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Abstract

This thesis describes a treebank-based approach to automatically acquire robust,

wide-coverage Lexical-Functional Grammar (LFG) resources for Chinese parsing

and generation, which is part of a larger project on the rapid construction of deep,

large-scale, constraint-based, multilingual grammatical resources.

I present an application-oriented LFG analysis for Chinese core linguistic phe-

nomena and (in cooperation with PARC) develop a gold-standard dependency-bank

of Chinese f-structures for evaluation. Based on the Penn Chinese Treebank, I

design and implement two architectures for inducing Chinese LFG resources, one

annotation-based and the other dependency conversion-based. I then apply the f-

structure acquisition algorithm together with external, state-of-the-art parsers to

parsing new text into “proto” f-structures. In order to convert “proto” f-structures

into “proper” f-structures or deep dependencies, I present a novel Non-Local De-

pendency (NLD) recovery algorithm using subcategorisation frames and f-structure

paths linking antecedents and traces in NLDs extracted from the automatically-built

LFG f-structure treebank. Based on the grammars extracted from the f-structure-

annotated treebank, I develop a PCFG-based chart generator and a new n-gram-

based pure dependency generator to realise Chinese sentences from LFG f-structures.

The work reported in this thesis is the first effort to scale treebank-based, prob-

abilistic Chinese LFG resources from proof-of-concept research to unrestricted, real

text. Although this thesis concentrates on Chinese and LFG, many of the method-

ologies, e.g. the acquisition of predicate-argument structures, NLD resolution and

the PCFG- and dependency n-gram-based generation models, are largely language

and formalism independent and should generalise to diverse languages as well as to

labelled bilexical dependency representations other than LFG.
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Chapter 1

Introduction

1.1 Motivation

Deep grammars relate strings to meaning representations in the form of logical

forms, deep dependencies, or predicate-argument-adjunct structures. Most funda-

mental tasks in Natural Language Processing (NLP), such as Natural Language

Understanding (NLU) and Natural Language Generation (NLG), would almost cer-

tainly benefit from deep and wide-coverage grammars. Traditionally, deep wide-

coverage grammatical resources, particularly in unification or constraint-based for-

malisms such as Lexical-Functional Grammar (LFG) (Kaplan and Bresnan, 1982;

Dalrymple, 2001), Head-Driven Phrase Structure Grammar (HPSG) (Pollard and

Sag, 1994), Combinatory Categorial Grammar (CCG) (Steedman, 1996) or Tree-

Adjoining Grammar (TAG) (Joshi and Schabes, 1992) are developed by hand. Man-

ual construction of such grammars is knowledge-intensive, time-consuming and pro-

hibitively expensive, especially when:

∙ scaling beyond small fragments to unrestricted, real texts;

∙ migrating to diverse languages with typological differences.

In contrast to deep grammars, the relatively shallow syntactic formalism of

Context-Free Grammar (CFG) is often adopted for building treebank resources (a

large set of sentences hand-labelled with syntactic structures). In the last fifteen

1



years, the availability of treebanks such as the Penn Treebank (Marcus et al., 1993)

has led to extensive efforts in treebank-based, statistical parsing models using ma-

chine learning techniques (Collins, 1999; Charniak, 2000; Klein and Manning, 2003;

Petrov and Klein, 2007). These statistical parsers are trained automatically on the

treebank without any requirement for a hand-crafted grammar, achieving broad-

coverage, robustness and competitive performance. However, as many treebanks

only encode purely syntactic information (and some functional roles and non-local

dependencies by means of functional labels and empty nodes, which, however, are

often ignored in the parsing models), the analysis provided by most of these parsers

is too “shallow” to represent important semantic information, as compared to deeper

unification or constraint-based grammars.

To overcome this dichotomy, in more recent years a growing body of research has

emerged to automatically acquire TAGs (Xia, 1999; Chiang, 2000), CCGs (Hocken-

maier and Steedman, 2002; Hockenmaier, 2003), HPSGs (Miyao et al., 2003, 2004)

and LFGs (Cahill et al., 2002, 2008) from the Penn Treebank. These approaches

combine the use of linguistically sophisticated, rich models of syntax and semantics

with the data-driven methodology informed by probability theory and machine-

learning techniques. A common characteristic of the research is that, to date, it

has focused mainly on English. Chinese, one of the major languages in the world

spoken by over 800 million people, and typologically very different from English,

is currently the focus of much attention. Nevertheless, as yet natural language

processing of Mandarin Chinese is far behind that of English: deep wide-coverage

grammatical resources for Chinese are rare, and analysis of Chinese is almost entirely

confined to shallow syntactic parsing or purely local dependencies.

The objective of the research described in this thesis is to produce treebank-

based, wide-coverage and high-quality LFG resources for Chinese. In order to

achieve these goals I investigate:

∙ the impact of language-specific properties of Chinese on the automatic ac-

quisition of deep, wide-coverage, probabilistic, Chinese LFG resources from

treebanks.

2



∙ the use and application of such automatically acquired resources to two fun-

damental NLP tasks for Chinese, namely, parsing and generation.

1.2 Background

1.2.1 Lexical Functional Grammar

The thesis is primarily grounded in the theory of LFG and investigates two funda-

mental issues in NLP, namely parsing and generation for Chinese, within the LFG

framework.

Lexical Functional Grammar is a unification- or constraint-based grammar for-

malism introduced by Kaplan and Bresnan (1982) and further evolved in Kaplan

(1995), Bresnan (2001) and Dalrymple (2001), etc. LFG posits two levels of syntac-

tic representation that are most relevant to this thesis:

C(onstituent)-Structure uses a conventional CFG/phrase-structure trees encod-

ing linear order, hierarchical groupings, and syntactic categories of constituents.

It is used to represent language-particular constraints on word order and

phrase structure.

F(unctional)-Structure characterises more abstract grammatical relations, such

as subj(ect), obj(ect), comp(lement) or adjunct. F-structures are hier-

archical attribute-value matrices approximating to basic predicate-argument-

adjunct structures or deep dependency relations. F-structures consist of the

following types of attributes:

∙ pred is the predicate/head of the local f-structure. The value of pred is

a semantic form/subcategorisation frame that is uniquely instantiated for

each instance, reflecting the unique semantic contribution of each word

within the sentence.

∙ Grammatical Functions (GFs) indicate the functional relationship be-

tween the predicate and dependents, whose values are subsidiary f-structures.

GFs come in two different types:

3



– governable GFs/arguments are subcategorised for by the local pred-

icate, such as subj(ect), obj(ect).

– ungovernable GFs/modifiers like adjunct, coord(inate) are not

subcategorised for by the predicate.

∙ Atomic-valued features describe linguistic (morphological or semantic)

properties of the predicate by simple symbol values, such as tense, as-

pect, mood, pers, num etc.

LFG imposes three general well-formedness conditions on f-structures licensing

grammatically acceptable sentences (Kaplan and Bresnan, 1982):

Uniqueness: In a given f-structure a particular attribute may have at most one

value.

Completeness: An f-structure is locally complete if and only if it contains all the

governable grammatical functions that its predicate governs. An f-structure is

complete if and only if it and all its subsidiary f-structures are locally complete.

Coherence: An f-structure is locally coherent if and only if all the governable gram-

matical functions that it contains are governed by a local predicate. An f-

structure is coherent if and only if it and all its subsidiary f-structures are

locally coherent.

Though LFG draws a sharp distinction between c-structures and f-structures,

there are clear regularities relating constituent positions to grammatical functions.

This structural correspondence is systematically expressed by a projection function

� mapping from nodes of the c-structure tree into units of the f-structure space

(Figure 1.1). The � function states universally valid relations between c-structure

positions and the functional roles associated with them. To specify the � function,

nodes in c-structure trees are annotated with functional equations using language-

particular principles. Functional equations employ two meta-variables: ↓ refers to

the f-structure of the current c-structure node and ↑ refers to the f-structure of

the immediately dominating node. For the example in Figure 1.1, the functional
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(a) c-structure (b) f-structure

Figure 1.1: C- and f-structures for the sentence �L¬¬��Ion/JiangZemin
met with Thai president

equation ↑subj=↓ annotating the left-most NP node indicates that the f-structure

that corresponds to the node dominating the NP node (i.e. the IP node) has a

subj attribute whose value is the f-structure relating to the NP node.

This duality of syntactic structures in LFG is highly flexible to represent both

variation and commonality in linguistic description. C-structures capture language-

specific configurations, producing unique representations for different languages; f-

structures encode a more abstract somewhat more universal level of analysis, sup-

porting cross-language parallelism at this level of abstraction. These advantages

facilitate cross-language applications, for example transfer-based machine transla-

tion systems which take f-structures as transfer representations, and motivate the

work presented in this thesis.

1.2.2 Treebank-Based Acquisition of LFG Resources

1.2.2.1 The GramLab Project

The work reported in this thesis is part of the GramLab project that aims to auto-

matically develop wide-coverage probabilistic Lexical Functional Grammar resources

for Chinese, Japanese, Arabic, Spanish, French, German and English based on

existing treebanks. Cahill et al. (2002) and McCarthy (2003) originally designed
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an LFG f-structure annotation algorithm exploiting categorial, configurational and

functional labels to automatically annotate CFG trees in the Wall Street Journal

(WSJ) corpus of the Penn Treebank version II (Penn-II) with f-structure equations.

Cahill et al. (2004) extended the method and used the f-structure-annotated tree-

bank resources to automatically extract wide-coverage PCFGs for parsing new text

into f-structures. It has been demonstrated that this methodology and the automati-

cally acquired English LFG resources outperform state-of-the-art large hand-written

grammars for the task of English parsing (Cahill et al., 2008).

This empirical success and the increasing availability of treebanks for other lan-

guages provide the motivation for adapting this approach to languages other than

English. Burke et al. (2004) made an initial attempt to port the automatic f-

structure annotation method to Chinese. Though the results reported in Burke et al.

(2004) are promising, the f-structure annotation algorithm and the Chinese LFG re-

sources developed are only proof-of-concept in that: (i) Chinese language-specific

properties have not been thoroughly investigated and Chinese particular linguistic

phenomena are not given fully appropriate treatments; (ii) raw texts are only parsed

into basic and incomplete predicate-argument structures (“proto” f-structures) with

non-local dependencies unresolved; and (iii) the experiments are only carried out on

a relatively small-sized treebank — the Penn Chinese Treebank version 2 (CTB2,

LDC2001T11) with about 4,000 sentences, which is less than one tenth of (about

50,000 sentences in) the WSJ section of the Penn-II English treebank. One of the

most fundamental aspects of the research described in this thesis is a fundamental

reworking and a substantial extension of the LFG acquisition method for Chinese

language and treebank data, in order to provide high-quality, wide-coverage, deep,

proper f-structure resources for Chinese language processing, in particular, parsing.

Another central aspect of the research in the thesis is surface realisation, or gen-

eration, from f-structures for Chinese. Natural language generation, although which

is commonly regarded as the reverse process of parsing, has drawn a lot less attention

in the field of NLP, and has not been attempted for languages other than English

in the GramLab project. Cahill and van Genabith (2006) and Hogan et al. (2007)
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presented conditional probabilistic models for generating English sentences from f-

structure representations based on the automatically acquired wide-coverage LFG

resources. The generation part of this thesis is based on and substantially extends

this work: the pros and cons of the conditional generation model are investigated

when adapting it to the Chinese generation task and a novel, fully PCFG-based

generative model is developed.

1.2.2.2 Language-Specific Properties of Chinese

Among the languages under consideration in the GramLab project, Chinese is one

of the most challenging languages. Besides the obvious differences, such as the

writing systems, Chinese grammar features very distinct characteristics compared

to Indo-European languages.

Compared with even English, Chinese has little, if any, inflectional morphology,

viz. words are not inflected with respect to tense, case, person, gender and number,

etc. As a result, there are no overt syntactic constraints, such as agreement, imposed

between a verbal predicate and its arguments. Moreover, every word in Chinese has

a unique form regardless of its potentially varied syntactic functions. For example

about 80% of the most common verbs in Chinese can also function as a noun and

this without carrying any conjugation or declension, which leads to a large number

of ambiguities in part-of-speech tagging and syntactic parsing.

Besides the lack of morphological marking, cues such as complementisers or case

markers, which can be used to distinguish between syntactic analyses, are very rare

in Chinese. For example, the matrix verb ��/ask in (1) can be equivalently

analysed as either taking an object and an open complement as arguments (a) or

taking a close complement (b):

(1) ·
I
��
ask

�
he
L5"
come

a. I asked him to come.

b. I asked that he come.

Since words are not marked morphologically indicating their roles in a sentence,

function words and word order play major roles in Chinese. There are a consider-
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able number of specific constructions governed by particular words, such as �/de,//di, �/de, r/bai, �/bei and so on. These constructions are vital in analysing

the structure of the sentence in which they occur, and thus need a careful and

appropriate treatment.

Two further prominent features of Chinese are pronoun-dropping and topic-

prominence. The phenomenon of pro-drop is widespread in Chinese as e.g. the

subject (and likewise the object) is only semantically but not syntactically required

for constructing a grammatical sentence. Pronouns occurring in a subject (or ob-

ject) position are often omitted if they are inferable from the context. Topicali-

sation is also fairly common in Chinese. The topic takes sentence-initial position

in a topicalised sentence, whereas a nontopicalised sentence follows the unmarked

subject-first word order. Topics in Chinese can bear a variety of functions including

both arguments and adjuncts. The two properties (pro-drop and topic-prominence)

together (among other syntactic features) cause difficulties in both (i) identifying

pro-drop situations and recovering the pro-dropped subjects; and (ii) distinguishing

topics from subjects (and other adjuncts) and relating the topic to the appropriate

grammatical function it should be interpreted as.

As a compensation for almost complete lack of morphological information, word

order tends to carry a lot of information in Chinese. For example, Chinese is by and

large a SVO language in which grammatical functions are to a large extent related

to a relatively rigid word order. The rather direct mapping between grammatical

roles and surface realisations drives a new approach to Chinese sentence generation

obviating constituent structure grammar rules presented in Chapter 6.

In summary, Chinese is a language with poor morphological features and conse-

quently few agreement constraints, relying instead more heavily on lexical items and

word order. Although the thesis is not aiming at establishing a definitive and fully

theoretically adequate LFG analysis for Chinese, it carefully considers the language-

specific properties of Chinese and provides feasible accounts for Chinese syntactic

and semantic interpretation within the LFG formalism from a computational per-

spective.
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1.2.2.3 The Penn Chinese Treebank

The treebank on which my research is based is the Penn Chinese Treebank (CTB) (Xue

et al., 2005). The Chinese Treebank project began at the University of Pennsylva-

nia in 1998 and continues at Penn and the University of Colorado. The data I use

comes from the Chinese Treebank version 5.1 (CTB5.1) produced and distributed

by the Linguistic Data Consortium (catalog number LDC2005T01, ISBN 1-58563-

323-2). The CTB5.1 is a corpus of Mandarin Chinese texts consisting of 507,222

words (824,983 Chinese characters), 18,804 sentences, and 890 files coming from

three newswire sources:

∙ Xinhua newswire (1994-1998): 698 articles;

∙ Information Services Department of HKSAR (1997): 55 articles;

∙ Sinorama magazine, Taiwan (1996-1998 & 2000-2001): 137 articles.

Texts in CTB are segmented, part-of-speech tagged (with 33 tags), and syntacti-

cally bracketed (with 23 labels) based on a generic phrase structure grammar analy-

sis. The influence of the English Penn Treebank on the development of the Chinese

Treebank is obvious. The CTB essentially adopts the Penn Treebank annotation

scheme and uses the same grammatical devices to represent syntactic relations:

∙ a limited number of grammatical relations, such as subject, direct and indirect

object, etc. are represented by 26 functional tags;

∙ 6 types of null elements and coindexation to represent non-local dependencies.1

Similar to the Penn-II treebank, overflat bracketing is a rather common phe-

nomenon for representing nominal constructions in the CTB, for instance no further

bracketing is provided inside the noun phrase (2).

Nevertheless, the CTB provides a large-scale corpus with useful and in many

cases fine-grained linguistic information. In fact, the CTB has become the de facto

standard training and test set for many NLP tasks, such as statistic parsing for

Chinese.
1The CTB bracketing guidelines gives the full inventory of null elements and functional tags.
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(2) ²L
economic

��
efficiency

Y²
level

‘level of the economic efficiency’

NP

NN²L
economic

NN��
efficiency

NNY²
level

1.3 Thesis Outline

This thesis consists of two parts focusing on two complementary NLP tasks for

Chinese, both involving LFG f-structures. The first part consists of Chapters 2

and 3, and presents the core resources for parsing Chinese into f-structures. The

second part consists of Chapters 4 to 6, addresses the issue of generation from

f-structures for Chinese. An overview of the thesis is given below:

Chapter 2 presents two treebank-based architectures for automatically construct-

ing Chinese LFG resources from the CTB that will be used throughout the thesis.

First, I describe an extensive overhaul, further development and substantial ex-

tension of the preliminary f-structure annotation algorithm of Burke et al. (2004).

Second, I provide an alternative conversion-based approach to transforming tree-

bank trees into f-structures directly. Finally, I report experiments with the both

methods to acquire f-structures from treebank trees and on parsing unseen text into

f-structures.

Chapter 3 presents strategies to improve the quality of the f-structure resources

induced for raw text. The f-structures generated from c-structure trees produced

by state-of-the-art parsers are “proto” f-structures, which do not capture non-local

dependencies (NLDs). I design and implement a hybrid NLD resolution method

inspired by Cahill et al. (2004), but substantially extended and adapted to Chinese-

specific NLD phenomena. The approach automatically resolves NLDs at the level

of f-structure by a combination of heuristics and a statistical component using finite
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approximations of functional uncertainty equations and lexical subcategorisation

frames automatically acquired from the f-structure treebank constructed in Chap-

ter 2.

Chapter 4 provides an overview of the state-of-the-art in natural language gen-

eration, in particular sentence realisation, and proceeds to give a brief introduction

to previous research on LFG-based generation. It also discusses problems specific

to Chinese sentence realisation from f-structures, which motivate a direct genera-

tion methodology driven by functional relations instead of the detour via syntactic

structures.

Chapter 5 describes the adaptation of a PCFG- & chart-based generation method

from English to Chinese, using the bidirectional grammar automatically acquired

from the f-structure annotated treebank. Inspired by the conditional probabilistic

model proposed by Cahill and van Genabith (2006), I design a proper generative

and chart-based PCFG generation model, which effectively increases the generation

coverage compared to the original conditional model. I investigate two parent anno-

tation methods to break down inappropriate independence assumptions inherent in

the vanilla PCFG by including more contextual information into the derived tree.

The augmented PCFG models further enhance the accuracy of the simple PCFG

model for Chinese sentence generation.

Chapter 6 describes a novel approach to Chinese sentence realisation based on

dependency (rather than word-based) n-gram models, which directly linearise the

GFs in f-structures without recourse to an underlying CFG grammar and chart

mechanism. Experiments show that the dependency-based n-gram models are supe-

rior to traditional PCFG-based generation models in terms of time complexity and

realisation quality.

Chapter 7 concludes the thesis and outlines some avenues and applications for

future related research.
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Part I

LFG-Based Parsing
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Chapter 2

Automatic F-Structure

Acquisition

2.1 Introduction

Deep, board-coverage and high-quality grammars are required in many NLP ap-

plications, such as deep parsing and generation from semantic representations. In

this chapter, I report work on automatically acquiring wide-coverage, robust, prob-

abilistic Chinese LFG resources from the Penn Chinese Treebank, which forms the

basis of the approaches to Chinese parsing and sentence realisation presented in the

following chapters.

One goal of the thesis is to test a treebank-based deep grammar acquisition

methodology originally developed for English (Cahill et al., 2002, 2004) for its ap-

plicability when migrating it to diverse languages and treebanks. I review and

substantially extend and improve the early and preliminary work of Burke et al.

(2004) by improving the LFG analysis for a number of core Chinese linguistic phe-

nomena and expanding the coverage of the treebank-based grammars. This results

in Chinese LFG resources comparable in quality to those for English. Furthermore,

I address some inherent drawbacks in the previous annotation-based acquisition

method, and develop an alternative conversion-based architecture.

Section 2.2 reviews previous research on LFG grammar development. Section 2.3
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reports the work on improving the earlier, proof-of-concept work on automatically

annotating the CTB with LFG f-structure information (Burke et al., 2004). Sec-

tion 2.4 presents a new conversion-based architecture which involves an interme-

diate dependency representation to further enhance the robustness of the anno-

tation algorithm and increase the coverage of the grammar induced. Section 2.5

provides experiments and evaluates the two approaches to f-structure acquisition.

Section 2.6 applies the automatic f-structure acquisition technology to “shallow”

syntactic trees produced by existing, state-of-the-art parsers to parse raw texts into

proto-f-structures or dependencies. Parts of the research reported in this chapter

have been published in Guo et al. (2007a).

2.2 Previous Work on LFG Grammar Development

LFG resources are usually developed by hand. The ParGram1 project aims at pro-

ducing large-scale LFG grammars for a wide variety of languages with largely paral-

lel analyses, involving commonly agreed feature sets and where possible f-structure

analyses across languages. The results of the project to date are encouraging: the

hand-crafted English LFG grammar has in fact achieved the coverage and robustness

required to parse a corpus of the size and complexity comparable to the Penn tree-

bank (Riezler et al., 2002), and grammars for distinct languages such as Japanese,

Chinese, German, Urdu etc. are under development and some of them (German,

Japanese) are very mature. The ParGram project started in 1994 and involves sub-

stantial number of researchers and linguists in industrial and academic institutions

around the world, defining the commonly-agreed-upon set of features, developing

grammar and lexicon rules and maintaining parallelism across languages (Butt et al.,

1999, 2002).

However, the availability of treebank resources opens up the possibility of au-

tomatically acquiring deep, wide-coverage grammars much more rapidly compared

to manually creating such resources. Over the last decade, a growing body of re-

search (van Genabith et al., 1999; Sadler et al., 2000; Frank, 2000; Cahill et al.,

1http://www2.parc.com/isl/groups/nltt/pargram/
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2002) has emerged to bootstrap the construction of LFG grammars from f-structure

corpora automatically built by annotating existing treebank (c-structure) trees with

f-structure information.

Annotation-Based Approaches

LFG has shown that the correspondence between c-structure and f-structure is

largely predictable from a small set of mapping principles (Bresnan, 2001). In Ka-

plan and Bresnan (1982), the c- to f-structure mapping is represented in terms of

constraints on pairings of categories and grammatical functions, e.g. comp is usu-

ally only appropriate for S, only NPs or DPs are objs, and so forth. In general, the

correspondence between c-structure and f-structure follows linguistically determined

principles and can be captured in terms of general annotation patterns.

In the light of this observation, an “annotation”-based LFG grammar acquisition

approach has been developed. van Genabith et al. (1999) automatically extract

CFG rules from a treebank and manually annotate the derived grammar rules with

functional schemata and lexical macros. Then the annotated rules are matched

against the original treebank trees and thereby f-structures are produced for these

trees. This method supports the creation of grammar resources but still involves

a labour intensive component to manually annotate the grammar rules extracted

from the treebank. To automate the manual part, Sadler et al. (2000) developed a

smaller number of hand-crafted templates using regular expressions encoding general

annotation principles, and applied these principles to automatically annotate the

treebank-extracted CFG rules.

However, both papers are proof-of-concept in that they only experiment on

grammars consisting of a few hundred rules extracted from the first 100 trees of

the Associated Press (AP) treebank. Cahill et al. (2002) extended and scaled up an

annotation-based method to the complete WSJ section of the Penn-II treebank. The

approach builds f-structure resources in a two-stage process (Figure 2.1): first, the

treebank trees are annotated with functional equations by an f-structure annotation

algorithm, and then the f-structure-annotated trees are passed to a constraint solver
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=⇒F-Structures

Figure 2.1: The f-structure annotation architecture of Cahill et al. (2002)

to generate f-structures. The annotation algorithm consists of three sub-modules

that work in sequence. Left/right context annotation is the core module which ap-

plies to each local subtree of depth one (i.e. a CFG rule). First, the RHS nodes are

partitioned into head, left context and right context of the head by head-finding rules

designed for the treebank. The head node is annotated with f-structure equation

↑=↓, and each node in the left/right context is annotated accordingly by annotation

principles based on categorial and configuration information. For example, an NP

node occurring to the right of a V head under a VP is annotated as the object

↑obj=↓. In order to keep the left-right context principles simple and perspicuous,

they only apply to non-coordinate structures. A separate module is designed to deal

with coordinations. It annotates the head coordinating conjunction, and identifies

all coordinated elements which in turn are annotated by regular left/right context

annotation principles. The final module (Catch-All and Clean-Up) corrects over-

generalisations that arise from the previous annotation modules and assigns default

annotations to any remaining unannotated nodes.

Compared to assigning functional schemata or designing templates as regular

expressions for all CFG rules, the annotation scheme of Cahill et al. (2002) provides

annotation matrices by breaking down CFG rules into left/right contexts. The

left/right context matrices are based on the most frequently-occurring rule types

(covering 85% rule tokens of Penn-II for each category), but provide generalisations

over the entire treebank and as yet unseen rules. Therefore annotating c-structure

tree nodes with f-structure equations can be implemented in a highly general way
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and scaled to a large-size corpus. Cahill et al. (2002) report 78.8% of the 49K

Penn-II sentences receiving a single, connected f-structure, which is later improved

to 99.82% in Cahill (2004).

The treebank and annotation-based f-structure acquisition methodology is orig-

inally developed for English and later also deployed for multilingual grammar ac-

quisition, given treebank resources for those languages are available. Burke et al.

(2004), for example, made a first attempt to adapt the technology of Cahill et al.

(2002) to the Penn Chinese Treebank for Mandarin Chinese. I report on substantial

extensions, revisions and improvements over this previous work in Section 2.3.

Conversion-Based Approaches

Another related but different architecture for f-structure acquisition from treebanks

is referred to as “conversion”-based, which directly induces an f-structure from a

c-structure tree, without intermediate functional schemata annotations on the c-

structure tree. An algorithm building on this architecture was developed in Frank

(2000), where (complex) c-structure fragments encoded as constraint sets were con-

verted directly into corresponding f-structure components using a term rewriting

system originally developed for transfer-based machine translation. As opposed to

the CFG rule- and annotation-based architecture in which annotation principles

are by and large restricted to local trees of depth one, this approach is naturally

applicable to non-local tree fragments.

From a computational perspective, LFG f-structure is effectively a dependency

format. In this sense, the task of generating f-structures from c-structures is essen-

tially identical to converting Phrase Structure (PS) trees to Dependency Structure

(DS) trees. There has been a lot of linguistic discussion on the comparison between

dependency grammars and context-free phrase structure grammars, and some re-

search (Lin, 1995; de Marneffe et al., 2006; Xue, 2007) on automatic conversion

between PS and DS representations. Tools such as Penn2Malt2 have also become

available for dependency parsing and dependency-based parser evaluation. Trans-

2The tool is downloadable at http://w3.msi.vxu.se/ nivre/research/Penn2Malt.html
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formation algorithms presented in these papers, in the main, use head percolation

rules to determine the head node of each local PS tree and recursively “fold” the

PS tree into a corresponding DS tree by percolating the head nodes.

In Section 2.4, I explore this more general conversion-based approach in combina-

tion with the left/right context annotation principles to construct LFG f-structures

from treebank phrase structure trees.

2.3 Annotating Treebank Trees

2.3.1 Comparison to Previous Work

An initial attempt to port the treebank- and annotation-based LFG acquisition

methodology to Chinese data was carried out by Burke et al. (2004), which applied

a generic version of the annotation algorithm of (Cahill et al., 2002; Cahill, 2004)

adapted to the Penn Chinese treebank. The experiments were proof-of-concept and

limited with respect to (i) the size of the treebank and gold standard tested against;

(ii) the soundness of the LFG analysis of some Chinese linguistic phenomena; (iii)

the coverage and accuracy of the annotation algorithm; (iv) only producing “proto”

f-structures for parser output trees with NLDs unresolved.

Addressing these shortcomings, my research substantially extends and improves

on the previous work in the following aspects:

∙ The annotation algorithm is scaled up to the full Penn Chinese Treebank

version 5.1 (CTB5.1), whose size is more than 4 times of that of the earlier

CTB2 used in Burke et al. (2004).

∙ A more deliberate and extensive analysis is made for the LFG f-structure rep-

resentation of Chinese linguistic phenomena, considering both Chinese-specific

properties and cross-linguistic parallelism. Some f-structure analyses different

from the previous work are exemplified in Section 2.3.2.

∙ According to the revised LFG analysis, the earlier set of 50 gold-standard

f-structures are modified, and in addition a new extended set of Chinese gold-
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standard f-structures for 200 sentences is developed (jointly with PARC) for

evaluation.

∙ A postprocessing module is developed for resolving Chinese NLDs in the proto-

f-structures produced by the annotation algorithm for parser output trees, and

proper-f-structures are generated. The approach will be detailed in Chapter 3.

∙ Annotation principles of the core algorithm are thoroughly examined and sub-

stantially extended.

To seed the generic annotation algorithm with linguistic generalisations for Man-

darin Chinese, Burke et al. (2004) extracted the most frequent CFG rule types for

each phrasal category in the CTB2 with joint coverage of ≥ 85% of total rule token

occurrences for that category. These seed rule types were then annotated with f-

structure equations. The set of fully annotated seed rules played an important role

in the previous annotation algorithm for Chinese: (i) they were used to construct a

preliminary version of left/right annotation matrices consisting of about 100 rules

only, which was far from providing fully-fledged and fine-grained annotation, hence

(ii) the completely annotated rules were kept and used directly in the annotation

process. Burke et al. (2004) reported 96.75% of the trees in CTB2 receiving a

single, covering and connected f-structure by the annotation algorithm. However

the figure dropped to 88.17% when the algorithm was applied to the larger-sized

CTB5.1. To increase coverage, I enlarged the set of left/right annotation rules three

times to a total of 300 rules. As most CFG seed rules are already covered by the

left/right context patterns, they do not take part in annotating the treebank trees

any longer.3 Moreover, in Burke’s version of the annotation algorithm, coordina-

tion constructions were also tackled by completely annotated seed rules, which did

not generalise well due to their particularities and failed to identify many types of

coordination structures in the CTB. I substantially improved this by implementing

a separate coordination module with more general rules or patterns, as proposed in

3Some very few CFG annotated rules that cannot be expressed in left/rigth context patterns,
are still kept for annotating particular constructions in the CTB, such as overflat coordinations and
fragments.
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the annotation architecture for English (Cahill et al., 2002).

The new annotation algorithm with improved annotation principles and modules

gives considerably better results than the previous work in terms of both coverage

and accuracy. An overall evaluation is reported in Section 2.5.

2.3.2 Improving and Extending the LFG Analysis for Chinese

Work addressing Chinese within the LFG formalism has been carried out only for a

limited number of phenomena. For example, Fang (2006) provided a formal analysis

for the verb copy construction in Chinese; Huang and Mangione (1985) offered

an LFG account of the post-verbal �/DE-construction; Her (1991) presented a

classification of Mandarin verbs by subcategorised grammatical functions within

LFG. However, to the best of my knowledge, there has not yet been a standard

and systematical LFG account for Chinese. On the contrary, there have been a lot

of controversies over syntactic analysis of Chinese from the theoretical linguistics

perspective, and, from a practical point of view, the f-structure representations for

some Chinese linguistic phenomena adopted by Burke et al. (2004) do not suit the

LFG formalism nor the encoding of the Penn Chinese Treebank well. To give a

flavour of the improvements of the LFG-based analysis for Chinese, this section

exemplifies c-structure trees provided by the CTB and my enhancements to the

corresponding f-structure analysis for core Chinese linguistic constructions.

Classifiers4 are unique to Chinese (and some other Asian languages) in that all

nouns, when occurring with a numeral or demonstrative, generally incorporate a

classifier, rather than in most Indo-European languages, allowing numbers to count

a noun directly. By and large, classifiers occur in three types of context, based on

the absence/presence of the numeral and demonstrative. Figure 2.2 gives the CTB

trees for classifiers used in combination with a demonstrative (1), a numeral (2) and

both (3).

In the previous analysis of Burke et al. (2004), a classifier was analysed as a

4Also called “measure words”, for they are most often used when counting.
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Figure 2.2: The CTB trees and my f-structure analysis of classifiers

comp dependent on the numeral if it exists or the demonstrative in case the numeral

is absent. This analysis is defective, in that:

∙ Though classifiers cannot be used by themselves and must be preceded by a

numeral or demonstrative, it does not follow that numerals and demonstrative

pronouns subcategorise for a classifier in Chinese or other languages. In fact,

classifiers do not need to be expressed in some cases, having no effect on the
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grammaticality, such as:

(4) ù
this
Ö
book

ý
very

k�
interesting

‘This book is very interesting.’

∙ The analysis is not suitable for standard classifiers, such as �/meter, ú6/kilogram, ´/bottle, which relate to distance, weight, volume, etc. These

are analogous to measure words representing units or portions of mass nouns

in other languages, such as English, for example ‘one drop of milk’, where the

measure word functions as the main predicate.

∙ Individual classifiers also indicate prominent features of the noun they modify,

e.g. r/BA is derived from handle and is usually used as a classifier for objects

with a handle, for instance, a chair. As a consequence, head nouns can be

omitted in some cases where a classifier is then used as a replacement for it, as

in (5). This type of relationship between the classifier and the noun it modifies

is not revealed in Burke’s analysis.

(5) �
one
�
CLS

õ�
how much

a
money

‘How much is for one (book)?’

Though as indicated by the name, classifiers act to classify nouns according to

their meaning, they actually are most often used when counting in combination with

a numeral. Even if a classifier is used alongside a demonstrative as in example (1),

it can be interpreted as an omission of the unstressed numeral �/one. Therefore,

I provide a unified and somewhat more practical interpretation of classifiers, as

demonstrated by the f-structures in Figure 2.2 for the three types of c-structure

trees. In my analysis, a numeral is dependent on the classifier (which accounts for

their concurrence), and they together quantify the head noun. A classifier is never

associated with a determiner in my f-structure analysis (even if it is in the CTB

trees), reflecting the fact that det and quant are parallel functions specifying the

pred noun in different ways.
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DE-Phrases are formed by the function word �/DE attached to various cate-

gories, such as possessive phrases, noun phrases, adjective phrases or relative clauses.� has no content other than marking the preceding phrase as a modifier. In the orig-

inal f-structure annotation algorithm and the 50-sentence gold-standard f-structures

of Burke et al. (2004), all types of DE-phrases were treated uniformly in the cor-

responding f-structures: the function word � is the predicate that dominates the

local f-structure and the preceding phrase/clause is annotated as possessive. This

analysis is inadequate for the following reasons:

∙ � is the syntactic head in DE-Phrases, but not the semantic head as the real

meaning is carried by the phrase it attaches;

∙ � has no content, therefore it can be omitted in some cases without affecting

the meaning and grammaticality of the phrase, as in (6a) and (6b).5 In this

regard, there is some resemblance between the function word � and relative

pronouns/adverbs in English relative clauses;

∙ In many cases, � is a mark of an attributive modifier, qualifying the head

noun by a variety of properties besides its possessor.

Bearing in mind that f-structure is an abstract functional description of a sen-

tence, and thus preferably less language- and treebank-specific, I choose the content

word rather than � as main predicate of the local f-structure. In parallel to f-

structures for English relative clauses, I treat � as an optional feature de of the

modifier f-structure. Moreover, my analysis distinguishes three different types of

DE-modifiers in the f-structures as exemplified in Figure 2.3, namely adj-rel (6),

adjunct (7) and poss (8). Due to the absence of any case marking, Chinese uses

the function word � to indicate possessive function as in example (8), which how-

ever shares the same local c-structure tree (NP→DNP NP) as a normal attributive

modifier as in example (7). The difference in fact resides in the meaning of the

lexemes, that is, the head word of the adjunct is a common noun (NN), and the

head word of the poss is a proper noun (NR).

5For simplicity, empty nodes and co-indexation representing non-local dependencies are left out
in both c- & f-structures here.
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(6) a. ��
they

ó�
work

�
DE
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‘the place where they work’
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place

‘the place they work’
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project

‘a large-scale project’

(8) Ün
ZhangSan
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‘ZhangSan’s book’
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Figure 2.3: The CTB trees and my f-structure analysis of DE-phrases
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(9) ù

these

êâ
data

�
BEI

·
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ignore

‘These data were ignored by me.’
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Figure 2.4: The CTB trees and my f-structure analysis of BEI-constructions

BEI-Construction is another characteristic phenomenon in Chinese, but did not

receive special treatment in Burke’s annotation algorithm, other than simply anno-

tating the word �/BEI as an adjunct. Generally speaking, the BEI construction

is approximately equivalent to passive voice in English. A proposal analogous to

the representation of English passive voice is to take � as a passive voice feature of

common verbs. However, treating � as a mere passive feature or particle contra-

dicts the fact that it also introduces the logical subject in the long-BEI construction,
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as illustrated in (9). In this case, the word � is more similar to the preposition

by in the equivalent English passive translation. Unfortunately, analysing � as a

preposition or subject marker does not fit the subjectless/short-BEI construction as

in (10), where� introduces or marks nothing. And furthermore,� does not always

indicate passive voice in Mandarin Chinese (though the passive analysis can be ar-

gued for from a theoretical point of view), as in sentence (11), where the embedded

verb is intransitive.

(11) 

cat
�
BEI

Pà
mouse

�
escape



ASP

‘The cat let the mouse escape.’

Recent years have seen a radically different analysis that treats � as a content

word rather than a function word as in traditional Chinese linguistics, more specif-

ically as a verb with its own predicate-argument structure. Her (1991) provided a

complete and unified analysis for� following this line, which treats� as the matrix

verb in a pivotal construction, subcategorising for ⟨subj,obj,xcomp⟩. The advan-

tage of this analysis is that it provides a unified account for the embedded verbs,

namely that all verbs in BEI sentences have the same subcategorisation frames as

those in their BEI-less corresponding sentences. However, this is somewhat differ-

ent from the CTB representation, where � takes either a subject and a sentential

complement in the long-BEI construction (9), or a subject and a VP complement in

the short-BEI construction (10). As there is not always a clear distinction between

finite clauses and non-finite clauses in Chinese due to the lack of overt complemen-

tisers and a strong tendency to pro-drop, I feel both Her’s and CTB’s analyses are

acceptable. For practical reasons, I adopt the tree representation in CTB as the

c-structure analysis for BEI constructions, and give the corresponding f-structure

analysis as illustrated in Figure 2.4. Though c-structures for short-BEI and long-BEI

constructions vary from each other, I provide a unified f-structure account for �
with the subcategorisation frame ⟨subj,comp⟩, and supply a pro-dropped subject

to the verb embedded in the short-BEI construction.
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2.4 Converting Treebank Trees

The f-structure annotation method described in the previous section builds on the

CFG rule- and annotation-based architecture. By and large the algorithm works on

local treebank subtrees of depth one (equivalent to a CFG rule). In order to annotate

the nodes in the treebank tree with f-structure functional equations, the algorithm

exploits configurational information (left or right position relative to the head),

category of mother and daughter nodes, and Penn treebank functional labels (if

they exist) on daughter nodes. However configurational and categorial information

from local trees of depth one is not always sufficient to determine the appropriate

functional relations between the parent and daughter nodes, as for the example of

DE-phrases, where a left-context DNP node under NP node can be annotated as

either adjunct (7) or poss (8) in Figure 2.3. Furthermore, due to the level of

generalisation of the left/right context annotation principles, inaccurate functional

equations might be assigned during the annotation and should be corrected by the

clean-up module. For example, any NP nodes occurring to the left of the head

under an IP node are assigned ↑subj=↓ (if no CTB functional labels are available

to support a different analysis). This has the unfortunate consequence that in

Figure 2.5, the three NP nodes under an IP are all assigned with ↑subj=↓ (whereas

in reality n1 functions as a modifier, n2 as topic and n3 as subject, respectively).

Annotating more than one subj for the same pred would result in an irresolvable

set of equations preventing the generation of an f-structure. In this example, it is

easy to discover the feature clash between the NP nodes n1 and n2, as they are in the

same local subtree dominated by the root IP node. However it is much more difficult

to find the conflicting functional equation annotated on n3 since it is located in a

lower level subtree. To tackle these problems, access to lexical information and wider

contextual information beyond the local configurational and categorial structure are

required by annotation principles.

The annotation-based f-structure acquisition approach is also compromised by

limitations of the constraint solver used to generate f-structures from the set of

functional equations collected from the annotated treebank trees. As explained in
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IP
[↑=↓]

NP:n1

[↑subj=↓]

NT
[↑=↓]C


recent years

NP:n2

[↑subj=↓]

PN
[↑=↓]2Ü

Guangxi

IP
[↑=↓]

NP:n3

[↑subj=↓]

NN
[↓∈↑adjunct]²L

economy

NN
[↑=↓]u�

growth

VP
[↑=↓]

VA
[↑=↓]×�
rapid

Figure 2.5: General left/right context annotation on the treebank tree for the sen-
tence C
2Ü²Lu�×�/The economy of Guangxi province has grown rapidly
in recent years

Cahill et al. (2002), the constraint solver can handle equality constraints, disjunction

and simple set-valued feature constraints. However, it (i) fails to generate an f-

structure (either complete or partial) in case of clashes between the automatically

annotated features; and (ii) does not provide subsumption constraints to distribute

distributive features into coordinate f-structures.

Considering the limitations of the constraint solver, and in order to exploit more

information for function annotation from a larger context than within the local

tree, instead of generating f-structures via functional equations annotated to c-

structure trees, I develop an alternative method which combines advantages of both

the annotation-based and conversion-based approaches. The new method constructs

an f-structure via an intermediate dependency structure that is directly converted

from the original treebank or c-structure tree. The idea is based on the fact that

the head nodes (annotated with the ↑=↓ equation) in a c-structure tree project

to the same f-structure unit. The fact allows us to “fold” a c-structure tree into

an intermediate, unlabelled dependency structure by collapsing the head nodes.

The intermediate unlabelled dependency structure is more abstract and normalised
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(I) Predicate Extraction (II) Function Labelling

Figure 2.6: The conversion-based architecture for f-structure generation

compared to the original c-structure tree. Then the unlabelled dependency structure

is used as input to a function assignment algorithm, which is similar to but simpler

and more general than the conventional f-structure annotation algorithm directly

operating on the original, more complex and varied c-structure trees.

The new conversion-based architecture is illustrated in Figure 2.6, which includes

two major steps:

Predicate Extraction First, the algorithm identifies all predicates from the (lo-

cal) c-structure tree, using head-finding rules similar to those used in the

annotation-based approach to create a tripartition of each local subtree. By

collapsing head-branches along the head-projection lines, the c-structure con-

figuration is transformed into an intermediate unlabelled dependency struc-

ture, augmented with CFG category, POS and position information inherited

from the c-structure.
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Function Labelling Second, to create a labelled dependency structure, i.e. an

LFG f-structure, the dependencies are assigned appropriate function relations

using a reused and adapted revision of the left/right context annotation prin-

ciples exploiting configurational, categorial, functional, and in addition, lexical

information from each node of the intermediate unlabelled dependency tree.

By abstracting away from the “redundant” c-structure nodes in our intermediate

dependency representations, the annotation principles can effectively apply to non-

local sub-trees. This facilitates disambiguating different GFs in a larger context

and resorting to lexical information. As a more abstract dependency structure is

used to mediate between the c- and f-structure, the algorithm always generates an

f-structure, and there are no clashing functional equations causing the constraint

solver to fail. Moreover, the intermediate dependency structure can easily handle

distribution into coordination structures by moving and duplicating the dependency

branches associated with distributive functions. Furthermore, finite approximations

of functional uncertainty equations resembling paths of non-local dependencies can

also be computed on the intermediate dependency structure for the purpose of NLD

recovery (see details in Chapter 3). Finally, in order to conform to the coherence

condition and to produce a single covering and connected f-structure for every CTB

tree, a post-processing step corresponding to the Catch-All and Clean-Up module

in the annotation-based approach, is carried out to check duplicate functions and

to catch and add missing annotations.

The conversion-based approach bears a broad similarity to the method developed

in Frank (2000), with regard to the direct induction of f-structures from c-structures.

However in Frank’s algorithm, the mapping of c-structure to f-structure was carried

out in one step using a tree/graph rewriting system. My method enforces a clear sep-

aration between constructing dependency structures and labelling function relations.

The identification of predicates maps c-structure into an unlabelled dependency rep-

resentation, and thus this component of my approach is designed particularly for a

specific type of treebank encoding and data-structures. In contrast to Frank’s ap-

proach, labelling function types is accomplished on the dependency representation
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which is much more compact and normalised than the original c-structure repre-

sentation, hence the function labelling rules are simpler and the overall architecture

minimises dependency of the annotation rules on the particular treebank encoding.

In a broader sense, this approach is more similar to the ones on automatical conver-

sion between PS and DS representations (Lin, 1995; de Marneffe et al., 2006; Xue,

2007), for the purpose of state-of-the-art dependency parsing and evaluation.

2.5 Experiments and Evaluation

2.5.1 Development of a Gold Standard 6

A set of gold-standard f-structures is necessary as a reference to evaluate the au-

tomatically acquired f-structures. The gold standard used in Burke et al. (2004)

is based on 50 sentences randomly selected from articles 271-300 of an earlier ver-

sion of the Penn Chinese Treebank — CTB2, which comprises exclusively Xinhua

news. For the purpose of scaling up to the full CTB5.1, we split the CTB5.1 into

89 double-annotated files (see gold standard files distributed with CTB5.1) as test

set,7 86 files as development set,8 and the remaining 715 files as training set.9 Each

data set consists of all three (Xinhua, HKSAR and Sinorama) newswire sources.

Then we randomly selected 200 sentences with length between 10 and 30 words

from the CTB5.1 test set as a new gold standard and held out the old (Burke et al.,

2004) 50 gold-standard sentences as a development set. The new gold standard is

constructed semi-automatically: first, f-structures of the 200 sentences are auto-

matically produced by the annotation algorithm, the resulting f-structures are then

manually inspected and corrected in line with the Chinese LFG analyses.

6The work was carried out jointly with PARC (Palo Alto Research Center, Inc.).
7articles 1-40, 900-931, 550-554, 1018, 1020, 1036, 1044, 1060, 1061, 1072, 1118, 1119, 1132,

1141, 1142
8articles 271-325, 441-454, 545-549, 1019, 1073-1078, 1143-1147
9articles 41-270, 400-440, 600-885, 500-544, 590-596, 1001-1017, 1021-1035, 1037-1043, 1045-

1059, 1062-1071, 1100-1117, 1120-1131, 1133-1140, 1148-1151
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2.5.2 Experimental Results

To measure the quality of f-structures, f-structure units are broken down into a set

of predicate-argument-adjunct (or dependency) relations, which are represented in

the form of triples: relation(predicate, argument/adjunct), as originally proposed

by Crouch et al. (2002). And similar to Cahill et al. (2002) & Burke et al. (2004), I

evaluate the automatically acquired f-structures quantitatively and qualitatively.

2.5.2.1 Quantitative Evaluation Results

Quantitative evaluation reflects the coverage of the acquired LFG resources by cal-

culating the percentage of CTB trees producing a single connected and covering

f-structure. In order to compare the improved annotation algorithm with the pre-

vious work, I first applied the f-structure annotation algorithm to CTB2, the same

treebank as used in Burke et al. (2004). Table 2.1 provides a quantitative evaluation

of the f-structures produced by the previous version10 and the new version of the

annotation-based algorithm. For the old annotation algorithm, 3 sentences did not

produce any f-structure due to feature clashes in the function annotation, and 201

sentences output multiple f-structure fragments caused by nodes left unannotated

by the old annotation principles. In contrast, the enhanced annotation algorithm

generated connected and covering f-structures for all the 4,183 trees in CTB2.

Burke (2006) Present Annotation

#f-structure #sentence percent #sentence percent

0 3 0.072 0 0
1 3979 95.123 4183 100

>=2 201 4.805 0 0

Table 2.1: Comparison of grammar coverage tested on CTB2

Table 2.2 gives a quantitative evaluation of the f-structures produced for all

18,804 trees in CTB5.1 by the annotation-based and conversion-based approaches

presented in this dissertation. When applying the rule- and annotation-based al-

gorithm to the larger-sized CTB5.1, feature clashes in the annotation of a small

10The latest results from Burke (2006) are given for the old annotation algorithm.
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number of sentences (0.495%) result in no f-structure being produced for those sen-

tences. By contrast, the conversion-based algorithm converts c-structures directly

to the corresponding f-structures, obviating the constraint solver. As a result, it

guarantees to produce a single, connected and covering f-structure for each tree-

bank tree (although some f-structures are possibly not consistent as a consequence

of erroneous function annotations). No unconnected, disjoint f-structure fragments

are produced by either the annotation-based nor the conversion-based approach, be-

cause any nodes remaining unannotated are caught by default annotations in both

methods.

Annotation-Based Conversion-Based

#f-structure #sentence percent #sentence percent

0 93 0.495 0 0
1 18711 99.505 18804 100

>=2 0 0 0 0

Table 2.2: Comparison of grammar coverage tested on CTB5.1

2.5.2.2 Qualitative Evaluation Results

Qualitative evaluation compares the automatically generated f-structures against

those in the gold-standard reference set in terms of precision, recall and the harmonic

mean of precision and recall, viz. f-score:

Precision =
number of correct triples in acquired f -structures

number of all triples in acquired f -structures
(2.1)

Recall =
number of correct triples in acquired f -structures

number of all triples in reference f -structures
(2.2)

F -score =
2 × Precision ×Recall

Precision + Recall
(2.3)

Precision, recall and f-score are computed for two sets of triples, one (preds only)

captures basic predicate-argument-adjunct relations, such as subj, obj, topic etc.,

and the other (all feats) also includes atomic-valued attributes/relations, such as

num, pers, clause-type etc.

Table 2.3 compares the accuracy of the f-structures automatically acquired by my
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annotation-based algorithm with those induced by Burke’s algorithm, for the gold

standard of 50 sentences.11 The new annotation algorithm achieves an increase of

nearly 10% in f-score for preds-only relations and 5% for all features. The substantial

advances in the quality of the acquired f-structures are due largely to refinements

of the annotation principles in my algorithm.

Burke (2006) Present Thesis

Precision Recall F-Score Precision Recall F-Score

Preds Only 81.44 86.29 83.79 94.09 92.14 93.10
All Feats 90.13 91.70 90.91 96.38 95.09 95.73

Table 2.3: Comparison of qualitative evaluation on development set

Table 2.4 reports the results evaluated against the new 200-sentence set of gold-

standard f-structures for the annotation-based approach and the conversion-based

approach. The results show no substantial difference in quality between f-structures

acquired by annotating treebank trees or by directly converting treebank trees. This

is reasonable as both versions of the algorithm are based on approximately the same

annotation rules (head-finding rules and left/right context rules), which are imple-

mented in different architectures. However, the quantitative evaluation results (Sec-

tion 2.5.2.1) show that the conversion-based algorithm is more general and robust:

it can be applied to generate dependency relations other than LFG f-structures and

will always produce a single connected f-structure as a result of the transformation.

Annotation-Based Conversion-Based

Precision Recall F-Score Precision Recall F-Score

Preds Only 94.78 94.75 94.77 95.44 95.02 95.23
All Feats 96.23 96.47 96.35 96.34 96.46 96.40

Table 2.4: Comparison of qualitative evaluation on test set

11The results of the old annotation algorithm come from Burke (2006) evaluated against the old
version of the 50-sentence gold standard and my algorithm against the new improved version.
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2.6 Parsing into F-Structures

2.6.1 Parsing Architecture

So far, all experiments have been carried out exclusively on the existing CTB trees.

In a real application, however, it is necessary to produce f-structures for new un-

seen text. Cahill et al. (2002) and Cahill (2004) designed and implemented two

PCFG-based probabilistic parsing architectures for parsing unseen English text into

f-structures: the pipeline and the integrated model. In the pipeline architecture, a

PCFG is first extracted from the original treebank to parse new text into CFG trees

or LFG c-structures. Then the most probable parser output trees are annotated

with f-structure equations using the f-structure annotation algorithm. Finally the

equations are collected and passed to a constraint solver to generate f-structures. In

the integrated model, the original treebank trees are first annotated with f-structure

equations and an annotated PCFG is extracted from the annotated version of tree-

bank. The annotated PCFG can be viewed as an augmented version of a PCFG,

where sequences consisting of CFG categories followed by one or more f-structure

equations (e.g. NP[↑subj=↓]) are treated as monadic categories for grammar ex-

traction and parsing. Raw text is then parsed into f-structure-annotated trees by

the annotated PCFG. And finally f-structure equations are collected to generate

f-structures by the constraint solver.

Burke et al. (2004) applied both the pipeline and integrated parsing models to

parse Chinese text into f-structures based on the CTB2. The integrated parsing

model augments simple PCFG with the f-structure equations and effectively weak-

ens PCFG independence assumptions. In this respect, the integrated model resem-

bles a state-of-the-art treebank-based probabilistic parsing paradigm that improves

parsing performance by, for example, grammar transformations (Johnson, 1998)

or history-based models (Collins, 1999; Charniak, 2000; Klein and Manning, 2003;

Petrov and Klein, 2007). Burke et al. (2004) reported that the integrated model re-

sulted in a labelled f-score of 81.77% for parsing 300 sentences of length ≤40 in the
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CTB2 test set evaluated using evalb,12 contrasted with 78.78% labelled f-score for

the pipeline model. Nevertheless, with regard to the quality of the final f-structures,

the pipeline model achieved the best f-score of 83.89% for all f-structure features

against the 50 gold-standard f-structures, outperforming the integrated model with

an f-score of 82.12%. Furthermore, the pipeline parsing model is highly flexible

because of the separation between c-structure parsing and f-structure annotation,

which benefits from the two level representation (c-structure and f-structure) in the

LFG formalism. In addition, the pipeline model provides the possibility to improve

the PCFG parsing by exploiting external, state-of-the-art parsing technologies, and

improving the f-structure annotation algorithm individually.

Considering the facts mentioned above, I choose the pipeline model to parse

new text into f-structures based on CTB5.1. Unlike Burke et al. (2004) who used

BitPar (Schmid, 2004) as the external PCFG parser, I adopt Bikel’s parser (Bikel

and Chiang, 2000) (a history-based, lexicalised and generative approach) in my

parsing experiments, as it gives much better results than BitPar on Chinese data.

2.6.2 Experiments

The parsing model and f-structure annotation algorithm are applied to two sets of

test data: (i) the gold standard set of 200 sentences selected from the CTB5.1 test

set, and (ii) the full CTB5.1 test set of 1,913 sentences. For the gold standard, I

compare the f-structures automatically produced by the parser for the 200 sentences

with the manually corrected gold-standard f-structures. For the full test set, I

evaluate the f-structures automatically acquired from the parser output trees against

the f-structures acquired from the original treebank trees for the same sentences. As

the conversion-based method is more robust and guarantees all sentences produce

an f-structure, I apply this approach to convert the parser output (and treebank)

trees to f-structures in these experiments. In all experiments, I use the CTB5.1

tokenisation and part-of-speech (POS) tags.13 Table 2.5 provides the parsing results

12The tool is downloadable from http://nlp.cs.nyu.edu/evalb/
13Nevertheless, a POS tag that is supplied for a word is only used by the parser when that word

was never observed in training; all other words are tagged according to pre-terminal rules learned
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200 Gold-Standard Sentences All Test Sentences
Precision Recall F-Score Precision Recall F-Score

Labelled Bracket 83.30 80.46 81.86 78.42 75.17 76.76

Preds Only 69.01 59.07 63.66 67.54 55.94 61.19
All Feats 82.25 69.14 75.13 80.34 64.87 71.78

Table 2.5: Quality evaluation of f-structure acquired from parser output trees with-
out CTB function tags

for both test sets.

It’s a bit surprising that the qualitative f-structure results for the 200 gold sen-

tences are higher than for all (1.9K) test sentences by about 2 percentage points

for preds-only GFs and 3 percentage points for all features. The 200 gold-standard

f-structures were hand-corrected, and therefore should be harder to get right for

the parser than the purely automatically produced gold-standard f-structures for all

test sentences. I conjecture that one of the most likely reasons is because the 200

sentences are restricted to between 10 and 30 words in length, which makes the data

easier to parse. The first line of Table 2.5 gives the labelled bracketing scores of the

output trees produced by Bikel’s parser measured by evalb: an f-score of 81.86%

is achieved for parsing the 200 gold-standard sentences, in contrast to 76.76% for

all the test sentences. The 5% drop in the c-structure parsing contributes to a

corresponding drop in f-structure evaluation.

Compared to the results given high-quality treebank trees as input (Table 2.4), it

is not difficult to notice that the quality of the automatically produced f-structures

drops sharply by about 32 percentage points in the preds-only f-score and 21 per-

centage points in the all-feats f-score given parser output trees as input. The dras-

tic drop in the results on parser output trees is mainly due to labelled bracketing

parser errors, but also because Bikel’s parser (and most state-of-the-art treebank-

based broad-coverage probabilistic parsers) produces neither CTB functional tags

nor traces and co-indexation information, which are indeed present in the original

CTB trees and greatly facilitate f-structure acquisition.

To partially solve the problem, following the approach described in Gabbard

during training.
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et al. (2006), I made a small modification to Bikel’s parser to allow it to retain the

CTB functional tags in all the parameter classes. This extends Bikel’s parser to

include CTB functional tag labels as part of its output.

200 Gold-Standard Sentences All Test Sentences
Precision Recall F-Score Precision Recall F-Score

Labelled Bracket 81.93 79.52 80.71 77.10 74.25 75.65

Preds Only 75.57 66.54 70.77 72.21 61.58 66.47
All Feats 84.09 75.73 79.69 81.86 70.63 75.83

Table 2.6: Quality evaluation of f-structure acquired from parser output trees with
CTB function tags

Table 2.6 gives results of the improved parsing model. Though the c-structures

augmented with CTB functional tags produced by the modified Bikel’s parser have

slightly lower labelled bracketing f-scores compared to those produced by the original

Bikel’s parser, quality of the final f-structures converted from the function-labelled

c-structures shows a substantial improvement, increasing f-scores by 4-7 percentage

points on both test sets. This proves that the additional CTB functional tags play

an important role in identifying appropriate functional relations.

Nevertheless, the results for parser output trees are still quite low compared to

those for treebank trees, and there is a clear gap between the precision and recall

scores for the resulting f-structures, which does not exist in the results for treebank

trees (Table 2.4). One of the reasons for this is that non-local dependencies are not

captured in the f-structures derived from the parser output trees (in other words the

parser produce “proto” but not “proper” f-structures), whereas they are resolved

by empty node and co-indexation information provided by the original treebank

trees. This deficiency will be corrected by a postprocessing NLD recovery approach,

presented in the next chapter.

2.7 Summary

This chapter has presented methods to automatically acquire wide-coverage, ro-

bust, probabilistic LFG resources for Chinese from the Penn Chinese Treebank.
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Our starting point is the earlier, proof-of-concept work of Burke et al. (2004) on

automatic f-structure annotation, and parsing for Chinese using the CTB2. We

substantially extend and improve on this earlier research in regard to coverage, ro-

bustness, quality and fine-grainedness of the resulting LFG resources. We achieve

this through (i) improving LFG analyses for a number of core Chinese phenom-

ena; (ii) scaling the approach from 4.1K trees in CTB2 to 18.8K trees in CTB5.1;

(iii) designing a new f-structure acquisition algorithm which integrates the general

and linguistically-motivated left/right context annotation principles in the simpler

and more robust conversion-based architecture. Against a new 200-sentence good

standard of manually corrected f-structures, the method achieves 96.40% all-feats

f-score for f-structures automatically generated from the original CTB trees and

79.69% all-feats f-score for f-structures generated from the trees output by Bikel’s

parser.

The results, while encouraging, can be improved given further concerted effort.

For example, besides the categorial, configurational and function labels, fine-grained

lexical information is necessary to identify subtle discrepancies in the same syntactic

structures. A hard problem for Chinese (and also other languages such as English)

is to correctly distinguish the obl function from normal adjunct for prepositional

phrases, which in most cases is determined by the meaning of the main verb and

the preposition. This would be an interesting issue worth exploring in the future

but is not included in the present thesis. Another task that has been addressed,

is to improve the quality of the f-structures derived from parser output trees. The

next chapter will present one solution to this problem based on recovering non-local

dependencies using finite approximations of functional uncertainty equations and

LFG subcategorisation frames automatically acquired from the f-structure treebank

converted from the CTB5.1 I have built in this chapter.
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Chapter 3

Recovering Non-Local

Dependencies

3.1 Introduction

The previous chapter presented treebank-based methods for the automatic acquisi-

tion of wide-coverage LFG resources for Chinese. The acquisition algorithm induces

high quality f-structure resources given the manually annotated Penn Chinese Tree-

bank (Table 2.4); however, it only produces basic and incomplete f-structures from

parser output trees for raw text (Table 2.5). Although the drastic degradation in

the quality of f-structures induced from raw text (compared to f-structures acquired

from treebank trees) is primarily caused by syntactic parsing errors, it is also due to

the fact that the output trees of most state-of-the-art probabilistic parsers are lin-

guistically “impoverished”: they do not include functional tags indicating (a limited

number of) syntactic roles, nor do they capture Non-Local Dependencies (NLDs),

via traces and coindexation as in the Penn Treebank. The f-structure acquisition

algorithm, as described in Chapter 2, makes use of CTB functional tags and relies on

traces and coindexation in the CTB to produce accurate and complete f-structures.

In Section 2.6, I presented a simple method to preserve functional tags in the out-

put parse trees by slightly modifying Bikel’s parser. The retention of functional

tags improves the quality of the automatically induced f-structures by 7 percentage
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points in the preds-only f-score and 5 percentage points in the all-features f-score,

evaluating against the 200-sentence good standard (Table 2.6). In this chapter, I

describe a postprocessing approach to recover NLDs to further improve the basic

“proto” f-structures generated from parser output trees to create fully NLD-resolved

“proper” f-structures for raw text.

Section 3.2 provides a survey of NLD phenomena in Chinese as represented in the

Penn Chinese Treebank. Section 3.3 reviews previous work on recovering NLDs on

(i) the level of phrase structure (or c-structure) trees and (ii) dependency structures

(or f-structures). Section 3.4 describes my substantial adaptation and extensions of

the previous methodology of Cahill et al. (2004) originally developed for English,

to tackle all types of NLDs in Chinese data. Section 3.5 presents experimental

details and provides a dependency-based evaluation of NLD recovery. The training

data for both Cahill et al. (2004) and my NLD-recovery algorithm is provided by

treebank-based data. Section 3.6 presents an improved NLD-recovery algorithm

where training instances are extracted from a set of “reparsed” data that is more

similar to the imperfect f-structures acquired from parser output. An earlier version

of some of the work presented in this chapter has been published as Guo et al.

(2007b).

3.2 NLDs in Chinese

Non-local dependencies (also called unbounded, discontinuous or long-distance de-

pendencies) occur in a substantial number of linguistic phenomena in Chinese, En-

glish and many other languages, such as topicalisation, relative clauses, raising &

control constructions and coordinations. NLDs permit the location of the surface

realisation of a constituent (referred to as “antecedent”) to be different from the

location where it should be interpreted semantically (referred to as “trace”).

In this thesis I use the term “non-local dependencies” as a cover term for all

missing or displaced elements represented in the CTB as empty categories (with or

without coindexation), and the use of the term remains agnostic about fine-grained

distinctions between non-local dependencies drawn in the theoretical linguistics lit-
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(1) Ø
not
�¿
want

u÷
look-for

��
train

k
have

då
potential

�
DE
#
new

�[
writer

‘(People) don’t want to look for and train the new writers who have potential.’

IP

NP-SBJ

-NONE-

*pro*

VP

ADVP

ADØ
not

VP

VV�¿
want

IP-OBJ

NP-SBJ

-NONE-

*PRO*

VP

VP

VVu÷
look for

NP-OBJ

-NONE-

*RNR*-2

PU! VP

VV��
train

NP-OBJ-2

CP

WHNP-1

-NONE-

*OP*

CP

IP

NP-SBJ

-NONE-

*T*-1

VP

VEk
have

NP

NNdå
potential

DEC�
DE

ADJP

JJ#
new

NP

NN�[
writer

Figure 3.1: Example of NLDs represented in CTB, including dropped subject
(*pro*), control subject (*PRO*), WH-trace in relativisation (*T*), and right node
raising in coordination (*RNR*)

erature. NLDs are represented in the Penn Chinese Treebank in terms of empty

categories (ECs) and (for some of them) coindexation with their corresponding an-

tecedents, as exemplified in Figure 3.1. In order to give an overview of the charac-

teristics of Chinese NLDs, I extracted all ECs and (where present) their coindexed

antecedents from CTB5.1. Table 3.1 gives a breakdown of all types of ECs and their
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Label Category Antecedent Count Description (Example)

1 *T* NP WHNP 11670 WH traces (*OP*¥I/Chinau�/launch*T*�/DE¥(/satellite)
2 *OP* WHNP 11621 Zero relative pronouns (*OP*¥I/Chinau�/launch�/DE¥(/satellite)
3 *PRO* NP 10946 Control constructions (�/He�{/manage*PRO*ø�/get away)
4 *pro* NP 7481 Pro-drop situations (*pro*Ø/notQ/ever��/encounter�/DE¯K/problem)
5 *T* IP IP 575 Topicalisation (·�/weU/canI/win§�/he`/say*T*)

6 *T* PP WHPP 337 WH traces (*OP*<�/population*T*�8/dense/«/area)
7 *OP* WHPP 337 Zero relative pronouns (*OP*<�/population�8/dense/«/area)
8 * NP NP 291 Short-BEI constructions (·�/we�/BEIüØ/exclude*3	/outside)

9 *RNR* NP NP 258 Coordinations (�y/encourage*RNR*Ú/and|±/supportÝ℄/investment)

10 *RNR* CLP CLP 182 Coordinations (Ê/five*RNR*�/to�/ten·/hundred million�/Yuan)

11 *T* NP NP 93 Topicalisation (�Y/salaryÑ/all^/use*T*5/for�W/pleasure)

Table 3.1: Distribution of the most frequent types of ECs and their antecedents in
CTB5.1

antecedents occurring more than 30 times. Together they cover 43,791 (99.6%) of

the total 43,954 ECs in CTB5.1.1

According to their distinct linguistic properties, the empty categories in CTB5.1

are classified into three major types: zero relative pronouns, locally-mediated de-

pendencies, and long-distance dependencies.

Zero Relative Pronouns (Table 3.1 lines 2, 7) are placeholders represented as

(-NONE- *OP*) to mark relative clauses. This EC type constitutes a special case as

zero relative pronouns are local dependencies themselves, and thus are not coindexed

with an antecedent. However, standing for the noun phrase/antecedent in the main

clause that it modifies, a zero relative pronoun mediates non-local dependencies by

linking the antecedent to one (argument or adjunct) GF of the verb embedded in

the relative clause. Strictly speaking, there is no relative pronoun in Chinese and no

relative clause is in fact introduced by a relative pronoun. Zero relative pronouns are

only necessary for the appropriate semantic interpretation of relative clauses. For

example, a zero relative pronoun is used to distinguish between a relative clause (2)

where the object (*T*) of the verb inside the relative clause is “displaced” from the

position where it is interpreted, and an appositive clause (3) which does not involve

NLDs.

(2) *OP*
*OP*

¥I
China

u�
launch

*T*
*T*

�
DE
¥(
satellite

‘The satellite that China launched’

(3) �
he
lm
leave

�
DE
�E
news

‘The news that he left’

1An extensive description of the types of empty categories and the use of coindexation in CTB
can be found in Section VI of the CTB bracketing guidelines.
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Locally-Mediated Dependencies are also non-local dependencies, as they are

projected through a third lexical item (such as a control or raising verb). Locally

mediated dependencies hold between two adjacent levels and are therefore bounded.

This type includes:

Short-BEI constructions (Table 3.1 line 8) which are roughly equivalent to

passivisation in English. In a short-BEI construction, the original object of the verb

in the active sentence is “fronted” to the subject position due to the presence of�/BEI.

Raising constructions as in (4) where the subject of the subordinate clause

is realised syntactically as the subject of the matrix clause.2

(4) �
he
��
seems

*
*
é
very

m%
happy

‘He seems very happy.’

Control constructions (Table 3.1 line 3) are indicated by the EC (-NONE-

*PRO*) and are coreferential with the subject or object of a “control” verb.3 Be-

sides subject and object control with definite reference, (-NONE *PRO*) can also

receive an arbitrary reading in some cases, where it can not be replaced by an overt

antecedent. This is approximately analogous to unexpressed subjects of gerunds,

imperatives and to-infinitive clauses in English, as in (5):

(5) ùp
here

Ø
not
N
allow

*PRO*
*PRO*

Äë
smoke

‘To smoke here is not allowed.’

Long-Distance Dependencies (LDDs) differ from locally-mediated dependen-

cies in that there is no limit on how many layers of embeddings the relation between

antecedent and trace spans. LDDs include the following phenomena:

2Raising constructions and short-BEI constructions are annotated identically as the EC
(-NONE- *) in CTB.

3Unfortunately, the CTB annotation does not always consistently coindex the locus/trace with
its controller/antecedent for subject or object control constructions.
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Wh-traces in relative clauses, where an argument (Table 3.1 line 1) or mod-

ifying adjunct (Table 3.1 line 6) of the verb in the relative clause “moves” and is

coindexed with the “extraction” site.

Topicalisation (Table 3.1 lines 5 and 11) is one of the classic LDDs in English.

In canonical LFG theory (Dalrymple, 2001), topicalisation is subject to the Extended

Coherence Condition:

topic and focus must be linked to the semantic predicate argument

structure of the sentence in which they occur, either by functionally or

by anaphorically binding an argument.

By contrast, as a topic-prominent language, Chinese does not require a fronted

topic

phrase to be constrained to an argument GF. For instance in (6), �®/Beijing is

the topic and the thing being talked about, but it is not related to any of the

argument functions in the sentence.

(6) �®
Beijing

¢U
autumn

�
most

{
beautiful

‘In Beijing autumn is the most beautiful season.’

Long-Bei constructions differ from short-BEI constructions in that the log-

ical subject is explicitly expressed in the complement clause, and they allow long-

distance movement as in (7).

(7) Ün
ZhangSan

�
BEI

oo
LiSi

�
send

�Ê
WangWu

*PRO*
*PRO*

�
hit


LE

*T*
*T*

‘LiSi sent WangWu to hit ZhangSan.’

Coordinations come into two types: (i) right node raising of an NP phrase

which is an argument shared by the coordinated predicates (Table 3.1 line 9); and

(ii) coordination of quantifier phrases (Table 3.1 line 10) or verbal phrases as in (8),

where the verbal predicate inside one conjunct of the coordinated structure also

bears the predicate function inside the other conjunct, although they each might

take their own arguments or adjuncts.
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(8) ·
I
Ú
and
�
he
©O
respectively

�
go-to

úi
company

Ú
and

*RNR*
*RNR*

��
hospital

‘I and he went to the company and to the hospital.’

Pro-drop situations (Table 3.1 line 4) are widespread in Chinese because a

subject or object is only semantically but not syntactically required to form a gram-

matical sentence. Dropped subjects or objects are indicated by the EC (-NONE-

*pro*) in CTB. I treat pro-drop as a long-distance dependency as, in principle at

least, the dropped constituent can be determined and replaced by an overt an-

tecedent in the (often inter-sentential) context.

To compare the properties of Chinese NLDs as represented in the CTB with those

in English, I also extracted all ECs and (where appropriate) coindexation from the

Penn-II treebank for English data. Table 3.2 presents a quantitative comparison of

NLD phenomena between Chinese and English. The numbers show that: (i) NLDs

in Chinese are more frequent than in English (by nearly 1.5 times); and (ii) due

to the high prevalence of pro-drop, 69% of the traces in Chinese are not explicitly

linked to an antecedent, compared to 43% for English.

#sentence #EC #EC/sent #non-coindex %non-coindex

Chinese 18,804 43,954 2.34 30,429 69.23
English 49,207 79,245 1.61 34,455 43.48

Table 3.2: Comparison of NLDs between Chinese data in CTB5.1 and English in
Penn-II .

3.3 Previous Work

Non-local dependencies are common phenomena existing in many languages and

crucial to the accurate and complete determination of semantic interpretation of

language. Despite their importance, most treebank-based probabilistic parsers are

trained and tested on a simplified or “shallow” version of tree representations with-

out empty categories and coindexing information. As a result, they can only produce

surface constituent trees recording purely local dependencies. It is by no means
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a trivial task to recover NLDs and to translate shallow syntactic representations

into proper predicate-argument structures or deep dependencies. During the recent

years, there has been a growing interest in research on reconstructing non-local rela-

tionships either from output trees of state-of-the-art treebank-based parsers or using

a more powerful syntactic framework, such as LFG, CCG, HPSG etc.

3.3.1 Recovering NLDs on Phrase Structure Trees

During the last decade, we have witnessed considerable efforts in capturing NLDs

for Penn-style phrase structure trees by means of coindexing empty nodes with their

antecedents. By and large, three types of approaches have been proposed, differing

in how they interact with the wide-coverage probabilistic parser.

Post-Processing Methods reintroduce non-local dependencies in the impover-

ished parser output trees.

∙ Johnson (2002) presented the first post-processing method for inserting empty

nodes and identifying their coindexed antecedents by a simple pattern-matching

algorithm. The first phase of the algorithm extracts patterns — minimal con-

nected tree fragments containing an empty node and all other nodes coindexed

with it — from a training corpus of sections 2-21 of the Penn-II treebank. The

second phase matches the extracted patterns against test trees without NLD

representations (such as parser output trees). When a pattern matches, the

algorithm introduces a corresponding non-local dependency by inserting an

empty node and (possibly) coindexing it with a suitable antecedent.

∙ Higgins (2003), Levy and Manning (2004) and Gabbard et al. (2006) treat

identification of NLDs as a classification task. Higgins (2003) focuses on one

NLD type only, i.e. WH-traces, and describes a neural network classifier to

search for a path from the surface location of the WH-constituent to the trace

by a series of decisions, eventually locating the trace in the syntactic tree.

Levy and Manning (2004) and Gabbard et al. (2006) describe a cascade of

log-linear or maximum entropy classifiers, each of which utilises a wide range
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of features selected for a certain subset of NLD types as represented in the

Penn-II treebank. Levy and Manning’s algorithm first identifies displaced

nodes among the overt tree nodes and then determines an origin site within

the tree (to insert an empty node) for each displaced constituent. By contrast,

the algorithm of Gabbard et al. (2006) first inserts empty nodes in appropriate

positions and then identifies the antecedents. Gabbard et al. (2006) report an

f-score of 74.66% on recovering the most common types of NLDs for parsed

sentences from section 23 of English Penn-II treebank produced by Bikel’s

parser. The result is competitive among all post-processing methods in the

literature. Levy and Manning (2004), in addition, assessed the cross-linguistic

effectiveness of their approach, comparing English with German, a less con-

figurational language, in which NLD constructions (as expected) are more

prominent and difficult to recover than in English.

∙ Unlike other corpus- and machine-learning-based approaches, Campbell (2004)

makes use of the principles of Government and Binding theory underlying

the annotation of the Penn Treebank. His algorithm deterministically de-

tects empty nodes and finds their antecedents by sets of rules specifically

designed for different types of empty categories. The rule-based method com-

pares favourably to most machine-learning-based methods, exceeding them

mainly by achieving higher recall on both empty category detection and an-

tecedent identification, especially when evaluating on imperfect parser output

trees.

In-Processing Methods integrate NLD recovery into the parser by enriching

a simple PCFG model with GPSG-style gap features to mark the paths between

traces and antecedents. This type includes:

∙ Model 3 of Collins (1999) which integrates the detection and resolution of WH-

traces for relative clauses into a lexicalised PCFG. The grammar augments all

nonterminals on the path linking the WH-extraction and the trace with an

additional gap feature label.
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∙ Schmid (2006) presents an unlexicalised PCFG parser that is automatically

labelled with features in the style of Klein and Manning (2003), plus additional

GPSG-like gap features. To generalise the gap features to all types of empty

categories besides WH-traces, they are distinguished by the categories of the

antecedents in different NLD types. The results reported in Schmid (2006)

using standard Penn treebank training and test data, achieve an f-score of

84.1% for EC prediction and 77.4% for antecedent coindexation for trees pro-

duced by the unlexicalised PCFG parser, which exceed all previously reported

results.

Pre-Processing Methods on the other hand, introduce empty nodes in the input

string before parsing. This approach is presented in Dienes and Dubey (2003a,b).

The algorithm first inserts empty nodes in the input sentence using a finite-state

trace tagger, and produces a POS-tagged string with labelled empty nodes as input

to a (lexicalised or unlexicalised) PCFG parser enriched with gap features. An-

tecedents are then identified on the parser output by threading the gap information.

Dienes and Dubey (2003a) claim that the two-step approach outperforms the cor-

responding integrated method finding NLDs while parsing.

3.3.2 Recovering NLDs on Dependency Structures

Although phrase structure grammars are capable to implicitly represent NLDs with

the aid of ECs and coindexation, NLDs are essentially semantic relationships. It is

therefore arguably more natural and preferable to represent NLDs explicitly on a

representation that captures the underlying predicate-argument structure. Such rep-

resentations are provided by more expressive grammar formalisms, such as HPSG,

CCG, TAG and LFG etc. With the recent progress in treebank-based automatic

acquisition of these richer grammar resources, a number of statistical parsers based

on TAG (Chiang, 2000), CCG (Hockenmaier, 2003), HPSG (Miyao et al., 2003) and

Dependency Grammar (Nivre, 2006) incorporate non-local dependencies into their

deep syntactic or semantic representations.
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Besides integrated methods, post-processing approaches to NLD recovery have

also been applied to dependency structures. Jijkoun (2003) describes a method

similar to the pattern matching algorithm of Johnson (2002), but applied to depen-

dency structures transformed from phrase structure trees. Due to the simplicity of

dependency structures compared to constituent trees, the patterns are more gen-

eral dependency graphs, and in consequence, the number of patterns extracted from

the same training corpus are significantly reduced. The dependency-based pattern-

matching algorithm achieves an improvement of approximately 10% in both pre-

cision and recall over the results of Johnson (2002). Jijkoun and de Rijke (2004)

further improves the previous pattern-matching methods by performing a series of

dependency graph transformations, including: changing dependency labels, adding

new nodes and adding new dependencies. Each of the transformations is performed

by a dedicated memory-based classifier trained on a dependency corpus derived from

the Penn-II Treebank.

Couched in the formalism of LFG, Cahill et al. (2004) presents a post-processing

method to recover non-local dependencies for the proto f-structures derived from

treebank-based parser output. In LFG, NLDs are characterised at the level of f-

structure by reentrancies via the mechanism of functional uncertainty (FU), obvi-

ating the need for traces and coindexation in c-structure trees. For the example

in Figure 3.2, the reentrancy 1 captures a topicalisation where the fronted topica/money is interpreted as the object of the predicate^/use in f1, and 2 indicates

a subject control where the subject of the embedded predicate �W/please in f4 is

controlled by the subject ·�/we of the matrix clause. To specify the reentrancy

1 in the f-structure, a functional uncertainty equation, i.e. a regular expression

of the form [↑topic=↑{xcomp∣comp}*obj] is associated with the topic NP node,

stating that the value of the topic attribute is token identical with the value of an

obj argument, reached through a path along any number (including zero) of the

xcomp or comp attributes (accounting for a potentially unbounded length of the

dependency). NLDs in LFG are also sensitive to subcategorisation frames (subcat

frames) because of the coherence and completeness conditions that LFG imposes
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Figure 3.2: The formal mechanisms of functional uncertainty and reentrancy char-
acterising NLDs in LFG
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on f-structures: the within-clause argument grammatical function that a displaced

constituent bears in an NLD must be subcategorised for by a predicate, and cannot

already be instantiated by any other element in the local f-structure governed by

that predicate. To model LFG NLDs, the algorithm of Cahill et al. (2004) automat-

ically extracts subcat frames for each lemma and acquires finite approximations of

FU equations linking reentracies from the f-structure treebank that is automatically

acquired from the full English Penn-II trees with empty categories and coindexation.

Given an unresolved NLD type (indicated by one of the antecedent discourse func-

tions topic, topic-rel and focus), NLD resolution asserts a reentrancy between

the value of the NLD trigger (or antecedent) and a grammatical function (or trace)

of an embedded local predicate, subject to the conditions that:

- the embedded grammatical function can be reached from the NLD trigger

along an NLD path;

- the grammatical function is not already present at the level of embedding

f-structure that terminates the NLD path;

- the local predicate subcategorises for the grammatical function in question.

All solutions satisfying the above conditions are then ranked according to the prod-

uct of subcat frame and NLD path probabilities as in Eq. (3.1), where P (s∣w) is the

probability of subcat frame s conditional on lemma w, and P (p∣a) is the probability

of NLD path p conditional on triggering NLD antecedent a.

P (s∣w) × P (p∣a) (3.1)

3.4 NLD Recovery for CTB

The aim of the research presented in this chapter is similar to that of Cahill et al.

(2004), viz. turning parser output proto-f-structures (as those produced in Sec-

tion 2.6) into fully NLD-resolved proper f-structures. Therefore, I adopt the post-

processing algorithm of Cahill et al. (2004) (henceforth C04 for short) as the basic
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methodology, but substantially revisiting, adapting and extending it to all NLD

phenomena and the specific requirements of the Chinese data as represented in the

CTB (rather than a limited number of pre-defined types as in Cahill et al. (2004)).

3.4.1 The Core Algorithm

The C04 algorithm focuses on English and only resolves three types of NLDs with

known antecedents indicated by certain grammatical functions, i.e. topicalisation

(topic), wh-movement in relative clauses (topic-rel) and interrogatives (focus).

However, as illustrated in Section 3.2, except for relative clauses, antecedents in

Chinese NLDs do not systematically correspond to types of GFs. Furthermore,

more than half of all empty categories in the CTB are not explicitly coindexed

with an antecedent due to the high prevalence of pro-drop in Chinese. Therefore,

pre-defined antecedent GF types are not a reliable indicator to identify antecedents

that trigger NLD resolution for Chinese. Instead, in my NLD-recovery algorithm I

locate NLD traces using subcat frames for local predicates together with the LFG

completeness and coherence conditions. Accordingly, the C04 algorithm is modified

and substantially extended as follows:

1. I extract NLD resolution paths p linking reentrances (including empty paths

without an antecedent) from the proper f-structures automatically generated

from the full CTB trees of the training set. To better account for all Chinese

NLD types present in the CTB, I learn the probability of p conditioned on

the GF associated with the trace t (instead of the antecedent a as in the C04

algorithm). The path probability P (p∣t) is estimated as Eq. (3.2), and some

probabilistic path examples extracted from CTB5.1 are listed in Table 3.3.

P (p∣t) =
Count(p, t)

∑n
i=1Count(pi, t)

(3.2)

2. From the training set of the proper f-structure bank derived from CTB5.1,

I extract subcat frames s for each verbal predicate w. In contrast even to

English, Chinese has very little morphological information, and, as a con-
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Trace Path Probability

adjunct (↑topic-rel) 0.9018
adjunct (↑coord topic-rel) 0.0192
adjunct null 0.0128
... ... ...
obj (↑topic-rel) 0.7915
obj (↑coord coord obj) 0.1108
... ... ...
subj null 0.3903
subj (↑topic-rel) 0.2092
... ... ...

Table 3.3: Examples of probabilistic NLD resolution paths

sequence, every word in Chinese has a unique form regardless of its varied

syntactic (part-of-speech) distribution. To disambiguate subcat frames, I use

two more syntactic features w feats in addition to word form so as to correctly

choose the most appropriate frame in a particular context. For a given word

w, w feats include:

∙ w pos: the part-of-speech of w

∙ w gf: the grammatical function of w

The probability of a lexical subcat frame s is then calculated conditional on

the word w in combination with its features w feats:

P (s∣w,w feats) =
Count(s,w,w feats)

∑m
i=1Count(si, w,w feats)

(3.3)

As more conditioning features may cause data sparseness, I smooth the subcat

frame counts Count(s,w,w feats) by a backoff ignoring the particular word

form according to Eq. (3.4), so as to increase the coverage of the automatically

acquired subcat frames. P (s∣feats) is the probability of the subcat frame for

each feature set {pos, gf}, which is estimated as Eq. (3.5), and is weighted by
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a constant parameter � in the smoothing.

Countsm(s,w,w feats) = Count(s,w,w feats) + �P (s∣feats) (3.4)

P (s∣feats) =
Count(s, feats)

∑k
i=1 Count(si, feats)

(3.5)

The final subcat frame probabilities are estimated from the smoothed fre-

quencies as in Eq. (3.6). Some automatically extracted subcat frames and

their probabilities for the verb k/have are listed in Table 3.4.

Psm(s∣w,w feats) =
Countsm(s,w,w feats)

∑m
i=1Countsm(si, w,w feats)

(3.6)

Word∣POS∣GF Subcat Frames Probabilityk∣ve∣adj-rel [subj, obj] 0.6769k∣ve∣adj-rel [subj, comp] 0.1531k∣ve∣adj-rel [subj] 0.0556
... ... ...k∣ve∣comp [subj, obj] 0.4805k∣ve∣comp [subj, comp] 0.2587
... ... ...k∣ve∣top [subj, comp] 0.4397k∣ve∣top [subj, obj] 0.3510
... ... ...

Table 3.4: Examples of automatically extracted probabilistic subcat frames

3. Given the set of subcat frames s for the word w, and the set of paths p for the

trace t, the NLD recovery algorithm traverses the f-structure f to:

- predict a displaced argument t at a sub-f-structure ℎ by comparing the

local pred w to w’s subcat frames s: t can be inserted at ℎ if ℎ together

with t is complete and coherent with regard to subcat frame s

- traverse f inside-out starting from t along path p

- link t to antecedent a if p’s ending GF a exists in a sub-f-structure in f

reached from t along path p; or leave t without an antecedent if an empty

path for t exists.
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4. Finally, resolution candidates are ranked according to the product of subcat

frame and NLD path probabilities:

Psm(s∣w,w feats) ×
k
∏

j=1

P (p∣tj) (3.7)

As, apart from the maximum number of arguments in a subcat frame, there is

no a priori limit on the number of missing GFs or traces in a local f-structure,

the second product in Eq. (3.7) is itself a product over local traces. For

example the verb u÷/look for in Figure 3.1 subcategories for a displaced

subj controlled by the matrix subject and a displaced obj that moves to the

object position of the right coordinated verb ��/train. The algorithm ranks

resolutions with the product of the path probabilities of each (of k) missing

argument GF(s).

3.4.2 A Hybrid Strategy

As described in Section 3.2, there are three major types of NLDs in the CTB that

present different linguistic properties. This requires a more fine-grained strategy

than the general one described so far. Moreover, as the NLD recovery method

described above is triggered by “missing” subcategorisable GFs, cases of NLDs in

which the trace is not an argument of the local f-structure, but an adjunct or a

topic in a relative clause or an empty pred in a verbal coordination, can not be

recovered by the basic algorithm. Table 3.5 gives a summary of the types of Chinese

NLDs that can be recovered by C04 and the algorithm presented in Section 3.4.1,

represented in terms of GF types associated with the NLD traces and antecedents.4

Table 3.5 shows that both algorithms have limitations on certain NLD types,

although the modified algorithm is capable of recovering a wider variety of NLDs.

A further intuition is that it should be easier to relocate the origin of an already

established NLD antecedent (as in C04) than to determine both the antecedent

4
None indicates the NLD type without an overt antecedent, such as pro-drop situations; pred in-

dicates the trace itself is a predicate governing its own arguments or adjuncts, for example coor-
dination constructions where two conjuncts share the identical predicate, as in sentence (8) in
Section 3.2.

56



Antecedent Trace
topic-rel Others None Argument Adjunct pred

Cahill et al. (2004)
√ √ √

Present Thesis
√ √ √ √

Table 3.5: Comparison of the capability for recovering Chinese NLDs between C04
and the modified algorithm

and trace in some as yet unknown type of NLD (as in the approach developed in

Section 3.4.1). For these reasons, I design and implement a hybrid method to resolve

all types of NLD in the CTB and to maximise the accuracy of the algorithm. The

fine-grained approach involves four steps to deal with different NLD types:

1. Applying a few simple heuristic rules to insert:

- empty preds for coordination constructions in which conjuncts share the

predicate;

- zero relative pronouns for relative clauses, which is triggered by the GF

adj-rel in our system.

2. Inserting an empty node with GF subj for the short-BEI construction, control

and raising construction (indicated by the GF xcomp in our system), and

relate it to the obj (if there is one) or subj in the upper-level f-structure.

3. Exploiting the C04 algorithm, which conditions the probability of NLD paths

on a given antecedent rather than on some hypothesised trace, to resolve

WH-traces in relativisation, including those bearing the ungovernable GFs

topic and adjunct.

4. Using the modified algorithm (presented in Section 3.4.1) to resolve the re-

maining and the most typical NLD types for Chinese.

This hybrid approach now covers all cases identified in Table 3.5.
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3.5 Experiments and Evaluation

3.5.1 Experimental Setup

Experiments are carried out on the CTB5.1 that is split into the same training,

development and test sets as in the previous chapter. In order to learn probabilistic

NLD paths and subcat frames, the full-fledged treebank trees of the training set

are converted into NLD-resolved f-structures using the conversion-based algorithm

described in Section 2.4. From the resulting Chinese f-structure bank, a total of

19,133 different types of lexical subcat frames and 245 types of NLD paths are

extracted. I test the NLD recovery models against two different kinds of input data:

first, perfect input, i.e. the proto-f-structures derived from CTB gold-standard trees

stripped of all empty nodes and coindexation; and second, imperfect input, viz. the

proto-f-structures induced from output trees of Bikel’s parser.

The most widely-used metric for evaluating NLD recovery was originally pro-

posed by Johnson (2002). The metric judges an EC inference correct if it matches the

gold standard in its syntactic category and string position (indicated by the left and

right boundaries). However, as some researchers (Campbell, 2004; Levy and Man-

ning, 2004) have noted, this metric leads to both false positives and false negatives

when inserting an EC at a wrong position in the parse tree (but a correct position

in the string). And more importantly, the purpose of inserting empty categories

into trees is to recover semantic information such as predicate-argument relations,

which is, however, not measured by the string-based evaluation metric. I therefore

adopt the stricter dependency-based evaluation method as used to measure the qual-

ity of automatically acquired f-structures in Chapter 2. In this evaluation, a trace

is represented as a triple of the form relation(pred : location,trace : location),

where relation denotes the predicate-argument-adjunct relationship between the

inserted trace and the local predicate, and location is the string position of each

word in the input sentence.5 Following most previous work, the evaluation consists

of two measures: first, to evaluate whether a trace is inserted at an appropriate

5An EC does not take an extra position, it has the same string index as the immediately preceding
non-empty word.
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location (insertion), in a triple for this measure, the trace is represented by the

generic empty category, for the example from Figure 3.2, obj(^/use:3, -none-:3)

indicates that a trace bearing the obj function is inserted immediately after the

predicate ^/use; second, to evaluate whether the trace is correctly related to its

corresponding antecedent (recovery), in this measure the trace is instantiated by

the related antecedent, for example, the reentrancy 1 in Figure 3.2 is represented

as obj(^/use:3,a/money:1). Again, precision, recall and f-score are calculated for

the evaluation.

3.5.2 Experimental Results

Tables 3.6 and 3.7 summarise the results for trace insertion and antecedent recovery

testing on stripped CTB trees and parser output trees, respectively. To facilitate

comparison with the approach of Cahill et al. (2004), in addition to the basic and

hybrid algorithms described in the previous sections, I also implemented the C04

algorithm on the Chinese data and evaluated the results.

CTB Insertion Recovery
Trees Precision Recall F-Score Precision Recall F-Score

C04 96.49 52.18 67.73 92.18 49.85 64.71
Basic 95.71 89.06 92.27 70.04 65.17 67.52
Hybrid 95.88 89.88 92.79 83.86 78.61 81.15

Table 3.6: Evaluation of trace insertion and antecedent recovery on stripped CTB
trees

Parser Insertion Recovery
Output Precision Recall F-Score Precision Recall F-Score

C04 74.22 38.65 50.83 62.21 32.40 42.61
Basic 74.02 62.69 67.89 48.28 40.89 44.28
Hybrid 74.03 63.02 68.09 57.40 48.87 52.79

Table 3.7: Evaluation of trace insertion and antecedent recovery on parser output
trees

The results clearly show that the C04 algorithm has the lowest recall due to its

restriction to certain types of NLD phenomena. On the other hand, as expected,

the C04 algorithm achieves the highest precision, especially for antecedent recov-
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ery. This is because the C04 algorithm identifies the original location (trace) for a

known antecedent, whereas my modified algorithm tries to identify both the trace

and antecedent (including null antecedent) for an unknown NLD type. In order to

recover more NLD types with maximum accuracy, the hybrid model combines the

C04 algorithm with the basic algorithm, viz. it recovers certain NLD types with

known GF(s) (topic-rel in the CTB data) using the C04 algorithm triggered by

antecedents, and recovers unknown NLDs using the basic algorithm triggered by

hypothesising traces. However, the two algorithms may conflict during NLD reso-

lution in certain situations: (i) inserting a trace at the same site but relating it to

different antecedents, or (ii) relating the same antecedent to different traces. Be-

cause the C04 algorithm tends to be more precise for known antecedents than my

basic algorithm, the hybrid method keeps the traces inserted by the C04 algorithm

and abandons those inserted by the basic algorithm in the case of conflict. The hy-

brid method evidently outperforms the C04 algorithm for both trace insertion and

antecedent recovery due to its wider coverage of NLD types. It also substantially

improves the performance of the basic model for the task of antecedent recovery by

taking advantage of the C04 algorithm.

Antecedent Basic Model Hybrid Model
Recovery Precision Recall F-Score Precision Recall F-Score

Overall 70.04 65.17 67.52 83.86 78.61 81.15

subj 61.39 58.87 60.10 80.64 77.47 79.02
obj 64.48 58.50 61.34 76.37 49.23 59.87
adjunct 0.00 0.00 0.00 16.67 3.53 5.83
topic 0.00 0.00 0.00 57.38 66.67 61.67
coord 0.00 0.00 0.00 93.75 88.24 90.91
topic-rel 98.87 98.27 98.57 98.87 98.27 98.57

Table 3.8: Breakdown by major grammatical functions for antecedent recovery on
stripped CTB trees

Table 3.8 gives a breakdown by major GFs associated with the NLD traces of the

results for antecedent recovery by the basic and hybrid models, testing on stripped

CTB trees. Compared to the generic strategy that indiscriminately resolves differ-

ent NLD types, the fine-grained hybrid method is sensitive to particular linguistic
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properties of different NLD types. As a result, it:

∙ is capable of recovering empty predicates in verbal or quantifier coordination

constructions (coord);

∙ can relate the topic-rel antecedent in a relative clause to a trace bearing an

ungovernable GF adjunct or topic;

∙ substantially enhances the recovery of subj-type traces by separating WH-

traces and locally-mediated dependencies from other LDDs.

∙ also increases the precision of obj-type traces at a cost of lower recall. Ex-

amining the development data, I found that the lower recall is to some extent

relevant to the correct recovery of subj-type traces. Since the subject in

Chinese has a very strong tendency to be dropped if it can be inferred from

context, the empty NLD path has the greatest probability in all resolution

paths conditional on subj, and this prevents the subj-type trace from finding

an appropriate antecedent in the basic model. This results in the fact that

the remaining WH-traces are identified as bearing the obj function, which

contributes to the higher recall of the obj-type traces. However, the number

of these cases is considerably reduced in the hybrid model, which correctly

resolves some of the WH-traces as subjs by the C04 algorithm based on the

NLD paths conditional on known types of antecedents rather than traces.

In conclusion, the hybrid methodology capturing specific linguistic properties of

various NLD types, greatly improves the performance for the antecedent recovery

task over the generic method, increasing the f-score by 13.6 percentage points on

CTB trees and 8.5 percentage points on parser output trees.

3.6 Better Training for Parser Output

3.6.1 Motivation

The experiments reported in Section 3.5 show that although the NLD recovery algo-

rithm achieves encouraging results for perfect input CTB trees, it is sensitive to the
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noise in trees produced by Bikel’s parser, incurring a dramatic performance drop of

24.6 percentage points for trace insertion and 28.3 percentage points for antecedent

recovery. The same trend was also reported in the literature on NLD recovery for En-

glish data: Campbell (2004), for example, reported a drop from 93.7% to 76.7% for

insertion and from 89.0% to 70.8% for recovery when moving from the Penn-II tree-

bank trees to the output of Charniak’s parser (Charniak, 2000). The lower results

obviously reflect errors introduced into the output trees during parsing. My NLD

recovery algorithm runs on f-structures automatically generated by the acquisition

algorithm (as presented in Chapter 2), which is highly tailored to the CTB coding

scheme (using configurational, categorial and functional tag information) and suf-

fers considerably from errors produced by the parser. As indicated by the results in

Tables 2.4 and 2.6, the quality of the automatically acquired f-structures decreases

sharply from an f-score of 96.40% to 75.83%, evaluating all features given parser

output trees (even augmented with functional tags). There is no doubt that the

poor quality of the parser-based proto-f-structures contributes to the performance

degradation for NLD recovery on such f-structures.

Ideally, methods based on machine learning techniques should train models on

data closely resembling the final test instances. However, in the NLD recovery

task, NLD resolution models are trained on proper f-structures generated from the

original CTB trees, whereas at run time the models operate on proto-f-structures

automatically generated from noisy trees output by Bikel’s parser. This constitutes a

serious drawback as regards the machine-learning approach: the training instances

derived from perfect treebank trees are substantially different from the test data

derived from imperfect parser output trees that contain a certain proportion of

errors. This observation motives a method to reduce the difference between training

and test instances by using parser output trees rather than treebank trees to train

the NLD recovery models.
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3.6.2 Methods

In order to make the training material more similar to the parser-based test data

on which the NLD recovery model operates, I parsed the training data by Bikel’s

parser, and extracted NLD paths and subcat frames from the “reparsed” data in

four steps:

Reparsing the training portion of the treebank. To avoid running the parser on

its training data, I carried out 10-fold cross-validation, dividing the training data

into 10 parts and parsing each part in turn with the parser trained on the remaining

9 parts.

Converting the parser output trees into imperfect and incomplete proto-f-structures,

which possibly contain parse errors and do not capture NLDs via reentrancies, as

empty nodes and coindexation are ignored by the parsing model.

Restoring reentrances in the imperfect f-structures. To do this, I convert the

original CTB trees of the training set into proper f-structures, and map the NLDs

from these gold f-structures to the corresponding f-structures induced from parser

output trees. Since the parser-output f-structures contain errors, they are usually

not identical to the gold f-structures. I match a local parser-output f-structure with

a local gold f-structure on condition that: (i) the values of their pred attributes are

identical; (ii) their string positions in the input sentence are equivalent. The NLD

restoration algorithm traverses the gold f-structure:

1. finding a local f-structure f where a reentrancy representing the trace t exists;

2. mapping f to the corresponding f ′ of the parser-output f-structure (if there

is), and inserting a trace t′ in f ′ if t′ preserves the uniqueness condition of f ′;

3. identifying the antecedent reentrant f-structure a in the gold f-structure, and

mapping a to the corresponding local f-structure a′ in the parser-output f-

structure (if there is);
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4. linking the local f-structures a′ and t′ in the parser-output f-structures (i.e.

establishing the reentrancy between a′ and t′).

Extracting NLD resolution paths linking reentrancies and subcat frames of all

local predicates from the parser-output f-structures.

3.6.3 Results

The restoration algorithm described above recovered 35,581 (approximately 81%)

reentrancies for the f-structures derived from parser output trees of the CTB5.1

training set. However, not all reentrancies can be retrieved, about 6% of them are

missing because of parsing errors which lead to mismatches between the gold and

the parser-output f-structures, and the remaining 12% unrecovered reentrancies are

due to violations of the uniqueness condition when inserting reentrancies. Even so, a

total of 1,068 distinct types of NLD paths are extracted from the f-structures derived

from the reparsed data of the training set, which is about 4.4 times (of 245 types)

that obtained from the gold f-structures. This fact implies that the f-structures

derived from imperfect parser output trees manifest a greater diversity than those

derived from the original treebank trees. To verify the prediction that the instances

extracted using the reparsing method are more similar to test instances, I compare

the overlap of NLD paths extracted from parser-output and gold f-structures be-

tween the development set and the training set. As shown in Table 3.9, although the

standard training set covers 84.4% NLD path types of the development set derived

from gold treebank trees, it has a rather low coverage (16.3%) on the development

data derived from parser output trees. By contrast, the reparsing training method

boosts the coverage to 62.3% even from the portion of reentrancies that are recovered

by the restoration algorithm.

Results of NLD Recovery

I repeat the experiments recovering NLDs for the parser-based proto-f-structures of

the test data as described in Section 3.5. Table 3.10 compares the results for trace
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NLD paths Gold Parser-Output

Development Set – 77 252
Standard Training 245 65(84.4%) 41(16.3%)
Reparsing Training 1,068 50(64.9%) 157(62.3%)

Table 3.9: Count and overlap of NLD paths against the development set for the two
training methods

insertion and antecedent recovery by the hybrid approach using: (i) the standard

method to train models on perfect f-structures derived from gold CTB trees (rep-

etition of Table 3.7); and (ii) the reparsing method to train models on imperfect

f-structures derived from parser output trees. The results show that the reparsing

training method does outperform the standard training but the difference is fairly

modest. To measure the significance of improvements in the scores, I perform a

paired t-test on the mean difference of the f-scores. For the trace insertion, I obtain

a p-value of 0.006, and for the antecedent recovery the p-value is 0.03, showing that

the improvements in both tasks are statistically significant at the 95% level.

Insertion Recovery
Precision Recall F-Score Precision Recall F-Score

Standard 74.03 63.02 68.09 57.40 48.87 52.79
Reparsing 74.32 63.33 68.38 57.54 49.03 52.94

Table 3.10: Evaluation of trace insertion and antecedent recovery by hybrid models
trained on gold-standard f-structures and parser-output f-structures

One reason why the reparsing approach does not demonstrate a more pronounced

increase in scores over the standard method is apparently because of parsing errors.

The core NLD recovery algorithm presented in the thesis is driven by “missing” ar-

guments, however as indicated by the training data, there are more than 12% local

predicates that are saturated by mistake, and there is no means to recover NLDs

for the f-structures governed by those predicates. Another likely reason, I speculate,

is related to the relatively small amount of training material used. Compared to

245 NLD path types extracted from nearly 44,000 reentrancies, the reparsing model

with 1,068 NLD path types learned from 35,581 reentrancies may suffer from data

sparseness. And moreover, the great diversity presented in the f-structures induced
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from parser output trees results in relatively low path coverage where nearly 40%

NLD paths in the parser-output development set can not be covered by the 1,068

NLD path types, contrasted with the fact that 245 NLD path types from the stan-

dard training set cover more than 80% NLD paths of the development data coming

from the original CTB trees.

Results of F-Structure Parsing

The ultimate goal of the research presented in this chapter is to translate the parser-

output proto-f-structures into NLD-resolved proper f-structures. I now investigate

to which degree the quality of the automatically induced f-structures can be im-

proved by reintroducing reentrancies to capture NLDs. As in Section 2.6, I carry

out a qualitative evaluation of NLD-resolved f-structures, which are automatically

acquired for raw text by the pipeline parsing model in conjunction with the post-

processing NLD recovery component. Again, two sets of test data are used: (i)

the manually corrected f-structures of the 200-sentence gold-standard test set; and

(ii) the 1,913 f-structures acquired from original CTB trees (with empty nodes and

coindexation) of the CTB5.1 test set. Table 3.11 summarises the evaluation results

for the f-structures before and after recovering NLDs. There is a clear increase in

the recall scores due to the recovery of reentrancies representing NLDs, while the

precision scores decrease slightly. Overall, the NLD recovery component gives an

improvement in the f-score by about 3 percentage points evaluating preds-only GFs

and about 2 percentage points evaluating all features against both test sets.

200 Gold-Standard Sentences All Test Sentences

-NLD Precision Recall F-Score Precision Recall F-Score

Preds Only 75.57 66.54 70.77 72.21 61.58 66.47
All Feats 84.09 75.73 79.69 81.86 70.63 75.83

+NLD Precision Recall F-Score Precision Recall F-Score

Preds Only 75.25 73.07 74.15 71.13 67.40 69.22
All Feats 83.53 80.67 82.08 80.80 75.27 77.94

Table 3.11: Comparison of f-structures before and after recovering NLDs

Up to now, Chinese parsers based on deep and wide-coverage grammars are very
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rare. One and possibly the most suitable system to compare against is the PARC

XLE multi-language parser (Crouch et al., 2006) that uses hand-crafted LFG gram-

mars. Fang and King (2007) report on progress of the Chinese grammar developed

for the XLE parsing system. Parsing the jointly developed 200 gold-standard test

sentences with PARC’s Chinese grammar (as of March, 2007), 188 sentences receive

full parses, resulting in an f-score of 72.7% evaluating preds-only GFs (Table 3.12).

The treebank-based automatically acquired resources achieve 100% coverage and a

preds-only score of 74.2%. However it is important to note that the experiments

carried out in Fang and King (2007) include automatic segmentation and POS tag-

ging using a tokeniser developed by Beijing University, which is based on a scheme

somewhat different from the CTB gold standard. By contrast, I adopt the CTB

segmentation and provide POS tags for unknown words in the parsing experiments.

This means that the results cannot be directly compared. However, it is evident

that the treebank-based automatically acquired Chinese LFG resources are strongly

competitive with respect to coverage, quality, and development time.

Coverage Precision Recall F-Score

PARC XLE 94% 73.1 72.4 72.7
Present Thesis 100% 75.3 73.1 74.2

Table 3.12: Comparison of f-structures acquired by hand-crafted and treebank-
induced grammars

3.7 Summary

In this chapter, I investigated the problem left over from the previous chapter for

parsing new text into f-structures: as most state-of-the-art statistical parsers ig-

nore non-local dependency relationships recorded by means of empty categories and

coindexation in the Penn Treebanks, the LFG resources automatically acquired for

raw text by the pipeline parsing model are only basic, incomplete proto-f-structures

with NLDs unresolved. For turning the proto-f-structures into NLD-resolved proper

f-structures, I presented a post-processing approach to reintroduce reentrancies into

f-structures to capture NLDs that were originally overlooked by the parsing models.
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Based on a thorough inspection of all NLD types in the CTB, my NLD recovery

algorithm involves hybrid strategies including:

∙ a number of heuristic rules to tackle the locally-mediated dependencies and

particular types of NLDs, such as zero relative pronouns and null predicates

in coordinations;

∙ two statistical models to tackle long-distance dependencies based on proba-

bilistic NLD paths linking reentrancies and subcategorisation frames for local

predicates, which are automatically acquired from the f-structure resources

induced from the original CTB trees.

- One statistical model (Cahill et al., 2004) learns probabilities of NLD

paths conditional on GFs associated with known antecedents to more

precisely identify traces for the known NLD type — WH-movement in

relative clauses;

- The other statistical model, by contrast, learns probabilities of NLD

paths conditional on GFs associated with traces to recover the remaining

NLDs, including the types in which the trace is not related to an overt

antecedent, such as pro-drop in Chinese.

Another contribution of this chapter consists in presenting a theoretically sound

method of training on imperfect parser-output f-structures rather than gold f-structures

obtained from the original treebank trees for the NLD recovery task. The repars-

ing training method enhances the similarity of the training materials to the test

instances, and modestly yet still significantly improves the final performance of

the NLD recovery models. A similar scenario is described in Chrupal̷a et al. (2007),

which present related ideas for improving functional labelling of parser output trees.

They show that extracting training instances from the reparsed training part of the

treebank results in better training material and achieves statistically significantly

higher f-scores on the function labelling task for the English Penn Treebank. How-

ever, the function labelling results reported in Chrupal̷a et al. (2007) for the Penn
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Chinese Treebank do not show any statistically significant difference between the

normal training and the better training methods. To the best of my knowledge, so

far nobody has attempted to apply this better training method to the NLD recovery

task.

The final evaluation results demonstrate that the NLD recovery algorithm effec-

tively turns the shallow f-structures acquired in Chapter 2 into linguistically rich and

deep LFG representations. After recovering NLDs, the quality of the f-structures

shows a considerable improvement, achieving an f-score of 74.15% for preds-only

GFs and 82.08% for all features evaluating against the gold-standard test set of 200

f-structures for Chinese.
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Part II

LFG-Based Generation
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Chapter 4

Introduction to Natural

Language Generation

This dissertation has provided a method for treebank-based automatic acquisition

of wide-coverage Chinese LFG resources (in Chapter 2) and parsing Chinese into

f-structures, including recovering non-local dependencies (in Chapter 3) with such

resources. As a complementary operation to parsing, natural language generation

is an important component in natural language applications such as machine trans-

lation, text summarisation, question answering and dialogue system, among others.

While parsing is possibly one of the most extensively studied areas of natural lan-

guage processing, generation is relatively under-developed and there remains ample

room to make improvements. In the following three chapters, I will explore the task

of Chinese generation in the framework of LFG, specifically, realising sentence sur-

face forms from LFG f-structures, using the automatically generated LFG resources

presented in Chapter 2.

First, I survey the state-of-the-art in natural language generation in this chap-

ter. Section 4.1 gives a broad overview of the literature on sentence realisation and

methods for evaluating natural language generation systems. Section 4.2 describes

previous research into LFG-based generation and summarises some characteristics

of sentence realisation for Chinese. The following two chapters present two distinct

approaches to Chinese sentence generation from LFG f-structures. Chapter 5 mi-
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grates the LFG approximation and chart-style generater of Cahill and van Genabith

(2006) and Hogan et al. (2007) from English to Chinese data and improves on the

previous work by applying recent advances in PCFG parsing to PCFG-based gen-

eration models. Chapter 6 presents an alternative method to solve the generation

problem by pure dependency-based n-gram models, obviating the detour through

c-structure and CFG trees in the PCFG-based model.

4.1 Natural Language Generation

Natural Language Generation (NLG) is a subfield of NLP that is concerned with

producing natural language expressions from some underlying computer-internal

representation of information. The typical architecture in common state-of-the-art

NLG systems is a pipeline with the following three stages (Reiter and Dale, 2000):

Text Planning is the process of selecting the information to convey in the output

from a knowledge pool, also known as content determination; and organising

the overall text structure, also known as discourse planning.

Sentence Planning is the process of organising the content of each sentence, also

known as sentence aggregation; deciding the specific words and phrases to

express the concepts, also known as lexicalisation; and linking pronouns or

other types of reference to domain entities, also known as referring expression

generation.

Surface Realisation is the process of applying grammar rules to produce syntac-

tically, morphologically, and orthographically correct sentences.

Although the three stages are all central to a real-world NLG system, the present

thesis concentrates on the component of surface realisation of a single sentence: the

main objective of the research presented in Chapter 5 and Chapter 6 is to produce

sentences from given LFG f-structures. A surface realisation generation module (on

its own) is e.g. an important component in transfer-based MT (Riezler and Maxwell,
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2006), in which target sentences are generated from target language f-structures that

have been transferred from the original f-structures of the source language.

4.1.1 Surface Realisation

Surface realisation, or sentence generation, is the final stage of natural language

generation. The task is to generate a linearly ordered, grammatical string of mor-

phologically inflected words from an abstract semantic or syntactic representation

of linguistic content. This process potentially involves several subtasks: (i) deter-

mining the linear order of words and phrases; (ii) inserting necessary function words

and punctuation; and (iii) performing morphological inflections.

Surface realisers have taken two broad forms, differing with respect to how ab-

stract input representations are mapped to surface forms: via grammar rules or

directly.

4.1.1.1 Generation with Grammar

From a knowledge-based NLP perspective, a sentence realiser uses a module en-

coding knowledge, in most cases in the form of natural language grammar, which

defines the relation between natural language utterances and their corresponding

meanings. The realiser builds a sentence from a semantic input by applying the

grammar rules to construct syntax or derivation trees. The leaf nodes of the tree,

read in left-to-right order (by convention), are the words of the generated sentence.

In most existing realisers, unification- or constraint-based grammar formalisms are

used, e.g., Lexical-Functional Grammar, Head-Driven Phrase Structure Grammar,

Combinatory Categorial Grammar, Tree Adjoining Grammar etc.

Symbolic Approaches Using Handcrafted Grammars This is the traditional

way to construct a grammar-based sentence realiser. In practice, this means that

generation grammars are hand-crafted capturing deep linguistic analyses developed

by linguistic experts. Some prominent symbolic systems are listed below:
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∙ FUF/SURGE (Elhadad and Robin, 1996) is a unification-based systemically-

oriented grammar of English that uses Functional Unification Formalism as

its underlying grammar.

∙ Penman/KPML (Bateman, 1997) is a sophisticated realiser based on large-

scale grammars written within the framework of Systemic-Functional Linguis-

tics. Grammars have been developed using KPML for a variety of languages

including English, German, Dutch, Chinese, Spanish, Russian, Bulgarian, and

Czech. One of the goals of KPML is multilingual generation that realises a

single input in different languages simply by changing the active grammar

being used by the system.

∙ RealPro (Lavoie and Rambow, 1997) is a text generation engine developed by

CoGenTex, Inc. based on Meaning-Text Theory. RealPro takes as input a

deep syntactic structure and converts it into natural language text by several

sets of rules designed for adding function words, specifying the word order,

deciding on the appropriate inflections and orthographies.

∙ Nitrogen (Langkilde and Knight, 1998a) and its successor Halogen (Langkilde,

2002) map from abstract meaning representations to alternative paraphrases

for semantic input by hand-written lexical, morphological and keyword-based

grammatical rules.

∙ LinGO/LKB (Carroll et al., 1999) contains the generator used in the LOGON

(a Norwegian-to-English MT) system,1 which operates from meaning repre-

sentations based on Minimal Recursion Semantics (Copestake et al., 1995) and

generates target language realisations in accordance with the LinGo English

HPSG Resource Grammar (Flickinger, 2000).

∙ SUMTIME (Reiter et al., 2003) generates marine weather forecasts for offshore

oil rigs from numerical forecast data by manually authored rules and codes,

which are informed by corpus analysis.

1http://www.emmtee.net/
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∙ XLE (Crouch et al., 2006) provides a generator which takes an LFG f-structure

as input and produces all of the strings that, when parsed, could have that

f-structure as output. The XLE uses parallel grammars for English, French,

German, Norwegian, Japanese, and Urdu, carefully hand-crafted by linguistic

experts from the ParGram project (Butt et al., 1999).

The knowledge acquisition bottleneck involved in hand-crafting grammar rules

puts traditional, symbolic grammar-based sentence realisers at a disadvantage in

that such resources are:

∙ knowledge-intensive, time-consuming and very expensive to construct;

∙ language-dependent, domain-specific and hard to adapt to new domains;

∙ often incapable of dealing with incomplete, incorrect input or linguistic phe-

nomena not covered in the generation grammar.

Statistical and Hybrid Approaches that have been popular in other fields of

NLP, are making headway into NLG and sentence realisation in particular. Hybrid

approaches use a mix of hand-crafted and automatically derived resources/grammars,

statistical approaches use automatically derived resources only. Compared to tradi-

tional rule-based symbolic approaches, statistical (and hybrid) approaches promise

the advantage of increasing reusability and robustness of NLG systems or compo-

nents, as well as reducing the painstaking effort of developing deep, wide-coverage

grammars. Over the last decade, a number of researchers have presented meth-

ods to use statistics and/or grammatical resources derived from a corpus to inform

heuristic decisions during what is otherwise symbolic generation:

∙ FERGUS (Bangalore and Rambow, 2000) is a NLG system involving hybrid

techniques. The automatic part of FERGUS is called tree chooser and draws

on a stochastic tree model automatically derived from a corpus of XTAG

derivations created by transforming the Penn Treebank. The tree chooser

takes dependency structures as inputs and outputs supertagged trees using
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the probabilistic tree model. The supertagged trees are then linearised by a

hand-crafted XTAG English grammar.

∙ Marciniak and Strube (2004) construe the entire generation process as a num-

ber of individual tasks which can be modelled as classification problems. They

use the TAG formalism to represent the structure of the generated texts for

route directions, and build TAG derivation trees by applying corpus-trained

classifiers relying on semantic and contextual features.

∙ White (2004) integrates statistical n-gram models to prune edges for improv-

ing the efficiency of OpenCCG, a chart generator based on a precise, manu-

ally developed CCG grammar. White et al. (2007) revise the original CCG-

bank (Hockenmaier, 2003) by augmenting the lexical categories with semantic

representations, and from the converted CCGbank, a broad coverage grammar

is automatically extracted and substituted for the previous manually developed

grammars used in the OpenCCG realisation.

∙ Nakanishi et al. (2005) describe probabilistic models for a chart generator

based on the Enju grammar, an English HPSG grammar extracted from the

Penn Treebank by Miyao et al. (2004). Importing techniques developed for

wide-coverage probabilistic HPSG parsing, they apply a log-linear model to

pack all alternative derivation trees for a given input into an equivalence class,

and apply iterative beam search to reduce the search space during runtime.

∙ Cahill and van Genabith (2006) and Hogan et al. (2007) present probabilis-

tic surface generation models using wide-coverage LFG approximations auto-

matically extracted from the Penn-II Treebank to determine the most likely

f-structure annotated tree (and hence a realisation) given an f-structure (see

details in Section 4.2.1).

∙ Belz (2007) describes a comprehensive approach couched in the format of

the Probabilistic Context-Free Representationally Underspecified (pCRU) lan-

guage framework. The approach includes a base generator creating a genera-
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tion space defined by a CRU grammar, and a probabilistic model estimating

a probability distribution over the set of CRU grammar rules from a multi-

treebank—a treebank containing all derivations licensed by the CRU grammar

for an unannotated corpus of example texts. Then the probability distribu-

tion is used in one of several ways to drive generation processes, maximising

the likelihood either of individual expansions or of entire generation processes.

The work of Belz (2007) can be considered as a generalisation of Nakanishi

et al. (2005); Cahill and van Genabith (2006); White et al. (2007) etc., which

focus on more concrete unification-based grammar formalisms and more spe-

cific tasks.

∙ Zhong and Stent (2005); DeVault et al. (2008) explore the possibility of ac-

quiring probabilistic generation grammars from unannotated data rather than

treebanks as in the work described above. They use general purpose tools

and resources to parse a set of raw texts into syntactic trees, and augment

parse trees with semantic information. They both extract probabilistic tree-

adjoining grammars from the annotated parse trees, which are further used

to drive the process of sentence realisation. Both report that there is no sig-

nificant quality difference between sentences generated based on grammars

learned from automatically produced parser output trees and hand-corrected

or treebank trees.

Generate-and-Select Approach is a NLG methodology that is distinct from

one-step grammar-based realisation methods by a clear separation between genera-

tion and selection. In this paradigm, either hand-crafted or automatically acquired

grammar rules are applied to generate a space of all possible paraphrases on the one

hand, and statistical methods (such as word n-grams) are used to select the overall

most likely realisation(s) from the space on the other. The attractive aspect of this

paradigm is that it partially overcomes the knowledge acquisition bottleneck in NLG

by tapping the vast knowledge inherent in large text corpora (for disambiguation),

while maintaining the flexibility associated with symbolic systems (and one may still
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need a generation grammar). Some traditional hand-crafted surface realisers adopt-

ing this methodology have been augmented with a stochastic ranker. By and large,

two different probabilistic models have been applied in ranking potential outputs:

n-gram language models and log-linear feature models.

N-gram language models introduced statistical approaches in NLG and con-

tinue to be popular today. The first significant attempt to incorporate statistical

knowledge into surface realisation is Nitrogen (Langkilde and Knight, 1998b), which

represents the set of alternative realisations as a word lattice (a state transition di-

agram with links labelled by words) and selects the best output from the lattice by

basic unigram and bigram language models trained on 250 million words of WSJ

newspaper text. Langkilde (2000) describes a more efficient ranking algorithm by re-

placing the word lattice in Nitrogen with a forest representation (a packed set of trees

with AND-OR relations), which offers advantages in compactness and the ability to

represent syntactic information. In the same way as Nitrogen, FERGUS (Bangalore

and Rambow, 2000) generates a word lattice containing all possible realisations by

an XTAG grammar and ranks these alternatives in the order of their likelihood by

a trigram language model constructed from a 1,000,000 word WSJ corpus. White

et al. (2007) rank alternatives by a variety of factored trigram models. Their results

show that factored models that integrate word-level n-grams with n-grams over part-

of-speech tags and supertags (category labels) provide performance improvements

over pure word-level n-grams.

Log-linear (or maximum entropy) feature models are more powerful

than conventional n-gram language models in that they incorporate (in principle

arbitrary) syntactic and semantic features. Velldal et al. (2004) and Velldal and

Oepen (2005) present discriminative maximum entropy models using structural fea-

tures trained on a small, domain-specific HPSG symmetric treebank2 comprising 864

sentences constructed using a small hand-crafted HPSG grammar. Their results sug-

2Velldal et al. (2004) defined a symmetric treebank as a set of pairings of surface forms and
corresponding semantics, where (a) each surface form is associated with the sets of alternative
analyses; and (b) each semantic representation is paired with the sets of alternate realisations.
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gest that the structural model compares favourably against the traditional 4-gram

language model trained on all of the British National Corpus containing roughly

100 million words, and in turn that a combined model (with n-grams as a separate

feature) outperforms both individual models. Nakanishi et al. (2005) present simi-

lar probabilistic models, but using more compact representations of packed feature

forests and a wide-coverage HPSG grammar automatically acquired from the much

larger Penn-II Treebank. Cahill et al. (2007) implement a log-linear model within

the LFG framework and concentrate on a less configurational language, German,

using a large hand-crafted LFG grammar.

Comparing n-gram models with log-linear models, log-linear models have the

flexibility of integrating multiple overlapping features, including various structural

features, without assuming independence among them, and thus usually outperform

pure n-gram language models (Velldal and Oepen, 2005; Nakanishi et al., 2005;

Cahill et al., 2007). On the other hand, a language model is trained on a raw text

corpus that is easily accessible in large quantities, whereas log-linear models incur

the overhead of building or annotating a corpus with more linguistic (syntactic

or semantic) information, such as the symmetric treebanks used for training the

statistical models in Velldal et al. (2004) and Velldal and Oepen (2005).

4.1.1.2 Generation without Grammar

An alternative sentence realisation paradigm is to map from concepts or seman-

tic representations to surface strings directly rather than using a full grammar or

knowledge base to map between generation input and surface strings. An impor-

tant advantage of this paradigm, such as using templates,3 is that they sidestep the

complex syntactic structures encoded in large number of grammar rules. A few gen-

eration systems following this methodology have been developed, but to the best of

my knowledge, to date this approach has been limited to small-scale and specialised

applications.

3It can, of course, be argued that templates do in fact constitute “cheap” surrogate grammars.
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∙ YAG (McRoy et al., 2000) is a real-time, template-based natural language

generator, which extends the traditional template-based approach by allowing

templates to embed several types of control expressions, in addition to simple

string values. YAG is designed for general purpose applications, but the set

of pre-defined templates has to be changed every time for each new domain.

∙ Ratnaparkhi (2000) construes surface realisation as attribute ordering and

lexical choice in generation templates, and presents maximum entropy mod-

els to learn the optimal surface realisation for a semantic representation of

attribute-value pairs from a corpus of templates, restricted to an air travel

domain.

∙ Oh and Rudnicky (2000) describe a stochastic surface realisation system for

spoken dialogue systems in the travel reservations domain, similar to Ratna-

parkhi (2000), but use an n-gram language model to generate each utterance.

There have also been several studies concentrating on word or phrase ordering,

the primary sub-task of sentence realisation.

∙ Uchimoto et al. (2000) describe a corpus-based method to acquire the order

of modifiers in Japanese clauses. They use a maximum entropy model derived

from the Kyoto University dependency treebank to estimate the likelihood of

the appropriate order of each pair of modifiers in question, and the order of a

clause is determined by all the correctly ordered pairs.

∙ Ringger et al. (2003) present several statistical models to estimate syntactic

constituent order in an unordered syntax tree for French and German. Their

experiments show that a particular conditional model incorporating a wide

range of syntactic and semantic features and implemented by decision trees

performs best.

∙ Filippova and Strube (2007) extend the work of Uchimoto et al. (2000) and

adapt it to learn ordering constituents of a main clause in German. The main

difference between the two algorithms is that Filippova and Strube (2007) split
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the task into two steps: first, the best candidate for the initial sentence position

is chosen by a binary classifier; then the order for the remaining postverbal

constituents is determined by a maximum entropy classifier. Results indicate

that the two-step method works significantly better than the one without the

separation.

4.1.2 Evaluation of NLG Systems

Evaluating NLG systems faces the same problems as those that confront the eval-

uation of machine translation systems: given a set of automatically generated sen-

tences, how close are they to the human-produced or gold sentences in a given

context or application? NLG systems have traditionally been evaluated by human

judgements. Human evaluation is informative but time-consuming and expensive.

In recent years, inspired by the prevalence of automatic evaluation methods in MT

and by the growing demands of modern wide-coverage NLG systems, researchers

now often provide automatic corpus-based evaluations of NLG systems.

4.1.2.1 Human-Based Evaluation

In general, there are two types of human-based evaluation methodologies:

Intrinsic Type This involves reading and rating the generated sentences for flu-

ency and adequacy by human subjects, and NLG systems are evaluated by compar-

ing the ratings of their generation output.

Extrinsic Type This involves measuring the impact of different generated texts

on task performance, e.g. whether the generated texts help decision making; measur-

ing how much experts post-edit generated texts; and measuring how quickly people

can read generated texts.

4.1.2.2 Corpus-Based Evaluation

Human evaluation is the ultimate arbiter of generation quality but is very expensive

and time-consuming. Particularly since the advent of the wide-coverage NLG sys-
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tems, automatically evaluating NLG systems by comparing the generated texts to

a corpus of reference or gold-standard sentences have become widely used in recent

years, as it is much cheaper and easier to organise than human evaluation.

In grammar-based generation, there is a seemingly irreconcilable conflict between

broad coverage and high accurate outputs. It is usually the case that the rules

and features are simultaneously too general to rule out undesirable combinations,

and yet too restrictive to allow some combinations that are valid. Accordingly, a

comprehensive evaluation has to take the metrics of both accuracy and coverage

into account when assessing the quality of realisations.

Coverage is defined as the percentage of input representations for which the sen-

tence generator produces strings.

Accuracy is evaluated by various metrics:

Exact match is the percentage of generated sentences that exactly match a

corresponding gold or reference sentence.

N-gram precision and recall metrics such as BLEU (Papineni et al., 2002),

NIST (Doddington, 2002) and ROUGE (Lin and Hovy, 2003) are well-established

evaluation metrics in MT and summarisation communities. These metrics assess the

quality of a generated sentence in terms of the statistics of word n-grams: the more

of these n-grams that a realisation shares with the reference sentence(s), the better

the realisation is judged to be. The most commonly used metric is the BLEU score,

which is computed as a geometric average of n-gram precisions pn of the generated

realisation with respect to the reference, using n-grams up to length N and uniform

weights wn summing to one. Then the average n-gram precision is adjusted by a

sentence brevity penalty factor BP , as in Eq. (4.1), where c is the length of the
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generated string and r is the length of the reference string.

BLEU = exp

(

N
∑

n=1

wn log pn

)

×BP (4.1)

BP =

⎧

⎨

⎩

exp (1 − r/c) if c ≤ r

1 if c > r

where wn = 1/N

String edit distance reflects the average number of insertion (I), deletion

(D) and substitution (S) errors between the reference strings (R) and the strings

in the test corpus produced by the generator. The NIST Simple String Accuracy

(SSA) is one of this type of metrics, which is calculated as Eq. (4.2).

SSA = 1 − I + D + S

R
(4.2)

As the task of generation involves reordering of tokens, the SSA metric may

penalise a misplaced token twice, for example, as both a deletion from its expected

position and an insertion at a different position. Because of insertions and deletions,

the total number of operations may be larger than the number of tokens involved for

either reference or output strings, and as a result, the SSA metric may be negative

(though it is never greater than 1). To overcome this harsh penalty, Bangalore et al.

(2000) revised SSA as Generation String Accuracy (GSA). GSA treats deletion of

a token at one location in the string and the insertion of the same token at another

location in the string as one single movement error (M). This is in addition to the

remaining insertions (I ′) and deletions (D′), resulting in Eq. (4.3).

GSA = 1 − M + I ′ + D′ + S

R
(4.3)

Many researchers (Stent et al., 2005; Belz and Reiter, 2006) are acutely aware

that automatic evaluation metrics are limited, as for instance:

∙ they tend to have a bias in favour of generators that select on the basis of

frequency, and against generators based on purely symbolic rules;
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∙ they tend to award higher ratings to systems which follow corpus frequency,

while penalising systems which produce perfectly valid lexical and syntactic

variations;

∙ they are sensitive to the size and make-up of the reference corpus, which is

in most cases incapable to cover all surface varieties that express the same

meaning.

Nevertheless, BLEU-type automatic evaluation metrics are quick, inexpensive,

language-independent, and moreover, have been shown to correlate well with hu-

man judgments when comparing statistical NLG systems (Bangalore et al., 2000;

Belz and Reiter, 2006), and therefore have become the de facto evaluation standard

for statistical realisation approaches. I also adopt corpus-based automatic evalu-

ation methods to estimate the performance of my sentence realisers presented in

Chapters 5 and 6.

4.2 LFG-Based Generation for Chinese

4.2.1 Generation in LFG

Work on generation in LFG generally assumes that the generation task is to deter-

mine the strings of a language that correspond to a specified f-structure, given a

particular grammar (Dalrymple, 2001, pp.429). Based on these assumptions, both

theoretical and practical explorations into the problem of generation in LFG have

been reported in the literature.

Kaplan and Wedekind (2000) explore the formal properties of generation from f-

structures. They prove that given an LFG grammar and a fully specified f-structure,

the set of strings that corresponds to the particular f-structure according to the

grammar is a context-free language. More recent work in LFG generation has build

sentence realisers using symbolic or statistical approaches. ParGram/XLE (Crouch

et al., 2006) comes with a fully-fledged unification-based generator, which takes

an f-structure as input and generates all possible strings that correspond to that

f-structure. The core knowledge bases of XLE are bi-directional LFG grammars
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consisting of a large quantity of syntactic rules and lexical entries, hand-crafted by

linguists. Cahill et al. (2007) describe a two-stage sentence realiser for German,

which produces the generation space by the symbolic XLE generator, using a large

hand-crafted grammar for German, and ranks the realisations by a log-linear model

similar to that used in Velldal and Oepen (2005) but trained on a symmetric treebank

built from the German TIGER Treebank. Cahill and van Genabith (2006) and

Hogan et al. (2007) present conditional probabilistic models implemented in chart-

style generators for surface realisation from f-structures. Their generators use wide-

coverage, probabilistic LFG approximations automatically acquired from the Penn-

II treebank (Cahill et al., 2002; Cahill, 2004).

In Cahill and van Genabith (2006), the LFG-based probabilistic generation

model defines the conditional probability P (T ∣F ), for each functionally annotated

c-structure tree T (whose yield is a surface realisation) given an f-structure F .

Among the set of all possible trees T (F ) whose corresponding f-structure is F , the

generation model searches for the tree Tbest that maximises P (T ∣F ):

Tbest = argmax
T∈T (F )

P (T ∣F ) (4.4)

Similar to PCFGs, P (T ∣F ) is decomposed as the product of the probabilities of all

the functionally annotated CFG rewriting rules X → � contributing to the tree T ,

but in addition to the conditioning on the left-hand side (LHS) non-terminal node

X (as in the simple PCFG), each annotated CFG rule is also conditioned on the set

of f-structure attributes or features Feats belonging to the f-structure to which the

LHS node X is �-linked:

P (T ∣F ) =
∏

X → � in T
Feats = {ai∣∃vi (�(X) ai) = vi}

P (X → �∣X,Feats) (4.5)

For example, the annotated CFG rule S[↑=↓] → NP[↑subj=↓] VP[↑=↓] is the ex-

pansion of node n6 which is �-linked to f3 in Figure 4.1, thus the conditioning factor

on the probability of this expansion is the node S[↑=↓] and the set of the features
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n1:S

[↑=↓]

n2:NP

[↑subj=↓]

n11:PRP

[↑=↓]

They
⎡

⎣

pred = ‘pro’
pers = 3
num = pl

⎤

⎦

n3:VP

[↑=↓]

n4:V

[↑=↓]

believe
[

pred = ‘believe’
tense = present

]

n5:SBAR

[↑comp=↓]

n6:S

[↑=↓]

n7:NP

[↑subj=↓]

n9:NNP

[↑=↓]

John
⎡

⎣

pred = ‘John’
pers = 3
num = sg

⎤

⎦

n8:VP

[↑=↓]

n10:V

[↑=↓]

resigned
[

pred = ‘resign’
tense = past

]

f1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

pred ‘believe⟨subj, comp⟩’

tense present

subj f2

⎡

⎢

⎢

⎣

pred ‘pro’

pers 3

num pl

⎤

⎥

⎥

⎦

comp f3

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

pred ‘resign⟨subj⟩’

tense past

subj f4

⎡

⎢

⎢

⎣

pred ‘John’

pers 3

num sg

⎤

⎥

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Figure 4.1: C- and f-structures with � links for the sentence They believe John
resigned

in its �-linked sub-f-structure f3, i.e. {pred,tense, subj}.

Based on Cahill and van Genabith (2006), Hogan et al. (2007) present a gen-

eration model that improves on the generation accuracy by increasing conditioning

context in PCFG style rules. More specifically, the model conditions the f-structure

annotated CFG rules on their parent grammatical function, in addition to the local

�-linked feature set and the LHS node (Eq. 4.6). For example, the conditioning

context of the same rule expanding node n6 also includes the parent GF of f3 that

is �-linked to n6, that is comp.

P (T ∣F ) =
∏

X → � in T
Feats = {ai∣∃vi (�(X)ai) = vi}

∃f (f GF) = �(X)

P (X → �∣X,Feats,GF) (4.6)

The generation models described in Cahill and van Genabith (2006) and Hogan

et al. (2007) resemble PCFGs in the sense that they use (f-structure annotated)

CFG rules extracted from the Penn-II treebank with probabilities, but unlike the

standard generative PCFG model, the models have parameters conditioned heavily
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on the input f-structure that is non-local to a CFG rule. As in the above example,

the conditioning f-structure feature tense comes from the lexical annotation on

node n10 that is not immediately dominated by node n6, and hence is not present

in the rule S[↑=↓] → NP[↑subj=↓] VP[↑=↓] expanding the node n6. In other

words, these probabilistic generation models include global conditioning features

beyond a generative derivation, therefore they are not standard or even history-

based generative PCFG but conditional models.

Nevertheless, the generation methodology proposed by Cahill and van Genabith

(2006) is attractive in that it relies on treebank-based automatically acquired gram-

mars and hence is easy to port to new languages. In Chapter 5, I investigate how

well the treebank-grammar-based generation methodology migrates from English to

Chinese LFG resources, and, in addition, design a sentence realiser based on proper

generative PCFG models rather than conditional models. I also investigate how

effectively PCFG generation benefits from recent advances in PCFG parsing, such

as parent annotation and lexicalisation.

4.2.2 Generation for Chinese

Most work reviewed in the previous sections has been carried out on sentence real-

isation for English. There has only been a small amount of research into Chinese

sentence generation, limited to specific tasks or as part of MT or dialogue sys-

tems. Li et al. (1996) present a technique for Chinese sentence generation in the

KANT knowledge-based machine translation system,4 where Chinese sentences are

generated directly from interlingua expressions using a unification-based generation

formalisation which takes advantages of certain Chinese linguistic features. Liu et al.

(2005) describe an algorithm for Chinese sentence generation used in an expert sys-

tem, where natural language sentences are generated from conceptual graphs by

applying simple patterns. Gulila (2005) describes the manual construction of Chi-

nese syntactic, lexical and morphological resources for an off-the-shelf generator

originally designed for English to generate Chinese sentences for second language

4http://www.lti.cs.cmu.edu/Research/Kant/
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learning. Fang et al. (2006) presents a hybrid-template method for generating Chi-

nese simple sentences in a spoken dialogue system. I am not aware of any study on

wide-coverage robust statistical sentence generation for Chinese, nor any published

work on Chinese generation couched in the framework of LFG.

Contrary to parsing Chinese, which is generally considered to be harder than

parsing English due to the tremendous ambiguities caused by the underspecification

of Chinese grammar (as regards tokenisation, lack of morphological marking, fre-

quent omission of heads, arguments and modifiers in context etc.), it is usually taken

for granted that Chinese generation is easier than generating English. Arguably, this

is the case to a limited extent. Unlike English or other languages with rich mor-

phology, performing inflections/declensions is trivial for generating Chinese because

of the morphological paucity of the language. As a result of this, surface realisation

for Chinese mainly concerns the remaining two subtasks, i.e. determining the word

order and inserting function words and punctuation marks. Punctuation is impor-

tant for clarifying the meaning of sentences; however, as language-specific syntactic

elements, punctuation is not conventionally expressed in f-structures which encode

more abstract grammatical relations.5 In the long run, I intend to reproduce punc-

tuation for sentence realisations without punctuation marks by a separate model,

but this component is not included in the present thesis.6 Function words7 in Chi-

nese serve as a mechanism of reflecting tense, aspect, mood or separating different

constituents. For example, the sentence-final particle í/MA indicates that (1) is

an interrogative sentence.

(1) k
have

�Ï
help

í
MA
º
?

‘Is it of any help?’

The function word �/DE is used as a delimiter between the head noun and its

modifier as in (2).

5Our Chinese f-structures do present a limited number of punctuation marks, but only restricted
to those which represent clause type or connect conjuncts in a coordination.

6Note, however, that our generation output is evaluated against gold sentences containing full
punctuation, and any missing or incorrect punctuation in generation output is reflected in the
evaluation scores.

7The term “function words” here is used specifically to denote structural particles, aspectual
particles and modal particles. More generally, and outside this thesis, the term also refers to other
parts of speech, such as adverbs, prepositions, conjunctions, and so on.
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(2) =©
English

�
DE
Ê9Ý
popularisation

‘popularisation of English’

The number of function words is limited and most of them occupy particular

positions in sentences. For instance, í/MA always appears at the end of a sentence

and �/DE usually attaches to the modifier of a noun phrase. The limited and

regular usage of function words is not difficult to capture by linguistic heuristics.

The primary issue of sentence realisation from Chinese f-structures is to arrange

phrases or words in order. As in English, word order in Chinese is fairly rigid and is

crucial to establishing the intended reading of sentences. In general, Chinese is an

SVO language, nevertheless some varieties are allowed under certain circumstances.

For example, all three sentences in example (3) are grammatical and basically have

the same meaning, yet achieving somewhat different communicative goals. (3a) is

the neutral, unmarked way to express I bought a book ; (3b) is a topicalised form of

the sentence on condition that Ö/book is the current topic of the conversation; (3c)

is also acceptable in a situation in which Ö/book is the focus of the sentence or the

new information being conveyed by the sentence.

(3) a. ·
I
ï
buy
Ö
book



LE
"
.

‘I bought a book.’

b. Ö
book

·
I
ï
buy


LE
"
.

c. ·
I
Ö
book

ï
buy


LE
"
.

Though the three sentences bear the same basic f-structure with respect to argument

functions, they are distinguished by grammaticalised discourse functions topic and

focus. In this sense, the relationship between surface realisation and grammatical

functions is somewhat direct in Chinese.

Traditionally, in LFG or other unification-based formalisms, generation is re-

garded as the reverse process of parsing and resolved via application of bi-directional

grammar rules. I explore this approach with the PCFG-based chart generation

method for Chinese in the next Chapter. However, as has become apparent in

parsing, traditional CFG-based syntactic descriptions are probably not the most
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adequate formalism for Chinese natural language processing, in as much as ambigu-

ities can interfere with word segmentation, POS tagging and syntactic bracketing.

And more importantly, it is the grammatical relations or semantic roles rather than

syntactic categories that govern the word order of Chinese sentences. Based on this

observation, I develop a novel dependency-based n-gram model for Chinese sentence

realisation in Chapter 6, which directly linearises the GFs in f-structures without

recourse to an underlying (f-structure-annotated) CFG grammar and CFG-based

realisation charts, as in the traditional CFG-based generation models.
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Chapter 5

PCFG-Based Chart Generation

5.1 Introduction

Using formal linguistic grammars to generate natural language text from a specified

semantic representation is parallel to parsing with these grammars.1 During parsing,

the grammar is used to map from a surface sentence to a representation of the

sematic content of that sentence. In surface realisation it goes in the opposite

direction, that is, the realiser takes as input a semantic representation that is similar

to the output produced by parsers, and produces from this as output a surface

sentence that expresses this semantic content. In this sense, the process of surface

realisation can be viewed as the inverse of the parsing process. In this chapter,

I build a sentence realiser with this inverse parsing approach and reuse the LFG

resources automatically extracted from the Penn Chinese Treebank in Section 2.3 as

the bi-directional grammar. I adopt the chart generation methodology of Cahill and

van Genabith (2006) but: (i) adapt it to Chinese data and automatically acquired

wide-coverage Chinese LFG grammars; (ii) implement a sentence generator using

proper generative PCFG models rather than the conditional models of Cahill and

van Genabith (2006); and (iii) improve on the generation accuracy by breaking down

inappropriate independence assumptions in the simple PCFG generation model via

1Here “parsing” is used generally for what is more strictly referred to by the term “deep parsing”.
In contrast with “shallow parsing”, “deep parsing” produces a sematic representation in addition
to a pure syntactic representation of a sentence.
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techniques have been proved successful in PCFG parsing.

This chapter is structured as follows: Section 5.2 describes PCFG-based genera-

tion models, moving from the very basic PCFG model to two models incorporating

more contextual information. One model uses parent annotation of c-structure cat-

egories which was originally designed for PCFG parsing, the other is related and

inspired by Hogan et al. (2007), including the parent GF from input f-structures.

Section 5.3 describes the chart-style generation algorithm. Section 5.4 gives the ex-

perimental results and compares the performance of these various PCFG generation

models. Finally, Section 5.5 summarises and outlines some future work. Earlier

results of some of the work reported in this chapter have been published in Guo

et al. (2008b).

5.2 PCFG-Based Generation Models

5.2.1 The Basic PCFG Model

Viewing generation as the reverse process of parsing, the process of building a sen-

tence from a semantic input is to construct syntax or derivation trees (and their

yields) by application of grammar rules. In LFG-based generation, a PCFG gen-

eration model assigns a probability to each functionally annotated constituent tree

T for a given f-structure F , and the goal of the probabilistic model is to pick the

most likely tree Tbest that maximises the probability P (T ∣F ). By definition, the

probability P (T ∣F ) can be rewritten as P (T, F )/P (F ). Since we are maximising

over all candidate trees for the same f-structure, P (F ) will be a constant for each

tree, so we can eliminate it leading to:

Tbest = argmax
T∈T (F )

P (T ∣F ) = argmax
T∈T (F )

P (T, F )

P (F )
= argmax

T∈T (F )
P (T, F ) (5.1)

Furthermore, since each constituent tree augmented with consistent functional an-

notations2 admits one and only one minimal solution — the smallest f-structure that

2Consistent f-structure annotations assign exactly one particular value to each attribute.
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satisfies the constraints expressed in the annotations3 (by means of the constraint

solver), viz. P (F ∣T ) is 1. Thus:

P (T, F ) = P (T )P (F ∣T ) = P (T ) (5.2)

The final equation for choosing the most likely functionally annotated constituent

tree (and its yield) neatly simplifies to choose the functionally annotated constituent

tree with the highest probability:

Tbest = argmax
T∈T (F )

P (T ) (5.3)

This is identical to the generative or joint PCFG model for parsing. And just like

parsing, the probability of the functionally annotated c-structure tree is defined as

the product of probabilities of all the n annotated CFG rules of the form Xi → �i

involved in the derivation:

P (T ) =

n
∏

i

P (Xi → �i∣Xi) (5.4)

To estimate the rule probabilities P (X → �∣X) of the generation grammar,

we follow the method presented in Section 2.3 to annotate the phrase structure/c-

structure trees of the CTB5.1 with functional equations that relate c-structure trees

to corresponding f-structures. Given the f-structure annotated version of CTB, the

probability of each functionally annotated CFG rule can be computed by simple

Maximum Likelihood Estimation (MLE):

P (X → �∣X) =
Count(X → �)

∑


 Count(X → 
)
=

Count(X → �)

Count(X)
(5.5)

5.2.2 Models with Increased Structural Sensitivity

PCFGs are a natural starting point for parsing and generation. Unfortunately,

research suggests that PCFGs are poor models of language in several respects:

3We stipulate that disjunctions are not included in functional annotations in our treebank-based
annotation regime.

93



poor independence assumptions: CFG rules impose independence assumptions

on probabilities, resulting in poor modelling of structural dependencies across

the syntax tree.

lack of lexical information: CFG rules do not model syntactic facts about spe-

cific words, leading to problems with ambiguities of prepositional phrase at-

tachments and coordination structures, and so forth.

Because of these problems, most current probabilistic parsing models use some

augmented version of PCFGs, such as tree transformations (Johnson, 1998) and lex-

icalisation (Charniak, 1997; Collins, 1999), which have shown significant improve-

ments over simple PCFGs. However, it is interesting to note that there has been a lot

less research on this subject for sentence generation — a process generally regarded

as the reverse of parsing. In this section I investigate the effect of increasing the

context sensitivity of PCFG models on the performance of PCFG-based generation.

Another approach to improving simple PCFGs is to include lexical dependencies,

which is not presented in this thesis, but is a promising direction to be explored in

the future.

5.2.2.1 Annotation with Parent Category

A simple PCFG embodies independence assumptions about the distribution of words

and phrases, viz. the probability of each production is independent of the context

beyond the local tree from which the production is extracted. Unfortunately this

“context-free” independence assumption results in poor probability estimates, as it

is far too strong for natural language grammars. Consider the expansion of NP nodes

as temporal nouns: NP → NT. As indicated by statistics for NPs in the CTB5.1

training set (Table 5.1), an NP in Chinese is more likely to be a temporal noun if

it functions as an adverbial modifier, even though an NP is much less likely to be

a temporal noun in many other situations (such as when it functions as a subject

or attribute modifier). However, the basic PCFG model does not represent this

contextual difference in the probabilities. As exemplified by tree (a) in Figure 5.1,
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Temporal Nouns Other Nouns
subject 67(0.2%) 32,811(99.8%)
attribute modifier 858(3.2%) 25,649(96.8%)
adverbial modifier 2,595(61.2%) 1,647(38.8%)

Table 5.1: Distribution of NPs in different context in CTB5.1

(a) IP

NP

NT

VP

NP

NT

VV

(b) IPˆTOP

NPˆIP

NT

VPˆIP

NPˆVP

NT

VV

Figure 5.1: Trees before and after “parent annotation”

in the simple PCFG model the upper and lower NPs have the same expansions and

these expansions have the same distribution.

To relax the independence assumptions implicit in a PCFG, Johnson (1998)

proposed a node relabelling method augmenting the node’s label with the category

of the node’s parent so as to encode additional information about the context in

which the node appears. For the example of NP expansions, the upper NP bearing

a subject function is distinguished from the lower NP modifying the matrix verb

by different parent annotations IP and VP as in tree (b). Johnson reported that

applying this simple parent annotation transformation to the Penn-II treebank trees

improved the PCFG estimated from the trees, and yielded an increase in both

precision and recall of a parser based on this PCFG by around 8%. Although this

kind of tree transformation has been proved to have a remarkable effect on the

performance of treebank PCFG-based parsers, as yet I am not aware of any result

for applying this technique to wide-coverage PCFG-based generation.

Following Johnson’s parent annotation, I transform the f-structure annotated

treebank trees by appending the phrasal category of each parent node onto the la-

bel of all of its nonterminal children, as in Figure 5.2.4 Notice that the f-structure

annotated CFG rules mapping between a sequence of words and the correspond-

ing f-structure, consist of syntactic categories and f-structure equations. Compared

to simple CFG rules used in parsing, they are more fine-grained in that the same

4A dummy category label TOP is appended to root nodes.
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n1:IPˆTOP
[↑=↓]

n2:NPˆIP
[↑subj=↓]

n4:NPˆNP

[↓∈↑adjunct]

n6:NT
[↑=↓]8


this year

n5:NPˆNP
[↑=↓]

n7:NN
[↓∈↑adjunct])�

production

n8:NN
[↑=↓]Oy
plan

n3:VPˆIP
[↑=↓]

n9:NPˆVP

[↓∈↑adjunct]

n11:NT
[↑=↓]F


a few dags ago

n10:VV
[↑=↓]�¤

accomplish

Figure 5.2: Annotation with parent category on the functionally-annotated tree for
the sentence 8
)�OyF
�¤/The production plan for this year has been
accomplished a few days ago

expansions are distinguished by the functional equations to a limited degree, e.g.

NP[↑subj=↓] → NT[↑=↓] and NP[↓∈↑adjunct] → NT[↑=↓] become two different

expansions (which otherwise are the same in normal PCFGs without function equa-

tions). Nevertheless, the “structural sensitivity” encoded in the syntactic category

of the parent node is still capable to discriminate among particular expansions, for

example, the adverbial modifier NP node n9 that is attached to a VP label differs

from the attribute modifier NP node n4 attached to an NP label.

The annotation with parent category has an effect equivalent to splitting non-

terminal nodes to reflect different contexts in which they occur. In the basic PCFG,

each production X → � has probability P (X → �∣X); in the parent category

annotated PCFG (PC-PCFG), the parameters are extended to condition on the

additional syntactic category of X’s parent Parent(X). Formally, the PC-PCFG

generation model is defined as:

P (T ∣F ) =

n
∏

i

P (Xi → �i∣Xi,Parent(Xi)) (5.6)

96



5.2.2.2 Annotation with Parent GF

Johnson’s parent annotation transformation provides an effective way to systemat-

ically encode contextual information in the structure of individual node labels. In

principle, any contextual information could be included if it is local to the relabelled

node. Arbitrary contextual information, however, would quickly lead to unaccept-

able sparseness under MLE. In PCFG parsing, a number of strategies to enrich or

split nodes’ labels using different contextual information have been reported in Klein

and Manning (2003), Levy and Manning (2003), Petrov et al. (2006) etc.

In LFG-based generation, Hogan et al. (2007) present a conditional history-based

probabilistic model to overcome some of the inappropriate independence assump-

tions in the original generation model of Cahill and van Genabith (2006). The

proposal of Hogan et al. (2007) increases the conditioning context by including

the parent grammatical function of the given f-structure in addition to the local

f-structure feature set when predicting grammar rule expansions. Including the

parent GF as a conditioning feature has the effect of making the choice of genera-

tion rules sensitive to the functional context of the given f-structure. For example,

generation rules for pronouns are distinguished between subject and object contexts

by the subj and obj parent GFs of the �-linked f-structures. This helps the model

to correctly generate a nominative pronoun in the subject position and an objective

pronoun in the object position for English, as in the sentence she hired her. Hogan

et al. (2007) showed that including the f-structure parent GF significantly improved

generation accuracy over the model of Cahill and van Genabith (2006). Tested on

Section 23 of the English Penn-II Treebank, the history-based probabilistic model

improved BLEU score from 0.6652 to 0.6724 and SSA score from 0.6869 to 0.6989.

Even though the generation model presented in Hogan et al. (2007) is a con-

ditional probabilistic model, the additional conditioning feature of the parent f-

structure GF is related to each c-structure node by the piecewise correspondence

�, and thus can be incorporated in a generative PCFG model with more context

sensitivity while remaining in the CFG paradigm. Analogous to the annotation with

the parent phrasal category, Figure 5.3 exemplifies a CFG tree annotated with the
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n1:IPˆTOP

[↑=↓]

n2:NPˆSUBJ

[↑subj=↓]

n4:NPˆADJUNCT

[↓∈↑adjunct]

n6:NNˆADJUNCT

[↓∈↑adjunct]I[
China

n7:NNˆADJUNCT

[↑=↓]ÌR
president

n5:NPˆSUBJ

[↑=↓]

n8:NRˆSUBJ

[↑=↓]�L¬
JiangZemin

n3:VPˆTOP

[↑=↓]

n9:VVˆTOP

[↑=↓]¬�
meet

n10:NPˆOBJ

[↑obj=↓]

n11:NPˆADJUNCT

[↓∈↑adjunct]

n13:NRˆADJUNCT

[↓∈↑adjunct]�I
Thai

n14:NNˆADJUNCT

[↑=↓]on
president

n12:NPˆOBJ

[↑=↓]

n15:NRˆOBJ

[↑=↓]�&
Thaksin
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Figure 5.3: Annotation with parent GF on the functionally-annotated tree for the
sentence I[ÌR�L¬¬��Ion�&/Chinese President JiangZemin met
with Thai president Thaksin
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parent grammatical function of the �-linked f-structure.5 The parent GF annotation

subverts some poor independence assumptions in the basic PCFG (even annotated

with f-structure equations). For example the NP nodes n5 and n12 have the same

expansion NP[↑=↓]→NR[↑=↓] in a simple PCFG, whereas they are distinguished

by the parent annotation with subj and obj GFs. The parent GF annotated PCFG

(PF-PCFG) model can be defined in the same form as the parent category annotated

PCFG (PC-PCFG) model, differing in the value of the conditioning context:

P (T ∣F ) =

n
∏

i

P (Xi → �i∣Xi,Parent GF (Φ(Xi))) (5.7)

To some extent the annotations of parent syntactic category and grammatical

function have the same effect of discriminating between different contexts. For ex-

ample, to distinguish a subject NP node from an object NP node, the PC-PCFG

model splits NP nodes by appending the parent label IP to a subject NP, while ap-

pending the parent VP to an object NP. The PF-PCFG model has the same ability

to distinguish NP nodes by explicitly annotating them with the �-linked subj or

obj function. Nevertheless the PF-PCFG and PC-PCFG models produce different

probability distributions because the correspondence between c-structure nodes and

f-structure units is a many-to-one mapping that results in different mother-daughter

relationships between a c-structure and the corresponding f-structure. On one hand

c-structure nodes annotated with the same parent phrasal categories can be distin-

guished by different parent GFs in the PF-PCFG model, as for example the NR

nodes n8 and n15 in Figure 5.3: they are both dominated by an NP node, but n8

is �-linked to f2 which is the subject of its parent f-structure f1, while n15 is linked

to f5 which is the object of f1. On the other hand nodes annotated with the same

parent GFs can also be distinguished by different parent syntactic labels in the PC-

PCFG model, as for example the NP nodes n4 and n9 in Figure 5.2, which both

relate to an adjunct f-structure, but the nominal modifier n4 is a child of an NP

node while the adverbial modifier n9 is a child of a VP node. It would therefore

5The parent grammatical function of the outermost f-structure is assumed to be a dummy GF
top.
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be interesting to investigate the effectiveness of the parent annotation with syntac-

tic categories and grammatical functions in improving simple PCFGs in the field

of PCFG-based generation and to compare the performance of the PC-PCFG and

PF-PCFG generation models.

5.3 Chart Generator

5.3.1 Generation Algorithm

Cahill and van Genabith (2006) implemented their probabilistic sentence genera-

tor in a chart-based architecture similar to that introduced by Kay (1996). Kay’s

original chart algorithm, however, indexed edges with semantic variables in order to

efficiently find edges that can interact with each other given a relatively flat semantic

input. By contrast, LFG f-structures are somewhat more hierarchical representa-

tions which provide a schema to build a chart-style data structure by indexing each

(sub-)f-structure with a (sub-)chart. Although a conditional probabilistic model

underlies the generator of Cahill and van Genabith (2006), the mechanism of the

f-structure-indexed chart generator also suits standard generative probabilistic mod-

els well. For this thesis, I reimplement the chart generator for the generative PCFG

generation models based on this insight. The generator recursively generates the

most probable CFG trees for each level of the given f-structure in a bottom-up man-

ner. At each sub-chart, a CKY-like algorithm (with binarised grammars) produces

derivations as follows:

1. Generating lexical edges6 from the local grammatical function pred.

2. Generating lexical edges from the atomic-valued features representing auxil-

iary, mood or aspect etc. that are realised by function words. Table 5.2 lists

all the function word features in the Chinese f-structures.

3. Applying unary rules and binary rules to generate new edges until no more

new edges can be generated in the current local chart.

6All phrases of the same category that cover the same semantic relation (or lexicon) are equiv-
alent for the purpose of constructing larger phrases and called “edges” in charts.
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4. Propagating edges compatible with the parent GF of the local f-structure to

the upper-level chart.

Features Description Example
de �/DE Ø�/not small �/DE �å/distance
di //DI  �/mysteriously //DE rÑ5/come out
dr �/DR ^/use �/DR 4Z/very well
aspect aspectual particle ¼�/won 
/LE �|/victory
mood modal particles `/say �o/what Q/NE
msp other particles �/follow �/it 
/to �/go
vnv-form verb duplication U/can Ø/not U/can �a/help

Table 5.2: Atomic-valued features for function words

Figure 5.4 shows the chart generating the sentence �L¬¬��Ion/Jiang

Zemin met with Thai president for the given f-structure. The chart is composed

of four sub-charts Ci, each of which is indexed by a sub-f-structure fi in the over-

all f-structure. The generation process starts from the inner-most sub-f-structure

f4. For lexical edges, the algorithm checks the set of atomic/lexical attributes

and corresponding values at the sub-f-structure, which in this case is {pred=‘�I’,ntype=proper,num=sg}. All lexical rules matching this particular feature set

are applied. In this example two lexical edges 4-1 and 4-2 with the same yield �I/Thai but different categories7 are added into the sub-chart C4. Then unary

productions are applied if the RHS of the unary production matches the LHS of an

edge currently in the sub-chart. If two or more generation rules with equal LHS

categories can be applied, only the edge generated with higher probability is added

into the chart for efficiency purposes in the implementation. In this example, two

new edges 4-3 and 4-4 are generated from the existing edge 4-1. At C4 there are no

binary rules that can be applied. At this stage, it is not possible to add any more

edges, therefore the algorithm propagates edges in C4 that are compatible with the

parent GF of f4, adjunct in this case. Edges 4-2, 4-4 whose functional equation

on the LHS category is [↑adjunct=↓] are propagated to sub-chart C3, which is

indexed with the upper-level f-structure f3, for consideration in the next iteration.

7The f-structure annotated CFG rules use complex categories including two parts: traditional
syntactic categories and functional equations. Two categories having the same syntactic tag but
different functional equations are hence different categories.
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No. Grammar Rule Realisation Sources

4-1 NR[↑=↓]→{pred=‘�I’,ntype=proper,num=sg} �I lexicon
C4 4-2 NR[↑adjunct=↓]→{pred=‘�I’,ntype=proper,num=sg} �I lexicon

4-3 NP[↑=↓]→NR[↑=↓] �I 4-1
4-4 NP[↑adjunct=↓]→NR[↑=↓] �I 4-1
3-1 NN[↑=↓]→{pred=‘on’,ntype=common,num=sg} on lexicon

C3 3-2 NP[↑=↓]→NN[↑=↓] on 3-1
3-3 NP[↑obj=↓]→NR[↑adjunct=↓] NN[↑=↓] �Ion 4-2,3-1

. . . . . . . . . . . .
2-1 NR[↑=↓]→{pred=‘�L¬’,ntype=proper,num=sg} �L¬ lexicon

C2 2-2 NP[↑=↓]→NR[↑=↓] �L¬ 2-1
2-3 NP[↑subj=↓]→NR[↑=↓] �L¬ 2-1

. . . . . . . . . . . .
1-1 VV[↑=↓]→{pred=‘¬�’} ¬� lexicon
1-2 VP[↑=↓]→VV[↑=↓] NP[↑obj=↓] ¬��Ion 1-1,3-3

C1 1-3 IP[↑=↓]→NP[↑subj=↓] VP[↑=↓] �L¬¬��Ion 2-3,1-2
1-4 TOP→IP[↑=↓] �L¬¬��Ion 1-4

. . . . . . . . . . . .

Figure 5.4: The chart for the given f-structure of the sentence �L¬¬��Ion/JiangZemin met with Thai president

Sub-chart C3 is constructed in a similar fashion. First, lexical edges like 3-1 with

yield on/president are added. Next, edges such as 3-2 are generated by unary

rules. The edges propagated from the subsidiary chart C4 make it possible to apply

binary rules to combine them with the new edges generated in C3, which results

in the new edge 3-3 generating the string �Ion/Thai president. The process

continues until it reaches the outmost level of the f-structure f1, and no more rules

can be applied to the existing edges in C1. At this stage, the algorithm searches for

the most probable edge with TOP as its LHS category and returns the yield of this

edge as the final output. If there is no edge with the LHS label TOP in the chart

C1, the generator only produces a partial output or fails.

Different from parsing where binary rules can only be applied to adjacent edges,
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in generation, combinations must be considered between all edges in the current local

chart as there is no constraint on string positions, which easily leads to a combina-

torial explosion. To address this problem in chart generation, in my implementation

I made the following provisions:

∙ Indexing each sub-f-structure with a sub-chart (as in Cahill and van Gen-

abith (2006)), which bears a broad similarity to indexing edges with semantic

variables proposed in Kay (1996). In the scheme of Kay (1996), only edges

sharing the same index can interact, and in my implementation, edges can

only be combined with those in the same sub-chart. For example, the edges

in the sub-chart C4 cannot be combined with the edges generated in C2, be-

cause the two sub-charts are associated with f4 and f2, respectively, in the

overall f-structure, which have no direct semantic relation between each other.

In addition, the grammatical function of the local-f-structure has the effect

of preventing incompatible edges from being generated in the indexed sub-

chart. For instance, an edge NP[↑subj=↓] with yield �Ion/Thai presi-

dent can possibly be generated by combining the edges 4-2 and 3-1 via the rule

NP[↑subj=↓]→ NR[↑adjunct=↓] NN[↑=↓], however, this edge would not be

added into the sub-chart C3, as its functional equation [↑subj=↓] clashes with

the parent GF obj of f3.

∙ Associating each edge with a bit vector for words to show which of those words

the edge covers. Combinations only occur between pairs of edges whose bit

vectors have empty intersections, indicating that they do not cover overlapping

sets of words. For example, edges 3-2 and 3-3 can not be combined because

they contain the same bit element for the word on/president.

∙ Prohibiting proliferation of grammatically correct, but unusable sub-phrases,

which is a particular, identifiable source of the exponential complexity of the

chart generator. A well known example is the sentence addressed in Kay

(1996) The tall young Polish athlete ran fast. We need to guarantee that

only the complete noun phrase the tall young Polish athlete can be combined
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with the verb phrase ran fast for the final realisation. However, all partial

sub-phrases like tall athlete, young athlete, young Polish athlete and so on,

can (in principle) be generated in a chart generator and have the possibility

to combine with the rest of the input to construct grammatically correct but

incomplete phrases or sentences. To partially solve the problem, my generation

algorithm removes subsumed edges during the process of propagation, if the

yields of the edges being propagated upwards to the next level sub-chart are

subsumed by an edge already in that sub-chart.8 Similar to Kay (1996)’s

strategy of internal indices, this algorithm does not prevent the generation

of an exponential number of variants of phrases containing modifiers, but it

limits proliferation of ill effects, by allowing only the most probable tree with

the longest yield to be propagated upwards and be considered in the next

iteration.

5.3.2 Lexical Smoothing

In the PCFG-based chart generator, the number of sentences which can be com-

pletely generated is impacted on by the coverage of lexical rules and phrasal gram-

mar rules. I run experiments to assess the extent of the coverage of grammar rules

and also the impact of grammar coverage on generation accuracy by examining

rule frequencies in training data in Section 5.4.3. Another important factor in gen-

eration coverage, similar to the fundamental problem of unknown words in PCFG

parsing, is unknown lexical features. In LFG-based generation, the given f-structure

encodes the surface form of each lemma in a particular set of lexical features. Lexi-

cal rules/entries in the form of POS→Lexeme[Lexical Features] associate the lexical

feature sets (and corresponding lexemes) with possible POS tags learned from train-

ing data. In the generation chart, phrasal grammar rules are applied to the POS tag

sequence generated by the lexical rules. The number of lexical features is potentially

unlimited (to encode lemmas for open word classes) and hence can not be covered by

8The algorithm of Cahill and van Genabith (2006) adopted a similar strategy in which any
edges subsumed by an edge in the same sub-chart would not be generated. This strategy gives the
subsumed edges no possibility to interact with other edges for further combination and leads to
final failure in some cases.
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a training set with limited size. For dealing with unknown lexical features never seen

in training data, lexical smoothing is necessary to predict potential POS categories

on which CFG derivations can be further conducted.

Cahill and van Genabith (2006) propose a smoothing method to generalise par-

ticular lexical features as lexical macros by removing the specific predicate lemma.

For example, the lexeme on/president is represented as a lexical feature set

{↑pred=‘on’,↑ntype=common,↑num=sg}, the corresponding abstract lexical macro

is {↑pred=$lemma,↑ntype=common,↑num=sg}, which generally associates with

common nouns NN in the CTB. The generator of Cahill and van Genabith (2006)

extracts lexical macros from the lexical features that occur only once in the training

set and uses these lexical macros to create approximating lexical rules for tagging

unknown lexical features. In their conditional generation model, the probability of

a lexical rule is estimated as Eq. 5.8, where t is a potential POS tag, w is a surface

word and f is the corresponding lexical feature.

P (t → w, f ∣f) =
count(t → w, f)

count(f)
(5.8)

As approximating lexical rules acquired from lexical macros is not as accurate as

real lexical rules seen during training, in their generation model, the probability of

lexical rules for unknown lexical features is penalised by multiplying by a very small

constant. That means that lexical rules seen during training have a much higher

probability than lexical rules added during the smoothing phase.

In my PCFG-based generation models, I adopt the same smoothing methodology

to generalise lexical features as abstract lexical macros. However the lexical smooth-

ing of Cahill and van Genabith (2006) is applied to a conditional generation model,

and moreover, simply multiplying the approximating rules by a smoothing weight

breaches the property of MLE in a proper probabilistic model (as no discounting is

carried out and extra probability mass is added for the lexical features from which

lexical macros are abstracted). For these reasons, I modify the smoothing method

to estimate the probability of lexical rules in the same way as other nonterminal
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rules in the standard generative PCFG model:

P (t → w, f ∣t) =
count(t → w, f)

count(t)
(5.9)

According to the assumption that unknown words have a probability distribu-

tion similar to hapax legomenon (Baayen and Sproat, 1996), for each lexical rule

occurring only once in training data, an approximating lexical rule is generated

by replacing the RHS particular lexical feature set with the corresponding more

general lexical macro. All approximating rules are added to the set of grammar

rules extracted from the training data and probabilities of all rules are computed

by MLE. In generation, if the given f-structure includes a set of lexical features that

has never been seen in training, the lexical feature set is replaced with the abstract

lexical macro, and all approximating lexical rules whose RHS features match the

lexical macro will be applied.

As Chinese has very little morphology, it is a common phenomenon that words

in Chinese function as different POS categories but have the same word form and

the same set of lexical features. For example, the lexical entry XÛ{↑pred=‘XÛ’} is associated with AD, DT, JJ, VA and VV, 5 different POS tags in the CTB.

It is quite likely that the lexical rules learned from training data can not predict

the appropriate POS for a set of lexical features occurring in a particular context

of the given f-structure, even though the feature set has been seen associated with

other POS tags in training. Therefore, lexical smoothing is necessary not only for

unknown lexical features but also known lexical features (with potentially unknown

POS tags).

5.4 Experiments and Results

5.4.1 Experimental Data

Experiments are conducted on the CTB5.1 which is split into training, development

and test sets as described in Section 2.5.1. For developing the PCFG generation

grammar, first the treebank trees of the CTB5.1 training set are automatically as-

106



sociated with f-structure equations by the annotation-based algorithm presented in

Section 2.3. Then functionally annotated CFG rules are extracted from the anno-

tated version of the treebank. Table 5.3 shows the number of CFG rules obtained

from the training set by the three generation models: the basic PCFG, the PCFG

with annotation of parent grammatical function (PF-PCFG) and the PCFG with

annotation of parent syntactic category (PC-PCFG).

Model Rules

PCFG 8,873
PF-PCFG 10,757
PC-PCFG 11,988

Table 5.3: Number of different types of PCFG rules in the training set

To avoid extraordinarily long sentences which could take a long time to be

generated, sentences consisting of more than 40 words are excluded from test and

development data, which results in a development set comprising 1,226 sentences

(77.01% of the whole CTB5.1 development set) and a test set comprising 1,304 sen-

tences (75.90% of the whole CTB5.1 test set). The original CTB trees of the test

and development sets then were automatically translated into f-structures by the

annotation-based acquisition algorithm, as input to the generator.

Punctuation is not presented in canonical f-structures except that some special

punctuation marks are recognised as conjunctions in my Chinese LFG analysis of

coordination constructions. However, punctuation needs to be generated in the final

sentence realisations. In future work, I intend to handle punctuation by a separate

component during post-processing. In the experiments reported here, I record all

punctuation marks in the f-structure representations as a special GF punc, and

generate them in the same way as regular GFs.

The input to the generator are unordered f-structures, which do not contain

any string position information. But, due to the particulars of the automatic f-

structure annotation algorithm, the order of sub-f-structures in set-valued GFs,

such as adjunct & coord, happens to correspond to their surface order. To

avoid unfairly inflating evaluation results, I lexically reorder the GFs in each local

f-structure of the development and test input before the generation process. This
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resembles the “permute, no dir” type experiment in Langkilde (2002).

5.4.2 Comparing Conditional and Generative Models

The probabilistic generation models presented in Cahill and van Genabith (2006)

and Hogan et al. (2007) are conditional models in that they define probabilities

of f-structure annotated productions conditional directly on the sets of the input f-

structure features/attributes. By contrast, the probabilistic models presented in this

thesis are generative (or joint) models based on derivation of standard or augmented

PCFGs.

To compare the performance of my generative PCFG models to the probabilistic

models conditioned on input f-structure features, I reimplement the conditional

models of Cahill and van Genabith (2006) and Hogan et al. (2007) on the CTB

data and carry out experiments with the standard PCFG, the PF-PCFG and the

PC-PCFG models. To eliminate the effects of unknown lexical features, I extract

lexical rules from all treebank trees of CTB5.1 including the test and development

set, so lexical smoothing is not relevant in this experiment.

The generation models are evaluated against the raw text of the testing data in

terms of accuracy and coverage. Following Langkilde (2002) and other work on wide-

coverage, general-purpose generators, I adopt BLEU score (Papineni et al., 2002),

average NIST simple string accuracy (SSA) and percentage of exactly matched sen-

tences for accuracy evaluation. For coverage evaluation, I measure the percentage

of input f-structures that generate a sentence. To measure whether the difference

between the accuracy scores of two generation models is significant or only due to

chance, I employ statistical significance tests. To measure the significance of an im-

provement in the BLEU score, I use FastMtEval,9 a bootstrap resampling method

which is popular for machine translation evaluations. For SSA scores, I calculate

the statistical significance by applying a paired student t-test on the mean difference

of the SSA scores. As incompleteness of realisations has a negative impact on the

9Scripts for the bootstrapping evaluation of confidence intervals and statis-
tical significance testing are available for download at the author’s homepage:
http://www.computing.dcu.ie/ nstroppa/index.php?page=softwares&lang=en
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BLEU and SSA scores, significance tests comparing two models are conducted only

on the intersection of complete sentences which are generated by both models.

Complete Sentence Coverage ExMatch BLEU SSA

Cahill (2006) 87.19% 24.13% 0.7040 0.6682
Hogan (2007) 84.26% 24.39% 0.7103 0.6746

>Cahill ∼Cahill

PCFG 98.69% 23.14% 0.7050 0.6644
∼Cahill ∼Cahill

PF-PCFG 97.06% 24.03% 0.7142 0.6708
∼Hogan ∼Hogan

PC-PCFG 97.55% 24.67% 0.7206 0.6840
≫Hogan ≫Hogan

Table 5.4: Results for completely generated sentences on development data

Table 5.4 gives the comparison results of the five generation models evaluating

against the subset of completely generated sentences for f-structures of the devel-

opment set. In the table, ≫ means statistical significance at the level of p=0.005,

> means significance at p=0.05 and ∼ means the difference is not significant. With

regard to coverage, the conditioning factor contributed by f-structure features leads

to relatively low coverage for the two conditional generation models. By contrast,

the three generative PCFG models boost the number of completely generated sen-

tences by more than 10%. With regard to accuracy, the conditioning f-structure

features change the probability distribution over the CFG rules, however they do

not result in higher accuracy compared to the generative PCFG models. Specifi-

cally, the model of Cahill and van Genabith (2006) performs about the same as the

simple PCFG model, while the model of Hogan et al. (2007) which also includes

the parent GF as a conditioning feature performs at about the same level as the

corresponding PF-PCFG model, but both conditional generation models perform

significantly worse than the generative PC-PCFG model. Roughly speaking, three

major reasons account for this fact: (i) the generation grammar rules employed by

the PCFG models are not conventional CFG rules, but CFG rules annotated with

grammatical functions, hence the information contributed by f-structure features is

already contained in the annotated CFG rules to some extent; (ii) the implementa-
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tion of the chart-style generator associates a sub-chart with each sub-f-structure of

the generation input f-structure, and this set-up prevents rules incompatible with

the input f-structure to be applied; (iii) the two generation models that condition

directly on input f-structure features suffer from severe data sparseness in generation

grammar rule counts and overfitting under MLE.

Another observation from the results presented in Table 5.4 is the performance of

the three generative PCFG models. The two models that extend the conditioning

context of CFG productions to parent annotations have slightly lower generation

coverage than the basic PCFG model. However, as far as generation accuracy is

concerned, the PC-PCFG model that includes the phrasal category of the parent

node outperforms the other two PCFG models. The PF-PCFG model that includes

the grammatical function of the f-structure parent is also better than the simple

PCFG model, with a significant improvement in the BLUE score and an observable

but not significant improvement in the SSA score.

All Sentence Coverage ExMatch BLEU SSA

Cahill (2006) 100% 21.04% 0.6624 0.6403
Hogan (2007) 100% 20.55% 0.6609 0.6410

PCFG 100% 22.84% 0.7034 0.6628
PF-PCFG 100% 23.33% 0.7091 0.6671
PC-PCFG 100% 24.06% 0.7171 0.6796

Table 5.5: Results for all sentences on development data

Table 5.5 lists results evaluating against all (complete and partial) sentences gen-

erated from the input f-structures. These results are a natural outcome of Table 5.4.

As the conditioning f-structure features do not improve the accuracy but reduce the

generation coverage, the generative PCFG models show substantially better overall

performance than the conditional generation models. And again, the syntactic cat-

egory parent annotation model achieves the best results among all the PCFG-based

generation models.
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5.4.3 Impact of Rule Frequencies

The generation grammar used in the PCFG-based models is a bi-directional, large-

scale grammar automatically extracted from the Penn Chinese Treebank. Compared

with hand-crafted grammars, treebank grammars comprise a very large number of

grammar rules, the majority of which occur very infrequently. Table 5.6 shows some

statistics for the functionally (but not parent-) annotated CFG rules collected from

the CTB5.1 training set. At more than 8,800 rules, the automatically extracted

grammar is rather large, but more than half of them — 4,782 or 53.89% — occur

only once in the treebank.

Count #Rules %Rules

1 4782 53.89
2 1098 12.37
3 548 6.18
4 359 4.05
5 227 2.56

6-10 558 6.29
11-20 419 4.72
21-50 376 4.24
51-100 170 1.92
>100 336 3.79

all 8,873 100

Table 5.6: Statistics for the rules extracted from the training set of CTB5.1

As there is no constraint on string position in generation, in theory a grammar

could allow any pair of edges to combine in the chart generator, which results in

an exponential time complexity in the worst case (even though chart parsing is

polynomial). If the generator is based on a wide-coverage treebank grammar, the

situation is likely to become even worse, because more than one treebank grammar

rule can be applied to combine the same two edges in many cases. For example, the

common word �/need has two POS tags AD and VV in the CTB5.1 training set,

but the two POS tags lead to ADJP, ADVP, DVP, VP, VRD, PP, IP, CP, NP, INTJ

and FRAG constituents, 11 edges in total by only unary rules extracted from the

treebank. Some of the rules, such as ADJP→AD, NP→VV are very uncommon and

possibly just labelling errors. In order to cut down on the computational complexity
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Complete Sentence Coverage ExMatch BLEU SSA Time

PCFG-Full 98.69% 23.14% 0.7050 0.6644 100:49:41
PCFG-Reduce 96.66% 23.04% 0.7084 0.6663 9:21:19
Significance ∼ ∼
PF-PCFG-Full 97.06% 24.03% 0.7142 0.6708 6:10:31
PF-PCFG-Reduce 93.96% 23.87% 0.7165 0.6748 1:09:55
Significance ∼ ∼
PC-PCFG-Full 97.55% 24.67% 0.7206 0.6840 17:10:10
PC-PCFG-Reduce 94.37% 24.72% 0.7213 0.6857 5:41:00
Significance ∼ ∼

Table 5.7: Comparison between the reduced- and full-size treebank grammar on
development data

while maintaining accuracy, it could be a strategy to filter out infrequent (potentially

incorrect) rules and reduce the total number of rules in the treebank grammar.

Charniak (1996) reported that using a reduced treebank grammar which excludes

the 1-count rules extracted from the Penn English Treebank, had almost no impact

on the parsing results testing on WSJ text, compared with the parsing results using

the full grammar. Inspired by Charniak (1996), I also run experiments using the

subset of grammar rules that occur more than once in the training set. This reduces

the number of rules by half. Table 5.7 compares the results for the development

data generated by the three generative PCFG models trained on the full-sized and

the reduced grammars. The results for completely generated sentences show that

generation coverage drops by about 3 percentage points due to the grammar reduc-

tion, however the generation accuracy is almost unchanged. The results accord with

the observation on PCFG parsing for English (Charniak, 1996). The last column of

Table 5.7 gives the time cost (in the form of hh:mm:ss) for generating all sentences

by each model running on a server with an Intel Xeon 1.86GHz CPU and 4GB

memory. The time cost clearly indicates that the drop in number of grammar rules

dramatically speeds up the generation process. I believe that the tradeoff in terms

of coverage is worth the increase in speed.
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Complete Sentence Coverage ExMatch BLEU SSA

no smooth 28.53% 29.84% 0.7243 0.7344
unknown smooth 82.98% 19.04% 0.7006 0.6527
all smooth 96.24% 17.77% 0.6945 0.6403

All Sentence Coverage ExMatch BLEU SSA

no smooth 100% 8.51% 0.4999 0.5500
unknown smooth 100% 15.80% 0.6688 0.6249
all smooth 100% 17.10% 0.6867 0.6343

Table 5.8: Results for various lexical smoothings by the basic PCFG model

5.4.4 Results on the Test Data

Finally, I carry out experiments on the test data using the PCFG, PF-PCFG, PC-

PCFG generation models trained on the reduced treebank grammar. Table 5.8 gives

results for the experiments varying lexical smoothing in the basic PCFG model. no

smooth means that lexical rules are only applied to lexical features seen during

training and no lexical smoothing is performed, which results in fairly low genera-

tion coverage because many strings produced are only partial (with unknown lexical

features unrealised); unknown smooth means that lexical smoothing is carried out

only for unknown lexical features never seen in the training set, which boosts gener-

ation coverage from 28.53% to 82.98%; and all smooth means that lexical smoothing

is conducted for all lexical features of the input f-structure, which further increases

generation coverage to 96.24%. Comparing results for the set of completely gen-

erated sentences, the no smooth experiment gives higher accuracy scores than the

other two experiments with lexical smoothing, at the price of dramatically reduced

coverage. One reason for this is that lexical smoothing is effectively a backoff for

lexical productions unseen in the training data, which potentially can make wrong

predictions for tagging lexical features and produce an incorrect derivation tree. But

what is more important and needs to be noticed is that the set of sentences being

evaluated is different in the comparison, since the PCFG generation model without

lexical smoothing can only produce about 28% complete sentences for all input f-

structures, which is much less than the number of complete sentences generated by

the two models with lexical smoothing. And the small set of completely generated
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Complete Sentence Coverage ExMatch BLEU SSA

PCFG 96.24% 17.77% 0.6945 0.6403
PF-PCFG 94.79% 18.28% 0.6989 0.6431

∼PCFG ∼PCFG
PC-PCFG 94.63% 18.96% 0.7041 0.6508

≫PCFG >PCFG

All Sentence Coverage ExMatch BLEU SSA

PCFG 100% 17.10% 0.6867 0.6343
PF-PCFG 100% 17.33% 0.6905 0.6358
PC-PCFG 100% 17.94% 0.6937 0.6445

Table 5.9: Results for various PCFG models with all smooth lexical smoothing

sentences includes relatively shorter sentences with an average length of 17.8 words,

contrasted with 21.8 and 22.3 words average length for complete sentences gener-

ated by the unknown smooth model and the all smooth model. The difference in

sentence length also accounts for the big gap of the SSA scores between the models

with lexical smoothing (0.6403 in all smooth and 0.6527 in unknown smooth) and

the no smooth model (0.7344). Nevertheless, the model without lexical smooth-

ing produces unsatisfactory overall results when evaluating sentences for all input

f-structures. Carrying out smoothing for unknown lexical features greatly improves

the overall results, and in turn, smoothing for all lexical features shows the best

overall performance.

Table 5.9 gives results for the three PCFG generation models with smoothing

for all lexical features. I find the same trend on the performance of the three

PCFG-based generation models throughout all experiments. That is, increasing

the conditioning context by the parent annotation transformation when predicting

grammar rule expansions in the tree derivation improves on the accuracy of the

simple PCFG model, at a cost of slightly lower generation coverage. Among the

three models, the PC-PCFG model performs the best, achieving the highest BLEU

score of 0.6937, SSA score of 0.6445 and 17.94% sentences exactly matching the

references. The PF-PCFG model also outperforms the simple PCFG model, but

the improvements in BLEU and SSA scores are not significant. This is might be

because of the effect of the reduced grammar and also the noise caused by lexical
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Complete Sentence Coverage ExMatch BLEU SSA

PCFG 100% 20.55% 0.7155 0.6580
PF-PCFG 100% 20.78% 0.7236 0.6627

≫PCFG >PCFG
PC-PCFG 100% 21.70% 0.7330 0.6752

≫PF-PCFG ≫PF-PCFG

Table 5.10: Upper bound results on test data

smoothing. In order to prove this conjecture, I perform a close test experiment

by obtaining the generation grammar from all of the f-structure annotated CTB5.1

trees (including development and test sets), and generating the test data based on

this full-coverage grammar.

Table 5.10 gives the upper bound results, which reemphasises the earlier find-

ing that increasing structural sensitivity significantly improves the performance of

the PCFG-based generation model. Comparing the results of the PC-PCFG model

with the PF-PCFG model, the PC-PCFG model performs better in all the ex-

periments, this is most likely because the grammar rules underpinning the PCFG

generation models already contain f-structure annotation equations, in consequence,

augmenting the functionally annotated CFG rules with parent grammatical func-

tions manifests a weaker discrimination than parent annotation with constituent

categories. The enrichment of the additional f-structure equations in the generation

rules also partially accounts for the fact that the parent annotation transformation

in my PC-PCFG and PF-PCFG models does not show enhancement as prominent

as in PCFG-based parsing, for example, Johnson (1998) reported the parent trans-

formation achieved a remarkable increase of about 8% in precision and recall for

parsing the English Penn-II data.

5.5 Summary

In this chapter, I have presented an approach to wide-coverage, probabilistic Chinese

sentence realisation from LFG f-structures based on an automatically obtained wide-

coverage f-structure annotated treebank grammar. I compared generative PCFG
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models with conditional generation models. I found that proper generative PCFG

models implemented in a chart-style generator overcome the low generation coverage

caused by conditioning CFG productions directly on input f-structure features as

used in the original proposal of Cahill and van Genabith (2006) and Hogan et al.

(2007). At the same time, the generative PCFG models are comparable or even

superior to the conditional generation models in terms of generation accuracy. I also

investigated various ways to break down inappropriate independence assumptions

imposed by the simple PCFG model. Including more structural context either on the

functional or constituent level (as provided by the technique of parent annotation

transformation originally proposed for PCFG parsing), is sufficient to improve the

performance of the simple PCFG generation model. For the task of LFG-based

generation for Chinese data, including the constituent context information proved

to be more effective than including functional context in the underlying PCFG.

However, all PCFG-based generation models presented in this chapter retain the

basic PCFG model’s lack of lexical sensitivity. From the experience of parsing, in-

cluding lexical dependencies produces major advances in PCFG-based parsers (Bikel

and Chiang, 2000). It is an interesting and promising direction to migrate such tech-

niques from PCFG parsing to generation, and further improve the PCFG models

through lexicalised rules.

Another important issue is the strategy for selecting rules from the treebank

grammar. At the current stage, I reduce the size of the grammar simply by rule

frequency thresholding. Though this is an effective method to speed up the gen-

eration process, it is still a problem how to find the appropriate threshold of the

frequency value by which to select rules. Moreover, this simple method eliminates

some infrequent but still necessary rules and causes a slight drop in generation

coverage. Dickinson and Meurers (2003) presented a method to detect annotation

inconsistencies in treebanks and they found that removing inconsistent rules led to

an improvement in parsing accuracy. It is promising to investigate the method of

Dickinson and Meurers (2003) or other more sophisticated techniques for detecting

and removing certain grammar rules (rather than just infrequent rules) in the future.
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Chapter 6

Dependency N-Gram-Based

Generation

6.1 Introduction

The PCFG-based LFG generation models described in the previous chapter can

be viewed as the inverse of the parsing process, using bi-directional CFG rules.

Nevertheless, the ultimate task for generation is to choose the most likely string

and not the most likely syntactic tree, as in parsing. In the PCFG-based models,

the generation process is driven by an input f-structure (or dependency) represen-

tation, but proceeds through the “detour” of using functionally annotated CFG

(or PCFG) rules and a chart-based generator. By contrast, this section presents

simple and novel Dependency-based N-gram (DN-gram)1 probabilistic generation

models, which cut out the middle-man — the CFG component — from previous

approaches. Part of the research presented in this chapter has been published in

Guo et al. (2008a).

1I use the term “DN-gram” to refer to dependency-based n-grams to distinguish them from the
conventional surface-string-oriented n-gram language model.
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6.2 Premises for Dependency-Based Generation

The method presented in this chapter is completely different from the Nitrogen/

HALogen (Langkilde and Knight, 1998a; Langkilde, 2000) and FERGUS (Banga-

lore and Rambow, 2000) approaches, which first produce a large set of potential

realisation candidates using grammar rules and then rank all realisations by n-gram

language models over surface strings. By contrast, my method bears a broad resem-

blance to the approaches of Uchimoto et al. (2000) and Filippova and Strube (2007).

However, unlike their more limited approaches which concentrate on a limited set

of linguistic phenomena, my approach provides a full-scale, general purpose and

wide-coverage generator. The generator employs DN-gram models that estimate

the likelihood of the appropriate word order directly from a set of bilexical labelled

dependencies (or f-structures) rather than as a by-product of constructing syntactic

trees. As mentioned in Section 4.2.2, grammatical relations bear an important influ-

ence on Chinese word order. For example, Chinese sentence structure is essentially

SVO, modifiers tend to precede the head/predicate in noun phrases, and so forth.

Based on this observation, we determine the linear order of constituents and words

from input f-structures by means of n-gram models over grammatical functions or

dependency labels (rather than surface word forms, as in previous language model

based approaches).

It has been observed that n-gram models can be expensive to apply in generation:

in order to select the most likely realisation according to an n-gram model, all

alternative realisations have to be generated and the probability of each realisation

according to the model has to be calculated. This can be very time-consuming if

the number of alternatives turns out to be vast. In Nitrogen (Langkilde, 2000), the

n-gram language model deals with trillions of alternatives. To reduce the number

of possible realisations, I break down the entire generation space as defined by

the input f-structure into each level of embedding within the input f-structure, i.e.

the generator selects the most likely substring for each local sub-f-structure, and

concatenates the substrings into a complete sentence by recursively traversing each

level of embedding until it reaches the outermost f-structure. This reduction in
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⎡

⎢

⎣

pred ‘�W⟨subj⟩’
subj 2

msp ‘5’

⎤

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Figure 6.1: Reentrancies representing NLDs in LFG

complexity, however, does not permit non-projective dependency- or f-structures,

where the projection of a local head/predicate can be discontinuous. Nevertheless,

the projectivity assumption is feasible in the task of dependency-based generation,

because: (i) dependency structures of a vast majority of sentences in the languages

of the world are projective (Mel’čuk, 1988) and (ii) non-projective dependencies in a

language such as Chinese with relatively rigid word order, are mainly used to account

for non-local dependency phenomena, which are represented as reentrancies in f-

structures as exemplified in Figure 6.1. Though the reentrancies in the f-structure

analysis appropriately reveal that the discourse function topic in f1 should be

interpreted as the object of the embedded predicate of f6, and the object controller

in f1 is also an argument function in the subordinate f-structures f6 and f7, only the

antecedent functions (topic and obj controller) are overt in the surface realisation.

This means that the reentrancies for the trace functions are only necessary for
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(2) ¤�V
Federer

�t
easily

A?
advance

e
next

�
one
Ó
round

'm
competition

‘Federer eased into the next round.’

f1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

pred ‘A?’

subj f2

⎡

⎢

⎣

pred ‘¤�V’

ntype proper

pers 3

⎤

⎥

⎦

obj f3

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

pred ‘'m’

ntype common

pers 3

det f4

[

pred ‘e’
]

quant f5

⎡

⎢

⎢

⎣

pred ‘Ó’

number f6

[

pred ‘�’

number-type cardinal

]

⎤

⎥

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

adjunct

{

f7

[

pred ‘�t’
]

}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

string ¤�V �t A? e � Ó 'm
position 1 2 3 4 5 6 7

f1 subj adjunct pred obj

f3 det quant pred

f5 number pred

Figure 6.2: Linearisation of grammatical functions / labelled dependencies

semantic interpretation and therefore can be removed from the input f-structure for

generation, thus non-projective dependencies are transformed into simple projective

dependencies.

The advantage of the projectivity assumption is that it can greatly reduce the

time complexity of n-gram models. To generate a sentence consisting of n words,

the search space of all possible surface string permutations is n!. By contrast, on the

assumption of projectivity, for an f-structure with n sub-f-structures where at each

local sub-f-structure fi there are ki local grammatical functions, the DN-gram model

complexity is proportional to k!, where k = maxn
i=1 ki. In practice, k ≪ n or k < n.

To give an example, for sentence (2) in Figure 6.2 that has 7 words corresponding

to 7 sub-f-structures, a naive word-based n-gram model searches among 7! = 5040

permutations. By contrast, given the projectivity assumption, the DN-gram model
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searches each local f-structure fi, resulting in only 4! + 1! + 3! + 1! + 2! + 1! + 1! = 36

possibilities in total.

6.3 DN-Gram Models

At a particular level of f-structure, the generator realises the (partial) sentence

covered by that f-structure by linearising the set of GFs present at the local f-

structure. For example, the set of GFs {pred,det,quant} of f3 in Figure 6.2

generates the string e�Ó'm/next round of competition in accordance with the

GF sequence ⟨det,quant,pred⟩. In order to capture the appropriate linear order

of GFs, I develop a number of DN-gram models with increasing complexity.

6.3.1 The Basic DN-Gram Model

I start with a basic DN-gram model. Different from traditional word-based language

models, the DN-gram model is based on the names of GFs (including pred) or de-

pendency labels instead of words. Given a (sub-)f-structure containing m GFs, the

DN-gram generation model searches for the best surface string Sm
1 =s1...sm gener-

ated by the GF linearisation GFm
1 = GF1...GFm, which maximises the probabil-

ity P (GFm
1 ). Applying the chain rule, the probability of the entire GF sequence

P (GFm
1 ) can be decomposed as:

P (GFm
1 ) = P (GF1)P (GF2∣GF1)P (GF3∣GF 2

1 ) . . . P (GFk∣GF k−1
1 )

=
m
∏

k=1

P (GFk∣GF k−1
1 )

(6.1)

Under the Markov assumption, we can approximate the conditional probability of

the individual GFk by n-grams: P (GFk∣GF k−1
1 ) ≈ P (GFk∣GF k−1

k−n+1), thus the prob-

ability of the complete GF sequence P (GFm
1 ) is computed according to Eq. (6.2).

P (GFm
1 ) = P (GF1...GFm) =

m
∏

k=1

P (GFk∣GF k−1
k−n+1) (6.2)

To estimate the DN-gram probabilities, I build a dependency/GF corpus as
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follows:

1. I automatically build the f-structure bank from the CTB as described in Sec-

tion 2.4.

2. I linearise the unordered set of GFs at each level of embedding in each f-

structure by associating the surface string position (numerical word offset from

start of the sentence) with the local predicate.

3. GF sequences are collected from the f-structures as in Figure 6.2.

From this corpus of GF sequences, I obtain simple relative frequency estimates for

the parameters of the DN-gram model by taking counts:

P (GFk∣GF k−1
k−n+1) =

Count(GF k−1
k−n+1GFk)

Count(GF k−1
k−n+1)

(6.3)

6.3.2 Factored DN-Gram Models

The most basic DN-gram model over bare GFs assumes that generation at each sub-

f-structure is independent of any other (sub-)f-structure (in the larger f-structure).

To weaken this independence assumption, I integrate limited contextual and fine-

grained lexical information into several factored models. One way to factor the

DN-gram model is to take into account contextual features associated with the f-

structure fi which yields the string in question. Eq. (6.4) additionally conditions

the distribution on the parent GF label Parenti of the current f-structure fi, and

Eq. (6.5) conditions the distribution on the head word (or predicate) Headi of fi.

P p(GFm
1 ) =

m
∏

k=1

P (GFk∣GF k−1
k−n+1, Parenti) (6.4)

P ℎ(GFm
1 ) =

m
∏

k=1

P (GFk∣GF k−1
k−n+1,Headi) (6.5)

Another type of factored model includes additional features of the GFs being or-

dered. I do this by augmenting the label of GFk with atomic-valued features2 from

2I use the term “feature” for the pair of attribute and its corresponding value in f-structure.

122



the local sub-f-structure that is assigned to the attribute GFk. Eq. (6.6) stands

for this featured model, where Featk represents a variety of atomic-valued features

specifying the local f-structure, such as tense, mood, num etc. pred is a special

attribute in f-structure whose value is a semantic form.3 In contrast with other

atomic features having a closed set of values, semantic forms are associated with an

open number of lexical entries. I separate pred from other atomic-valued features

and develop a truly lexicalised DN-gram model (Eq. 6.7).

P f (GFm
1 ) =

m
∏

k=1

P (Featk∣Featk−1
k−n+1) (6.6)

P l(GFm
1 ) =

m
∏

k=1

P (Lexk∣Lexk−1
k−n+1) (6.7)

Table 6.1 exemplifies various DN-gram models for the local f-structure f3 in

Figure 6.2.

DN-grams Condition
basic (P ) det ≺ quant ≺ pred

parent (P p) det ≺ quant ≺ pred obj

head (Pℎ) det ≺ quant ≺ pred ‘'m’
feat (P f ) det[ ] ≺ quant[ ] ≺ pred[ntype=common,pers=3]
lex (P l) det[pred=‘e’] ≺ quant[pred=‘Ó’] ≺ pred[pred=‘'m’]

Table 6.1: Examples of DN-grams for f3 in Figure 6.2

In addition, the factored models can be combined in different ways. As lexicalised

models are likely to suffer from severe data sparseness, I create combined models by

linearly interpolating various factored DN-gram models PF i incrementally (rather

than by using chain rules) as in Eq. (6.8):

PFC(GFm
1 ) =

∑

�iP
F i(GFm

1 ) (6.8)

wℎere
∑

�i = 1

Finally, to overcome the problem of sparse data, all the individual and combined

factored DN-gram models PF are linearly interpolated with the basic DN-gram

3In the implementation, the value of pred is only the predicate name (or lemma) without
specifying its argument-list.
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model P for smoothing (Eq. 6.9).

P̂F (GFm
1 ) = �PF (GFm

1 ) + (1 − �)P (GFm
1 ) (6.9)

6.4 DN-Gram-Based Generation Algorithm

Assuming projective dependencies, the linearisation of GFs at the given f-structure is

reduced to the linearisation at each local sub-f-structure. Specifically, the algorithm

generates partial strings covered by subsidiary f-structures according to the DN-

gram probabilities and combines all the partial strings into a longer (partial) string

yielded by the next outer f-structure. For example, in Figure 6.2 the partial strings

covered by f2(¤�V/Federer), f3(e�Ó'm/next round of competition), f7(�t/easily) are generated first, and f1’s local predicate is realised as the word (A?/advance). Then all the partial strings are arranged in correct order by the DN-

gram model to achieve the final sentence realisation for f1 (¤�V�tA?e�Ó'm).

In summary, given an input f-structure f , the core algorithm of the generator

recursively traverses f in a bottom-up fashion, and at each level of embedding with

f-structure fi:

1. instantiates the local predicate predi of fi

2. calculates the linearisations of the set of GFs present at fi by DN-gram models

3. finds the most probable GF sequence among all possible linear orders by

Viterbi search

4. generates the surface string si yielded by fi according to the best GF sequence

Finally, function words are inserted at particular positions by heuristics at each

sub-f-structure. If an atomic-valued feature representing a function word (as listed in

Table 5.2) is present in a sub-f-structure fi, the algorithm inserts the corresponding

function word at one of four possible positions: (i) before the local predicate predi;

(ii) after the local predi; (iii) before the entire string si yielded by fi; (iv) after
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the string si. For example, auxiliary particles of the msp attribute precede the local

pred, as 
 in sentence (3) generated immediately before f1’s predicate word �.

The structural particle � follows the modifier of a noun phrase, as in sentence (4)� is inserted after the string corresponding to adjunct f2 has been generated.

(3) �
follow

�
it


to
�
go

‘go with it’

f1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

pred ‘�’

msp ‘
’

adjunct

⎧

















⎨

















⎩

f2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

pred ‘�’

obj f3

⎡

⎢

⎢

⎢

⎢

⎣

pred ‘�’

pers 3

pron-type person

⎤

⎥

⎥

⎥

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎫

















⎬

















⎭

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(4) Ø
not
�
small

�
DE
�å
distance

‘a not small distance’

f1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

pred ‘�å’

pers 3

ntype common

adj-rel

⎧



















⎨



















⎩

f2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

pred ‘�’

de +

adjunct

⎧



⎨



⎩

f3

⎡

⎢

⎣

pred ‘Ø’

adj-type negative

⎤

⎥

⎦

⎫



⎬



⎭

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎫



















⎬



















⎭

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

6.5 Experiments and Results

Experiments are carried out on the same test/development/training splits as the

PCFG-based generation experiments (see Section 5.4.1 for details) but this time

including all sentences without length limitation. Table 6.2 shows some statistics
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Test Develop Train

total num of sentences 1,718 1,592 15,094
max sentence length (#words) 117 159 240
avg sentence length (#words) 30 29 26
total num of sub-f-strs 24,036 21,204 182,218
num of sub-f-strs per sentence 13.99 13.32 12.07
max length of sub-f-str (#gfs) 14 35 35
avg length of sub-f-str (#gfs) 2.90 2.89 2.92

Table 6.2: Properties of the experimental data

for the experimental data.

BLEU score, NIST simple string accuracy (SSA) and percentage of exactly

matched sentences are adopted as evaluation metrics. Statistical significance tests

are also performed for BLEU and SSA scores. As the dependency-based generation

algorithm guarantees that all input f-structures can produce a complete sentence,

coverage-dependent evaluation (as used in evaluating grammar-based generation in

Chapter 5) is not necessary in these experiments.

6.5.1 Order of the DN-Gram Models

The DN-gram models are created using the SRILM toolkit (Stolcke, 2002) with

Good-Turing discounting and Katz backoff for smoothing. Table 6.3 shows the

results for the basic DN-gram models with order from 2 to 5 on the development

data. In addition to the evaluation metrics BLEU, SSA scores and exact matches, I

also computed the perplexity of different order DN-gram models on the development

set. Perplexity is the most common intrinsic evaluation metric to measure the

performance of n-gram models. The intuition behind perplexity is that given two

probabilistic models, the better model is the one that has the tighter fit to the

test data, or predicts the details of the test data better. Better predication can be

measured by looking at the probability the model assigns to the test data: the better

model assigns a higher probability to the test data. For the sentence S = s1s2 . . . sm

realised by the GF sequence GF1GF2 . . . GFm, the perplexity is the probability that
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the GF n-gram model assigns to that sentence, normalised by the number of GFs:

PPL(GFm
1 ) = P (GF1 . . . GFm)−

1
m = m

√

√

√

⎷

m
∏

k

1

P (GFk∣GF k−1
k−n+1)

(6.10)

Note that because of the inverse in equation (6.10), the higher the conditional prob-

ability of the GF sequence, the lower the perplexity.

Evaluation Metrics Significance Test

DN-gram ExMatch BLEU SSA PPL BLEU SSA

2-gram 11.34% 0.5753 0.5361 3.5795
3-gram 11.41% 0.5817 0.5417 3.0333 > 2-gram > 2-gram
4-gram 11.66% 0.5826 0.5427 2.9034 ∼ 3-gram ∼ 3-gram
5-gram 11.59% 0.5821 0.5424 2.8756 ∼ 4-gram ∼ 4-gram

Table 6.3: Results for different order of basic DN-grams on the development set

For the basic (i.e. non-factored, non-lexicalised) model, all the scores for the

3-gram model are much better than those for the 2-gram model, and in turn the

4-gram model is slightly better than 3-gram. There is a contradiction between the

intrinsic perplexity measure and other scores on the 5-gram model. Although the

perplexity of the 5-gram model is the lowest, i.e. the conditional probability of

the GF sequences produced by the 5-gram model is the highest, no improvement

is made in any of the metrics for evaluating generation accuracy. However, despite

the variance, the statistical significance tests (with significance level p=0.05) show

that only the 3-gram model significantly improves on the 2-gram model in terms of

BLEU and SSA scores. There is no significant difference between the performance

of the 3-, 4- and 5-gram models. Similar tests were also carried out for the various

factored DN-gram models on the development set. Rankings of the accuracy scores

are somewhat changeable among the 3-, 4- and 5-gram models in different factored

models. Nevertheless, all the models with order higher than 2 are significantly

better than the bigram models, but with more features incorporated in the DN-

gram models, less difference remains between the performance of the models with

different order. As this is the case, I implement trigram models on the test set data

throughout the experiments.
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6.5.2 Evaluation of Features

Besides the lexical value of pred, the featured DN-gram model exploits 17 atomic-

valued features presented in the f-structure resources, listed in Table 6.4 (refer to

Appendix A for a detailed description of each attribute and its corresponding val-

ues). These atomic-valued features make different contributions to the DN-gram

generation model while linearising GFs. Table 6.4 evaluates the importance of each

feature on the development set. The first line is the DN-gram model incorporat-

ing all atomic-valued features except pred, viz. the feat model represented by

Eq. (6.6), which I take as a baseline model in this experiment. I discard one feature

each time,4 and compare the model incorporating the rest of the features to the

baseline model. In Table 6.4, < means the result is significantly worse than that of

the baseline model (with p-value=0.05), ∼ means the decrease (or increase) in the

score is not significant.

Atomic-valued Features ExMatch BLEU SSA BLEU SSA

All Features 15.25% 0.6467 0.5830

adj-type 13.30% 0.6174 0.5588 < <
ntype,num,pers 13.80% 0.6361 0.5728 < <
de 15.00% 0.6407 0.5799 < <
msp 15.00% 0.6436 0.5784 < <
pron-type,num,pers,gend 15.12% 0.6450 0.5818 < ∼
dr 15.12% 0.6460 0.5823 ∼ ∼
mood 15.25% 0.6466 0.5817 ∼ ∼
aspect 15.25% 0.6460 0.5839 ∼ ∼
precoord-form 15.25% 0.6466 0.5831 ∼ ∼
number-type 15.12% 0.6471 0.5838 ∼ ∼
di 15.25% 0.6471 0.5836 ∼ ∼
clause-type 15.19% 0.6474 0.5844 ∼ ∼
vnv,vnv-form 15.31% 0.6467 0.5833 ∼ ∼

Table 6.4: Evaluation of atomic-valued features on the development set

According to the statistical significance for differences between the results of

the featured DN-gram models, the 17 features are divided into two groups: (i) the

features in the upper 5 lines have a crucial effect upon the DN-gram generation

model, for ignoring one of them from local f-structures, the BLEU and SSA scores

4Some features always come along with another feature, e.g. num, pers and gend occur with
ntype or pron-type, and vnv-form occurs with vnv, thus I delete these features together.
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for the resulting realisations become significantly worse compared to the baseline

feat model. Among those features, adj-type is the most important feature for

linearising GFs, since adj-type reflects semantic types of modifiers, such as time,

location, direction, and purpose etc., which to some extent decide the order of

modifiers in Chinese. ntype and pron-type indicate that the part-of-speech of

the predicate is a noun or a pronoun, which is also a factor in GF linearisation. For

example, a general principle of the sequence of attributive modifiers in Chinese is:

pronoun ≺ determiner ≺ quantifier ≺ adjective ≺ noun (Zhu, 1982, pp.151), as in

sentence (5).

(5) �
his
�
that

�
CLS

#
new

�f
leather

��
coat

‘His new leather coat.’

The feature de, as mentioned before, is a descriptive indicator attached to attribu-

tive modifiers and the DE-phrase usually precedes other attributive modifiers with-

out DE (Zhu, 1982, pp.151), e.g.

(6) þ��
last month

�
DE
�g
one
ÓÆ
classmates

à¬
gathering

‘A classmates gathering last month’

msp is another feature indicating function words prefixed to the verb phrase. A ver-

bal predicate bearing an msp feature usually follows another verbal or prepositional

phrase, e.g.

(7) �X
along with


#
age


MSP

UC
change

‘change with age’

(ii) the rest of the features under the dividing line in Table 6.4 do not show a

great influence in determining the linear order of the GFs, because after deleting

one of those features, the performance of the generator does not show a significant

deterioration. On the contrary, omitting some of the features has the effect of

increasing the BLEU or SSA score (though not significantly). Two reasons may

account for why these features do not have a significant effect on generation accuracy.

First, some features do not affect the position of the GF in the sentence, such as the
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feature vnv is only used for verb compounds of the form A-not-A or A-one-A, e.g.UØU/can not can used in interrogative sentences, '�'/compare one compare

reflecting frequency or duration of the action. Another reason is that some features

are not common phenomena, such as the precoord-form encoding list markers or

the first conjunction in correlative conjunctions, e.g. Ø�/not only in the phraseØ�/not only . . .
�/but also . . . , which occurs only 258 times in the training

f-structures, compared with 43,351 times for the frequent feature adj-type.

I choose the features that significantly impact on the generation performance

as essential features, viz. the features in the upper 5 lines in Table 6.4. Table 6.5

shows the generation results of the DN-gram model which augments the bare GF

with the essential features, on the development and test set, respectively. Both the

development and test data show that DN-gram models incorporating only essential

features performed nearly the same as the model incorporating all atomic-valued

features. Therefore, I use only essential features in the featured DN-gram generation

model in the following experiments on the test data.

Development Set Test Set

ExMatch BLEU SSA ExMatch BLEU SSA

All Features 15.25% 0.6467 0.5830 12.28% 0.6526 0.5711
Essential Features 15.37% 0.6480 0.5860 12.17% 0.6522 0.5678

Table 6.5: Results for the DN-gram model with essential features

6.5.3 Results on the Test Data

Table 6.6 lists the generation results of different DN-gram models on the test data

(for all sentence lengths), where ≫ indicates significance at level p=0.005, > in-

dicates p=0.05 and ∼ means no significant difference. The value of interpolation

weights � for the individual and combined factored ND-gram models are set by

testing on the development data and listed beneath the models.

The experiments are conducted in a series of cascades. I first generate the sen-

tences from input f-structures of the test data by the basic and each individual

factored ND-gram model. It is not a surprise that the fully lexicalised model lex
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DN-gram Model ExMatch BLEU SSA

1. basic 8.91% 0.5881 0.5268

2. parent 9.72% 0.6137 0.5384
(�=0.8) ≫ 1 ≫ 1

3. head 10.59% 0.6320 0.5471
(�=0.8) ≫ 2 ≫ 2

4. feat 12.17% 0.6522 0.5678
(�=0.9) ≫ 3 ≫ 3

5. lex 14.38% 0.6861 0.6120
(�=0.9) ≫ 4 ≫ 4

6. lex+parent 15.42% 0.7010 0.6161
(�1=0.8,�2=0.15) ≫ 5 ∼ 5

7. lex+feat 16.24% 0.7041 0.6219
(�1=0.8,�2=0.15) ∼ 6 > 5

8. lex+head 16.82% 0.7121 0.6248
(�1=0.7,�2=0.2) ≫ 7 ≫ 5

9. lex+head+parent 16.01% 0.7063 0.6220
(�1=0.6,�2=0.15,�3=0.15) ≪ 8 ∼ 8

10. lex+head+feat 17.17% 0.7177 0.6300
(�1=0.6,�2=0.15,�3=0.15) > 8 > 8

Table 6.6: Results for different DN-gram models on the test set

greatly surpasses other individual models in all evaluation metrics. Thus I select

the lexicalised model as a new baseline model, and combine it with the model aug-

mented with atomic-valued features feat, the two conditional models parent and

ℎead, resulting in models 7, 6 and 8, respectively. In turn, the model lex+ℎead com-

bining the conditional head word model with the lexicalised model outperforms the

other two combined models and hence is chosen as the new baseline model. Again,

the lex+ℎead model is interpolated with the remaining two factors parent and feat

into the more complex models 9 and 10. However, this time the results show that

the additional conditioning feature of parent GF does not improve the generation

performance. This can be interpreted as the parent GF being too general to predict

the fine distinctions between the f-structures with different predicates that govern

the linear order of GFs in the local f-structure. On the contrary, it counteracts

the discrimination effect of the head word. Model lex+ℎead+feat which incor-

porates more features specifying the local f-structure further improves the results

and achieves the best 0.7177 BLEU score and 0.6300 SSA score. The best results
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are achieved on the basis of two lexicalised models lex and ℎead, which indicates

that the unique word form plays the most important role in the DN-gram based

generation for Chinese.

Example realisations generated by different DN-gram models for a reference

sentence (8) are listed below.

(8) z�
Every

bF
holiday

§
,
��pdõ4
St.Christopher

�,
Cathedral



before

�
DE
<1�
pavement

þ
on
Ò
AUX

k
have<

somebody
5d
come

{�
place

=©
English

��
bookstall

"
.

‘There will be English newspaper stalls on the pavement before the St.Christopher

Cathedral every holiday.’

lex+head: z�bF§��pdõ4�,
�<1�þÒk<5d{�=©��"
lex+feat: 
��pdõ4�,�<1�þz�bF§Òk<5d{�=©��"
lex+parent: z�bF§þ
��pdõ4�,�<1�Òk<5d{�=©��"
lex: z�bF§Òþ
��pdõ4�,�<1�k<5d{�=©��"
feat: 
��pdõ4�,�<1�þ§z�bFÒk<{�=©��5d"
head: ��pdõ4�,
�<1�þ§z�bFÒk<{�=©��d5"
parent: þ
��pdõ4�,�<1�§z�bFÒk<{�=©��5d"
basic: þ
��pdõ4�,�<1�z�bFÒk§<{�=©��5d"
The above sentence realisations show that lexicalised models do have a great effect

on the performance of the generator. For example, the ℎead model conditioned on

head words captures the correct order of locative phrases. In Chinese, a locative

phrase is usually predicated by a locative marker following a noun phrase to indicate

location, position, time or quantity, as in phrases (9) and (10):

(9) ��pdõ4
St.Christopher

�,
Cathedral



before

‘before the St.Christopher Cathedral’

(10) <1�
pavement

þ
on

‘on the pavement’

The order of locative phrases is opposite to that of normal prepositional phrases, in
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which the preposition is the first constituent. However as locative and prepositional

phrases share the same predicate-argument structure pred⟨obj⟩, the correct order

of locative phrases is consequently overwhelmed by larger numbers of prepositional

phrases in the basic DN-gram model. By contrast, the ℎead model is capable of

distinguishing locative phrases from prepositional phrases by the predicate lexeme.

Likewise, the fully lexicalised model lex takes the lexeme of the GF into account

while determining the order of GFs, and outperforms other DN-gram models. For

instance, only the individual lexicalised model and models combined with the lex

model establish the correct order of the phrase (11) in the above examples.

(11) k
have

<
somebody

5d
come here

{�
set up

=©
English

��
bookstall

‘Somebody will come to set up a bookstall of English newspapers.’

6.6 Summary

6.6.1 Comparison between PCFG and DN-Gram Models

I described two theoretically distinct approaches to Chinese sentence realisation

from LFG f-structures. In the previous chapter, I present a more conventional way

of generating sentences through application of functionally-annotated grammar rules

to construct the most probable syntax or derivation trees, which is generally viewed

as the inverse process of parsing. This chapter solves the generation problem by

a more direct approach of mapping from the input semantic relations to surface

strings by dependency-based n-gram models. As the two approaches reach the same

goal by different routes, the question is which is the better route? Though the

answer to the question may vary in the light of different applications and languages,

a general comparison between the PCFG- and DN-gram-based generation models

can be made in terms of the following aspects.

Simplicity: The DN-gram model linearises dependencies from input represen-

tations directly, obviating complex syntactic tree structures. In this sense, the

dependency-based method provides simplicity and reduces overhead costs in building
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a large number of grammar rules (either hand-crafted or automatically acquired from

treebanks), which is inevitable in the annotated CFG grammar-based approach.

Coverage: The quality of grammar rules is a crucial factor in PCFG-based gen-

eration models. Compared to hand-crafted grammars, treebank grammars have the

advantage of being large-scale and reusable. However, due to the size of available

treebanks, there is a possibility that some grammar rules are never seen in the train-

ing set, which causes the grammar-based generator to fail to generate a complete

sentence. This is much less of a problem in the dependency-based generator, as the

linearisation operates over a small number of general GF types (rather than a large

number of possibly highly specialised annotated CFG rule types). In this regard,

the DN-gram models are more robust than the PCFG models, even those based on

treebank grammars.

Accuracy: Table 6.7 gives the generation accuracy of the PCFG and DN-gram

generation models evaluating on the test sentences up to 40 words in length. The

results of PCFG-based generation are obtained by the c-structure parent annotation

PCFG (PC-PCFG) model trained on the reduced grammar. For dependency-based

generation, results of two models are given: the feat model only employs GF labels

and general atomic features of the given f-structures; the lex+ℎead+feat model

additionally incorporates the lexical information in the n-grams and achieves the

best results among all the various DN-gram generation models.

Model Coverage ExMatch BLEU SSA

PC-PCFG 94.63% 18.96% 0.7041 0.6508
feat 100% 16.26% 0.6703 0.6313

lex+head+feat 100% 22.16% 0.7358 0.6862

Table 6.7: Comparison between PCFG and DN-gram models on the test data (≤40
words)

The results show that without lexical information, the PCFG model incorporat-

ing syntactic structures markedly outperforms the relatively simple DN-gram model

with regard to generation accuracy. However, lexicalisation of the dependency n-

134



grams substantially improves the performance of the DN-gram model and finally

surpasses the unlexicalised PCFG model. As there is still plenty room to improve

the performance of the PCFG-based model through lexicalisation of the generation

grammar, I expect that future work on lexicalisation will increase the accuracy of

the PCFG-based generator to the level comparable with or even better than the

DN-gram model.

Time Complexity: In theory, the worst case computational complexity of DN-

gram-based models is O(n!) to generate all the permutations and to find the most

probable one, for linearising n GFs/dependencies in a local f-structure. The im-

plementation, using dynamic programming techniques, solves the problem in time

O(n22n) (Bellman, 1962). In a local chart containing n edges, if a combination

happens between any two edges, 2n edges will be generated in the chart. From a

theoretical perspective, the time complexity of the DN-gram dependency generator

is comparable to that of the PCFG-based chart generator: they are both expo-

nential. However, I find that the execution times of the two approaches are very

different in practice. The DN-gram generation model generates one realisation with

the highest probability for each local f-structure, and in each local f-structure the

number of GFs is the main factor affecting the time cost. This number turns out

to be small (around 2.9 on average for both test and development data), which en-

sures that the DN-gram generator runs very fast. Running on an Intel Pentium IV

server with a 3.80GHz CPU and 3GB memory, it only took the DN-gram models

approximately 4 minutes to generate all 1,718 sentences of the CTB5.1 test set. By

contrast, generating the subset of test sentences with length no more than 40 words

took the various PCFG-based models from a few hours to a few days. The main

reason is that the PCFG generator tries to produce all alternative syntactic trees

licensed by the generation grammar. Even with carefully hand-crafted grammars, it

is possible that several grammar rules can be applied to combine the same edges, and

hence more than one new edge (with different categories) is generated from the same

source sub-f-structures. The case becomes worse when the generation grammar is
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automatically extracted from a large-scale treebank. An extreme example is given

in Section 5.4.3 where the simple word �/need can generate a total of 11 edges by

only lexical rules and unary rules of the CTB treebank grammar. Overgeneration

excessively increases the number of distinct edges in the chart and sharply aggra-

vates the time complexity of the PCFG-based chart generator. In order to curtail

the time cost, refinement of the treebank grammar is necessary for the PCFG-based

generator.

6.6.2 Conclusion and Future Directions

In the previous and in this chapter, I have described two different models for the task

of sentence generation from LFG f-structures for Chinese. As no published results

for general-purpose, wide-coverage, probabilistic sentence generation for Chinese are

available, it is not easy to compare my generators directly to other systems. An inter-

nal comparison between the two methodologies shows that the DN-gram generation

model is attractive due to the advantages of simplicity, efficiency, complete coverage

and competitive accuracy. The virtue of the PCFG-based generation model is that

it produces not only surface strings but also syntax trees, and therefore it might

be interesting to some applications where more syntactic information is necessary.

Theoretically, by incorporating complex syntactic tree structures, the PCFG-based

models have the potential to generate sentences of superior quality, though refine-

ment of grammar rules and more sophisticated techniques such as lexicalisation of

PCFGs need to be explored to further improve the performance of the PCFG-based

generation model.

When analysing the errors in the generation output, I found that neither of the

two types of generators handles coordination structures very well. Due to lack of

inflection and case markers, coordination is a common phenomenon in Chinese f-

structures: a total of 7,377 coordinates (4.32 per sentence) occur in the f-structures

for the development set. There are three different types of coordination structures

attested in the data:
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∙ Syntactic coordinates, but not semantic coordinates, such as:

(i) Ý℄ z� ,ï ù� ó§
invest million build this construction

‘invest million yuan to build the construction’

∙ Syntactic and semantic coordinates, but usually expressed in a fixed order, for

instance:

(ii) U� m�
reform opening-up

‘reform and opening up’

∙ Syntactic and semantic coordinates, which can freely swap orders, e.g.

(iii) ¿�� °å Ú ¯$� g�
plentiful energy and quick thinking

‘energetic and agile’

In the current systems, I only keep the most probable realisation for each input

f-structure. An alternative method in line with the generate-and-select paradigm,

could pack all the locally equivalent edges or sequences into equivalence classes at

the generation stage. Packing locally equivalent edges/sequences also minimises

the number of edges/units produced for the local f-structure, and has the effect of

reducing the time complexity. The selection module can simply give n-best candidate

realisations for the coordination, and more than one acceptable reference can be used

for evaluation. Or, all realisations can be re-ranked by a separate statistical model,

such as a language model. The post-processing language model possibly also helps

to reduce some errors caused in the previous generation stage, for instance, the

realisation of function words in fixed phrases. As shown in (12), the function word� is incorrectly generated as �. This is because both function words share the

same part-of-speech (DEG) in CTB, but� has a much higher frequency than � in

Chinese text and thus has a higher probability to be generated.

(12) a. �Ô
all things

�
DE
¥
in

‘among all things’

b. *�Ô
all things

�
DE
¥
in
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At present, though the dependency-based generator is more developed, there

is nonetheless room for further improvements. Results of the DN-gram models

(Table 6.6) show that features integrated in the n-grams play a crucial role in deter-

mining the linear order of GFs. One disadvantage of the approach presented in this

thesis is the need for manual feature selection, and so far a relatively small num-

ber of features have been used (even though they effectively improve on the basic

model). Encouraged by the convincing results for realisation ranking using log-

linear models, I expect the dependency-based generation models can be improved

by taking advantage of the flexibility of log-linear models to combine more types of

features. For instance, a useful feature might be the number of GFs in the current

f-structure. This could help capture the properties of some languages in which the

length of modifier has an effect on the constituent order (e.g. in the placement of

modifiers or coordinates). Another useful feature might be the depth of the current

sub-f-structure, which indicates whether it is a main clause or subordinate clause.

The DN-gram generation models were implemented within the formalism of

LFG, however they are general-purpose models and suitable for any bi-lexical la-

belled dependencies or argument-and-relation-type representations, such as the la-

belled feature value structures used in HALogen (Langkilde, 2002) and the functional

descriptions in the FUF/SURGE system. Therefore, it would be also interesting to

apply the n-gram generation models to e.g. dependency representations as used in

training state-of-the-art dependency parsers (Nivre, 2006).

138



Chapter 7

Conclusions

7.1 Thesis Summary

The thesis has presented two fundamental NLP tasks — parsing and generation for

Mandarin Chinese within the LFG framework. The work is part of the GramLab

multilingual grammar acquisition project to automate wide-coverage, deep, proba-

bilistic LFG development based on existing treebanks. Original work carried out

in the GramLab project on English (and to a limited extent on Chinese) underlies

the research reported in the thesis. The successful migration and adaptation of

the automatic f-structure annotation and parsing method from English to Chinese

language and treebank data has proven the effectiveness, portability and language

independence of the treebank-based deep grammar acquisition methodology. Still,

substantial improvements and extensions to the original generic approaches and

models have been achieved in both of the two NLP tasks on which the thesis con-

centrates:

LFG-Based Chinese Parsing

In order to parse Chinese sentences into proper f-structures, the main achievements

described in this thesis include:

∙ I have carried out a thorough investigation on Chinese core linguistic phenom-

ena and provided appropriate LFG analyses for particular Chinese construc-
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tions from a computational perspective. Accordingly, I revised and enlarged

(in cooperation with PARC) the Chinese dependency gold standard which now

includes 250 f-structures for the CTB5.1 data.

∙ I have overhauled and substantially extended the preliminary f-structure anno-

tation algorithm of Burke et al. (2004), which leads to a considerable increase

in both grammar coverage and accuracy.

∙ I have developed a novel conversion-based f-structure acquisition algorithm by

means of an intermediate unlabelled dependency structure. Taking advantage

of the two-level syntactic representation of LFG, the method enforces a clear

separation between predicate extraction and function labelling, which sim-

plifies the annotation process and increases the robustness of the annotation

algorithm.

∙ Based on a thorough investigation of NLD phenomena in Chinese as repre-

sented in the CTB, I have presented a hybrid NLD recovery algorithm that

integrates a few heuristic rules and two statistical models based on subcat

frames and NLD paths, both of which are learned from the automatically con-

verted f-structure bank. NLD recovery turns incomplete, proto-f-structures

produced from parser output trees into complete proper-f-structures.

LFG-Based Chinese Generation

∙ Inspired by the original proposal of Cahill and van Genabith (2006), I designed

proper generative models with simple or augmented PCFGs implemented in a

chart-style generator. The generative PCFG models outperform the original

conditional model for the LFG-based generation task in that: (i) it overcomes

the low coverage that the conditional probabilistic model suffers from; and

(ii) it includes more contextual information in the generation grammar to

weaken independence assumptions in the simple PCFG and improves on the

generation accuracy.

140



∙ Considering that word order in Chinese is rather rigid, I proposed a direct

generation approach to linearise GF units in the given f-structure by n-gram

models rather than constructing constituent trees via application of grammar

rules. The dependency-based n-gram model demonstrates superiority over the

grammar-based generation model in both generation accuracy and efficiency

for the Chinese generation task.

7.2 Future Work

There are still multiple interesting problems related to improving, extending and

evaluating the specific models discussed in this thesis.

Parsing into F-structures

Cahill et al. (2008) made an extensive comparison between the automatically ac-

quired wide-coverage LFG resources with two carefully hand-crafted constraint-

based grammars — RASP and XLE. The comparison shows that the treebank-

based, automatic LFG f-structure annotation algorithm together with state-of-the-

art “shallow” syntactic parsers outperforms the “deep” hand-crafted wide-coverage

grammars and parsing systems testing on English data. At the moment, only an

approximate comparison can be made between my treebank-based automatically ac-

quired LFG resources and the hand-crafted XLE LFG grammar developed at PARC

using the rather small-scale Chinese gold-standard dependency bank data. Recently,

there have been a number of on-going projects on Chinese unification-based grammar

development, including Chinese HPSG grammars developed at the Universities of

Tokyo and Saarland, respectively. It is worthwhile conducting a more comprehensive

comparison of treebank-induced with hand-crafted, deep, wide-coverage grammars

on Chinese data.
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NLD Recovery

I have presented a post-processing method to recover NLDs at the level of f-structure

for Chinese parser output trees. As introduced in Section 3.3, there are two other

strategies for NLD recovery: pre-processing methods to introduce empty nodes in

the input string before parsing and in-processing methods to integrate NLD recov-

ery into a PCFG or history-based parser. The two methods are also attractive and

worthwhile to be tested on Chinese data, especially because Chinese syntactic pars-

ing is fairly hard and has not yet achieved a level comparable to e.g. parsing English.

I expect that including NLD information into the parsing grammar or input strings

would effectively improve the performance of Chinese parsers.

Grammar-Based Generation

The thesis has presented proper generative PCFG models for Chinese generation

by applying the f-structure annotated CFG rules automatically acquired from the

CTB, and demonstrated that the simple PCFG generation model can be improved

by including more structural context to break down inappropriate PCFG indepen-

dence assumptions. Informed by recent advances in PCFG parsing, lexicalising CFG

rules are an alternative way to increase parsing accuracy over simple PCFGs. To

the best of my knowledge, lexicalised parsers (Bikel and Chiang, 2000) outperform

unlexicalised parsers for Chinese. I believe that there is a similar scope for improve-

ment in PCFG-based generation: lexicalisation of generation grammar rules has

the potential to further improve generation accuracy over the unlexicalised models

described in this thesis.

DN-Gram-Based Generation

I have presented dependency-based n-gram generation models to directly linearise

GFs so that the corresponding strings can be generated in the appropriate order.

The units/grams used in the DN-gram model combine function labels, lexical items

and other features from the input f-structure. Compared with n-gram models, log-

linear models are more powerful in that they are capable of integrating arbitrary
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global features or overlapping features without assuming independence among them.

It is worthwhile to implement a log-linear model (instead of n-gram model) combin-

ing a wider variety of features from the given f-structure to more precisely predict

the word order for Chinese generation.

In this thesis, the DN-gram generation models are designed and implemented

within the LFG framework and applied to the task of generating Chinese. However,

the underlying methodology is language-independent, general-purpose, and suitable

for any labelled bi-lexical dependencies or typed predicate-argument representations.

The models have been applied to Penn-II treebank data for generating English

sentences from f-structures, and the results show that the method generalises well to

different languages and data sets (Guo et al., 2008a). It would also be interesting to

apply the n-gram generation models to more generic dependency structures (rather

than LFG f-structures), e.g. dependency representations as used in training state-

of-the-art dependency parsers (Nivre, 2006).

In NLG tasks, the input to a sentence realiser is an abstract representation

without surface and language-specific information, such as punctuation. The DN-

gram generation models presented in this thesis linearise all dependency relations

given in the input f-structure, and thus are incapable of generating punctuation

marks if they are not present in the input representation. However, punctuation

is one of the most important structural elements in written language and vital to

the meaning of a sentence. For the purpose of punctuation generation, a separate

(hidden-ngram or log-linear) model can e.g. be designed as a post-processor to insert

punctuation marks into the sentences generated by the DN-gram models.

Other NLP Applications

The thesis focuses on two basic NLP tasks: (LFG-based) parsing and generation.

The linguistically rich two-level syntactic representations provided by the LFG archi-

tecture is of considerable benefit in cross-language NLP applications. One possible

immediate application is transfer-based machine translation. The GramLab project

on automatic multilingual LFG acquisition has provided resources to automatically
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parse text in languages including Chinese, French, Spanish, German, Japanese and

English into f-structures. If these source language f-structures can be mapped into

target language f-structures, a generator as proposed in this thesis can generate

target language text from these f-structures. The overall performance of such a

transfer-based machine translation system is highly dependent on the accuracy of

the f-structure parser and f-structure-based generator (among others). In this sense,

highly accurate parsers and generators will be vital components in transfer-based

machine translation systems.
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Appendix A

Feature Standardisation

This appendix lists the features and their possible values as used in the f-structure

representation automatically derived from the Penn Chinese Treebank.

Atomic-Valued Features

ntype: common, proper, temporal

pron-type: person, reflexive, interrogative, demonstrative

number-type: cardinal, ordinal

num: singular, plural

pers: 1, 2, 3

gend: male, female, nonhuman

adj-type: appositive, beneficiary, condition, direction, extent, locative, manner,

negative, purpose, temporal

aspect: X, 
, L
mood: í, Q, j, �, 
etc.

msp: 
, ¤, ±, 5, �
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de: ±

di: ±

dr: ±

vnv: ±

vnv-form: Ø, �
clause-type: declarative, interrogative, exclamatory

precoord-form: numbers and symbols

Grammatical Functions

subj: Subjects.

obj: Direct objects and objects of certain prepositions.

obj2: Indirect objects.

obl: obl represents the general type of obliques. Also two special types are used

in my f-structure representation:

obl-ag: logic subject

obl-loc: obligatory location

comp: Subordinate clauses that provide their own subjects.

xcomp: Subordinate clauses whose subject is provided from elsewhere in the sen-

tence.

det: Determiners.

quant: Quantifiers composed of classifier and number in counting.

number: Numbers.

result: Resultative complements.
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coord: Coordinates.

adjunct: Adjuncts.

adj-rel: Adjuncts in relative clauses.

topic: Topics.
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