
HAL Id: hal-00768224
https://hal.archives-ouvertes.fr/hal-00768224

Submitted on 21 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

XMG : eXtensible MetaGrammar
Benoît Crabbé, Denys Duchier, Claire Gardent, Joseph Le Roux, Yannick

Parmentier

To cite this version:
Benoît Crabbé, Denys Duchier, Claire Gardent, Joseph Le Roux, Yannick Parmentier. XMG : eXten-
sible MetaGrammar. Computational Linguistics, Massachusetts Institute of Technology Press (MIT
Press), 2013, 39 (3), pp.591-629. �hal-00768224�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49834624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00768224
https://hal.archives-ouvertes.fr

XMG : eXtensible MetaGrammar

Benoît Crabbé∗
INRIA - Université Paris 7

Denys Duchier∗∗
LIFO - Université d’Orléans

Claire Gardent†
CNRS - LORIA, Nancy

Joseph Le Roux‡
LIPN - Université Paris Nord

Yannick Parmentier§
LIFO - Université d’Orléans

In this article, we introduce eXtensible MetaGrammar (XMG), a framework for specifying

tree-based grammars such as Feature-Based Lexicalised Tree-Adjoining Grammars (FB-LTAG)

and Interaction Grammars (IG). We argue that XMG displays three features which facilitate

both grammar writing and a fast prototyping of tree-based grammars. Firstly, XMG is fully

declarative. For instance, it permits a declarative treatment of diathesis that markedly departs

from the procedural lexical rules often used to specify tree-based grammars. Secondly, the XMG

language has a high notational expressivity in that it supports multiple linguistic dimensions,

inheritance and a sophisticated treatment of identifiers. Thirdly, XMG is extensible in that its

computational architecture facilitates the extension to other linguistic formalisms. We explain

how this architecture naturally supports the design of three linguistic formalisms namely, FB-

LTAG, IG, and Multi-Component Tree-Adjoining Grammar (MC-TAG). We further show how

it permits a straightforward integration of additional mechanisms such as linguistic and formal

principles. To further illustrate the declarativity, notational expressivity and extensibility of

XMG, we describe the methodology used to specify an FB-LTAG for French augmented with

a unification-based compositional semantics. This illustrates both how XMG facilitates the

modelling of the tree fragment hierarchies required to specify tree-based grammars and of a

syntax/semantics interface between semantic representations and syntactic trees. Finally, we

briefly report on several grammars for French, English and German that were implemented

using XMG and compare XMG to other existing grammar specification frameworks for tree-

based grammars.

∗ UFR de Linguistique, Université Paris 7, Case 7003, 2, Place Jussieu, F-75251 Paris Cedex 05, France.
E-mail: bcrabbe@linguist.jussieu.fr.

∗∗ Laboratoire d’Informatique Fondamentale d’Orléans, Bâtiment IIIA, Rue Léonard de Vinci, B.P. 6759,
F-45067 Orléans Cedex 2, France. E-mail: denys.duchier@univ-orleans.fr.
† Laboratoire LORIA - CNRS, Projet Talaris, Bâtiment B, BP 239, Campus Scientifique, F-54506
Vandœuvre-Lès-Nancy Cedex, France. E-mail: gardent@loria.fr.
‡ Laboratoire d’Informatique de Paris Nord, UMR CNRS 7030, Institut Galilée - Université Paris-Nord, 99,
avenue Jean-Baptiste Clément, F-93430 Villetaneuse , E-mail: leroux@univ-paris13.fr
§ Laboratoire d’Informatique Fondamentale d’Orléans, Bâtiment IIIA, Rue Léonard de Vinci, B.P. 6759,
F-45067 Orléans Cedex 2, France. E-mail: yannick.parmentier@univ-orleans.fr.

Submission received: 27 March 2009
Revised version received: 2 July 2012
Accepted for publication: 11 August 2012

© 2012 Association for Computational Linguistics

Computational Linguistics Volume xx, Number xx

1. Introduction

In the late eighties and early nineties, many grammar engineering environments were
developed to support the specification of large computational grammars for natural lan-
guage. Onemay for instance cite XLE (Kaplan andNewman 1997) for specifying Lexical-
Functional Grammars (LFG), LKB (Copestake and Flickinger 2000) for specifying Head-
driven Phrase Structure Grammars (HPSG), and DOTCCG (Baldridge et al. 2007) for
specifying Combinatory Categorial Grammars (CCG). Concretely, such environments
usually rely on (i) a formal language used to describe a target computational grammar,
and (ii) a processor for this language, which aims at generating the actual described
grammar (and potentially at checking it, e.g., by feeding it to a parser).

While these environments were tailored for specific grammar formalisms, they
share a number of features. Firstly, they are expressive enough to characterize subsets
of natural language. Following Shieber (1984), we call this feature weak completeness.
Secondly, they are notationally expressive enough to relatively easily formalize important
theoretical notions. Thirdly, they are rigorous, that is, the semantics of their underlying
language is well defined and understood. Additionally, for an environment to be useful
in practice, it should be simple to use (by a linguist), and make it possible to detect errors
in the described target grammar.

If we consider a particular type of computational grammars, namely tree based
grammars, that is grammars where the basic units are trees (or tree descriptions) of
arbitrary depth, such as Tree-Adjoining Grammar (TAG, (Joshi, Levy, and Takahashi
1975)), D-Tree Grammar (DTG, (Rambow, Vijay-Shanker, and Weir 1995)), Tree De-
scription Grammars (TDG (Kallmeyer 1999)) or Interaction Grammars (IG, (Perrier
2000)), environments sharing all of the above features are lacking. As we shall see in
the Section 7 of this article, there have been some proposals for grammar engineering
environments for tree based grammar, for example Candito (1996), Xia, Palmer, and
Vijay-Shanker (1999), but these lack notational expressivity. This is partly due to the
fact that tree based formalisms offer an extended domain of locality where one can
encode constraints between remote syntactic constituents. If one wants to define such
constraints while giving a modular and incremental specification of the grammar, one
needs a high level of notational expressivity, as we shall see throughout the article (and
especially in Section 4).

In this article, we present XMG (eXtensible MetaGrammar), a framework for spec-
ifying tree based grammars. Focusing mostly on FB-LTAG (but using IG and MC-TAG
to illustrate flexibility), we argue that XMG departs from other existing computational
frameworks for designing tree based grammars in three main ways:

• First, XMG is a declarative language. In other words, grammaticality is defined in an
order-independent fashion by a set of well-formedness constraints rather than by
procedures. In particular, XMG permits a fully declarative treatment of diathesis
that markedly departs from the procedural rules (called meta- or lexical rules)
previously used to specify tree based grammars.

• Second, XMG is notationally expressive. The XMG language supports full disjunction
and conjunction of grammatical units, a modular treatment of multiple linguistic di-
mensions, multiple inheritance of units and a sophisticated treatment of identifiers.

2

Crabbé, Duchier, Gardent, Le Roux, Parmentier XMG : eXtensible MetaGrammar

We illustrate XMG’s notational expressivity by showing (i) how it facilitates the
modelling of the tree fragment hierarchies required to specify tree based grammars
and (ii) how it permits a naturalmodelling of the syntax/semantic interface between
semantic representations and syntactic trees as can be used in FB-LTAG.

• Third, XMG is extensible in that its computational architecture facilitates (i) the
integration of an arbitrary number of linguistic dimensions (syntax, semantics, etc.),
(ii) the modelling of different grammar formalisms (FB-LTAG, MC-TAG, IG) and
(iii) the specification of general linguistic principles (e.g., clitic ordering in French).

The article is structured as follows. Section 2 starts by giving a brief introduction
to FB-LTAG, the grammar formalism we used to illustrate most of XMG’s features.
The next three sections then go on to discuss and illustrate XMG’s three main features
namely, declarativity, notational expressivity and flexibility. In section 3, we focus on
declarativity and show how XMG’s generalized disjunction permits a declarative en-
coding of diathesis. We then contrast the XMG approach with the procedural methods
previously resorted to for specifying FB-LTAG. Section 4 addresses notational expressiv-
ity. We present the syntax of XMG and show how the sophisticated identifier handling it
supports permits a natural treatment (i) of identifiers in tree based hierarchies and (ii) of
the unification based syntax/semantics interface often used in FB-LTAG. In section 5, we
concentrate on extensibility. We first describe the operational semantics of XMG and the
architecture of the XMG compiler. We then show how these facilitate the adaptation of
the basic XMG language to (i) different grammar formalisms (IG, MC-TAG, FB-LTAG),
(ii) the integration of specific linguistic principles such as clitic ordering constraints and
(iii) the specification of an arbitrary number of linguistic dimensions. In Section 6, we
illustrate the usage of XMG by presenting an XMG specification for the verbal fragment
of a large scale FB-LTAG for French augmented with a unification-based semantics. We
also briefly describe the various other tree-based grammars implemented using XMG.
Section 7 discusses the limitations of other approaches to the formal specification of tree
based grammars, while Section 8 concludes with pointers for further research.

2. Tree-Adjoining Grammar

A Tree Adjoining Grammar consists of a set of auxiliary or initial elementary trees
and of two tree composition operations namely, substitution and adjunction. Initial
trees are trees whose leaves are either substitution nodes (marked with ↓) or terminal
symbols (words). Auxiliary trees are distinguished by a foot node (marked with ⋆)
whose category must be the same as that of the root node. Substitution inserts a tree
onto a substitution node of some other tree while adjunction inserts an auxiliary tree
into a tree. Figure 1 shows a toy TAG generating the sentence Marie a vu Jean ’Mary has
seen John’ and sketches its derivation.1

Among existing variants of TAG, a commonly used in practice is Lexicalised
Feature-Based Tree-Adjoining Grammar (FB-LTAG, (Vijay-Shanker and Joshi 1988)). A
lexicalised TAG is such that each elementary tree has at least one leaf labelled with a
lexical item (word) while in an FB-LTAG, tree nodes are additionally decorated with
two feature structures (called top and bottom). These feature structures are unified
during derivation as follows. On substitution, the top features of the substitution node

1 The elementary trees displayed in this article conform to Abeillé (2002), that is, we reject the use of a VP
constituent in French.

3

Computational Linguistics Volume xx, Number xx

N

Marie
Mary

V

V

a
has

V⋆

S

N↓ V

vu
seen

N↓

N

Jean
John

∗
⇒

S

N

Marie
Mary

V

V

a
has

V

vu
seen

N

Jean
John

Figure 1
Sample derivation of Marie a vu Jean ’Mary has seen John’ in a TAG

are unified with the top features of the root node of the tree being substituted in.
On adjunction, the top features of the root of the auxiliary tree are unified with the
top features of the node where adjunction takes place; and the bottom features of the
foot node of the auxiliary tree are unified with the bottom features of the node where
adjunction takes place. At the end of a derivation, the top and bottom feature structures
of all nodes in the derived tree are unified.

Implementation of Tree-Adjoining Grammars. Most existing implementations of Tree-
Adjoining Grammars follow the three-layer architecture adopted for the XTAG grammar
(XTAG Research Group 2001), a Feature-Based Lexicalised TAG for English. Thus the
grammar consists of (i) a set of so-called tree schemas (i.e., elementary trees having a leaf
node labelled with a ⋄ referring to where to anchor lexical items2), (ii) a morphological
lexicon associating words with lemmas and (iii) a syntactic lexicon associating lemmas
with tree schemas (these are gathered into families according to syntactic properties, such
as the sub-categorization frame for verbs). Figure 2 shows some of the tree schemas
associated with transitive verbs in the XTAG grammar. The tree (a) corresponds to a
declarative sentence, (b) to a WH-question on the subject, (c) to a passive clause with
a BY-agent and (d) to a passive clause with a WH-object. As can be seen, each tree
schema contains an anchor node (marked with ⋄). During parsing this anchor node
can be replaced by any word morphologically related to a lemma listed in the syntactic
lexicon as anchoring the transitive tree family.

This concept of tree family allows us to share structural information (tree schemas)
between words having common syntactic properties (e.g., sub-categorization frames).
There still remains a large redundancy within the grammar since many elementary
tree schemas share common subtrees (large coverage Tree Adjoining Grammars usually
consist of hundreds, sometimes thousands, of tree schemas). An important issue when
specifying such grammars is thus structure sharing. Being able to share structural
information is necessary not only for a faster grammar development, but also for an
easier grammar maintenance (modifications to be applied to the tree schemas would be
restricted to shared structures). In the next Section, we will see how XMG declarativity
can be efficiently used to factorize Tree Adjoining Grammars. In addition, Section 4
will show how XMG notational expressivity facilitates the specification of another
commonly used tree sharing device, namely inheritance hierarchies of tree fragments.

2 As mentioned above, we describe lexicalised TAG, thus every tree schema has to contain at least one
anchor (node labelled ⋄).

4

Crabbé, Duchier, Gardent, Le Roux, Parmentier XMG : eXtensible MetaGrammar

(a) (b)
Sr

NP0 ↓ VP

V⋄ NP1 ↓

Sq

NP0 ↓

[

wh +
]

[]
Sr

NPNA

ǫ

VP

V⋄ NP1 ↓

(c) (d)
Sr []

[

mode 3

]

NP1 ↓ VP

[

mode 3

]

passive 1

mode 2

V⋄

passive 1 +

mode 2 ppart

[]
PP

P

by

NP0 ↓

Sq

NP1 ↓

[

wh +

]

[]
Sr []

[

mode 3

]

NPNA

ǫ

VP

[

mode 3

]

passive 1

mode 2

V⋄

passive 1 +

mode 2 ppart

[]
PP

P

by

NP0 ↓

Figure 2
Some tree schemas for English transitive verbs

Extending TAG with a unification-based semantics. To extend FB-LTAG with a composi-
tional semantics, Gardent and Kallmeyer (2003) propose to associate each elementary
tree with a flat semantic representation. For instance, in Figure 2, the trees3 for John,
runs and often are associated with the semantics l0:name(j,john), l1:run(e,s) and
l2:often(x) respectively. Importantly, the arguments of semantic functors are repre-
sented by unification variables which occur both in the semantic representation of this
functor and on some nodes of the associated syntactic tree. Thus in Figure 2, the seman-
tic index s occurring in the semantic representation of runs also occurs on the subject
substitution node of the associated elementary tree. The value of semantic arguments
is then determined by the unifications resulting from adjunction and substitution. For
instance, the semantic index s in the tree for runs is unified during substitution with the
semantic index j labelling the root node of the tree for John. As a result, the semantics of
John often runs is {l0:name(j,john), l1:run(e,j), l2:often(e)}.

Gardent and Kallmeyer (2003)’s proposal was applied to various semantic phenom-
ena (Kallmeyer and Romero 2004a, 2004b, 2008). Its implementation however relies on
having a computational framework which associates syntactic trees with flat semantic
formulae while allowing for shared variables between trees and formulae. In the fol-
lowing sections, we will show how XMG notational expressivity makes it possible to
specify an FB-LTAG equipped with a unification based semantics.

3 Cx/Cx abbreviate a node with category C and a top/bottom feature structure including the feature-value
pair { index : x}.

5

Computational Linguistics Volume xx, Number xx

NPj

John

l0:name(j,john)

Sg

NP↓s VPg

f

Vf
e

runs
l1:run(e,s)

VPx

often VP*x

l2:often(x)

⇒ l0:name(j,john), l1:run(e,j), l2:often(e)

Figure 3
A toy lexicalised FTAG with unification-based semantics (l0, l1, l2, e and j are constants while
s, f, g, x are unification variables).

3. Declarativity

In this section, we show how a phenomenon which is often handled in a procedural
way by existing approaches, can be provided with a declarative specification in XMG.
Concretely, we show how XMG supports a declarative account of diathesis that avoids
the drawbacks of lexical rules (e.g., information erasing). We start by presenting the
lexical rule approach. We then contrast it with the XMG account.

3.1 Capturing diathesis using lexical rules

Following Flickinger (1987), redundancy among grammatical descriptions is often han-
dled using two devices: an inheritance hierarchy and a set of lexical rules. While the
inheritance hierarchy permits us to encode the sharing of common substructures, lexical
rules (sometimes called meta-rules) permits us to capture relationships between trees
by deriving new trees from already specified ones. For instance, passive trees will be
derived from active ones.

Although Flickinger (1987)’s approach was developed for Head-Driven Phrase
Structure Grammar (HPSG), several similar approaches have been put forward for FB-
LTAG (Vijay-Shanker and Schabes 1992; Becker 1993; Evans, Gazdar, and Weir 1995;
XTAG Research Group 2001). One important drawback of these approaches however,
is that they are procedural in that the order in which lexical rules apply matters. For
instance, consider again the set of trees given in Figure 2. In the meta-rule representation
scheme adopted by Becker (1993), the base tree (a) would be specified in the inheritance
hierarchy grouping all base trees, and the derived trees (b,c,d) would be generated by
applying one or more meta-rules on this base tree. Figure 4 sketches these meta-rules.
The left hand side of the meta-rule is a matching pattern replaced with the right hand
side of the meta-rule in the newly generated tree. Symbol "?" denotes a meta-variable
whose matching subtree in the input is substituted in place of the variable in the output
tree. Given these, the tree family in Figure 2 is generated as follows: (b) and (c) are
generated by application to the base tree (a) of the Wh-Subject and Passive meta-rules
respectively. Further, (d) is generated by applying first, the Wh-Subject meta-rule and
second, the Passive meta-rule to the base tree.

More generally a meta-rule is a procedural device that given a tree instance, gen-
erates a new tree instance by adding, suppressing (hence possibly substituting) infor-
mation in grammatical units. Prolo (2002) defines a set of meta-rules which can be used
to specify a large FB-LTAG for English. Given an ordered set of meta-rules however,

6

Crabbé, Duchier, Gardent, Le Roux, Parmentier XMG : eXtensible MetaGrammar

Passive meta-rule Wh-Subject meta-rule
Sr

?1 NP? VP

V ?2 NP?

⇒ Sr []
[

mode 3

]

?2 NP? VP

[

mode 3

]

mode 2

passive 1

V

passive 1 +

mode 2 ppart

[]
PP

P

by

?1 NP?

Sr

?2NP? ↓ ?1

⇒ Sq

?2NP? ↓

[

wh +

]

[]
Sr

NP↓NA

ǫ

?1

Figure 4
Simplified meta-rules for passive and wh-subject extraction

there is no guarantee that the trees they derive are linguistically appropriate and that
the derivation process terminates. Thus to ensure termination and consistency, Prolo
(2002) needs to additionally provide rule ordering schemes (expressed as automata).

3.2 XMG: capturing diathesis using disjunction

XMG provides an alternative account for describing tree sets such as that of Figure 2
without lexical rules and without the related ordering constraints. In essence, the ap-
proach consists in enumerating trees by combining tree fragments using conjunction
and disjunction. More specifically, the tree set given in Figure 2 can be generated
by combining some of the tree fragments sketched in Figure 5 using the following
conjunctions and disjunctions:4

Subject → CanonicalSubject ∨Wh-NP-Subject (1)

ActiveTransitiveVerb → Subject ∧ ActiveVerb ∧ CanonicalObject (2)

PassiveTransitiveVerb → Subject ∧ PassiveVerb ∧ CanonicalByObject (3)

TransitiveVerb → ActiveTransitiveVerb ∨ PassiveTransitiveVerb (4)

The first clause (Subject) groups together two subtrees representing the possible
realizations of a subject (canonical and wh). The next two clauses define a tree set for
active and passive transitive verbs respectively. The last clause defines the TransitiveVerb
family as a disjunction of the two verb forms (passive or active). In sum, the Transitive-
Verb clause defines the tree set sketched in Figure 2 as a disjunction of conjunctions of
tree fragments.

One of the issues of meta-rules reported by Prolo (2002) is the handling of feature
equations. For a number of cases (including subject relativization in passive trees), ad-
hoc meta-rules are needed, for a unified tree transformation cannot be defined. In a
declarative approach such as the one above, dealing with feature equations can be done
relatively easily. Let us imagine we nowwant to extend the trees of Figure 2 with feature

4 For now, let us consider that the tree fragments are combined in order to produce minimal trees by
merging nodes whose categories (and features) unify. In the next section, we will see how to precisely
control node identification using either node variables or node constraints.

7

Computational Linguistics Volume xx, Number xx

Canonical Subject→ Wh-NP-Subject→ Canonical Object→ Wh-NP-Object→

Sr

NP↓ VP

Sq

NP↓

[

wh +

]

[]
Sr

NPNA

ǫ

VP

VP

V⋄ NP↓

Sq

NP↓

[

wh +

]

[]
Sr

VP NPNA

ǫ

Canonical By Object→ Wh By Object→ Active Verb→ Passive Verb→

VP

V⋄ PP

P

by

NP↓

VP

PP

P

by

NP↓

V⋄

Sr

VP

V⋄

Sr[]
[

mode 3

]

VP

[

mode 3

]

passive 1

mode 2

V⋄

passive 1 +

mode 2 ppart

[]

Figure 5
Tree fragments

equations for subject number agreement. We can for instance do so by defining the tree
fragment below (the dashed line indicates that the VP node can be a descendant, not
only a daughter, of the S node):5

SubjAgreement → S

NP↓

[

num 1

]

[

pnum 1

]

VP

[

num 1

]

[

num 1

]

Then we extend the definition of Subject as follows:

Subject → SubjAgreement ∧ (CanonicalSubject ∨Wh-NP-Subject) (5)

If we want to get further with the description of transitive verbs, for instance by
taking into account wh- objects and by-objects, this can be done as follows. We first
define the elementary fragments Wh-NP-Object and Wh-By-Object (see Figure 5), and
then define the following additional combinations:6

ActiveTransitiveVerb → CanonicalSubject ∧ ActiveVerb ∧Wh-Np-Object (6)

PassiveTransitiveVerb → CanonicalSubject ∧ PassiveVerb ∧Wh-By-Object (7)

5 Note that in XMG, it is not mandatory to define any tree structure inside SubjAgreement. We could define
independent NP and VP nodes, and associate them with variables, say n1 and n2. n1 and n2 would then
be exported and reused directly in the classes CanonicalSubject and Wh-NP-Subject respectively.

6 Note that these clauses only consider canonical subjects to avoid having both a Wh-subject and a
Wh-object. This is not entirely satisfactory, as we would prefer to define a single abstraction over objects
(as was done for subjects) and use it wherever possible. There would then be another mechanism to
capture this exception and cause the invalid combination to fail (that is, the resulting tree description not
to have any model). Such a mechanism exists in XMG, and is called linguistic principle, see Section 5.

8

Crabbé, Duchier, Gardent, Le Roux, Parmentier XMG : eXtensible MetaGrammar

Evans et al. (1995) argue for the necessity of using lexical rules for grammatical
description based on two arguments: (i) morphology is irregular and has to be handled
by a non monotonic device and (ii) erasing rules such as the agentless passive (John eats
an apple / An apple is eaten) are needed to erase an argument from the canonical base tree.
Neither of these arguments holds here however: the first argument because we describe
tree schema hence lexical and morphological issues are ruled out; the second because
agentless passive and more generally, argument erasing constructions, can simply be
defined by an additional clause such as:

AgentlessPassiveTransitiveVerb → Subject ∧ PassiveVerb (8)

To sum up, using a declarative language to specify a tree based grammar offer
an adequate level of control on the structures being described while avoiding to deal
with ordering and termination issues. It facilitates grammar design and maintenance,
by providing an abstract view on grammar trees, uniquely made of monotonic (no
information removal) combinations of tree fragments.

4. Notational expressivity

We now focus on notational expressivity and show how XMG supports a direct
encoding of (i) distinct linguistic dimensions (here syntax, semantics and the syn-
tax/semantics interface) and (ii) the various types of coreferences7 which arise in the
development of tree based grammars.

The syntax of the XMG language can be formally defined as follows.

Class ::= NameC1,...,Ck

x1,...,xn
→ Content (9)

Content ::= 〈SYN, SEM, DYN〉 | Name | Content ∧ Content | Content ∨ Content
(10)

SYN ::=

n1 → n2 | n1 →
+ n2 | n1 →

∗ n2 | n1 ≺ n2 | n1 ≺
+ n2 | n1 ≺

∗ n2 |

n1[f1 : v1, ... , fk : vk] | n1(c1 : cv1, ... , cl : cvl) | n1 = n2 | x = Ci.y |

n1 (c1 : cv1, ... , cl : cvl) [f1 : v1, ... , fk : vk] | SYN ∧ SYN

(11)

SEM ::= li : p(E1, ..., En) | li ≤ hj | SEM ∧ SEM (12)

DYN ::= 〈 f1 : v1 , ... , fn : vn 〉 (13)

Here and in what follows, we use the following notational conventions. Ci denote
variables over class names, xi, x and y are variables ranging over tree nodes or feature
values, ni refer to node variables, f, fi are features and v, vi, feature values (constants or
variables), li, hj , p and Ei are variables over semantic labels, semantic holes, predicates
and predicate arguments in flat semantic formulae respectively.8 [] are used to associate
a node variable with some feature constraint. () are used to associate a node variable
with some property constraint (e.g., node colors, see Section 5). ci and cvi denote a

7 By coreference, we mean the sharing of information between distinct elementary fragments of the
grammar specification.

8 See (Gardent and Kallmeyer 2003) for a detailed introduction to flat semantics.

9

Computational Linguistics Volume xx, Number xx

property constraint and a property constraint value respectively. C1.y denotes the y

variable declared in class Ci and = is unification; ≺ and → denote linear precedence
and immediate dominance relations between nodes. Finally,+, ∗ represent the transitive
and transitive-reflexive closure of a relation respectively.

The first two clauses of the formal definition above specify XMG classes and how
they combine. The next three clauses define the languages supported for describing
three linguistic dimensions, namely syntax (SY N), semantics (SEM) and the syn-
tax/semantics interface (called DY N for dynamic interface). We now discuss each
of these in more details starting bottom-up with the three linguistic dimensions and
ending with the control language that permits us to combine basic linguistic units into
bigger ones.

SYN. The XMG formalism for syntax (copied below for convenience) is a tree descrip-
tion logic similar to that proposed by Vijay-Shanker and Schabes (1992), Rogers and
Vijay-Shanker (1994) to describe tree based grammars.

SYN ::= n1 → n2 | n1 →
+ n2 | n1 →

∗ n2 | n1 ≺ n2 | n1 ≺
+ n2 | n1 ≺

∗ n2 |

n1[f1 : v1, ... , fk : vk] | n1(c1 : cv1, ... , cl : cvl) | n1 = n2 | x = Ci.y |

n1 (c1 : cv1, ... , cl : cvl) [f1 : v1, ... , fk : vk] | SYN ∧ SYN

It includes tree node variables, feature names, feature values and feature variables.
Tree node variables can be related by equality (node identification), precedence (im-
mediate or non immediate) and dominance (immediate or non immediate). Tree nodes
can also be labelled with feature structures of depth 2, that is, sets of feature/value
pairs where feature values are either variables, constants (e.g., syntactic category), or
non recursive feature structure (e.g., top and bot feature structures).

Here is a graphical illustration of how tree logic formulae can be used to describe
tree fragments: the depicted tree fragment is a model satisfying the given formula.

n1 → n2 ∧ n1 → n3 ∧ n2 ≺ n3

∧ n1[cat : S] ∧ n2(mark : subst) [cat : NP] ∧ n3[cat : V P]
S

NP↓ VP

One distinguishing feature of the XMG tree language is the introduction of node
constraints (n1(c : cv)) which generalize Muskens and Krahmer’s (1998) use of positive
and negative node markings. Concretely, node constraints are attribute-value matri-
ces, which contain information to be used when solving tree descriptions to produce
grammar trees. In other words, node constraints are used to further restrict the set
of models satisfying a tree description. As an example of node constraint, consider
node annotations in FB-LTAG (foot node, substitution node, null-adjunction, etc.). Such
annotations can be used as node constraints to allow the description solver to apply
well-formedness constraints (e.g., there is at most one foot node).

Another interesting feature of XMG concerns the inclusion of the dot operator
which permits us to identify variables across classes in caseswhere name sharing cannot
be resorted to. When a variable y is declared in a class C, the latter being instantiated
within a class D, y can be accessed from D by C.y (the identifier y still being available
in D’s namespace).

10

Crabbé, Duchier, Gardent, Le Roux, Parmentier XMG : eXtensible MetaGrammar

SEM. The semantic dimension supports a direct encoding of the flat semantic formulae
used by Gardent and Kallmeyer (2003):

SEM ::= li : p(E1, ..., En) | li ≤ hj | SEM ∧ SEM

where li : p(E1, ..., En) represents a predicate p with label li and arguments E1, ..., En

whilst li ≤ hj is a scope constraint between label li and scope hj . Expressions (predicate
arguments Ei) can refer to semantic holes, constants (atomic values) or unification
variables (written x, y below).

For instance, the following flat semantic formula can be used to underspecify the
meaning of the sentence “Every dog chases a cat”:

l0 : ∀(x, h1, h2) ∧ l1 ≤ h1 ∧ l1 : Dog(x) ∧ l2 ≤ h2 ∧ l2 : Chase(x, y)

∧ l3 : ∃(y, h3, h4) ∧ l4 ≤ h3 ∧ l4 : Cat(y) ∧ l2 ≤ h4

(14)

This formula denotes the two first order logic formulae below thereby describing the
two possibles readings of this sentence9.

l0 : ∀(x, l1, l3) ∧ l1 : Dog(x) ∧ l2 : Chase(x, y) ∧ l3 : ∃(y, l4, l2) ∧ l4 : Cat(y) (15)

l0 : ∀(x, l1, l2) ∧ l1 : Dog(x) ∧ l2 : Chase(x, y) ∧ l3 : ∃(y, l4, l0) ∧ l4 : Cat(y) (16)

DYN. The DYN dimension generalizes Kinyon’s hypertag (Kinyon 2000) which are
unified whenever two tree fragments are combined. Similarly, in XMG the DYN di-
mension is a feature structure that is unified whenever two XMG classes are combined
through inheritance or through conjunction (see below, the discussion on XMG control
language).

For instance, the following constraints ensure a coreference between the index I

occurring in the syntactic dimension and the argument X occurring in the semantic
dimension (indexsubject and arg1 are feature names, andE, I ,X and V local unification
variables).

C1 → Node [idx : I] ∧ 〈indexsubject : I〉 (17)

C2 → L :P (E) ∧ L :Theta1(E,X) ∧ 〈arg1 : X〉 (18)

SubjectArg1 → C1 ∧ C2 ∧ 〈indexsubject : V, arg1 : V 〉 (19)

More generally, the DYN dimension permits us to unify nodes and feature values
that belong to distinct classes and dimensions, and are thus often not related within
the inheritance hierarchy. As we shall see in Section 6, the DYN dimension permits a
modular account of the syntax/semantic interface in which linking constraints can be
stipulated separately and reused to specify the various diatheses.

In other words, the DYN feature structure allows us to extend the scope of some
specific variables, so that they can be unified with variables (or values) introduced

9 For more details on the interpretation of flat semantics and on its association with a grammar of natural
language, see (Gardent 2008).

11

Computational Linguistics Volume xx, Number xx

in some other classes of the metagrammar. This concept of scope extension can be
compared with that of hook in Copestake, Lascarides, and Flickinger (2001).

Control language. The linguistic units (named Content here) defined by the linguist can
be abstracted and combined as follows:

Class ::= NameC1,...,Ck

x1,...,xn
→ Content

Content ::= 〈SYN, SEM, DYN〉 | Name | Content ∧ Content | Content ∨ Content

The first clause states that the linguistic information encoded in Content is abstracted in
a class namedName and that this class inherits classes C1, . . . , Ck and exports variables
x1, . . . , xn. That is, XMG allows for abstraction, inheritance and variable exports. By
default, variables (referring to nodes and feature values) are local to a class. However,
export statements extend the scope of a variable to all sub classes. An exported variable
can also be accessed from outside its class in case of class instantiation (using the dot
operator introduced earlier in this section). The second clause states that an XMG class
consists of a syntactic, a semantic and a dynamic description (each of them possibly
empty): and that XMG classes can be combined by conjunction and disjunction and
reused through class instantiation. The notation 〈SYN, SEM, DYN〉 represents simulta-
neous contributions (possibly empty) to all 3 dimensions.10

The XMG control language differs from other frameworks used to specify tree based
grammars (Vijay-Shanker and Schabes 1992; Xia et al. 1998; Candito 1999) in two main
ways. First, it supports generalized conjunctions and disjunctions of classes. As shown
in Section 3, this permits inter alia a declarative treatment of diathesis.

Second, it allows for both local and exported variables. As mentioned in Section 3, a
common way to share structure within a tree-based grammar is to define an inheritance
hierarchy of either tree fragments (Evans, Gazdar, and Weir 1995) or tree descriptions
(Vijay-Shanker and Schabes 1992; Candito 1996; Xia 2001). When considering an FB-
LTAG augmented with unification semantics, the hierarchy will additionally contain
semantic representations and/or tuples made of tree fragments and semantic represen-
tations. In all cases, the question arises of how to handle identifiers across classes and
more specifically, how to share them.

In Candito’s approach (1996), tree nodes are referred to using constants so that
multiple occurrences of the same node constant refer to the same node. As pointed out
in Gardent and Parmentier (2006), global names have several non trivial shortcomings.
First, they complicate grammar writing in that the grammar writer must remember the
names used and their intended interpretation. Second, they fail to support multiple uses
of the same class within one class. For instance, in French, some verbs sub-categorize for
two prepositional phrases (PP). A natural way of deriving the tree for such verbs would
be to combine a verbal tree fragment with two instances of a PP fragment. If however,
the nodes in the PP fragment are labelledwith global names, then the two occurrences of
these nodes will be identified thereby blocking the production of the appropriate tree.11

A less restrictive treatment of identifiers is proposed by Vijay-Shanker and Sch-
abes (1992) where each tree description can be associated with a set of declared node
variables and subsets of these node variables can be referred to by descriptions in the

10 While formally precise, this notation can be cumbersome. In the interest of legibility we adopt
throughout the convention that SYN stands for 〈SYN, , 〉, SEM for 〈 , SEM, 〉, ad DYN for 〈 , ,DYN〉.

11 An analogous situation may arise in English with ditransitive verbs requiring two direct objects.

12

Crabbé, Duchier, Gardent, Le Roux, Parmentier XMG : eXtensible MetaGrammar

hierarchy that inherit from the description in which these node variables were declared.
For instance, if entity A in the hierarchy declares such a special node variable X and B

inherits from A, then X can be referred to in B using the notation A.X .12

XMG generalizes Vijay-Shanker and Schabes’ approach (1992) by integrating an
export mechanism that can be used to extend the scope of a given identifier (node or
feature value variable) to classes that inherit from the exporting class. Thus if class B
inherits from class A and class A exports variableX , thenX is visible in B and its reuse
forces identity. If B inherits from several classes and two (or more) of these inherited
classes export the same variable name X , then X is not directly visible from B. It can be
accessed though using the dot operator. First A is identified with a local variable (e.g.,
T = A), then T.X can be used to refer to the variableX exported by A.

To sum up, XMG allows for local variables to be exported to sub-classes as well
as for prefixed variables i.e., variables that are prefixed (using the dot operator) with
a reference to the class in which they are declared. In this way, the pitfalls introduced
by global names are avoided while providing enough expressivity to handle variable
coreference (via the definition of variable namespaces). Section 6 will further illustrate
the use of the various coreference devices made available by XMG showing how they
concretely facilitate grammar writing.

Let us finally illustrate variable handling with XMG on the example of Figure 2.
Recall we define the trees of Figure 2 as the conjunctions and disjunctions of some tree
fragments of Figure 5, such as:

Subject → SubjAgreement ∧ (CanonicalSubject ∨Wh-NP-Subject) (20)

CanonicalSubject can be defined as a tree description formula as follows (only variables
n2 and n3 are exported):

CanonicalSubjectn2,n3
→

n1 → n2 ∧ n1[cat : S] ∧ n2(mark : subst) [cat : NP]∧

n1 → n3 ∧ n3[cat : V P] ∧ n2 ≺ n3

(21)

The class Wh-NP-Subject is defined accordingly (i.e., by means of a slightly more com-
plex tree description formula using the n2 and n3 variable identifiers to refer to the
nodes involved in subject agreement). The class SubjAgreement is defined slightly dif-
ferently (we do not impose any tree relation between the node concerned with number
agreement):

SubjAgreementn1,n2
→

n1 [[top : [num : x]] [bot : [num : x]]]∧

n2 [[top : [num : x]] [bot : [num : x]]]
(22)

12 In fact, the notation used by Vijay-Shanker and Schabes (1992) is attr:X with attr an attribute variable
ranging over a finite set of attributes, to indicate special node variables that scope outside their class; and
attr(A) to refer to such variables from outside the entity in which they were declared. We use a different
notation here to enforce consistency with the XMG notation.

13

Computational Linguistics Volume xx, Number xx

We can then explicitly control the way the fragments combine as follows:

Subject →

C1 = SubjAgreementn1,n2
∧

C2 = (CanonicalSubjectn2,n3
∨Wh-NP-Subjectn2,n3

) ∧

C1.n1 = C2.n2 ∧ C1.n2 = C2.n3

(23)

In this example, we see how to constrain, via variable export and unification, some
given syntactic nodes to be labelled with feature structures defined somewhere else
in the metagrammar. We use XMG’s flexible management of variable scope to deal
with node coreference. Compared with previous approaches on metagrammars such
as (Candito 1996; Xia 2001), having the possibility to handle neither only global nor
only local variables offers a high level of expressivity along with a precise control on the
structures being described.

5. Extensibility

A third distinguishing feature of XMG is extensibility. XMG is extensible in that
(i) dimensions can be added and (ii) each dimension can be associated with its own
interpreter. In order to support an arbitrary number of dimensions, XMG relies on a
device permitting the accumulation of an arbitrary number of types of literals, namely
Extensible Definite Clause Grammar (EDCG) (Van Roy 1990). Once literals are accumulated
according to their type (i.e., each type of literals is accumulated separately), they can be
fed to dedicated interpreters. Since each of these sets of literals represents formulas of
a description language, these interpreters are solvers, whose role is to compute models
satisfying the accumulated formulas.

Via this concept of separated dimensions, XMG allows us (i) to describe different
levels of language (not only syntax, but also semantics and potentially morphology,13

etc.), and (ii) to define linguistic principles (well-formedness constraints to be applied on
the structures being described). These principles depend either on the dimension (e.g.,
scope constraints in flat semantics), the target formalism (e.g. cooccurrence predicate-
arguments in FB-LTAG) or the natural language (e.g., clitic ordering in Romance lan-
guages) being described.

In what follows, we start by showing how XMGhandles dimensions independently
from each other introducing EDCG (Section 5.1). We then summarize the architecture
of the XMG system (Section 5.2). We finally show how different solvers can be used
to implement various constraints on each of these dimensions (Section 5.3). In partic-
ular, we discuss three kinds of extensions implemented in XMG: extension to several
grammar formalisms, integration of explicit linguistic generalizations and inclusion of
color-based node marking to facilitate grammar writing.

5.1 XMG: accumulating and interpreting an arbitrary number of descriptions

Accumulating (tree) descriptions. First, let us notice that XMG is nothing else than a logic
language à la Prolog (Duchier, Parmentier, and Petitjean 2012). More precisely, an XMG

13 Recently, XMG has been used to describe the morphology of verbs in Ikota, a Bantu language spoken in
Gabon (Duchier et al. 2012).

14

Crabbé, Duchier, Gardent, Le Roux, Parmentier XMG : eXtensible MetaGrammar

specification is a collection of Horn clauses, which contribute a declarative description
of what a computational tree grammar is.

Logic Program XMGMetagrammar
Clause ::= Head → Body

Body ::= Fact | Head |
Body ∨Body |
Body ∧Body

Query ::= Head

Class ::= Name → Content

Content ::= Description | Name |
Content ∨ Content |
Content ∧ Content

Axiom ::= Name

Recall that the descriptions handled by XMG are in fact tuples of the form
〈SY N, SEM,DYN〉. An XMG class can thus describe, in a non-exclusive way, any of
these 3 levels of description. If onewants to add another level of description (i.e., another
dimension), one needs to extend the arity of this tuple. Before discussing this, let us first
see how such tuples are processed by XMG.

As mentioned above, XMG’s control language is comparable to Horn clauses. A
common way to represent Horn clauses is by using Definite Clause Grammar (DCG)
(Pereira and Warren 1980). Concretely, a DCG is a rewriting system (namely a context-
free grammar), where the symbols of the rewriting rules are equipped with pairs of
unification variables (these are usually called difference list or accumulator) (Blackburn,
Bos, and Striegnitz 2006, page 100). As an illustration, consider the toy example below.

s --> np,vp. np --> det,n.
vp --> v,np. vp --> v.
det --> [the]. det --> [a].
n --> [cat]. n --> [mouse].
v --> [eats].

The string language described by this DCG can be obtained by submitting the query
s(X,[])where X is a unification variable to be boundwith lists of facts (these being the
sentences belonging to the string language). As we can easily see, this language contains
the sentences “a cat eats”, “the cat eats”, “a mouse eats”, “the mouse eats”, “a cat eats a
mouse”, “a mouse eats a cat”, etc.

Similarly, we can represent XMG classes as DCG clauses. For instance, the combina-
tions of syntactic fragments given on page 8 can be rewritten as DCG clauses as follows:

subject --> canonicalSubject.
subject --> whNpSubject.
activeTransitiveVerb --> subject, activeVerb, canonicalObject.
passiveTransitiveVerb --> subject, passiveVerb, canonicalByObject.
transitiveVerb --> activeTransitiveVerb.
transitiveVerb --> passiveTransitiveVerb.

Disjunctions (e.g., the subject specification) translate to multiple clauses with identi-
cal heads and conjunctions (e.g., activeTransitiveVerb) to a clause body.

In our case, the terminal symbols of the underlying DCG are not just facts, but
tuples of descriptions. In other words, the DCG clausewhose head is canonicalSubject
is associated with a tuple of the following form (the dots have to be replaced with
adequate descriptions, these can contain unification variables, whose scope is by default
local to the clause):

canonicalSubject --> [desc(syn(...),sem(...),dyn(...))].

In order to allow for an extension of XMG to an arbitrary number of dimensions,
instead of compiling XMG classes into a DCG whose accumulator stores tuples with
a fixed arity, these classes are compiled into an EDCG (Van Roy 1990). EDCG are DCG

15

Computational Linguistics Volume xx, Number xx

with multiple accumulators. In XMG, each dimension is thus allocated a dedicated
accumulator in the underlying EDCG.

Note that although the content of the various dimensions is accumulated separately,
dimensions may nevertheless share information either via local unification variables (if
the XMG class defines several dimensions locally), or via exported unification variables
(in case of class instantiation or inheritance), or via the shared unification variables
supported by the DYN dimension.

At the end of the EDCG execution, we obtain, for each axiom of the metagrammar
(i.e., for each class name to be valuated), a list of description formulas per accumulator.
These lists are grouped together into a tuple of lists of the following form (N is the
number of dimensions, and consequently of accumulators):

desc(accu1(L1),accu2(L2), ... ,accuN(LN))

Each element (i.e., list Li) of such a tuple is a complete description of a given dimen-
sion, where shared variables have been unified (via unification with backtracking).

Solving (tree) descriptions. As illustrated above, interpreting XMG’s control language in
terms of an EDCG yields tuples whose arity is the number of dimensions defined by
the linguist, that is, triples of the form 〈SY N, SEM,DYN〉 if syntax, semantics and the
dynamic interface are described.

For each dimensionD, XMG includes a constraint solver SD which computes the set
of minimal models MD = SD(dD) satisfying the description (dD) of that dimension. In
other words, each dimension is interpreted separately by a specific solver. For instance,
the syntactic dimension is handled by a tree description solver which produces, for
a given tree description, the set of trees satisfying that description, while the solver for
the semantic dimension simply outputs the flat semantic representation (list of semantic
literals) built by the EDCG through accumulation.

Note that, while solvers are distinct, the models computed in each dimension may
nonetheless be coupled through shared variables. In that case, these variables can
constrain the models computed by the respective solvers. For instance, shared variables
can be used for the syntactic tree description solver to be parametrized by some value
coming from the semantic input description. Note that the output of the solving process
is a Cartesian product of the sets of minimal models of each solver. As a consequence,
the worst case complexity of metagrammar compilation is that of the various solvers
associated with relevant dimensions.

In addition to having separate solvers for each dimension, the constraint solving
approach used in XMG permits us to modularize a given solver by combining different
principles. Each such principle enforces specific constraints on the models satisfying the
description of a given dimension. For instance, for the syntactic dimension of an FB-
LTAG, a set of principles is used to enforce that the structures produced by the compiler
are trees, and that these conform to the FB-LTAG formalism (e.g., there is no tree having
two foot nodes).

5.2 Architecture

The XMG compiler14 consists of the following three modules:

14 The XMG compiler is open source software released under the terms of the CeCILL GPL-compliant
licence. See http://sourcesup.renater.fr/xmg.

16

Crabbé, Duchier, Gardent, Le Roux, Parmentier XMG : eXtensible MetaGrammar

• A compiler that parses XMG’s concrete syntax and compiles XMG classes into
clauses of an Extended Definite Clause Grammar (EDCG).

• A virtual machine (VM), which interprets EDCG. This VM performs the accumula-
tion of dimensions along with scope management and identifiers resolution. This
VM is basically a unification engine equipped with backtracking, and which is
extended to support EDCG. While its architecture is inspired by the Warren Abstract
Machine (Aït-Kaci 1991), it uses structure sharing to represent and unify prolog
terms, and given a query on a class, processes the conjunctions, disjunctions, in-
heritance and export statements related to that class to produce its full definition
namely, a tree description for the SYN dimension, a flat semantic formula for the
SEM dimension and a feature structure for the DYN dimension.

• A constraint solving phase which produces for each dimension, the minimal models
satisfying the input description as unfolded by the preceding two steps.

As already mentioned, the first part is extensible in that new linguistic dimensions
can be added by specifying additional dedicated accumulators to the underlying EDCG.
The second part is a unification engine that interprets EDCG while performing both term
unification and polarized unification (i.e., unification of polarized feature structures, as
defined by Perrier (2000), and discussed in Section 5.3.1). This extended unification is
the reason why XMG does not merely recourse to an existing Prolog engine to process
EDCG, but relies on a specific VM instead.

The third part is completely modular in that various constraint solvers can be
plugged in depending on the requirements set by the dimensions used, and the chosen
grammatical framework. For instance, the SYN dimension is solved in terms of tree
models, while the SEM dimension is solved in terms of underspecified flat semantic
formulae (i.e., the input semantics remains untouched modulo the unification of its
shared variables).

Importantly, these additional solvers can be “turned on/off” (via a primitive of the
XMG language) so that for instance, the same processor can be used to compile an XMG
specification for an FB-LTAG using linguistic principles such as those defined in the
next section (i.e., clitic ordering principle) or not.

5.3 Three extensions of XMG

We now show (i) how the modular architecture of the XMG compiler permits us
to specify grammars for several tree based linguistic formalisms; (ii) how it can be
extended to enforce language specific constraints on the syntactic trees; and (iii) how
additional formal constraints (namely nodemarking) can be integrated to simplify node
identifications (and consequently grammar writing).

5.3.1 TAG, MC-TAG and IG: producing trees, tree sets or tree descriptions.XMG inte-
grates a generic tree solver which computes minimal treemodels from a tree description
logic formulae built on the language SYN introduced in Section 4. This solver integrates
the dominance solving technique proposed by Duchier and Niehren (2000) and can
be summarized as follows. A minimal tree model is described in terms of the relative
positions of its nodes. For each node n in a minimal tree model T , the set of all the
nodes of T can be partitioned in 5 subsets, depending on their position relatively to n.
Hence, for each node variable n appearing in a tree description, it is first associated with
an integer (called node id), we then define the 5 sets of node ids (i.e., sets of integers)

17

Computational Linguistics Volume xx, Number xx

Downn,Upn, Leftn, Rightn and Eqn referring to the ids of the nodes located below, above,
on the left, on the right or identified with n respectively (see Figure 6). Note that we
require that these sets are a partition of all node ids.

Eq

Up

Down

Left

Right

Figure 6
Partition of the nodes of tree models

Using this set-based representation of a model, we translate each node relation from
the input formula (built on the tree description language introduced in Section 4) into
constraints on the sets of node ids that must hold in a valid model. For instance, the
sub-formula n1 ≺+ n2 which states that node n1 strictly precedes node n2 is translated
into:

n1 ≺
+ n2 ≡ EqDownn1

⊆ Leftn2
∧ EqDownn2

⊆ Rightn1
∧ (24)

Rightn2
⊆ Rightn1

∧ Leftn1
⊆ Leftn2

(25)

where15 EqDownx = Eqx ⊎Downx for x ∈ {n1, n2}. In other words, in a valid minimal
tree model, the set of nodes below or equal to n1 is included in the set of nodes (strictly)
on the left of n2, the set of nodes below or equal to n2 is included in the set of nodes
(strictly) on the right of n1, the set of nodes on the right of n2 is included in the set of
nodes on the right of n1 and finally the set of nodes on the left of n1 is included in the
set of nodes on the left of n2.

Once all input relations are translated into set constraints, the solver uses standard
Constraint Satisfaction techniques (e.g., a first-fail exploration of the search tree) to find a
set of consistent partitions. Finally, the nodes of the models are obtained by considering
nodes with distinct Eqn.

FB-LTAG trees. To support the specification of FB-LTAG trees, the XMG compiler extends
the generic tree solver described above with a set of constraints ensuring that the trees
are well-formed TAG trees. In effect, these constraints require the trees to be linear
ordered trees with appropriate decorations. Each node must be labelled with a syntactic
category. Leaf nodes are either terminal, foot or substitution nodes. There is at most one
foot node per tree and the category of the foot node must be identical to that of the root
node. Finally, each tree must have at least one leaf node which is an anchor.

MCTAG tree sets. While FB-LTAG consists of trees, Multi-Component Tree-Adjoining
Grammar (MC-TAG) (Weir 1988) consists of sets of trees. To support the specification
of MC-TAG, the sole extension needed concerns node variables that are not dominated
by any other node variable in the tree description. Whilst for FB-LTAG, these are taken

15 ⊎ represents disjoint union.

18

Crabbé, Duchier, Gardent, Le Roux, Parmentier XMG : eXtensible MetaGrammar

to denote either the same root node or nodes that are connected to some other node
(i.e., uniqueness of the root), for MC-TAG they can be treated as distinct nodes thereby
allowing for models that are sets of trees rather than trees (Parmentier et al. 2007). In
other words, the only modification brought to the tree description solver is that, in MC-
TAG mode, it does not enforce the uniqueness of a root node in a model.

IG polarized tree descriptions. Interaction Grammars (Perrier 2000) consist of tree descrip-
tions whose node variables are labelled with polarized feature structures. A polarized
feature structure is a set of polarized feature triples (f, p, v) where f and v are standard
features and feature values respectively while p is a polarity value in {→,←,=,≈}.
Polarities are used to guide parsing in that a valid derivation structure must neutralize
polarities.

To support an XMG encoding of IG, two extensions are introduced namely (i) the
ability to output tree descriptions rather than trees, and (ii) the ability to write polarized
feature structures. The first extension is trivially realized by specifying a description
solver which ensures that any output description has at least one tree model. For the
second point, the SYN language is extended to define polarized feature structures and
the unification engine to support unification of polarized features (for instance, a →
feature will unify with a neutral (=) feature to yield a→ polarized feature value triple).

5.3.2 Adding specific linguistic constraints: the case of clitics. XMG can be extended
to support specific constraints on tree descriptions (e.g., constraints on node linear
order), which make it possible to describe linguistic-dependent phenomena, such as
for instance clitic ordering in French, at a meta-level (i.e., within the metagrammar).

According to Perlmutter (1970), clitics are subject to two hard constraints. First, they
appear in front of the verb in a fixed order according to their rank16 (26a-26b). Second,
two different clitics in front of the verb cannot have the same rank (26c).

(26) a. Jean le3 lui4 donne.
’John gives it to him.’

b. *Jean lui4 le3 donne.
*’John gives to him it.’

c. *Jean le3 la3 donne.
*’John gives it it.’

To support a direct encoding of Perlmutter’s observation, XMG includes both a node
uniqueness principle and a node ordering principle. The latter allows us to label nodes with
some property (let us call it rank) whose value is an integer (for instance, one can define
a node as n1(rank : 2)[cat : Cl]). When solving tree descriptions, XMG further requires
that in a valid tree model, (i) there are no two nodes with the same rank and (ii) sibling
nodes labelled with a rank are linearly ordered according to their rank.

Accordingly, in the French grammar of Crabbé (2005), each node labelled with a
clitic category is also labelled with a numerical node property representing its rank.17

XMG ordering principle then ensures that the ill-formed tree crossed out in the Figure 7,
is not produced. Note that in Figure 7, every type of clitic is defined locally (i.e., in a

16 The number on the clitics indicate their rank.
17 Recall that node properties are features whose values are used by the tree description solver in order to

restrict the set of valid models. These properties may not appear in the trees produced from the input
metagrammar. For instance, the rank property is not part of the FB-LTAG formalism, and thus does not
appear in the FB-LTAG elementary trees produced by XMG.

19

Computational Linguistics Volume xx, Number xx

separate class), and that the interactions between these local definitions are handled by
XMG using this rank principle, to produce only one valid description (pictured on the
right of the arrow).

S

N↓ ≺+ V’
∧

V’

Cl↓3 ≺+ V
∧

V’

Cl↓4 ≺+ V
∧

S

V’

V⋄

⇒
S

N↓ V’

Cl↓3 Cl↓4 V⋄

S

N↓ V’

Cl↓4 Cl↓3 V⋄

Figure 7
Clitic ordering in French

That is, XMG ordering constraints permit a simple, declarative, encoding of the
interaction between clitics. This again contrasts with systems based on lexical rules. As
noted by Perlmutter (1970), if clitics are assumed to be moved by transformations, then
the order in which lexical rules apply this movement must be specified.

To implement the uniqueness principle, one needs to express the fact that in a valid
model φ, there is only one node having a given property p (i.e., a parameter of the
constraint, here the value of the rank node property). This can be done by introducing,
for each node n of the description, a Boolean variable pn indicating whether the node
denoting n in the model has this property or not (i.e., are there two nodes of identical
rank ?). Then, if we call Vφ

p the set of integers referring to nodes having the property p

in a model, we have: pn ≡ (Eqn ∩ V
φ
p) 6= ∅ . Finally, if we represent pn being true with 1

and pn being false with 0,18 and we sum the pn for each n in the model, we have that in
a valid model, this sum is strictly lower than 2:

∑

n∈φ pn < 2 .
To implement the ordering principle, one needs to express the fact that in a valid

model φ, two sibling nodes n1 and n2 having a given property p of type integer and of
values p1 and p2 respectively, are such that the linear precedence between these nodes
conform to the natural order between p1 and p2. This can be done, by first introducing,
for each pair of nodes n,m of the description, a Boolean variable bn,m indicatingwhether
they have the same ancestors: bn,m ≡ (Upn ∩Upm) = (Upn ∪Upm) . For each pair of
nodes that do so, we check whether they both have the property p, and if this is case, we
add to the input description, a strict precedence constraint on these nodes according to
their respective values of the p property:19

bn,m ∧ (pn < pm) ⇒ n ≺+ m (27)

bn,m ∧ (pm < pn) ⇒ m ≺+ n (28)

5.3.3 Adding color constraints to facilitate grammar writing. To further ease gram-
mar development, XMG supports a node coloring mechanism that permits nameless
node identification (Crabbé and Duchier 2004), reminiscent of the polarity- based node
identification first proposed in Muskens and Krahmer (1998) and later used by Duchier
and Thater (1999), Perrier (2000). Such a mechanism offers an alternative to explicit
node identification using equations between node variables. The idea is to label node

18 These integer representations are usually called reified constraints.
19 In fact, rather than adding strict precedence constraints to the tree description, we directly add to the

solver their equivalent set constraints on Eq, Up, Left, Right, Down, introduced above.

20

Crabbé, Duchier, Gardent, Le Roux, Parmentier XMG : eXtensible MetaGrammar

variables with a color property, whose value (either red, black or white) can trigger node
identifications.

This mechanism is another parameter of the tree solver. When in use, the valid tree
models must satisfy some color constraints, namely they must only have red or black
nodes (no remaining white nodes, these have to be identified with some black node). As
shown in the table below, node identification must observe the following constraints: a
white node must be identified with a black node; a red node cannot be identified with
any other node; and a black node may be identified with one or more white nodes.20

•B •R ◦W ⊥
•B ⊥ ⊥ •B ⊥
•R ⊥ ⊥ ⊥ ⊥
◦W •B ⊥ ◦W ⊥
⊥ ⊥ ⊥ ⊥ ⊥

We now briefly describe how the constraint solver sketched in Section 5.3.1 was
extended to support colors. As mentioned above, in valid models, all the white nodes
are identifiedwith a black node. Consequently, there is a bijection from the red and black
nodes of the tree description to the nodes of the model. In order to take this bijection
into account, we add a node variable RBn to the 5 sets already associated with a node
variable n from section 5.1.RBn denotes either n if n is a black or red node, or the black
node identified with n if n is a white node. Note that all the node variables must be
colored: the set of node variables in a tree description can then be partitioned into 3
sets Red, Black and White. Basically, we know that, for all node n, RBn ∈ Eqn (this is
what the bijection is about). Again we translate color information into constraints on
node sets (these constraints help the generic tree solver by reducing the ambiguity for
the Eqn sets):

n ∈ Red ⇒ (n = RBn) ∧ (Eqn = {n}) (29)

n ∈ Black ⇒ (n = RBn) ∧ (Eqn\{n} ⊆White) (30)

n ∈White ⇒ (RBn ∈ Black) ∧ (Eqn ∩Black = {RBn}) (31)

Node coloring offers an alternative to complex namespace management. The main
advantage of this particular identification mechanism is its economy: not only is there
no longer any need to remember node identifiers, there is in fact no need to choose a
name for node variables.

It is worth stressing that the XMG node identification process is reduced to a
constraint solving problem and so it is not a sequential process. Thus the criticisms
levelled by Cohen-Sygal and Wintner (2007, 2009) against non associative constraints
on node unification do not apply.

Briefly, in their work, Cohen-Sygal and Wintner (2007, 2009) showed that any
polarity-based tree description formalism is not associative. In other words, when
describing trees in terms of combinations of polarized structures, the order in which
the structures are combined matters (i.e., the output structures depend on the combi-
nation order). This feature makes such formalisms not appropriate for a modular and
collaborative grammar engineering, such as that of Cohen-Sygal andWintner (2011) for
Unification Grammar.

20 In other words, node colors can be seen as information on node saturation.

21

Computational Linguistics Volume xx, Number xx

In the XMG case, when using node colors, the tree description solver does not
rely on any specific fragment combination order. It computes all possible combination
orders. In this context, the grammar designer cannot think in terms of sequences of node
identifications. This would lead to tree overgeneration.

Again, it is important to remember that tree solving computes any valid tree model,
independently of any specific sequence of node identifications (all valid node identifica-
tions are computed). In this context, non associativity of color-based node identification
is not an issue, but rather a feature, as it allows for a compact description of a large
number of node identifications (and thus of tree structures).

6. Writing Grammars with XMG

In this section, we first provide a detailed example showing how XMG can be used to
specify the verbal trees of a large FB-LTAG for French extendedwith a unification based
semantics. We then give a brief description of several large and middle scale grammars
that were implemented using XMG.

6.1 SEMTAG: a large FB-LTAG for French covering syntax and semantics

We now outline the XMG specification for the verbal trees of SEMTAG, a large FB-LTAG
for French. This specification further illustrates how the various features of XMG (e.g.,
combined use of disjunction and conjunction, node colors) permit us to specify compact
and declarative grammar descriptions. We first discuss the syntactic dimension (SYN).
We then go on to show how the semantic dimension (SEM) and the syntax/semantic
interface (DYN) are specified.

6.1.1 The syntactic dimension. The methodology used to implement the verbal frag-
ment of SEMTAG can be summarized as follows. First, tree fragments are defined which
represent either a possible realization of a verb argument or a possible realization of the
verb. The verbal elementary TAG trees of SEMTAG are then defined by appropriately
combining these tree fragments.

To maximize structure sharing, we work with four levels of abstraction. First, basic
tree fragments describing verb or verb argument realizations are defined. Second, gram-
matical functions are defined as disjunctions of argument realizations. Third, verbal
diathesis alternatives are defined as conjunctions of verb realizations and grammatical
functions. Fourth, diathesis are gathered into tree families. In the next paragraphs, we
explain each of these levels in more details.

Tree fragments. Tree fragments are the basic building blocks used to define SEMTAG.
These are the units that are shared and reused in the definition of many elementary
trees. For instance, the fragment for a canonical subject will be used by all FB-LTAG
elementary trees involving a canonical subject.

As mentioned above, to specify the verbal elementary trees of SEMTAG, we begin
by defining tree fragments which describe the possible syntactic realizations of the verb
arguments and of the verb itself. Figure 8 provides some illustrative examples of these
fragments. Here and in the sequel, we omit the feature structures decorating the trees
to facilitate reading.21

21 See (Crabbé 2005) for a complete description of SEMTAG tree fragments, including feature structures.

22

Crabbé, Duchier, Gardent, Le Roux, Parmentier XMG : eXtensible MetaGrammar

CanonSubj →

S◦W

N↓•R V◦W CanonObj →

S◦W

V◦W N↓•R

CanonIndirObj →

S◦W

V◦W PP•R

P•R

à•R

N↓•R

CanonByObj →

S◦W

V◦W PP•R

P•R

par•R

N↓•R

RelatSubj →

N•R

N⋆•R S◦W

N↓•R V◦W WhObj →

S•R

N↓•R S◦W

V◦W

WhByObj →

S•R

PP•R

P•R

par•R

N↓•R

S◦W

WhIndirObj →

S•R

PP•R

P•R

à•R

N↓•R

S◦W

ActiveVerbForm→

S•B

V⋄•B PassiveVerbForm→

S•B

V•B

V↓•B V⋄•B

Figure 8
Elementary tree fragments used as building blocks of the grammar (nodes are colored to control
their identification when blocks are combined)

To further factorize information and facilitate grammar maintenance, the basic tree
fragments are organized in an inheritance hierarchy.22 Figure 9 shows a partial view of
this hierarchy illustrating how the tree fragments for argument realization depicted in
Figure 8 are organized to maximize the sharing of common information. The hierarchy
classifies the verbal arguments depicted in Figure 8 into four categories:

1. The canonical subject is a noun realized in front of the verb.

2. Canonical complements occur after the verb. The canonical object is a noun phrase
whereas prepositional complements are introduced by specific prepositions namely,
à for the canonical indirect object and par for the canonical by object.

3. Wh-arguments (or questioned arguments) occur in front of a sentence headed by a
verb. A Wh-object is an extracted noun whilst questioned prepositional objects are
extracted prepositional phrases that are introduced by a specific preposition.

22 Recall from Section 4 that inheritance is used to share namespaces. Thus, (node or feature) variables
introduced in a given class C can be directly reused in the sub-classes of C.

23

Computational Linguistics Volume xx, Number xx

4. Finally, the relativized subject is a relative pronoun realized in front of the sentence.
Extracted subjects in French cannot be realized at an unbounded distance of the
predicate.

VerbalArgument

CanonSubj CanonCompl

CanonObj CanPP

CanonIndirObj CanonByObj

Wh

WhObj WhPP

WhIndirObj WhByObj

RelatSubj

Figure 9
Organization of elementary fragments in an inheritance hierarchy

Syntactic functions. The second level of abstraction uses syntactic function names such
as Subject and Object to group together alternative ways in which a given syntactic
function can be realized. For instance, if we make the simplifying assumption that the
possible argument realizations are limited to those given in Figure 8, the Subject, Object,
ByObject and IndirectObject classes would be defined as follows.23

Subject→ CanonSubj ∨RelatSubj (32)

Object→ CanonObj ∨WhObj (33)

ByObject→ CanonByObj ∨WhByObj (34)

IndirectObject→ CanonIndirObj ∨WhIndirObj (35)

That is, we define the Subject class as an abstraction for talking about the set of tree
fragments that represent the possible realizations of a subject argument namely, in our
restricted example, canonical and relativized subject. Thus, the simplified Subject class
defined above characterizes contexts such as the following :

(36) a. Jeanmange. (canonical subject)
’John eats.’

b. Le garçon quimange (relativized subject)
’The boy who eats’

Similarly, the IndirectObject class abstracts over the realization of an argument intro-
duced by the preposition à to the right of the verb (CanonIndirObj) or realized in
extracted position (possibly realized at an unbounded distance from the predicate) as
illustrated by the following examples :

23 Note that, when these abstractions will be combined to describe for instance transitive verbs, the
combination of WhObj with WhByObj will be ruled out by using a uniqueness principle such as
introduced in Section 5.

24

Crabbé, Duchier, Gardent, Le Roux, Parmentier XMG : eXtensible MetaGrammar

(37) a. Jean parle à Marie. (canonical indirect object)
’John talks to Mary.’

b. À qui Jean parle-t-il ? (wh indirect object)
’To whom is John talking ?’

c. À qui Pierre croit-il que Jean parle ? (wh indirect object)
’To whom Peter thinks that John talks ?’

This way of grouping tree fragments is reminiscent of the informal classification of
French syntactic functions presented by Iordanskaja and Mel’čuk (2009) whereby each
syntactic function is associated with a set of possible syntactic constructions.

Diathesis alternations. In this third level, we take advantage of the abstractions defined in
the previous level to represent diathesis alternations. Again we are interested here in de-
scribing alternatives. Diathesis alternations are those alternations of mapping between
arguments and syntactic functions such as for instance the active/passive alternation.
In a diathesis alternation, the actual form of the verb constrains the way predicate
arguments are realized in syntax. Thus, in the following example, it is considered that
both (38a) and (38b) are alternative realizations of a predicate argument structure such
as send(John, a letter).

(38) a. Jean envoie une lettre.
’John sends a letter.’

b. Une lettre est envoyée par Jean.
’A letter is sent by John.’

The active/passive diathesis alternation captures the fact that if the verb is in the
active form, its two arguments are realized by a subject and an object whereas if the
verb is in the passive form, then the arguments consist of a subject and a by-object.

TransitiveDiathesis → (Subject ∧ActiveV erbForm ∧Object)

∨ (Subject ∧ PassiveV erbForm ∧ByObject)
(39)

Finally a traditional case of “erasing”24, such as the agentless passive (or passive with-
out agent) can be expressed in our language by adding an additional alternative where
the By Object or agentive complement is not expressed. Thus (40) is an augmentation of
(39) where we have added the agentless passive alternative (indicated in bold face).

TransitiveDiathesis → (Subject ∧ ActiveV erbForm ∧Object)

∨ (Subject ∧ PassiveV erbForm ∧ByObject)

∨ (Subject ∧PassiveVerbForm)

(40)

This methodology can be further augmented to implement an actual linking in the line
of Bresnan and Zaenen (1990). For the so-called erasing cases, one can map the “erased”
predicative argument to an empty realization in syntax. We refer the reader to (Crabbé
2005) for further details.

24 It is often argued that a language of grammatical representation must be equipped with an “erasing
device” like lexical rules because of phenomena such as the passive without agent. In this framework it
turns out that this kind of device is not needed since we do not grant any special status to base trees.

25

Computational Linguistics Volume xx, Number xx

Tree families. Finally, tree families are defined that is, sets of trees capturing alternative
realizations of a given verb type (i.e., sub-categorization frame). Continuing with the
simplified example presented so far, we can for instance define the tree family for
verbs taking a nominal subject, a nominal object and an indirect nominal object (i.e.,
ditransitive verbs) as follows :

DitransitiveFamily → TransitiveDiathesis ∧ Indirectobject (41)

The trees generated for such a family will, among others, handle the following con-
texts:25

(42) a. Jean offre des fleurs à Marie.
’John offers flowers to Mary.’

b. À quelle fille Jean offre-t-il des fleurs ?
’To which girl does John offer flowers ?’

c. Le garçon qui offre des fleurs à Marie.
’The boy who offers flowers to Mary.’

d. Quelles fleurs le garçon offre-t-il à Marie ?
’Which flowers does the boy offer to Mary ?’

e. Les fleurs sont offertes par Jean à Marie.
’The flowers are offered by John to Mary.’

f. Par quel garçon les fleurs sont-elles offertes à Marie ?
’By which boy the flowers are offered to Mary.’

It is straightforward to extend the grammar with new families. Thus, for instance
(43) shows how to define the transitive family (for verbs taking a nominal subject and
a nominal object) and (44), the intransitive one (alternatives of a verb sub-categorizing
for a nominal subject).

TransitiveFamily → TransitiveDiathesis (43)

IntransitiveFamily → Subject ∧ ActiveV erbForm (44)

Similarly, tree families for non verbal predicates (adjectives, nouns) can be defined
using the abstraction over grammatical functions defined for verbs. For instance, the
examples in (45a-45b) can be captured using the adjectival trees defined in (47) and (48)
respectively where Subject extends the definition of subject given above with a Wh-
subject, PredAdj combines a subject tree fragment with a tree fragment describing a
predicative adjective and PredAdjAObj extends a PredAdj tree fragment with a canonical
à-object.

(45) a. Jean est attentif, Qui est attentif?, L’homme qui est attentif.
’John is mindful, Who is mindful?, The man who is mindful.’

b. Jean est attentif à Marie, Qui est attentif à Marie?, L’homme qui est attentif à
Marie.
’John is mindful of Mary, Who is mindful of Mary?, The man who is mindful
of Mary.’

25 Note that number and gender agreements are dealt with using coreferences between features labelling
syntactic nodes, see (Crabbé 2005).

26

Crabbé, Duchier, Gardent, Le Roux, Parmentier XMG : eXtensible MetaGrammar

Subject → CanonSubj ∨RelatSubj ∨WhSubj (46)

PredAdj → Subject ∧ AdjectivalForm (47)

PredAdjAObj → PredAdj ∧ CanonAObj (48)

6.1.2 The semantic dimension and the Syntax / Semantic Interface. We now show
how to extend the XMG specification presented in the previous section to integrate a
unification-based compositional semantics. Three main changes need to be carried out:

1. Each elementary treemust be associatedwith a semantic formula. This is done using
the SEM dimension.

2. The nodes of elementary trees must be labelled with the appropriate semantic
indices. This involves introducing the correct attribute-value pair in the correct
feature structure (top or bottom) on the appropriate node.

3. Syntax and semantics need to be synchronized that is, variable sharing between
semantic formulae and tree indices need to be enforced. To this end we use theDYN
dimension.

Informing the Semantic Dimension. To associate each elementary tree with a formula
representing the meaning of the words potentially anchoring that tree, we use the SEM
dimension to specify a semantic schema. For instance, the TransitiveFamily class defined
in (43) for verbs taking two nominal arguments is extended as follows :

TransitiveFamily → TransitiveDiathesis ∧ BinaryRel (49)

where TransitiveDiathesis is the XMG class defined in (40) to describe the set of trees as-
sociated with transitive verbs and BinaryRel the class describing the following semantic
schema :

L :P (E) ∧ L :Theta1(E,X) ∧ L :Theta2(E, Y) (50)

In this semantic schema, P , Theta1 and Theta2 are unification variables that become
ground when the tree is anchored with a specific word. For instance, P , Theta1 and
Theta2 are instantiated to eat, agent and patient respectivelywhen the anchor is ate (these
pieces of information – predicate, thematic roles – are associatedwith lemmas, located in
the syntactic lexicon, and unified with adequate semantic variables via anchoring equa-
tions). Further, X,Y,E, L are unification variables representing semantic arguments.
As illustrated in Figure 3, these become ground during (or after) derivation as a side
effect of the substitutions and adjunctions taking place when trees are combined. It
is worth noting that by combining semantic schemas with diathesis classes, one such
specification assigns the specified semantic schema to many trees namely, all the trees
described by the corresponding diathesis class. In this way, the assignment of semantic
formulae to trees is relatively economical. Indeed in SEMTAG, roughly 6,000 trees are
assigned a semantic schema using a total of 75 schema calls.

27

Computational Linguistics Volume xx, Number xx

Co-indexing Trees and Formulae Indices.Assuming that tree nodes are appropriately deco-
ratedwith semantic indices by the specification scheme described in the next paragraph,
we now show how to enforce the correct mapping between syntactic and semantic
arguments. This is done in two steps.

First, we define a set of interface constraints of the form 〈indexF : V, argi : V 〉which
are used to enforce the identification of the semantic index (indexF) labelling a given
tree node with grammatical function F (e.g., F := subject) with the index (argi) repre-
senting the i-th argument in a semantic schema. For instance, the following constraints
ensure a subject/arg1 mapping that is, a coreference between the index labelling a subject
node and the index representing the first argument of a semantic schema:

C1 → Node [idx : I] ∧ 〈indexsubject : I〉

C2 → L :P (E) ∧ L :Theta1(E,X) ∧ 〈arg1 : X〉

SubjectArg1 → C1 ∧ C2 ∧ 〈indexsubject : V, arg1 : V 〉

(51)

Given such interface constraints, we refine the diathesis definitions so as to ensure the
correct bindings. For instance, the specification in (39) is modified to:

TransitiveActive → (SubjectArg1 ∧ ObjectArg2∧

Subject ∧ ActiveV erbForm ∧Object)
(52)

whilst the passive diathesis is specified as:

TransitivePassive → (SubjectArg2 ∧ ByObjectArg1∧

Subject ∧ PassiveV erbForm ∧ByObject)
(53)

Labelling Tree Nodes with Semantic Indices. The above scheme relies on the assumption
that tree nodes are appropriately labelled with semantic indices (e.g., the subject node
must be labelled with a semantic index) and that these indices are appropriately named
(arg1 must denote the parameter representing the first argument of a binary relation and
indexsubject the value of the index feature on a subject node). As suggested by Gardent
(2007), a complete semantic labelling of a TAG with the semantic features necessary to
enrich this TAGwith the unification based compositional semantics sketched above can
be obtained by applying the following labelling principles26:

Argument labelling: In trees associated with semantic functors, each argument node
is labelled with a semantic index27 named after the grammatical function of the
argument node (e.g., indexsubject for a subject node).

Controller/Controllee: In trees associated with control verbs, the semantic index of the
controller is identified with the value of the controlled index occurring on the
sentential argument node.

Anchor projection: The anchor node projects its index up to its maximal projection.

26 The principles required to handle quantification are omitted. We refer the reader to (Gardent 2007) for a
more extensive presentation of how semantics is implemented using XMG.

27 For simplicity, we only mention indices. However, to be complete, labels should also be used.

28

Crabbé, Duchier, Gardent, Le Roux, Parmentier XMG : eXtensible MetaGrammar

Foot projection: A foot node projects its index up to the root.28

As we shall now see, XMG permits a fairly direct encoding of these principles.
The Argument Labelling principle states that, in the tree associated with a syntactic

functor (e.g., a verb), each node representing a syntactic argument (e.g., the subject node)
should be labelled with a semantic index named after the grammatical function of that
node (e.g., indexsubject).29

To specify this labelling, we define for each grammatical function Function ∈
{Subject, Object, ByObject, IndirectObject, . . .}, a semantic class FunctionSemwhich
associates with an (exported) node variable called FunctionNode the feature value pair
[index : I] and a DYN constraint of the form 〈indexFunction : I〉. For instance, the class
SubjectSem associates the node SubjectNodewith the feature value pair [index : I] and
the DYN constraint 〈indexsubject : I〉.

SubjectSem → SubjectNode [index : I] ∧ 〈indexsubject : I〉 (54)

Additionally, in the tree fragments describing the possible realizations of the grammat-
ical functions, the (exported) variable denoting the argument node is systematically
named ArgNode.

Finally, we modify the specification of the realizations of the grammatical functions
to import the appropriate semantic class and identify ArgNode and FunctionNode. For
instance, the Subject specification given above is changed to :

Subject → SubjectSem ∧ ArgNode = SubjectNode ∧

(CanonSubj ∨RelatSubj ∨WhSubj)
(55)

As a result, all ArgNode nodes in the tree descriptions associated with a subject realiza-
tion are labelled with an index feature I whose global name is indexsubject.

Value sharing between the semantic index of the controller (e.g., the subject of
the control verb) and that of the controllee (e.g., the empty subject of the infinitival
complement) is enforced using linking constraints between the semantic index labelling
the controller node and that labelling the sentential argument node of the control verb.
Control verb definitions then import the appropriate (object or subject control) linking
constraint.

The anchor (resp. foot) projection principle stipulates the projection of semantic
indices from the anchor (resp. foot) node up to the maximal projection (resp. root).
Concretely, this means that the top and bottom features of the nodes located on this
path between the anchor (resp. foot) and the maximal projection (resp. root) all include
an index feature whose value is shared between adjacent nodes (see variables Ei in
Figure 10)30. Once the top and bottom structures are unified, so are the semantic indices
along this path (modulo expected adjunctions realized on the projection).

28 The foot projection principle only applies to foot nodes that are not argument nodes (i.e., to modifiee
nodes).

29 In other words, this argument labelling principle defines an explicit and normalized reference to any
realization of a semantic argument. Following FB-LTAG predicate-argument co-occurrence principle
(Abeillé, Candito, and Kinyon 1999), we know that any elementary tree includes a leaf node for each
realized semantic argument of its anchor. This principle thus holds in any FB-LTAG. However, its
implementation is closely related to the architecture of the metagrammar, here we benefit from the fact
that verbal arguments are described in dedicated classes to reach a high degree of factorization.

30 For sake of brevity, we write E2

E1
for [bot : [index : E1] top : [index : E2]]. 〈 〉 refers to the anchor / foot.

29

Computational Linguistics Volume xx, Number xx

To implement these principles, we define a set of anchor projection classes
{Depth1, Depth2, Depth3} as illustrated in Figure 10. We then “glue” these projection
skeletons onto the relevant syntactic trees by importing the skeletons in the syntactic
tree description and explicitly identifying the anchor node of the semantic projection
classes with the anchor or foot node of these syntactic tree descriptions. Since the
models must be trees, the nodes dominating the anchor node of the projection class
will deterministically be identified with those dominating the anchor or foot node of
the trees being combined with. For instance, for verbs, the class specifying the verbal
spine (e.g., ActiveVerbForm, see Figure 10) equates the anchor node of the verbal spine
with that of the projection skeleton. As a result, the verb projects its index up to the root.

E3

E2

E2

E1

E2

E1

E1

E
E1

E
E1

E

〈 E〉 〈 E〉 〈 E〉

Depth 3 Depth 2 Depth 1

SE2

E1

VPE1

E

〈V E〉

ActiveVerbForm

Figure 10
Anchor/Foot projection.

6.1.3 Some figures about SEMTAG.Asmentioned above, SEMTAG is a large FB-LTAG for
French equipped with semantics (Gardent 2008), it extends the purely syntactic FTAG of
Crabbé (2005)with a unification based compositional semantics as described byGardent
and Kallmeyer (2003).31 The syntactic FTAG in essence implements Abeillé (2002)’s
proposal for an FB-LTAG-based modelling of French syntax. FTAG contains around
6,000 elementary trees built from 293 XMG classes and covers some 40 basic verbal
sub-categorization frames. For each of these frames, FTAG defines a set of argument
alternations (active, passive, middle, neuter, reflexivization, impersonal, passive imper-
sonal) and of argument realizations (cliticization, extraction, omission, permutations,
etc.) possible for this frame. Predicative (adjectival, nominal and prepositional) and light
verb constructions are also covered as well as some common sub-categorizing noun and
adjective constructions. Basic descriptions are provided for the remaining constructions
namely, adverbs, determiners and prepositions.

FTAG and SEMTAG were both evaluated on the Test Suite for Natural Language Pro-
cessing (TSNLP) (Lehmann et al. 1996), using a lexicon designed specifically on the test
suite, hence reducing lexical ambiguity (Crabbé 2005; Parmentier 2007). This test suite
focuses on difficult syntactical phenomena, providing grammatical and ungrammatical
sentences. These competence grammars accept 76 % of the grammatical items, reject
83% of the ungrammatical items and have an average ambiguity of 1.64 parses per
sentence. To give an idea of the compilation time, under architectures made of a 2
Ghz processor with 1 Gb of RAM, it takes XMG 10 minutes to compile the whole

31 FTAG and SEMTAG are freely available under the terms of the GPL-compliant CeCILL license, the former
at https:
//sourcesup.renater.fr/scm/viewvc.php/trunk/METAGRAMMARS/FrenchTAG/?root=xmg,
and the latter on request.

30

Crabbé, Duchier, Gardent, Le Roux, Parmentier XMG : eXtensible MetaGrammar

SEMTAG (recall that there is no semantic description solving, hence the compilation
times between FTAG and SEMTAG do not differ).32

Note that SEMTAG can be used for assigning semantic representations to sentences
when combined with an FB-LTAG parser and a semantic construction module as de-
scribed by Gardent and Parmentier (2005, 2007).33 Conversely, it can be used to verbalize
the meaning denoted by a given semantic representation when coupled with the GenI
surface realizer described by Gardent and Kow (2007).

6.2 Other grammars designed with XMG

XMG has been used mainly to design FB-LTAG and IG for French or English. More
recently, it has also been used to design a FB-LTAG for Vietnamese and a TT-MCTAG
for German. We now briefly describe each of these resources.

SemXTAG. The English grammar, SEMXTAG (Alahverdzhieva 2008), reimplements the
FB-LTAG developed for English at the University of Pennsylvania (XTAG Research
Group 2001) and extends it with a unification based semantics. It contains 1,017 trees
and covers the syntactic fragment of XTAG namely auxiliaries, copula, raising and
small clause constructions, topicalization, relative clauses, infinitives, gerunds, pas-
sives, adjuncts, ditransitives (and datives), ergatives, it-clefts, wh-clefts, PRO construc-
tions, noun-noun modification, extraposition, determiner sequences, genitives, nega-
tion, noun-verb contractions, sentential adjuncts, imperatives and resultatives. The
grammar was tested on a handbuilt test-suite of 998 sentences illustrating the various
syntactic constructions meant to be covered by the grammar. All sentences in the test-
suite can be parsed using the grammar.

FrenchIG. The extended XMG framework was used to design a core IG for French
consisting of 2,059 tree descriptions compiled out of 448 classes (Perrier 2007). The
resulting grammar is lexicalised, and its coverage was evaluated using the previously
mentioned TSNLP. The French IG accepts 88% of the grammatical sentences and rejects
85% of the ungrammatical sentences, although the current version of the French IG
does not yet cover all the syntactic phenomena presented in the test suite (for example,
causative and superlative constructions).

Vietnamese TAG. The XMG language was used by Le Hong, N’Guyen, and Roussanaly
(2008) to produce a core FB-LTAG for Vietnamese. Their work is rather a proof of con-
cept than a large-scale implementation. They focused on Vietnamese’s categorization
frames, and were able to produce a TAG covering the following frames: intransitive
(tree family N0V), transitive with a nominal complement (N0VN1), transitive with a
clausal complement (N0VS1), transitive with modal complement (N0V0V1), ditransi-
tive (N0VN1N2), ditransitive with a preposition (N0VN1ON2), ditransitive with a ver-
bal complement (N0V0N1V1), ditransitive with an adjectival complement (N0VN1A),
movement verbs with a nominal complement (N0V0V1N1), movement verbs with an
adjectival complement (N0V0AV1), and movement ditransitive (N0V0N1V1N2).

32 As a comparison, about one hour was needed by Candito’s compiler, to produce a French FB-LTAG
containing about 1,000 tree schemas.

33 As an alternative way to parse FB-LTAG grammars equipped with flat semantics such as those produced
by XMG, one can use the Tübingen Linguistic Parsing Architecture (TuLiPA) (Kallmeyer et al. 2010).

31

Computational Linguistics Volume xx, Number xx

GerTT. Another XMG-based grammar corresponds to the German MC-TAG of
Kallmeyer et al. (2008). This grammar, called GerTT, is in fact an MC-TAG with Tree Tu-
ples (Lichte 2007). This variant of MCTAG has been designed to model free word order
phenomena. This is done by imposing node sharing constraints on MCTAG derivations
(Kallmeyer 2005). GerTT covers phenomena such as scrambling, coherent constructions,
relative clauses, embedded questions, copula verbs, complementized sentences, verbs
with various sub-categorization frames, nouns, prepositions, determiners, adjectives,
and partly includes semantics. It is made of 103 tree tuples, compiled from 109 classes.

7. RelatedWork

We now compare XMG with existing environments for designing tree-based grammars
and briefly report on the grammars designed with these systems.

7.1 Environments for designing tree-based grammars

Candito’s metagrammar compiler. The concept of metagrammar was introduced by Can-
dito (1996). In her paper, Candito presented a compiler for abstract specifications of
FB-LTAG trees (the so-called metagrammars). Such specifications are based on three
dimensions, each of them being encoded in a separate inheritance hierarchy of linguis-
tic descriptions. The first dimension describes canonical sub-categorization frames (e.g.,
transitive), the second redistributions of syntactic functions (e.g., active to passive), and
the third the tree descriptions corresponding to the realizations of the syntactic functions
defined in dimension 2. This three-dimensional metagrammatical description is then
processed by a compiler to compute FB-LTAG tree schemas. In essence, these tree
schemas are produced by associating a canonical sub-categorization frame (dimension
1) with a compatible redistribution schema (dimension 2), andwith exactly one function
realization (dimension 3) for each function required by the sub-categorization frame.

Candito’s approach improves on previous proposals by Vijay-Shanker and Schabes
(1992), Evans, Gazdar, and Weir (1995), in that it provides a linguistically principled
basis for structuring the inheritance hierarchy. As shown in Section 6.1, the XMG defi-
nition of SEMTAG uses similar principles. Candito’s approach differs however from the
XMG account in several important ways:

• Much of the linguistic knowledge used to determine which classes to combine is
hard-coded in the compiler (unlike in XMG, there is no explicit control on class
combinations). In other words, there is no clear separation between the linguistic
knowledge needed to specify a high-level FB-LTAG description and the algorithm
used to compile an actual FB-LTAG from this description. This makes grammar
extension and maintenance by linguists extremely difficult.

• As in (Vijay-Shanker and Schabes 1992; Evans, Gazdar, andWeir 1995), the linguistic
description is non monotonic in that some erasing classes are used to remove
information introduced by other dimensions (e.g., agentless passive).

• The approach fails to provide an easy means to state exceptions. These are usually
encoded in the compiling algorithm.

• The tree description language used to specify classes in dimension 3 relies on global
node variables. Thus, two variables with identical names introduced in different
classes are expected to refer to the same tree node. As argued in Section 4, this makes
it hard to design large-scale metagrammars.

32

Crabbé, Duchier, Gardent, Le Roux, Parmentier XMG : eXtensible MetaGrammar

The LexOrg system. An approach similar to Candito’s was presented by Xia et al. (1998),
Xia (2001), Xia, Palmer, and Vijay-Shanker (2005, 2010). As in Candito’s approach, a
TAG abstract specification relies on a three-dimensional description made of namely,
sub-categorization frames, blocks and lexical redistribution rules. To compile this spec-
ification into a TAG, the system selects a canonical sub-categorization frame, applies
some lexical redistribution rules to derive new frames and finally select blocks corre-
sponding to the resulting frames. These blocks contains tree descriptions using the logic
of Rogers and Vijay-Shanker (1994).

LexOrg suffers from similar limitations as Candito’s compiler. Much of the linguistic
knowledge is embedded in the compiling algorithm making it difficult for linguists to
extend the grammar description and to handle exceptions. Unlike in Candito’s frame-
work, the tree description language uses local node variables and let the tree description
solver determine node identifications. Although this avoids having to memorize node
names, this requires that the descriptions be constrained enough to impose the required
node identifications and prevent the unwanted ones. In practice, this again complicates
grammar writing. In contrast, XMG provides an intermediate solution which, by com-
bining local variables with export declarations, avoids having to memorize too many
node variable names (only those local to the relevant sub-hierarchy need memorizing)
while permitting explicit node identification.

The metagrammar compiler of Gaiffe et al. Gaiffe, Crabbé and Roussanaly (2002) proposed
a compiler for FB-LTAG that aims to remedy both the lack of a clear separation be-
tween linguistic information and compilation algorithm, and the lack of explicit control
on the class combinations prevalent in (Candito 1996; Xia et al. 1998; Xia 2001). In
their approach, the linguistic specification consists of a single inheritance hierarchy of
classes, each class containing a tree description. The description logic used is similar to
Candito’s. That is, global node names are used. To trigger class combinations, classes
are labelled with two types of information: needs and resources. The compiler selects
all final classes of the hierarchy, performs all possible combinations and only keeps
these combinations that neutralize the stated needs and resources. The tree descriptions
contained in these neutral combinations are then solved to produce the expected trees.

While this approach implements a clear separation between linguistic information
and compilation algorithm, the fully automatic derivation of FB-LTAG trees from the
inheritance hierarchymakes it difficult in practice to control overgeneration. In contrast,
XMG’s explicit definitions of class combinations by conjunction, disjunction and inher-
itance makes it easier to control the tree set that will be generated by the compiler from
the grammar specification. Additionally, the issues raised by global variables remain
(no way to instantiate twice a given class, and cumbersome definition of variables in
large metagrammar).

The MGCOMP system.More recently, Villemonte de la Clergerie (2005; 2010) proposed a
compiler for FB-LTAG which aims at preserving a high degree of factorization in both
the abstract grammar specification and the grammar which is compiled from it. Thus,
theMGCOMP systemdoes not compute FB-LTAGelementary trees, but factorized trees.

In MGCOMP, like in Gaiffe, Crabbé, and Roussanaly (2002)’s approach, a meta-
grammar consists of a single hierarchy of classes. The classes are labelledwith needs and
resources, and final classes of the hierarchy are combined to compute tree descriptions.
The main differences with Gaiffe, Crabbé, and Roussanaly (2002), lies in the fact that
(i) a description can include new factorizing operators, such as repetition (Kleene-star
operator), shuffling (interleaving of nodes), optionality and disjunctions, and (ii) it offers

33

Computational Linguistics Volume xx, Number xx

namespaces to specify the scope of variables. MGCOMP’s extended tree descriptions
are not completely solved by the compiler. Rather, it compiles underspecified trees (also
called factorized trees).With this approach, a large grammar is much smaller in terms of
number of grammatical structures, than a classical FB-LTAG. As a result, the grammars
it compiles are only compatible with the DyALog parsing environment (Villemonte de
La Clergerie 2005). And, since the linguist designs factorized trees and not actual TAG
trees, debugging the metagrammar becomes harder.

7.2 Resources built using Candito, Xia and De La Clergerie’s systems

Candito’s system has been used by Candito (1999) herself to design a core FB-LTAG
for French and Italian, and later by Barrier (2006) to design a FB-LTAG for adjectives
in French. Xia’s system (LexOrg) has been used to semi-automatically generate XTAG
(Xia 2001). De La Clergerie’s system (MGCOMP) has been used to design a grammar
for French named FRMG (FRench MetaGrammar) (Villemonte de la Clergerie 2010).
FRMG makes use of MGCOMP’s factorizing operators (e.g., shuffling operator), thus
producing not sensu stricto a FB-LTAG, but a factorized FB-LTAG. FRMG is freely
available, contains 207 factorized trees (e.g., having optional branches, etc.) built from
279 metagrammatical classes, and covers 95% of the TSNLP.

8. Conclusion

In this article, we presented the eXtensible MetaGrammar framework and argued that,
contrary to other existing grammarwriting environments for tree-based grammar, XMG
is declarative, extensible and notationally expressive. We believe that these features
make XMGparticularly appropriate for a fast prototyping of the kind of deep tree-based
grammars that are used in applications requiring high precision in grammar modelling
(e.g., language teaching, man/machine dialogue systems, data-to-text generation).

The XMG language is documented on-line, its compiler is open source software,
freely available under the terms of the GPL-compliant CeCILL license.34 Many gram-
mars designed with XMG (FB-LTAG and IG for French and English, TT-MCTAG for
German) are also open-source and available on-line.35

Future researchwill focus on extensibility. So far, XMG has been used to design tree-
based grammars for different languages. We plan to extend XMG to handle other types
of formalisms36 such as dependency grammars, and to support dimensions other than
syntax and semantics such as for instance, phonology or morphology. As mentioned in
the article, XMG offers a modular architecture, making it possible to extend it relatively
easily. Nonetheless, in its current state, such extensions imply modifying XMG’s code.
We are exploring new extensions of the formalism, which would allow the linguist to
dynamically define her/his metagrammar formalism (e.g., which principles or descrip-
tions to use) depending on the target formalism.

Another interesting question concerns cross-language grammar engineering. So far,
the metagrammar allows for dealing with structural redundancy. As pointed out by

34 See https://sourcesup.renater.fr/xmg.
35 The French TAG and French and English IG are available on XMG’s website, the German TT-MCTAG is

available at http://www.sfs.uni-tuebingen.de/emmy/res.html.
36 Preliminary work on cross-framework grammar engineering has been realized by Clément and Kinyon

(2003), who used Gaiffe et al.’s compiler to produce both a TAG and a LFG from a given metagrammar.

34

Crabbé, Duchier, Gardent, Le Roux, Parmentier XMG : eXtensible MetaGrammar

Kinyon et al. (2006), a metagrammar can be used to capture generalizations across
languages and is surely worth further investigating.

Finally, we plan to extend XMG with features borrowed from Integrated Devel-
opment Environments (IDE) for programming languages. Designing a grammar is, in
some respect, similar to programming an application. Grammar environments should
benefit from the same tools as those used for the development of applications (e.g.,
incremental compilation, debugger, etc.).

Acknowledgments

We are grateful to the three anonymous reviewers for their valuable comments. Any
remaining error is ours.

References
Abeillé, A. 2002. Une grammaire électronique

du français. CNRS Editions.
Abeillé, A., M. Candito, and A. Kinyon. 1999.

Ftag: current status and parsing scheme. In
Proceedings of Vextal ’99, pages 283–292,
Venice, Italy.

Aït-Kaci, Hassan. 1991. Warren’s Abstract
Machine: A Tutorial Reconstruction. MIT
Press.

Alahverdzhieva, Katya. 2008. XTAG using
XMG. Master Thesis, Nancy Université.

Baldridge, Jason, Sudipta Chatterjee, Alexis
Palmer, and Ben Wing. 2007. DotCCG and
VisCCG: Wiki and programming
paradigms for improved grammar
engineering with OpenCCG. In
Tracy Holloway King and Emily M.
Bender, editors, Proceedings of the Grammar
Engineering Across Framework Workshop
(GEAF 07), pages 5–25, Stanford, CA. CSLI.

Barrier, Sébastien. 2006. Une métagrammaire
pour les noms prédicatifs du français :
développement et expérimentations pour les
grammaires TAG. Ph.D. thesis, Université
Paris 7.

Becker, Tilman. 1993. HyTAG: A new Type of
Tree Adjoining Grammars for Hybrid
Syntactic Representation of Free Word Order
Language. Ph.D. thesis, Universität des
Saarlandes.

Blackburn, Patrick, Johan Bos, and Kristina
Striegnitz. 2006. Learn Prolog Now!,
volume 7 of Texts in Computing. College
Publications.

Bresnan, Joan and Annie Zaenen. 1990. Deep
unaccusitivity in LFG. In K. Dziwirek,
P. Farell, and E. Mejias-Bikandi, editors,
Grammatical Relations : A Cross-Theoretical
Perspective. CSLI publication, Stanford,
pages 45–57.

Candito, Marie. 1996. A principle-based
hierarchical representation of LTAGs. In

Proceedings of the 16th International
Conference on Computational Linguistics
(COLING’96), pages 194–199, Copenhagen,
Denmark.

Candito, Marie. 1999. Représentation modulaire
et paramétrable de grammaires électroniques
lexicalisées : application au français et à
l’italien. Ph.D. thesis, Université Paris 7.

Clément, Lionel and Alexandra Kinyon.
2003. Generating parallel multilingual
lfg-tag grammars from a metagrammar. In
Proceedings of the 41st Annual Meeting of the
Association for Computational Linguistics,
pages 184–191, Sapporo, Japan, July.

Cohen-Sygal, Yael and Shuly Wintner. 2007.
The Non-Associativity of Polarized
Tree-Based Grammars. In Proceedings of the
Eighth International Conference on Intelligent
Text Processing and Computational
Linguistics (CICLing-2007), pages 208–217,
Mexico City, Mexico.

Cohen-Sygal, Yael and Shuly Wintner. 2009.
Associative Grammar Combination
Operators for Tree-Based Grammars.
Journal of Logic, Language and Information,
18:293–316.

Cohen-Sygal, Yael and Shuly Wintner. 2011.
Towards modular development of typed
unification grammars. Comput. Linguist.,
37(1):29–74.

Copestake, Ann and Dan Flickinger. 2000.
An open-source grammar development
environment and broad-coverage English
grammar using HPSG. In Proceedings of the
Second conference on Language Resources and
Evaluation (LREC-2000), Athens, Greece.

Copestake, Ann, Alex Lascarides, and Dan
Flickinger. 2001. An algebra for semantic
construction in constraint-based
grammars. In Proceedings of 39th Annual
Meeting of the Association for Computational
Linguistics, pages 140–147, Toulouse,
France, July. Association for
Computational Linguistics.

35

Computational Linguistics Volume xx, Number xx

Crabbé, Benoit. 2005. Représentation
informatique de grammaires fortement
lexicalisées : Application à la grammaire
d’arbres adjoints. Ph.D. thesis, Université
Nancy 2.

Crabbé, Benoît and Denys Duchier. 2004.
Metagrammar redux. In Henning
Christiansen, Peter Rossen Skadhauge,
and Jørgen Villadsen, editors, proceedings of
the Workshop on Constraint Solving for
Language Processing (CSLP 2004), volume
3438 of Lecture Notes in Computer Science,
Springer, pages 32–47, Copenhagen,
Denmark.

Duchier, Denys, Brunelle Magnana Ekoukou,
Yannick Parmentier, Simon Petitjean, and
Emmanuel Schang. 2012. Describing
Morphologically-rich Languages using
Metagrammars: a Look at Verbs in Ikota.
InWorkshop on ”Language technology for
normalisation of less-resourced languages”,
8th SALTMIL Workshop on Minority
Languages and 4th Workshop on African
Language Technology, International
Conference on Language Resources and
Evaluation, LREC 2012, Istanbul, Turkey, 05.

Duchier, Denys and Joachim Niehren. 2000.
Dominance constraints with set operators.
In John W. Lloyd, Verónica Dahl, Ulrich
Furbach, Manfred Kerber, Kung-Kiu Lau,
Catuscia Palamidessi, Luís Moniz Pereira,
Yehoshua Sagiv, and Peter J. Stuckey,
editors, Proceedings of the First International
Conference on Computational Logic, volume
1861 of Lecture Notes in Computer Science,
pages 326–341. Springer.

Duchier, Denys, Yannick Parmentier, and
Simon Petitjean. 2012. Metagrammars As
Logic Programs. In International Conference
on Logical Aspects of Computational
Linguistics (LACL 2012). Demo Session,
Nantes, France.

Duchier, Denys and Stefan Thater. 1999.
Parsing with Tree Descriptions: a
constraint-based approach. In Proceedings
of the Sixth International Workshop on
Natural Language Understanding and Logic
Programming (NLULP’99), pages 17–32, Las
Cruces, New Mexico.

Evans, Roger, Gerald Gazdar, and David
Weir. 1995. Encoding lexicalized tree
adjoining grammars with a nonmonotonic
inheritance hierarchy. In Proceedings of the
33rd Annual Meeting of the Association for
Computational Linguistics, pages 77–84,
Cambridge, Massachusetts, USA.

Flickinger, Daniel. 1987. Lexical Rules in the
Hierarchical Lexicon. Ph.D. thesis, Stanford
University.

Gaiffe, Bertrand, Benoît Crabbé, and Azim
Roussanaly. 2002. A new metagrammar
compiler. In Proceedings of the sixth
International Workshop on Tree Adjoining
Grammars and Related Frameworks (TAG+6),
pages 101–108, Venice, Italy.

Gardent, Claire. 2007. Tree Adjoining
Grammar, Semantic Calculi and Labelling
Invariants. In Proceedings of the International
Workshop on Computational Semantics
(IWCS), Tilburg, Netherlands.

Gardent, Claire. 2008. Integrating a
unification-based semantics in a large scale
Lexicalised Tree Adjoininig Grammar for
French. In Proceedings of the 22nd
International Conference on Computational
Linguistics (COLING’08), pages 249–256,
Manchester, UK.

Gardent, Claire and Laura Kallmeyer. 2003.
Semantic Construction in Feature-Based
Tree Adjoining Grammar. In Proceedings of
the 10th conference of the European Chapter of
the Association for Computational Linguistics,
pages 123–130, Budapest, Hungary.

Gardent, Claire and Eric Kow. 2007. A
symbolic approach to Near-Deterministic
Surface Realisation using Tree Adjoining
Grammar. In 45th Annual Meeting of the
Association for Computational Linguistics,
pages 328–335, Prague, Czech Republic.
Association for Computational Linguistics.

Gardent, Claire and Yannick Parmentier.
2005. Large scale semantic construction for
Tree Adjoining Grammars. In Philippe
Blache, Edward P. Stabler, Joan Busquets,
and Richard Moot, editors, Proceedings of
the Fifth International Conference on Logical
Aspects of Computational Linguistics
(LACL’05), volume 3492 of Lecture Notes in
Computer Science, pages 131–146,
Bordeaux, France. Springer.

Gardent, Claire and Yannick Parmentier.
2006. Coreference Handling in XMG. In
Proceedings of the 21st International
Conference on Computational Linguistics and
44th Annual Meeting of the Association for
Computational Linguistics (COLING/ACL
2006) Main Conference Poster Sessions, pages
247–254, Sydney, Australia. Association for
Computational Linguistics.

Gardent, Claire and Yannick Parmentier.
2007. SemTAG: a platform for specifying
Tree Adjoining Grammars and performing
TAG-based Semantic Construction. In
Proceedings of the 45th Annual Meeting of the
Association for Computational Linguistics
Companion Volume Proceedings of the Demo
and Poster Sessions, pages 13–16, Prague,
Czech Republic.

36

Crabbé, Duchier, Gardent, Le Roux, Parmentier XMG : eXtensible MetaGrammar

Iordanskaja, Lidija and Igor Mel’čuk. 2009.
Establishing an Inventory of Surface -
Syntactic Relations: Valence - controlled
Surface - dependents of the Verb in French.
In: Polguère & Mel’čuk (eds). Observatoire
de linguistique Sens-Texte, Université de
Montréal.

Joshi, Aravind K., Leon S. Levy, and Masako
Takahashi. 1975. Tree adjunct grammars.
Journal of the Computer and System Sciences,
10:136–163.

Kallmeyer, Laura. 1999. Tree Description
Grammars and Underspecified
Representations. Ph.D. thesis, Universität
Tübingen.

Kallmeyer, Laura. 2005. Tree-Local
Multicomponent Tree-Adjoining
Grammars with Shared Nodes .
Computational Linguistics, 31(2):187–226.

Kallmeyer, Laura, Timm Lichte, Wolfgang
Maier, Yannick Parmentier, and Johannes
Dellert. 2008. Developing a TT-MCTAG for
German with an RCG-based parser. In
Proceedings of the Sixth Language Resources
and Evaluation Conference (LREC), pages
782–789, Marrakech, Morocco.

Kallmeyer, Laura, Wolfgang Maier, Yannick
Parmentier, and Johannes Dellert. 2010.
TuLiPA - Parsing Extensions of TAG with
Range Concatenation Grammars. Bulletin
of the Polish Academy of Sciences : Technical
Sciences, 58(3):377–392.

Kallmeyer, Laura and Maribel Romero.
2004a. LTAG semantics for questions. In In
Proceedings of 7th Internationl Workshop on
Tree-Adjoining Grammar and Related
Formalisms (TAG+7), pages 186–193,
Vancouver, Canada.

Kallmeyer, Laura and Maribel Romero.
2004b. LTAG semantics with semantic
unification. In Proceedings of 7th Internationl
Workshop on Tree-Adjoining Grammar and
Related Formalisms (TAG+7), page 155–162,
Vancouver, Canada.

Kallmeyer, Laura and Maribel Romero. 2008.
Scope and situation binding in ltag using
semantic unification. Research on Language
and Computation, 6(1):3–52.

Kaplan, Ronald and Paula Newman. 1997.
Lexical Resource Reconciliation in the
Xerox Linguistic Environment. In
Proceedings of the ACL Workshop on
Computational Environments for Grammar
Development and Linguistic Engineering,
pages 54–61, Madrid, Spain. Association
for Computational Linguistics.

Kinyon, Alexandra. 2000. Hypertags. In
Proceedings of the 18th International
Conference on Computational Linguistics

(COLING’00), pages 446–452,
Saarbruecken, Germany.

Kinyon, Alexandra, Owen Rambow, Tatjana
Scheffler, SinWon Yoon, and Aravind K.
Joshi. 2006. The metagrammar goes
multilingual: A cross-linguistic look at the
v2-phenomenon. In Proceedings of the
Eighth International Workshop on Tree
Adjoining Grammar and Related Formalisms,
pages 17–24, Sydney, Australia, July.
Association for Computational Linguistics.

Le Hong, Phuong, Thi-Min-Huyen N’Guyen,
and Azim Roussanaly. 2008. A
metagrammar for Vietnamese. In
proceedings of the 9th International workshop
on Tree-Adjoining Grammar and Related
Formalisms (TAG+9), Tübingen, Germany.

Lehmann, Sabine, Stephan Oepen, Sylvie
Regnier-Prost, Klaus Netter, Veronika Lux,
Judith Klein, Kirsten Falkedal, Frederik
Fouvry, Dominique Estival, Eva Dauphin,
Hervé Compagnion, Judith Baur, Lorna
Balkan, and Doug Arnold. 1996. TSNLP —
Test Suites for Natural Language
Processing. In Proceedings of the 16th
International Conference on Computational
Linguistics (COLING’96), pages 711–716,
Copenhagen, Denmark.

Lichte, Timm. 2007. An MCTAG with Tuples
for Coherent Constructions in German. In
Proceedings of the 12th Conference on Formal
Grammar (FG 2007), Dublin, Ireland. 12
pages.

Muskens, Reinhard and Emiel Krahmer.
1998. Description Theory, LTAGs and
Underspecified Semantics. In Fourth
International Workshop on Tree Adjoining
Grammars and Related Frameworks, pages
112–115, Philadelphia, PA. Institute for
Research in Cognitive Science.

Parmentier, Yannick. 2007. SemTAG : une
plate-forme pour le calcul sémantique à partir
de Grammaires d’Arbres Adjoints. Ph.D.
thesis, Université Henri Poincaré - Nancy.

Parmentier, Yannick, Laura Kallmeyer, Timm
Lichte, and Wolfgang Maier. 2007. XMG:
eXtending MetaGrammars to MCTAG. In
Proceedings of the Workshop on High-Level
Syntactic Formalims, 14th Conference on
Natural Language Processing (TALN’2007),
pages 473–482, Toulouse, France.

Pereira, Fernando and David Warren. 1980.
Definite clause grammars for language
analysis —a survey of the formalism and a
comparison to augmented transition
networks. Artificial Intelligence, 13:231–278.

Perlmutter, David. 1970. Surface structure
constraints in syntax. Linguistic Inquiry,
1:187–255.

37

Computational Linguistics Volume xx, Number xx

Perrier, Guy. 2000. Interaction Grammars. In
Proceedings of the 18th International
Conference on Computational Linguistics
(COLING 2000), pages 600–606,
Saarbruecken, Germany.

Perrier, Guy. 2007. A French Interaction
Grammar. In proceedings of the 6th
Conference on Recent Advances in Natural
Language Processing (RANLP 2007), pages
463–467, Borovets, Bulgaria, September.

Prolo, Carlos A. 2002. Generating the XTAG
English Grammar Using Metarules. In
Proceedings of the 19th International
Conference on Computational Linguistics
(COLING’2002), pages 814–820, Taipei,
Taiwan.

Rambow, Owen, K. Vijay-Shanker, and
David Weir. 1995. D-tree Grammars. In
Proceedings of the 33th Meeting of the
Association for Computational Linguistics,
pages 151–158, Cambridge, MA.

Rogers, James and K. Vijay-Shanker. 1994.
Obtaining trees from their descriptions: An
application to tree-adjoining grammars.
Computational Intelligence, 10:401–421.

Shieber, Stuart M. 1984. The design of a
computer language for linguistic
information. In Proceedings of the Tenth
International Conference on Computational
Linguistics, pages 362–366, Stanford
University, Stanford, CA, July2–6.

Van Roy, Peter. 1990. Extended dcg notation:
A tool for applicative programming in
prolog. Technical report, Technical Report
UCB/CSD 90/583, UC Berkeley.

Vijay-Shanker, K. and Aravind K. Joshi. 1988.
Feature Structures Based Tree Adjoining
Grammars. In Proceedings of the 12th
Conference on Computational linguistics
(COLING’88), pages 714–719, Budapest,
Hungary.

Vijay-Shanker, K. and Yves Schabes. 1992.
Structure sharing in lexicalized tree
adjoining grammars. In Proceedings of the
14th International Conference on
Computational Linguistics (COLING’92),
pages 205–212, Nantes, France.

Villemonte de La Clergerie, Éric. 2005.
DyALog: a tabular logic programming
based environment for NLP. In Proceedings
of 2nd International Workshop on Constraint
Solving and Language Processing (CSLP’05),
pages 18–33, Barcelona, Spain, October.

Villemonte de la Clergerie, Éric. 2010.
Building factorized TAGs with
meta-grammars. In Proceedings of the 10th
international workshop on Tree-Adjoining
Grammar and Related Formalisms (TAG+10),
pages 111–118, New Haven, USA.

Weir, David J. 1988. Characterizing Mildly
Context-Sensitive Grammar Formalisms.
Ph.D. thesis, University of Pennsylvania.

Xia, Fei. 2001. Automatic Grammar Generation
from two Different Perspectives. Ph.D. thesis,
University of Pennsylvania.

Xia, Fei, Martha Palmer, and
K. Vijay-Shanker. 1999. Toward
semi-automating grammar development.
In Proceedings of the 5th Natural Language
Processing Pacific Rim
Symposium(NLPRS-99), Beijing, China.

Xia, Fei, Martha Palmer, and
K. Vijay-Shanker. 2005. Automatically
Generating Tree Adjoining Grammars
from Abstract Specifications. Journal of
Computational Intelligence, 21(3):246–287.

Xia, Fei, Martha Palmer, and
K. Vijay-Shanker, 2010. Supertagging: Using
Complex Lexical Descriptions in Natural
Language Processing, chapter Developing
Tree-Adjoining Grammars with Lexical
Descriptions, pages 73–110. MIT Press.

Xia, Fei, Martha Palmer, K. Vijay-Shanker,
and Joseph Rosenzweig. 1998. Consistent
Grammar Development Using Partial-Tree
Descriptions for LTAGs. In Proceedings of
the 4th International Workshop on Tree
Adjoining Grammar and Related Formalisms
(TAG+ 1998), pages 180–183, Philadelphia,
PA.

XTAG Research Group. 2001. A Lexicalized
Tree Adjoining Grammar for English.
Technical Report IRCS-01-03, IRCS,
University of Pennsylvania.

38

