
letters at each position, and represent transitions threergary relationsover these
attributes.

Efficient CSP solvers first apply so-called consistency emirig techniques in order
to simplify the constraint relations and domains of attiéalues. After this, if neces-
sary, they solve the problem with a complete and sound Howge method such as a
backtracking search or synthesis of combined constralims simplest consistency en-
forcing techniques include algorithms foode consistendNC), arc consistencyAC)
andpath consistenc{PC). The widely knowrtonstraint propagatiofCP) algorithm
is a combination of NC and AC techniques.

An Alternating Method Tapanainen (1997) implements a heuristic method that al-
ternates between a synthesis method and a compressiondnBiming the synthesis
phase, several constraints are applied to the sentenceatato. \WWhen the result grows
too big, a compression algorithm compresses the sentetgomaton by merging al-
ternative states.



5.5 Other Parsing Strategies 79

Approaches Based on Strict Local Testability This approach (ii) has been applied
to the KIMMO model in two-level morphology (Barton, Jr., 1818 Sproat, 1992) (Bar-
ton, Jr., 1986a; Barton, 1987; Sproat, 1992). Their apra@plied node consistency
over the attributes corresponding to states and letterse@wer, they simultaneously
kept relations representing automata transitions camrgjst A similar method could
be implemented without explicit attributes if we expand tghabet of the acyclic
automata in the manner proposed in (Yli-Jyra, 2001, 2003®ijtulainen (1995b) im-
plements a more general heuristics that would enforce stmsly beyond adjacent
positions to an extended neighborhood. This generalizédistill not general enough
for FSIG grammars because it is at its best when the FSIG radnmistanguages are
strictly locally testableMcNaughton and Papert, 1971; de Luca and Restivo, 1980;
Caron, 2000

A Bounded Tree-width Approach Yli-Jyra (2001) starts from the approach (i)
(where padded finite languages are constraint relations)shketches a method that
would decompose the constraint relations, representedtoyrata, into smaller rela-
tions. The assumption was that a decomposition into binglgtions would be pos-

sible!%, and furthermore, that the resulting constraint graph éplyrshowing the de-

pendencies between the positions) would have boundedvicth- However, these

assumptions are unrealistic: even dependency grammaieh wre otherwise very

simple, would require more expressive data structires

An Attempt to Capture Elementary Trees When | had started my investigations
in 2002 (Yli-dyra, 2003b), | made a conjecture that in théution to a CSP it would
be helpful to decompose constraint relations in a more géfi@shion compared to
Yli-Jyra (2001). The conjecture was motivated by an anakogcontext-free parsing
using a CP technique (Morawietz, 2000a,b; Blanche and Mietan2000). At that
time, | was aware of the fact that CSP with a bounded tree wgd#olvable in linear
time according to the number of nodes in the tree, which mégatd realized that |
was not trying to replace FSIG parsing with an intractabl® @&tance.
Unfortunately the analogy between a CSP over items in parssts and a CSP
over string positions turned out to be imprecise: in Mordgiiapproach, bounded
sized items corresponded to subtrees covering an unboumuheler of strings, while
bounded string subsequences would correspond to a setyofwell trees or to dis-
continuous patterns that are not trees at all. What was mgjssi constraints over

8Based on our experiments on an equivalent method, half ofitine readings could be removed in this
way.

9The attribute 'strictly’ is essentialocally testable languageare Boolean combinations of strictly lo-
cally testable ones, argtrongly locally testabléanguages are Boolean combinations of a subset of locally
testable ones. It is probable that Piitulainen’s approaohlaévnot work very well if constraint languages
belonged to these more general classes but fail to be gtioctlly testable.

10This is true only for a very restricted subclass of FSIGs,netike constraints are definable by existen-
tially quantified two-variable formulas.

11The balanced bracketing used in our representation is mwessible with attribute pairs. However, if
the length of sentences was bounded, we could index the vamitigns in the sentence with a finite set of
symbols. This would make government relation expressibla &ubic number of binary relations over pairs
of attributes.



80 5.6 Conclusions

string positions was the ability say: “whatever there isnsan these two positions, if
it contains any brackets, that bracketing must be balahced.

5.6 Conclusions

Chapter 5 has discussed optimizations in FSIG parsing obabis of the accompany-
ing articles and three problems that are related to compacésentation of ambiguity.
The first accompanying article presented several compilatiethods for regular
restriction expressions. For FSIG parsing, a particularigresting method for ob-
taining a sub-grammar from the FSIG regular expressionspresented. With this
method, a certain exponential blow-up scenario for comgteaitomata was avoided.

The remaining two articles sketched various simplificatiechniques that were
based on alphabet expansions, reference automata, starghisms and local au-
tomata transformations under (implicit) invariants. Thredification techniques pro-
vide an efficient solution to intersection of regular langeswithout construction of
their full direct product. These techniques helped to awsav-up of intermediate
results in a couple of worst-case scenarios of FSIG parsing.

Alphabet expansions can be used to make the processed tgsjnaFSIG parser
structurally simpler. They differentiate the regular langes from the star-free ones
(Medvedev, 1964), decrease dot-depth of start-free lagggigvertical alphabet exten-
sion) and even make the languages in the parser local omametestable (horizontal
alphabet extension). These effects of alphabet expansgamss to be a cornerstone for
FSIG parsing in overall and they are related to homomorg@goasentations of regular
languages.



Chapter 6

Concluding Remarks and
Further Issues

6.1

The organization of this dissertation — the fact that it ¢stssof separate articles —
implies that every article has its own more specified aim. h&t $ame time articles
contribute something to the general goals of this disgertafThe resulting intercon-

Interconnections between the Articles

nections between the articles are complex.

Some most obvious interconnections have been presentegline %.1. In the fig-
ure, the topmost three boxes stand for the three problernkakia driven the research.
The articles are numbered as [1]...[9] like in chapter 1. Thiee different box styles
correspond to the three different problems that are disclisschapters 3 - 5. The
arcs show either how an idea pops up from an article or how ea ligads to further
ideas and articles. The number of connections and ideasbleaare reduced in this

pictorial presentation for simplicity.

PROBLEM 2: PROBLEM 1: PROBLEM 3:
LINGUISTIC APPLICABILITY COMPLEXITY ANALYSIS PARSING STRATEGIES
extended domai performanc ibi
‘ of locality T constraints# [1] Describing...

‘ [5] A Hierarchy... H [4] Multiplanarity... ‘

Chomsky-Schutzenberger
representations

limited bounde
bracketing

[2] Regular...

[3] Approximating..

[7] Compiling...

decomposition
wrt. bracketing

[9] Simplification...

Figure 6.1: A (slightly more) detailed overview of the digaéion.

81

[8} Schematic...

extended alphabgt




82 6.2 Gained Insight

6.2 Gained Insight

The most important findings in this dissertation can be suriz®d as follows:

e The constraint used in the new classestaf-free finite-state intersection gram-
marsFSIG correspond to languages that do not make use of the &lkan or
second-order quantification at alLimited bounded bracketin(.BB) in deep
strings provides a backbone that allows encoding of varoperties of sen-
tences using constraints on the bracketing. In additiomtage-structure brack-
eting, there is a special bracketing for word-to-wdependency links

e There are relevartorrespondencesetween depth of bracketing, dot-depth, de-
scriptive and parallel computational complexity, expdrarstate-complexity,
and succinct representations for constraints and parsstfor Computational
complexity of approximations of context-free grammars amittly context-
sensitive grammars remarkalagincidein the dot-depth hierarchy.

e New complexity measurg®r dependency trees have been proposed and suffi-
cient conditions for theiacyclicityhas been presented. Structures generated by
context-free phrase-structure and dependency grammdnsamprojective de-
pendency grammars can Approximatedvith FSIG in a very accurate manner,
and parsed in linear time.

e New compilation methods based bomomorphisms of regular languages
stead of general transducers provide new approaches fopilation of many
regular expression operations in natural language priogesalphabet expan-
sion (or extension) and its cancellation witomomorphismss also a corner-
stone for compact and flexible representation of intermedsults in parsing.

6.3 Some Future Directions

This dissertation prompts many further theoretical anakeérpental follow-up research
areas. We can only mention here a few possibilities.

In mathematical linguistics, our findings related to staehess and expanded al-
phabets can lead to finer results on the low complexity ofesgmtations of natural
language grammars and parsers. Parameterized complésigpiactic structures in
natural language and alternative hierarchieegf. mildly context-sensitive gram-
mars gives rise to exciting opportunities: Psycholindoiahd corpus-based investi-
gations of structural complexity of natural languages dcdwé based on such hierar-
chies. The obtained complexity restrictions could be ofgralue to unsupervised
procedures for learning FSIG grammars from texts. Becarasekbted representations
provide regular FSIG approximations in a straightforwardnmer, development of
Chomsky-Schutzenberger style homomorphic representator all important mildly
context sensitive grammars could be a well-defined and atetivobjective for new
researchers. Automatic extraction of approximated mitdigtext-sensitive grammars
from treebanks could accelerate development of largee $¢3lIG grammars consider-
ably or accelerate processing of treebank querddsYli-Jyra, 2005c). Furthermore,



6.3 Some Future Directions 83

new bracket-based representations might also be devéiopake-level computational
morphology and phonology(f. Yli-Jyra and Niemi, 2005). For ordinary linguists,
development of a flexible and high-level FSIG rule formaliswuld increase accessi-
bility and attractiveness of the FSIG framework. Such a fdrem could incorporate
various descriptive approaches and encapsulate axiatiatis and bracket-based rep-
resentations in an elegant and uniform manner.

Despite of these abundant possibilities for further reggait is even more im-
portant that the grammars and parsing strategies presinted dissertation become
implemented and widely accessible. An efficient and usaBl&parser would guar-
antee a growing interest in the framework and allow prab#caluation of the methods
that has now been presented. Development of an FSIG parsét d@mand, however,
resources that we do not currently have.

To conclude, this dissertation would be most satisfactatyiould inspire focused
research and development projects on FSIG approachtdaeipplication of related
funding and trigger development of linguistically and gieally appropriate, widely
usable finite-state based environment for a large grouprpetational linguists.






Bibliography

Abraham, S. 1965. Some questions of language theor£ QhING 1965, Proceedings of the
Conferencepages 1-11. Bonn, Germany.

Amilhastre, Jerdbme, Philippe Janssen, and Marie-Ciahafilarem. 2001. FA minimisation
heuristics for a class of finite languages. In O. Boldt andiligdnsen, edsWIA'99, no. 2214
in LNCS, pages 1-12. Berlin and Heidelberg: Springer-\¢erla

Anselmo, Marcella, Dora Giammarresi, and Stefano Vari@c@003. Finite automata and non-
self-embedding grammars. In J.-M. Champarnaud and D. Meots.,CIAA 20Q no. 2608
in LNCS, pages 47-56. Berlin and Heidelberg: Springeraggrl

Arnola (Jappinen), Harri. 1998. On parsing binary depenyestructures deterministically in
linear time. In S. Kahane and A. Polguere, e@QLING-ACL'98 Workshop on Processing
of Dependency-Based Grammars, Proceedings of the Workshgps 68—77. Montreal.

Bar-Hillel, Yehoshua, Micha Perles, and Eliyahu Shami64.90n formal properties of simple
phrase structure grammars. In Y. Bar-Hillel, ddapguage and Information: Selected Essays
on their theory and applicatignAddison-Wesley Series in Logic, chap. 9, pages 116-150.
Reading, Massachusetts: Addison-Wesley Publishing angdlem, Israel: The Jerusalem
Academic Press.

Bar-Hillel, Yehoshua and Eliyahu Shamir. 1964. Finitetestanguages: Formal representations
and adequacy problems. In Y. Bar-Hillel, elanguage and Information. Selected Essays
on their Theory and ApplicatignAddison-Wesley Series in Logic, chap. 7, pages 87-98.
Reading, Massachusetts: Addison-Wesley Publishing andgdlem, Israel: The Jerusalem
Academic Press.

Barton, G. Edward. 1987. The complexity of two-level moralgy. In G. E. Barton, R. Berwick,
and E. S. Ristad, edsGomputational Complexity and Natural Languagebap. 5, pages
115-186. Cambridge, Massachusetts: A Bradford Book, ThE Rtess.

Barton, Jr., G. Edward. 1986a. Computational complexitywin-level morphology. [r24th
ACL 1986, Proceedings of the Conferenpages 53-59. New York, NY, USA: Columbia
University.

Barton, Jr., G. Edward. 1986b. Constraint propagation imidd systems. IR24th ACL 1986,
Proceedings of the Conferenqeages 42-52. New York, NY, USA: Columbia University.

Becker, Tilman, Owen Rambow, and Michael Niv. 1992. Thewd¢ional generative power of
formal systems or scrambling is beyond LCFRS. IRCS Repoe3®anstitute for Research
in Cognitive Science, University of Pennsylvania, Philpt&.

Birget, Jean-Camille. 1991a. Errata to "Intersection gltar languages and state complexity”.
SIGACT Newg2(3):51.

85



86 Bibliography

Birget, Jean-Camille. 1991b. Intersection of regular lagges and state complexitgIGACT
News22(2):49.

Birget, Jean-Camille. 1992. Intersection and union of l&glanguages and state complexity.
Information Processing Letters3(4):185-190.

Blanche, Philippe and Frank Morawietz. 2000. A non-gemaatonstraint-based formalism.

Bohnet, Bernd. 2003. Mapping phrase structures to depegdsructures in the case of (par-
tially) free word order languages. Meaning-Text Theory (MTT) 200Bages 217-226. Ecole
Normale, Paris, France.

Bowman, Howard and Simon Thompson. 2000. A complete axiiaatain of interval temporal
logic with projection. Technical Report 6-00, Computingobaatory, University of Kent.

Bruynooghe, Maurice. 2004. Enhancing a search algorithpeitform intelligent backtracking.
Theory and Practice of Logic Programming (TL4(3):371-380.

Bryant, Randal E. 1986. Graph-based algorithms for boofaantion manipulation. IEEE
Transactions on Computers (IRE Transactions on Electr@umputers)C-35(8):677-691.
(A retyped version is available through CiteSeer).

Brzozowski, Janusz A. and Robert Knast. 1978. The dot-dejettarchy of star-free languages
is infinite. Journal of Computer and System Scient@s87-55.

Biichi, J. R. 1960. Weak second-order arithmetic and finiteraata.Zeitschrift fur Mathema-
tische Logik und Grundlagen der Mathematil66—92.

Cabodi, Gianpiero and Paolo Camurati. 1997. Symbolic FSMensals based on the transi-
tion relation. IEEE Transactions on Computers (IRE Transactions on EdedtrComputers)
16(5):448-457.

Campeanu, Cezar, Nicolae Santean, and Sheng Yu. 199@nMicover-automata for finite lan-
guages. In J.-M. Champarnaud, D. Maurel, and D. Ziadi, adsrd International Workshop
on Implementing Automata (WIA'98)ol. 1660 ofLNCS pages 32—42. Berlin and Heidelberg
and New York: Springer-Verlag.

Caron, Pascal. 2000. Families of locally testable langsiagéheoretical Computer Science
242:361-376.

Chanod, Jean-Pierre and Pasi Tapanainen. 1994. Statatidaconstraint-based taggers for
French. Tech. Rep. MLTT-016, Rank Xerox Research Centren@ale Laboratory, Grenoble,
France.

Chanod, Jean-Pierre and Pasi Tapanainen. 1995a. A lexiedkice for finite-state syntax. Mitt
technical report, Rank Xerox Research Centre, Grenobleraatxy, Grenoble, France.

Chanod, Jean-Pierre and Pasi Tapanainen. 1995b. TaggingH~rcomparing a statistical and a
constraint-based method. Tith EACL 1995, Proceedings of the Conferenmges 149-156.
Dublin, Ireland.

Chanod, Jean-Pierre and Pasi Tapanainen. 1996a. A robiststiate parser for French. In
Proceedings of the ESSLLI'96 Robust Parsing Workshapges 16-25. Prague, Czech.

Chanod, Jean-Pierre and Pasi Tapanainen. 1996b. Rulesasttdaints in a French finite-state
grammar. MItt technical report, Rank Xerox Research Ce@renoble Laboratory, Greno-
ble, France.

Chanod, Jean-Pierre and Pasi Tapanainen. 1999. Finieekstaed reductionistic parsing for
French. In A. Kornai, ed.Extended Finite State Models of Language, Proceedingseof th



Bibliography 87

ECAI'96 WorkshopStudies in Natural Language Processing, pages 72-85. i@alJni-
versity Press.

Chomsky, Noam. 1956. Three models for description of laggudEEE (IRE) Transactions
on Information TheoryT-2:113-124. Reprinted iReadings in Mathematical Psychology
volume II, pages 105-124, New York: John Wiley and Sons, 1965

Chomsky, Noam. 1957Syntactic StructuresDen Haag and Paris: Mouton.

Chomsky, Noam. 1959a. A note on phrase structure gramnhaicemation and Computation
(Information and ControlR:393—-395.

Chomsky, Noam. 1959b. On certain formal properties of gransninformation and Computa-
tion (Information and Control2(2):137-167.

Chomsky, Noam. 1963. Formal properties of grammars. In Rel.R. Bush, and E. Galanter,
eds.,Handbook of Mathematical Psycholqgiol. 11, pages 323-418. New York: John Wiley
and Sons.

Chomsky, Noam and Marcel-Paul Schiitzenberger. 1963. Hebraic theory of context-free
languages. In P. Braffort and D. Hirschberg, e@mputer Programming and Formal Sys-
tems pages 118-161. Amsterdam: North Holland Publishing Co.

Church, Kenneth. 1980. On parsing strategies and closar&8th ACL 1980, Proceedings of
the Conferencepages 107-111. Philadelphia, Pennsylvania, USA.

Church, Kenneth and Ronald Kaplan. 1981. Removing reauffston natural language proces-
sors based on phrase structure grammar#lddeling Human Parsing Strategiddniversity
of Texas at Austin.

Church, Kenneth and Ramesh Patil. 1982. Coping with syiotaatbiguity or how to put the
block in the box on the tablé&Computational Linguistics (American Journal of Compudatl
Linguistics)8(3—4):139-149.

Cohen, Rina S. and Janusz A. Brzozowski. 1971. Dot-depthanffeee events.Journal of
Computer and System Scienéet-16.

Covington, Michael. 1994a. GB theory as Dependency GramResearch Report Al-1992-03,
Artificial Intelligence Programs, The University of GeagiAthens, Georgia 30602, U.S.A.

Covington, Michael A. 1990. Parsing discontinuous coustits in dependency grammar (tech-
nical correspondencefComputational Linguistics (American Journal of Compudaél Lin-
guistics)16(4):234-236.

Covington, Michael A. 1992. A dependency parser for vagalbrd-order languages. In
K. R. Billingsley, H. U. B. lll, and E. Derohanes, ed€pmputer assisted modeling on the
IBM 3090: Papers from the 1989 IBM Supercomputing Competitiol. 2, pages 799-845.
Athens, Georgia, USA: Baldwin Press.

Covington, Michael A. 1994b. Discontinuous dependencysiparof free and fixed word or-
der: Work in progress. Research Report Al-1994-02, Ardfitintelligence Programs, The
University of Georgia, Athens, Georgia 30602, U.S.A.

Covington, Michael A. 1994c. An empirically motivated ridrpretation of dependency gram-
mar. Research Report Al-1994-01, Artificial Intelligena@@ams, The University of Geor-
gia, Athens, Georgia 30602, U.S.A.

Covington, Michael A. 2001. A fundamental algorithm for dedency parsing. 189th An-
nual ACM Southeast Conference, ACM-SE, Session 2B: Aatifitelligence Il The Georgia



88 Bibliography

Center, University of Georgia, Athens, GA.

de Luca, Aldo and Antonio Restivo. 1980. A characterizatdrstrictly locally testable lan-
guages and its application to subsemigroups of a free seapgtinformation and Control
44:300-319.

De Roeck, Anne, Roderick Johnson, Margaret King, MichaedriRo, Geoffrey Sampson, and
Nilo Varile. 1982. A myth about centre-embeddingngua58:327-340.

Dras, Mark, David Chiang, and William Schuler. 2004. Ontielss of constituency and depen-
dency grammarsResearch on Language and Computatigf):281-305.

Duchier, Denys. 1999. Axiomatizing dependency parsinggiset constraints. I8ixth Meeting
on Mathematics of Language (MOL-6). http://www.ps.undsbduchier/drafts/mol6.ps.gz
pages 115-126. Orlando, Florida.

Eggan, L. C. 1963. Transition graphs and the star heightopflag eventsMichigan Mathemat-
ical Journal 10:385-397.

Ehrich, Hans-Dieter. 1972. A note on state minimization spacial class of incomplete sequen-
tial machinesl|EEE Transactions on Computers (IRE Transactions on Eb@atrComputers)
C-21(5):500-502.

Eilenberg, Samuel. 1974Automata, Languages, and Machinesl. A of Pure and Applied
Mathematics New York: Academic Press.

Ejerhed, Eva and Kenneth Church. 1983. Finite-state parsmF. Karlsson, edPapers from
the Seventh Scandinavian Conference of Linguistics, wliymo. 10 in Publications of the
Department of General Linguistics, University of Helsirpages 410-432. Helsinki, Finland:
Helsingin yliopiston monistuspalvelu.

Elgot, Calvin C. 1961. Decision problems of finite automagsign and related arithmetics.
Transactions of the American Mathematical Soc@8y1):21-51.

Elworthy, David. 2000. A finite state parser with dependesitycture output. IfProceedings
of Sixth International Workshop on Parsing Technologi&gRIT 2000 Trento, Italy: Institute
for Scientific and Technological Research.

Fagin, R. 1974. Generalized first-order spectra and polyaletime recognizable sets. In
R. Karp, ed.Complexity of Computation, SIAM-AMS Proc. 7

Frick, Markus and Martin Grohe. 2004. The complexity of fiostler and monadic second-order
logic revisited.Annals of Pure and Applied Logik30:3-31.

Gaifman, Haim. 1965. Dependency systems and phrasetsusystems.Information and
Computation (Information and Contro8(3):304—-337.

Garey, Michael R. and David S. Johnson. 19Z@amputers and IntractabilitySeries of Books
in the Mathematical Sciences. New York: W. H. Freeman and gzom

Gaubert, Christophe. 2004. Two-dimensional proof-stmas and the exchange rul&lathe-
matical Structures in Computer Science (MSC&(1):73-96.

Gibson, Edward. 1998. Linguistic complexity: locality ofréactic dependenciesCognition
68:1-76.

Ginsburg, Seymour and Michael A. Harrison. 1967. Bracketauext-free languagesdournal
of Computer and System Sciendék):1-23.

GlaRer, Christian. 200Forbidden-Pattern and Word Extensions for Concatenatigr&fchies
Ph.D. thesis, Bayerischen Julius-Maximilians-UnivéxsitVirzburg.



Bibliography 89

Godlevskii, A. B. and S. L. Krivoi. 1986. Transformation siyesis of efficient algorithms with
auxiliary specifications (English translation from Russiz987, Plenum Publishing Corpora-
tion). Kibernetica66(6):37—-43.

Grasselli, Antonio and Fabrizio Luccio. 1965. A method fanimizing the number of internal
states in incompletely specified sequential netwotkEEE Transactions on Computers (IRE
Transactions on Electronic ComputeBL-14(3):350-359.

Gross, Maurice. 1997. The construction of local grammamsE.IRoche and Y. Schabes, eds.,
Finite-State Language Processijrahap. 11, pages 329-354. Cambridge, MA, USA: A Brad-
ford Book, the MIT Press.

Hale, John and Paul Smolensky. 2001. A parser for harmomitegbfree grammars. 189th
ACL 2001, Proceedings of the Conferenpages 427-432. Toulouse, France.

Harrison, Michael A. 1978Introduction to Formal Language TheanAddison-Wesley: Read-
ing, Massachusetts.

Hays, David E. 1964. Dependency theory: a formalism and sobservations. Language
40:511-525.

Heinonen, Tarja Riitta. 1993. Fin-PCG: Suomen ParallersBaint-kielioppia. Memorandum.
Lingsoft Inc.

Hofler, Stefan. 2002. Link2tree: A dependency-constityeronverter. Lizentiatsarbeit, Institute
of Computational Linguistics, University of Zirich, Zéh.

Holan, Tomas. 2002. Dependency analyser configurabledasares. In P. Sojka, |. Kopecek,
and K. Pala, eds.TSD 2002 vol. 2448 of LNAI, pages 81-88. Berlin and Heidelberg:
Springer-Verlag.

Holan, Tomas, Vladislav Kubon, Karel Oliva, and Martirafelk. 1998. Two useful measures
of word order complexity. In S. Kahane and A. Polguére, ,6d©LING-ACL'98 Workshop
on Processing of Dependency-Based Grammars, Proceedirigs Workshoppages 21-28.
Montreal.

Hopcroft, John E. and Jeffrey D. Ullman. 196®rmal languages and their relation to automata
Addison-Wesley Series in Computer Science and Informa@mrtessing. Reading, M.A.:
Addison-Wesley.

Huffman, David A. 1954. The synthesis of sequential switghgircuits.Journal of the Franklin
Institute257(3—4):161-191, 275-303.

Ihm, P. and Y. Lecerf. 1963Elements pour une grammaire générale des langues fivefec
(Appeared earlier as Rapport GRISA, number 1, pages 11-98).J1Rapport EUR 210.f,
Bruxelles: EURATOM, Communauté Européenne de I'ereeagbmique. (Rapport CETIS,
Centre de Traitement de I'Information Scientifique), patie24.

Immerman, Neil. 1999.Descriptive Complexity Graduate Texts in Computer Science. New
York: Springer-Verlag.

Johnson, Mark. 1996. Left corner transforms and finite sipf@oximation. DRAFT of 12th
May, 1996. Rank Xerox Research Centre.

Johnson, Mark. 1998. Finite-state approximation of camstibased grammars using left-corner
grammar transforms. 186th ACL 1998, 17th COLING 1998, Proceedings of the Conéeren
vol. 1, pages 619-623. Montréal, Quebec, Canada.

Joshi, Aravind. 2004. Starting with complex primitives paff: Complicate locally, simplify



90 Bibliography

globally. Preprint submitted to Elsevier Science.

Joshi, Aravind K. 1985. Tree adjoining grammars: How muchtext-sensitivity is required
to provide reasonable structural descriptions? In D. R. ©pW. Karttunen, and A. M.
Zwicky, eds.,Natural language parsing: psychological, computationatigheoretical per-
spectivesStudies in Natural Language Processing, chap. 6, page2306Cambridge Uni-
versity Press.

Joshi, Aravind K., Tilman Becker, and Owen Rambow. 2000. @lexity of scrambling: a
new twist to the competence/performance distinction. IrABeille and O. Rambow, eds.,
Tree Adjoining Grammars: formalisms, linguistic analyaisd processingpages 167-182.
Stanford: CSLI publications.

Joshi, Aravind K. and Leon S. Levy. 1982. Phrase structaestbear more fruit than you would
have thought.Computational Linguistics (American Journal of Compuiaél Linguistics)
8(1):1-11.

Jurvanen, Eija, Andreas Potthoff, and Wolfgang Thomas319®ee languages recognizable by
regular frontier check. In G. Rozenberg and A. Salomaa, &¥selopments in Language
Theory, At Crossroads of Mathematics, Computer Scienc®#idgy, Turku, Finland, 12-15
July 1993 pages 3-17. Singapore: World Scientific. ISBN 981-02-1845

Kallmeyer, Laura and SinWon Yoon. 2004. Tree-local MCTAGhngshared nodes: word-order
variation in German and Korean. Rroceedings of TAG+7, Seventh International Workshop
on Tree Adjoining Grammar and Related Formalisivisncouver, British Columbia, Canada:
Simon Fraser University.

Kaplan, Ronald M. and Martin Kay. 1994. Regular models ofrtogical rule systemsCom-
putational Linguistic20(3):331-378.

Karlsson, Fred. 1990. Constraint grammar as a frameworgdmsing running text. In H. Karl-
gren, ed.,13th COLING 1990, Proceedings of the Conferencel. 3, pages 168-173.
Helsinki, Finland.

Karlsson, Fred. 2004 (in print). Limits of clausal embeddaomplexity in Standard Average
European. Manuscript. Department of General Linguistitsyersity of Helsinki. April.

Kempe, Andre and Jean-Marc Champarnaud. 2004. Some prebfamnulti-tape intersection. In
L. Cleophas and B. W. Watson, edBhe Eindhoven FASTAR Days, Proceedjmgs 04/40 in
Computer Science Reports. Eindhoven, The Netherland$ini@he Universiteit Eindhoven.

Kempe, Andre, Frank Guingne, and Florent Nicart. 2004a.0Algms for weighted multi-tape
automata. XRCE Research Report 2004/031, Xerox ReseartheEaurope.

Kempe, Andre, Franck Guingne, and Florent Nicart. 2004tw Bllgorithms for weighted multi-
tape automata. In M. Droste and H. Vogler, ed§eighted Automata: Theory and Appli-
cations, Dresden, Germany, June 1-5, 2008d. TUD-FI04-05 in Technische Berichte der
Fakultat Informatik, ISSN-1430-211X, pages 42—-43. D& Dresden, Germany: Techniche
Universitat Dresden.

Kiraz, G. 1996a. EMHE: a generalized two-level system. 3dth ACL 1996, Proceedings of
the Conferencegpages 159-166. Santa Cruz, CA, USA.

Kiraz, G. 1997. Compiling regular formalisms with rule feds into finite-state automata. In
35th ACL 1997, 8th EACL 1997, Proceedings of the Conferepages 329—-336. Madrid,
Spain.

Kiraz, George Anton. 1994. Multi-tape two-level morphglogA case study in semitic non-



Bibliography 91

linear morphology. Inl5th COLING 1994, Proceedings of the Conferened. 1, pages
180-186. Kyoto, Japan.

Kiraz, George Anton. 1996b. Computing prosodic morphalolyy16th COLING 1996, Pro-
ceedings of the Conferengeages 664-669. Copenhagen, Denmark.

Kiraz, George Anton. 2000. Multitiered nonlinear morplmtaising multitape finite automata:
A case study on Syriac and ArabiComputational Linguistic6(1):77-105.

Kiraz, George Anton and Edmund Grimley-Evans. 1998. Mualfie automata for speech and
language systems: A prolog implementation. In D. Wood anduSeds., Automata Imple-
mentation no. 1436 in Lecture Notes in Computer Science, pages 87-Siithger Verlag.

Klarlund, Nils. 1998. Mona & Fido: The logic-automaton cewtion in practice. In M. Nielsen
and W. Thomas, edsGomputer Science Logic, 11th International Workshop, @3LAnnual
Conference of the EACSL, Aarhus, Denmark, August 23-29, B¥lected Papersol. 1414
of LNCS pages 311-326. Springer.

Kornai, Andras. 1985. Natural language and the Chomskratghy. In2nd EACL 1985, Pro-
ceedings of the Conferengaeages 1-7. Geneva, Switzerland.

Kornai, Andras. 1999. Zipf's law outside the middle ranfFeProceedings of the Sixth Meeting
on Mathematics of Languagpages 347—-356. University of Central Florida.

Kornai, Andras. 2002. How many words are thef@@ttometrics4:61-86.

Kornai, Andras and Zsolt Tuza. 1992. Narrowness, pattthwiand their application in natural
language processin@iscrete Applied Mathematic36:87-92.

Koskenniemi, Kimmo. 1983Two-level morphology: a general computational model fordvo
form recognition and productionNo. 11 in Publications of the Department of General Lin-
guistics, University of Helsinki. Helsinki: Yliopistopad.

Koskenniemi, Kimmo. 1990. Finite-state parsing and disgodtion. In H. Karlgren, ed13th
COLING 1990, Proceedings of the Conferened. 2, pages 229-232. Helsinki, Finland.

Koskenniemi, Kimmo. 1997. Representations and finiteestatnponents in natural language.
In E. Roche and Y. Schabes, edanite-state language processinghap. 3, pages 99-116.
Cambridge, Massachusetts: A Bradford Book, The MIT Press.

Koskenniemi, Kimmo, Pasi Tapanainen, and Atro Voutilair992. Compiling and using finite-
state syntactic rules. Ih4th COLING 1992, Proceedings of the Conferenad. 1, pages
156-162. Nantes, France.

Kozen, Dexter. 1977. Lower bounds for natural proof system$roceedings of 18th Annual
Symposium on Foundations of Computer Sciepeges 254-266. IEEE Computer Society,
Long Beach, California.

Krauwer, Steven and Louis des Tombe. 1980. The finite statsducer as a theory of language.
Utrect Working Papers in Linguistics, UWFL:1-86.

Krauwer, Steven and Louis des Tombe. 1981. Transducersramihtars as theories of language.
Theoretical Linguistic8:173—-202.

Kromann, M. T., L. Mikkelsen, and S. K. Lynge. 2003. The DanBependency Tree-
bank Website. Department of Computational Linguisticsp&diagen Business School.
http://www.id.cbs.dk/"mtk/treebank

Kruijff, Geertjan. 2002. A formal language hierarchy baseddependency grammars. MSc
Thesis proposal. Universitat des Saarlandes, Posted &6 2@02. Revised 8 October 2002.



92 Bibliography

Lager, Torbjorn. 1999. Logic for part of speech tagging shallow parsing. IMhe 11th Nordic
Conference in Computational Linguistics (NoDaLiDa'98ppenhagen.

Lager, Torbjorn and Joakim Nivre. 2001. Part of speechitagiyjom a logical point of view. In
P. de Groote, G. Morrill, and C. Retoré, edsogical Aspects of Computational Linguistics
vol. 2099 ofLecture Notes in Artificial Intelligencgages 212-227. Springer-Verlag.

Lecerf, Y. 1960. Analyse automatique (programmes de cefflih A. Leroy, ed.Enseignement
preparatoire aux techniques de la documentation autornetiGUR/C/867/61fpages 179—
253. Bruxelles: Bruxelles: EURATOM, Communauté Eurap@=de I'énergie atomique.

Lecerf, Yves. 1961. Une représentation algébrique dériectsire des phrases dans diverses
langues naturelles. Notes in Comptes Rendus [hebdomafdize Séances de I'’Academie
des Sciencegditeur-Imprimeur-Libraire, 252(2 February):232—234yiB: Gauthier-Villars
&cCk

Leiss, Ernst. 1991. Some comments on a recent note of RaakBIGACT Newf2(1):64.

Lewis, Richard L. 1996. Interference in short-term memdrye magical number two (or three)
in sentence processingournal of Psycholinguistic Resear2b(1):93-116.

Lounela, Mikko. 1993. Feature based parsingdD#talingvistisk symposium for forskerrekrutter
pages 47-52. NORFA, Copenhagen.

Marcus, Solomon. 1965. Sur la notion de projectivifeitschrift fur Mathematische Logik und
Grundlagen der Mathematik1:181-192.

Marcus, Solomon. 1967Algebraic Linguistics; Analytical Modelsrol. 29 of Mathematics in
Science and Engineeringhap. VI (Subordination and Projectivity), pages 200-28&w
York and London: Academic Press.

Maruyama, Hiroshi. 1990. Structural disambiguation witintcaint propagation. 128th ACL
1989, Proceedings of the Conferenpages 31-38. Pittsburgh, Pennsylvania.

Maxwell, John T. lll and Ronald M. Kaplan. 1991. A method fasjdnctive constraint satis-
faction. In M. Tomita, ed.Current Issues in Parsing Technologyages 173-190. Kluwer
Academic Publishers.

Maxwell, John T. lll and Ronald M. Kaplan. 1993. The inteddetween phrasal and functional
constraints Computational Linguistic49(4):571-590.

Maxwell, John T. lll and Ronald M. Kaplan. 1996. An efficierarper for LFG. InProceedings
of the First LFG Conferenggage 1. Grenoble, France.

McCluskey, Edward J. 1962. Minimum-state sequential éisdor a restricted class of incom-
pletely specified flow tablesThe Bell System Technical Journ€lLl(6):1759-1768.

McNaughton, Robert and Seymour Papert. 19Cbunter-Free AutomataNo. 65 in Research
Monograph. Cambridge, Massachusetts: MIT Press.

Medvedev, Yu. T. 1964. On the class of events representabgefinite automaton (reprint
of lincoln laboratories group report 34-73 (1958), an Esfgliranslation from the Russian
version that appeared in 1956). $equential Machines — Selected Pap@ages 215-227.
Addison-Wesley.

Meyer, A. R. 1969. A note on star-free evenisurnal of the ACML6(2):220-225.

Meyer, A. R. 1975. Weak monadic second order theory of sgocés not elementary-recursive.
In R. Parikh, ed.l.ogic Colloquium (Proc. Symposium on Logic, Boston, 19v&) 453 of
LNCS pages 132-154. Springer.



Bibliography 93

Miller, George A. and Noam Chomsky. 1963. Finitary modeltofjuage users. In R. D. Luce,
R. R. Bush, and E. Galanter, eddandbook of Mathematical Psycholqgwl. Il, pages 419—
491. John Wiley.

Miller, Philip H. 2000. Strong Generative Capacity: The Semantics of Linguistitngdism
Stanford: CSLI Publications.

Mohri, Mehryar. 1995. Matching patterns of an automatonZliGalil and E. Ukkonen, eds.,
Combinatorial Pattern Matching, 6th Annual Symposium, C88 Proceedingsno. 937 in
LNCS, pages 286—-297. Espoo, Finland: Springer.

Morawietz, Frank. 2000a. Chart parsing and constraintiaragiing. In20th COLING 2000,
Proceedings of the Conferenqeages 551-557. Saarbriicken, Germany.

Morawietz, Frank. 2000b. Chart parsing as constraint pgrapan. InSome Aspects of Natural
Language Processing and Constraint ProgrammiAgbeitspapiere des Sonderforschungs-
bereichs 340, Bericht Nr. 150, pages 29-50. Universitatt@irt and Universitat Tubingen
and IBM Deutschland.

Morrison, Donald R. 1968. PATRICIA — Practical Algorithm Retrieve Information Coded in
Alphanumeric.Journal of the ACML5(4):514-534.

Nasr, Alexis and Owen Rambow. 2004. A simple string-rewgtformalism for dependency
grammar. In G.-J. M. Kruijff and D. Duchier, ed$roc. Workshop of Recent Advances in
Dependency Grammapages 33—-40. Geneva, Switzerland.

Nederhof, Mark-Jan. 2000. Practical experiments with la@gapproximation of context-free
languagesComputational Linguistic26(1):17-44.

Nivre, Joakim. 2003a. An efficient algorithm for projectigependency parsing. Rroceed-
ings of the 8th International Workshop on Parsing TechnielegWPT 2003pages 149-160.
Nancy, France.

Nivre, Joakim. 2003b. Theory supporting treebanks. In JréNand E. Hinrichs, edsPro-
ceedings of the Second Workshop on Treebanks and LingUistiaries (TLT 2003)no. 9
in Mathematical Modelling in Physics, Engineering and dbga Sciences, pages 117-128.
Vaxjo: Vaxjo University Press.

Nivre, Joakim and Mario Scholz. 2004. Deterministic deamay parsing of english text. ROth
COLING 2004, Proceedings of the Conferened. I, pages 64—70. Geneva, Switzerland.

Oflazer, Kemal. 2003. Dependency parsing with an extendée-State approachComputa-
tional Linguistics29(4):515-544.

Pager, David. 1971. Conditions for the existence of minich@ded covers composed of maximal
compatibles.IEEE Transactions on Computers (IRE Transactions on Ed@dtrComputers)
C-20:450-452.

Paull, Marvin C. and Stephen H. Unger. 1959. Minimizing thenber of states in incompletely
specified sequential switching functionEEE Transactions on Computers (IRE Transactions
on Electronic ComputerdrC-8(3):356—367.

Paull, Marvin C. and G. Waldbaum. 1967. A note on state minatidn of asynchronous sequen-
tial functions.|EEE Transactions on Computers (IRE Transactions on EbeétrComputers)
EC-16(1):94-97.

Perrin, Dominique and Jean-Eric Pin. 2001. Infinite wordsanhkcript. (The final version
published by Elsevier in 2004).



94 Bibliography

Peters, Paul Stanley and Robert W. Ritchie. 1969. Contesitaee immediate constituent anal-
ysis — context-free languages revisited.Aroc. ACM Symposium on Theory of Computing
pages 1-8. Marina del Rey, California.

Pfleeger, Charles P. 1973. State reduction in incomplepagified finite state machinelEEE
Transactions on Computers (IRE Transactions on Electr@amputers)C-22(12):1099—
1102.

Piitulainen, Jussi. 1995&ielioppijarjestelmien kokonaisvertailu (Comparisoi@rammar Sys-
tems) Master’s thesis, Department of General Linguistics, Ersity of Helsinki, Helsinki,
Finland.

Piitulainen, Jussi. 1995b. Locally tree-shaped sententmraata and resolution of ambiguity. In
Proceedings of the 10th Nordic Conference of Computatitireduistics (NODALIDA-95)
no. 26 in Publications of the Department of General LingesstUniversity of Helsinki, pages
50-58. Helsinki, Finland: Yliopistopaino.

Pin, Jean-Eric. 1986/arieties of Formal Language&oundations of Computer Science. London
and New York: North Oxford Academic Publishers and Plenues®r

Pin, Jean-Eric. 2003. Algebraic tools for the concatemapicoduct. Theoretical Computer
Science292(1):317-342.

Popper, Karl Raimund. 1959The Logic of Scientific DiscoveryjLondon: Hutchinson & Co.,
2nd edn.

Post, Emil. 1943. Formal reductions of the general combiryatlecision problem. American
Journal of Mathematic65:197-215.

Pullum, Geoffrey and Gerald Gazdar. 1982. Natural langsiagel context-free languagdsn-
guistics and Philosoph#(4):471-504.

Pullum, Geoffrey K. 1984. Syntactic and semantic parsigbiln 10th COLING 1984, Proceed-
ings of the Conferen¢@ages 112-122. Stanford, California.

Pullum, Geoffrey K. and Barbara Scholz. 2003. Model-thgomyntax foundations — linguistic
aspects. Lecture notes, 15th European Summer School it Llogiguage, and Information,
August 18-19, at Technical University of Vienna.

Rabin, Michael O. and Dana Scott. 1959. Finite automata heidl tecision problemsIBM
Journal of Research and Developm@ii2):114—-125.

Ravikumar, Bala. 1990. Some applications of a techniqueakb&a and SipseSIGACT News
21(4):73-77.

Revuz, Dominique. 1991Dictionaires et lexiques, méthodes et algorithmiek.D. thesis, Insti-
tut Blaise Pascal, Université Paris 7, Paris.

Revuz, Dominique. 1992. Minimization of acyclic deternsiii automata in linear timelheo-
retical Computer Scienc@2(1):181-189.

Robinson, Jane J. 1967. Methods for obtaining correspgralinase structure and dependency
grammars. IfProceedings of the 1967 conference on Computational Ltiggi pages 1-25.

Roche, Emmanuel. 1995. Smaller representations for fatétte transducers and finite-state au-
tomata. In Z. Galil and E. Ukkonen, ed€ombinatorial Pattern Matching, 6th Annual Sym-
posium, CMP 95, Proceedingso. 937 in LNCS, pages 352—-365. Espoo, Finland: Springer.

Roche, Emmanuel. 1997. Parsing with finite-state transduckn E. Roche and Y. Schabes,
eds.,Finite-state language processinghap. 8, pages 241-281. Cambridge, Massachusetts:



Bibliography 95

A Bradford Book, the MIT Press.

Rogers, James. 1998.descriptive approach to language-theoretic comple8tudies in Logic,
Language and Information. Stanford, United States: CSbliPations & FoLLlI.

Rogers, James. 2003. Syntactic structures as multi-diorealsrees. Research on Language
and Computatiori:265-305.

Rogers, James. 2004. On scrambling, another perspectieroteedings of TAG+7, Seventh
International Workshop on Tree Adjoining Grammar and RedaFormalismspages 178—
185. Vancouver, British Columbia, Canada: Simon Frasevéfgity.

Salomaa, Kai and Sheng Yu. 2000. Alternating finite autoraathstar-free languagesheoret-
ical Computer Scienc234:167-176.

Schiitzenberger, Marcel Paul. 1965. On finite monoids Ilgaeimy trivial subgroupsinforma-
tion and Computation (Information and Contr@j2):190-194.

Schwentick, Thomas and Klaus Barthelmann. 1999. Local abforms for first-order logic
with applications to games and automa®&AM Journal on Discrete Mathematics (SIDMA)
3:109-124.

Simon, Imre. 1975. Piecewise testable event$roteedings of the 2nd Gl Conferenegel. 33
of Lecture Notes in Computer Scien@&erlin: Springer.

Sleator, Daniel and Davy Temperley. 1991. Parsing Engligh w link grammar. Technical
Report CMU-CS-91-196, Carnegie Mellon University, Congoicience, Pittsburgh, USA.

Sproat, Richard William. 1992 Morphology and Computatigrpages 171-179. Cambridge,
Massachusetts: The MIT Press.

Stearns, R. E. 1967. A regularity test for pushdown machingsormation and Control
11(3):323-340.

Tamm, Hellis. 2004. On minimality and size reduction of aape and multitape finite automata.
Series of Publications A Report A-2004-9, Department of @orar Science, University of
Helsinki.

Tamm, Hellis, Matti Nykanen, and Esko Ukkonen. 2004. Sedhuction of multitape automata.
A Poster Presented at CIAA 2004.

Tapanainen, Pasi. 199%arellisina automaatteina esitettyjen kielioppistien soveltaminen
luonnollisen kielen jasentajassa. Master’s thesis982-05, Department of Computer Sci-
ence, University of Helsinki, Helsinki, Finland.

Tapanainen, Pasi. 199Aarellisiin automaatteihin perustuva luonnollisen kiejasennin. Li-
centiate thesis C-1993-07, Department of Computer Scjéhaeersity of Helsinki, Helsinki,
Finland.

Tapanainen, Pasi. 1993. Finite state parsingDatalingvistisk symposium for forskerrekrutter
pages 1-9. NORFA, Copenhagen.

Tapanainen, Pasi. 1997. Applying a finite-state intereaggrammar. In E. Roche and Y. Sch-
abes, eds.Finite-State Language Processinchap. 10, pages 311-327. Cambridge, MA,
USA: A Bradford Book, the MIT Press.

Tapanainen, Pasi. 1999Parsing in two frameworks: finite-state and functional degency
grammar Ph.D. thesis, University of Helsinki, Finland.

Teich, Elke. 1998. Types of syntagmatic relations and thepresentation. In S. Kahane and
A. Polguére, eds36th ACL 1998, 17th COLING 1998, Proceedings of the Conéeyevol. 1,



96 Bibliography

pages 39-48. Montréal, Quebec, Canada.

Teitelman, Warren. 1978INTERLISP Reference ManuaXerox Palo Alto Research Center,
Xerox Corporation. (Section 2.2 Using Interlisp — an Ovewi2.4).

Tesniere, Lucien. 1969 (1959Elements de Syntaxe Structuralearis: Editions Klincksieck,
2nd edn.

Thatcher, James W. 1967. Characterizing derivation tréesmtext-free grammars through a
generalization of finite automata theoryournal of Computer and System Sciente3l 7—
322.

Thomas, Wolfgang. 1982. Classifying regular events in sylindogic. Journal of Computer
and System Scienc25:360-376.

Thomas, Wolfgang. 1997. Languages, automata, and logiG. Rozenberg and A. Salomaa,
eds.,Handbook of Formal Languagepages 389-455. Springer.

Tomescu, loan. 1972. A method for minimizing the number afest for a restricted class of
incompletely specified sequential machinstathematical Systems Thedyl):1-2.

Ullian, Joseph S. 1967. Partial algorithm problems for ernfree languagednformation and
Computation (Information and Controf)1:80-101.

Uliman, Jeffrey D. 1988 Principles of Database and Knowledge-Base Systeois1-2. New
York: Computer Science Press.

van Melkebeek, Dieter. 200R@andomness and completeness in computational complagityt
Distinguished Theses. Springer-Verlag.

Vempaty, N. R. 1992. Solving constraint satisfaction peol$ using finite state automata. In
American Association for Artificial Intelligence (AAAI'RDages 453-458. San Jose.

Voutilainen, Atro. 1994aDesigning a Parsing GrammatNo. 22 in Publications of the Depart-
ment of General Linguistics, University of Helsinki. Helki, Finland: Yliopistopaino.

Voutilainen, Atro. 1994b.Three studies of grammar-based surface parsing of unatsthiEn-
glish text No. 24 in Publications of the Department of General Linticgs University of
Helsinki. Helsinki, Finland: Yliopistopaino.

Voutilainen, Atro. 1997. Designing a (finite-state) pagsgmammar. In E. Roche and Y. Schabes,
eds.,Finite-State Language Processinghap. 9, pages 283—-310. Cambridge, MA, USA: A
Bradford Book, the MIT Press.

Voutilainen, Atro. 1998. Does tagging help parsing? A cdséyson finite state parsing. In
L. Karttunen, ed.FSMNLP’'98: International Workshop on Finite State Methau®atural
Language Processingages 25-36. Somerset, New Jersey.

Voutilainen, Atro and Pasi Tapanainen. 1993. Ambiguityheton in a reductionistic parser. In
6th EACL 1993, Proceedings of the Conferenmages 394-403. Utrecht, The Netherlands.

Wartena, Christian. 2001. Grammars with composite staraffeM. Moortgat, ed.L ACL'98,
vol. 2014 ofLNAI, pages 266—285. Springer.

Weir, David. 1992. A geometric hierarchy beyond contegeflfanguages heoretical Computer
Sciencel04(4):235-261.

Wintner, Shuly. 2001. Formal language theory for naturaiglsage processing. A
foundational course taught in European Summer School inicl.oganguage and
Information, August 13-24, Helsinki. Available abttp://www.helsinki.fi
/esslli/courses/readers/K10.pdf



Bibliography 97

Yli-Jyra, Anssi Mikael. 1995. Schematic finite-state stection parsing. In K. Koskenniemi,
ed., Short Papers Presented at the 10th Nordic Conference of Gtatipnal Linguistics
(NODALIDA-95) pages 95-103. Helsinki, Finlanff].

Yli-Jyra, Anssi Mikael. 1997 Menetelmia aarellisiin automaatteihin perustuvandaenjasen-
nyksen tehostamiseksiMaster’s thesis, Department of General Linguistics, ersity of
Helsinki, Helsinki, Finland.

Yli-Jyra, Anssi Mikael. 2001. Structural correspondebegween finite-state intersection gram-
mar and constraint satisfaction problem, extended alistre€inite State Methods in Natural
Language Processing 2001 (FSMNLP 2001), ESSLLI Workgiegges (1-4). Helsinki.

Yli-dyra, Anssi Mikael. 2003a. Describing syntax withrsfeee regular expressions. [rilth
EACL 2003, Proceedings of the Conferengages 379-386. Agro Hotel, Budapest, Hungary.
[1].

Yli-Jyra, Anssi Mikael. 2003b. Efficient parsing with fieistate constraint satisfaction, a Ph.D.
project. In H. Holmboe, edNordisk Sprogteknologi 2002. Nordic Language Technology
2002. Arbog for Nordisk Sprogteknologisk Forskningsprogram @04 pages 427-430.
Copenhagen: Museum Tusculanums Forlag.

Yli-Jyra, Anssi Mikael. 2003c. Multiplanarity — a modelrfdependency structures in treebanks.
In J. Nivre and E. Hinrichs, edsTLT 2003. Proceedings of the Second Workshop on Tree-
banks and Linguistic Theoriggol. 9 of Mathematical Modelling in Physics, Engineering and
Cognitive Sciencepages 189-200. Vaxjo, Sweden: Vaxjo University Prégls

Yli-Jyra, Anssi Mikael. 2003d. Regular approximationsotigh labeled bracketing. In G. Jager,
P. Monachesi, G. Penn, and S. Wintner, e@qgceedings of the 8th conference on For-
mal Grammar 2003 "FG \/enna,”pages 189-201. Pre-proceedings. Availabletgt//
cs.haifa.ac.il/"shuly/fg03/

Yli-Jyra, Anssi Mikael. 2004a. Axiomatization of restiéd non-projective dependency trees
through finite-state constraints that analyse crossingkietangs. In G.-J. M. Kruijff and
D. Duchier, eds.Proc. Workshop of Recent Advances in Dependency Granpages 33—
40. Geneva, Switzerland6].

Yli-Jyra, Anssi Mikael. 2004b. Coping with dependenciesd aord order or how to put Arthur’s
court into a castle. In H. Holmboe, ed\ordisk Sprogteknologi 2003. Nordic Language
Technology 2003Arbog for Nordisk Sprogteknologisk Forskningsprogram@®amo4 pages
123-137. Museum Tusculanums Forlag, Kgbenhavns Unigersit

Yli-Jyra, Anssi Mikael. 2004c. A framework for reductioné automata recognizing restricted
regular languages. Manuscript.

Yli-Jyra, Anssi Mikael. 2004d. Simplification of intermiede results during intersection of mul-
tiple weighted automata. In M. Droste and H. Vogler, etdejghted Automata: Theory and
Applications, Dresden, Germany, June 1-5, 2088 TUD-FI04-05 in Technische Berichte
der Fakultat Informatik, ISSN-1430-211X, pages 46—481ID62 Dresden, Germany: Tech-
niche Universitat Dresderfg].

Yli-Jyra, Anssi Mikael. 2005a. Approximating dependergrammars through intersection of
regular languages. IImplementation and Application of Automata, 9th Interaatl Confer-
ence, CIAA 2004. Kingston, Canada, July 22-24, 2004. Re8s¢ected Papersol. 3317 of
LNCS pages 281-292. Springer-Verldg].

Yli-Jyra, Anssi Mikael. 2005b. Approximating dependergnammars through intersection of
star-free regular languages. Accepted for publicatidmt@rnational Journal of Foundations



98 Bibliography

of Computer Science

Yli-dyra, Anssi Mikael. 2005c. Data vs. query complexitytreebank queries and induction
of linguistic grammars. Poster presented at the 15th NdEdinference of Computational
Linguistics (NODALIDA 2005), University of Joensuu, Fimd, May 20-21, 2005.

Yli-Jyra, Anssi Mikael. submitted 2003. Regular approations through labeled bracketing
(revised version). Submitted to the post-proceedings ofiEfha, the 8th conference on
Formal Grammar, Vienna, Austria, 16—-17 August, 2003. Aditay to the given information,
the revised papers will be published as Online Proceedipd331i.| Publications, Stanford,
CA, USA. [2].

Yli-dyra, Anssi Mikael and Kimmo Koskenniemi. 2004. Cottimy contextual restrictions on
strings into finite-state automata. In L. Cleophas and B. \@tséh, eds.The Eindhoven
FASTAR Days, Proceeding®. 04/40 in Computer Science Reports. Eindhoven, Thedieth
lands: Technische Universiteit Eindhovd].

Yli-Jyra, Anssi Mikael and Jyrki Niemi. 2005. An approachspecification of regular relations:
Pivotal synchronization expressions. A full paper to bespnged at the Finite-State Meth-
ods and Natural Language Processing 2005 (FSMNLP 2005yydtkshop in the FSMNLP
series, University of Helsinki, Finland, September, 2005.

Yli-Jyra, Anssi Mikael and Matti Nykanen. 2004. A hierhycof mildly context sensitive de-
pendency grammars. In G. P. Gerhard Jager, Paola Monaghdss. Wintner, edsRro-
ceedings of the 9th conference on Formal Grammar 2003 "FGlfanpages 151-165. Pre-
proceedings. Available dittp://cs.haifa.ac.il/"shuly/fg04/ .[5].

Yu, Sheng. 1999. State complexity of regular languagestédualk). InProceedings of De-
scriptional Complexity of Automata, Grammars and Relatedcures pages 77—88.

Yu, Sheng and Qingyu Zhuang. 1991. On the state complexitytefsection of regular lan-
guagesSIGACT New22(3):52-54.

Zeiger, H. Paul. 1968. Cascade decomposition of automatg usvers. In M. A. Arbib,
ed.,Algebraic Theory of Machines, Languages, and Semigropgges 55-80. Netherlands:
Academic Press.



List of Contributed Articles

Group 1

(1]

(2]

(3]

Yli-Jyra, Anssi Mikael. 2003a. Describing syntax withrsteee regular expressions. In
11th EACL 2003, Proceedings of the Conferemages 379-386. Agro Hotel, Budapest,
Hungary.

Yli-Jyra, Anssi Mikael. submitted 2003. Regular approations through labeled brack-
eting (revised version). Submitted to the post-proceedinigF-GVienna, the 8th con-
ference on Formal Grammar, Vienna, Austria, 16—-17 Augu3®32 According to the

given information, the revised papers will be published atin@ Proceedings by CSLI
Publications, Stanford, CA, USA.

Yli-Jyra, Anssi Mikael. 2005. Approximating dependenawmmars through intersec-

tion of regular languages. lmplementation and Application of Automata, 9th Interna-
tional Conference, CIAA 2004. Kingston, Canada, July 2220D4. Revised Selected
Papers vol. 3317 ofLNCS pages 281-292. Springer-Verlag.

Group 2

(4]

(5]

(6]

Yli-Jyra, Anssi Mikael. 2003b. Multiplanarity — a modelrfdependency structures
in treebanks. In J. Nivre and E. Hinrichs, edBL T 2003. Proceedings of the Second
Workshop on Treebanks and Linguistic Thearied. 9 of Mathematical Modelling in
Physics, Engineering and Cognitive Sciengesges 189-200. Vaxjo, Sweden: Vaxjo
University Press.

Yli-Jyra, Anssi Mikael and Matti Nykanen. 2004. A hierhycof mildly context sensitive
dependency grammars. In G. P. Gerhard Jager, Paola Maiaoie S. Wintner, eds.,
Proceedings of the 9th conference on Formal Grammar 2003NE&@cy”, pages 151—
165. Pre-proceedings. Availabletatp://cs.haifa.ac.il/"shuly/fg04/

Yli-Jyra, Anssi Mikael. 2004a. Axiomatization of restiéd non-projective dependency
trees through finite-state constraints that analyse ergssacketings. In G.-J. M. Kruijff
and D. Duchier, edsProc. Workshop of Recent Advances in Dependency Grammar
pages 33-40. Geneva, Switzerland.

Group 3

(7]

Yli-Jyra, Anssi Mikael and Kimmo Koskenniemi. 2004. Corimm contextual restric-
tions on strings into finite-state automata. In L. Cleophad B. W. Watson, edsThe
Eindhoven FASTAR Days, Proceedings. 04/40 in Computer Science Reports. Eind-
hoven, The Netherlands: Technische Universiteit Eindhove

99



100 List of Contributed Articles

[8] Yli-dyra, Anssi Mikael. 2004b. Simplification of intermiatle results during intersec-
tion of multiple weighted automata. In M. Droste and H. Vagleds.,Weighted Au-
tomata: Theory and Applications, Dresden, Germany, Jurie 2604 no. TUD-FI04-05
in Technische Berichte der Fakultat Informatik, ISSN-Q43.1X, pages 46—48. D-01062
Dresden, Germany: Techniche Universitat Dresden.

[9] Yli-dyra, Anssi Mikael. 1995. Schematic finite-state nstection parsing. In K. Kosken-
niemi, ed.,Short Papers Presented at the 10th Nordic Conference of Qtatipnal Lin-
guistics (NODALIDA-95)pages 95-103. Helsinki, Finland.



Errata for Contributed Articles

[1] Describing Syntax with Star-Free Regular Expressions

The first bullet under section 3.4 should start:
e The phraseévery @>N @ 6,000 @>N @ miles N @ADVIsatisfies ...

[4] Multiplanarity — a Model for Dependency Structures in Tr eebanks

Under the headePlanarity, | made an attempt to define [semi]planarity by means of actdgi
restriction similar to the projectivity condition. The faally presented semi-planarity restriction
in the article is, unfortunately, completely wrdngFirst, we cannot make — as suggested — a
transitive closurgoverns' symmetric by writing(governsu governs™1)*. The given formula

is satisfied by a graph where all nodes govern each other. &inéanarity condition for
dependency graphs can still be expressed pigit” andlinked as follows

if (Alinked B) A (Aprec” B) A (C'linked D) A (C prec” D) A (Aprec* C)
then(B prec* C) V (D prec* B).

(Note that we did not try to express planarity. It is well kmothat planarity is not definable in
FO logic.)

Furthermore, the caption of first figure claims wrongly tha¢ shown trees areot planar
Instead, they are planar but not projective. Finally, theran inadequate reference to Wartena
(2000). Instead, my intend was to make reference to War@0@l) where he definesxtended
right-linear storage grammars

[5] A Hierarchy of Mildly Context-Sensitive Dependency Granmars

The pre-proceedings start numbering of definitions fromd’theorems from 6. The numbering
is not rational and we corrected it in the reprinted articln page 161, the rule on the fourth
line should read:

w(l/X 1/Vi1/Va ...1/V, % 1/Y1 Ya...Y,,), and

Furthermore, on page 163, the 13th and 14th lines from theoot T and T should be
swapped. Finally, on page 164, section 11.7 mixes defigitidlependency trees and projective
dependency trees. It should read:

Firstly, we start from the class of CNDGs, which guarantesglicity. Secondly,
we require that all the rules of the forms (11.7) and (11.8)usth contain at most
one link (a link to a dependent), and that rules of the formqjland (11.10)

1] am grateful to Marco Kuhlman for pointing out this silly err

101



102 Errata for Contributed Articles

should contain exactly one governor link:(in-degree at most one). Thirdly, we
assert that, in the complete derivations, the number of s\tiilet do not contain
any governor links have to be exactly one (connected graph). In this way we
obtain grammars for non-projective dependency trees. @aton of HGDGs is
on page 161.

[7] Compiling Contextual Restrictions into Finite State Automata

On the third page, under the formula (1), the conditiomf@ndy should have read € V; and

y € Y; because we intended to define edghand)); as total contexts. On page 13, the last
column of table 1 contains errors. The column should coritaritems:3¢12 (header), 12, 36,
108, 324, 972.

[8] Simplification of intermediate results during intersection of multiple weighted
automata

Item [4] in the list of references should read:

P. Tapanainen. Applying a finite-state intersection gramnia E. Roche and
Y. Schabes, editor§;inite-state language processingages 311-327. A Bradford
Book, MIT Press, Cambridge, MA, 1997.

[9] Schematic Finite-State Intersection Parsing

In the end of section 4, the last occurrencesofright above the figure 10) should have been
printed asp.

The up-to-date list of corrections will be available on th&\W/ page devoted to this disser-
tation. Currently it is located at

http://www.ling.helsinki.fi/“aylijyra/dissertation/ .



Index of Acronyms

Type 0, 8

Type 1, 8

Type 2,8

Type 3, 8,9

wMSOL[S], 10, 28, 35, 36
AC, 78

B-FSIG, 61

BDD, 74, 77

BIT(i: j), 25

CCG, 56

CFBG, 34, 37, 38

CFG, 16, 22, 32-34, 37, 38, 42, 53
CH, 8,9, 46, 57

CLSG, 54

CL,1

CMLG, 47, 53, 54

CNDG, 13, 47, 54-57, 101
CP, 78,79

CRAM, 30, 31

CSP, 76, 78, 79

DDH, 21, 22, 31, 35, 36, 40, 43, 57
DFA, 15, 24, 36, 64, 66
DFCA, 77

DFS, 19

DGP, 46

DL, 53

ECFG, 33, 37

EDL, 53

ESSLLI, 9

FO[(log n)o(l)], 25
FO[n°™V], 25, 75
FO, 25, 30, 42, 101

FSIG, vii, 1-16, 18-30, 32, 33, 35, 37-40, 43,
45-48, 52, 55-67, 72, 74, 76-80,

82,83
FS,1,5,17,20
GES, 8, 9, 11-14, 20, 37
HGDG, 21, 22, 40, 42, 43, 55, 102

IFSM, 73

LBB, 22, 29, 31, 35, 82
LCFRS, 54

LF-AFA, 30, 77

LH, 3, 25, 30, 43
LOGSPACE, 25, 26
MCSG, 38, 52

MCS, 47

MSOL, 28

MTS, 9-11, 14, 33, 37
MT, 9

NC, 78

NLOGSPACE, 25, 26
NLP, 1, 6, 18, 24

NL, 1,5, 8,17, 20, 28
NP, 23, 25, 73

PCG, 5,9, 14

PC, 78

PNF, 35

POS, 6

Eng-FSIG, 3, 6, 10-12, 18, 19, 21, 22, 24, 2RSG, 8§, 17

28, 32, 35, 37, 43, 61, 66
FA, 9, 11

FCFBG, 21, 22, 32, 37, 38, 40, 43, 61, 63

FG, 8,9

FL, 8

FO[<], 28-30, 36, 57
FO(DTC), 25
FO(LFP), 26
FO(TC), 25

PSPACE, 23
PTIME, 26, 75
RLG, 9

Reg, 11

SCG, 5, 8

SGP, 13, 14, 32, 46
SMTA, 69-71

SRA, 15, 62, 72-78
TAG, 50, 53, 56

103



104 Index of Acronyms

WGP, 13, 14, 32, 46
XFST, 4, 31, 60
XRCE, 7
CF-L-EDL-SG, 55



