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Title: Contributions to the Theory of Finite-State Based Linguistic Grammars
Type:Dissertation
Publisher:Department of General Linguistics, University of Helsinki
Address:P.O. Box 9, FIN-00014 University of Helsinki, Finland
Series:Publications of Department of General Linguistics, University of Helsinki
Number:38

Supervisors:
– Professor Kimmo Koskenniemi

Department of General Linguistics, University of Helsinki, Finland
– Professor Lauri Carlson

Department of General Linguistics, University of Helsinki, Finland
Pre-Examiners:
– Professor Kemal Oflazer

Faculty of Engineering and Natural Sciences, SabancıUniversity, Turkey
– Adjunct Professor András Kornai

Budapest Institute of Technology, Hungary
Opponent:András Kornai
Custos:Kimmo Koskenniemi
Representative of the Faculty:
– Professor Arvi Hurskainen

Institute for Asian and African Studies, University of Helsinki, Finland

First printing, June 2005
Copyright c© 2005 Anssi Yli-Jyrä
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Abstract

This dissertation is a theoretical study of finite-state based grammars used in natural
language processing. The study is concerned with certain varieties offinite-state in-
tersection grammars(FSIGs) whose parsers define regular relations between surface
strings and annotated surface strings. The study focuses onthe following three aspects
of FSIGs:

(i) Computational complexity of grammars under limiting parameters In the
study, thecomputational complexityin practical natural language processing is ap-
proached through performance-motivated parameters on structural complexity. Each
parameter splits some grammars in theChomsky hierarchyinto an infinite set of sub-
set approximations. When the approximations are regular, they seem to fall into the
logarithmic-time hierarchyand thedot-depth hierarchyof star-free regular languages.
This theoretical result is important and possibly relevantto grammar induction.

(ii) Linguistically applicable structural representatio nsRelated to thelinguisti-
cally applicable representationsof syntactic entities, the study contains new bracketing
schemes that cope with dependency links, left- and right branching, crossing dependen-
cies and spurious ambiguity. New grammar representations that resemble theChomsky-
Scḧutzenbergerrepresentation of context-free languages are presented inthe study, and
they include, in particular, representations for mildly context-sensitive non-projective
dependency grammars whose performance motivated approximations are linear-time
parseable.

(iii) Compilation and simplification of linguistic constra ints Efficient compila-
tion methodsfor certain regular operations such as the generalized restriction are pre-
sented. These include an elegant algorithm that has alreadybeen adopted as the ap-
proach in a proprietary finite-state tool. In addition to thecompilation methods, an
approach to on-the-flysimplificationsof finite state representations for parse forests is
sketched.

These findings are tightly coupled with each other under the theme of locality. I
argue that the findings help us to develop better, linguistically oriented formalisms for
finite-state parsing and to develop more efficient parsers for natural language process-
ing.

Keywords: syntactic parsing, finite state automata, dependency grammar, first-
order logic, linguistic performance, star-free regular approximations, mildly context-
sensitive grammars
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Preface

Efficient linguistic communication is our best interface tothe rest of the world. It can
give us a feeling of safety and identity. Meanwhile inefficiency in the communication
tends to isolate people from each other, causing misunderstandings, insecurity and even
wars. Efficient communication is, however, not free. For example in the European
Union, where legislative documents are translated into some twenty official languages,
a large number of professionals are needed in the translation business.

Computer-aided human translation and language learning could be used to reduce
the economical costs of efficient cross-linguistic communication. In such systems,
various computerized grammars play a crucial role, and especially computationally
efficient grammars have received growing interest during the last few years. Many
researchers hope to find ways to use various approximation methods together with
their mathematical idealizations. This work is along this line of research.
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Chapter 1

Introduction

Regular expressions(Regexps),finite automata(FAs) and other means for expressing
regular languages and other regular sets are an attractive research area, although they
have an established value in computer science. An interesting area of the research
concentrates on methods needed in various applications, and in natural language pro-
cessing(NLP) in particular. In NLP, grammars and related methods based on this kind
of finite-state(FS) technologies have become very popular and their applications vary
from computational phonology and morphology to syntactic parsing and information
extraction.

This dissertation belongs to the field ofcomputational linguistics(CL), and it stud-
ies foundations of FS based grammars and methods that are applicable to syntactic
parsing ofnatural languages (NLs). The new results are presented in the accompany-
ing articles that vary in length, formal rigour and field-specific style. Some of them
are more convenient for natural language engineers, and some others for mathemati-
cal linguists and computer scientists. Nevertheless, I hope that, despite the multiple
fields that intersect in this dissertation, this dissertation would be received by people
with CLs orientation, and contribute, thus, to our understanding of approaches that FS
based grammars provide for syntactic analysis.

In NLP, several approaches to syntactic parsing and disambiguation using FS based
grammars have been proposed. In this dissertation, I will beconcerned with the theo-
retical aspects offinite-state intersection grammar(FSIG). FSIG is widely perceived
as a formally very elegant framework, but it also contains a number of important prob-
lems which have remained open for several years. While large-scale FSIG grammars
were developed in some earlier FSIG studies, interest in these enterprises faded be-
cause of these irritating, foundational problems. In this dissertation, my purpose is to
investigate only the foundational problems rather than to build a descriptive grammar
or a fully implemented parser.

The Problems in Focus

The general goal of this dissertation is to address the following three closely interrelated
problems in the FSIG framework:

1
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1. Complexity Analysis — How much computational complexityis really implied
by the languages defined by various kinds of FSIGs? Analyzingcomplexity of
FSIG has earlier been based on a particular automaton implementation of finite-
state constraints.

2. Linguistic Applicability — Can some sort of FSIGs represent appropriate struc-
tural descriptions for natural languages? Linguistic applicability of FSIG has
been restricted to flat surface syntax, where syntactic relations between words
are not explicated and transformations that change the order of words are not
assumed.

3. Parsing Strategies — How FSIG parsing algorithms could bemade more efficient
and well-behaving? All FSIG grammars make use of constraints whose represen-
tations asdeterministic finite automata(DFAs) may become rather big. Compact
representation of individual constraints and intermediate results in FSIG parsing
require new approaches.

My aim has been to gain more understanding of the possible answers to these problems.

The Articles

The dissertation consists of this introductory part and of nine articles that are numbered
from 1 to 9. The accompanying articles are:

[1] Yli-Jyrä, 2003a, “Describing Syntax with Star-Free Regular Expressions.”

[2] Yli-Jyrä, submitted 2003, “Regular Approximations through Labeled Bracketing (revised
version).”

[3] Yli-Jyrä, 2005a, “Approximating dependency grammarsthrough intersection of regular
languages.”

[4] Yli-Jyrä, 2003c, “Multiplanarity – a Model for Dependency Structures in Treebanks.”

[5] Yli-Jyrä and Nykänen, 2004, “A hierarchy of mildly context sensitive dependency gram-
mars.”

[6] Yli-Jyrä, 2004a, “Axiomatization of restricted non-projective dependency trees through
finite-state constraints that analyse crossing bracketings.”

[7] Yli-Jyrä and Koskenniemi, 2004, “Compiling contextual restrictions on strings into finite-
state automata”

[8] Yli-Jyrä, 2004d, “Simplification of Intermediate Results during Intersection of Multiple
Weighted Automata.”

[9] Yli-Jyrä, 1995, “Schematic Finite-State Intersection Parsing.”

The articles are grouped under the three problems. The grouping is illustrated in
1.1 and it shows how the articles included in the dissertation contribute to at least one
of these problems.
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PROBLEM 1:

COMPLEXITY ANALYSIS

PROBLEM 2:

LINGUISTIC APPLICABILITY

PARSING STRATEGIES

PROBLEM 3:

[2] Regular...[1] Describing... [3] Approximating...

[4] Multiplanarity... [5] A Hierarchy... [6] Axiomatization...

[7] Compiling... [8] Simplification... [9] Schematic...

Figure 1.1: The overall structure of the dissertation.

Contributions of this work

This dissertation contributes new insights and a number of new results in relation to the
above problems.

Complexity Analysis: Perhaps the most important result in this dissertation is that
the languages of structural descriptions defined by many interesting FSIGs [1,2,3,6]
are computationally simpler than one would have thought. Some of these grammars
are approximations [2,3,6] of new Chomsky-Schützenberger style representations for
context-free [2], projective dependency [3] and certain mildly context-sensitive [6]
grammars. I analyzed the computational complexity of a specific English finite-state
intersection grammar(Eng-FSIG) through distinctions provided by the theory of de-
scriptive complexity [1], but it is remarkable that the obtained complexity result extends
also to other kinds of FSIG grammars. Furthermore, the studyof descriptive complex-
ity (Immerman, 1999) is able to give more structure to complexity analysis when we
work on very low complexity classes. Because Eng-FSIG [1] and our new grammars
[2,3,6] could be written using star-free regular expressions, their string-based encoding
for trees can be defined using first-order logic with linear precedence which means that
the computational complexity of these sets belongs tologarithmic-time hierarchy(LH).

Linguistic Applicability: The second important result of this work is that FSIGs
can be used to give structural descriptions that can be interpreted in terms of fine-
grained constituency trees [2], projective dependency trees [3] and interesting classes
of general dependency graphs [6]. I carried out [4] some experiments in the Danish
Dependency Treebank containing some 5500 sentences. Thesemeasurements motivate
some performance limits and demonstrate that an appropriate FSIG [6] can cover non-
trivial dependency trees in a dependency treebank. Such FSIGs [6] are closely related
to some mildly context-sensitive grammars [5] that we presented as a formalization of
the complexity measure for crossing dependencies [4].
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Efficient Compilation and Representation of Linguistic Generalizations: Fi-
nally, this dissertation contributes to the efficient compilation and representation of lin-
guistic constraints by presenting new compilation algorithms [7] and a decomposition
technique [7] for FSIGs with bracketing [1,2,3,6]. The relevance of the new, efficient
compilation method expands beyond the FSIG framework, to anexisting commercial
product,Xerox Finite-State Tool(XFST). Based on the decomposition technique [7],
I sketch an approach [9] that reduces the size of intermediate results [8] during FSIG
parsing using an automaton model that resembles incompletely specified asynchronous
automata. This approach [8,9] implements a representationfor local trees in a FSIG
parse forest where trees are represented through bracketedstrings.

An Excluded Possibility: The results obtained in relation to the above three prob-
lems suggest that algorithms for supervised or unsupervised machine learning of FSIG
constraints could be restricted to low dot-depth constraints and to representations that
support extended tree locality, and a flexible mixture of dependencies and constituents.
The focus of the dissertation excludes intentionally this attractive possibility. Our ini-
tial experiments with dependency grammars [3,4,5] touchedthe learning problem only
superficially. In the future, the methods presented in this dissertation could be comple-
mented with techniques for data mining and probabilistic modelling of the data.

The Overview of the Dissertation

The current chapter (chapter 1) started the introduction tothe accompanying articles,
but a further level of orientational material will be presented in the remaining chapters,
characterised as follows: In chapter 2 I give an introduction to the FSIG framework,
and relate this framework to some other grammar frameworks and issues in computa-
tional linguistics. In chapter 3 I discuss, on the basis of [1-3], complexity analysis and
representation of various kinds of FSIGs and characterise our new grammars by a com-
plexity result. In chapter 4 I motivate, on the basis of [4-6], the representation that can
encode dependency-based structural descriptions, summarise the related corpus stud-
ies and performance restrictions and formalise a class of non-projective dependency
grammars and their FSIG approximations. In chapter 5 I pointout some problems in
efficient FSIG parsing and illustrate how the algorithms presented in [7-9] could help
to solve them. The conclusions are presented in chapter 6.



Chapter 2

Introduction to the FSIG
Framework

The framework offinite-state intersection grammar(FSIG) is afinite-state(FS) based
approach for syntactic parsing and disambiguation. This chapter presents a general
overview of the FSIG framework.

2.1 Background

The basic ideas of the FSIG framework were introduced by Kimmo Koskenniemi
(1990). Important contributions to the development of the original FSIG formalism and
the first parsing algorithms can be found in a number of fundamental papers (Kosken-
niemi, 1990, 1997; Tapanainen, 1992, 1997; Koskenniemi et al., 1992; Voutilainen,
1994a, 1997).

Along with FSIG, there are many grammars and efficient parsers whose designs
have some aspects in common with it. For example, let us mention local grammars
(Gross, 1997) and a reductionistic, fixed-point disambiguation approach with con-
text conditions insequential constraint grammar(SCG) (Karlsson, 1990). Because
of some similarities between FSIG and SCG, Lauri Karttunen suggested for FSIG the
nameparallel constraint grammar(PCG) in 1994, but the framework got its current,
more widely known name FSIG from Piitulainen (1995b)1. Set intersection and tree
automata for specification of grammars has been employed in studies of descriptive
complexity of NL grammars (e.g. Rogers, 1998), in the implementation oflocal con-
straintsof Joshi and Levy (1982) and even earlier in computer science(c.f. Thatcher,
1967, Peters and Ritchie, 1969).

1Piitulainen (1995a)alsocalls FSIG by the namesäännöllinen leikkauskielioppithat translates to English
asregular intersection grammar.

5
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2.2 Previous Work

2.2.1 The Original FSIG Grammars

Between 1992 and 1998, Atro Voutilainen developed at the University of Helsinki a
large-scale description for English — the Eng-FSIG — using the original FSIG for-
malism (Koskenniemi et al., 1992; Voutilainen and Tapanainen, 1993; Voutilainen,
1994a,b, 1997, 1998). In addition to this, very similar experimental grammars exist
for French (Chanod and Tapanainen, 1994, 1995b, 1996a, 1995a, 1996b, 1999) and
Finnish (Heinonen, 1993).

2.2.2 The Original FSIG Representation

The original FSIG parse representation was developed in connection with the Eng-
FSIG system. To illustrate the prior art in FSIG, I use this original representation as
an example, although it looks in many respects different than the new parse represen-
tations that will be briefly referred to in section 2.3.4 and discussed in the subsequent
chapters on the basis of my contributed articles.

The Multi-Layered Representation of Parses One of the main innovations in the
original FSIG was to combine different annotation layers ofthe analysis into a unified,
one-level representation (Koskenniemi, 1990; Voutilainen, 1994a). This is in contrast
to a more popular modular architecture in NLP, where we havepart-of-speech(POS)
disambiguation, clause boundary recognition and syntactic disambiguation in separate
modules. The unified representation gives several advantages and opens interesting
scenarios for further development. For example, POS disambiguation rules can now
have access to the syntactic functions of words, and clause boundaries can be used
to disambiguate these syntactic functions, or alternatively, the dependencies can also
work in the opposite directions.

An Example of the Unified Representation When all different annotation layers of
the analysis are combined we get a rich representation of theanalysis as an annotated
surface string. A portion of such a string is shown in the following (I wrapped the
string on multiple lines and added the tabbing):

@@
in < * > PREP @ADVL @
the <Def> DET CENTRAL ART SG/PL @>N @
1950s <1900s> NUM CARD @P<< @<

@comma @
as CS @CS @
african < * > <Nominal> A ABS @>N @
nation N NOM PL @SUBJ @
prepare <SVOO> <P/for> V PAST VFIN @MV ADVL@ @
for PREP @ADVL @
independence <-Indef> N NOM SG @P<< @

@comma @>
... ... ... ...
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An Illustration of Different Annotation Layers If we want, we can also view this
unified representation through different projections where features irrelevant to a par-
ticular layer are hidden. For example, we can view the clausestructure, in which case
I may get the following string:

@@ In the 1950s @< , as African nations prepared ADVL@
for independence, @> these highly charged poetic
images @< , which emphasized N<@ the humanity of black
peoples, @> gave MAINC@ way to prose @/ that
satirized N<@ the colonizer and the colonized. @@

In this string, the tags@@, @/, @<and@>denote, respectively, sentence boundaries, it-
erative clause boundaries, and embedding clause boundaries. The syntactic function of
each clause is shown with tagsADVL@, N<@, andMAINC@, that indicate, respectively
an adverbial clause, an attributive clause and the main clause.

Another view would show the main syntactic functions in eachclause:

In @ADVL the 1950s, as @CS African nations @SUBJ
prepared @MV for @ADVL independence, these highly
charged poetic images @SUBJ, which @SUBJ
emphasized @MV the humanity @OBJ of black peoples,
gave @MV way @OBJ to prose that satirized @SUBJ
the colonizer @OBJ and the colonized @OBJ.

In this view we see adverbials (@ADVL), subordinate conjunction (@CS), subjects
(@SUBJ), main verbs (@MV), and objects (@OBJ). We could also have a look at mod-
ifiers of nouns (@>N, @N<, N<@), and complements of prepositions (@P<<), in which
case we get the following view:

In the @>N 1950s @P<<, as African @>N nations prepared
for independence @P<<, these @>N highly @>A charged @>N
poetic @>N images, which emphasized N<@ the @>N humanity
of @N< black @>N peoples @P<<, gave way to @N<
prose @P<< that satirized N<@ the @>N colonizer and
the @>N colonized.

Morphological analysis of each word is given using a lemma and a fairly standard
morphological tags such asN, DET, A, ADV etc2. This information ande.g. sub-
categories of the verbs, such as (<SVO>, <P/for> , <P/with> ) is indicated right
after each lemma.

2.2.3 Parsing Algorithms

The first parsing algorithms for FSIG have been developed by Pasi Tapanainen who
worked at the University of Helsinki in Finland (Koskenniemi et al., 1992; Tapanainen,
1991, 1993, 1997, 1999), and at theXerox Research Centre(XRCE) in Grenoble,
France (Chanod and Tapanainen, 1994, 1995b, 1996a, 1995a, 1996b, 1999).

2Both the lemma and the surface form could have been indicated(see Voutilainen, 1994a). The surface
form is not necessarily identical to the phonological form,but means any kind of string that is used to
interface the syntax to the morpho-phonological component.
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Besides Tapanainen, alternative approaches to FSIG parsing have been proposed by
several other authors (Piitulainen, 1995b; Voutilainen, 1998; Lager, 1999; Lager and
Nivre, 2001; Yli-Jyrä, 1995, 1997, 2001, 2004d) but most ofthese parsing methods
are poorly tested3. Using FSIG as a preprocessor for deep-syntactic parsers has been
investigated by Lounela (1993).

2.3 Some Design Aspects of the Framework

2.3.1 Generative or Non-Generative Grammar?

I suspect that many non-mathematically oriented linguistswho do not like generative
linguistics tend to think automatically that everyformal grammar(FG), such as FSIG,
is based on the generative framework. Because I would like tomotivate us to see how
much the basis of FSIG really differs from thegenerative-enumerative syntax(GES)
approach, I have to explain this distinction.

Generative-Enumerative Framework The notion of a FG was introduced by
Chomsky (1957). In particular, Chomsky introducedphrase-structure grammar(PSG)
as a formal device that enumerates the sentences of a language one after another. This
kind of grammar generates (derives, produces) the sentences in the language and only
those. These PSGs use so-called production rules and they have their formal basis in
Post’s inference rules (Post, 1943). Post’s inference rules arrange and rewrite strings of
symbols, which serves as a combinatorial foundation for proof theory – the syntactic
side of logic. The approach where grammars are based on such syntactic inferences
will be called here GES. (C.f. Pullum and Scholz, 2003.)

When GES grammars are used for NL description, they take anextensionalview
to NL: they identify the described NL with a unique set of strings. Utterances that
do not belong to the identified set are not considered to be members of the language
being described. Kornai (1985) points out that the same ideawas implicit in much of
the work of the structuralist period, in writings of Bloomfield and Harris for example.
Also some early computational linguists, including Abraham (1965), have claimed that
the only reasonable way to define infinite sets of utterances is a GES grammar.

The Chomsky Hierarchy A standard and very useful measure of the complexity
of formal languages (FLs) is provided by theChomsky hierarchy(CH) (Chomsky,
1956). CH consists of the following four classes of grammarsand languages:unre-
stricted phrase-structure grammars and recursively enumerable languages(Type 0),
context sensitive grammars and languages(Type 1),context-free grammars and lan-
guages(Type 2), andright-linear grammars and regular languages(Type 3). All
classes contain infinite languages and their grammars, but the largest class is Type 0
and its capacity corresponds to Turing machines. Determining the smallest class con-
taining a language described by a grammar is often difficult.The Type 3 languages

3Some of the methods that were presented by Yli-Jyrä (1995, 1997) have been tested in practice, but
there is no publication on these experiments. Furthermore,Voutilainen (1998) combines SCG and FSIG in
thorough experiments.
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correspond tofinite automata(FAs). Finite-state models have been used to model the
capabilities of language users (Miller and Chomsky, 1963).

Many aspects of FSIGs can be approached through formal notions of FGs and CH.
For example, the idea of finite memory such as in FAs is built inFSIG, and the capacity
of FAs correspond to the Type 3 languages.

FSIG Is Not a GES Framework FSIG constraints can potentially express any reg-
ular set over the given alphabet, being thus similar toright-linear grammars (RLGs).
However, there are several reasons why FSIG as a whole is not based on the GES
approach, or that it is at least ambiguous:

• It does not directly define phrase structures,

• It does not use productions, and

• It does not derive the sentences with syntactic inferences.

FSIG Is Based on Model-Theory Instead of having productions, FSIG contains as-
sertions. The basis of FSIGs is, thus, in set-theory andmodel-theory(MT) – the se-
mantics of mathematical logic. MT studies the relationshipbetween logical assertions
and the interpretations that are defined for them. An interpretation of an assertion (or
a corresponding set of objects) is given by saying whether a given structure satisfies
it. A structure that satisfies the assertion is one of its models. This is very similar to
the one-level view of PCG as presented by Koskenniemi (1997), where the input is
classified by the yes/no answer by syntactic assertions.

Some basic ideas of model-theoretic frameworks were already presented in the
1960’s by Elgot (1961) and Thatcher (1967) and later by many others, especially those
working e.g. on constraint-based linguistic formalisms. A recent way todefine the
framework ofmodel-theoretic syntax(MTS), and its linguistic aspects in particular,
has been advocated for instance by Pullum and Scholz (2003)4. All MTS frameworks
are sets of assertions about the syntactic properties of linguistic utterances. I do not see
any reason why FSIG could not be recognized as a particular system in the framework
of MTS.

2.3.2 The Assertions

Universal and Parochial Constraints In FSIG, all assertions are usually called con-
straints or (constraint) rules. The first subset of these constraints containsadminis-
trative constraintsor axiomsthat define general structural properties (encodings, tree-
ness, rootedness,etc.) of the domain of models we are restricting with other assertions.
These constraints should not not differ from language to language, because they form
syntactic theories that could be associated with particular types of FSIG. Beside the
axioms, there are assertions that are true only for particular languages. These assertion
could be calledparochial constraints(Pullum and Scholz, 2003).

4There must be better references to MTS, such as (Miller, 2000), but this is the one I am acquainted with.
Unfortunately, the availability of this ESSLLI reader (Pullum and Scholz, 2003) is not the best possible.
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Example For instance, we can mention the following axioms that contribute to the
specification of the possible parses in Eng-FSIG:

• All the analyses begin and end with tag@@.

• If a string contains a tag@<it is followed by at least one tag@>in the string.

• At any position of the strings, the number of open@<brackets does not exceed
a given limit.

The Logical Formalisms In MTS the assertions are normally expressed in a logical
formalism. However, Büchi (1960) showed that regular expressions are equivalent to
weak monadic second-order logic with one successor(wMSOL[S]) interpreted over
finite strings. Due to this result, regular expressions can be seen as a notational variant
for wMSOL[S].

The constraints in FSIG grammars are normally expressed using special FSIG reg-
ular expressions, which contain some extensions. The extensions make them more con-
venient for expressing some constraints. The most important extension is the so-called
context restriction operation(arrow rule, implication rule) (Yli-Jyrä and Koskenniemi,
2004) that has always been part of the FSIG framework (Koskenniemi, 1990).

None of these two formalisms directly make a reference to automata or production
systems. However, regular expressions can be compiled intoautomata ore.g. inter-
preted lazily as grammars. Similarly, wMSOL[S] can be interpreted lazily using a
recursive function or implementede.g.by compiling the formulas into automata.

Normally, the structures that satisfy wMSOL[S] formulas are calledmodels. How-
ever, strings being described by a regular expression are not normally called models,
although it is quite common to say that such strings match a regular expression, or sat-
isfy a constraint. When we refer to a string that satisfies a constraint and, equivalently,
belongs to a constraint language, I will call such a string amodel string5.

By a constraint language in FSIG, I will refer to the set of allstring that satisfy the
given constraint. Thus constraint languages do not refer tothe logicaletc. formalisms
that are used for expressing constraints.

The Essentials of the Constraint Formalism Some examples of possible uses of
context restrictions are in figure 2.1. The first implicationrule says that the leftmost
auxiliary verb (@AUX) must be a finite verb (VFIN ). The second rule illustrates the fact
that the left-hand side can be a rather complicated regular expressions. The third rule
illustrates the fact that the context conditions on the right hand-side can be multiple,
bilateral and rather complicated. Special symbols such as ’. ’, ’ .. ’, ’ >..< ’ and
’ ..not/1 ’ in these rules denote specially defined regular languages and macros that
make the formalism slightly easier to use.

In addition to context restrictions, various FSIG formalisms have two important
features in common: (i) special variables (during the grammar compilation they are
fixed constants) provide an easy way to make reference to balanced bracketing. (ii)

5This is perhaps not the best term, but terms such asrecognized stringandmatched string, parse string,
annotated stringwould not be any better.
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@AUX => VFIN . , @AUX ..
@MV SUBJ@ >..< @> .. @MV MAINC@ => <SUBJ> >..<

@oc =>
OC . @mv >..< @obj ..not(@AUX | @MV) ,

make . @mv . @ . Adj . ,
Adj . [@ . [@>A|@A<]] * @ . @obj ,

WH . . @ to . @ . OC . @mv >..< @obj

Table 2.1: Some example rules taken from Eng-FSIG.

left- or right tail recursion in nested bracketing is eliminated by using an appropriate
bracketing schema.

2.3.3 The Sets Defined by Grammars

Grammatical Model String Sets Defined by FSIGs The set ofgrammaticalmodel
strings for an FSIG grammar consists of those strings that satisfy all individual con-
straints in the grammar. Obviously this set of strings is equal to the intersection of all
constraint languages in the grammar. In the case of the Eng-FSIG, the intersection has
the structure

B(WFB)+
︸ ︷︷ ︸

“domain”

∩ C1 ∩ C2 · · · ∩ Cnk
︸ ︷︷ ︸

local lexical constraints

∩ Cnk+1 ∩ Cnk+2 · · · ∩ Cnc
︸ ︷︷ ︸

other constraints

,

whereB is analphabet of delimiters(boundaries),W is a finiteset of morphologi-
cal analyses, F is a finite set of syntactic functions, andC1, C2, . . . Cnc

aresets of
model stringsdefined by different constraints. Thelocal lexical constraintsare those
whose function is to relate word forms with their possible syntactic functions (Yli-Jyrä,
2003a).

Intersection of Constraint Languages Is Effective It is a classical result that reg-
ular languages are closed under intersection. Because FSIGconstraint are regular ex-
pressions they describe regular expressions and their intersection will beregular lan-
guages (Regs) as well. One way to compute the intersection of theseRegs is to compile
the regular expressions first into FAs, then to compute the direct product of these au-
tomata (Rabin and Scott, 1959). The direct product of the automata is an automaton
that recognizes the intersection of the languages described by the corresponding regular
expressions. Although this is formally an elegant definition, its practical implementa-
tion is quite complicated.

Gradient Ill-Formedness An over-constrained FSIG grammar defines an empty set
and is, thus, uninteresting as a GES grammar. Pullum and Scholz (2003, p.59,60)
argue, however, that the MTS framework offers an elegant starting point for think-
ing about the comparative ungrammaticality of ill-formed sentences. Thus, it is not a
task of MTS grammars to define the set of grammatical model strings and only those.
In fact, over-constrained grammars may still be useful since they define gradients of
ill-formedness (if constraints are turned on and off) and they could be used for ro-
bust parsing. This is one of the most important differences between GES and MTS
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grammars (optimality theoretic grammars in particular). In fact, Voutilainen (1994a)
already included some heuristic constraints as parts of theEng-FSIG system. Weighted
constraints can reduce the ambiguity that remains after allhard constraints have been
applied in parsing.

In order to keep my current investigations within reasonable complexity, I do not
consider gradient ill-formedness nor parse ranking. Nevertheless, such notions might
be necessary for robust parsing (and for text parsing) whereit is important to find the
best candidate analyses. In this dissertation, the language of each FSIG will be uniquely
the set of grammatical model strings, which makes FSIG superficially comparable to
GES grammars.

2.3.4 String Encoding of Syntactic Entities

FSIG encodes all the parses as strings rather than as trees. This is an important feature
that differentiate FSIG from approaches using tree-automata (Joshi and Levy, 1982;
Rogers, 1998). Strings and string sets (and regular expressions and automata) have
been used both inside most FSIG parsers and in their application interfaces. Internal
and external representations are not necessarily identical.

External Representation of Parses In section 2.2.2, I already described the original
representation of parses used in the original FSIG. This representation is in many
respects under-specified and it avoids many difficult syntactic decisions concerning the
linking of words. Such under-specification can be useful in shallow and partial parsing
methods and provide a compact representation for unresolved ambiguity (c.f. Church
and Patil, 1982).

In a number of applications, we would preferfull syntactic structures as analyses
produced by the parser. Fully specified syntactic structures of various sorts (constituent
trees, dependency trees) can also be encoded as strings. In this dissertation, a few such
encodings are proposed. At this point, I merely make reference to the accompanying
articles (Yli-Jyrä, submitted 2003, 2005a, 2004a) that will be discussed in the subse-
quent chapters of this dissertation. Sometimes these encodings become so complicated
that their direct inspection by the grammar developed is no more very convenient and
decoding to trees and other more user-friendly visualizations is needed.

Internal Representation of Parses Classical finite-state automata are useful in rep-
resenting sets of parses inside FSIG parsers. Sometimes they are, however, compact
enough for practical implementation. In chapter 5, I will discuss methods that are
motivated by the optimization of the automaton based implementations. Some of the
methods change the representation of parses as strings by introducing new details into
the letters in the strings. The resulting representations allow simplifications to the au-
tomata in a surprising way: individual strings become more complex but the added
details make the string sets simpler and thus easier to represent compactly as paral-
lel decompositions of automata. This technique makes use ofthe fact that the regular
languages are closed under string homomorphisms (Hopcroftand Ullman, 1969).
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2.3.5 Layers, Planes and Projections

The idea of multiple layers in the original FSIG can be brought further. We can define
and use layers in many different ways:

1. When verifying that bracketing used in the annotation is balanced as unlabeled
bracketing, we can project labeled brackets to unlabeled ones (Yli-Jyrä, 2005a).

2. In order to implement a bracketing scheme forcolored non-projective depen-
dency grammars (CNDGs) I separated “planes” that correspond to differentcol-
ors of the dependency links (Yli-Jyrä, 2004a).

3. As suggested in the end of one of my articles (Yli-Jyrä, 2004a), several gram-
mars can be used in parallel (e.g. a dependency grammar and a grammar for
topological fields) if they share the same one-level representation, but use partly
different layers (or tapes).

4. In order to optimize the automata that define constraint languages, I sometimes
need methods that can decompose constraints in an FSIG into anumber of sub-
constraints (Yli-Jyrä and Koskenniemi, 2004). Accordingto my proposal, the
sub-constraints see everything in the one-level representation but they define
generalizations of the original constraint and accept more.

5. The alphabet in the encoding can be extended so that it becomes possible to
extract a layer from the extended one-level representationand to express a sub-
constraint even without seeing the whole string. Alphabet extensions can be
bound to a measure of parameterized structural complexity,such as number of
nested brackets (Yli-Jyrä, 2004d), or it can be done on the sentence-by-sentence
basis (Yli-Jyrä, 1995).

2.3.6 The Generative Capacity – How to Characterize It

The notion ofstrong generative power(SGP) of a grammar formalism is often used to
talk about appropriateness of a grammar. One approach to thequestion of appropriate
models for syntactic structures is considering how much SGPis really necessary when
certain kinds of structures are being described.

The Basic Definition for GES Grammars The classical notion of generative capac-
ity — weak generative power(WGP) and SGP — were introduced by Chomsky (1963)
in the context of the theory of formal grammars and automata.

• The WGP of a GES grammar is defined as the language generated bythe gram-
mar. For other formal grammars, the WGP of a grammar is definedas the set of
strings defined by the grammar.

• The SGP of a GES grammar is defined as the set of structural descriptions that
the grammar assigns to the strings it generates.
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These notions generalize to grammar theories or classes of grammars. The WGP and
SGP of a GES theory are respectively the set of WGPs and the setof SGPs of the
grammars that are encompassed under that theory or class of grammars.

Defining SGP of MTS Grammars In order to generalize the notion of SGP to cover
both GES and MTS grammars, Miller (2000) proposes that SGP should be understood
as the model-theoretic semantics for a linguistic formalisms or syntactic theories. Be-
fore defining SGP of all these syntactic theories, we need to define abstract interpre-
tation domains defined for such common notions as labeled constituency, dependency,
endo-centricity, and linking. This must be done in a theory neutral way, usinge.g. set
theoretical terms. With respect to such an interpretation domain, the SGP of a class
of grammars is characterized as a range of a specific interpretation function that maps
structural descriptions of that class of grammars to the elements of this interpretation
domain6.

Defining SGP of FSIGs The SGP of an FSIG is obtained from the set of structures
that are obtained by interpreting the set of grammatical model strings. Different types
of FSIG use different representations, and their SGP is obtained by choosing an inter-
pretation function that is defined appropriately for each type.

2.3.7 Parsing with FSIG

The Proper FSIG Parser and Other Requisites FSIG can be used for parsing.
Preparing an input,surface stringfor application of FSIG constraints, is a process
that is carried out by using possibly a (tokenizer-)morphological analyzerand lexi-
cal lookup or inverse homomorphism mappingin such a way that we obtain a set of
potentialdeep strings. Then FSIG constraints are used for selection of grammatical
model strings out of the set of deep strings. Although the whole process is related to
FSIG parsing, theproper FSIG parserconsists only of the lexical lookup or inverse
homomorphism and the set of FSIG constraints. This is illustrated in figure 2.1.

Reduced and Holistic Definitions for FSIG (Koskenniemi, 1990) distinguishes two
views on PCGi.e. FSIG: according to theone-level, FSIG, being a combination of
constraints, is also itself a complex constraint. It works like an acceptor, telling us
whether a deep string satisfies the grammar or not. Although its output is really a binary
yes-or-no answer, the “yes” answer will indicate that the deep string is a grammatical
model string. Therefore I have depicted the combination of FSIG constraints as a
relation between all deep strings and those deep strings that are grammatical model
strings. According to thetwo-level viewof FSIG, I consider the proper FSIG parser
as the FSIG. I can also definea holistic viewaccording to which any process can be
called an FSIG parsing system if its output is an output of a proper FSIG parser that is
embedded into it. The output that consists of the deep strings that satisfy the grammar
are practically calledparsesof the surface string.

6This terminology originates from the notions in denotational semantics of logical formalisms.
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(Koskenniemi 1990) (Koskenniemi 1997) ::(Yli−Jyra 2003a) (Yli−Jyra 2003b)

model strings

lexical lookup

morph. readings

model strings model strings model strings

Figure 2.1: Alternative ways to implement parsers for FSIG.

In this dissertation, I will concentrate on the one-level view of FSIG (c.f. Yli-Jyrä,
submitted 2003, 2005a, 2004a).

Sentence Automaton For each surface string, its all deep stringsi.e. the set of po-
tential model strings, will be called according to Piitulainen (1995a) as theinitial set
(alkujoukkoin Finnish), and it is usually represented by adeterministic finite automa-
ton (DFA) that is called asentence automaton(in fact the initial version of it).

According to Tapanainen (1997), the constraints can beappliedto a version of the
sentence automaton. This means that a constraint language,represented as an DFA, is
intersected with the language recognized by the sentence automaton by computing a
new automaton that is similar to the direct product of the twoautomata except that it
can be minimized. This new automaton becomes then the next version of the sentence
automaton. During the parsing process, we may obtain, thus,a series of versions of the
sentence automaton so that the number or deep strings recognized by them monotoni-
cally decreases.

Specialized Grammar and SRAs In the approach of Piitulainen (1995b), the con-
straint automata and the initial sentence automaton are applied during the parsing pro-
cess to construct a special data structure. In Yli-Jyrä (1995) this data structure is rep-
resented distributively byspecialized rule automata(SRAs) whose collection is called
a specialized grammar. Specialized grammar can be seen as a compact representation
for ambiguity although it may require further processing and simplifications before it
reaches the point where it is efficient to consult it for finding grammatical model strings
by a lazy intersection algorithm.
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2.4 Relevance of FS Based Grammars

2.4.1 Can FS Grammars Be Linguistically Motivated?

Practical Point of View It is a common belief that finite-state grammars are linguis-
tically inadequate for natural languages. Due to this widely accepted standpoint, there
is a tension between finite-state based syntax and non-finite-state frameworks such as
Transformational Grammar (TG), Categorial Grammars (CG),Tree-Adjoining Gram-
mars (TAG) and Lexical Functional Grammar (LFG).

I would like to see that this tension is mostly a practical question, and I would
probably agree with many about the advantages of non-finite-state formalisms. In my
dissertation, we actually see that non-finite-state frameworks such ascontext-free gram-
mars (CFGs), dependency grammars and mildly context-sensitive grammars are very
useful for modeling tree locality and co-occurrence constraints in linguistic structures,
but finite-state grammars, and FSIG in particular, are at their best when used to ap-
proximate computationally expensive formalisms under linguistically appropriate per-
formance limits. Such limits are well-motivated when the language is being processed
by humans as well as by computers.

The Myth about Non-Regular Natural Language A less practical, but theoretically
interesting question is whether natural languages, as string sets, could be modeled by
a finite-state mechanism. Adequateness or inadequateness of finite-state or regular
grammars for modeling the surface of natural language is seldom discussed critically in
the contemporary linguistic literature, and some may be misled to think that it has been
been proven that natural languages are not regular languages. However, some decades
ago there was a time when inadequateness of finite-state grammars was not taken for
granted by linguists. Arguments against the adequacy of finite-state grammars were
presented by several authors, most notably by Chomsky (1957) and Bar-Hillel and
Shamir (1964).

I will now rewind back to that discussion and recall some important reasons due
to which the adequateness problem has actually remained an open, perhaps unsolvable
problem.

Some Problems in Non-Regularity Arguments Chomsky (1959b,a) and Bar-Hillel
et al. (1964) showed that arbitrarily deep self-embedded structures require unbounded
memory in general. However, even if the self-embedding7 of a context-free grammar
is not bounded, the language of the grammar can still be regular. In fact, the problem
of regularity is, in that case, undecidable (Ullian, 1967)8. This means that showing that
a grammar is self-embedding does not prove that the languageis not regular.

In formal language theory, a proof method that makes use of the so-called pump-
ing lemma is useful in showing that certain languages are notregular. However, this
method is particularly difficult to apply validly to naturallanguages.

7Phrase A is aself-embeddingif it is embedded into another phrase B of the same category and surrounded
by lexical material in B.

8The problem becomes decidable when the context-free grammar is deterministic (Stearns, 1967) or
strongly regular (Nederhof, 2000).
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Chomsky’s original attempt to demonstrate that FS models are inadequate (Chom-
sky, 1957, ch. 3.1) was based, first, on a crucial assumption that NLs are self-embed-
ding to an arbitrary degree, and, second, on a fallacious assumption that if a subset of
a natural language is not regular then the whole natural language is not regular. A bet-
ter argument can be based on the first assumption and the fact that regular languages
are closed under intersection: if the intersection of the natural language and a regu-
lar language is not regular, then the natural language in question is not regular either.
This improvement have been proposed by Brandt Corstius (seePullum 1984). Chom-
sky’s original argument (1957) is problematic also becauseit assumes that the best
generalization of the linguistic examples is among those grammars that are brought
into the discourse (c.f. the critique Pullum and Gazdar, 1982; Wintner, 2001 relatedto
certain similar arguments that have been presented againstcontext-freeness of natural
languages).

The Crucial Assumption In the above, the crucial assumption was that NLs are self-
embedding to an arbitrary degree. This assumption involvessubtle problems. In the
following, I summarize some of the possible approaches.

• Because the self-embedding problem is connected to context-freeness, the con-
clusions will be dependent on the types of PSGs available in the Chomsky hierar-
chy. Accordingly, Joshi et al. (2000) notes that only performance constraints can
limit self-embedding depth, but he claims, at the same time,that limited scram-
bling complexity can be captured by competence differences(different classes
of mildly context-sensitive grammars). There might be waysto see this kind of
performance-competence division as an artefact of the hierarchy induced by the
types of PSGs.

• In order to have unbounded self-embedding, I have to assume that the natural
language is infinite,i.e. there is no upper bound for the length of the strings
in the language. While Pullum and Scholz (2003) argue that many classical
arguments for infinitude of natural language are circular orotherwise without
independent support, statistical (Zipfian) models (Kornai, 1999, 2002) seem to
provide arguments according to which languages – at least their lexicon – is
infinite.

• On one hand, it has been noted that the data of certain non-European languages
of the world demonstrates that several clauses can be systematically be inserted
(self-embedded) in the middle of each other (Pullum, 1984).On the other,
corpus-based studies and psycholinguistic studies demonstrate that there is a per-
formance degradation in the case of deep embedding.

• Some “magic” limits for the depth of self-embedding has beenproposed (De
Roeck et al., 1982; Lewis, 1996). A better grounded hypothesis is presented in
a recent corpus study (Karlsson, 2004 (in print)) that proposes that the catego-
rial restrictions on clausal embedding become tighter whenembedding becomes
deeper. Such restrictions would mean that self-embedding is not allowed at all.
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It seems to me that the assumption of the existence of self-embedding in competence
remains as a possible hypothesis. What makes us anxious is that the hypothesis may
even remain unfalsifiable. We need, thus, a more practical point of view.

2.4.2 Importance of Finite-State Based Grammars

The Principle of Scientific Parsimony In science, the most easily falsifiable but
not yet falsified theory is preferred to theories that are hard to falsify (Popper, 1959).
As pointed out by Kornai (1985), the principle of scientific parsimony suggests the
minimal language family suitable for the defining natural language string sets. For
this purpose, regular languages provides a generous upper bound, because they contain
every finite language and they are closed under regular operations.

Efficient Parseability Ejerhed and Church (1983) point out very illustratively that
in NLP the motivation for finding restrictions to the theory of syntax is quite different
from Chomsky’s motivation, as he uses the universal constraints to give an explanation
for grammar acquisition process. In natural language and speech processing, I aim at
efficient implementation of the parsing process:

sentenceS −→
parsing
process

−→ structural description ofS.

The need to make parsing more efficient motivates restrictions that make the theory of
syntax less powerful and the grammars easier to process.

Ejerhed and Church (1983) are convinced that the explanations for parsing speed
and acquisition speed are related, and not separate and unrelated. Rather than viewing
limitations as something that does not belong to linguisticcompetence, we can, if we
want to, consider limitations as constituting the very essence of an explanation for why
languages are structured the way they are.

In order for linguistic theory to have psychological reality it is necessary to build
a variety of performance limitations, like memory limitations, into the grammar. Hale
and Smolensky (2001) have shown that a simple performance theory can be constructed
that incorporates a competence theory in a relatively straightforward way into a proce-
dural specification for parsing. Still, there is no logical necessity that performance and
competence will ultimately converge in every area (Church,1980).

2.5 The Main Open Problems in FSIG

2.5.1 Computational Complexity and Parsing Strategy

The most important open problem in the FSIG framework is its parsing inefficiency.
When a parser for Eng-FSIG was implemented using an automaton synthesis approach,
the computation took an unbearable amount of time (Koskenniemi et al., 1992, Tapa-
nainen 1991, 1993, 1997). In this approach the product automaton is build from
the sentence automaton and the automata recognizing individual constraint languages.
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According to Tapanainen (1997), adepth-first search(DFS) algorithm, which has
exponential-time complexity (according to the sentence length), is in practice much
faster than a number of linear-time construction algorithms which he also investigated
from many different perspectives. The DFS algorithm is morecommonly known as the
backtracking search algorithm. The backtracking search is, however, prone to unex-
pectability and it could not guarantee, for example, that any 35-word sentences would
have been parsed in a reasonable time with the current Eng-FSIG that contains 2600-
assertions. For example, in 1998 Tapanainen’s simplified DFS-based parser that was
made available to me required roughly one week to complete parsing of a 35-word
sentence. In 1997-1998, I implemented a parser that was basically based on an im-
provement of Tapanainen’s search algorithm. It needed 9 hours to do the same task on
the same machine.

Several alternative approached to the parsing problem havebeen proposed (Piitu-
lainen, 1995b; Voutilainen, 1998; Lager, 1999; Lager and Nivre, 2001; Yli-Jyrä, 1995,
1997, 2001). However, none of these seem to provide a sufficient strategy for solving
the whole parsing problem efficiently.

The Ground for Optimism Are there any grounds for being optimistic with respect
to the complexity of FSIG?

Yes, we can be optimistic. The prior experiments have given the following encour-
aging observations:

• Sometimes computing intersection of languages of hundredsor thousands of fi-
nite automata can be done within a reasonably short time (Koskenniemi et al.,
1992). If this had not been possible at all, it had been impossible or at least very
difficult to develop Eng-FSIG, which now contains as many as 2600 rules.

• Although parsers can construct large automata during the application of the
grammar rules, their final result – if the parsing can be completed – is a very
small automaton.

The second observation provokes an optimistic dream: the structure of English
and the analyses of Eng-FSIG perhaps imply a favourable property that guarantees
a small number of parses for each sentence9. It has been an open problem whether
this suggested nice property could be explained with a better asymptotic bound for the
computational complexity of the grammar or parser.

In this dissertation I will investigate the computational complexity of the parse
language of FSIGs and how structural properties of this set can be made use of during
FSIG parsing.

2.5.2 Linguistic Adequacy

The second important open problem in the FSIG framework is the question of its lin-
guistic applicability. It has been thought that FSIG is suitable only for tagging and

9The PP attachment ambiguity was never a problem in Eng-FSIG because of its structural annotation was
under specified.
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shallow syntax. By shallow syntax one usually means: (i) that the grammar is so loose
that it cannot be used for specification of a set of grammatical strings (in the GES
sense), or (ii) that a grammar does not describe long distance dependencies, crossing
dependenciesetc. complex phenomena, or (iii) that the representation of theparses are
build upon the surface string by means of functional annotation, bracketing, and traces.

It is true that FSIG does not define a deep representation layer where the word
order of the sentence would be in a canonical form. However, there are certainly other
reasons to think that FSIG can give adequate structural descriptions to the sentences.

As to the linguistic adequacy of FSIG, this dissertation will investigate what kind
of descriptions can be obtained by means of new kinds of FSIGs.

2.5.3 Other Open Problems

In connection to FSIG, there remain many interesting questions that cannot be ad-
dressed here. For example, I would like to investigate how FSIG grammars could be
learned by a machine from a corpus or a treebank. Machine learnability of natural lan-
guages is an important and very popular research subject. I believe that although the
current work leaves the question almost intact, it conveys such insight on locality in
FSIG grammars that may be valuable when we approach the machine learnability of
FS based NL grammars.



Chapter 3

Complexity Analysis

3.1 Orientation

3.1.1 Problem

This chapter investigates the computational complexity ofchecking whether a deep
string (annotated surface string) satisfies FSIG constraints. Checking a property of
deep strings is often easier than parsing from surface strings. However, even easy
problems differ in complexity and such differences are useful because they can suggest
new parsing strategies.

My approach to investigate the computational complexity ofgrammars differs from
the usual approaches. The computational complexity of constraint languages will be
measured here in the light of descriptive complexity, extended star height, and thedot-
depth hierarchy(DDH) of star-free regular languages.

3.1.2 Articles

The investigations will cover, basically, the following three different FSIGs:

• one-level Eng-FSIG [1],

• regular approximations offlat context-free bracketing grammar(FCFBG) [2]

• regular approximations ofHays-Gaifman dependency grammars (HGDGs) [3]

These grammars have been investigated in three accompanying articles, in the follow-
ing way:

Eng-FSIG

[1] Yli-Jyrä, 2003a, “Describing Syntax with Star-Free Regular Expres-
sions”

21
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The article is the first in a series of articles on anew familyof finite state intersection
grammars. All the grammars in these articles have a special relationship with star-free
regular expressions.

In this article, I employheuristic techniquesthat can be used for reducing regular
expressions or extended regular expressions into extendedregular expressions whose
star-height is zero. On the basis of these techniques, I can argue that all FSIGs in
this dissertation (with some reservations on FCFBGs) are expressible without stars,
although I prove this explicitly only for Eng-FSIG. Due to the connection between
extended star-freeness, first-order logic and descriptivecomplexity, the result implies
animproved upperbound for the parallel time complexity of recognition of deep string
languages that are expressed by star-free grammars.

In addition to these results, the article also gives some useful insight into limited
balanced bracketing(LBB) and into thecontext restriction operationthat is a useful
extension to regular expressions in the original FSIGs. Thesubsequent articles in this
dissertation develop these themes further.

FCFBG

[2] Yli-Jyrä, submitted 2003, “Regular Approximations through Labeled
Bracketing (revised version)”1

In the article, I relate production schemata of extended CFGs tobracketing restric-
tionsthat are assertions in FCFBGs. The resulting grammars can beapproximated with
FSIGs by restricting the depth of bracketing in these grammars. The article proposes a
measure for the complexity of the resulting approximations. The measure is based on
the DDH of star-free languages (Cohen and Brzozowski, 1971). The article also dis-
cussesdeterministic state complexityof bracketing restrictions and whole grammars.

Besides these complexity results, the article contributesa bracketing scheme, called
reduced bracketing, that can be employed to retain linguistically interestingcoverage
of tail recursion in approximations, and proposes a non-standard, intersection based
compact representation for regular approximations of context-free bracketing gram-
mars.

HGDG

[3] Yli-Jyrä, 2005a, “Approximating dependency grammarsthrough inter-
section of regular languages”

In this article, I develop a novel string-basedencoding for dependency treesand
a unique Chomsky-Schützenberger stylegrammar representationfor HGDGs. From
such a grammar representations I obtain a special class of FSIGs by limiting the nested
brackets. Dependency parsing with the obtained FSIG approximations haslinear time
complexity. In these FSIGs, most constraints are combinatorially verycheap because

1This article is a heavily revised version of an article (Yli-Jyrä, 2003d) that was presented inFormal
Grammar 2003. The proceedings of the revised conference papers were still under construction when this
dissertation was printed.
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their combination is reduced to theirstrictly locally testable properties2 rather than
cross-product of their state spaces. The remaining constraints check that the bracket-
ing in strings is well formed. This illustrates a very important point that the hardest
part in FSIG parsing is to match brackets with each other. Finally, I argue that there
is some hope for overcoming the state space explosion of intermediate results. The
paper reports tiny parsing experiments with some grammars that were extracted from
a corpus. (Due to space limitations, the paper does not studygrammar extraction as a
problemper se.)

Besides these results and proposals, the article comments on axiomatisations and
properties of planar and projective dependency graphs as well as acyclic projective
dependency graphs3.

3.1.3 Outline

I will introduce the three articles in sections 3.2 - 3.4. Before that, I include in the
following a short summary of previous results on computational complexity of FSIG
parsing. The whole chapter is closed by section 3.5.

3.1.4 Previous Work

Computational complexity measures the amount of computational resources (such as
time, space, parallelism and random bits,c.f. van Melkebeek, 2000) that are needed, as
a function of the size of input, to compute an answer to a query.

The Inclusion of FSIG Grammars into the Linear Time Complexity Class It is
well known that a direct product of two deterministic finite automata – and the inter-
section of their languages – is computable in a linear time according to the sizes of the
automata (Rabin and Scott, 1959). During the FSIG parsing, the set of constraints in the
grammar is fixed and the intersection of the constraint languages can be implemented
by an automaton that does not change. The direct product of this constant automaton
with the initial sentence automaton can also be computed in linear time according to
the length of the sentence (Tapanainen, 1997)4.

One can arrive at the same conclusion by thinking about the regularity of FSIG.
Because each fixed FSIGs describes a regular language, we know that there is some
non-deterministic or deterministic automaton accepting it and it can, thus, be accepted
in linear time. Combining finite-state morphological analyzer, lexical lookup and a

2Actually, many constraints are not strictly locally testable an sichbut only when we take into account
the admissible language where the annotation added to each surface token is bounded.

3A revised version of this paper has been accepted for publication in International Journal of Foundations
of Computer Science(Yli-Jyrä, 2005b). It contains a slightly wider and more structured discussion on these
classes of graphs.

4A comparison to different situations can be made. In the general case where the number of automata and
their size bound are not constants, emptiness of intersection of automata is inpolynomial space(PSPACE)
(Kozen, 1977), and innondeterministic polynomial time(NP) if one of the automata is acyclic. When the
numbern of automata is fixed, the problem becomes solvable in polynomial time according to the largest size
of automata. If some of the automata are fixed, their sizes areconstant, and they affect only the coefficient
of the polynomial. If all but one automaton are fixed, the state complexity becomes a linear function.
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homomorphism with the grammar retains the linear time complexity, because the re-
sulting parser will be a finite-state transducer.

Estimating the State Complexity of an Example Grammar As it is now (at the
latest) obvious that the time and the state complexities of FSIG are linear to the size of
the sentence automaton, I turn my attention to the size of thecoefficient. Obviously,
any large-scale FSIG would correspond to a huge automaton. It has been estimated that
such FSIGs as Eng-FSIG may need even101000 states when represented as a minimal
deterministic automaton (Tapanainen, 1997). This is a veryrough estimate, motivated
just on the basis of the fact that a grammar contain some thousand more or less di-
agonal rules, each of which compiles into an automaton having typically 2 - 5 states
or sometimes even thousands of states. The experiments carried out by Tapanainen
(1992, 1997) suggest that combining all Eng-FSIG constraint automata into a single
(non-symbolically represented) DFA would be impossible inpractice.

Estimating the State Complexity of A Class of Grammars It is also important to
understand how the complexity of the grammar is related to the way the grammar is
designed. This area is perhaps most interesting because it may give some insight into
the state complexity of various grammatical constraints and represented dimensions
such as embedding, tree rank, the number of rules and categories,etc.

State complexity of set intersection (by means of minimal deterministic automata)
has been studied in (Ravikumar, 1990; Leiss, 1991; Birget, 1991b,a, 1992; Yu and
Zhuang, 1991). Currently there is a large body of literatureabout state complexity
of basic finite automata operations. However, extended regular expressions used in
NLP applications have not been addressed by automata theorists in these studies well
enough. As far as regular expressions in FSIG are concerned,I have published some
initial results on bracketing restriction (Yli-Jyrä, 2003d, submitted 2003) and context
restriction operations (Yli-Jyrä and Koskenniemi, 2004), but there is certainly a need
for further studies. According to our experiments (Yli-Jyrä and Koskenniemi, 2004),
the size of each automaton obtained from context-restriction rules grows, in the worst
case, exponentially according to the maximum depth of nested bracketing, and proba-
bly also to the number two-sided contexts.

The Lack of Insight into Locality and Parallelism in FSIGs Applying the state
complexity analysis to FSIGs gives some information on the relative size of the co-
efficient hidden in their deterministic time complexity. However, I need substantially
different kinds of insights in order to make the design of efficient FSIG parsers possi-
ble. I argue in the following that the insight we have lacked most is the understanding
of the hidden structural locality in FSIGs.

For purposes of parsing where we often need to build the compact representations
for ambiguity, it is extremely important to understand locality in the grammars that we
parse. For example, the state of the art context-free parsers make use of tree locality
in the derivation trees in order to present a Catalan number of trees (Church and Patil,
1982) in a polynomial (O(n2)) space according to the length of the parsed surface
string. The tabular representations for ambiguity that areinvolved in the parsers are
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obviously related to Gaifman graphs describing the first-order properties of structures
(Immerman, 1999) and the quantifier rank, but this connection has not been extensively
studied in computational linguistics.

Another obvious and important application of locality comes up when we paral-
lelize and solve problems using multi-processor computers. Problems that parallelize
very well have locality properties that make this possible.So, in order to study locality
in FSIG, we could try to study its parallel computational complexity.

In other words, there is a tremendous need to study locality and parallel compu-
tational complexity of FSIGs. Although these questions aremore abstract than state
complexity issues, the answers do have a close relationshipto coefficients of determin-
istic time complexity as well. These connections can inspire new ways of looking at
parsing in the FSIG framework.

Studying Parallelism by Means of Descriptive Complexity How the parallel com-
putational complexity of FSIG parsing could be analyzed without assumptions on com-
putational models?

The computational complexity can be understood as the richness of a formalism
needed to specify the problem. The close relationship between computational complex-
ity of problems and the richness of languages needed to describe them was established
when Ron Fagin (1974) showed that the complexity class NP (the problems computable
in nondeterministic polynomial time) is exactly the class of problems describable in ex-
istential second order logic. Today, this approach to computational complexity is called
descriptive complexity5. Neil Immerman (Immerman, 1999, p.2) summarizes the role
of descriptive complexity as follows:

It [descriptive complexity] gives a mathematical structure with which to
view and set to work on what had previously been engineering questions.

Illustration

Descriptive complexity has already characterized many complexity classes that are
shown in figure 3.1. Immerman (1999) gives precise definitions for all these com-
plexity classes, but I include here, for the reader’s convenience, rough definitions for
the classes of NP and co-NP. FO is the set of first-order boolean queries. It corresponds
exactly to LHi.e. the class of boolean queries computable inO(log n) time by alter-
nating Turing machines with restriction to a bounded numberof alternations between
existential and universal states. While FO uses a bounded number of simple vari-
ables, classes FO[(log n)O(1)] and FO[nO(1)] use, respectively, poly-logarithmic and
polynomial number of extended variables that are queried using predicate BIT(i : j).
BIT(i : j) holds if and only if bitj in the binary representation ofi is 1. FO(TC) is
the closure of FO queries with arbitrary occurrences of reflexive, transitive closures
of a binary relation, and FO(DTC) is its restriction to deterministic transitive closures.
FO(DTC) and FO(TC) correspond, respectively, to LOGSPACE and NLOGSPACE.

5In different contexts, descriptive or descriptional complexity of formal systems may also meane.g.state
complexity of regular languages.
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Figure 3.1: The world of descriptive complexity (c.f. Immerman, 1999).

The class LOGSPACE is the set of boolean queries computable in logarithmic space by
a deterministic, multi-tape Turing machine. Class NLOGSPACE is the sets of boolean
queries computable in logarithmic space by a nondeterministic, multi-tape Turing ma-
chine. Class PTIME is the sets of boolean queries computablein polynomial time
by a deterministic, multi-tape Turing machine. PTIME corresponds exactly to class
FO(LFP), the closure of first-order logic under the power to make inductive definitions.
NCk is the set of boolean queries accepted by a uniform sequence of bounded-depthk,
binary fan-incircuits whose size is polynomial according to the size of the input, and
ACk if the set of boolean queries accepted by a uniform sequence of bounded-depth
k, unbounded fan-incircuits whose size is polynomial according to the size of the in-
put. ACk is included toNCk+1, andNC is the union of allNCk wherek ≥ 0. The
definitions for the non-PTIME complexity classes are not quoted here.

One of the strengths of descriptive complexity is its ability to analyze locality and
structure of parallel time complexity classes. When we are restricted to regular lan-
guages, we find connections from logic (Thomas, 1997) and descriptive complexity
classes to many varieties of star-free regular languages that have been studied in alge-
bra (Pin, 1986) and in category theory (Eilenberg, 1974). This world will be opened to
us when we turn our attention to the question of star-freeness in FSIG and show that
this property holds for many interesting types of FSIG.

After this motivation, we are ready to look into the contributions more carefully
with slightly more verbose comments given to each article.
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3.2 Star-Freeness of Eng-FSIG Constraints

Article

“Describing syntax with star-free regular expressions,” in EACL 2003.

3.2.1 Plan

This article, like the two other articles, are treated here with the following structure.
First, the Introduction contains theSummary, MotivationsandDefinitions. It is fol-
lowed by sections ofMain ResultsandRelevance, and finally a section forOther Use-
ful Results. The results sections often includeRemarks that connect the result to the
literature or clarifies it. Some results are accompanied with an optionalIllustration
section.

3.2.2 Introduction

Summary

This paper proves star-freeness of Eng-FSIG. On the way to this result, regular ex-
pressions are investigated and new methods for representing and processing grammar
constraints are discovered.

Motivations

According to the abstract of the paper, the star-freeness result presented in this arti-
cle is an essentialimprovementto thedescriptive complexityof English Finite State
Intersection Grammar.

Definitions

What does star-freeness mean? Extended regular expressions6 use concatenation,
empty set, complement, union and concatenation closure. The star-height of extended
regular expressions is zero if it does not contain concatenation closures (the Kleene
star or plus). The extended (or generalized) star-height ofa regular language is zero,
if it can be expressed using an extended regular expression whose (extendedi.e. gen-
eralized) star-height is zero,i.e. with star-free extended regular expressions. Star-free
(regular) languages are the regular languages whose extended7 star-height is zero.

6There are many kinds of extended regular expressions (for example the FSIG regular expressions that
include the context restriction operation) but this is the oldest and the most standard meaning. Sometimes
extended regular expressions are termed generalized regular expressions.

7The attributeextendedor generalizeis important in order to make the difference to the restricted star-
height (Eggan, 1963). The adjectivestar-freehere as well as in my articles is equivalent to adjectival phrases
extended star-freeor generalized star-freewhenever I do not explicate whether I mean the restricted star-
height or not.
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3.2.3 Main Results

(I) Expressibility in FO [<]

Theorem 1. Eng-FSIG as a whole is a regular expression that describes a star-free
regular language.

Note that this result concerns the one-level definition of Eng-FSIG. It implies that
the constraints in Eng-FSIG is definable infirst-order logic with linear order(FO[<]).
The first-order expressibility of FSIG is an essential improvement over themonadic
second-order logic(MSOL) expressibility of FSIG.

A Remark It is well known that the satisfiability problem for first-order logic is in
general undecidable, even for finite structures, but not forfinite sets. This might worry
some readers. However, the satisfiability problem for MSOL is decidable for strings,
trees and other context-free graphs. MSOL for finite structures is called weak. Regular
string sets are exactly those string sets definable withweak monadic second-order logic
with one successor(wMSOL[S]) (Büchi, 1960; Elgot, 1961).

The FO[<] definable languages are a subset of wMSOL[S] definable languages in a
similar way as star-free languages are a proper subset of regular languages. The result
that Eng-FSIG defines star-freei.e. a FO[<] definable language is, thus, a genuine
improvement over the descriptive complexity of the generalFSIG.

(II) New Restriction to the FSIG Framework

In the section Discussion of the article, I wrote as follows:

Finally, the main contribution of this paper is to show that ENGFSIG de-
scribes a star-free set of strings. It seems probable that this narrowing
could be added to the FSIG framework in general.

In the subsequent papers, I kept in mind that the constraintsin a grammar that belongs
to this new class should be easily reducible to star-free regular expressions. I think
that the idea of star-freeness was a handy view that helped inanalyzing what kind of
relations various constraints should express.

A Remark It is interesting to note that Kornai (1985) has argued that natural
languages are non-countingi.e. star-free regular languages. According to him, this
restriction might be useful in language acquisition:

Hopefully, this special position of NLs in the Chomsky hierarchy can be
utilized in streamlining the (oracle) algorithms modelinglanguage acqui-
sition, because such algorithms (if actually implemented)would greatly
simplify the descriptive work of the linguist, and, at leastto a certain ex-
tent, would finally fulfil the structuralists’ promise of discovery procedure.
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(III) Grammar Building Blocks that Maintain Star-Freeness

The article identified some idioms in regular expressions that are useful when we write
other star-free FSIGs:

• limited balanced bracketing(LBB)8 expressed through a parameterized star-free
language,

• context restriction operation,

• languages likeX∗ whereX is an alphabet, and

• marked iterations of a language.

A Remark It is perhaps necessary to make clear that the article is not propos-
ing star-free regular expressions as a tool for those who write linguistic descriptions.
I am not against extending the linguist’s grammar formalismwith various syntactic
extensions, and using the Kleene star. Syntactic extensions to regular expressions are
desirable and even necessary because they can hide technical details and make the user
interface more intuitive. In Introduction I wrote:

Regular expressions in FSIG can be viewed as a grammar-writing tool
that should be as flexible as possible. This view point has ledto [the]
introduction of new features into the formalism. — A complementary view
is to analyze the properties of the languages described by FSIG regular
expressions.

3.2.4 Relevance

In the sequel, I try to answer to the question “why star-freeness is important?”.

Star-free FSIGs Define a Natural Class of Languages In addition to star-free ex-
tended regular expressions, the star-free regular languages can be defined using many
other equivalent ways that characterize the same class of languages. The alternative
characterizations for star-free languages include the following:

• counter- or permutation-free finite automata (McNaughton and Papert, 1971),

• finite aperiodic monoids (Schützenberger, 1965),

• cascade product of reset semi-automata (Meyer, 1969),

• languages definable with FO[<] (McNaughton and Papert, 1971),

• linear temporal logic (c.f. Perrin and Pin, 2001),

• the smallest variety closed under the pure star operation (c.f. Pin, 1986),

• the concatenation hierarchies (c.f. Pin, 2003),

8The term LBB does not occur in the article.
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• first-order string automata, (Schwentick and Barthelmann,1999),

• loop-free alternating automata (Salomaa and Yu, 2000), and

• the forbidden-pattern hierarchy (Glaßer, 2001).

Star-free FSIGs Define Local Properties The expressibility in FO[<] opens new
scenarios for FSIG parsing, because first-order propertiesare local. For example, ac-
cording to a famous theorem by W. Hanf (Immerman, 1999, p.102-103), first order
sentences with abounded quantifier rank9 cannot distinguish between two graphs of
bounded degree if the graphs have the same number of local neighborhoods of all pos-
sible types where the number of possible types depends exponentially on the quantifier
rank 10. It is, thus, no wonder that dependency on the neighborhoodsunder the suc-
cessor or linear precedence relation is the basis for definition of many special classes
of regular languages (McNaughton and Papert, 1971) and for their recognition with
tabulating methods.

Star-free FSIGs Have Lower Computational Complexity According to Immer-
man (1999), the following complexity classes are equivalent:

AC0 = FO = LH = CRAM[1]

I explained the meaning ofAC0, FO and LH already on page 25. The less known
complexity class CRAM[1] is the set of boolean queries computable in constant parallel
time on a CRAM. Aconcurrent random access machine(CRAM) is a machine that
consists of a large number of processors, all connected to a common, global memory.
At each step, any number of processors may read or write any word of the global
memory. If several processors try to write the same word at the same time, then the
lowest numbered processor succeeds.

Among all regular languages, there are some that do not belong toAC0, but all are
included inNC1 (NC1 is the set of boolean queries accepted by a uniform sequence
of binarypolynomial-size circuits).AC0, FO, LH and CRAM[1] are proper subclasses
of NC1. AC0 containsall star-free regular languages (Thomas, 1997) and, therefore,
we actually see that star-free languages have a smaller computational complexity than
regular languages in general.

Star-free FSIGs Have Certain Compact Representations We can make use of par-
allelism even in conventional computers:

• We can represent the grammar in a fashion that makes use of parallelism. The
article suggests that a compact grammar representation would be based onloop-
free alternating finite automata(LF-AFA) by (Salomaa and Yu, 2000).

9The quantifier rank of a first-order formula is basically the number of nested quantifiers in it.
10This result is perhaps easier to understand if we recall thatthere are only finitely many inequivalent

formulas of quantifier rankr (Immerman, 1999, p.96).
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• A very good compact representation would also allow the generation of a parse
forest in a manner that resembles parallelism, by turning parallelism of recog-
nition into dynamic programming in the parse forest generation. In chapter 5
we will, in fact, suggest a representation where the parsingwould be carried out
in linear time with a constant number of parallel processed subgrammar layers.
Each of these layers would represent some of the local stringneighborhoods in
a very compact manner.

So far, we still understand only a surface of the relationship between FO expressivity
and compact representation of ambiguity in parsing. It might turn out that circuit depth
or parallel time — although they are constants for each language in CRAM[1] and
AC0 — corresponds to the depth of a tree that describes how sub-grammars should be
joined or made consistent during parsing.

3.2.5 Other Useful Results

The Star-Freeness of LBB

The LBB language recognized by the automaton of figure 3.2 is star-free. The same
language can be described using the following definition (the definition is not star-free)
for the corresponding star-free regular language··· d ⊆ Σ∗, where@<, @>, @∈ Σ:

··· d =

{

Σ∗ − Σ∗{@<, @>, @@}Σ∗ if d = 0

( ··· d−1 ∪ @<··· d−1@>)∗ whend > 0.

The article itself contains a star-free regular expressionfor this language. The star-
freeness of ··· d was not at all obvious to me. I used the AMORE program to prove
the star-freeness of··· d. The automatically obtained star-free expression was huge.
For illustrative purposes, I needed a shorter one which I found through a trial-and-error
approach. Similar languages had been studied in connectionto the DDH of star-free
languages, but I was not aware of this connection at the time of publication of this
article.

Remarks on Context Restriction

It turned out later when I was writing the article that I identified a difference in the
XFST implementation of the restriction operation and my newformula that did not
rely on transducers or substitutions. These results led to afurther publication (Yli-
Jyrä and Koskenniemi, 2004) where the different implementations are documented as

Σnon−bracketsΣnon−brackets Σnon−brackets Σnon−brackets

@>

@< @< @<

@> @>

Figure 3.2: An automaton for an LBB like in Eng-FSIG.
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carefully as well as possible. When testing the differences, the regular expressions of
Voutilainen’s Eng-FSIG constituted a really useful material.

3.3 Approximations of Context-Free Grammars

Article

“Regular approximations through labeled bracketing (Yli-Jyrä, submitted
2003)”

This article has been submitted to the post-proceedings that should become an on-
line proceedings published by CSLI Publications. A precursor of this heavily revised
article was presented in FGVienna 2003 (Yli-Jyrä, 2003d).

3.3.1 Introduction

Summary

The article introduces FCFBGs and their approximations that constitute a new type of
FSIGs.

Motivations

In general, implementing good parsers of star-free FSIGs, such as Eng-FSIG, is a diffi-
cult task because very little is known about the class of constraints that can be used in
the grammar — star-freeness is still a very rough characterization. However, if we con-
sider some well-understood and restricted kinds of FSIGs, we may have better chances
of understanding the structure of the grammar and of finding an efficient parsing algo-
rithm. As a promising alternative, we could get FSIGs mechanically from context-free
grammars by approximating them.

Definitions

When we say that we approximate context-free grammars we mean that it is the SGP
of CFGs that is approximated. Some other approximations aremore suited for approx-
imation of the languages generated by context-free grammars (WGP of CFGs) than for
obtaining an approximation for sets of parse trees (SGP of CFGs).

For us, constituentX is center embeddedto a larger constituentY if the yield of
Y is of the formαXβ, whereα andβ are nonempty. Such a center-embedding is
a self-embeddingif both X andY are of the same category11. If center-embedded
constituents are nested, all of them do not have to be of the same category (i.e. the
self-embedding depth may be lower).

11The terms self-embedding and center-embedding are often used interchangeably. If we talk, for example,
about center-embedding ofS we actually talk about self-embedding as well, becauseS is assumed to be also
the root.
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Extended context-free grammars(ECFG) are an extension of CFGs. In ECFGs,
right-hand sides of normal CFG productions are replaced with regular expressions.
Due to this extension, the rules of ECFG that are called production schemas.

Dyck languages in the article are actually also semi-Dyck languages. Because the
class of Dyck languages contains the semi-Dyck languages asa subset, semi-Dyck
languages are often imprecisely referred to as Dyck languages. In Dyck languages,
the only requirement is that the number of opening brackets is equal to the number of
closing brackets, while in semi-Dyck languages each opening bracket must also match
a closing bracket that is on the right (Harrison, 1978).

3.3.2 Main Results

(I) An Approach for Obtaining FSIG Approximations

In this article, FSIG is presented for the first time as a framework for representing
regular approximations of non-regular grammars. The approach consists of

• encoding structures of the original grammar through brackets,

• representation of the surface string language as a homomorphic image of the set
of the bracketed deep strings,

• describing the set of all bracketed strings by a derivative of a semi-Dyck lan-
guage,

• representation of the grammar through a “Chomsky-Schützenberger style rep-
resentation” where the semi-Dyck derivative is combined with finite languages
using concatenation and boolean operations,

• Wrathall’s technique for obtaining any semi-Dyck languageDk from the semi-
Dyck languageD1, and

• star-free approximation of the semi-Dyck languageD1.

This same approach has been used later in two other approximations that are included
in this dissertation.

A Remark The original Chomsky-Schützenbergerrepresentation12 is not linguis-
tically appealing as such. Also, it is not based on a fine-grained set of assertions such
as in MTS (it compiles the original productions into a singleright-linear grammar that
describes the string local properties of the so-calledstandard context-free language
that is obtained from the grammar). Furthermore, it is intended for representing sur-
face languages only. If we also want to obtain phrase-markers — bracketed strings
representing derivation trees — we need to do some extra work.

12The set of context-free phrase-structure trees can be captured with a bracket string language – a so-
called semi-Dyck language. Chomsky and Schützenberger (1963) presented a theorem according to which
each context-free language can be represented as a homomorphic image of an intersection of a semi-Dyck
language and a regular language.
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A virtue of our approach is that it uses the string encoded descriptions of linguistic
structures directly which means that we do not need to simplify the bracketing used
in the grammar representation in order to obtain the desiredstructural descriptions.
Moreover, our representation can be adapted for reduced bracketing.

(II) Reducing Tree-Locality into Star-Free Constraints

The article shows that when the height of derivation trees islimited, the local trees
correspond to regular set properties of bracketed strings.Under the assumption that the
right-hand sides of the approximatedcontext-free bracketing grammars (CFBGs) rep-
resent star-free regular languages, the properties limited of bracketed strings encoding
local trees are not only regular, they will actually correspond to star-free sets.

An Illustration Star-free approximations can specify balanced bracketed strings
from inside (bottom-up) even if the the total depth of bracketing is not known. How-
ever, the same does not hold for from outside to inside (top-down). Rather, we need
to know the limit for nested brackets (of the same type). Thisis illustrated as follows.
According to the article, the bracketing restriction constraint #Lc Rc# ⇒ f2(E)
(page 10), can be approximated through the formula (on page 11)

V ∗

T − Lc (Ak − f3(f2(E))) Rc.

According to this formula, a substring between anLc-prefix and anRc-suffix should
represent a well formed subtree. However, it is not possibleto use the following for-
mula to restrict the top side of the tree because theLc prefixes and theRcsuffixes match
each other in order to constitute well-formed contexts for subtrees.

Ak − Lc (V ∗

T − f3(f2(E))) Rc.

The first formula is a bottom-up alternative. The second formula, that was intended to
be the top-down alternative, fails to define a tree property,becauseV ∗

T
is not a set of

trees.

A Remark Peters and Ritchie (1969) showed that the derivation trees of CFGs
can be described through context sensitive rules that actedas constraints13 rather than
productions. My bracketing restriction constraints extend this old idea to unranked
context-free grammars. I have realized that the pre-proceedings version of my article
(Yli-Jyrä, 2003d) involved some fundamental problems because the result of Peters
and Ritchie was limited to ranked context-free trees.

It would be interesting to see in future, whether we could approximate also some
non-tree-local tree properties (e.g. proper analysis predicates (Joshi and Levy, 1982),
and logical constraints (Rogers, 1998)) with star-free constraints on bracketing.

13These constraintsanalyzeor validate the context-free trees. I used the historical term to analyzein the
title of (Yli-Jyrä, 2004a) in order to indicate the connection to this approach.



3.3 Approximations of Context-Free Grammars 35

(III) The Connection to the Dot-Depth Hierarchy

The article points out the connection to the DDH (Brzozowskiand Knast, 1978) of
regular approximations. Although the class of star-free languages corresponds exactly
to this hierarchy I may be the first to carry DDH over to computational linguistics
and to regular approximations in particular. I believe thatthe dot-depth of grammars
measures their parsing complexity in an interesting way.

The DDH of star-free subsets ofΣ∗ can be defined inductively as follows. The first
level,B0, contains subsets ofΣ ∪ {ǫ}. Every further levelBi, i > 0, is obtained from
the languages ofBi−1 by closing them first under concatenation, and then closing the
resulting family of languages under union and complementation.

The dot-depth measure is not generally available for regular languages. When I
made the restriction to star-free FSIGs, I actually made themeasure of dot-depth avail-
able. Unfortunately, determining the exact dot-depth of a star-free regular language is,
in general, a difficult problem (Pin, 2003).

A Remark The DDH has to do with complementation in star-free expressions
and quantifier alternations in the corresponding first-order description. Thomas (1982)
showed that there is a very natural way in which the DDH corresponds to the quantifier
alternation hierarchy. This classical hierarchy of first-order logic is based on alternation
of existential and universal quantifiers: a star-free language is of dot-depthd if and only
if it is defined by a boolean combination ofL-formulas (L is a first order logic in which
star-free languages are described) in aprenex normal form(PNF)14 with aΣd prefix.

Star-free FSIGs make heavy use of complementation. For example in Yli-Jyrä
and Koskenniemi (2004), I define context restrictions and bracketing restrictions using
generalized restrictions. On one hand, the generalized restriction is defined using a
regular expression with a double complementation, and on the other hand, context
restrictions (ibid.) correspond to a first-order formula, where existential anduniversal
quantifiers alternate. Furthermore, alternations occur also in the generalized definition
of Eng-FSIG constants that express LBB languages (Yli-Jyr¨a, 2003a). In the current
article (Yli-Jyrä, submitted 2003), I realised that automata similar to the one shown in
figure 3.2 are similar to those that are used to establish the infinitude of the DDH.

3.3.3 Relevance

State Complexity and Dot-Depth The usual way to measure the complexity of reg-
ular languages is their deterministic state complexity, but I started by studying the
star-freeness property. The dot-depth of star-free languages also gives a useful view on
state complexity.

It is a well known result of Meyer (1975) that when a wMSOL[S] formula is com-
piled into an automaton, the worst-case state complexity ofthe result is non-elementary
according to the length of the formula (Klarlund, 1998). What does this mean? Anon-
elementaryfunction grows faster than exponentially: when its argument grows, the

14A formula is in prenex normal form if it consists of a string ofquantifiers applied to a quantifier free
formula.
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next value of the function will infinitely often be exponentially larger than its previous
value.

The result that is available for wMSOL[S] could be compared to what happens
when we compile first-order formulas into deterministic automata. However, the au-
thor is not aware of results that would associate non-elementary state complexity with
FO[<], although there is some related results (c.f. Frick and Grohe, 2004). We note
also that each level of the DDH concatenates at least two languages of a lower level.
Concatenation of DFAs of two languages has, in general, exponential state complex-
ity (Yu, 1999) and exponential blow-up is possible even whenstar-free languages are
concatenated (Mohri, 1995). We can expect, thus, that dot-depth hierarchy is related to
rapidly growing – if not non-elementary – state complexity.Perhaps further studies (or
missing references) on state-complexity would be in place.

In degenerate cases, such asAk (figure 1 in the article), the state complexity is not
non-elementary nor exponential but linear to the dot-depth. So, in grammar representa-
tions using a semi-Dyck approximation we get firstk levels in the DDH almost for free.
WhenAk is then used in the bracketing restriction rules we really have an exponential
blow-up. Due to this, the state complexity of regular approximations discussed in this
article is no worse than exponential to their dot-depth.

Another degenerate case would use different bracket labelsfor embedded phrases.
This does not decrease the the state complexity, but makes analternative, more succinct
finite-state representations available as we will see in chapter 5.

3.3.4 Other Useful Results

(I) Reduced Bracketing Solves the Tail Recursion Problem

If the nesting of brackets is limited — as it is necessary for any regular approximation
— full bracketing fails to capture unbounded left- or right embedding (it may still de-
fine infinite languages because the bracketing can representunranked trees, but some-
times we do not want to reduce tail-recursion into iterationin the syntactic analysis).
The article solves this incapability of bracketing grammars by introducing a reduced
bracketing scheme to context-free bracketing grammars. This way to solve the encod-
ing of tail recursion does not have anything to do with regular approximation although
regular approximation will take advantage of the result, the reduced bracketing scheme.

A Remark Reduced bracketing is not a new thing (Krauwer and des Tombe,
1980, 1981; Johnson, 1996, 1998). According to Ejerhed and Church (1983), a similar
representation was proposed by Ronald Kaplan (Church and Kaplan, 1981) in Xerox.
In INTERLISP (Teitelman, 1978), super-parenthesis (a bracket ’]’) was used to close
any number of open parentheses. Chomsky (1963, section 4) also suggests optimising
brackets in certain contexts.

An Illustration Here is an example of reduced bracketing:

[[[[[a]b]c]d][e][[f ]]
[ a〉b〉c〉d〉[e][〈f ]

g [h[i[[j [k[l[m]]]]n]]]]
g〈h〈i〈[j〈k〈l〈m ]n ]
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The example shows two bracketed strings: a fully bracketed one and a reduced one.
They can be transformed into each other in linear time using adeterministic two-way
stack machine.

(II) Definitions for Bracketing Grammars

The paper introduces two kinds of non-regular grammars for bracketed strings: CFBGs
and FCFBGs.

CFBGs are a subclass of so-called ECFGs. They have a lot in common with brack-
eted context-free grammars (Ginsburg and Harrison, 1967),but also some important
differences that makes this new definition necessary. CFBGsgenerate context-free
sets of bracketed string where the bracketing in strings represents (possibly) unranked
derivation trees. CFBGs have been defined in such a way that itis easy to make some
modifications to the bracketing scheme and, especially, to use reduced bracketing in
some productions.

The main difference between FCFBGs and CFBGs is that FCFBGs do not use a
rewriting mechanism. Thus, FCFBGs can be seen as an MTS grammar, while CFBGs
is a GES grammar.

A Remark The following discussion argues that the proposed grammarsare rel-
evant to linguistics and computer science. Ejerhed and Church (1983) advocate the use
of extended context-free grammars for flat syntax. AlthoughCFGs have been largely
replaced by mildly context-sensitive grammars as the syntactic theory in the state of the
art of NLP, CFGs have still a lot of practical relevance and, for example, probabilistic
CFGs have been used recently in treebank construction. Context-free trees capture,
for example, the topological structure or recursive chunksin German syntax, as well as
models information structures wheree.g.Theme, Rheme, Background and Focus in the
sentence form a relatively shallow recursive structures. Eng-FSIG is related to CFBG
because the brackets (@<,@>) in Eng-FSIG can mark flat clause structures whose tree-
rank is unbounded. Furthermore, combining a FCFBG with a dependency-based FSIG
in a multi-tape finite-state system would provide a way to implement a topological
dependency grammar.

Bracketing restrictions have deepened our understanding of the possible restrictions
and inspired our study of their state complexity. Moreover,some computer science
applications for these grammars may be found in XML (and SGML) processing, where
the parse trees may be unranked and the markup may miss some tags (like in SGML
document types). FCFBGs might be extended, for example, in away that corresponds
to regular frontier check in tree automata (Jurvanen et al.,1993). In fact, Joshi and
Levy (1982) advocate the use of local tree constraints in linguistics, some of which
(proper analysis predicates) might now be represented withbracketing restrictions in
FCFBGs. This might imply that FCFBGs can define sets that cannot be defined with
CFBGs.

Finding this connection to CFGs was very instructive to the author. It helped later to
relate FSIG parsing with standard parsing techniques. It also led to the question of en-
coding of projective dependency grammars. Moreover, the implications of Chomsky-
Schützenberger style representations turned out to be deeper than expected, extending
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full bracketing reduced bracketing
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S → [S NP VP]S
VP → [VP V ]VP | [VP V NP ]VP
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V → [V ran]V

S → [S
←−
NP
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V | 〈VP V
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[S ]S ⇒ [NP∆]NP[VP∆]VP

[VP ]VP ⇒ [V ∆]V | [V ∆]V [NP∆]NP

[NP ]NP ⇒ Jim|Sue
[V ]V ⇒ ran

# # ⇒ [S∆]S
[S ]S ⇒ ∆〉NP〈VP∆
〈VP BR ⇒ 〈V ∆ | [V ∆]V 〈NP∆
BL 〉NP ⇒ Jim|Sue
〈NP BR ⇒ Jim|Sue
〈V BR ⇒ ran
[V ]V ⇒ runs|hits
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({Jim,Sue,runs,hits} ∪BL ∪BR)∗

Jim|Sue ⇒ [NP ]NP

[NP∆]NP ⇒ [VP[V ∆]V ]VP |
[S [VP∆]VP]S

runs|hits ⇒ [V ]V
[V ∆]V ⇒ [VP ]VP |

[VP [NP∆]NP]VP

[VP∆]VP ⇒ [S [NP∆]NP ]S
[S∆]S ⇒ # #

({...,hits,〈NP, 〉NP, 〈VP, 〉V}∪BL∪BR)∗

Jim|Sue ⇒ 〈NP BR |
BL 〉NP

〉NP ⇒ [S∆ 〈VP∆]S
〈NP ⇒ 〈VP[V ∆]V ∆BR

runs|hits ⇒ [V ]V | 〈V BR

〈V ⇒ 〈VP ∆BR

[V ∆]V ⇒ 〈VP 〈NP∆BR

〈VP ⇒ [S∆〉NP ∆]S
[S∆]S ⇒ # #

Table 3.1: Comparison of different ways to represent the same tree set

to somemildly context-sensitive grammars (MCSGs) in contributions discussed in the
next chapter. Learning about bracketing schemes for context-free constituents was use-
ful for understanding more complex representations.

An Illustration Table 3.1 illustrates two kinds of bracketing languages andthree
kinds of bracketing grammars. Both languages — a full bracketing language and a re-
duced bracketing language — represent the same set of trees through different kinds of
bracketed strings. These two languages are described with three different grammars: a
CFBG, a FCFBG and a grammar that uses context restriction. The last one is included
here for the sake of completeness as anillustration that shows that bracketing restric-
tion constraints are not the only way to validate bracketing. However, it is interesting to
see that only grammars with bracketing restrictions allow for rules that resemble CFGs
rules. It should be noted that FSIG approximations are obtained from these last four
grammars by replacing∆ with a regular language.
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3.4 Approximations of Dependency Grammars

Article

“Approximating dependency grammars through intersectionof regular
languages” (Yli-Jyrä, 2005a)

A precursor of this revised article was presented in the pre-proceedings of CIAA
2004 (Yli-Jyrä, 2005a). A further extension has been accepted for publication inIn-
ternational Journal of Foundations of Computer Science(World Scientific) in a CIAA
follow-up issue. The journal version emphasizes star-freeness of the approximations
and discusses the structural properties of dependency trees more carefully.

3.4.1 Introduction

Summary

The article introduces an approach for full (projective) dependency syntax within the
FSIG framework.

Motivations

I am not aware of any finite-state approaches to dependency parsing that is based on
intersection or assertions, although approaches with morepowerful constraint program-
ming techniques (e.g. Duchier, 1999; Maruyama, 1990) were available and FSIG ap-
proximations existed for context-free grammars (Yli-Jyr¨a, submitted 2003).

Definitions

A D-tree or a dependency graph (D-graph) is said to besemi-planar(or planar ac-
cording to Sleator and Temperley, 1991) if the links do not cross each other when
drawn above the sentence. The sentence line drawn on a plane splits the plane into two
halves, thus we should have thesemi-prefix. For example, the D-tree in figure 3.3 is
semi-planar. The article specifies the projective graphs asa subset of the semi-planar
D-graphs.

that man an apple
det det objpred

ate
subj

Figure 3.3: A semi-planar D-graph (an imaginary situation).
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3.4.2 Main Results

(I) A New Class of FSIGs

The article introduces a new class of FSIG: approximations of dependency grammars.
Star-freeness of these regular approximations can be proven easily using the heuristics
developed earlier.

The new class illustrates how classes of structural descriptions can be axiomatized
using FSIG constraints. The idea of definitive constraints,axioms, evolve from “ad-
ministrative” constraints used earlier in FSIGs (c.f. Chanod and Tapanainen, 1996b).

A Remark Although star-freeness of the resulting approximations (bracketed
languages) is not mentioned in the paper, it is “inherited” along with the FSIG ap-
proach. Kleene stars are used in the regular expressions of the article in such a way
that it is easy to reduce these regular expressions into a star-free format.

(II) String Locality of Rules

The article formulates dependency rules of HGDG as regular constraints. These con-
straints validate finite substrings that occur between two word boundaries (#) in the
annotated strings15.

A Remark String locality gives rise to a new parsing approach that wassuggested
in the paper. According to it, automata representing local lexical constraints16 will
be applied during parsing before automata that check more global properties such as
balanced bracketing.

Furthermore, the new grammar representation makes it particularly easy to analyze
the upper-bound for the dot-depth of the resulting grammar instances: the maximum
dot-depth in the set of constraints is an upper-bound for thedot-depth of the whole
set, because each level of the DDH is closed under intersection. Accordingly, we need
only to consider the dot-depth of constraint (3b) and of those in (5), which have a very
simple definition that depends ond, the limit for nested brackets. This points to the
same direction as suggested in the case of FSIG approximations of FCFBGs: the state
complexity would not be non-elementary although the dot-depth does not seem to be
bounded.

The actual dot-depth can be lower than the upper bound for tworeasons: (i) the
described language can be empty or (ii) it does not necessarily happen at all that a
dependency link embraces another link of the same category.

(III) A Novel Dependency Bracketing Scheme

The article presents a novel string-based representation for dependency trees.

15There are some constraints and constraint schemata that contain Kleene’s closures, and are not, strictly
speaking, string local. In these constraints, the closurescould be replaced, however, with finite languages,
as the constraints restrict substrings between word boundaries and these substrings are otherwise bounded,
which is a combined effect of several constraints.

16Constraints whose domain of locality is bounded by two word boundaries (#).
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A Remark This representation is closely related to a recent, but morecompli-
cated representation by Oflazer (2003), but in a strict contrast to traditional representa-
tions (Lecerf, 1961; Hays, 1964; Nasr and Rambow, 2004).

Oflazer (2003) has presented a representation that is closely related to ours. In
contrast to it, the most previous string-based encoding schemes for dependency trees
are based on phrase markers of context-free grammars. They would represent the parse
tree as follows:

• According to Lecerf (1961):
[ ([ ([that]) .[man] ]) . [[ate].([ ([an]) .[apple] ]) ] ]

• According to Hays (1964):
⋆(pred( subj(det(⋆),⋆), ⋆, obj(det(⋆),⋆) ))

• According to Nasr and Rambow (2004):
[pred [subj [det that ]det man ]subj ate [obj [det an ]det apple ]obj ]pred

3.4.3 Relevance

The Significance of the New Bracketing Scheme

My new encoding scheme differs radically from the classicalbracket-based notations
for dependency trees. Choosing this new encoding is motivated by the following two
arguments:

First, in the classical notation (Lecerf, 1961; Hays, 1964;Nasr and Rambow, 2004),
the brackets for dependent nodes do not generally appear in the local neighborhood of
their governors. In my encoding, labeled brackets for all the dependents of a gover-
nor wordw are indicated close tow. Due to this locality, the HGDG rules over the
bracketed representation can be expressed using regular languages.

Second, the representation is “almost” capable of encodingsome non-projective
trees and semi-planar graphs. Namely, the encoding can be extended to non-projective
dependency trees and graphs by relaxing certain constraints. For example if I do not
include the irreflexivity constraint, the outside-to-inside constraint and all Robinson’s
axioms, I get a much larger set of graphs.

Furthermore, this new bracketing scheme can be extended to non-projective D-trees
and D-graphs. These possibilities are made explicit in (Yli-Jyrä, 2003c, 2004b,a; Yli-
Jyrä and Nykänen, 2004). Non-projective D-graphs can be represented with strings
by splitting them to semi-planar subgraphs each of which is then described by brack-
eted strings that share the same sequence of word nodes. These bracketed strings for
semi-planar graphs can be written on different input tapes or they can be layered (or
interlaced) to a single string, provided that each semi-planar graph is encoded with a
different set of brackets.

3.4.4 Other Results

Axiomatization of Planar D-graphs and D-trees

The paper axiomatizes the following classes of graphs or their string representations:
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• semi-planar graphs (axioms 1-5),

• acyclic semi-planar graphs (axioms 1-5,10,12,13), and

• projective dependency trees (all axioms).

Moreover, the paper comments on Jane Robinson’s axiomatization and shows that her
four axioms or the usual projectivity condition, as they stand, do not themselves imply
acyclicity of the D-graph. In fact, acyclicity is not first-order expressible (Immerman,
1999, p.101), thus, not a local property, but, of course, some subsets of the acyclic
graphs may be expressible infirst order boolean queries(FO) logic.

In my representation, the context-free language for balanced bracketing enforces
a necessary global condition (semi-planarity) for acyclicity. An important, but simple
observation that is exploited in the paper is that even limited bracketing will enforce
this condition to the represented graphs. When the number ofnested links is limited,
this condition becomes first-order expressible.

A Remark Projectivity condition has been studied perhaps first by Lecerf
(Lecerf, 1960; Ihm and Lecerf, 1963)17. Differences between previously defined pro-
jectivity conditions have been studied by (Marcus, 1965, 1967).

Semi-planar graphs can be seen as an extension of trees. Theyare closely connected
to proof-nets, although there are also proof nets that are not planar (Gaubert, 2004).

A Representation for Context-Free Languages

The article presents a flat representation for HGDG’s. This can be used as a new
Chomsky-Schützenberger style characterization for context-free languages. A peculiar
property with my representation is that it starts from dependency grammars rather than
from context-free phrase-structure grammars.

A Remark Correspondence between CFGs and dependency grammars and their
integration into the same framework has been studied in (Robinson, 1967; Covington,
1994c,a; Höfler, 2002; Bohnet, 2003; Robinson, 1967; Teich, 1998; Nivre, 2003b; Dras
et al., 2004).

An Open Problem Manydeterministicdependencyparsers(Arnola 1998; Elwor-
thy, 2000; Nivre, 2003a; Nivre and Scholz, 2004) produce projective analyses. This
is, however, not a necessity (Covington, 1990, 1992, 1994b,2001). It is not clear how
the output of these parsers could be characterized as a set ofstructures, because the
deterministic parsers usually lack a declarative specification.

17According to Marcus (1965), the notion of projectivity appears in 1959 in the work of Harper and Hays,
and the first projectivity-based dependency grammar was presented in May 1960 by D. E. Hays at the Rand
Corporation, Santa Monica, California. H. Gaifman’s 1965 paper had already appeared in 1961.
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3.5 Conclusions

I have summarized articles that investigate three kinds of FSIGs: (i) Eng-FSIG, (ii) and
approximations of FCFBGs and (iii) HGDGs. The articles contain, by themselves, new
approaches and contributions to finite-state methods in natural language processing.

The Most Important Contribution

The class of star-free FSIGs is a new, important discovery that gives more insight into
how some FSIGs are structured, how new FSIGs should be designed and what is the
computational complexity of these grammars. The articles are tied to each other under
the theme of star-freeness, although this was not made explicit in the selected version
of the third article.

In this chapter, we have been asking what kinds of insights these articles can give
about computational complexity of their grammatical modelstrings. The complexity
of regular languages is, in any case, low, but descriptive complexity allows for defining
finer distinctions for low complexity languages. When I showed, in the first article,
that the model string set of Eng-FSIG is star-free, I actually obtained also a result
on its computational complexity. The approach of regular expression equivalences as
presented in the first article are also applicable to my new FSIGs, although I do not
elaborate the details of their star-freeness proofs.

The star-freeness of sets of model strings for assertions implies that the model string
languages are in DDH and LH. This means that the analysis of a finite-state approxima-
tion can be made more refined by studying its dot-depth, the number of quantifier alter-
nations in its first-order description, or the number of nested complementation needed
in the star-free regular expression. Finally, I argued for that dot-depth is connected to
worst-case deterministic state complexity of star-free grammars.





Chapter 4

Linguistic Applicability

4.1 Orientation

4.1.1 Summary

This chapter will present an approach to modeling complex dependency-based struc-
tural descriptions using FSIGs.

4.1.2 Problem

The Quest for Appropriate Grammars Defining a new class of grammars that
could give appropriate syntactic descriptions for naturallanguage sentences is not an
easy task. Different hypotheses for possibly adequate formal grammars exist, rang-
ing from finite-state models to certain context-sensitive classes of grammars, and con-
textual grammars. Currently the best characterizations for natural language syntax is
given in terms of mildly context-sensitive grammars and linear context-free rewriting
systems. At the same time, these models are challenged by an evergreen approach:
dependency syntactic grammars that are not limited to projective constituent structures
but associate words according to their valencies.

How does FSIG relate to these approaches? Can FSIG give adequate or appropriate
syntactic descriptions to natural language sentences or isit limited to approximations
of context-free equivalent grammars? Can FSIG contribute anything interesting to the
state-of-the art with this respect?

Adequacy of Structural Descriptions What do I mean by adequacy or appropriate-
ness of structural descriptions? Obviously adequacy must be judged by some external
criteria. Joshi et al. (2000) maintain that adequate structural descriptions should be
semantically coherent. Accordingly, syntactic analysis should be compared against
the semantic structure. The idea of coherence is taken even further in the tradition of
combinatorial categorial grammars, where the syntax is seen as an artefact rather than
an independent level of representation: the syntactic structure is build as the result of

45
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inferences over categories, but these categories are only reflections of the underlying
meaning.

Adequacy of classes of grammars has been usually discussed in terms of two formal
properties: WGP and SGP. Such measures tend to bias the discussion towards CH and
other properties of the set described. However, sematic coherence is not measured
directly by WGP or SGP.

Becker et al. (1992) introduced a third way of arguing about the semantic coherence
and the adequacy of formal systems. They call this measure thederivational generative
power(DGP). They motivate it as follows:

The starting point for our definition is the observation thatwhile the
specifics of a syntactic analysis of a particular construction may be subject
to controversy, the (semantic) predicate-argument structure of sentences
is fairly uncontroversial. Furthermore, what characterizes many syntac-
tic phenomena in natural languages is the way in which the predicate-
argument structures map onto the surface strings.

According to this view, semantical coherence can be understood as the simplicity of the
transformation between structural descriptions and correct predicate-argument struc-
tures.

Dependency syntax (Tesnière, 1969 (1959)) is a syntactic framework that captures
the predicate-argument structures.

Approximated dependency syntax Our problem is to investigate whether star-free
FSIGs could be used successfully (i) as a performance-motivated grammar forlin-
guistically adequate sets of dependency structures, and (ii) for representation of pa-
rameterized subsets of the SGP of mildly context sensitive grammars. This problem
is difficult because the star-free FSIGs, a framework for star-free sets of grammatical
model strings and regular surface languages, is not mildly context sensitive, although
it might allow approximations for such grammars.

4.1.3 Articles

I have investigated the stated problem by examining dependency structures in a tree-
bank and then building a formal account that is suited for FSIG approximations. The
investigations cover, basically, the following three aspects of the problem:

• a measure for complexity of used syntactic structures [4]

• the design of the underlying formal grammar [5]

• an FSIG approach to non-projective dependency grammars [6].

These aspects have been investigated in three contributions in the following way:
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Measuring the Syntactic Complexity of Linguistic Data

[4] Yli-Jyrä, 2003c, “Multiplanarity — a model for dependency structures
in treebanks”

This article presents a model that measures the complexity of dependency trees.
Then the author conjectures that dependency trees that are highly complex according to
the measure are either very rare, incorrect or fall outside of the performance of language
users. The measure is tested against an existing treebank that contains dependency trees
for a few thousand Scandinavian (Danish) sentences.

Designing the Underlying Formal Model

[5] Yli-Jyrä and Nykänen, 2004, “A Hierarchy of mildly context-sensitive
dependency grammars”

This article elaborates the core of the model sketched in [4]. The resulting compu-
tational model,colored multiplanar link grammar(CMLG), is designed here so that it
is mildly context sensitive(MCS) but describes dependency structures rather than con-
stituency structures. This aspect makes CMLG linguistically interesting: it might be
able to give adequate structural descriptions to natural language sentences.

Another class of dependency grammars,colored non-projective dependency gram-
mar (CNDGs), enforces heuristic acyclicity and treeness conditions on dependency
structures. The motivation for heuristics is that acyclicity of the derived structures is
not a consequence of the tree-shaped (in fact a string-shaped) derivation tree.

Defining an FSIG Approximation

[6] Yli-Jyrä, 2004a, “Axiomatization of restricted non-projective depen-
dency trees through finite-state constraints that analyze crossing bracket-
ings”

This article is a dense description of a new FSIG type that canbe used to ap-
proximate CNDGs. The deep strings of this FSIG are particularly designed to encode
CNDGs derivations — as well as the derived strings1. Because the essential properties
of valid deep strings are difficult to describe without access to the original CNDG, I
am forced to specify their properties through complex axioms each of which is defined
both verbosely and using a regular expressions as the meta language.

4.1.4 Outline

The three articles correspond to respective sections 4.2 - 4.4 where they are discussed
in more detail. This chapter is concluded by section 4.5.

1A peculiarity of CNDG is that the strings are derived from left to right and it is the link structure that is
interesting from the syntax point of view.
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4.2 A Measure for Syntactic Complexity

Article

“Multiplanarity — a model for dependency structures in treebanks,” in
TLT 2003.

4.2.1 Introduction

Summary

This article sketches a model that is is capable of encoding all dependency structures
of a dependency treebank. The amount of resources consumed by the encoding defines
a complexity measure for dependency structures.

The article – despite some of its technical confusions that are commented on in
Appendix A – contains a number of important innovations. These innovations have
already given rise to several follow-up publications wherethese innovations have been
used and developed further (Yli-Jyrä, 2004b, 2005a, 2004a; Yli-Jyrä and Nykänen,
2004).

Motivations

The main limitation of earlier FSIGs has been the representation of syntactic analyses.
Due to this limitation FSIG has been regarded as a surface syntactic approach.

An important requirement for a less limited FSIG representation is to keep the
string alphabet fixed in the representation. Due to this requirement, a representation or
encoding whose alphabet size grows according to the size of the encoded structure is
not appropriate.

Definitions

Treebank is a linguistic corpus of sentences with attached parse trees.

The termtree is ambiguous. A warning on conceptual confusion is perhaps re-
quired: A so-called dependency tree in linguistic analysiscan be in fact mathematically
a non-tree or at least ordered dependency tree, if we take thelinear precedence relation
associated with the dependency tree nodes into consideration. Even if we add so-called
secondary links to dependency trees, linguists still oftentalk about trees.

The article talks about planarity, but a better term would have been semi-planarity,
because each plane can actually contain two semi-planar graphs: one which is drawn
above the sentence and the one that is drawn below. However, the current choice in
the article is motivated because it is more convenient to talk about multi-planarity than
multi-semi-planarity.
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4.2.2 Main Results

(I) A String Representation for General Dependency Graphs

The article generalizes the idea of planar graphs to non-planar as follows: A non-
planar graph can be represented as a union of semi-planar subgraphs. Each semi-planar
dependency graph can be represented as a bracketed string.

A Remark This is a generalization of the dependency bracketing scheme that was
presented in (Yli-Jyrä, 2005a).

(II) Alignment Constraints

The article introduces plane alignment constraints for multi-planar graphs, which con-
stitute a basis for the other two articles in this group:

• Plane Locking — only the top-most semi-plane is active for adding new edges;

• Left Conjoin — right-ward links of each word are stored to thesame semi-plane;

• Continuous Tiling — starting with a higher semi-plane is notallowed unless this
avoids a collision with a link stored in the current plane.

(III) A Measure for Structural Complexity

The article defines a measure for structural complexity of dependency graphs. This
measure is obtained as follows:

• A non-planar graph can be represented as a union of semi-planar subgraphs.

• Alignment constraints regulate how the non-projective graphs are split into semi-
planar subgraphs2.

• The number of these subgraphs is measured.

A Remark The number of (semi-)planes depends on the presence of the alignment
constraints. Without alignment constraints we would not obtain the same measure. If
we had wanted we could have abandoned the alignment constraints and searched for
the optimal decomposition into semi-planar graphs, but such optimization would have
been too expensive.

Although alignment constraints prevent us from using the semi-planes in the opti-
mal way, they also guarantee for each graph a unique way to allocate semi-planes. As a
consequence of uniqueness, the constraints also prevent usallocating more planes than
are necessary for obtaining this unique representation.

The experiments carried out in this paper suggest that the number of (semi-)planes
(or pushdown stacks) needed to capture the examples in the corpus was quite small
(between 3 and 5).

2The decomposition into subgraphs is unambiguous, and thereis a deterministic algorithm that imple-
ments the alignment constraints as a function that maps dependency graphs to multi-planar representations
(Yli-Jyrä, 2004b).
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(IV) Rough Parameters for Danish

For 5540 Danish sentences in the studied treebank (Kromann et al., 2003), I found
that a 5538/5540 coverage will be achieved with three planesonly (I did not represent
secondary links).

A Remark According to M. Kromann (personal communication, 2003), all the com-
plex sentences depicted in the article have been actually correctly analyzed in the tree-
bank. This indicates, on one hand, that even the complex setsof structures can be
real sentences, and on the other hand, that the model could not point out errors in the
treebank by picking up these distinguished examples — in contrary to our expectations.
The model might detect errors, however, in some mode dynamicsetting,e.g.during the
annotation process. Alternatively, the complexity measure can be used for automatic
ranking of alternative analyses.

At TLT 2003, I was asked for the actual distribution of sentences with different
numbers of semi-planes. Afterwards, I carried out more measurements and embedded
a short answer to the inquiry inside a popularizing article (Yli-Jyrä, 2004b). A further
study on the multiplanarity complexity of various languages and dependency treebanks
would undoubtedly be a nice follow-up.

4.2.3 Relevance

Linguistic Interpretation of the Measure Setting a particular bound for the number
of semi-planes would claim a fixed property in the language use, i.e. performance.
Could such a bound also be a competence property,i.e. characterized by a naturally
class of grammars?

The following points suggest, in fact, that a restriction onthe number of scrambled
items (which corresponds to the restriction on the number ofsemi-planes) is more
naturally a competence feature thane.g.a limit for clausal center-embedding.

First, Joshi et al. (2000) argued that a low bound for scrambling complexity could
be motivated as a competence property rather than seeing it as a performance property
as is usually done. However, the varioustree-adjoining grammars (TAGs) that Joshi
has in his mind do not have a parameter such as the number of available semi-planes,
unless multi-component TAGs are not taken into consideration. Accordingly, Joshi’s
argument does not necessarily apply to the measure that I have in our mind.

Second, Rogers (2003, 2004) argues that in mildly context-sensitive tree sets the
competence and performance could in a certain sense coincide

Here [in multidimensional trees] we have additional flexibility. In choos-
ing the level of the competence grammar in the multi-dimensional hierar-
chy, we set the boundary on the complexity of the scrambling we admit.
On the other hand, given that the level of the grammar corresponds to
the number of hierarchical relations we use in encoding the structure of
the utterances, one could make a plausible argument that thelevel of the
grammar might be determined by performance considerations, such as
working memory limitations. In this way one might arrive at an account
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of the limits on the complexity of scrambling that was simultaneously per-
formance based — a consequence of bounds on working memory — and
competence based — a consequence of the complexity of the grammars
which can be processed within those bounds.

A similar approach has been presented by Kallmeyer and Yoon (2004).
Third, there exists another account of scrambling where performance limits and

classes of dependency grammars are related to each other (Holan et al., 1998; Holan,
2002).

However, our hierarchy differs crucially from Roger’s approach: we do not relate
semi-planes to hierarchical relations (of different sorts) used in encoding the structure
of utterances. Instead, the planes are determined purely onthe basis of the unlabeled
structure. The alignment constraints are completely blindwith respect to the types
of different grammatical relations, and it seems that coupling selectivity within this
respect would severely reduce the coverage unless the alignment constraints – and un-
ambiguity – are not relaxed.

Connection to FSIG In the article (Yli-Jyrä, 2003c, p.198), we suggest that the pre-
sented model lends itself to finite-state approximations:

Our model suggests a basis for the complexity hierarchy of dependency
grammars, and motivates a class of efficient parsers that cope with mildly
context-sensitive sets of dependency trees. Finally, it seems feasible that
such a parser can be easily approximated using finite-state methods.

This suggestion has actually been realized in our later writings: (i) the complexity
hierarchy was presented in (Yli-Jyrä and Nykänen, 2004) and (ii) a finite-state approx-
imation of the hierarchy was presented in (Yli-Jyrä, 2004a).

4.2.4 Other Results

A Suggestion for a Heuristic Acyclicity Testing In addition to the multi-planar
model, the article suggests a heuristic method for determining acyclicity of dependency
graphs. The method involves the so-called Cycle Cutting constraint that was meant to
rule out all cycles (at the expense of losing some acyclic structures as well). Such a
heuristic test would be useful when implementing a polynomial parser, because with it
we could avoid defining acyclicity in general (it would be difficult because acyclicity
is not definable in first-order logic (Immerman, 1999)).

The article presented anad hocmethod for acyclicity testing. The method did not
exploit multi-planar representation of dependency graphs. In a subsequent paper (Yli-
Jyrä and Nykänen, 2004), we abandoned this method and developed another that is
more tightly coupled with the multi-planar representationof the graphs and the align-
ment constraints. The third paper (Yli-Jyrä, 2004a) made an attempt to generalize this
method even more, by taking advantage of articulation nodes.
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4.3 Design of the Underlying Formal Model

Article

“A Hierarchy of mildly context-sensitive dependency grammars,” in Pro-
ceedings of Formal Grammar 2004, Nancy.

In this article, the contributions of the two authors could be distinguished as follows:
we worked for several days writing definitions together, discussing a lot and developing
mathematical basis for the new concepts. The second author worked on section 11.2
and the first author worked mainly on the other sections. The first author suggested
several extensions in some definitions in 11.2 as needed, andthe second author sug-
gested presentational improvements to some formulas of thefirst author and did some
proof reading. The final version, as it stands, was prepared by the first author during
the last few days before its final submission.

4.3.1 Introduction

Summary

The paper proposes new classes of link and dependency grammars.

Motivations

Formal language hierarchies for dependency grammars have not been studied exten-
sively, but researchers are interested to see work on such hierarchies (Kruijff, 2002).
The measure presented in (Yli-Jyrä, 2003c) was a promisingpossibility for defining
such hierarchies. The measure and the multi-planar representation were developed be-
cause we needed a more general and linguistically more interesting dependency-based
grammars in order to obtain better FSIG approximations.

Definitions

Link Grammars(Sleator and Temperley, 1991) present structures as semi-planar
graphs. The edges that are incident with a lexical node are specified in lexical en-
tries of Link Grammar. Each lexical entry specifies types andleft-right-directions of
the incident edges.

A lexicalized grammaris usually a grammar whose rules are practically moved to
the lexicon by inserting lexical anchors to the rules.

Joshi (1985) defines MCSGs loosely as grammars

• that are polynomially parseable,

• that are capable of describing some limited crossing dependencies,

• that generate a superclass of context-free languages,

• whose languages have the constant (linear) growth property.
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This definition coverse.g. various classes of TAGs. Such usual requirements as the
capability of generating copy languages are secondary properties, and thereforee.g.
TAG without local constraintscould be seen as a mildly-context sensitive grammar
although it lacks this capability (Joshi 2004, private communication).

Each grammar formalism specifies adomain of locality(DL) i.e. a domain over
which various dependencies can be specified. In a CFG the domain of locality is the
one-level tree corresponding to a rule in a CFG. Formalism A is said to provide an
extended domain of locality(EDL) as compared to a formalism B if there is a linguistic
constraint which is not specifiable in the local domains associated with B but which is
specifiable in the domains associated with A.

4.3.2 Main Results

(I) A Generalization of Link Grammars

The paper presents CMLGs, a generalization of Link Grammars. CMLGs presents
structures in a way that is similar to the multiplanarity with alignment constraints (Yli-
Jyrä, 2003c).

(II) A Parameterized Acyclicity Condition

The paper presents new heuristics that can be used to enforceacyclicity in the graphs,
if the links are directed (from governor to dependent). Thisheuristics is based on a
measure of non-projectivity3 depth. Non-projectivity depth measures, roughly, how
many times an incoming edge of a node is embraced by an outgoing edge when the
paths from the root are followed to the leaves. The grammar implements this acyclicity
condition by measuring the non-projectivity depths of all nodes up to a parameter-
specified bound.

Remarks It is probable that a very small bound for the non-projectivity depth is
sufficient for natural languages.

The non-projectivity depth, as presented in the paper, is not cleared (set to zero)
at the “articulation” nodes. “Articulation” nodes are words that are not crossed by any
dependency links and for which all the in-coming arcs are on opposite sides than the
out-going arcs. Clearing the non-projectivity depth of out-going arcs at such articula-
tion nodes would be a nice technique to reduce the number of acyclic graphs that now
have been discarded. In the companion paper (Yli-Jyrä, 2004a), the articulation nodes
have been processed in this more optimal way.

(III) Hierarchies for These Mildly Context-Sensitive Grammars

The article introduces two parameters –nested crossing depthand non-projectivity
depth— that define classes of mildly context-sensitive link grammars and dependency

3The namenon-projectivity depthfor the measure is particularly unmotivated. There are non-projective
trees for which this measure gets value 0 (see figure 7 of Marcus, 1967). Obviously, a better name for our
measure would be needed. Note that this measure is a generalization of axiom 12 of (Yli-Jyrä, 2005a).
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CNDGs CMLGs
Directed Acyclic Graphs Directed Graphs

...

c = 3 ∋ anbncndn

c = 2 ∋ anbncn

c = 1 ⊃ HGDG LinkG

t = 0 t = 1 . . .

Table 4.1: The hierarchies for CNDGs and CMLGs.

grammars in two different dimensions. The hierarchy based on nested crossing depth
(the number of colors needed) had already been implicitly present in my experimental
paper (Yli-Jyrä, 2003c). The non-projectivity depth induces a new hierarchy that had
not been presented earlier.

Illustration The obtained hierarchies are illustrated in figure 4.1. Identifying the first
level of CMLGs-hierarchy to the Link Grammar (depicted as LinkG) requires a certain
simplistic notion of Link Grammars that differs slightly from the really implemented
Link Grammars for English.

A Remark Some mildly context-sensitive hierarchies for certainlinear context-free
rewriting systems (LCFRSs) exist (e.g.Weir, 1992; Wartena, 2001; Rogers, 2003).

4.3.3 Other Results

(I) Extending the Domain of Locality in the Underlying Gramm ar

The new grammar systems, CMLG and CNDG, have been implemented in the paper,
by conversion to an underlying grammars whose technical name iscontext-free linear
storage grammar with extended domain of locality(CF-L-EDL-S-G). This class gen-
eralizes the class of grammars that has been defined by Wartena (2001) by extending
its domain of locality to cover all dependency links that areneeded when one word is
processed.

A Remark The approach calledcomplicate locally, simplify globally(CLSG) (Joshi,
2004) pushes non-local dependencies into the local neighborhood. The goal of the
CLSG approach is to find a formalism that would provide local domains large enough
so that, in principle, all linguistic constraints (pieces of linguistic theory) such as
predicate-argument structures could be specified over these bounded local domains.

The new grammar systems presented in the paper seems to implement the CLSG
approach with respect to the predicate-argument structures. We can also say that the
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derivational generative power of our new grammars is sufficient for exactly expressing
the dependency links of any finite set of dependency trees (obviously a CNDG grammar
fitted to a treebank would also generalize and describe some unseen trees as well).

However, there may be other linguistic constraints that arenot expressible by means
of dependency links. Such constraints are mainly related tothe description of word
order. Word order constraints in particular are one of the most difficult areas in depen-
dency syntax, as well as in CNDG grammars.

(II) Include Alignment Constraints to Storage Grammars

The alignment constraints guarantee an unambiguous derivation for each dependency
tree. The current paper formalizes these constraints and shows that they are reducible to
CF-L-EDL-S-G productions. It also suggests a new storage type,normalized storage,
that encapsules this reduction.

4.4 An FSIG Approach to Non-Projectivity

Article

“Axiomatization of restricted non-projective dependencytrees
through finite-state constraints that analyze crossing bracketings,” inCOL-
ING DG Workshop 2004.

4.4.1 Introduction

Summary

This article presents a regular approximation for CNDGs. The approximation is given
in the form of an FSIG, where a number of parameters determinethe level of com-
plexity captured in dependency structures. Areduced bracketingscheme for bracketed
dependency structures was sketched.

Motivations

As I already axiomatized HGDGs (Yli-Jyrä, 2005a)4, the next challenge suggested
itself: can I extend the approach to CNDGs where we have crossing dependencies? In
order to make the extension, several encoding issues have tobe solved.

4.4.2 Main Results

(I) String-Encoding of CNDG Derivations

The article demonstrates that all the information that is needed to represent deriva-
tions of CNDG can be encoded into annotated surface strings.It is particularly nice to

4This paper was written first.



56 4.4 An FSIG Approach to Non-Projectivity

see that alignment constraints (Yli-Jyrä, 2003c) (corresponding to the normalized stor-
age) can be formalized without big difficulties as constraint languages when we use a
bracket-based representation for the content of each pushdown.

A Remark The obtained bracket-based representation is very similarto the original
sketch (Yli-Jyrä, 2003c): it adds only (i) the wall node, (ii) indication for active color at
each position, and (iii) non-projectivity-depth counters. The presentations would have
been even more similar if we had not employed our reduced bracketing scheme that
caused some complications.

The string representation encodes derivations as a sequence of local, multi-dimen-
sional trees. This resembles the super-tagging approach suggested for TAG parsing,
but here each “super-tag” — the subsequence surrounding each word between two
word boundaries — consists of smaller pieces that could, in principle, be assigned by
separate taggers.

(II) FSIGs and CNDG Can Give Equally Adequate Structural Descriptions if
There Are Appropriate Performance Limits

In addition tonested crossing depthand non-projectivity depththat are defined for
CNDG, the FSIG approximation obtained in the article uses two new performance-
oriented parameters to restrict the complexity of non-projective dependency trees:

• The first one,proper embracement depth, is built on top of the reduced bracket-
ing scheme.

• The second, which does not have any name (in section 5 of the article), is used
to restrict the amount of subcategorization information that can be transmitted
from string-local domains of words to the actual dependents(and the governors)
in the sentence through labels of brackets.

These additional limits provide a way to extract performance-compatible FSIG restric-
tions from CNDGs.

A Remark Most of the parameters presented measure the amount of information
that can be transmitted between two positions through links. This comes very close to
the narrowness of short-term memory and to the graph-theoretic complexity measure
calledpath-width, which is reflected in some parsing approaches (e.g.Kornai and Tuza,
1992) and observed in psycholinguistic experiments (e.g.Gibson, 1998).

4.4.3 Linguistic Relevance

Structures Axiomatizable through Their String Encoding The article suggests
that very complex graphs such as those generated by mildly context sensitive gram-
mars could be axiomatized through their string encoding. However, further research in
this area is needed: it would be tantalizing to find out whether similar representations
were available for TAGs orcombinatory categorial grammars (CCGs).
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In the axiomatization presented in the article, I assumed that certain parameters are
fixed. However, if the special languages for balanced bracketing would be idealized
to context-free languages — recall that context-free Dyck derivatives were our starting
point in two earlier grammar representations (Yli-Jyrä, submitted 2003, 2005a) — then
we could get the coverage of CNDGs. However, we did not try explicitly to build a
Chomsky-Schützenberger style representation for CNDGs in this article.

One More Star-free Grammar If the axioms were studied more carefully using
the methods presented in (Yli-Jyrä, 2003a), it would be relatively easy to show that
they define star-free, FO[<] definable regular languages. Of course, studying these
directions is not the subject of this article, nor the theme of the current chapter.

Is Embedding More Complex than Crossing? A surprising and possibly very im-
portant observation on the structure of the axiom set can be made: although the brack-
eting with multiple colors simulates multi-pushdown automata, different subsets of the
resulting scheme stay relatively independent, as each of them correspond to disjoint
sets of axioms.

Although the separation increases the number of axioms, it helps us to see that the
dot-depth of the whole grammar is not higher than of any of these sub-grammars. In
fact, we would get a lower dot-depth complexity if we could increase the number of
colors while reducing the depth of bracketing (we cannot do this as long as we rely on
the alignment constraints).

This suggests that our approach to non-projective trees does not make FSIG gram-
mars computationally more complex. The effect could be verywell be the oppo-
site. This leaves us with the following challenging questions: Is thedot-depth hier-
archy(DDH) more robust than theChomsky hierarchy(CH) when performance of nat-
ural language is studied? Is multiplanarity (the number of stacks) a minor dimension
compared to the dot-depth (the stack size)?

4.4.4 Other Results

(I) Reduced Bracketing Does Not Give Much Advantage

The article contains some indication of possible problems related to the new represen-
tation. The problems concern, in particular, reduced bracketing. Reduced bracketing,
while useful in some respects, is also a source of additionaldifficulties: according
to section 5, the number of axioms grows linearly to a degree-like bound (r) for the
dependency graphs.

A Remark The extraneous axioms could have been avoided if full bracketing had
been used. Then, however, the required proper-embracementdepth would grow to
compensate for the lost advantage of reduced bracketing.

In dependency bracketing, both sides of the brackets need tocarry information
of the bracket label. The bracket labels are needed on both sides to implement co-
occurrence constraints specified for lexical categories. With full bracketing, constraints
can be enforced in the local bracket neighborhood of each word.
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The effect of reduced bracketing is in strict contrast with approximations of context-
free bracketing grammars, where reduced bracketing gives much more than it takes.
Similar reduced bracketing would be too unredundant for dependency structures, and it
would require inelegant compensation techniques, especially copying of labels. There-
fore, reduced bracketing does not seem to be a good idea in representations for depen-
dency structures.

(II) The Bracketed Strings Could Be Processed with a Multi-Tape Model

The introduction of the article presents an annotated surface string (deep string) by
partitioning it into subsequences. These substrings are presented as if they were on
synchronized tapes. We wrote: “When these subsequences are put on top of each
other we obtain the following combination:...” This implicitly anticipates a possible
implementation of the grammar using multiple, synchronized tapes. InFuture Work
section of the article, a multi-tape automaton is mentionedas a possible framework for
combining different kinds of deep strings into the same framework.

A Remark The idea of special synchronized multi-tape automata — or anequivalent
model — is elaborated further in chapter 5 of this book.

4.5 Conclusions

In this chapter, I have summarized the results of the three articles mentioned in the
beginning of this chapter. These publications investigatehow to extend flat represen-
tations of dependency structures to cover non-projective dependency trees. The results
indicate that the new star-free FSIG framework (Yli-Jyrä,submitted 2003, 2005a) can
be extended towards non-projective dependency trees.

As I approach non-projective dependency parsing and description of free word-
order languages, I reach a difficult area where many new interesting and open problems
start to come up much faster than can be exhausted in this short study.

I have dealt with some of these problems with considerable success and defined
same new concepts, grammars, measures, hierarchies and representations that can be
applied in the FSIG framework. The main practical outcome isa new type of FSIG. It
is probably widely applicable to free-word order languagesand potentially efficiently
parseable in practice.

The result also reveals many theoretical questions about the representations of
mildly context-sensitive grammars and on the computational complexity of their regu-
lar, performance-compatible approximations.



Chapter 5

Parsing Strategies

5.1 Orientation

5.1.1 Summary

This chapter basically proposes three optimization techniques for FSIG parsing. These
techniques are closely related to some generalized compilation methods for FSIG con-
straints and they optimize the FSIG parsing through decompositions that reduce the
size of the manipulated automata.

5.1.2 Problem

The current chapter investigates some parsing strategies with the aim of reduction the
overall parsing time complexity of FSIG parsing.

FSIG parser development is a huge challenge that cannot be solved merely through
employment of code-level optimizations in a library of automata operations. During
the period 1995 – 2002, I actually did quite a bit low-level programming (more or
less as a hobby) with the aim to implement better FSIG parsers. But I achieved only
relatively small improvements that are not of interest to the current dissertation.

However, more abstract investigation of parser design provides us with a com-
plementary approach that does not try to implement the wholeparser before finding
essential strategic improvements. This complementary approach has now turned out
to be very fruitful in terms of the gained insight. In order toattack, in the sequel, the
grand challenge of FSIG parser development, I will focus on solving three fundamental
problems. These problems have to do with the succinctness offinite automata during
FSIG parsing and they are the following:

1. state blow-up of the constraint automata as a function of the depth of bracketing,

2. state complexity of the intermediate and final results as afunction of the brack-
eting depth, and

59
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3. state complexity of the intermediate results when a high number of sparse con-
straints interact at a small number of distant string positions.

5.1.3 Articles

Considering the three succinctness problems mentioned above, I propose, respectively,
the following three techniques or strategies:

1. Decomposing the Grammar with Respect to Bracketing Depth,

2. Keeping Sub-grammars in Separation,

3. Solving Hard Portions Separately.

These strategies have been discussed in the contributed articles in the following way:

Decomposing the Grammar with Respect to Bracketing Depth

[7] Yli-Jyrä and Koskenniemi, 2004, “Compiling contextual restrictions
on strings into finite-state automata”

The article contains many newcompilation methodsfor restriction operations. It
presents, in particular, an efficient solution to a long-standing problem that concerns
compilation ofcontext restriction operation with overlapping centers. This solution
has already been adopted into a proprietary finite-state compiler (XFST), but some of
the further methods in the paper are better motivated in the FSIG application context.

In addition to the new compilation methods for context restrictions, the article in-
troducesgeneralized restriction, a conceptually elegant extension of the context restric-
tion operation. The generalized restriction operation canbe used in many ways. For
example, I can solve with it the problem where some context restrictions grow expo-
nentially according to the depth of bracketing. The growth cannot be avoided as long
as the context restriction is represented as a single automaton. The generalization can
be used to obtain aparallel decompositionof a context restriction. Each slice in the
decomposition can be compiled into substantially smaller automata than we would get
by compiling the original constraint into a single automaton.

The smaller, decomposed representation helps to reduce theamount of memory
that is needed to store constraint automata and their combinations. When the whole
grammar is decomposed according to different bracketing levels, we obtain, for each
bracketing level, a set of constraints that will be called, in this chapter, asub-grammar.
Each sub-grammar contains smaller automata than the original grammar. In contrast
to the collection of original, monolithic constraints, sub-grammars have slightly better
chances for combining a large number of constraints into a single automaton.

Keeping Sub-grammars in Separation

[8] Yli-Jyrä, 2004d, “Simplification of Intermediate Results during Inter-
section of Multiple Weighted Automata.”
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This article, or actually an extended abstract, sketches a methodological framework
for optimizations that are related to computation of intersection of multiple automata1.

The motivation for the presented approach comes from FSIG parsing. Typically,
FSIG parsing admits a quite small result containing only a few alternative parses —
especially if the grammar is Eng-FSIG. However, this is not true in the worst case
scenarios. With certain pathological grammars such as approximations for FCFBGs
and other “Bracketed finite-state intersection grammars (B-FSIGs)”, the final result
grows, in the worst case, exponentially according to the depth of bracketing realized in
the sentence, if the grammar (or its bracketing depth parameter) is part of the input. To
avoid exponential state-space blow-up ofintermediate results, we need to

• compute intersections with the sentence automaton separately for each brack-
eting level (sub-grammar) to obtain acompact representation(that consists of
several revised sentence automata), and

• enforce consistency in the compact representation before expansion to thefinal
intersection resultwhose size can be, in the worst case, exponential.

Enforcing consistency between the revised sentence automata can be done through
appropriatestructure sharingtechniques.

Implementationof structure sharing between separate automata require efficient
simplification methods. The simplifications presented in the article are capable of
extracting from automata generalisations that function asshareable interfaces for the
original automata. Different pairs of automata give rise todifferent interfaces between
them. Two automata can be made consistent (i) by making theirrespective interfaces
consistent through intersection, (ii) by restoring the hidden letters in the interfaces and
(iii) by combining the resulting interface automaton with the original automata.

Solving Hard Portions Separately

[9] Yli-Jyrä, 1995, “Schematic Finite-State Intersection Parsing”

This paper is, as a publication, in a different category thanthe other eight articles
in this thesis. It is, however, the original reference whereI first proposed an alphabet
extension and minimization method for FSIG. Some restricted methods presented in
this paper constituted a methodological background for more general approach that we
presented in [8].

In contrast to the new generalized simplification framework[8] that focuses on
“vertical” consistency between different levels of bracketing, this older paper discusses

1Many automata theorists would see intersection as an operation on languages rather than on automata
recognizing them. However, the direct product operation (Rabin and Scott, 1959) is too much associated
with certain automaton construction while we would like to stay here at a higher level of abstraction. Recall
that for example union of automata can be implemented in manydifferent ways: with or without epsilon
transitions, with optional determinization and with optional minimizationetc. The same holds for intersec-
tion of automata that can be computed also usinge.g.DeMorgan’s lawetc. My early article (Yli-Jyrä, 1995)
is, unfortunately, even more confusing as I identified in it the intersection automatonwith the accessible
subset of the direct product.
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“horizontal” consistency — long distance dependencies between position of the anno-
tated strings.2 Long distance constraints constitute a problem for exampleif the con-
straints that relate the beginning and the end of the annotated strings are applied to a
sentence automaton that has of lot of alternative states in the middle positions of the an-
notated strings. Such “thickness” in the middle may be a result of an earlier application
of constraints to the sentence automaton. Changing the order of constraint application
may help in some cases, but better ordering does not necessarily generalize across sen-
tences. However, there are some simplification methods thatcan extract portions of the
sentence automata and admit a much more general solution.

In the article, the idea of alphabet expansion was introduced to the FSIG frame-
work. The expansion was done here on the sentence-by-sentence basis. It makes
the sentence automaton and its restrictions — “specialized rule automata(SRAs)” —
structurally simpler3. The alphabet expansion transforms each annotated string in the
sentence automaton into a string that represents an unordered set of position-symbol
pairs. Although the original linear order is retained in simplifications, absolute posi-
tions of the symbols are now less crucial than in the originalautomaton. This leads
to two simplification methods that take advantage of the new alphabet: (i) the folding
procedure and (ii) an implicit representation of hidden transitions.

5.1.4 Outline of the Chapter

The substance and relevance of those methods that arise in the three accompanying
articles is discussed more broadly in sections 5.2 – 5.4. In section 5.5, I will give
a summary of some other approaches to FSIG parsing. These methods will not be
considered in my dissertation. The chapter is summarized insection 5.6.

5.2 Decomposing Grammar with Respect to Bracket-
ing Depth

Article

“Compiling contextual restrictions on strings into finite-state automata”,
Proceedings of Eindhoven FASTAR Days.

The paper contains a remark outlining the relative efforts of each author.

5.2.1 Introduction

Summary The article presents new compilation methods. Some of thesecan be
used to decompose constraints in FSIGs into separate constraints that will compile
into smaller automata.

2Note that long-distance dependencies in strings do not fully coincide with long-distance dependencies
in constituent-based structures.

3After the extension, the original sentence automaton recognizes a local string set, and thecompact
folded SRAs represent languages whose structure reminds of piecewise testable languages (Simon, 1975)
(cf. (Yli-Jyrä, 2001).
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Motivations Decomposing FSIG assertions into components according to the brack-
eting level is expected to have a big impact on the size of eachconstraint, and the way
the constraints in the grammar can be grouped together. All this might contribute to
parsing efficiency.

The idea of levels in FSIG originates from Kimmo Koskenniemi(personal com-
munication, 2001), but it has counterparts in other finite-state parsing frameworks
(including parsing with cascaded chunk parsers or iteratedapplication of finite-state
transducersc.f. Roche, 1997).

Previous Work Before we discovered the solution presented in the article,I had
made the following findings:

• I introduced a depth parameter that determined how many brackets may be nested
in each FSIG (Yli-Jyrä, 2003a). This made it possible to argue about an expo-
nential state complexity with respect to the bracketing depth.

• Different ways to compile bracketing restriction of FCFBGs(Yli-Jyrä, 2003d,
submitted 2003) were found4. Investigation of their state complexity helped us to
understand how the size of automata grows as a function of thedepth parameter.

• In (Yli-Jyrä, 2003a) I defined the semantics of general caseof the context restric-
tion operation using concatenation and boolean operations. This was a correct
method and a precursor for the new, simpler methods presented in (Yli-Jyrä and
Koskenniemi, 2004).

5.2.2 Results

(I) A New Compilation Method for Context Restrictions

The article presents a compilation method that has an elegant and simple structure.
Due to its efficiency and correctness, the method replaces some previous compilation
algorithms in some finite-state tools.

A Remark The compilation method does not need the full implementation of con-
catenation closures nor transducers. It is a good example ofthe use of finite number of
mark symbols as well as simple homomorphisms and Boolean combinations, in con-
trast to the iterated marking that is used in many regular operations in natural language
processing.

(II) Generalized Restriction Was Introduced

The article shows that many different kinds of restrictionscan be seen as special cases
of a relatively simple operation, generalized restriction.

4One more compilation method was used in a toy grammar that hasbeen put available on the web at
http://www.ling.helsinki.fi/˜aylijyra/BracketingCFG s/ .
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A Remark Generalized restriction operation opens new possibilities for the descrip-
tion of discontinuous structures such as idioms. Furthermore, using it with bracketed
string sets might allow for capturing tree adjoining grammars (c.f. Roche, 1997).

(III) Decomposition of Context Restrictions

The paper presents a flexible and correct method for decomposing context restriction
constraints into separate constraints according to the bracketing level. Decomposition
can make a DFA-based implementation of individual constraints exponentially smaller
according to the bound for bracketing depth.

A Remark Decomposition does not require any changes to the parsing algorithm,
but it takes one constraint and replaces it with a number of sub-constraints. The inter-
section of the sub-constraints will return the original one. However, the resulting sub-
constraints can be grouped and combined in new ways, which potentially improves the
efficiency of applying the constraints to the sentence automaton as the constraints can
be synthesized with each other earlier than otherwise.

The parsing can be split into well motivated subproblems andthe obtained results
can then be combined with each other. For example, it is ofteneasier to construct an
algorithm that checks several assertions at a certain levelof bracketing than to construct
an automaton that checks one assertion at several levels of bracketing (c.f. Yli-Jyrä,
2004a).

A Related Open Problem It is, in fact, an interesting open problem whether all sub-
constraints affecting the same bracketing level could be combined with each other. This
would allow the efficient processing of a chain of bracket pairs at the same nesting level
by one pass of an automaton. At the same time, constraints on reduced bracketing at
the same level could be checked.

Explanation Decomposing an FSIG constraint set with respect to bracketing depth
means splitting the whole grammar into sub-grammars such as“the grammar for sen-
tence level clauses”, “the grammar for the embedded clauses”, “grammar for the dou-
ble-embedded clauses”,etc. In a subgrammar corresponding to a particular bracketing
level, the new assertions will not interfere with other levels. The only exception is pre-
sented by those context conditions that are dependent on bracketing levels other than
the primary level of the subgrammar they belong to. Such context conditions are han-
dled correctly with our decomposition method, which is an important achievement and
necessary for implementing the original idea of the second author correctly.

Illustration: Fully Specified Tape Figure 5.1 shows a string or an input tape of a
one-tape sentence automaton. This annotated string is usedto represent a dependency
tree in (Yli-Jyrä, 2005a).
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(i) A Tape of One-Tape Automaton:

///// [ # this [ # ] man [ # ] ] ate [ # an [ # ] ] apple

Figure 5.1: A single tape containing a bracketed dependencytree.

The highest bracketing level:

∆ [ ∆ ] ∆ [ ∆ ] ∆

The one-but the highest bracketing level:

∆ BL ∆ [ ∆ ] ∆ [ ∆ ] BR ∆ BL ∆ [ ∆ ] BR ∆

The lowest bracketing level:

///// B∗

L
# this B∗

L
# B∗

R man B∗

L
# B∗

R ate B∗

L
# an B∗

L
# B∗

R apple

Figure 5.2: Decomposing a string into three languages.

Illustration: Under-Specific Tapes Figure 5.2 illustrates the effect of decomposition
of constraints in a very informal and rough way.

In the decomposition each tape becomes a language that is obtained by abstracting
away all the bracketing levels that are not to be specified exactly on the level to which
the tape corresponds. The outer brackets are specified byBL andBR and the embed-
ded bracketing is depicted with symbol∆. This symbol,∆, stands for the set of all
substrings with balanced bracketing up to a fixed depth. The last tape represents the
surface string as well as under-specified slots from which a specific bracketing can be
drawn (B∗

L
andB∗

R
stand for any sequences of left or right brackets). Note thatthe

intersection of the tapes in figure 5.2 results in the tape in figure 5.1.
In this illustration, we see that each sub-grammar containsfull bracketing, but only

one level of bracketing is fully specified. In addition to thefully specified level, there
are some information on the other bracketing levels.

5.3 Keeping Sub-grammars in Separation

Article

“Simplification of intermediate results during intersection of multiple
weighted automata,” inWATA 2004(Yli-Jyrä, 2004d).

The algorithms promised in the abstract have been initiallyimplemented, but the
code is not included in this dissertation.

5.3.1 Introduction

Summary

The extended abstract sketches a framework for local simplifications of automata dur-
ing FSIG parsing. The proposed simplifications allow for thebuilding of a consistent
compact representation for the ambiguity in the sentence and help avoidinside the
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parser the kind of state-space explosion that would be possible if the ambiguity was
presented using a single DFA as usual.

Problem

A first part of the problem is that decomposition of the grammar does not make the
final result of the parser smaller. Sub-grammars created in section 5.2 can be used
to do partial parsing in separate sub-parsers. These sub-parsers would apply a sub-
grammar to their own copies of the sentence automaton. The final versions of sentence
automata in different sub-parsers will represent partial forests only. The whole parser
needs to enforce consistency between the versions of the sentence automaton. A naive
way is to combine the final versions of the sentence automatonby direct product. A
better way would be to enforce consistency between the versions of sentence automata
and to produce, as a result, a set ofmutually consistentsentence automata. The strings
common to all these sentence automata can be found easily with a backtrack-free search
that starts from the left “corner” of the bracketed strings.

Another part of the problem is that DFA are, as representations of ambiguity, less
succinct thane.g. non-self-embedding context-free grammars (c.f. Anselmo et al.,
2003).

The following example shows a pathological FSIG grammar that would make an
exponential state-space blow-up when the depth of bracketing is increased:

# #⇒ [A∆]A|[B∆]B ;

[A ]A ⇒ a|[A∆]A|[B∆]B;

[B ]B ⇒ a|[A∆]A|[B∆]B;

Assume that∆ is a regular approximation for the set of bracketed string with maximum
bracket depthk. When these constraints are compiled and intersected with the language
{[A, [B, ]A, ]B}

∗a{[A, [B, ]A, ]B}
∗, we obtain2k different bracketed strings. The result

will requireO(2k) states.
Pathological grammars are relevant objects of consideration because they can lead

to substantial improvements that are advantageous to the parser’s overall efficiency (c.f.
Maxwell and Kaplan, 1996). If bracketing depth was still fixed to 1, as in the original
Eng-FSIG, we could not find an interesting worst-case scenario with exponential blow-
up.

Approach

We can recognize some possible cures for the ambiguity representation problem by
considering how FSIG represents its parse forests. While Eng-FSIG is very difficult
to analyze due to its flat structure, a more promising observation can be made from
our new classes of FSIGs. The new classes of FSIGs make a heavyuse ofbracketing
and thus there is an unexploited analogy to non-finite-stategrammars and parsers. It is
important that FSIG parsing algorithms also make use of elementary trees, even if they
are encoded through bracketing.

In many non-regular grammars, elementary trees have a three-fold function:
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• Elementary trees constitute the basis forambiguity packing and structure sharing
in compact representations of parse forests.

• Co-occurrence constraints can be expressed in thedomain of locality of elemen-
tary trees.

• Parsing algorithms can make use of locality of elementary trees when they en-
forceconsistencyof parse forests.

When these ideas are transformed to the FSIG, we need, in particular, a better
method for structure sharing. (Ambiguity packing for alternative sub-trees is already
implementable by minimal automata.) For parsing purposes,FSIG grammars must be
transformed to a format that allows efficient consistency enforcing techniques between
partial parse forests that are obtained by parsing the inputwith sub-grammars.

This format should be based on the notion of elementary constituent or dependency
trees, although each phrase or dependency link will be represented in FSIG through
matching brackets.

5.3.2 Proposed Solution

The extended abstract does not describe the proposed solution in detail. In order to
interpret the abstract properly, I have to recapitulate andillustrate the crucial aspects in
the proposed solution.

(I) Expanding the Common Alphabet of Automata Enables Referring to the States
of the Reference Automaton

The abstract says “we expand the common alphabet of the automata in such a way that
it is possible to determine the states of the reference automaton”. Alphabet extension
gives a simple technique through which the reference automaton can share its state
space with other automata.

An Illustration: The Reference Automaton According to the article we need also a
reference automaton. In our example, the reference automaton is as in figure 5.3. Each
transition that changes state in this automaton has a uniquelabel.

Σnon−bracketsΣnon−brackets Σnon−brackets Σnon−brackets

[ [

] ] ]

[

_  

_  _  _  _  _  _  

_  _  _  _  _  

Figure 5.3: The reference automaton.
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An Illustration: Annotated String with Extended Alphabet When the alphabet
of the grammar is expanded according to correspond to the reference automaton (this
expansion is a regular relation), we obtain a new one-tape representation where the
brackets have been differentiated according to their levelof nesting. To illustrate this,
we expanded the alphabet of the input tape in figure 5.1. The tape obtained is depicted
in figure 5.4.

A Remark Note that the brackets in the expanded alphabet indicate thesource state
of the reference automaton (or, in fact, both).

(II) Implementing Projections by Homomorphisms

Simplifications (such as merging of states and substitutionof letters with the empty
string) resemble “the projection operation of relation tables that is used in query opti-
mization in modern database systems”.

The abstract proposes a set of special simplifications during pairwise products of
automata. Some of the simplifications would change letters that are ignored by one
input automaton to empty strings. This makes the strings shorter, which often leads
(through epsilon removal and minimization) to smaller input automata. By means of
the following illustration we see how hiding of letters can be used to extract simpler
languages.

An Illustration

Projections in the Simplification Framework The proposed simplification
methods can be used to extract projections of the one-tape automaton that was shown
in figure 5.4. In the simplification framework, a projection operation could be a string
homomorphism that preserves the symbols that belong to somespecified equivalence
classes and maps the others into the empty string. Such an operation corresponds to
the simplification that substitutes some letters with the empty string.

The equivalence classes of alphabet of the shown reference automaton are:{[}, {]},
{[}, {]}, {[}, {]}, and{/////, #,this,man,ate,an,apple,. . .}.

We can use projections to extract simpler tapes from the tapeshown in figure 5.4.
Some resulting projections are shown in figure 5.5.

Simple Multi-Tape Model We need some grounding for the terminological
choiceprojectionwhen we talk about extracted tapes. Projection often refersto drop-
ping of attributes or tapes, but is also used for operations that return subintervals (Bow-
man and Thompson, 2000). In our case we actually might have both the interpretations.

///// [ # this [ # ] man [ # ] ] ate [ # an [ # ] ] apple

Figure 5.4: A single tape with an expanded alphabet.
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Extract only ](an unmotivated projection):
] ]

Extract first-level brackets:
[ ] [ ]

Extract all brackets:
[ [ ] [ ] ] [ [ ] ]

Extract all non-bracket symbols:
///// # this # man # ate # an # apple

Figure 5.5: The projection operation: some extracted tapes.

///// [ # this [ # ] man [ # ] ] ate [ # an [ # ] ] apple

[ [

] ]

[ [ [

] ] ]

///// # this # man # ate # an # apple

Figure 5.6: A run of a simple multi-tape automaton.

We can actually talk about dropping of tapes. To illustrate this, we interpret the
single tape depicted in figure 5.4 as a combination of tapes processed by a multi-tape
automaton. Let us first define a simplified model of multi-tapeautomata as follows:

• We call one of the tapes (tape 0) thefirst tapeand the other tapes are called
additional tapes.

• The first tape ispartitionedto the other tapes so that each input symbol on tape
0 has a unique copy on some of the other tapes.

• The symbols that are stored to the additional tapes are aligned according their
corresponding position in the first tape. The empty space (a place for a cell)
stand for an empty string in the input. When one of the additional tapes is being
read, the respective head skips automatically to the next symbol.

• The tapes are synchronized. Reading operations on the first tape reads also the
corresponding copy from an additional tape. Reading operations on an additional
tape also reads the symbol from the first tape. Reading beyondthe end of a tape
is not permitted.

Figure 5.6 illustrates how the tapes operated by asimple multi-tape automaton
(SMTA) may be filled. The figure represents tapes in a 4-tape automaton of the pro-
posed special type.

Figure 5.4 showed an example of an automaton with an extendedalphabet. This
one-tape automaton is also an alternative representation for the SMTA of figure 5.6.
Thanks to alphabet extension, a tuple of tapes that are accepted by a SMTA can be rep-
resented by means of a string in a one-tape automaton. When such one-tape automata
are interpreted as SMTAs, we gain access to crucial notions that are normally available
only in the SMTA model.
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The states of the reference automaton (figure 5.3) are encoded implicitly by the
letter equivalence classes, and now those classes correspond also to the additional tapes
of the SMTA.

A Remark The idea about “synchronized” SMTA has some earlier applications in
computational linguistics. The KIMMO model or so-called (original) two-level model
of morphology (Koskenniemi, 1983) implemented a special class of finite-state trans-
ducers as finite-state automata. These transducers specified same length relations (Ka-
plan and Kay, 1994). More general, but also “synchronized” transducers and SMTAs
have been studied in partition-based morphology (seee.g.Kiraz, 1994, 1996b,a, 1997,
2000; Kiraz and Grimley-Evans, 1998). Some other possible ways to interpret one-tape
automata as SMTAs are very powerful (Tamm et al., 2004; Tamm,2004).

It is important that the projections contain enough information for recovering the
full, synchronized structure when put together. The authoris aware of these problems
that arise when projections are combined, but the current article does not reveal suffi-
cient conditions for resynchronization of projections. Inrelational databases, we need
to share key attributes while here we have to keep some anchors.

Relational Projections The projection operation is used in relational database sys-
tems to optimize join queries (Ullman, 1988). Especially multi-way join queries are
often optimized by computing first auxiliary tables where only the common attributes
of each pair of tables are joined.

A projection of an SMTA is an SMTA that specifies only a subset of the original
tapes. Theprojectionoperation has been recently defined for a more general multi-tape
automaton model (Kempe and Champarnaud, 2004; Kempe et al.,2004a,b).

(III) The Simplification Method Implements Structure Shari ng

According to the article (the extended abstract), simplifications make it possible to rep-
resent the language of the final sentence automaton as an “intersection” of separate
[sentence] automata that correspond to the decomposition obtained in (Yli-Jyrä and
Koskenniemi, 2004). According to the this article, simplification method will imple-
ment “a kind of structure sharing”.

Structure sharing in the relational context could perhaps be understood as follows:
a cross-product or a join of twosetsof structures is represented implicitly or lazily
in its decomposed form, without actually expanding the representation into its normal
representation. Structure sharing is enabled by a mechanism that connects the sets in
an efficient manner. The question is: can we implement join for projections of SMTAs?

The article gives an answer: we can use intersection for the compact representation.
This requires, however, that the intersected automata haveidentical tape alphabets. For-
tunately, trivial cycles on the missing letters can be addedto the one-tape automaton,
as proposed in the article. With this cheap technique the letters that have been removed
in earlier projections can be re-introduced to the automaton. The obtained result au-
tomaton can now be intersected with the other automata.
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The outmost brackets projection with reservations:

1 Σ∗

2,3 [ Σ∗

2,3 ] Σ∗

2,3 [ Σ∗

2,3 ] Σ∗

2,3

The inner brackets projection with reservations:
2 Σ∗

1,3 [ Σ∗

1,3 ] Σ∗

1,3 [ Σ∗

1,3 ] Σ∗

1,3 [ Σ∗

1,3 ] Σ∗

1,3

The non-bracket projection with reservations:
3 ///// Σ∗

1,2 # this Σ∗

1,2 # Σ∗

1,2 man Σ∗

1,2 # Σ∗

1,2 ate Σ∗

1,2 # an Σ∗

1,2 # Σ∗

1,2 apple

Figure 5.7: Missing letters are inserted to projections during join.

Illustration Figure 5.7 illustrates a few possible tape sets of one-tape automata that
are obtained by introduction of the missing letters. These tape sets can be intersected
(joined) with the tape set of the fully specified one-level automata such as the one in
figure 5.4.

A Remark The simplification method proposed in the abstract (and in its interpre-
tation as multi-tape decompositions) are a special kind of parallel representations of
regular languages. The underlying idea is not, however, completely new, because par-
allel and serial decompositions of finite-state machines have been known for almost
fifty years, and a lot has been written about cascades of transducers (and sequential
machines) as well.

Relevance

Given the Boolean operations, projection and the join operation that is implemented
through re-introduction of letters, we now have a pretty good relational calculus that
is implemented by means of one-tape automata, but can also beinterpreted in terms of
SMTA. The details of this calculus go beyond the contributedabstract.

5.4 Solving Hard Portions Separately

5.4.1 Article

“Schematic finite-state intersection parsing,” a short paper presented in
NODALIDA 1995(Yli-Jyrä, 1995).

A short comment on this article is perhaps needed. The article is not fully compa-
rable with the other articles included to this dissertation. The article is composed in an
admittedly naive style, using some confusing terminological choices that doubtlessly
reflect my limitations at the time, 1995, when the article waswritten. For the time be-
ing, the article is, however, the latest and the only available description of some tech-
niques that are part of the methodological framework of my later publication (Yli-Jyrä,
2004d)5.

5I have described these methods more comprehensively in my master’s thesis (Yli-Jyrä, 1997), but the
thesis has been written in Finnish.
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As far as we are concerned with the techniques presented in the article, we can
still say that the article presents fundamental insight that led to our further methods.
Unfortunately, the article’s connection to minimization of incompletely specified asyn-
chronous automata became obvious as late as in summer 2004, and these connections
are now an area of further research (Yli-Jyrä, 2004c).

5.4.2 Introduction

Problem

Decomposing the grammar according to the bracketing level helps only if the complex-
ity of the grammar is mainly caused by deep bracketing. The sub-grammars obtained
by decomposition may still have a large number of complex constraints.

Moreover, the length of the deep strings processed by the parser grammars are a
multiple of the length of the input sentence, and the string may contain as many as
a dozen or twenty multi-character symbols per word. When constraint automata are
being applied to the sentence automaton, the size of the sentence automaton can grow
exponentially as a function of the sentence length, although such a growth will be lim-
ited by a linear function that is determined by the immense state complexity of the
grammar (Tapanainen, 1997). Accordingly, long sentences can be, in practice, sub-
stantially more difficult to parse (with unoptimized algorithms) than short sentences,
although we use finite-state techniques.

It is, however, interesting that most constraints automatain the compiled FSIG
ignore (i.e. never change state on) many letters in the deep strings. Usually they enforce
constraints that deal only with some tiny details of the whole string6. Therefore, a lot
of extra work is spent when the ignored portions of the deep strings are carried forward
by constructing new states and transitions for them while direct products are being
computed.

Definitions

In the paper, SRAs refers to temporary constraint automata that are computed during
parsing from the sentence automaton and a constraint automaton that is in the grammar.

5.4.3 Results

(I) Admissible Languages of Automata

The article proposes keeping the original sentence automaton fixed (as a reference au-
tomaton) during parsing.

A Remark In (Yli-Jyrä, 2004d) I introduced a notion of reference automata as a ba-
sis for (i) alphabet extensions and (ii) automata simplifications. Because intersection

6This is partly a consequence of the preferred tendency towards parsimonious analysis and elegancy in
grammar writing.
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One-Tape Representation with Extended Alphabet:

1///// 2[ 3# 4this 5[ 6# 7] 8man 9[ 10# 11] 12] 13ate 14[ 15# 16an 17[ 18# 19] 20] 21apple

Figure 5.8: One-tape automaton with a horizontally extended alphabet.

(identity mappings) is a special case of composition of relations, we can view a se-
quence of pairwise intersections as a transducer cascade. In transducer cascades, the
output language of previous transducer is the admissible language of the next trans-
ducer. The finite-state automata for which the admissible language is given can be
incompletely specified, which means that target states of certain transitions in the au-
tomaton are not specified. The unspecified target state of an transition can be inter-
preted as a set of states one of which will be chosen by an implementation (the choice
can be fixed or randomly changing).

(II) Incompletely Specified Automata

The article proposes adding some failure transitions to an incomplete automaton. The
transitions that were not added were not specified at all, which is in contrast to the usual
interpretation of state diagrams. According to the usual interpretation, the invisible
transitions correspond to transitions to a useless state.

A Remark For incompletely specified finite automata these there exists a large body
of literature on minimization algorithms (the fundamentalpapers include Paull and
Unger, 1959; Grasselli and Luccio, 1965). The problem ofincomplete finite-state ma-
chine(IFSM) minimization is in NP and NP-hard (Pfleeger, 1973; Garey and Johnson,
1979), but some special classes of IFSM have efficient minimization algorithms (Huff-
man, 1954; McCluskey, 1962; Paull and Waldbaum, 1967; Pager, 1971; Ehrich, 1972;
Tomescu, 1972). These classes include the incompletely specified asynchronous se-
quential machines, which are closely related to the compactfolded SRAs.

(III) Simplification of Specialized Rule Automata

The basic technique (Yli-Jyrä, 1995) allows for simplifying SRA. It consists of the
following steps:

1. Expansion of the alphabet of the SRA (Yli-Jyrä, 1995). Anexample is shown in
figure 5.8 that illustrates the effect of horizontal alphabet extension.

2. Setting the language of the reference automaton to an input restriction for the
SRA.

3. Make the paths in the SRA shorter. This can be done throughfolding7 reductions
(similar to minimization) that do not change the intersection of the reference
automaton and the SRA (Yli-Jyrä, 1995).

7The use of this term in the article was new rather than previously defined.
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The initial portion of the sentence in focus:

Σ∗

2[ 3# 4this Σ∗

6# Σ∗

8man Σ∗

10# Σ∗

12] Σ∗

14[ Σ∗

20] Σ∗

The center portion of the sentence in focus:

Σ∗

5[ Σ∗

7] Σ∗

9[ Σ∗

11] Σ∗ Σ∗

18# Σ∗

An final portion of the sentence in focus:

1 ///// Σ∗

13ate Σ∗

15# 16an 17[ Σ∗

19] Σ∗

21apple

Figure 5.9: Extracting horizontally defined portions of thesentence.

Several modifications to the basic scenario can be made. For example, we can
make simplifications before the SRA has been constructed (orduring its construction)
(Yli-Jyrä, 1997). Furthermore, in our new FSIG grammars the sentence automaton can
contain trivial cycles (cycles of length 1), which requiresslight modifications to these
algorithms.

A Generalization: Projections In addition to these we can include projection into
the set of available operations. Projections could be used to extract sub-constraints
over a subset of the expanded alphabet. The resulting sub-constraints will ignore the
remaining part of the expanded alphabet. (An efficient projection method for sentence
automaton was presented by Yli-Jyrä, 1997, and a similar method could be developed
for extended alphabet.)

Some examples of what can be done with projections are shown in figure 5.9. The
extension allows selecting symbols of interest into projections where other symbols are
simply ignored. Under certain assumptions we can actually allow anysymbol to occur,
thus we useΣ∗, the universal language, in thedon’t careportions.

The idea of sub-grammar interaction through simple run-time computed constraints
in a conjunctive representation resembles query optimization with projections in data-
base systems (Ullman, 1988).

In the literature there are examples of efficient and compactrepresentations for
string sets where strings or tuples contain don’t care portions. These include Patricia
trees (Morrison, 1968) andbinary decision diagrams (BDDs) (Bryant, 1986).

The first linear-time minimization algorithm for acyclic finite automata is due to
(Godlevskii and Krivoi, 1986) (c.f. Revuz (1991, 1992)) An algorithm that combines
the “folding” reduction with an acyclic minimization algorithm has been presented in
(Yli-Jyrä, 1997).

A Remark: Implementation The presented approach has been implemented par-
tially (Yli-Jyrä, 1997), but its effectiveness was limited because we did not separate
different bracketing levels into different sub-grammars (Yli-Jyrä and Koskenniemi,
2004), which is a more important optimization. When we implemented an experi-
mental parserSkeemaParserin 1995–1996 we used only folding reductions, but the
advantages of the reductions were lost when we combined reduced SRAs with each
other. This is in analogy with the problem of sub-grammars: after they are combined,
the state blow-up may occur again. The recent optimization based on subgrammars
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makes individual constraints and versions of sentence automata substantially simpler,
which makes both vertical (Yli-Jyrä, 2004d) and horizontal (Yli-Jyrä, 1997) simplifi-
cation methods effective.

(IV) Horizontal Expansion of the Alphabet

Perhaps the most interesting and obvious contribution of the article is the alphabet
expansion that is done for the sentence automaton and the SRAs.

Remarks Horizontal alphabet extension (based on string positions)is a very power-
ful method. In fact, it squeezes more power out of finite techniques than one might
have thought: alphabet expansion that ispolynomiallydependent on the size of the in-
put (polynomial to the number of string positions,nO(1)) could be used to transform
polynomial time(PTIME) complete probleminstancesinto a form where finite-state
techniques could be used to carry out the problem solving. Inthe world of first order
definability and descriptive complexity (figure 3.1) polynomial alphabet extension is
closely related to precomputed variables and to thefirst order queries with BIT and
polynomial number of extended variables(FO[nO(1)]) complexity class (Immerman,
1999). Note, however, that in the article I made only linear alphabet expansion, which
is a special case of polynomial expansions.

Another interesting, but not a completely new observation (c.f. Medvedev, 1964)
concerns the structural complexity of regular languages and homomorphic represen-
tations: horizontal and vertical alphabet extensions can be used to represent regular
languages with simpler regular languages and a homomorphicmapping.

There is one more reason why extended alphabets are nice. A larger space of sym-
bols in the sentence automata leads to efficient heuristics that can be used to simplify
the versions of the sentence automata by computing the largest common subset of their
input alphabets and removing all transitions whose label are outside of this subset.

It would be naı̈ve to forget that input alphabet size is also an important source
of complexity. It may affect the practicality of finite-state automata because the in-
volved input alphabets can become very large when horizontal alphabet extension is
used. We have, however, learned in experience that the size of the input alphabet is a
much smaller practical problem than the size of the state set, due to many compression
techniques available at the implementation level.

The technique that uses an extended alphabet to encode contexts of each letter is
analogous to

• the use of intermediate alphabets in transducer pairs (Roche, 1995),

• cascade decompositions using covers (Zeiger, 1968),

• factored extraction of constraints (Maxwell and Kaplan, 1993), and

• named disjunctions and contexted unification (Maxwell and Kaplan, 1991).

The above techniques provide an extremely flexible framework for computing in-
tersections, but it has been long an open problem how it couldbe used in the most effi-
cient way. The cure will be the same in both cases: use projections to extract tapes and
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positions where sub-grammars overlap and solve the intersection problem separately
in this new auxiliary grammar. Afterwards consistency between the sub-grammars will
have to be enforced. Inconstraint satisfaction problem(CSP) solving, this approach
corresponds to the so-calledcycle cut-setor tree-clusteringschemes.

5.5 Other Parsing Strategies

There remain a number of parsing strategies that we do not investigate in this disserta-
tion. These are listed in this section because it is important to know that I have been
aware of them when choosing those that are in my articles. Unfortunately, the space
does not allow discussing pros and cons of each method.

5.5.1 Searching Methods

Backtracking Search Tapanainen (1997) has presented several methods that search
individual strings from the intersection of the sentence automaton and the constraints.
His depth-first algorithm that enumerates paths in the direct product of the automata is
perhaps better characterized as a backtracking search algorithm.

Depth-first search with thousands of automata and rather long search paths calls
for a lot of stack storage, but if the constraint automata were replaced with SRAs, one
could perhaps implement a more sparce data structure for thestack as well.

Improved Backtracking Search A backtracking search can be improved using so-
called intelligent backtracking (see Bruynooghe, 2004) that caches information about
failure causes (memoization). Tapanainen (1997) improveshis depth-first search algo-
rithm by combining the sentence automata with a set of carefully selected rules before
the depth-first search starts. In fact, I took a further step towards that direction in my
master’s thesis (Yli-Jyrä, 1997) and in 1997-1998 in my second FSIG parser, by sug-
gesting that automata representing the constraints shouldbe transformed into acyclic
automata (by combining the sentence automaton to them) before the search starts. Vari-
able ordering is another optimization technique, which might be implemented with
compactspecialized rule automata(SRAs) (Yli-Jyrä, 1995): the original string posi-
tion of each letter (a position corresponds to an attribute or variable) is indicated in
each extended symbols that is used in SRAs.

Some FSIG parsers allowed soft constraints (Voutilainen, 1994a) that were used
to reduce the ambiguity on the basis of heuristic constraints. Soft constraints can be
evaluated by using the best-first search strategy, but they seem to be feasible only after
the hard constraints have been applied and there remains a reasonably small number of
potential parses.

Dynamic Elimination of Useless Constraints Typically there are many constraints
that may affect the parsing result only if certain special annotation features are pre-
sented in the sentence automaton. Based on this observation, Tapanainen (1993) de-
vised a method that determines dynamically, on a sentence-by-sentence basis, which
constraint automata are activei.e. can reject a string that is accepted by the original
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sentence automaton. Inactive constraint automata can be put aside when the search for
parses is performed. Furthermore, more inactive rules can be detected by computing a
tentative intersection (Tapanainen, 1997) or an SRA (Yli-Jyrä, 1997).

5.5.2 Automata Construction Methods

Parsing by Breadth-First Intersection Tapanainen (1993) has investigated some
intersection algorithms that computed the initial-state accessible states in the direct
product of the sentence automaton and all constraint automata. Some of his algorithms
worked in the breadth-first order. He also investigated the construction of the mini-
mized automaton through union and complementation (Tapanainen, 1991).

The transition matrix of the huge automata can be represented compactly with
BDDs. Symbolic BDD-based breadth-first traversal methods are discussed in (Ca-
bodi and Camurati, 1997). Representing FSIG very compactlyas a LF-AFA (Salomaa
and Yu, 2000) was suggested by Yli-Jyrä (2003a). Intersection of a LF-AFAs with the
sentence automaton resembles a breadth-first search.

Optimizing the Order of Constraint Application The direct product of the sen-
tence automaton and the constraint automata, or its minimized equivalent, can be com-
puted in a pairwise manner, by combining two automata at a time. In the parser, this can
be done by combining a constraint automaton with the currentversion of the sentence
automaton, which gives rise to a sequence of restricted versions of the sentence au-
tomaton. The order in which the constraints are applied to the sentence automaton can
make considerable differences to the parser’s efficiency. Various strategies for selecting
an economical order on the sentence-by-sentence basis havealready been investigated
(Tapanainen, 1991, 1993, 1997).

Finite Cover Automata In FSIG parsing, the length of deep strings are linearly
bounded by the length of the input sentence. Thus, the set of potential deep strings
is finite. Minimaldeterministic finite cover automata(DCFAs) are an optimized rep-
resentation for finite languages (Câmpeanu et al., 1999) and the set of DFCAs is ef-
fectively closed under language intersection (Câmpeanu et al., 1999), which suggests
a possible application in FSIG parsing.

Optimizations in the Grammar Optimizations in the grammar preprocessing can
lead to substantial improvements as we will demonstrate in this chapter. Tapanainen
started investigation of grammar optimizations by considering techniques that helped to
find constraint automata whose combination remain small (Tapanainen, 1992). These
combination techniques are complemented with techniques that decompose constraints
into a conjunction of simpler constraints. My first compilation algorithm for context
restrictions (Yli-Jyrä, 2003a) could be used for that purpose.

Furthermore, there are techniques that simplify constraint automata under state
compatibility that is determined by computing tentativelya direct product of two con-
straint automata. The tentatively computed product can interpreted as an incompletely
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specified automaton and minimized using appropriate algorithms. The approach re-
sembles simplification through folding (Yli-Jyrä, 1995),with three exceptions: (i) It
can merge states that do not share common paths, (ii) it uses state covers rather than
state partitions, and (iii) it does not take advantage of alphabet expansions. Tapanainen
(1992) discusses simplifications that just erase states of an automaton on the basis of a
tentative intersection with some fixed constraint (c.f. our reference automaton).

Local Reductions In 1995-1996, I implemented a parser, called theSkeemaParser,
which contained the reduction method (“folding”) for SRA (Yli-Jyrä, 1995, 1997). It
turned out that although the method often reduced the size ofSRA to a tenth of the
original, the benefits did not carry over to the intersectionof several SRAs. Because
almost all constraints interacted with bracketing, reductions of automata failed to de-
compose the whole intersection problem into small sub-problems that would have been
persistent.

5.5.3 Parsing with Consistency Enforcing Techniques

Basic Definitions Automata are a useful representation for constraint relations (Vem-
paty, 1992; Amilhastre et al., 2001; Yli-Jyrä, 2001), and they can be used for solving
CSPs (Vempaty, 1992). It should be noted, however, that CSP solving through au-
tomata is a more general problem than FSIG parsing, because each FSIG is fixed rather
than a part of the parser’s input.

We can also reduce FSIG parsing to CSPs. First we transform the constraints into
deterministic acyclic automata as explained in section 5.5.1, then add padding to make
the recognized strings equal in length. After this, we interpret eachpositionin padded
deep strings as a constrainedattribute. We can now either (i) interpret thesetsrecog-
nized by the acyclic automata as constraint relations over these attributes, (ii) align the
states in each automaton, let attributes represent the source and target states and input
letters at each position, and represent transitions through ternary relationsover these
attributes.

Efficient CSP solvers first apply so-called consistency enforcing techniques in order
to simplify the constraint relations and domains of attribute values. After this, if neces-
sary, they solve the problem with a complete and sound brute-force method such as a
backtracking search or synthesis of combined constraints.The simplest consistency en-
forcing techniques include algorithms fornode consistency(NC),arc consistency(AC)
andpath consistency(PC). The widely knownconstraint propagation(CP) algorithm
is a combination of NC and AC techniques.

An Alternating Method Tapanainen (1997) implements a heuristic method that al-
ternates between a synthesis method and a compression method: During the synthesis
phase, several constraints are applied to the sentence automaton. When the result grows
too big, a compression algorithm compresses the sentence automaton by merging al-
ternative states.
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Approaches Based on Strict Local Testability This approach (ii) has been applied
to the KIMMO model in two-level morphology (Barton, Jr., 1986b; Sproat, 1992) (Bar-
ton, Jr., 1986a; Barton, 1987; Sproat, 1992). Their approach applied node consistency
over the attributes corresponding to states and letters (moreover, they simultaneously
kept relations representing automata transitions consistent). A similar method could
be implemented without explicit attributes if we expand thealphabet of the acyclic
automata in the manner proposed in (Yli-Jyrä, 2001, 2003b)8. Piitulainen (1995b) im-
plements a more general heuristics that would enforce consistency beyond adjacent
positions to an extended neighborhood. This generalization is still not general enough
for FSIG grammars because it is at its best when the FSIG constraint languages are
strictly locally testable(McNaughton and Papert, 1971; de Luca and Restivo, 1980;
Caron, 2000)9.

A Bounded Tree-width Approach Yli-Jyrä (2001) starts from the approach (i)
(where padded finite languages are constraint relations), but sketches a method that
would decompose the constraint relations, represented by automata, into smaller rela-
tions. The assumption was that a decomposition into binary relations would be pos-
sible10, and furthermore, that the resulting constraint graph (a graph showing the de-
pendencies between the positions) would have bounded tree-width. However, these
assumptions are unrealistic: even dependency grammars, which are otherwise very
simple, would require more expressive data structures11.

An Attempt to Capture Elementary Trees When I had started my investigations
in 2002 (Yli-Jyrä, 2003b), I made a conjecture that in the reduction to a CSP it would
be helpful to decompose constraint relations in a more general fashion compared to
Yli-Jyrä (2001). The conjecture was motivated by an analogy to context-free parsing
using a CP technique (Morawietz, 2000a,b; Blanche and Morawietz, 2000). At that
time, I was aware of the fact that CSP with a bounded tree widthis solvable in linear
time according to the number of nodes in the tree, which meansthat I realized that I
was not trying to replace FSIG parsing with an intractable CSP instance.

Unfortunately the analogy between a CSP over items in parse forests and a CSP
over string positions turned out to be imprecise: in Morawietz’ approach, bounded
sized items corresponded to subtrees covering an unboundednumber of strings, while
bounded string subsequences would correspond to a set of very small trees or to dis-
continuous patterns that are not trees at all. What was missing in constraints over

8Based on our experiments on an equivalent method, half of theword readings could be removed in this
way.

9The attribute ’strictly’ is essential:locally testable languagesare Boolean combinations of strictly lo-
cally testable ones, andstrongly locally testablelanguages are Boolean combinations of a subset of locally
testable ones. It is probable that Piitulainen’s approach would not work very well if constraint languages
belonged to these more general classes but fail to be strictly locally testable.

10This is true only for a very restricted subclass of FSIGs, where the constraints are definable by existen-
tially quantified two-variable formulas.

11The balanced bracketing used in our representation is not expressible with attribute pairs. However, if
the length of sentences was bounded, we could index the word positions in the sentence with a finite set of
symbols. This would make government relation expressible by a cubic number of binary relations over pairs
of attributes.
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string positions was the ability say: “whatever there is between these two positions, if
it contains any brackets, that bracketing must be balanced.”

5.6 Conclusions

Chapter 5 has discussed optimizations in FSIG parsing on thebasis of the accompany-
ing articles and three problems that are related to compact representation of ambiguity.

The first accompanying article presented several compilation methods for regular
restriction expressions. For FSIG parsing, a particularlyinteresting method for ob-
taining a sub-grammar from the FSIG regular expressions waspresented. With this
method, a certain exponential blow-up scenario for constraint automata was avoided.

The remaining two articles sketched various simplificationtechniques that were
based on alphabet expansions, reference automata, string morphisms and local au-
tomata transformations under (implicit) invariants. The simplification techniques pro-
vide an efficient solution to intersection of regular languages without construction of
their full direct product. These techniques helped to avoidblow-up of intermediate
results in a couple of worst-case scenarios of FSIG parsing.

Alphabet expansions can be used to make the processed languages in FSIG parser
structurally simpler. They differentiate the regular languages from the star-free ones
(Medvedev, 1964), decrease dot-depth of start-free languages (vertical alphabet exten-
sion) and even make the languages in the parser local or piecewise testable (horizontal
alphabet extension). These effects of alphabet expansionsseems to be a cornerstone for
FSIG parsing in overall and they are related to homomorphic representations of regular
languages.



Chapter 6

Concluding Remarks and
Further Issues

6.1 Interconnections between the Articles

The organization of this dissertation — the fact that it consists of separate articles —
implies that every article has its own more specified aim. At the same time articles
contribute something to the general goals of this dissertation. The resulting intercon-
nections between the articles are complex.

Some most obvious interconnections have been presented in figure 6.1. In the fig-
ure, the topmost three boxes stand for the three problems that have driven the research.
The articles are numbered as [1]...[9] like in chapter 1. Thethree different box styles
correspond to the three different problems that are discussed in chapters 3 - 5. The
arcs show either how an idea pops up from an article or how an idea leads to further
ideas and articles. The number of connections and ideas available are reduced in this
pictorial presentation for simplicity.

PROBLEM 2:

LINGUISTIC APPLICABILITY COMPLEXITY ANALYSIS

PROBLEM 1:

[5] A Hierarchy... [4] Multiplanarity...

[2] Regular...

[6] Axiomatization...

PROBLEM 3:
PARSING STRATEGIES

[3] Approximating...

[7] Compiling...

[1] Describing...

Chomsky−Schutzenberger
representations

limited bounded
bracketing [8} Schematic...

[9] Simplification...

extended domain
of locality

performance
constraints

extended alphabet

decomposition
wrt. bracketing

Figure 6.1: A (slightly more) detailed overview of the dissertation.
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6.2 Gained Insight

The most important findings in this dissertation can be summarized as follows:

• The constraint used in the new classes ofstar-free finite-state intersection gram-
marsFSIG correspond to languages that do not make use of the Kleene star or
second-order quantification at all.Limited bounded bracketing(LBB) in deep
strings provides a backbone that allows encoding of variousproperties of sen-
tences using constraints on the bracketing. In addition to phrase-structure brack-
eting, there is a special bracketing for word-to-worddependency links.

• There are relevantcorrespondencesbetween depth of bracketing, dot-depth, de-
scriptive and parallel computational complexity, exponential state-complexity,
and succinct representations for constraints and parse forests. Computational
complexity of approximations of context-free grammars andmildly context-
sensitive grammars remarkablycoincidein the dot-depth hierarchy.

• New complexity measuresfor dependency trees have been proposed and suffi-
cient conditions for theiracyclicityhas been presented. Structures generated by
context-free phrase-structure and dependency grammars and non-projective de-
pendency grammars can beapproximatedwith FSIG in a very accurate manner,
and parsed in linear time.

• New compilation methods based onhomomorphisms of regular languagesin-
stead of general transducers provide new approaches for compilation of many
regular expression operations in natural language processing. Alphabet expan-
sion (or extension) and its cancellation withhomomorphismsis also a corner-
stone for compact and flexible representation of intermediate results in parsing.

6.3 Some Future Directions

This dissertation prompts many further theoretical and experimental follow-up research
areas. We can only mention here a few possibilities.

In mathematical linguistics, our findings related to star-freeness and expanded al-
phabets can lead to finer results on the low complexity of representations of natural
language grammars and parsers. Parameterized complexity of syntactic structures in
natural language and alternative hierarchies ofe.g. mildly context-sensitive gram-
mars gives rise to exciting opportunities: Psycholinguistic and corpus-based investi-
gations of structural complexity of natural languages could be based on such hierar-
chies. The obtained complexity restrictions could be of great value to unsupervised
procedures for learning FSIG grammars from texts. Because bracketed representations
provide regular FSIG approximations in a straightforward manner, development of
Chomsky-Schützenberger style homomorphic representations for all important mildly
context sensitive grammars could be a well-defined and motivated objective for new
researchers. Automatic extraction of approximated mildlycontext-sensitive grammars
from treebanks could accelerate development of large-scale FSIG grammars consider-
ably or accelerate processing of treebank queries (c.f. Yli-Jyrä, 2005c). Furthermore,
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new bracket-based representations might also be developedfor one-level computational
morphology and phonology (c.f. Yli-Jyrä and Niemi, 2005). For ordinary linguists,
development of a flexible and high-level FSIG rule formalismwould increase accessi-
bility and attractiveness of the FSIG framework. Such a formalism could incorporate
various descriptive approaches and encapsulate axiomatisations and bracket-based rep-
resentations in an elegant and uniform manner.

Despite of these abundant possibilities for further research, it is even more im-
portant that the grammars and parsing strategies presentedin this dissertation become
implemented and widely accessible. An efficient and usable FSIG parser would guar-
antee a growing interest in the framework and allow practical evaluation of the methods
that has now been presented. Development of an FSIG parser would demand, however,
resources that we do not currently have.

To conclude, this dissertation would be most satisfactory if it would inspire focused
research and development projects on FSIG approach, facilitate application of related
funding and trigger development of linguistically and practically appropriate, widely
usable finite-state based environment for a large group of computational linguists.
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Lecerf, Yves. 1961. Une représentation algébrique de la structure des phrases dans diverses
langues naturelles. Notes in Comptes Rendus [hebdomadaires] des Séances de l’Academie
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dependency grammars. In G. P. Gerhard Jäger, Paola Monachesi and S. Wintner, eds.,
Proceedings of the 9th conference on Formal Grammar 2003 ”FGNancy”, pages 151–
165. Pre-proceedings. Available athttp://cs.haifa.ac.il/˜shuly/fg04/ .
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Errata for Contributed Articles

[1] Describing Syntax with Star-Free Regular Expressions

The first bullet under section 3.4 should start:

• The phrase “every @>N @ 6,000 @>N @ miles N @ADVL” satisfies ...

[4] Multiplanarity — a Model for Dependency Structures in Tr eebanks

Under the headerPlanarity, I made an attempt to define [semi]planarity by means of a logical
restriction similar to the projectivity condition. The formally presented semi-planarity restriction
in the article is, unfortunately, completely wrong1. First, we cannot make – as suggested – a
transitive closuregoverns∗ symmetric by writing(governs∪ governs−1)∗. The given formula
is satisfied by a graph where all nodes govern each other. The semi-planarity condition for
dependency graphs can still be expressed withprec∗ andlinked as follows

if (A linked B) ∧ (A prec∗ B) ∧ (C linked D) ∧ (C prec∗ D) ∧ (A prec∗ C)
then(B prec∗ C) ∨ (D prec∗ B).

(Note that we did not try to express planarity. It is well known that planarity is not definable in
FO logic.)
Furthermore, the caption of first figure claims wrongly that the shown trees arenot planar.
Instead, they are planar but not projective. Finally, thereis an inadequate reference to Wartena
(2000). Instead, my intend was to make reference to Wartena (2001) where he definesextended
right-linear storage grammars.

[5] A Hierarchy of Mildly Context-Sensitive Dependency Grammars

The pre-proceedings start numbering of definitions from 7 and theorems from 6. The numbering
is not rational and we corrected it in the reprinted article.On page 161, the rule on the fourth
line should read:

w(1/X 1/V1 1/V2 . . . 1/Vn ∗ 1/Y1 Y2 . . . Ym), and

Furthermore, on page 163, the 13th and 14th lines from the bottom:
←−
Γ and

−→
Γ should be

swapped. Finally, on page 164, section 11.7 mixes definitions of dependency trees and projective
dependency trees. It should read:

Firstly, we start from the class of CNDGs, which guarantees acyclicity. Secondly,
we require that all the rules of the forms (11.7) and (11.8) should contain at most
one link (a link to a dependent), and that rules of the form (11.9) and (11.10)

1I am grateful to Marco Kuhlman for pointing out this silly error.
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should contain exactly one governor link (→ in-degree at most one). Thirdly, we
assert that, in the complete derivations, the number of nodes that do not contain
any governor links have to be exactly one (→ connected graph). In this way we
obtain grammars for non-projective dependency trees. Construction of HGDGs is
on page 161.

[7] Compiling Contextual Restrictions into Finite State Automata

On the third page, under the formula (1), the condition forv andy should have readv ∈ Vi and
y ∈ Yi because we intended to define eachVi andYi as total contexts. On page 13, the last
column of table 1 contains errors. The column should containthe items:3d12 (header), 12, 36,
108, 324, 972.

[8] Simplification of intermediate results during intersection of multiple weighted
automata

Item [4] in the list of references should read:

P. Tapanainen. Applying a finite-state intersection grammar. In E. Roche and
Y. Schabes, editors,Finite-state language processing, pages 311–327. A Bradford
Book, MIT Press, Cambridge, MA, 1997.

[9] Schematic Finite-State Intersection Parsing

In the end of section 4, the last occurrence ofσ (right above the figure 10) should have been
printed asρ.

The up-to-date list of corrections will be available on the WWW page devoted to this disser-
tation. Currently it is located at

http://www.ling.helsinki.fi/˜aylijyra/dissertation/ .
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