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Abstract. The notion of latent-variable probabilistic context-free deri-
vation of syntactic structures is enhanced to allow heads and unrestricted
discontinuities. The chosen formalization covers both constituency pars-
ing and dependency parsing. By the new framework, one obtains a prob-
ability distribution over the space of all discontinuous parses. This lends
itself to intrinsic evaluation in terms of cross-entropy. The derivational
model is accompanied by an equivalent automaton model, which can be
used for deterministic parsing.
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1 Introduction

Much of traditional parsing theory [21] considers a syntactic structure to be a
constituency tree in which siblings are linearly ordered, and a sentence is formed
by the labels of the leaves from left to right. Whereas most English sentences
can be given syntactic analyses that satisfy these constraints, other languages,
especially those with more flexible word order such as German or Czech, do not
let themselves be described easily, if at all, by using trees of this form. At the
very least, these languages require types of syntactic trees with ‘crossing edges’,
a phenomenon which is known formally as discontinuity. In dependency parsing
this corresponds to non-projectivity.

In the theory of constituency parsing, leaf nodes in a parse tree are commonly
words and punctuation tokens, and non-leaf nodes represent categories; one may
also assign a special role to the nodes one level above the words, to represent parts
of speech. In the theory of dependency parsing however, each node corresponds
to a word or punctuation token, and can also be tagged with a part of speech;
moreover, the parent-child edges are typically labeled by dependency relations.

Specifying a space of discontinuous constituency structures requires exten-
sions to traditional parsing theory. Moreover, one generally needs to specify a
probability distribution over this space, so one may disambiguate an input string
that allows more than one parse. Rather than probabilities, one may more gen-
erally use weights to favour or disfavour one parse relative to another.

One approach to specifying a space of discontinuous constituency structures
is to use grammatical formalisms that distinguish between derived trees and
derivation trees, with discontinuity introduced through the interaction between
the two kinds of trees. This idea has been explored for tree adjoining grammars
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(TAGs) and linear context-free rewriting systems (LCFRSs). For TAG, see [17].
For LCFRS applied to dependency parsing see [20] and for LCFRS applied to
constituency parsing see [8]. In all of these cases, probability models may remain
attached to grammar rules, as in the case of traditional probabilistic context-free
parsing [15].

Another approach takes shift-reduce automata as starting point, with an
additional mechanism for swapping elements in the stack. This has been explored
both in constituency parsing [22] and in dependency parsing [28]. Weights may
be associated with possible next parser actions by applying a classifier on the
current state of the parser. For a sequence of steps of the automaton, these
weights may be added. Beam-search may then restrict the number of alternative
computations to be considered at each input position, to reduce computational
costs. With a beam size of 1, one obtains an entirely deterministic algorithm.
Even with larger beam sizes, parsing tends to be fast.

This paper presents a form of discontinuous parsing that connects grammar-
based approaches and automaton-based approaches. For the former, we intro-
duce a class of grammars that can describe a probability distribution over a set of
discontinuous parses. For the latter, we show how an automaton can be trained
to deterministically construct discontinuous parses, in such a way that the com-
putations of the automaton represent derivations of a corresponding grammar
and vice versa.

Before we can define a form of discontinuous shift-reduce parsing that is di-
rected by a grammar, we first need to develop a suitable grammatical formalism
that allows discontinuity. For this, we will retain the main principle of traditional
context-free derivation, that is, the process of repeatedly rewriting a nontermi-
nal to a string of terminals and nonterminals, starting from the start symbol,
until only terminals remain. By attaching latent variables to these nonterminals,
obtained through EM or spectral methods, one may build upon recent develop-
ments for continuous parsing that have pushed the state-of-the-art in parsing
accuracy.

We depart from existing frameworks in a redefinition of derivation steps. In
our form of derivation, when a nonterminal is rewritten to a string of grammar
symbols, only one of these grammar symbols, the head of the used rule, needs
to remain in the same location in the sentential form as the rewritten symbol.
The other symbols from the rule may ‘jump over’ existing symbols in the sen-
tential form. This ‘jumping over’ is what achieves the desired discontinuity. Our
work has elements in common with other approaches that redefine context-free
derivations, by allowing descendants of a node in the tree to ‘jump over’ descen-
dants of that node’s siblings [35, 19, 7]. However, this was typically combined
with Boolean constraints to avoid arbitrary word order.

Our approach uses probability distributions to favour common word order
over pathological word order, with parameters that can be estimated automat-
ically. Firstly, probabilities are attached to our rules, much as in traditional
probabilistic (latent variable) grammars. Secondly, additional probability dis-
tributions are used to govern the introduction of discontinuity as part of the
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application of these rules. The parameters of these probability distributions can
be obtained through relative frequency estimation on the basis of a corpus of
trees. This is by virtue of constraints we place on discontinuous derivations,
which leave exactly one derivation for each discontinuous tree.

Many other approaches to discontinuous parsing involve a grammar con-
structed out of a training corpus. There are often no restrictions per se on the
kinds of discontinuities that are covered by the trained grammar, provided sim-
ilar discontinuities were present in the training corpus. This holds for the ap-
proaches involving TAG and LCFRS discussed earlier. This also holds for hybrid
grammars [26], pseudo-projectivity [16, 31], and the reversible splitting conver-
sion of [2]. Our work differs from this in that our model provably allows for any
discontinuity in unseen input, although very discontinuous trees will become
very improbable if most of the training corpus is continuous.

A shorter version of the current article has appeared in LATA 2017. The
current version further includes:

– extended explanations and examples
– elaboration of the theory of deterministic discontinuous parsing
– extended evaluation using cross-entropy
– evaluation of deterministic parsing

2 Trees

In the following, we define a type of trees that is able to represent both discon-
tinuous constituency structures and nonprojective dependency trees, using the
notion of heads. Heads are an inherent component of most definitions of depen-
dency structures [12, 11]. Most older definitions of constituency structures avoid
the notion of heads altogether, whereas some more recent literature tends to at
least involve heads in some way [6].

We let N+ denote the set of natural numbers excluding 0, and we define
[n] = {1, 2, . . . , n} for n ∈ N+.

Let Σ be a finite set of terminals and let N be a finite set of labels. Terminals
correspond naively to tokens, although in reality they can represent open classes
of distributionally similar tokens. Labels could represent categories, parts of
speech, semantic roles, or even a combination of these.

The set H(Σ,N) of headed trees over Σ and N is defined inductively as
follows. We have a leaf (a, i) ∈ H(Σ,N) for each a ∈ Σ and i ∈ N+. We
also have A(s1 · · · sk, h, t1 · · · t`) ∈ H(Σ,N) for each A ∈ N , k, l ≥ 0, and
s1, . . . , sk, h, t1, . . . , t` ∈ H(Σ,N). Nothing else is in H(Σ,N).

Two headed trees are structurally identical if they differ at most in their input
positions. Inductively, any two leaves (a, i) and (a, j) are structurally identical,
and two headed trees A(s1, . . . , sk, h, t1, . . . , t`) and A(s′1, . . . , s

′
k, h
′, t′1, . . . , t

′
`)

are structurally identical if s1, . . . , sk, h, t1, . . . , t` are structurally identical to
s′1, . . . , s

′
k, h
′, t′1, . . . , t

′
`, respectively.

For each tree t, we define its head leaf (a, i) where a is called the head terminal
of t and i is called the head position of t. For a leaf t = (a, i), its head leaf is
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t itself. For a non-leaf tree t = A(s1 · · · sk, h, t1 · · · t`), its head leaf is defined
recursively as the head leaf of h.

The set of all positions in a headed tree t is denoted by pos(t), that is,
pos((a, i)) = {i} and pos(A(s1 · · · sk, h, t1 · · · t`)) =

⋃
i∈[k] pos(si) ∪ pos(h) ∪⋃

j∈[`] pos(tj). A headed tree is a positioned headed tree (ph-tree) if:

1. no two leaves share the same position, and
2. for every subtree t = A(s1 · · · sk, h, t1 · · · t`), the sequence of the head posi-

tions of s1, . . . , sk, h, t1, . . . , t` is strictly increasing.

The yield of a ph-tree whose leaves are (a1, k1), . . . , (am, km), arranged such
that k1 < . . . < km, is the string a1 · · · am. If two ph-trees are structurally iden-
tical, then for each node in the first tree there is a corresponding node in the
second tree. Because head positions of siblings need to be strictly increasing,
corresponding children from corresponding parents have the same relative or-
der. The two trees may differ however in how the descendents of these children
are interleaved with other nodes in the tree. If two ph-trees are structurally
identical, then the yield of the first is a permutation of the second. The converse
does not hold however: for a given ph-tree and a permutation of its yield, it is
not guaranteed that there is a structurally identical ph-tree whose yield is that
permutation.

A ph-tree t is complete if pos(t) = [n] for some n ∈ N+. A ph-tree t is
continuous if:

1. pos(t) = {m,m+ 1, . . . , n− 1, n} for some m,n ∈ N+, and
2. each immediate subtree is continuous.

The set of ph-trees is denoted by P (Σ,N), the set of complete ph-trees by
C(Σ,N), and the set of continuous and complete ph-trees by Cc(Σ,N).

Figure 1(a) shows an example of a complete ph-tree t, with pos(t) = [8]. Note
in particular that every position between 1 and 8 occurs in precisely one leaf.
An example of a subtree t′ of t is, in linearized form:

NP( D(ε, (a, 1), ε), N(ε, (hearing, 2), ε), PP(ε, P(ε, (on, 5), ε), . . .) )

where ε denotes the empty string. The head positions of the immediate subtrees
are 1, 2, 5, respectively, which is a strictly increasing sequence as required.

In the example in Figure 1(a), the subtree rooted in the node labeled PP is
continuous, but the subtrees rooted in the nodes labeled NP and VP are not.
The set of positions in this last subtree is {3, 4, 8}, which contains a ‘gap’ between
4 and 8. Because of this, the tree in Figure 1(a) as a whole is discontinuous.

The critical reader may argue that one could also formalize a ph-tree A(s1 · · ·
sk, h, t1 · · · t`) using set notation as A(h, {s1 · · · sk, t1 · · · t`}), omitting the rel-
ative order of the immediate subtrees, but keeping the explicit identification of
the head. This is without loss of information, as the order can be reconstructed
on the basis of the head positions of the immediate subtrees. We prefer to keep
the earlier notation however, as it simplifies making a connection with grammars
in Section 3.
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PP
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(the,6)
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Aux

(is,3)
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(scheduled,4)

Adv

(today,8)

(b)
Ŝ ⇒rm NP V̂P ⇒rm

NP Aux V Âdv ⇒rm

N̂P Aux V today ⇒rm

D N Aux V P̂P today ⇒rm

D N Aux V P D N̂ today ⇒rm

D N Aux V P D̂ issue today ⇒rm . . .

Fig. 1. Complete ph-tree with yield “a hearing is scheduled on the issue today” and
corresponding rightmost derivation, assuming π is the identity function. Solid edges
lead to heads and dotted edges to dependents. Examples of headed rules used here
are NP → D 〈N〉 PP and PP → ε 〈P〉 D N with ε here indicating absence of left
dependents.

We call a ph-tree unilexical if each subtree is either a leaf or of the form
A(s1 · · · sk, h, t1 · · · t`), where h is a leaf and none of s1, . . . , sk, t1, . . . , t` are
leaves. A complete ph-tree that is unilexical would more commonly be called a
dependency structure.

Figure 2(a) presents an example of a unilexical ph-tree, in which the ter-
minals are parts of speech; such ph-trees will be discussed again in Section 7.
Figure 2(b) presents an equivalent but more common representation of a depen-
dency structure, with occurrences of parts of speech arranged in textual order,
and edges leading towards dependents. Note the additional edge from an artifi-
cial zeroth input token to the head word of the sentence, here with part of speech
Aux. If we always assume such an edge for each dependency tree, then existence
of crossing edges breaks the projectivity condition [23, 39]. In the dependency
tree depicted in the figure, there are some crossing edges. Hence the dependency
tree is non-projective.

3 Headed Context-free Grammars

In this section, we give a formalization of headed grammars that differs somewhat
from related definitions in the literature, for example those of [1, 6]. This is
motivated by the need for a streamlined presentation that allows formulation of
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D N
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Fig. 2. Unilexical ph-tree and a more common representation of a dependency struc-
ture.

both discontinuous constituency parsing and non-projective dependency parsing.
We also wish to incorporate the notion of latent variables, as this is an essential
component of some state-of-the-art parsers [32, 24].

A headed context-free grammar (HCFG) is a 6-tuple (Σ,Q, qinit , R,N, π),
where Σ is a finite set of terminals as before, Q is a finite set of states, qinit ∈ Q
is the initial state, and R is a set of headed rules. Also as before, N is a finite set
of labels. The function π maps states to labels. Several states may be mapped to
the same label, to accommodate for latent variables. However, in the examples
and in the current experiments (Section 8), π is always the identity function.

A headed rule has the form q → α〈Z〉β, where q ∈ Q, Z ∈ Σ ∪ Q and
α, β ∈ (Σ ∪ Q)∗. Here q is called the left-hand side, and α〈Z〉β the right-hand
side, in which Z is the head, and the symbols in α and β are the left and right
dependents, respectively. The set R of headed rules is potentially infinite, in
which case we assume finite descriptions for the sets of strings α and β that may
appear in rules of the form q → α〈Z〉β, for given q and Z. Such descriptions
would typically be finite automata.

The derivations of a HCFG are defined by the binary relation⇒ that has, for
every rule q → X1 · · ·Xk〈Z〉Y1 · · ·Y`, and for every γ0, ..., γk, δ0, ..., δ` ∈ (Σ∪Q)∗:

γ0γ1 · · · γkqδ0δ1 · · · δ` ⇒ γ0X1γ1X2 · · ·XkγkZδ0Y1δ1Y2 · · ·Y`δ`

The reflexive, transitive closure of ⇒ is denoted by ⇒∗.
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Note that after a rewrite step of⇒, the head Z must be in the same position
as q relative to the symbols in γ0, . . . , γk, δ1, . . . δ`. The other symbols in the
right-hand side of the rule may be placed somewhere else, as long as the relative
order of X1 · · ·XkZY1 · · ·Y` is preserved. Further note that if we were to restrict
γ1 · · · γk and δ0 · · · δ`−1 to be always ε, then we obtain the familiar notion of
context-free derivation. We call such a derivation a continuous derivation.

Where we speak of ‘a derivation qinit ⇒∗ w’, we implicitly assume a certain
sequence of rule applications that leads us from qinit to w, via intermediate
sentential forms. This includes not only the identity of each applied rule, but
also the occurrence of the state on which it is applied (a sentential form may
contain several occurrences of the same state), and the locations where the left
and right dependents are placed among the existing elements in the sentential
form.

A derivation qinit ⇒∗ w maps to a complete ph-tree. To make this precise,
we first enhance w = a1 · · · an to w′ = (a1, 1) · · · (an, n), so that each terminal is
coupled to its position in the derived string. In the same way, we construct a set
of enhanced rules, on the basis of the rules that occur in the derivation. Roughly
speaking, the enhanced rules are chosen in such a way that their positions are
consistent with the positions of the leaf nodes needed to derive the sentence w′.
Concretely, for a rule ρ of the form q → X1 · · ·Xk〈Z〉Y1 · · ·Y`, a corresponding
enhanced rule is of the form

(q, i)→ (X1, i1) · · · (Xk, ik)〈(Z, i)〉(Y1, j1) · · · (Y`, j`),

where 1 ≤ i1 < . . . < ik < i < j1 < . . . < j` ≤ n. The set of such enhanced
rules for given rule ρ will be denoted by ρ(n). We now extend the derivation
qinit ⇒∗ w in a unique way to an enhanced derivation (qinit , i0) ⇒∗ w′, for
some i0, where we replace an application of a rule ρ by an application of an
enhanced rule ρ′ ∈ ρ(n) in which the positions are uniquely determined by the
corresponding leaf positions in the derivation.

We illustrate this for the example in Figure 1(a). Relevant enhanced rules
are (S, 3) → (NP, 2) 〈(VP, 3)〉 ε and (D, 6) → ε 〈(the, 6)〉 ε. With i0 = 3, we
may construct an enhanced derivation:

(S, 3)⇒
(NP, 2) (VP, 3)⇒
(D, 1) (N, 2) (VP, 3) (PP, 5)⇒ . . .⇒
(a, 1) (hearing, 2) (VP, 3) (on, 5) (the, 6) (issue, 7)⇒
(a, 1) (hearing, 2) (Aux, 3) (V, 4) (on, 5) (the, 6) (issue, 7) (Adv, 8)⇒ . . .⇒
(a, 1) (hearing, 2) (is, 3) (scheduled, 4) (on, 5) (the, 6) (issue, 7) (today, 8)

Next, we interpret the enhanced derivation as a tree structure, with the right-
hand side elements of an enhanced rule being the children of the left-hand side.
On this tree structure, we apply π, which amounts to replacing each (q, i) by
π(q). In particular, if π(q) = q, as in the case of Figure 1(a), then each (q, i) is
simply replaced by q. Hereby, a derivation maps to a unique string w as well as
to a unique complete ph-tree.
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For a given HCFG G, the string language SL(G) generated by G is the set of
all strings that can be derived and the tree language TL(G) is the correspond-
ing set of complete ph-trees. TLc(G) is the tree language that results if ⇒ is
restricted to continuous derivation.

If we restrict HCFG rules to have precisely two members in the right-hand
side, then the formalism is close to the non-projective context-free dependency
grammars of [14]. A more distant grammatical formalism for describing lan-
guages of discontinuous structures is [33]. Another idea that is distantly related
is given by [36], which separates tree structure from surface realization. See also
[34].

4 Relation to Context-Free Grammars

In this section, we investigate formal properties of HCFGs and relate them
to CFGs. To make the comparison easier, we assume that the states are also
used as the labels and π is the identity relation over Q. A CFG is a 4-tuple
(Σ,Q, qinit , R), consisting of the finite set Σ of terminals, the finite set Q of
nonterminals, the start symbol qinit ∈ Q and the set R ⊆ Q × {Σ ∪ Q}∗ of
context-free rules. A CFG is epsilon-free if no rule derives the empty string, and
linear if its rules are of the form q → xZy where q ∈ Q, x, y ∈ Σ∗ and Z ∈ Σ∪Q.
An epsilon-free CFG is right-linear if its rules are of the form q → ar or of the
form q → a, where q, r ∈ Q and a ∈ Σ.

A homomorphism over Σ∗ is a function f : Σ∗ → Σ∗ such that f(xy) =
f(x)f(y) for all x, y ∈ Σ∗. A homomorphism f is length-preserving if f(a) ∈ Σ
for all a ∈ Σ. We extend a function on strings to a function on sets of strings in
the natural way, i.e. f(L) = {f(x) | x ∈ L}.

Theorem 1 The class of languages generated by HCFGs is closed under length-
preserving homomorphisms but not under all homomorphisms.

Proof. Given a HCFG G and a length-preserving homomorphism f , we can
construct a HCFG whose language is f(L(G)), by replacing each occurrence of
a terminal a in a rule by f(a). However, if we are given a HCFG H containing
just the rule S → 〈a〉 and a homomorphism g : a∗ → a∗ such that g(a) = ε, then
g(L(H)) = {ε}, and no HCFG can generate the empty string.

Theorem 2 All regular subsets of Σ+ are included in the languages generated
by HCFGs.

Proof. Let G be a right-linear CFG generating a regular subset of Σ+. We can
construct a HCFG G′ generating this language as follows. For each CFG rule
q → ar, construct the HCFG rule q → 〈a〉r, and for each q → a, construct
q → 〈a〉.

Theorem 3 Some linear context-free subsets of Σ+ are not generated by any
HCFG.



A Derivational Model of Discontinuous Parsing IX

Proof. Let G be the linear CFG grammar with rules S → aSa, S → bSb, and
S → c. This grammar generates the set of strings of the form xcxR where
x ∈ {a, b}∗ and xR represents the reversal of x. Assume this language is generated
by a HCFG. Then there must be a nonterminal B, and four strings y, y′, z, z′

such that S ⇒+ ayBy′a ⇒+ aybzcz′by′a. This can be seen by investigating
derivations of strings of the form abnc bna. We may assume such a derivation is
continuous. (If not, then we can step-wise rearrange nodes until it is continuous.
Each step in effect moves a substring leftward or rightward. If this does not
preserve the generated string, then another string is obtained that is not of the
form xcxR, which is a contradiction.)

On paths from S to the center c we can identify minimal subderivations of
the form D ⇒∗ z1Ez2 such that z1 6= ε and z2 6= ε. Note that the length of z1 in
subderivations D ⇒∗ z1E as well as the length of z2 in subderivations D ⇒∗ Ez2
are bounded, because we could otherwise generate strings not of the form xcxR.
For the same reason, the lengths of z1 and z2 in minimal subderivations of the
form D ⇒∗ z1Ez2 with z1 6= ε and z2 6= ε are bounded. By choosing n greater
than this bound gives us the required subderivation B ⇒+ bzcz′b near the end
of the path.

If the head leaf of B is c or is to the right of c, then some node on the path
from B to the leftmost b in the subderivation is the leftmost left dependent of
its parent. This node can be moved to the left, such that a different string is
obtained, starting with b, while still ending on a, which would be a contradiction.
The remaining case, with the head leaf of B being to the left of c, is symmetric.

Theorem 4 Some languages generated by HCFGs are not context-free.

Proof. Let G be the HCFG with rules S → a〈S〉a, S → b〈S〉b, and S → 〈c〉. This
grammar generates the strings of the form xcy where x, y ∈ {a, b}∗ and y is a
permutation of x. If this were a context-free language, then the intersection with
a∗b∗ca∗b∗ would also be context-free. However, this intersection is anbmcanbm,
which is known not to be context-free.

Corollary 5 The classes of languages generated by CFGs and by HCFGs are
incomparable.

The permutation closure of a string language L ⊆ Σ∗ is defined to be the
language perm(L) of strings that are permutations of a string in L. We extend
permutation closure to HCFG rules as follows. If ρ is a rule q → α〈Z〉β, then
perm(ρ) is the set of rules of the form q → α′〈Z〉β′, where α′Zβ′ is a permutation
of αZβ; note that α′ and β′ need not be of the same length as α and β. The
permutation closure of a HCFG G, denoted by perm(G), is obtained by replacing
its set of rules by the union of their permutation closures.

Theorem 6 The class of languages generated by HCFGs is closed under per-
mutation closure.

Proof. It is easy to see that a language is a permutation closure of an epsilon-
free context-free language (and thereby of an epsilon-free regular language) if
and only if it is SL(perm(G)) for some HCFG G.
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Fig. 3. The construction in the proof of Theorem 7, producing the continuous complete
ph-tree in (b) from the complete ph-tree in (a), by renumbering the leaves from left to
right.

In practice, it is undesirable for a model of natural language syntax to allow
indiscriminate permutation of left dependents or of right dependents, let alone
indiscriminate swapping of left and right dependents. This motivates considering
the following weaker alternative to permutation closure. It involves shuffling the
descendents of a node with descendents of other nodes, while preserving the
relative order of immediate subtrees.

The shuffle closure of a set T of complete ph-trees C(Σ,N), denoted by
shuffle(T ), is obtained by replacing every tree t ∈ T by the set of structurally
identical complete ph-trees.

Theorem 7 TL(G) = shuffle(TLc(G)), for each HCFG G.

Proof. Given t ∈ TL(G), one can construct a continuous, complete ph-tree that is
structurally identical, and thereby t ∈ shuffle(TLc(G)). This is done by drawing
the tree in the traditional way, without crossing edges, and then renumbering
leaves 1, 2, . . . , from left to right, as illustrated in Figure 3.

The converse direction is immediate by the definition of HCFG derivation.

We have thus seen two ways of relating HCFG to continuous context-free
grammar, one in terms of string languages, using the permutation closure, and
one in terms of tree languages, using the shuffle closure. The string languages
generated by HCFGs thus include all permutation closures of context-free lan-
guages, such as MIX, which is the language of all strings over {a, b, c} in which
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the number of a’s, b’s and c’s is equal. MIX is not context-free, and not even a
tree-adjoining language [18].

Some generated languages are not in this class however. A simple example
is the language of all strings over {a, b}, with equal numbers of a’s and b’s,
but such that for any prefix, the number of a’s is greater than or equal to the
number of b’s. This language is generated by the HCFG with rules S → ab〈S〉
and S → a〈b〉.

The ability of HCFGs to deal with shuffle closure is of great benefit to robust
parsing of unrestricted natural language text. This is because idiosyncratic word
order may be handled that was not seen in training data.

5 Leftmost and Rightmost Derivations

Just as in established theory of context-free grammars, there can be several
derivations for the same string and the same tree that differ only in the order
in which states are rewritten. For the purpose of designing effective parsers
and formulating consistent probability distributions, one traditionally restricts
derivations to be either leftmost or rightmost. The behavior of top-down parsers
most closely matches leftmost derivations, whereas bottom-up parsers typically
match (reversed) rightmost derivations.

Restricting our discontinuous derivations to be either leftmost or rightmost
is more involved than in established theory, because of the potentially non-local
behavior of derivation steps. Although we could define leftmost and rightmost
derivations for arbitrary HCFGs, the definitions become simpler if we restrict
ourselves to HCFGs that are separated; a HCFG is called separated if terminals
only occur in rules of the form q → ε〈a〉ε, where a ∈ Σ, and all other rules are
of the form q → α〈r〉β, where r ∈ Q and α, β ∈ Q∗. The former will be called
lexical rules and the latter non-lexical rules.

With a separated HCFG, we can split every sentential form into a prefix and
a suffix, such that either the prefix or the suffix consists only of terminals, while
the other consists only of states. In the case of a leftmost derivation, it is the
prefix that consists only of terminals and in the case of a rightmost derivation, it
is the suffix. As we will see later in this section, leftmost/rightmost derivations
do not necessarily rewrite the leftmost/rightmost state.

For the set of states Q, we define the set of states Q̂ = {q̂ | q ∈ Q}, where
each state is given a hat. In a rightmost derivation, the non-terminal prefix is in
the set {ε} ∪ Q∗Q̂Q∗. In other words, either the entire sentential form consists
of terminals, or there are one or more states at the beginning of the sentential
form, of which precisely one has a hat. In a leftmost derivation, the states would
be at the end of the sentential form.

The purpose of the hat is to link applications of rules together in a sequence
of derivation steps: The state that has the hat is to be rewritten next. Which
state receives the hat after the derivation step depends on whether the applied
rule is lexical or non-lexical.
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– If the rule is non-lexical, the hat is given to one of the states in the right
hand side. With NP→ D〈N〉PP one possible step is:

N̂P Aux V today ⇒ D N Aux V P̂P today

– If the rule is lexical, the hat is given to any state in the sentential form, if
there is at least one state left. With Adv→ 〈today〉 one possible step is:

NP Aux V Âdv ⇒ N̂P Aux V today

Every derivation starts from the sentential form q̂init . The distinction between
leftmost and rightmost derivations is made by a restriction when we are allowed
to apply a lexical rule, which is either when the hatted state occurs leftmost or
when it occurs rightmost.

We now formally define rightmost derivations; the definition of leftmost
derivations is symmetric. The binary derivation relation ⇒rm (‘rm’ for ‘right-
most’) contains two kinds of derivation steps:

– γq̂δw ⇒rm γ0q
′
1γ1q

′
2 · · · q′kγkr′δ0s′1δ1s′2 · · · s′`δ`w if q → q1 · · · qk〈r〉s1 · · · s` is

a rule, where γ = γ0 · · · γk ∈ Q∗, δ = δ0 · · · δ` ∈ Q∗, w ∈ Σ∗, q, q1, . . . , qk, r,
s1, . . . , s` ∈ Q, and q′1 · · · q′kr′s′1 · · · s′` is obtained from q1 · · · qkrs1 · · · s` by
placing the hat on exactly one of these states.

– γq̂w ⇒rm γ′aw if q → ε〈a〉ε is a rule, where a ∈ Σ, and γ′ = γ if γ = ε
and otherwise γ′ is obtained from γ by placing the hat on exactly one of the
states.

Perhaps counter-intuitively at first sight, our rightmost derivations do not
necessarily rewrite the rightmost state. Instead, a rightmost derivation can be
decomposed into several chains of rewrites, each of which ends in a step that
is rightmost in the sense of adding one more terminal at the front of the suffix
of terminals. After the first step in a single chain, each step rewrites a state
introduced by the previous step. This constraint is enforced by placing a hat on
a state to be rewritten next.

One chain in the running example starts with the hatted NP and ends with
the addition of the token issue to the terminal suffix, after which a new chain
starts with D obtaining the hat:

N̂P Aux V today ⇒rm

D N Aux V P̂P today ⇒rm

D N Aux V P D N̂ today ⇒rm

D N Aux V P D̂ issue today.

We can define SLlm, TLlm, SLrm and TLrm much as we defined SL and TL,
now restricting the derivations to be leftmost or rightmost, respectively.

Of central importance to later sections is:

Theorem 8 For each HCFG G, we have SL(G) = SLlm(G) = SLrm(G), and
TL(G) = TLlm(G) = TLrm(G).
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A proof can be given in terms of enhanced derivations, which can be rearranged
to become rightmost (or leftmost for the symmetric case). For a string of length
n, there are chains of rewrites, one for each i = n, . . . , 1. In the chain for a certain
i, only state occurrences are rewritten whose corresponding subtrees have yields
that include the i-th terminal but not the j-th terminal in the string, for any
j > i.

Theorem 8 can be refined to formulate a surjective mapping from an arbitrary
derivation to a rightmost derivation for the same tree. Moreover, if π is the
identity function, then there is a bijective mapping from rightmost derivations
to TL(G).

6 The Shift-Reduce Automaton Model

This section defines a discontinuous shift-reduce parser, which computes (re-
versed) rightmost derivations of a separated HCFG.

6.1 General Model

A configuration is a pair consisting of a stack, which is a string in {ε} ∪ Q∗Q̂Q∗,
and a remaining input, which is a string in Σ∗.

The binary relation ` is defined by two allowable steps:

– Shift. A shift step is (γ, aw) ` (γ′q̂, w) if q → ε〈a〉ε is a rule in the grammar,
and γ′ results from γ by removing the occurrence of the hat if there is one
(if not, then γ = ε).

– Reduction. A reduction step is (γ0q
′
1γ1q

′
2 · · · q′kγkr′δ0s′1δ1s′2 · · · s′`δ`, w) `

(γ0 · · · γkq̂δ0 · · · δ`, w) if q → q1 · · · qk〈r〉s1 · · · s` is a rule in the grammar,
and q′1 · · · q′kr′s′1 · · · s′` contains exactly one hat, which is removed to give
q1 · · · qkrs1 · · · s`.

Our definition of the reduction step differs from the usual definition of reduction
in continuous parsing by the fact that the occurrences of symbols in the right-
hand side of the used rule can be arbitrarily deep in the stack (but in the same
relative order as in the rule). The location in the stack where the head is found
determines the location of the left-hand side of the rule after the reduction.

A computation recognizing a string w is a sequence of steps (ε, w) `∗ (q̂init , ε).
Here (ε, w) is the initial configuration and (q̂init , ε) is the final configuration. As
` can be seen as the reversal of⇒rm , it is not difficult to see that a string can be
recognized if and only if it is in SL(G), using Theorem 8. Further, computations
can be enhanced to construct corresponding trees.
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For the example from Figure 1, the computation is:

(ε , a hearing is scheduled on the issue today) `
(D̂ , hearing is scheduled on the issue today) `
(D N̂ , is scheduled on the issue today) ` . . .`
(D N Aux V P D̂ , issue today) `
(D N Aux V P D N̂, today) `
(D N Aux V P̂P , today) `
(N̂P Aux V , today) `
(NP Aux V Âdv , ε) `
(NP V̂P , ε) `
(Ŝ , ε)

6.2 Parsing without Grammar

It is common for modern parsers to use an implicit and binarized grammar; cf.
[6]. Conceptually, there is an infinite number of rules, which are each broken
up into unary and binary rules, that is, rules with one or two members in the
right-hand side. We will apply this idea to the shift-reduce model above, first
for the purpose of constituency parsing. The states are then parts of speech or
categories, and the allowable steps are the following, where r is a part of speech,
q is a category, and s is either a part of speech or a category:

– Shift. (γ, aw) ` (γ′r̂, w), where as before γ′ results from γ by removing the
occurrence of the hat if there is one.

– Reduce right to hat. (γ0sγ1q̂δ, w) ` (γ0γ1q̂δ, w).
– Reduce left to hat. (γq̂δ0sδ1, w) ` (γq̂δ0δ1, w).
– Reduce right from hat. (γ0ŝγ1qδ, aw) ` (γ0γ1q̂δ, w).
– Reduce left from hat. (γqδ0ŝδ1, w) ` (γq̂δ0δ1, w).
– Completion. (γŝδ, w) ` (γq̂δ, w).

The ‘reduce right to hat’ step makes s a left dependent of q. This reduction acts
as part of the application of an implied rule of the form q → α0sα1〈q′〉β, for some
α0, α1, q′, and β. The other three types of reduction are similar. The ‘completion’
step initiates the application of an implied rule of the form q → α〈s〉β, for some
α and β, where none of the symbols in α and β have been identified as yet.

In line with observations made in preceding sections, we can restrict the
above steps to only produce continuous trees. For example, we could impose
the restriction on ‘reduce right to hat’ that γ1 = ε; similar restrictions could be
imposed on the other three reductions. With those restrictions, the hat is always
on the rightmost stack element, so that the model simplifies to a traditional
(binary) shift-reduce automaton.

A very similar automaton model deals with dependency parsing. One differ-
ence is that we can dispense with states, so that the symbols on the stack are
input tokens. The shift step then merely transfers a token from the remaining
input to the top of the stack. Moreover, we no longer need a ‘completion’ step. If
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once more we are to restrict this model to continuous trees, then we obtain a fa-
miliar shift-reduce parsing algorithm for projective dependency parsing, known
at least since [10]; see also [25]. [27] calls this ‘arc-standard parsing’.

A common way to apply shift-reduce models is to use a classifier to repeatedly
determine the next step, on the basis of features extracted from the current
configuration [38, 29]. Although this is not apparent in our formalization above, a
configuration can be extended to keep all information about descendents of states
that are currently on the stack. This means that when a final configuration is
reached, there is sufficient information to construct the corresponding derivation.
Further, the information about descendents is available to the features that
are used by the classifier. For example, a feature could be ‘the category of the
leftmost constituent so far that was made a left dependent of the state that
currently has the hat’.

6.3 Stack Compression

One may object however that common classifiers have one shortcoming that
prevents them from serving our purpose of allowing any derivation, namely that
the set of possible response values is normally of bounded size. Consider for
example the ‘reduce right to hat’ step (γ0sγ1q̂δ, w) ` (γ0γ1q̂δ, w). Assume that
q is the i-th state in the stack, or in other words i = |γ0sγ1| + 1, and s is the
j-th state, or in other words j = |γ0| + 1. Then we call j − i the fellow index,
the fellow being the other stack element, next to the one with the hat, that is
involved in the reduction. The fellow index is defined analogously for the other
three reductions. If the fellow index is negative, the fellow is to the left of the
hatted element, and if it is positive, then it is to the right.

A deterministic parser may determine the next step by a classifier that picks
a shift, a ‘reduce to hat’, a ‘reduce from hat’, or (only in the case of constituency
parsing) a ‘completion’. If a reduction is chosen, then a second classifier may be
used to determine the fellow index. In the worst case, a desired fellow index for
a given configuration may be different from any of the fellow indices seen during
training, which would imply the parser is incomplete, i.e. there are derivations
it is unable to produce.

To mitigate this, we set a small constant N , which acts as the window size
around the hatted stack symbol; in our experiments, N = 2. Further, we let the
classifier for the fellow index return one of two kinds of objects:

– a non-zero number no smaller than −N and no greater than N , or
– a pair (d, q), where d ∈ {left, right}, and q is a part of speech or (in the

case of a constituency parser) a category.

If the classifier returns a non-zero number, then that uniquely identifies the
fellow element, which must then be no further than N positions away from the
hatted symbol. If however a pair (d, q) is returned, then the fellow is taken to
be the first stack symbol in direction d, starting from the hatted position minus
N + 1 if d = left, or plus N + 1 if d = right, that is labeled by q. Note that this
may in principle correspond to an arbitrarily large fellow index.
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To allow the parser to detect the existence of parts of speech or categories
outside the window of size N around the hatted symbol, two sets will be con-
structed, namely the set of parts of speech or categories to the left of that window,
and the set of parts of speech or categories to its right. We will refer to this as
the stack compression, as it compresses the full stack into a bounded number of
predictors, in combination with a bounded number of potential response values.
It should be pointed out that stack compression mitigates the incompleteness of
the parser, but cannot entirely remove it.

7 A Probabilistic Model of Derivations

There may be many derivations for a given string, each of which determines
one tree. In order to disambiguate, and choose one out of those derivations and
thereby one tree, one may impose a probability model on derivation steps. We
investigate such a model here, as before for a fixed HCFG that is separated.

The task ahead is to define a probability distribution over the derivation steps
that are possible for a sentential form γq̂δw. A derivation step is characterized
first by a choice of a non-lexical rule q → α〈r〉β where r ∈ Q, α = q1 · · · qk and
β = s1 · · · s` or a lexical rule q → ε〈a〉ε where a ∈ Σ; the latter is only possible
if δ = ε.

– When a non-lexical rule q → α〈r〉β is applied, we also need to choose the
way in which γ and δ are broken up into k+ 1 and `+ 1 pieces, respectively,
as γ = γ0 · · · γk and δ = δ0 · · · δ`, to accommodate for the placement of the
elements of α and β, and we need to choose, from k+ 1 + ` possible states in
α rβ, the m-th state that will have the hat next. The sentential form after
this step will be γ0q

′
1γ1 · · · q′kγkr′δ0s′1δ1 · · · s′`δ`w, where q′1 · · · q′kr′s′1 · · · s′` is

obtained from q1 · · · qkrs1 · · · s` by placing the hat on the m-th state.

– When a lexical rule q → ε〈a〉ε is applied, we need to choose the state from
among the |γ| states in the sentential form γaw that will have the hat next.
The sentential form after this step will be γ′aw, where γ′ is obtained from
γ by placing the hat on the m-th state.

7.1 Independence Assumptions

In order to obtain a model that can be effectively trained, we need to make a
number of independence assumptions. For the probability of a step γq̂δw ⇒rm

γ0q
′
1γ1 · · · q′kγkr′δ0s′1δ1 · · · s′`δ`w as above, we assume that the choice of the non-

lexical rule q → α〈r〉β depends only on q, and on whether δ is empty, because if
δ is empty, the probability mass may need to be shared with one or more lexical
rules. We further assume that how γ is broken up into k+ 1 pieces depends only
on k and |γ|. Similarly, how δ is broken up only depends on ` and |δ|. Lastly, we
assume that m, the index of the state from among k+ 1 + ` states that is given
the hat, depends only on k and `.
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Altogether, the probability of the step is approximated by:

prule(q → q1 · · · qk〈r〉s1 · · · s` | q,B(δ)) ·
pleft(|γ0|, . . . , |γk| | k, |γ|) ·
pright(|δ0|, . . . , |δ`| | `, |δ|) ·
prule hat(m | k, `)

where B(δ) is the truth value of δ = ε.
Let us now consider a step γq̂δw ⇒rm γ′δaw, using a lexical rule. As lexical

rules can only rewrite states that occur rightmost in the sentential form, the
probability of such a step would be 0 if δ 6= ε. If δ = ε, we make the independence
assumption that the choice of the lexical rule q → ε〈a〉ε depends only on q, and
that m, the index of the state from among |γ| states that is given the hat,
depends only on |γ|. Altogether, the probability of the step is approximated by:

prule(q → ε〈a〉ε | q,B(δ)) ·
plex hat(m | |γ|)

7.2 Component Models

The component models pertaining to discontinuity are defined recursively, mo-
tivated by the assumption that the probability decreases exponentially, for each
choice that introduces more discontinuity into the derivation under construc-
tion. The four parameters of these models are the probabilities Pleft , Pright ,
Prule hat , and Plex hat . We further define their complements Pleft = 1 − Pleft ,
Pright = 1− Pright , etc.

In the definition of the conditional probability distribution pleft , Pleft is the
probability that the next left dependent is not placed rightmost among the
remaining states in the sentential form, provided there are any left. For non-
negative integers k, i0, . . . , ik, and i = i0 + · · ·+ ik, we let:

pleft(i0, . . . , ik | k, i) =
1, if k = 0,

P ik
left , if k > 0 ∧ i0 + · · ·+ ik−1 = 0,

pleft(i0, . . . , ik−1 | k − 1, i− ik) · Pleft · P ik
left , if k > 0 ∧ i0 + · · ·+ ik−1 > 0

This is illustrated in Figure 4. In (a), q2 is not placed rightmost, immediately
next to r, which amounts to one factor Pleft . It is placed at the next position,
which amounts to a factor Pleft . Then q1 is placed four positions further to
the left, which amounts to four factors Pleft , etc. In (b), q2 is three positions
further to the left than immediately next to r. After this, there is no remaining
choice where q1 and q0 can be placed, so there are no further factors. Note that∑

i0,...,ik
pleft(i0, . . . , ik | k, i) = 1, for each k and i, as before under the constraint

i = i0 + · · ·+ ik. We define pright symmetrically, where Pright is the probability
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• • • q1 • • • • q2 • r · · ·

γ0 γ1 γ2

(a)

q1 q2 • • • r · · ·

γ0 γ1 γ2

(b)

Fig. 4. (a) For k = 2, |γ| = 8, |γ0| = 3, |γ1| = 4, |γ2| = 1, we have pleft(3, 4, 1 | 2, 8) =
Pleft · P 4

left · Pleft · P 1
left . (b) For k = 2, |γ| = 3, |γ0| = 0, |γ1| = 0, |γ2| = 3, we have

pleft(0, 0, 3 | 2, 3) = P 3
left .

that the next right dependent is not placed leftmost among the remaining states
in the sentential form, provided there are any left.

By the same reasoning, we define the conditional probability distribution
prule hat , using Prule hat , which is the probability that the hat is not given to
the next state, from right to left. There is one such factor for each state that is
skipped, and one more factor Prule hat provided the hat is given to a state that
is not leftmost. For non-negative integers k and ` and 1 ≤ m ≤ k+ `+ 1, we let:

prule hat(m | k, `) =

{
P k+`
rule hat , if m = 1,

Prule hat · P k+`+1−m
rule hat , if m > 1

Note that
∑

m prule hat(m | k, `) = 1. The definitions of plex hat and Plex hat are
analogous.

7.3 Consistency

With the usual assumption of absence of useless rules, a sufficient condition for
the above equations to specify a consistent probability model is that there is at
least one rule q → α〈r〉β with non-empty β for each q. To illustrate the problem
that is potentially caused if this requirement is not satisfied, assume the hat is
placed on a state q in the sentential form that is not rightmost, and assume
only lexical rules exist that have q as left-hand side. Then no rules at all are
applicable, and probability mass is lost.

Such a problem in fact had to be solved for our experiments in Section 8 with
dependency grammars, which are formalized in terms of rules qinit → ε〈A〉ε,
A → α〈A〉β, and A → ε〈a〉ε, where state A represents a part of speech and
A is an auxiliary state for the same part of speech, α and β are strings of
such auxiliary states for parts of speech, and a is a word. (Cf. our discussion
about unilexical ph-trees in Section 2.) For each A there is one smoothed bigram
model pld for possible choices of left dependents α and one such model prd for
right dependents β. To avoid problems caused by out-of-vocabulary words and
inflection, probabilities of rules A→ ε〈a〉ε are ignored, so that conceptually the
input consists of a string of parts of speech.

In order to then obtain a probability distribution over derivations, one needs
to ensure that the hat cannot be given to a part of speech that is non-rightmost
in the sentential form. This is achieved by adjusting the definitions of prule hat
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and plex hat to ignore parts of speech unless they are right-most in the sentential
form. We further ensure that an auxiliary state A that occurs non-rightmost
in the sentential form can only be rewritten using A → α〈A〉β if αβ 6= ε,
with probability pld(α | A) · prd(β | A) ·Cnorm(A), with the normalization factor
Cnorm(A) = 1/(1− pld(ε | A) · prd(ε | A)). For rightmost occurrences of A there
is no such restriction on α and β and the normalization factor is not needed.

8 Evaluation

We carried out two kinds of investigation. First, we evaluated our shift-reduce
model for the purpose of deterministic parsing. Second, we investigated the em-
pirical behaviour of the probabilistic model of derivations. The first investigation
was done for both dependency parsing and for constituency parsing, while the
second has been done only for dependency parsing at this time. For constituency
parsing, we considered the TIGER [3] and NEGRA [4] treebanks. Punctuation
was transferred to a lower level in the trees using Treetools.1

For dependency parsing we have taken some of the largest corpora from
Universal Dependencies v2.22, to be precise, those that contain at least 14,000
projective trees in the training sections. In addition we have taken treebanks
for Ancient Greek and German, as these are known to have a large proportion
of nonprojective trees, and are therefore central to our theory. Altogether, the
considered languages are Arabic (ar; NYUAD), Czech (cs; CAC), German (de;
GSD), Estonian (et; EDT), Ancient Greek (grc; PROIEL), Japanese (ja; BC-
CWJ), Korean (ko; Kaist), Norwegian (no; Bokmaal), Russian (ru; SynTagRus).

8.1 Experiments with Deterministic Parsing

We implemented the nonprojective as well as the projective shift-reduce models
described in Section 6, for both dependency parsing and constituency parsing.
For comparison, we also implemented the model of [28, 30] with swapping tran-
sitions. Not considered were models with a very different architecture, such as
that of [9].

For constituency parsing, one still needs to decide how to determine the head
children of nodes, as in the NEGRA and TIGER treebanks, the heads are only
explicitly represented for a portion of the categories. There are three obvious
strategies. In the first, the explicit representation of heads is complemented with
hand-written heuristic rules. In the second and third strategies, the heads are
always chosen to be the left-most child or the right-most child, respectively,
even where the treebank has explicit representation of heads. In this section, we
assume the first strategy, which appears to perform marginally better in the case
of discontinuous parsing.

1 https://github.com/wmaier/treetools, by Wolfgang Maier. Placing punctuation
was done using --trans root attach.

2 https://universaldependencies.org/
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(Driese knows that the route is still long)

The route that knows Driese is still long

(a)

Die Strecke das weiß Driese ist noch lang

ART NN PDS VVFIN NE VAFIN ADV ADJD

NP2

NP1

AP

S2

S1

(b) stack: NP2 NP1 S1 NE Ŝ2 remaining input: noch lang

Fig. 5. The correct structure is as in (a), ignoring punctuation for presentational con-
venience, and with added subscripts for ease of reference (the subscripts are not part
of the category names). After a number of steps, the configuration in (b) is reached.
The correct next step is a reduction of NP2 to S2. If we assume N = 2, then stack
compression implies that the fellow is taken to be NP1 instead, as this is the first NP
to the left of the window of size 2 around the hat.

As the classifiers used in our implementation were not advanced enough to
reach state-of-the-art parsing accuracies, it was decided to omit accuracy figures.
Instead, we have investigated the behaviour of stack compression in practice. A
central question is how often gold structures can be outside the reach of the
parser. This can happen if the index of the hatted element is i, and the fellow
index j is smaller than −N or greater than N . In this case the classifier should
return the fellow in the form of a pair (d, q), where d ∈ {left, right} and q is
a part of speech or category. If say d = left, then this is intended to refer to
a fellow with negative fellow index j that is the first stack element starting at
index i − N − 1, searching downward, that has label q. If however the correct
fellow with label q is at stack element i + j, but there is another stack element
between i+ j and i−N − 1 with the same label, then the fellow is misidentified.
Figure 5 illustrates a typical case.

Table 1 shows the distribution of the fellow indices in the case of constituency
parsing, with N = 3. As expected, the most frequent fellow index is -1, which
typically corresponds to a reduction of the topmost two stack elements. Also
indicated in the table is the relative frequency of the representation (d, q) not
being information-preserving, leading to misidentification of the fellow. It turns
out this is exceedingly rare but does happen.

Table 2 shows the distribution of the fellow indices in the case of dependency
parsing, with N = 2, for six languages that show notable differences. As ex-
pected, the pervasive nonprojectivity in Ancient Greek corresponds to a fellow
index which is frequently a value other than -1, whereas this is very infrequent in
the case of Japanese. For Korean the fellow index is often a value other than -1,
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Table 1. The distributions of the fellow indices, for the TIGER and NEGRA tree-
banks. Also indicated are the relative frequencies of fellow indices being translated to
pairs (d, q), and relative frequency of this not being information-preserving, due to an
intervening stack element with the same label q.

TIGER
‘reduce ‘reduce

index to hat’ from hat’
-11 0.0002%
-10 0.0006% 0.0007%
-9 0.0003% 0.0023%
-8 0.0012% 0.0032%
-7 0.0088% 0.0086%
-6 0.0143% 0.0273%
-5 0.0326% 0.0744%
-4 0.0707% 0.2497%
-3 0.2722% 0.9624%
-2 2.7642% 0.6103%
-1 93.7668% 96.9776%
1 3.0605% 1.0718%
2 0.0006% 0.0104%
3 0.0058% 0.0004%
4 0.0009% 0.0002%
5 0.0003% 0.0005%

compressed 0.1299% 0.3672%
unpreserved 0.0055% 0.0157%

NEGRA
‘reduce ‘reduce

index to hat’ from hat’
-10 0.0008%
-9 0.0008% 0.0004%
-8 0.0055% 0.0026%
-7 0.0148% 0.0110%
-6 0.0203% 0.0287%
-5 0.0382% 0.0789%
-4 0.0647% 0.2298%
-3 0.2914% 0.8552%
-2 3.1022% 0.6351%
-1 93.5331% 97.1707%
1 2.9253% 0.9774%
2 0.0016% 0.0093%
3 0.0016% 0.0009%

compressed 0.1449% 0.3515%
unpreserved 0.0062% 0.0123%

but only in the case of ‘reduce to hat’, not ‘reduce from hat’. The frequent value
of -2 corresponds to a left dependent that is separated from the head by one
other element, without further sources of non-projectivity. For all of these six
languages, it is very rare for stack compression not to be information-preserving,
even in the case of Ancient Greek.

8.2 Experiments with the Probabilitistic Model of Derivations

The probabilistic model of derivations was trained on the nine dependency tree-
banks mentioned before. The estimated parameters related to nonprojectivity
are presented in Table 3. It is unsurprising that all of these parameters are high
for languages with much nonprojectivity, such as Ancient Greek, and all are low
for languages with largely projective structures, such as Japanese. Once more,
Korean distinguishes itself from the other considered languages; we see that the
fair amount of nonprojectivity is concentrated in Pleft .

There are tabular parsing methods with polynomial time complexity that
can be used to determine the most probable tree given a sentence and a proba-
bilistic context-free grammar [15]. This does not seem possible for our model of
discontinuous trees however. At best the model could evaluate (parts of) can-
didate parses provided by other models, possibly including the deterministic
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Table 2. The distributions of the fellow indices, for the training sections of six depen-
dency treebanks. (Zero entries are left blank.)

cs de grc
‘reduce ‘reduce ‘reduce ‘reduce ‘reduce ‘reduce

index to hat’ from hat’ to hat’ from hat’ to hat’ from hat’
≤ -4 0.0051% 0.0311% 0.0051% 0.0911% 0.0775% 0.2823%

-3 0.0828% 0.1160% 0.0238% 0.3837% 0.6058% 1.0507%
-2 1.6567% 0.5024% 0.4899% 1.3132% 5.0079% 4.6467%
-1 98.0630% 98.9989% 98.8159% 97.6579% 93.2501% 91.8049%
1 0.1916% 0.3352% 0.6633% 0.5522% 1.0256% 2.0958%
2 0.0008% 0.0164% 0.0019% 0.0018% 0.0217% 0.1151%

≥ 3 0.0113% 0.0044%

compressed 0.0879% 0.1471% 0.0290% 0.4749% 0.6947% 1.3374%
unpreserved 0.0004% 0.0050% 0.0138% 0.0103% 0.0310%

ja ko no
‘reduce ‘reduce ‘reduce ‘reduce ‘reduce ‘reduce

index to hat’ from hat’ to hat’ from hat’ to hat’ from hat’
≤ -4 0.0023% 0.0002% 0.0030% 0.0039% 0.1368%

-3 0.0013% 0.0973% 0.0063% 0.2478%
-2 0.0139% 3.6465% 0.2327% 0.6246%
-1 99.9814% 99.9996% 96.2532% 100.0000% 99.2315% 98.1666%
1 0.0011% 0.0002% 0.5256% 0.7932%
2 0.0258%

≥ 3 0.0052%

compressed 0.0036% 0.0002% 0.1002% 0.0102% 0.3897%
unpreserved 0.0009% 0.0005% 0.0172%

shift-reduce models in the previous section. For combining parsers, see also [13,
40].

We can however investigate how accurate a trained model is by measuring
cross-entropy of a test corpus, which we take here to be the negative log likelihood

of that corpus, normalized by the length of the corpus, or formally
−

∑
t∈T log2 p(t)∑

t∈T |yield(t)|
.

Here T is the set of trees in the test corpus, p is the trained probability model
of rightmost derivations, and |yield(t)| is the number of tokens in t. A closely
related concept is perplexity, which is 2 raised to the power of the cross-entropy.
Perplexity was shown by [37] to be a good indicator of parsing accuracy.

Table 4 presents cross-entropy, labelled as p in the final column, measured on
the testing sections of the treebanks. It is the sum of the preceding six columns.
The first four correspond to the models governing nonprojectivity (cf. Table 3).
In addition there are the normalization constant discussed in Section 7.3, and
the model of producing the left and right dependents.

The largest portion of the cross-entropy is made up of the submodels of left
and right dependents, with relatively minor contributions from the submodels
that account for nonprojectivity. This could mean that nonprojectivity is rela-
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Table 3. Estimated parameters pertaining to discontinuity.

Plex hat Prule hat Pleft Pright

ar 2.1*10−3 3.1*10−3 3.9*10−3 8.9*10−3

cs 2.0*10−3 3.8*10−3 1.4*10−2 2.3*10−2

de 5.1*10−3 5.0*10−3 9.7*10−3 4.2*10−2

et 5.9*10−4 1.2*10−3 4.5*10−3 5.3*10−3

grc 1.5*10−2 3.8*10−2 5.7*10−2 1.5*10−1

ja 0.0 2.1*10−5 2.3*10−4 4.0*10−5

ko 0.0 0.0 6.1*10−2 0.0
no 4.7*10−3 9.6*10−3 3.7*10−3 4.5*10−2

ru 1.2*10−3 7.6*10−3 8.0*10−3 2.8*10−2

Table 4. Cross-entropy and its decomposition.

plex hat prule hat pleft pright Cnorm prule p

ar 2.0*10−2 7.4*10−3 8.7*10−3 2.3*10−2 -2.4*10−3 3.88 3.93
cs 1.6*10−2 1.5*10−2 5.6*10−2 2.6*10−2 -2.7*10−3 3.78 3.89
de 1.3*10−1 2.3*10−2 5.1*10−2 1.1*10−1 -8.9*10−3 3.86 4.16
et 1.1*10−2 3.6*10−3 2.5*10−2 1.2*10−2 -8.2*10−4 4.13 4.18
grc 9.7*10−2 9.5*10−2 1.7*10−1 1.3*10−1 -1.9*10−2 4.08 4.56
ja 0.0 7.7*10−6 2.6*10−3 1.1*10−5 0.0 3.85 3.85
ko 0.0 0.0 2.3*10−1 0.0 0.0 4.16 4.38
no 4.4*10−2 2.4*10−2 1.9*10−2 5.9*10−2 -9.3*10−3 3.82 3.95
ru 7.8*10−3 2.4*10−2 3.5*10−2 2.6*10−2 -3.0*10−3 4.07 4.16

tively well modeled already, and that for making the overall model more accurate,
the most gain is to be expected from the submodels of left and right dependents.

9 Conclusion

We have introduced a model of syntax that captures discontinuous derivations.
It allows the definition of probability distributions over the space of all discontin-
uous parses. We have shown that this allows evaluation in terms of cross-entropy.
We have also introduced a new kind of automaton, which is such that each deriva-
tion corresponds in a natural way to a computation of an automaton, and vice
versa. These automata may be used for deterministic parsing. Because our model
captures both probabilistic grammatical formalisms and parsing algorithms, it
is more comprehensive than previous models of discontinuous syntax.
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Acknowledgments

Our implementation of the parsers built on unpublished work by Billy Brown
[5]. Helpful comments from anonymous referees are gratefully acknowledged.

References

1. Alshawi, H.: Head automata and bilingual tiling: Translation with minimal rep-
resentations. In: 34th Annual Meeting of the Association for Computational Lin-
guistics, Proceedings of the Conference. pp. 167–176. Santa Cruz, California, USA
(Jun 1996)

2. Boyd, A.: Discontinuity revisited: An improved conversion to context-free repre-
sentations. In: Proceedings of the Linguistic Annotation Workshop, at ACL 2007.
pp. 41–44. Prague, Czech Republic (Jun 2007)

3. Brants, S., Dipper, S., Eisenberg, P., Hansen-Schirra, S., König, E., Lezius, W.,
Rohrer, C., Smith, G., Uszkoreit, H.: TIGER: Linguistic interpretation of a German
corpus. Research on Language and Computation 2, 597–620 (2004)

4. Brants, T., Skut, W., Uszkoreit, H.: Syntactic annotation of a German newspaper
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