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Abstract
Noun phrases (NPs) are a crucial part of natural language, exhibiting in many cases an

extremely complex structure. However, NP structure is largely ignored by the statistical parsing

field, as the most widely-used corpus is not annotated with it. This lack of gold-standard data has

restricted all previous efforts to parse NPs, making it impossible to perform the supervised experi-

ments that have achieved high performance in so many Natural Language Processing (NLP) tasks.

We comprehensively solve this problem by manually annotating NP structure for the entire

Wall Street Journal section of the Penn Treebank. The inter-annotator agreement scores that we

attain refute the belief that the task is too difficult, and demonstrate that consistent NP annotation is

possible. Our gold-standard NP data is now available and will be useful for all parsers.

We present three statistical methods for parsing NP structure. Firstly, we apply the Collins

(2003) model, and find that its recovery of NP structure is significantly worse than its overall perfor-

mance. Through much experimentation, we determine that this is not a result of the special base-NP

model used by the parser, but primarily caused by a lack of lexical information.

Secondly, we construct a wide-coverage, large-scale NP Bracketing system, applying a

supervised model to achieve excellent results. Our Penn Treebank data set, which is orders of mag-

nitude larger than those used previously, makes this possible for the first time. We then implement

and experiment with a wide variety of features in order to determine an optimal model. Having

achieved this, we use the NP Bracketing system to reanalyse NPs outputted by the Collins (2003)

parser. Our post-processor outperforms this state-of-the-art parser.

For our third model, we convert the NP data to CCGbank (Hockenmaier and Steedman,

2007), a corpus that uses the Combinatory Categorial Grammar (CCG) formalism. We experiment

with a CCG parser and again, implement features that improve performance. We also evaluate the

CCG parser against the Briscoe and Carroll (2006) reannotation of DepBank (King et al., 2003),

another corpus that annotates NP structure. This supplies further evidence that parser performance

is increased by improving the representation of NP structure.

Finally, the error analysis we carry out on the CCG data shows that again, a lack of lexi-

calisation causes difficulties for the parser. We find that NPs are particularly reliant on this lexical

information, due to their exceptional productivity and the reduced explicitness present in modifier

sequences. Our results show that NP parsing is a significantly harder task than parsing in general.

This thesis comprehensively analyses the NP parsing task. Our contributions allow wide-

coverage, large-scale NP parsers to be constructed for the first time, and motivate further NP parsing

iii
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research for the future. The results of our work can provide significant benefits for many NLP tasks,

as the crucial information contained in NP structure is now available for all downstream systems.



This work has not previously been submitted for a degree or diploma in any university. To the

best of my knowledge and belief, the thesis contains no material previously published or written by

another person except where due reference is made in the thesis itself.

— David Vadas
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Chapter 1

Introduction

Parsing is a vitally important Natural Language Processing (NLP) task, where the goal is to

identify the syntactic structure of a sentence. Accurate and robust parsing is a major step towards the

automatic interpretation of language, as it is informative for many NLP systems such as information

retrieval and machine translation.

In recent years, high performance parsing has been achieved for a number of languages,

domains and formalisms. The creation of a large corpus annotated with gold-standard parse trees,

the Penn Treebank (Marcus, Santorini, and Marcinkiewicz, 1993) has encouraged a great deal of

this research in statistical parsing. The parsing field is now well-established, and its results have

proven effective in many NLP problems, e.g. Pado and Lapata (2007).

The parsing of noun phrases (NPs) involves the same difficulties as parsing in general. NPs

contain structural ambiguities, just as other constituent types do, and resolving these ambiguities

is required for their proper interpretation. Despite this, high performance NP parsing has not been

achieved until now. The primary reason for this is the absence of a large corpus of NP annotations.

The Penn Treebank does not fully annotate the internal structure of NPs, making it impossible to

perform the supervised experiments that have performed so well in so many NLP tasks. Parsers

trained on this, the de facto standard parsing corpus for English, are unable to recover NP structure,

and as a result, the NP parsing problem has largely been ignored.

Most research on parsing NPs has focused on a simplified problem where all NPs are made

up of exactly three words, all of which are nouns. In this thesis, we will look at a realistic use of

NPs, presenting the first publicly available, large-scale corpus of gold-standard manually annotated

NPs. Furthermore, experiments with this data demonstrate that statistical methods can accurately

recover NP structure. We identify the difficulties in parsing NPs, compared to parsing in general, and

1
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then present a number of techniques for improving performance.

This is the problem solved in this thesis: identifying the syntactic structure of NPs for a

wide-coverage, large-scale application.

1.1 Motivation

Noun phrases are a crucial part of natural language. They convey much of the content

in a sentence and are therefore vitally important when parsing. Nouns and noun phrases are also

particularly productive, and interpreting the new vocabulary that is constantly introduced to the

language is a difficult task. NPs are also exceedingly common, and because of this, NP ambiguities

occur frequently. In the corpora considered in this thesis, over a quarter of all sentences contain

an ambiguous NP. In technical domains, longer, more complex NPs are even more common, and as

such, exhibit an even greater level of ambiguity.

In fact, many NLP systems are aimed at identifying the information that is carried in NPs.

Question Answering (QA) systems are designed to take a natural language question and find the

exact answer in a large quantity of text. These answers are often places, people, or other objects,

i.e. noun phrases. Many QA systems employ a parser to generate candidate answers, which can then

be ranked to determine the most likely. If the parser cannot recover NP structure then the correct

candidate may never be found, even if the correct dominating noun phrase has been found. As an

example, consider the following extract:

. . . as crude oil prices rose by 50%, a result of the. . .

and the question:

The price of what commodity rose by 50%?

The answer crude oil is internal to the NP crude oil prices. Most commonly-used parsers today will

not identify this internal NP, and will therefore never be able to get the answer correct.

A similar problem occurs when performing Anaphora Resolution (AR). This task involves

identifying an antecedent, for example, the person that a pronoun refers to. Without the ability to

recover internal NP structure, it may be impossible to determine the correct antecedent.

For example, the appositional structure in Margaret Thatcher, the Prime Minister can

cause problems in a number of ways. Firstly, the gender features that are very important in AR can

be confused by appositional NPs. Mapping a feminine pronoun onto the Prime Minister may be
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Viktor Chernomyrdin and his colleague

Figure 1.1: Binarisation example from Wang, Knight and Marcu (2007)

statistically unlikely, but knowing that the clearly feminine Margaret Thatcher is the same entity

makes this decision easier. Secondly, interpreting appositions correctly means that they can be

analysed in a consistent way. An AR system could return Margaret Thatcher, or the Prime Minister,

or the entire NP as the antecedent, but only one will be correct according to the evaluation. A parser

can provide the information needed to resolve these problems by identifying that only a single

entity is being referred to in the NP. This correct appositional structure can then be supplied to the

AR system.

NP structure can also be informative for Syntax-Based Statistical Machine Translation

(SBSMT) systems, which operate on tree structures rather than a stream of words. Wang, Knight,

and Marcu (2007) find that the flat tree structure of the Penn Treebank elongates the tail of rare tree

fragments, diluting individual probabilities and reducing performance. This problem can be seen

in the two tree fragments in Figure 1.1. Both of these trees are flat in the training data, unlike the

structures we have shown, and thus not decomposable by a standard SBSMT system. This means

that even though both NPs share a common substructure, Viktor Chernomyrdin, this information

cannot be generalised in the SBSMT model. The flat NP structure specifically prevents the system

from learning the necessary information.
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Wang, Knight, and Marcu (2007) attempt to solve this problem by automatically bi-

narising the phrase structure trees. They present three simple methods: left-binarisation, right-

binarisation, and head binarisation, and also derive a more complex binarisation method using the

Expectation Maximisation (EM) algorithm. All four of these methods improve performance, with

the latter approach providing the biggest increase. However, this SBSMT system, as well as others

(Melamed, Satta, and Wellington, 2004; Zhang et al., 2006), are relying on a non-gold-standard

binarisation of the parse tree. Additional NP annotation, such as explicitly bracketing Russian Min-

ister in the example, would provide these SBSMT systems with the more detailed structure that is

required, and thus improve performance to an even larger degree. Our experiments in Section 5.4.4

also suggest that using supervised techniques trained on gold-standard NP data would be superior to

unsupervised methods such as EM.

The importance of NPs to machine translation is further demonstrated by Koehn (2003),

who constructs a dedicated subsystem to translate NPs. This approach is similar to the postprocessor

we build in Chapter 5, where we take NPs produced by a parser and reanalyse them with our own NP

Bracketing system. In the same way, Koehn uses a parser to identify NPs, which are then translated

using an NP-specific system. This system implements additional features, improving accuracy from

53.9% to 67.1%. When this subsystem is embedded in a word-based MT system, its BLEU score

(Papineni et al., 2002) increases from 0.172 to 0.198.

Particularly relevant for the NP structure dealt with in this thesis, Koehn (2003, §3.2.2.1)

breaks apart NPs in order to achieve a better alignment. This is similar to the binarisation of Wang,

Knight, and Marcu (2007) described above, although Koehn only uses the existing structure pro-

duced by the parser. This process increases NP alignment from 46.0% to 64.9%, which is by far the

largest gain out of all the approaches taken to improve alignment. If more detailed NP structure was

available then an even larger increase could have been achieved.

Recovering NP structure can also help in the parsing process itself. Consider two NPs:

lung cancer deaths and lung cancer. Both of these NPs share a similar structure, and so if these NPs

are not annotated consistently, then it will cause problems for a machine learner using this training

data. The machine learner may have difficulty bracketing the second NP correctly, even though it

possesses no internal structure.

For all of the reasons we have given here, NP structure is crucial for NLP applications, and

thus its recovery is a vital task for all parsers.
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I eat the cake with the spoon

Figure 1.2: An example parse tree

1.2 Parsing

Parsing is the task of finding the syntactic structure for a given sentence. An example

sentence and its parse tree is shown in Figure 1.2. This tree describes the constituents that are

formed and how they are connected. For example, the NP the spoon attaches to the preposition with.

The tree structure shows that even though eat and spoon are quite distant in the stream of words,

they are actually quite closely connected by the syntactic structure.

Building a parser is a difficult task, for reasons we will describe below. These difficulties

also apply to noun phrase parsing, as will be described in Section 1.3. Ambiguity is one of the

largest problems for any parsing system, as it creates decision points where errors can be made.

Humans are able to disambiguate to the correct meaning using a wide range of semantic and world

knowledge. However, these decisions are a tremendously difficult problem for computers, as they

do not associate words with any meaning. The programming languages that computers can interpret

are specifically designed to be unambiguous to avoid this problem.

There are many aspects to the ambiguity problem, from Part Of Speech (POS) tags to

prepositional phrase and other attachment decisions. For example, the word saw can be a noun:

a tool used to cut wood; or a verb: when something has been observed. Another example is in

Figure 1.3, where although the sentence remains the same as in Figure 1.2, this latter tree implies

that the cake has a spoon on it, rather than that the spoon is being used to do the eating. It seems

more likely that the earlier parse tree is the correct one for this sentence. However, the tree in
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Figure 1.3: Another parse tree with prepositional phrase attachment error

Figure 1.3 will not always be wrong. If the last word of the sentence were icing instead of spoon,

then it would be probable that the latter tree is correct.

It may seem that such problems in ambiguity are simple to resolve, as in the previous

example where we have presented only two possibilities. However the combination of multiple

ambiguities causes an exponential growth in the number of potential parse trees. Even relatively

short sentences can have a huge number of analyses, while a sentence of average length1 could have

over a trillion, depending on the grammar being used. Processing this multitude of readings has a

hugely detrimental effect on parser speed, and so analysing these myriad possibilities efficiently is

part of the challenge of parsing.

The techniques that have proven most effective at solving these problems involve using

statistical machine learning. Statistical models are used by parsers to manage the problem of am-

biguity. By applying the probabilities learnt from training data, a parser can choose the most likely

derivation. Statistical models are well understood and supply a strong theoretical foundation for

parsing, as they can combine competing pieces of evidence in a robust way. Their use has resulted

in high accuracy and coverage for a wide variety of languages and domains.

The main requirement for high quality statistical parsing is a consistent, gold-standard an-

1Average sentence length in the Penn Treebank is 26 words.
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Figure 1.4: Parse tree for a right-branching noun phrase

notated corpus on which to train. This is because a large quantity of text marked up with the correct

tree structure is needed to construct an accurate statistical model. Once a parser has constructed

such a model, it can calculate the most probable tree for a given sentence.

A gold-standard corpus is also used for parser evaluation, by retaining a held-out test

section on which performance can be measured. This is of great importance as it allows comparison

between different techniques. It means we can verify improvements in the field through empirical

results and significance tests.

The most widely-used corpus in the parsing field is the Wall Street Journal (WSJ) section

of the Penn Treebank (Marcus, Santorini, and Marcinkiewicz, 1993). It contains over 1.1 million

words, and has been used as training and test data for a number of parsers. It has become the de

facto standard in the parsing community, with specific splits for training, testing and development

well-known and used by all researchers. We will describe this corpus in further detail in Section 2.2.

1.3 Noun Phrases

An example noun phrase with its correct parse tree is shown in Figure 1.4. This is a

right-branching NP, where the right-most pair of words form a constituent. This structure describes

a link or dependency between oil and prices, and also between world and prices. The result is an

interpretation that the NP is talking about the price of oil, and those prices are from around the world.

Conversely, the NP in Figure 1.5 is a left-branching NP, as the left-most pair of words

form a constituent. Although the two NPs in these examples are very similar, their parse trees are

different. If crude oil prices were a right-branching NP, then it would result in the interpretation that

the prices are crude, which is a clear mistake.

Most of the NP ambiguities considered in this thesis will feature premodificational struc-

ture, as in these examples. The ambiguity arises because modifiers can be modified themselves.
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crude oil

Figure 1.5: Parse tree for a left-branching noun phrase

This occurs in crude oil prices, whereas in world oil prices, each modifier attaches to the head

independently.

Humans are quite good at determining which attachment is correct. In the NP cardboard

detergent box, we understand that cardboard detergent is a nonsensical item, and so the NP must be

right-branching. This semantic information in intrinsic to humans, but very difficult to encode for a

computer. The same problem applies to humans shown an NP from an unfamiliar domain (Quirk et

al., 1985, page 1343), e.g. senior subordinated reset discount debentures.

Parsing NPs may seem like a simpler task than parsing whole sentences, however, the

same difficulties still apply. NPs can be infinitely recursive, as modifiers can be added indefinitely.

For example, French onion soup can function as an NP, however we can append to it to make French

onion soup bowl and continue even further to wooden French onion soup bowl handle and beyond. A

definition of NPs and their modifiers, such as those in this example, will be presented in Section 2.1.

Another difficulty in parsing NPs is the fact that nouns are the most productive class of

words. This means that there are constantly new nouns and thus NPs, to consider. As a consequence,

most unknown words are nouns, making it more likely that there will be no lexical information on

which to base a decision.

Ambiguity can also be present in NPs, in the same manner as in general parsing. The

number of bracketing possibilities for an NP is equal to the Catalan number2 of its length. This figure

grows exponentially. The prepositional phrase attachment task we saw earlier in Figures 1.2 and 1.3

has the same problem. This problem is made more difficult by the lack of a good baseline decision.

In our data, we find that there is an almost perfectly even split between left and right-branching NPs,

while most other data sets, e.g. Lauer (1995b), do not have a large majority either way. As a result,

a simple guessing strategy performs poorly.

2The nth Catalan number, Cn, is 1
n+1

(
2n
n

)
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Figure 1.6: The flat Penn Treebank representation for noun phrases

Having seen that NP parsing suffers from the same difficulties that we observed in Sec-

tion 1.2, it may be expected that the statistical modelling techniques that have been successful there

may be applied here. Unfortunately, there is no sufficiently large corpus of NP structure for accurate

supervised machine learning. The Penn Treebank commits only to flat structures which lack the re-

quired information. For example, the NP we saw earlier in Figure 1.5 is annotated with the parse tree

shown in Figure 1.6. This tree is flat — it has no internal bracketing whatsoever and so provides no

information on what structure should apply. This lack of annotated structure means that NP parsing

has typically been performed with unsupervised techniques. This unsupervised approach has been

attempted on a number of NLP tasks, however performance is almost always significantly lower than

with supervised learning, e.g. in POS tagging (Brill, 1995).

The most widely-used NP data set contains only 244 NPs (Lauer, 1995b), all of which are

only three words long. The set also includes no non-noun parts of speech at all, and is restricted

to only include words that appear in Roget’s thesaurus. This lack of data prevents NPs from being

included in many full parsing models. This is the major impediment to high performance NP parsing,

and one of the problems we solve in this thesis.

1.3.1 Syntax vs Semantics

This thesis is primarily interested in syntactic, rather than semantic, NP relationships.

This latter distinction can be seen in the NP chocolate money, which may be money made out of

chocolate; or money set aside for the purchasing of chocolate. This task has been has undertaken

by many researchers, such as Lauer (1995b) and Girju (2007). Determining the set of relationships

itself is a complex problem, for which a number of solutions have been proposed, e.g. in Levi (1978)

and Barker and Szpakowicz (1998).

NP syntax is of course affected by semantic information, and vice versa. For example,

we use semantic information to inform our annotations in Chapter 3, and implement features based

on semantic relationships in the NP Bracketing experiments in Chapter 5. Conversely, syntactic
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analysis determines which noun pairs form a dependency, and thus, which noun pairs have semantic

relationships to analyse. For this reason, we would want to parse cardboard detergent box first and

find the correct dependencies, so that we do not attempt to characterise the semantic relationship

between cardboard and detergent.

In this thesis, we will not perform semantic relationship experiments, instead wholly fo-

cusing on syntactic parsing.

1.4 Contributions

In this thesis, we present a comprehensive approach to performing statistical parsing of

noun phrases. We identify two key problems for this task: the lack of gold-standard data; and the

inability of existing parsing models to recover NP structure accurately. We address the entire breadth

and depth of these problems, by creating new data, validating it for correctness, utilising it in three

separate parsing architectures, and implementing new features that achieve an excellent level of

performance in each case.

Chapter 2 reviews the background of statistical parsing. We cover the two parsing models

used in this thesis, amongst others, and how they recover syntactic structure. We also detail why NP

structure has not been recovered in the past.

Chapter 3 describes our augmentation of the Penn Treebank with gold-standard NP struc-

ture. Our corpus is the first publicly available, large-scale corpus of manually annotated NP structure.

We also describe the multiple approaches we undertook to ensure an accurate and consistent corpus.

This chapter is based on work we presented in Vadas and Curran (2007a).

Chapter 4 describes the experiments we performed with our extended Penn Treebank,

using the Bikel (2004) implementation of the Collins (2003) model.3 We analyse the effect of

various aspects of Collins’ model, as well as how the representation we use for NP structure affects

performance. Finally, we perform a comprehensive error analysis which identifies why NPs are

difficult to parse. These are the first large-scale experiments on NP parsing. The work in this chapter

is based on the initial experiments in Vadas and Curran (2007a) and the analysis in Vadas and Curran

(2007c).

The task of NP Bracketing is introduced in Chapter 5, as we work towards a post-processor

for NPs produced by Collins’ parser. We begin with the simplified problem undertaken in most of

the NP Bracketing literature, before building supervised models on realistic NPs. These are the

3In all of our experiments we use Bikel’s and not Collins’ parser. We will still refer to Collins’ model in the thesis.
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first NP Bracketing models built for large-scale data and the first supervised models that achieve

high performance. The final result of this chapter is a post-processor that significantly outperforms

Collins’ parser. The work presented in this chapter is based on that presented in Vadas and Curran

(2007b).

Chapter 6 covers our experiments with the Combinatory Categorial Grammar (CCG) for-

malism (Steedman, 1996; Steedman, 2000). We demonstrate the utility of the NP data for multiple

formalisms, and in particular, solve a problem with the representation of NPs in the CCG corpus. The

C&C parser (Clark and Curran, 2007b) is used to recover NP structure, while its architecture allows

us to relatively easily add features that were effective in NP Bracketing. This allows the CCG parser

to recover NP structure for the first time. This chapter is based on and extends work published in

Vadas and Curran (2008).

This thesis contributes not only a new data set and results from a number of experiments,

but also makes large-scale wide-coverage NP parsing a possibility for the first time. Whereas before

it was difficult to even evaluate what NP information was being recovered, this thesis sets a high

benchmark for NP structure accuracy, and opens the field for even greater improvement in the future.

As a result, downstream applications can now take advantage of the crucial information present in

NPs.
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Chapter 2

Background

This chapter will present a summary of statistical parsing models. Our focus is specifi-

cally on the models of Collins (2003) and Clark and Curran (2007b), as they will be used in Chap-

ters 4 and 6 respectively. We will also examine the annotation scheme of the Penn Treebank, and

how it has affected the parsing field.

In particular, the Penn Treebank’s treatment of noun phrases will be explored, explaining

why no internal NP structure is annotated, and the problems that arise as a result. Parsers trained

and evaluated on this corpus have inherited this underspecified NP representation, and so are unable

to recover this vitally important structure.

2.1 Noun Phrases

In this thesis, we will analyse and annotate the internal structure of NPs. This structure

can be interpreted in a few different ways, e.g. the DP (determiner phrase) analysis argued by Abney

(1987) (and argued against by van Eynde (2006)) treats the determiner as the head, rather than the

noun. We will use a definition that is more informative for statistical modelling, where the noun —

which is much more semantically indicative — acts as the head of the NP structure.

A noun phrase is a constituent that has a noun as its head1, and can also contain determin-

ers, premodifiers and postmodifiers. The head by itself is then an unsaturated NP, to which we can

add modifiers and determiners to form a saturated NP. Or, in terms of X-bar theory, the head is an N-

bar, as opposed to the fully formed NP. Modifiers do not raise the level of the N-bar, allowing them

to be added indefinitely, while determiners do, making NPs such as *the the dog ungrammatical.

1The Penn Treebank also labels substantive adjectives such as the rich as NP, see Bies et al. (1995, §11.1.5)

13
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The Penn Treebank annotates at the NP level, but leaves much of the N-bar level structure

unspecified. This will be described in Section 2.2.1. As a result, most of the structure we annotate

will be on unsaturated NPs. There are some exceptions to this, such as appositional structure, where

we bracket the saturated NPs being apposed.

Quirk et al. (1985, §17.2) describe the various components of a noun phrase as follows:

• The head is the central part of the NP, around which the other constituent parts cluster. It also

determines how the NP combines with and affects the rest of the sentence. Some heads form

NPs all by themselves, such as pronouns and proper nouns.

• The determinative, which includes predeterminers such as all and both; central determiners

such as the, a and some; and postdeterminers such as many and few. For example all the

furniture contains a predeterminer and a central determiner, while the few survivors has a

central determiner and a postdeterminer.

• Premodifiers, which come between the determiners and the head. These are principally ad-

jectives (or adjectival phrases) and nouns, as in red car and interest rate respectively. Each

of these modifiers can attach to the head, or to any of the other modifiers. Premodifiers can

also be built up recursively into long sequences, as in our example from Chapter 1: wooden

French onion soup bowl handle.

• Postmodifiers are those items after the head, such as prepositional phrases, as well as nonfinite

and relative clauses.

As we described in Section 1.3 and will again discuss in Section 2.2.1, most of the am-

biguity that we deal with in this thesis arises from premodifiers. Quirk et al. (1985, page 1243)

specifically note that “premodification is to be interpreted . . . in terms of postmodification and its

greater explicitness”. Comparing an oil man to a man who sells oil demonstrates how a postmodi-

fying clause and even the verb contained therein can be reduced to a much less explicit premodifica-

tional structure. Understanding the NP is much more difficult because of this reduction in specificity,

however the NP can still be interpreted with the appropriate context.

2.2 The Penn Treebank

Statistical parsing for English has, in many ways, been dominated by the Penn Treebank

(Marcus, Santorini, and Marcinkiewicz, 1993). This was the first large-scale corpus manually anno-
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Figure 2.1: An example sentence from the Penn Treebank

tated with gold-standard parse trees. Its creation has allowed supervised experimentation that was

simply not possible before. An example sentence from the Penn Treebank is shown in Figure 2.1.

The labelled brackets describe the syntactic structure and POS tags of individual words.

Here is a brief description of the POS tags that frequently occur in NPs. There are a number

of noun POS tags, the basic tag being NN. Proper nouns are NNP and plural nouns are NNS, while proper

plural nouns are NNPS. The determiner tag is DT, while predeterminers such as all have their own

PDT tag. The basic adjective tag is JJ, and there are also relative and superlative forms, JJR and JJS

respectively. Finally, possessive pronouns such as his and her have the tag PRP$. The basic pronoun

tag itself, PRP, is very infrequent in the NPs we analyse, as a pronoun typically forms an NP all by

itself with no additional structure to annotate.

The second version of the Treebank introduced two new levels of annotation, which are
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noticeable in this extract. Firstly, the traces denoted by *T* indicate null elements which are co-

indexed with the relevant constituent elsewhere in the tree. For example, the verb phrase beginning

with Offsetting has been extracted from its canonical position following were. To mark this, a trace

is inserted at the extraction point, and indexed 1. This can then be mapped to the 1 on the VP.

Treebank II also introduced functional markers that indicate some limited semantic struc-

ture. In the above sentence, TPC marks the topicalised VP, while SBJ denotes the NP as the subject

of the sentence. Marcus et al. (1994) describe encountering difficulties while annotating semantic

structure, and as such, these markers are relatively limited and not always consistently used.

The Penn Treebank treatment of NPs is also visible in the sentence above. Although both

higher crude oil prices and increased natural gas volumes feature clear internal structure (crude oil

and natural gas respectively), this is not annotated in the corpus. We described this deficiency in

Section 1.3 and will solve the problem in Chapter 3.

Evaluating on the Penn Treebank is performed by comparing the brackets produced by

a parser to those in the gold-standard data. Each bracket must begin and end at the same token

as in the gold standard, and have the correct label. This matched bracket evaluation can then be

applied to determine precision, recall, and thus F-score figures (Black et al., 1991). Most parsers do

not recover, and thus are not evaluated on, the functional markers or traces described above. There

are some exceptions to this, such as Collins’ Model 3, Blaheta and Charniak (2000) and Gabbard,

Marcus, and Kulick (2006), however these are in the minority.

2.2.1 Noun Phrases in the Penn Treebank

As we saw in the previous section, NPs do not receive the same treatment as other con-

stituents in the Penn Treebank. The annotation guidelines (Bies et al., 1995, page 120) sum this up

by saying:

As usual, NP structure is different from the structure of other categories.

This gives an indication of the approach that has been taken for NPs in many cases, where special

treatment is required or assumed.

The Penn Treebank does not annotate the internal structure of noun phrases, instead leav-
ing them flat. Here is the Penn Treebank representation of the NPs we saw earlier in Section 1.3:

(NP (NN world) (NN oil) (NNS prices))

(NP (NN crude) (NN oil) (NNS prices))
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Despite the first NP being right-branching and the second being left-branching, they are both anno-

tated in exactly the same way. The difference in their structures is not reflected in the underspecified

Penn Treebank representation. This absence of annotated NP data means that any parser trained on

the Penn Treebank (or another corpus derived from it) is unable to recover NP structure.

The Penn Treebank literature provides some explanation for the absence of NP struc-

ture. Marcus, Santorini, and Marcinkiewicz (1993) describe how a preliminary experiment was

performed to determine what level of structure could be annotated at a satisfactory speed. This

chosen scheme was based on the Lancaster UCREL project (Garside, Leech, and Sampson, 1987).

This was a fairly skeletal representation that could be annotated 100–200 words an hour faster than

when applying a more detailed scheme. However, it did not include the annotation of NP structure.

Another potential explanation is that Fidditch (Hindle 1983; 1989) — the partial parser

used to generate a candidate structure, which the annotators then corrected — did not generate NP

structure. Marcus, Santorini, and Marcinkiewicz (1993, page 326) note that annotators were much

faster at deleting structure than inserting it, and so if Fidditch did not generate NP structure, then the

annotators were unlikely to add it.

The bracketing guidelines (Bies et al., 1995, §11.1.2) suggest a further reason why NP

structure was not annotated, saying “it is often impossible to determine the scope of nominal mod-

ifiers”. That is, Bies et al. (1995) claim that deciding whether an NP is left or right-branching is

difficult in many cases. Bies et al. (1995) give a handful of example NPs, a subset of which we have

reproduced below:

(NP fake sales license)

(NP fake fur sale)

(NP white-water rafting license)

(NP State Secretary inauguration)

The scope of these modifiers is quite apparent. The reader can confirm this by making his or her

own decisions about whether the NPs are left or right-branching. Once this is done, compare the

bracketing decisions to those made by our annotators, shown in this footnote.2 We expect that there

is perfect agreement.
There are some examples from the guidelines that were more difficult for our annotators:

(NP week-end sales license)

(NP furniture sales license)

2Right, left, left, left
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However this difficulty in large part comes from the lack of context that we are given. If the sur-

rounding sentences were available, we expect that the correct bracketing would become more obvi-

ous. Unfortunately, this is hard to confirm, as we searched the corpus for these NPs, but it appears

that they do not come from Penn Treebank text, and therefore the context is not available. And if the

reader wishes to compare again, here are the decisions made by our annotators for these two NPs.3

Our position then, is that consistent annotation of NP structure is entirely feasible. This

seems apparent, as despite the reservations expressed in the guidelines, even the examples therein

support our argument. Furthermore, Quirk et al. (1985, page 1343) have this to say:

Indeed, it is generally the case that obscurity in premodification exists only for the
hearer or reader who is unfamiliar with the subject concerned and who is not therefore
equipped to tolerate the radical reduction in explicitness that premodification entails.

Accordingly, an annotator with sufficient expertise at bracketing NPs should be capable of iden-

tifying the correct premodificational structure, except in domains they are unfamiliar with. This

hypothesis will be tested in Chapter 3.

2.3 Penn Treebank Parsing

With the advent of the Penn Treebank, statistical parsing without extensive linguistic

knowledge engineering became possible. The first model to exploit this large corpus of gold-

standard parsed sentences was described in Magerman (1994; 1995). This model immediately

demonstrated the effectiveness of training on a large-scale corpus by outperforming a hand-written

grammar with 10 years of development. The hand-written grammar achieved a 0-crossing-brackets

score of 69%, while Magerman (1995) attains 76%. Magerman thus showed that a machine learner

assigning probabilities to parse structures was far superior to a hand-built grammar.

Magerman’s model first builds a candidate parse tree with probability above a certain

threshold. Magerman chose a value of 10−5 for this parameter. A breadth-first search is then used,

where partial parses can be pruned if their probability is below the best complete candidate found so

far. Leaf probabilities from a decision tree are used to calculate the probabilities of potential parsing

actions, and this information is in turn used to build the parse tree bottom-up. The probability of the

entire tree is then the product of the probabilities assigned by the decision tree to individual parsing

actions. The model achieves 86.3% precision and 85.8% recall on matched brackets for sentences

3Right, left
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with less than 40 words on Section 23 of the Penn Treebank. This is the standard test set which has

been used by all researchers since.

One of Magerman’s important innovations was the use of deterministic head-finding rules

to identify the head of each constituent. The head word was then used to represent the constituent

in the features higher in the tree. This original table of head-finding rules has since been adapted

and used in Collins’ and Charniak’s parsers, as well as in the creation of CCGbank (Hockenmaier,

2003a).

Collins (1996) followed up on Magerman’s work by implementing a statistical model that

calculates probabilities from relative frequency counts in the Penn Treebank. The conditional prob-

ability of the tree is split into two parts: the probability of individual base-NPs; and the probability

of dependencies between constituents. This separation allows NPs to be represented by a single head

token when calculating probabilities external to the NP. The other tokens that are internal to an NP

will not affect these outside dependencies, but would increase the sparsity of the data, and thus have

an adverse effect on the model.

Collins uses the CKY chart parsing algorithm (Kasami, 1965; Younger, 1967; Cocke and

Schwartz, 1970), a dynamic programming approach that builds parse trees bottom-up, (see Jurafsky

and Martin (2000, page 453) for a full description). This is an improvement over Magerman’s rather

convoluted method for building trees, and has been used in a number of parsers since. Collins also

adapts Magerman’s (1995) head-finding rules. The Collins (1996) model outperforms Magerman’s,

achieving 86.3% precision and 85.8% recall for sentences with less than 40 words, while also being

simpler and much faster.

Collins (1997) describes a cleaner, generative model. For a tree T and a sentence S , this

model calculates the joint probability, P(T, S ), rather than the conditional, P(T |S ). This second

of Collins’ models uses a lexicalised Probabilistic Context Free Grammar (PCFG), and solves the

data sparsity issues by making independence assumptions. The head is generated first, followed

incrementally by the modifiers, each of which is conditioned only on the head and not on any of

the other modifiers. Collins (1997) then goes on to describe extensions to the model, first including

subcategorisation frames, and then incorporating the traces that result from Wh-movement. We

will describe Collins’ parsing models in more detail in Section 4.1. The best performing model,

including all of these extensions, achieves 88.6% precision and 88.1% recall on sentences with less

than 40 words.

Charniak (1997) presents another probabilistic model that builds candidate trees using a

chart, and then calculates the probability of chart items based on two values: the probability of
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the head; and that of the grammar rule being applied. Both of these are conditioned on the node’s

category, its parent category, and the parent category’s head. This model achieves 87.4% precision

and 87.5% recall on sentences with less than 40 words, a better result than Collins (1996), but

inferior to Collins (1997).

Charniak (2000) improves on his initial result, with the greatest performance increase

coming from generating the lexical head’s pre-terminal node before the head itself, as in Collins

(1997). Collins (2000) also improves on his previous figure by reranking parser output with a

second model that includes additional features. With these additions, the models of Collins and

Charniak were both achieving slightly over 90% precision and recall.

However, by this stage both models had become exceedingly complex, and the analysis

of such models was in itself a significant task. Bikel (2004) performs a detailed study of the Collins

(2003) parsing model, finding that lexical information is not the greatest source of discriminative

power, as was previously thought, and that 14.7% of the model’s parameters could be removed

without decreasing accuracy.

Further performance increases proved difficult to obtain, and so researchers moved onto

reformulations of the parsing problem, such as dependency parsing (Yamada and Matsumoto, 2003;

Nivre and Scholz, 2004; McDonald et al., 2005), or onto particular issues, such as domain adaptation

(Roark and Bacchiani, 2003; McClosky, Charniak, and Johnson, 2006). The parsing of NPs dealt

with in this thesis is one issue still left unresolved.

2.4 Alternate Approaches to Parsing

As we have seen, the dominant statistical parsing paradigm has been to use generative

models with an underlying PCFG that incorporates lexical information. However, this is not the only

way to build an accurate parsing model, and many alternative models have been implemented to

good effect.

Klein and Manning (2003) implement an unlexicalised PCFG that performs better than

the Magerman (1995) and Collins (1996) models. This is achieved by splitting constituent labels

into multiple categories, depending on how they are being used. For example, subject NPs are

distinguished from object NPs, as the former will be dominated by an S and the latter by a VP.

Different probabilities can then be assigned to the more fine-grained categories, allowing the model

to distinguish between them. Although the results are not state-of-the-art, they demonstrate that

lexicalisation may not be as important as had been thought in the past. An unlexicalised model does
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have the advantage that it is more easily applied to different domains. This is because the lexical

differences between the two domains will not affect the parsing model.

Following on from this work, Matsuzaki, Miyao, and Tsujii (2005) and Petrov et al.

(2006) use Expectation Maximisation (EM) to automatically identify optimal splits for the con-

stituent labels. This improves on Klein and Manning’s (2003) approach, where splits were identi-

fied manually. Petrov et al. (2006) achieve 90.2% F-score, a similar result to the Collins (2000) and

Charniak (2000) models, even though the grammar is unlexicalised.

Another area that has seen recent interest is reranking parser output, as initially suggested

by Collins (2000). This involves taking the best n outputs from a parser, and then applying a second,

discriminative model. The advantage of using this second model is that many additional features

can be added, while the complexities involved in building the parse trees can be ignored. This is

possible because only a small number of already generated parses need to be considered. This is a

far smaller search space than what the initial model must cover.

Charniak and Johnson (2005) use a Maximum Entropy model to perform discriminative

reranking on the output of the Charniak (2000) parser. As a result, the matched bracket F-score

increases from 89.7% to 91.0%. McClosky, Charniak, and Johnson (2006) further demonstrate that

reranking is effective across domains and when combined with self-training.

Bod (2001) achieves 90.8% precision and 90.6% recall with his Data Oriented Parsing

(DOP) model, which was first introduced in Bod (1992). This model does not attempt to capture

the notion of constituency as a PCFG does, instead it draws probabilities from every possible tree

fragment in the training corpus. Because of this approach, DOP is able to parse idioms well, since

it can simply copy the idiom tree fragment from the training data. Bod (1993) describes the DOP

process of building a derivation forest using a CKY chart. However the vast number of possible

fragments means that finding the most probable tree in the forest is NP-complete. Monte Carlo

sampling sidesteps this problem, however this is only feasible on the small sentences of the Penn

Treebank ATIS corpus, and not on the Wall Street Journal section. Bod (2001) presents a better

solution that estimates the most probable parse by looking at the top 1000 derivations and pruning

unlikely chart items. This results in performance in the same range as Collins (2000) and Charniak

(2000).

Another recently available parser is RASP (Briscoe and Carroll, 2006), which is designed

to be effective on a wide range of domains. To achieve this, the parser uses an unlexicalised model

and a grammar developed on the Susanne corpus, a subset of the balanced Brown corpus (Francis

and Kučera, 1982), which contains text from newspaper press, biographies, technical writing and
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fiction. Briscoe and Carroll (2006) describe how the parser was tuned for Wall Street Journal text,

by adding and removing specific grammar rules to better fit this corpus. This demonstrates how

RASP aims to be a general purpose parser, with a broadly applicable backbone grammar that can

quickly be modified to suit specific domains.

There are a number of recently developed parsers that apply a deep grammar, i.e. a gram-

mar that implements a theoretical syntax or possesses a rich linguistic representation. Head Phrase

Structure Grammar (HPSG) (Pollard and Sag, 1994), Tree Adjoining Grammar (TAG) (Joshi and

Schabes, 1992), Lexical-Functional Grammar (LFG) (Kaplan and Bresnan, 1982) and Combina-

tory Categorial Grammar (CCG) (Steedman, 1996; Steedman, 2000) all allow the direct recovery of

predicate-argument structure, which is advantageous compared to the simple phrase structure of the

Penn Treebank. These deep grammars intrinsically capture the idea of syntactic or semantic role

within a sentence, in a more comprehensive manner than the function tags and traces in the Penn

Treebank.

Of course, these grammars require a large annotated corpus in order to build and evaluate

a statistical parsing model. Accordingly, there have been projects to convert the formalism-neutral

Penn Treebank to HPSG (Miyao, Ninomiya, and Tsujii, 2004), TAG (Xia, 1999; Chen, Bangalore,

and Vijay-Shanker, 2006), LFG (Cahill et al., 2002) and CCG (Hockenmaier, 2003a; Hockenmaier

and Steedman, 2007). And using the resulting corpora, parsers have been developed for each of

these grammars: the Miyao and Tsujii (2005) parser for HPSG; Chiang’s (2000) TAG parser; and the

Cahill et al. (2004) system which converts a Penn Treebank parser’s output to LFG.

All of these deep grammars are similar in many respects. They are all weakly equivalent

in expressive power, as they are all capable of describing mildly context-sensitive languages. In this

thesis, we will focus on CCG, as its corpus has specific problems with NPs (which will be discussed

in Section 2.5.1). However our analysis of NP structure could be applied to any and all of these

formalisms.

2.5 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) (Steedman, 1996; Steedman, 2000) is a linguis-

tically expressive, lexicalised theory of grammar based on Categorial Grammar (Ajdukiewicz, 1935;

Bar-Hillel, 1953; Wood, 1993). By lexicalised, we mean that the grammar is not recorded in rules,

as in a CFG. Instead, this information is stored on individual tokens which are assigned lexical cate-

gories. For example, a transitive verb (such as bought in IBM bought the company) has the category
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(a) (b)
S

jjjjjjj
TTTTTTT

NP VP

jjjjjjj
TTTTTTT

VB NP

jjjjjjj
TTTTTTT

DT NN

IBM bought the company

IBM bought the company

NP (S\NP)/NP NP/N N
>

NP
>

S\NP
<

S

Figure 2.2: Example derivations in (a) Penn Treebank Phrase Structure and (b) Combinatory Cate-
gorial Grammar

(S\NP)/NP. The slashes here indicate the direction of the arguments. One NP, the subject, is ex-

pected on the left and a second NP, the object, is expected on the right. Once these arguments are

filled, a sentence is produced.

The CCG lexicalisation results in the same derivation as using a pair of grammar rules:

VP → VB NP and S → NP VP. Figure 2.2 shows such a comparison between Penn Treebank-style

Phrase Structure and CCG.

All lexical categories in CCG are built using a small number of atomic types, such as

Sentence S, Noun Phrase NP and Prepositional Phrase PP, which can be combined recursively

using the slash notation.

CCG uses a small number of combinatory rules, which govern the interaction between

lexical categories. These rules are largely language neutral, allowing the language-specific part

of the grammar to remain in the lexicon. We have already seen the two simplest combinatory

rules, forward and backward application, in Figure 2.2(b). These rules were present in the original

Categorial Grammar (Bar-Hillel, 1953) and are all that are required for a context-free grammar.

They are described formally below:

X/Y Y ⇒ X (>) (2.1)

Y X\Y ⇒ X (<) (2.2)

These rules can be interpreted in a rather straight-forward manner. A function category X/Y finds

the argument Y it is looking for, producing the function’s result X.

CCG is type-driven, meaning that each of the grammar rules is associated with a com-

binatory logic operator. This is the underlying mechanism that allows CCG to manage long-range
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Give a teacher an apple and a policeman a flower

DTV NP/N N NP/N N conj NP/N N NP/N N
> > > >

NP NP NP NP

<T <T <T <T
TV\DTV VP\TV TV\DTV VP\TV

<B <B
VP\DTV VP\DTV

<Φ>
VP\DTV

<
VP

VP = S\NP TV = (S\NP)/NP DTV = ((S\NP)/NP)/NP

Figure 2.3: Argument cluster coordination in CCG

dependencies as well as giving it a transparent semantic interface, as exploited in Bos et al. (2004).

This is a major advantage of CCG: its ability to seamlessly incorporate long-range dependencies into

its parsing model, as we will describe in Section 2.5.2.

The power of CCG becomes clear when looking at linguistic constructions such as gapping

and movement. These constructions are extremely common in everyday language, and even more

so in newspaper text like that of the Wall Street Journal. 70% of sentences in The Penn Treebank

contain the traces that annotate these structures, and most parsers simply ignore them. CCG allows

the dependencies created by these structures to be recovered intrinsically. Further, the lexical cat-

egories for tokens undergoing these processes remain in their canonical form. This is an attribute

shared by LFG, but not by TAG and HPSG, wherein relativisation and coordination require special

treatment.

These advantages can be seen in the derivation in Figure 2.3. This example of argument

cluster coordination from Steedman (2000, page 46), shows two arguments of a ditransitive verb

being conjoined with another pair of arguments before attaching to the verb itself. As can be seen,

all of the tokens have their standard categories: Give is a ditransitive verb and each of the arguments

forms an NP. The underlying combinatory head-passing rules also mean that the correct dependen-

cies are created, between Give and each of the four arguments. In order to make this possible, three

additional rules have been introduced: type-raising, composition and coordination. The first two of

these are what extend CCG to be mildly context sensitive.
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Type-raising, denoted with T in Figure 2.3, turns an argument category into a function

category over functions expecting the original argument. That is, rather than the function taking the

argument, the argument takes the function. There are two rules, forward and backward type-raising,

both shown below:

X ⇒T T/(T\X) (< T) (2.3)

X ⇒T T\(T/X) (> T) (2.4)

Composition, denoted with B, allows function categories to combine before their argu-

ments have been filled. In the backward composition in Figure 2.3, an apple has been type-raised

to act as a verb phrase looking for a transitive verb. To the left, a teacher has been type-raised to

a transitive verb category looking to fill a ditransitive verb argument. The two constituents can be

composed, with a teacher filling the transitive verb arguments slot, while the ditransitive verb argu-

ment is appended to the resulting category: VP\DTV . The rule schemas of composition: forward,

backward and backward crossed, are shown below:

X/Y Y/Z ⇒B X/Z (> B) (2.5)

Y\Z X\Y ⇒B X\Z (< B) (2.6)

Y/Z X\Y ⇒B X/Z (< BX) (2.7)

Finally, the ternary CCG coordination rule, denoted with Φ, has the interpretation of con-

joining like categories:

X conj X ⇒Φ X (<Φ>) (2.8)

The composition and type-raising combinatory rules supply the expressive power of CCG.

However, they also introduce the problem of spurious ambiguity. This is where a single sentence has

multiple valid derivations, all of which result in the same logical representation. For example, the

sentence which we earlier analysed in Figure 2.2 can also be derived as shown in Figure 2.4, which

results in the same dependencies. Additional derivations, like this one, substantially increase the

level of ambiguity in the grammar. As a result, a statistical parser must perform more calculations

over the much larger number of derivations.

One way of dealing with the spurious ambiguity problem is to impose normal-form con-

straints on the grammar (Eisner, 1996). These constraints mean that type-raising and composition

are only used when the derivation requires them. This is achieved by not allowing categories that
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IBM bought the company

NP (S\NP)/NP NP/N N
>T >

S/(S\NP) NP
>B

S/NP
>

S

Figure 2.4: Spurious ambiguity in a CCG derivation

have resulted from composition to serve as functions themselves. In CCGbank, the primary CCG

corpus, all derivations are in normal form.

The spurious ambiguity problem was long thought to make CCG parsing infeasible, how-

ever numerous CCG parsers have now been developed, which manage the problem in various ways.

These will be discussed in Section 2.5.2.

2.5.1 Noun Phrases in CCGbank

CCGbank is the primary English corpus for the Combinatory Categorial Grammar formal-

ism, and has been used to train a number of parsers. CCGbank was developed by a semi-automatic

conversion process from the Penn Treebank, which as we mentioned earlier, has been done for a

number of deep grammars.

Each of these formalisms has its own variations on what syntactic information is required.

This information may be recoverable from the Penn Treebank, but if not, it can be problematic.

In some cases, as for head-finding, heuristics can be applied to ascertain the missing information

with satisfactory accuracy. Hockenmaier (2003a) does so by adapting the head-finding heuristics

of Collins (2003). But unfortunately, for some information there is no sufficient heuristic. For

example, complements and adjuncts are not annotated in the Penn Treebank, as functional markers

such as SBJ and CLR are not always consistent or even present. The technique chosen to reproduce

this information can have a large effect on the size and coverage of the resulting grammar (Chen,

Bangalore, and Vijay-Shanker, 2006).
In CCGbank, the unavailability of gold-standard noun phrase structure is particularly prob-

lematic. Because CCGbank is binary branching, it cannot replicate the flat structure of the Penn
Treebank. Instead, all NPs were made right-branching, as shown below:

(N (N/N lung)

(N (N/N cancer) (N deaths) ) )
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N
jjjjjjj

TTTTTTT

N/N N
jjjjjjj

TTTTTTT

conj N
jjjjjjj

TTTTTTT

N/N N

cotton and acetate fibers

Figure 2.5: Incorrect CCG derivation from Hockenmaier (2007)

This structure is correct for a number of English NPs and is the best solution that does not require

manual reannotation. However, the resulting derivations often contain errors. This can be seen in

the example above, where lung cancer should form a constituent, but does not. This is a major

deficiency in CCGbank, and one of the principal contributions of this thesis will be to correct it.

A further problem with NP derivations in CCGbank is shown in Figure 2.5. When a con-

junction occurs inside an NP, a non-CCG rule is required in order to reach a parse:

conj N ⇒ N (2.9)

This is due to the default right-branching interpretation assigned to the derivation. The rule treats

the conjunction in the same manner as a modifier, and results in the incorrect derivation shown in

Figure 2.5. Rather than cotton and acetate being conjoined to form a multi-headed construct, this

derivation treats them as separate modifiers.

2.5.2 CCG Parsing

Once CCGbank became available (or perhaps, while it was still under development is more

accurate) statistical parsers using this new corpus began to be constructed. Two early models were

those of Clark, Hockenmaier, and Steedman (2002) and Hockenmaier and Steedman (2002).

The former model was based on Collins (1996), in that it divides the probability of a

sentence into two parts: the probability of the lexical category sequence and the probability of

the dependencies between the lexical categories. The former is calculated using the Clark (2002)

supertagger (described in the following paragraph), while the latter is done with relative frequencies

from CCGbank, in the same way that Collins used the Penn Treebank.
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Supertagging (Bangalore and Joshi, 1999) is a sequence tagging task in the same vein as

POS tagging. However, rather than assigning 48 POS tags, the task is to assign the lexical categories of

a lexicalised grammar. This was originally proposed for parsing with TAG, with the set of elementary

trees corresponding to the set of supertags. However, the automatically extracted TAG grammars

were too large to be recovered accurately. Supertagging has been effective in increasing parser

efficiency when applied to HPSG (Blunsom and Baldwin, 2006; Matsuzaki, Miyao, and Tsujii, 2007).

In CCGbank, there are 1,206 lexical categories, however a large number of these occur only

once. The Clark (2002) supertagger (and subsequent CCG supertaggers) applied a cutoff, including

only those categories that occurred ten or more times. The 398 supertags remaining still cover

96.5% of sentences in Section 00.

Returning to our two CCG parsing models, Clark, Hockenmaier, and Steedman (2002) deal

with spurious ambiguity as part of the chart pruning performed by the parser. Constituents that share

a head word and lexical category with another constituent in the same cell, but do not have equal

or higher probability, are not added to the chart. The parser achieves 81.7% F-score recovering

predicate-argument dependencies from all sentences in Section 23.

The Hockenmaier and Steedman (2002) model is similar to Collins (1997) or Charniak

(1997). The CCG tree is generated top-down, with children conditioned on the previous node.

Spurious ambiguity is dealt with by conditioning probabilities on the normal-form derivations in

CCGbank. These include the use of composition and type-raising, although they are unlikely. As a

result, non-normal-form derivations can be produced, but they will have low probability. This parser

achieves 83.9% F-score.

The Hockenmaier and Steedman (2002) model can be thought of as Combinatory Cate-

gorial Grammar within a PCFG. The small number of CCG rules are not actually being applied freely,

and instead the corpus is treated in the same way as earlier experiments with the Penn Treebank’s

Phrase Structure grammar. That is, the advantages of CCG, such as its ability to intrinsically recover

long-range dependencies, are not being taken advantage of.

Hockenmaier (2003b) presents another parser that does model the predicate-argument

dependencies in CCG derivations. However, including the long-range dependencies is problematic

for the dynamic programming algorithm. Because heads can now be conditioned on multiple other

words — for example, a verb in a relative clause must also be conditioned on the noun which it

modifies — their inside probability cannot be calculated until the additional conditioning head’s

probability has also been determined. To solve this problem, the equivalence between constituents

in the chart is approximated, while an aggressive beam search prunes cells with over 100 entries.
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Even with these measures, the model is only efficient enough to parse sentences of 40 words or

less. Its results are also worse than the previous models, achieving only 81.5% F-score on the

predicate-argument dependencies.

The C&C parser

Clark and Curran (2004b; 2007b) present the C&C parser, which uses a discriminative

Maximum Entropy (also known as log-linear) model. This allows multiple complex features to be

included more easily than the probability distributions of earlier CCG parsers. The negative training

examples required by the discriminative model are created by applying all possible CCG rules, rather

than only those that reach the gold-standard derivation. In order to store this tremendous number

of derivations efficiently, the packed chart representation of Miyao and Tsujii (2002) is applied. In

this dynamic programing approach, constituents that generate the same subsequent parse structure

and dependencies are treated as equivalent. The models that are created are still massive, requiring

over 25GB of memory during the training process. A cluster of computers train in parallel in order

to manage this immense quantity of data.

The C&C parser, like the earlier Clark, Hockenmaier, and Steedman (2002) model, uses a

supertagger to supply lexical categories. The supertagger, described in Clark and Curran (2004a),

actually suggests multiple categories as long as they are within some parameterised ratio of the most

probable category, again in the same way as the earlier parser. This serves to limit the ambiguity

that the parser itself must resolve, while still supplying a number of categories to choose between.

The parser may find that a category deemed less probable by the supertagger is actually the most

likely. This may be because the original supertags do not form a spanning analysis or because of

the larger context and different feature space that the parser considers.

Clark and Curran (2007b) present two models for dealing with spurious ambiguity: a

normal-form model, which calculates the probability for a single normal-form derivation; and a

dependency model, which models predicate-argument dependencies directly, thus including non-

normal-form derivations. The former model is the simpler of the two and similar to that of Hock-

enmaier and Steedman (2002), while the latter is closer to the Hockenmaier (2003b) model. For

the dependency model to optimise the log-linear model during training, a sum over only the correct

derivations is required. They must therefore be identified within the feature forest. Another compli-

cation occurs during decoding, where summing over all of the dependency structures in the packed

chart is too time-consuming an operation. Instead, Clark and Curran (2004; 2007b) use an algo-
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rithm adapted from Goodman (1996), which maximises the expected recall of the dependencies.

This only requires a sum over individual dependencies, and can thus take advantage of dynamic

programming in the packed chart.

The dependency model is initially superior, achieving 85.73% F-score compared to the

normal-form model’s 85.08%. However, the normal-form model requires significantly smaller

charts and thus uses less memory. The supertagger can supply additional categories to the parser,

increasing normal-form performance to 86.73%. A comparable increase is not feasible for the de-

pendency model, as the chart size is limited by the memory available in the cluster. Instead, Clark

and Curran (2007b) suggest a hybrid model, using the dependency model and also applying Eis-

ner constraints, which reduces the size of the chart in a different way. With this model, their best

performance figure of 87.24% F-score is attained.

2.6 Maximum Entropy Models

The C&C parser that we have just described, as well as the machine learner that we will

use in Chapter 5, MegaM (Daumé III, 2004), both use a Maximum Entropy model. Berger, Pietra,

and Pietra (1996) describe such models, and we will give a brief description here. The intuition

behind a Maximum Entropy model is to maximise the likelihood of the training data, but to make no

further assumptions that there is no evidence for. That is, the best model will have the most uniform

distribution possible, while still agreeing with the feature distribution observed in the data. Entropy

can be used to measure the uniformity of the distribution, hence the best model will maximise this

value, giving the model its name.

Each 〈feature, class〉 pair in a Maximum Entropy model is assigned a corresponding

weight λ by the training process. The λ values indicate how probable each class is for the fea-

ture. For example, a POS tagger would have a high λ for the word the being a DT and a negative λ

for all other classes. There is no closed-form solution to training a Maximum Entropy model, and

so setting the λ parameters is treated as a standard numerical optimisation problem. Solving this

problem can be done in a number of ways, all of which iteratively move the values estimated by the

model closer to the empirical values observed in the training data. The simplest method is Gener-

alised Iterative Scaling (GIS) (Darroch and Ratcliff, 1972), although convergence is rather slow with

this algorithm. The C&C parser and MegaM both use the faster converging limited memory BFGS

(L-BFGS) algorithm (Nocedal and Wright, 1999).

Once the λ parameters are set, the probability of test example x having the class y can be
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calculated as follows:

p(y|x) =
1
Z

exp(
∑

i

λi fi(x, y)) (2.10)

Z is the sum over all alternatives for y, ensuring a proper probability distribution. The feature

functions f typically return binary values, thus determining which features are active and which of

the λ weights are summed.

There are many advantages to using Maximum Entropy models. Firstly, and unlike in a

Naive Bayes classifier, the model makes no conditional independence assumptions. Related features

can be included in the model with no degradation in performance, as dependent features will share

probability mass between themselves. Secondly, Maximum Entropy models can include a massive

number of features. Feature selection is, in a sense, included by the model, as uninformative features

should receive a weight near zero. Thirdly, features can be arbitrarily complex, and encapsulate any

kind of information. This makes Maximum Entropy models easy to develop and experiment with.

The ability of Maximum Entropy models to efficiently deal with a huge feature space makes them

ideal for NLP tasks.

2.7 Summary

In this chapter, we described why NP structure is not analysed by most statistical parsers.

The Penn Treebank does not annotate the necessary NP structure, which means that most parsers

have no data on which to train or evaluate. This has also affected CCGbank, where the binary

branching CCG grammar is unable to replicate the flat, underspecified NPs of the Penn Treebank.

Incorrect derivations are subsequently created for all left-branching NPs, while NP derivations with

conjunctions are also analysed incorrectly.

We gave a brief description of a number of parsing models, providing a starting point for

when we go into detail in later chapters. The Collins (2003) model is the focus of Chapter 4, while

Chapter 6 presents experiments with the Clark and Curran (2007b) parser. In particular, we will

focus on how these models generate NPs. This information will motivate the experiments that are

performed and help to explain the results that are achieved. Additional background material will be

presented throughout the thesis as needed.
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Chapter 3

Annotating Noun Phrases

The first step to statistical parsing of NPs is to create a gold-standard data set which can

be used for machine learning. This chapter will describe the process of manually annotating such

a corpus of NP structure. This data will be used throughout the thesis, in the parsing experiments

of Chapters 4 and 6 and the NP Bracketing experiments in Chapter 5. Extending the Penn Treebank

annotation scheme and corpus is one of the major contributions of this thesis.

There are a handful of corpora annotated with NP structure already, however these do not

meet our requirements. DepBank (King et al., 2003) fully annotates NPs, as does the reannotated

Briscoe and Carroll (2006) version. However this corpus consists of only 700 sentences. The

Biomedical Information Extraction Project (Kulick et al., 2004) introduces the use of NML nodes to

mark internal NP structure in its Addendum to the Penn Treebank Bracketing Guidelines (Warner et

al., 2004). However, this corpus is specifically focused on biomedical text, rather than newspaper

text. We still base our approach to bracketing NP structure on these biomedical guidelines, as the

grammatical structure being annotated remains similar.

We chose to augment the Wall Street Journal section of the Penn Treebank with the nec-

essary NP structure, as it is the corpus most widely-used in the parsing field for English. This also

meant that the NP information would not need to be imported from a separate model, but could be

included into existing parsers and their statistical models with a minimum of effort.

3.1 Annotation Guidelines

One principle we applied during the augmentation process was to avoid altering the origi-

nal Penn Treebank annotations. This meant that results achieved with the extended corpus would be

33
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comparable to those achieved on the original, as much as possible. We created a set of guidelines in

order to aid in the annotation process and to keep the result consistent and replicable. Appendix A

presents these guidelines in full, however we give a general description of our annotations, together

with a number of examples here.
Our approach is to leave right-branching structures unaltered, while labelled brackets are

inserted around left-branching structures.

(NP (NN world) (NN oil) (NNS prices) )

(NP (NML (NN crude) (NN oil) )

(NNS prices) )

Left and right-branching NPs are now differentiated. Although explicit brackets are not added to
right-branching NPs, they should now be interpreted as having the following implicit structure:

(NP (NN world)

(NODE (NN oil) (NNS prices) ) )

This representation was used in the biomedical guidelines, and has many advantages. By

keeping right-branching structure implicit, the tree does not need to be binarised. Binarisation can

have a harmful effect on parsers using PCFGs, as it reduces the context-sensitivity of the grammar

(Collins, 2003, page 621). It also reduces the amount of clutter in the trees, making them easier

to view and annotate. Right-branching structure can still be added automatically if required, as we

experiment with in Section 4.4.1. However, not inserting it makes the annotator’s task simpler.
The label of the newly created constituent is NML (nominal modifier), as in the example

above, or JJP (adjectival phrase), depending on whether its head is a noun or an adjective. Examples
using the JJP label are shown below:

(NP (JJP (JJ dark) (JJ red) )

(NN car) )

(NP (DT the)

(JJP (JJS fastest) (VBG developing) )

(NNS trends) )

Rather than this separate JJP label, the biomedical treebank replicates the use of the ADJP label in

the original Penn Treebank. We wanted to be able to distinguish the new annotation from the old in

later experiments, which required the creation of this additional label. JJPs can easily be reverted

back to ADJP later on, as will be done in Section 4.2.1, but the reverse would be impossible, because

the separate annotations would not be differentiable.
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Non-base-NPs may also need to be bracketed, as shown below:

(NP-SBJ

(NML (JJ former)

(NAC (NNP Ambassador)

(PP (TO to)

(NP (NNP Costa) (NNP Rica) ) ) ) )

(NNP Francis) (NNP J.) (NNP McNeil) )

In this example, we join former and the NAC node, as he is formerly the Ambassador, not formerly

Mr. McNeil.

Speech marks and brackets are annotated explicitly:

(NP-PRD (DT a)

(NML (‘‘ ‘‘) (JJ long) (NN term) (’’ ’’) )

(NN decision) )

(NP (DT an)

(JJP (-LRB- -LCB-) (VBG offending) (-RRB- -RCB-) )

(NN country) )

NMLs themselves can be nested:

(NP

(NML

(NML (NNP New) (NNP York) )

(NNP Stock) (NNP Exchange) )

(JJ composite) (NN trading) )

This correct bracketing describes composite trading on the Stock Exchange of New York.

Many conjunctions need to be bracketed, as in the following examples:

(NP (DT the)

(NML (NNPS Securities)

(CC and) (NNP Exchange) )

(NNP Commission) )

(NP (PRP$ its)

(JJP (JJ current)

(CC and) (JJ former) )

(NNS ratepayers) )
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Without these brackets, the NP’s implicit structure, as shown below, would be incorrect.

(NP (DT the)

(NODE

(NODE (NNPS Securities) )

(CC and)

(NODE (NNP Exchange) (NNP Commission) ) ) )

The erroneous meaning here is the Securities and the Exchange Commission, rather than the correct

the Securities Commission and the Exchange Commission.

The previous NPs are also good examples showing that we do bracket clear internal struc-

ture in company names. Our argument for doing so is a pragmatic one, similar to the Question

Answering (QA) example given in Section 1.1. Consider a QA question:

What city’s stock exchange fell by over 3% yesterday?

Without a NML bracket around New York, it would not be identifiable as a candidate, and thus the

question would not be answered correctly.

Compare this to a person’s name, which we do not add substructure to, as described

in Section A.2.6. However, this instruction is only to prevent an annotator from trying to decide

whether a first name attaches to a middle name, or directly onto the last name. If a person’s name

was John New York Smith, where New York was a nickname, then the internal structure would be

bracketed.

3.1.1 Difficult Cases

During the annotation process, we encountered a number of NPs that were difficult to
bracket. The main cause of this difficulty was technical jargon, for example in the phrase senior

subordinate reset discount debentures. The Penn Treebank guidelines devote an entire section to
this Financialspeak (Bies et al., 1995, §23). The biomedical guidelines similarly contain some
examples that are difficult for a non-biologist to annotate:

liver cell mutations

p53 gene alterations

ras oncogene expression

polymerase chain reaction

However, even these NPs were simple to bracket for an expert in the biological domain. We did

find that there were relatively few NPs which the annotator clearly understood, but still had difficulty

bracketing. This agrees with our hypothesis in Section 2.2.1, that modifier scope in NPs is resolvable.



Chapter 3: Annotating Noun Phrases 37

For those difficult-to-bracket NPs that were encountered, we bracket what structure is clear

and leave the remainder flat. This is described in Section A.1.2 of our NP annotation guidelines. The

biomedical guidelines (Warner et al., 2004, §1.1.5) also take this approach, which can be compared

to how ambiguous attachment decisions are bracketed in the Penn Treebank. Bies et al. (1995,

§5.2.1) says “the default is to attach the constituent at the highest of the levels where it can be

interpreted”. Section 7.1.1 talks in more detail about the Penn Treebank method for bracketing

ambiguous structure, and how it is relevant to our own annotations.

We also observed a small percentage of semantically indeterminate NPs during our own

annotation process. Hindle and Rooth (1993) noted this problem for the prepositional phrase attach-

ment task. For example, given the following sentence, with the relevant tokens for the prepositional

phrase attachment in bold:

We have not signed a settlement agreement with them.

Hindle and Rooth (1993, page 112) say

The problem. . . is that signing an agreement usually involves two participants

who are also parties to the agreement.

That is, there is a dependency between the preposition and the verb as well as between the

preposition and the noun. Or, semantically, it makes no difference because one implies the other.

The same problem can occur in NPs such as college basketball players, where the players are in

college and they play basketball. These NPs do not fit into the left or right-branching paradigm.

However it did not become clear until after the annotation process that these semantically indeter-

minate NPs should be distinguished from implicitly right-branching ones. Once again, Section 7.1.1

has a fuller discussion on this subject.

3.1.2 Divergences from the Biomedical Guidelines

One notation from the biomedical guidelines that we have not used is the marker *P*, to
denote shared modifiers or heads:

(NP (NP (ADJP-1 bronchial) (NP (NP K-

washings) (NML-1 *P*))

and and

(NP (ADJP-1 *P*) (NP N-

brushings)) (NML-1 ras)))
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Note that *P* is not a trace, as the guidelines explicitly make clear, but a placeholder for the shared
constituent. The *P* notation is also used by the biomedical guidelines to make a distinction be-
tween intersective and disjunctive adjectival modifiers. The former, where the coordinated modifiers
overlap to some degree, form a constituent node:

(NP (ADJP strong and competitive)

athletes)

While the latter, where the sets do not overlap at all, use the *P* placeholder:

(NP (NP cancerous

(NML-1 *P*))

and

(NP (NML non - cancerous)

(NML-1 cells)))

Quantifier scope is discussed in more detail in Reinhart (1997), while Kamp and Partee (1995) look

at the semantic effect when such modifiers are composed.

We have not used the *P* marker in our annotations, as differentiating between inter-

sective and disjunctive adjectives is a subtle semantic distinction that is not part of the syntactic

analysis in this thesis. The Penn Chinese Treebank (Xue et al., 2005) and the Penn Arabic Tree-

bank (Maamouri et al., 2003) do not use *P* either, and the biomedical guidelines themselves point

out that phrases with coordinated modifiers and coordinated heads can’t be fully annotated with this

mechanism. The biomedical guidelines give the example: the N- and K- ras cells and tumors, where

a placeholder cannot be included for each of the four combinations: N- ras cells, N- ras tumors, K-

ras cells and K- ras tumors. Thus we argue that the placeholder is unnecessary, while requiring

extra work of the annotators, and so it has not been applied.

Another difference between the biomedical corpus and our extended Penn Treebank stems

from our principle of not altering pre-existing brackets. The biomedical project is able to improve

the analysis of some treebank structures, as it is annotating a brand new corpus. Hyphenated tokens

were separated, solving difficulties in phrases like New York-based, where we would like to bracket

New York but cannot. Also, NMLs are used instead of NX and NP-internal NAC nodes. These changes

have not been replicated in our NP annotations. Instead, phrases like New York-based remain flat in

our extended Penn Treebank; NMLs have to be inserted around existing NX and NAC nodes; and anno-

tator errors that prevent the correct NP analyses being applied have not been corrected. Section 7.1.2

provides an in-depth discussion of this problem as well as suggesting possible solutions.
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 

* CC * Bill and Ted
$ * * -NONE- $ 1 million *U*
DT * * the red car
PRP$ * * his red car
* * POS (NML John Smith) ’s

Table 3.1: Unambiguous POS tag patterns

3.2 Annotation Tool

A bracketing tool was developed to identify ambiguous NPs and present them to the anno-

tator. An ambiguous NP is any (possibly non-base) NP with three or more contiguous children that

are either single words, i.e. leaves, or nested NPs. Some common parse tree patterns are unambigu-

ous, and so were filtered out, that is, they were not shown to the annotator. The entire list of patterns

is shown in Table 3.1. The bottom-most pattern in the table is left-branching and so a NML bracket is

automatically inserted around the first two tokens, as shown in the example.

In order to better inform the annotator, the tool also displayed the entire sentence sur-

rounding the ambiguous NP. During the annotation process, most NPs could be bracketed without

specifically reading this information, because the NP structure was clear and/or because the anno-

tator already had some idea of the article’s content from the NPs (and surrounding context) shown

previously. In those cases where the surrounding sentence provided insufficient context for disam-

biguation, it was typically true that no amount of surrounding context was informative. For these

NPs, the principle of leaving difficult cases flat was applied.

3.2.1 Automatic Bracketing Suggestions

We designed the bracketing tool to automatically suggest a bracketing, using rules based

mostly on named entity tags. These NER tags are drawn from the BBN Pronoun Coreference and

Entity Type Corpus (Weischedel and Brunstein, 2005). This corpus of gold-standard data annotates

28 different entity tags, some of which are shown in Table 3.2. Some of the NER tags have subcat-

egories, for example, GPE is divided into Country, City, State/Province and Other, however we

only use the coarse tags for the annotation tool suggestions.

This NER information is useful, for example in bracketing the NP Air Force contract. Be-

cause Air Force is marked as an organisation, the tool can correctly suggest that the NP is left-
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  

PERSON Proper names of people George Bush, Mickey Mouse
PER DESC Descriptions of people vice president, Chief Executive
NORP Nationality, Other, Religion or Political Brazilian, Catholic, Arab

ORGANIZATION Names of organizations FBI, CNN, Taliban
ORG DESC Entities describing organizations offices, school, party
GPE Countries, cities, states and other places Sydney, Australia

GPE DESC Descriptions of countries and other places nation, countries
LOCATION Named locations Silicon Valley, Europe, Pacific
DATE A date or period of time yesterday, March 30

CARDINAL Numbers, including decimals and fractions 4000, half, 18.20
SUBSTANCE Chemicals, elements, drugs and foods beef, tea, uranium
WORK OF ART Books, songs and other creations Nobel Prize, The Bible

Table 3.2: Some of the named entity categories in the BBN corpus

branching. Using NER tags is more informative than simply looking for NNP POS tags, as there are

many common nouns that are entities, e.g. vice president is a PER DESC.

The tool also suggests bracketings based on the annotator’s previous decisions. Whenever

the annotator inserts a bracket, the current NP and its structure, together with the label and placement

of the new bracket, is stored. Then, whenever the same NP and structure is seen in the future, the

same bracketing is suggested. This source of suggestions is particularly important, as it helps to

keep the annotator consistent.

Other suggestions are based on gazetteers of common company and person name endings.

Preliminary lists were generated automatically by searching for the most frequently occurring final

tokens in the relevant named entities. Certain incorrect items were then removed from the lists by

manual inspection. Some of the most common examples are Co. and Inc for companies and Jr and

III for people’s names. Full lists are presented in Appendix B.

The guidelines also mandate the insertion of nodes around brackets and speech marks.

These are detected automatically and included in the suggestion system accordingly. Unbalanced

quotes do not result in any suggestions.

The last source of suggestions is final possessives, as in John Smith ’s. In these cases, a

bracket around the possessor John Smith is suggested.
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3.3 Annotation Process

Once the guidelines and annotation tool were complete, annotation of the corpus began. I1

manually annotated the entire Wall Street Journal section of the Penn Treebank. Matthew Honnibal2

annotated Section 23 in an additional, independent pass. Matthew is a graduate in liguistics, and we

were both Computational Linguistics PhD students at the University of Sydney. Matthew and my

supervisor, James Curran, also contributed to how certain NP constructions were bracketed through

the many discussions we had.

Having a second annotator helped to ensure the reliability of the annotations, by allowing

inter-annotator agreement to be measured (see Section 3.4.1) and also maximised the quality of the

section used for parser testing. Over 60% of sentences in the corpus were manually examined as

part of the annotation process.

3.3.1 Annotation Time

Initially, over nine hours of continuous annotation were required per section of the Tree-

bank. However, with practice this was reduced to about three hours per section. Each section

contains around 2,500 ambiguous NPs, i.e. annotating took approximately five seconds per NP.

Most NPs required no bracketing, or fitted into a standard pattern which the annotator soon became

accustomed to, and hence the task could be performed quite quickly.

As a comparison, during the original creation of the Treebank, annotators performed at

375–475 words per hour after a few weeks, and increased to about 1000 words per hour after gaining

more experience (Marcus, Santorini, and Marcinkiewicz, 1993). For our annotations, we expected

to be in the middle of this range, as the task was not large enough to gain more than a month’s

experience, or perhaps faster as there is less structure to annotate. The actual figure, calculated by

counting each word in every NP shown, is around 800 words per hour. This matches the expectation

quite well.

3.3.2 Annotation Post-Processes

In order to increase the reliability of the corpus, a number of post-processes have been

carried out since the annotation was first completed. Firstly, 915 NPs were marked by the annotator

as difficult during the main annotation phase. In discussion with two other computational linguists,

1To make things perfectly clear, the first-person pronoun is used here, rather than an editorial We.
2To who I am very grateful.
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the best bracketing for these NPs was determined. Secondly, 241 phrases that occurred numerous

times and were non-trivial to bracket, e.g. London Interbank Offered Rate, were identified. An

extra pass was made through the corpus, ensuring that every instance of these phrases was bracketed

consistently.

The main annotator made a second pass over the corpus in order to change the standard

bracketing for conjunctions, speech marks and brackets. These changes, from version 0.9 to 1.0 of

the guidelines, were aimed at increasing consistency and bringing our annotations more in line with

the biomedical guidelines (Warner et al., 2004). For example, royalty and rock stars was previously

left flat, as the implicit right-branching structure correctly indicates that stars is not shared. However

if the conjuncts were in the reverse order, rock stars and royalty, then a bracket would need to be

inserted around rock stars. This inconsistency, where a reordered phrase with the same meaning

was given a different bracketing, was removed by applying a bracket to both conjuncts in all cases.

This change meant that there were NML nodes spanning only a single token in version 1.0, whereas

in version 0.9 there were not.

In this second pass, only those NPs that had at least one bracket inserted during the first

pass were manually inspected. The exception to this was NPs with a conjunction followed by mul-

tiple tokens, such as president and chief executive officer, which also needed to be reannotated. By

only reanalysing this subset of ambiguous NPs, the annotator’s workload was reduced, while still

allowing for a number of errors to be noted and corrected. This second phase of annotation was

carried out in less than a week.
Lastly, we identified all NPs with the same word sequence and checked that they were

always bracketed identically. Those that differed from the majority bracketing were manually rein-
spected and corrected as necessary. However, even after this process, there were still 48 word
sequences by type (201 by token) that were inconsistent. In these remaining cases, such as the NP

below:

(NP-TMP (NML (NNP Nov.) (CD 15))

(, ,)

(CD 1999))

we were inconsistent in inserting the NML node because the Penn Treebank sometimes already has

the structure annotated under an NP node. Hogan (2007) notes the same problem with conjunctions.

Although the Penn Treebank guidelines say that coordinate NPs with only nominal modifiers should

be left flat, Hogan finds that 21.3% of these NPs are annotated with some internal structure. Since

we do not make changes to existing brackets, we cannot correct these cases. We only change the
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 % ( ) % ( )
NPs 432,639 – 100.00

Ambiguous NPs 60,959 14.09 14.09
Annotated NPs 23,129 37.94 5.35
NML nodes 26,372 114.02 6.10
JJP nodes 894 3.87 0.21

Table 3.3: Counting the corpus

inconsistency from flat or structured to labelled NML or NP. Unfortunately, this will cause difficulty

for a parser deciding which label to use, as we will find in Section 4.6.

3.4 Corpus Analysis

Table 3.3 presents an analysis of the NP structure that has been added to the Penn Tree-

bank. There are over 430 thousand NPs in the corpus, over 60 thousand of which were manually

inspected by the annotator. Over 60% of these NPs required no bracketing. These are not all right-

branching NPs, as the count is affected by appositions, prepositional phrases, and other non-base-NP

structures that were not annotated.
There are more NML nodes than annotated NPs because of cases where multiple new brack-

ets are added to a single NP. There are 2,867 such multiply bracketed NPs, comprising 4.70% of all
ambiguous NPs or 12.40% of annotated NPs. The most nested left-branching NP has a depth of 4,
one example of which is:

(NP

(NP

(NML (NNP Boston) (NNP Co.) )

(POS ’s) )

(NML

(NML (NNP Boston)

(NML

(NML (NNP Safe) (NNP Deposit) )

(CC &)

(NML (NNP Trust) ) ) )

(NNP Co.) )

(NN subsidiary) )

Quirk et al. (1985, page 1338) notes that NPs rarely have more than three or four premodifiers,
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    

3557 NNP NNP NNP John A. Smith
2453 DT NN POS (the dog) ’s

NP
1693 JJ NN NNS high interest rates
1663 NNP NNP POS (John Smith) ’s
8605 NNP NNP (John Smith) Jr.
2475 DT NN (the dog) ’s

NML
1652 NNP NNP NNP (A. B. C.) Corp
1486 NN NN (interest rate) rises
162 ‘‘ JJ ’’ (“ smart ”) cars
120 JJ CC JJ (big and red) apples

JJP
112 RB JJ (very high) rates
78 JJ JJ (dark red) car

Table 3.4: Common POS tag sequences

which puts the same limit on nested structures that we have found here. There are only four NPs

with this maximal depth in the entire corpus.

Another finding in Table 3.3 is that JJP nodes form a clear minority, accounting for a

very small amount of the total brackets. To compare, if we count the number of existing NP and

ADJP nodes in ambiguous NPs, we find 32,772 and 579 brackets respectively. These figures are quite

similar to the number of NML and JJP nodes we have added, with adjectival modifiers occurring

much less frequently in both cases. These result show that the annotation process has introduced

almost as much structural information into NPs as there was in the original Penn Treebank.

In Table 3.4, the most common POS tag sequences for NP, NML and JJP nodes are shown.

An example is given showing typical words that match the POS tags. For NML and JJP, the example

shows the complete NP node, rather than just the NML or JJP bracket. It is interesting to note that

RB JJ sequences are annotation errors in the original Treebank, and should have an ADJP bracket

already.

3.4.1 Inter-Annotator Agreement

To determine the correctness and consistency of our corpus, we calculated inter-annotator

agreement on Section 23. Note that the second annotator was following version 0.9 of the bracketing

guidelines, and since then they have been updated to version 1.0. Because of this, we can only

analyse the 0.9 version of the corpus, i.e. before the primary annotator made the second pass
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.  -
Brackets 89.17 87.50 88.33
Dependencies 96.40 96.40 96.40
Brackets, revised 97.56 98.03 97.79
Dependencies, revised 99.27 99.27 99.27

Table 3.5: Agreement between annotators

mentioned in Section 3.3.2.3 This is not problematic, as the definition of what constitutes a NML

or JJP node has not changed, only their representation in the corpus. That is, the dependencies

that can be drawn from the NPs remain the same. This can be seen in the example mentioned

earlier, royalty and rock stars, where the unbracketed 0.9 version leaves implicit what the version

1.0 scheme makes explicit.

A standard inter-annotator agreement measure such as Kappa is difficult to apply to our
data, as the many NPs where no bracket is added create zeroes that make the ratios uninformative.
Instead, we measure the proportion of matching brackets and dependencies between annotators, by
taking one as a gold-standard and then calculating precision, recall and F-score. Table 3.5 shows
the results, both before and after cases of disagreement were discussed and the annotations revised.
The number of dependencies is fixed by the length of the NP, so the dependency precision and recall
are the same. Counting matched brackets is a harsher evaluation, as there are many NPs that both
annotators agree should have no additional bracketing, which are not taken into account by the
metric. For example, consider an NP that both annotators agree is right-branching.

(NP (NN world) (NN oil) (NNS prices))

The agreement score is not increased by the matched bracket evaluation here, as there is no NML

or JJP bracket. A dependency score on the other hand, would find two matching dependencies

(between world and prices and oil and prices), increasing the inter-annotator agreement measure

accordingly.

We can also look at exact matching on NPs, where the annotators originally agreed in 2667

of 2908 cases (91.71%), and after revision, in 2864 of 2908 cases (98.49%). Again, this is a harsher

evaluation as partial agreement is not taken into account.

All of these inter-annotator figures are at a high level, thus demonstrating that the task of

identifying nominal modifier scope can be performed consistently by multiple annotators. We have

3Although the subsequent consistency checks described there had been carried out, and were applied again afterwards.
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attained high agreement rates with all three measures, and found that even difficult cases could be

resolved by a relatively short discussion.

When the annotators discussed how differing brackets should be revised, we observed

that most of the disagreements that occurred were a result of the second annotator’s inexperience

with the task. While the first annotator had already learnt from the majority of the corpus, this was

the second annotator’s first attempt at the task. Furthermore, we specifically avoided helping the

second annotator, aside from going through the guidelines briefly, in order to avoid creating bias.

Thus, the agreement figures we have given probably underestimate what more practiced annotators

would achieve.
The bracketing guidelines were revised as a result of the post-annotation discussion be-

tween the annotators, to be more specific on those cases where the disagreements had occurred. The
disagreements after revision occurred for a small number of repeated instances, such as this case:

(NP (NP (NNP Goldman)

(NML (NNP Goldman) (, ,)

(, ,) (NNP Sachs)

(NNP Sachs) ) (CC &) (NNP Co) )

(CC &) (NNP Co) )

The second annotator felt that Goldman , Sachs should form its own NML constituent, while the first

annotator did not.

We would like to be able to compare our inter-annotator agreement to that achieved in

the original Penn Treebank project. Marcus, Santorini, and Marcinkiewicz (1993) describe a 3%

estimated error rate for their POS tag annotations, but unfortunately, no figure is given for bracketing

error rates. As such, a meaningful comparison between the NP annotations described here and the

original Penn Treebank cannot be made.

3.4.2 DepBank Agreement

Another approach to measuring annotator reliability is to compare with an independently

annotated corpus of the same text. We used the Briscoe and Carroll (2006) version of the PARC700

Dependency Bank (King et al., 2003). These 560 sentences from Section 23 of the Penn Treebank

are annotated with labelled dependencies, and are used to evaluate the RASP parser.

This is not a trivial task, and a significant effort is required to compare our brackets to

DepBank dependencies. We map the brackets to dependencies by finding the head of the NP, using

the Collins (2003) head finding rules, and then creating a dependency between each other child’s
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  %
By dependency 1027 1114 92.19
By noun phrase 358 433 82.68
By dependency,
only annotated NPs

476 541 87.99

By noun phrase,
only annotated NPs

150 203 73.89

Table 3.6: Agreement with DepBank

head and this head. We do not attempt to match the labels used in the Briscoe and Carroll reanno-

tation, and so this is an unlabelled comparison. The results are shown in Table 3.6. Once again the

dependency numbers are higher than those at the NP level.

Matched brackets cannot be evaluated as before, because the DepBank representation uses

dependencies. Converting these to a bracketed representation would be even more complex than the

translation we have carried out from Penn Treebank brackets to dependencies. Instead, we supply

a figure for only those cases where annotations have been inserted, which is similar in effect. This

can be seen in the world oil prices example above, where there is no matched bracket to evaluate,

because no brackets have been added. As expected, these are more difficult cases and the score is

not as high.

The results of this analysis are quite positive, however in actuality, they are even bet-

ter than they appear. Clark and Curran (2007a) also performed a cross-formalism evaluation with

DepBank, finding that their conversion method only achieved 84.76% F-score on labelled depen-

dencies, even when using gold-standard data. In the same way, our agreement figures could not

possibly reach 100%, as the automatic conversion between the two corpora does not work perfectly.

Accordingly, the errors were manually investigated to determine their cause, with the results shown

in Table 3.7.

True disagreement between the Briscoe and Carroll (2006) annotations and ours is only

the second most common cause. In the example, the complete sentence is: These “clean-bank”

transactions leave the bulk of bad assets, mostly real estate, with the government, to be sold later.

We annotated mostly real estate as a right-branching NP, i.e. with dependencies between mostly and

estate and real and estate. Briscoe and Carroll form a dependency between mostly and real.

The largest source of disagreements arises from how company names are bracketed.

While we have always separated the company name from postmodifiers such as Corp and Inc,
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    NP

Company name postmodifier 26 Twenty-First Securities Corp
True disagreement 25 mostly real estate
Head finding error 21 Skippy the Kangaroo
Determiner + quantifier 6 the last 45 minutes
No DepBank dependency 5 other OTC issues
Penn Treebank error 4 a shareholders ’

Table 3.7: Disagreement analysis with DepBank

DepBank does not in most cases. The other large cause of annotation discrepancies comes as a

result of the head-finding rules. In these cases, the DepBank dependency will often be in the oppo-

site direction to the Penn Treebank one, or the head found by Collins’ rules will be incorrect. For

example, in the NP Skippy the Kangaroo, the Collins’ head-finding rules identify Kangaroo as the

head, while the DepBank head is Skippy. In both cases, a dependency between the two words is

created, however the direction is different and so no match is found.

Other repeated errors come from phrases with a determiner followed by a quantifier, e.g.

the last in the last year and a few in a few exact questions. A dependency between the two tokens is

present in DepBank, while the NP was left flat in our annotations.

Some tokens do not form dependencies in the Briscoe and Carroll (2006) reannotation.

In the NP other OTC issues for example, there is no dependency that mentions other. Although the

original DepBank annotations (King et al., 2003) include the following dependency: adjunct(issue,

other), Briscoe and Carroll only form this dependency: (ncmod issues OTC). It is unclear why

other is not included in the reannotated corpus.
Finally, there are errors in the Penn Treebank which make finding a matching dependency

impossible. For example, consider the following bracketing:

(NP

(NP (DT a) (NNS shareholders) (POS ’) )

(NN meeting) )

This incorrect annotation suggests that the meeting is for a single shareholder, rather than forming a

dependency between a and meeting as it should. As no Penn Treebank brackets were altered as part

of the NP augmentation process, this problem could not be resolved. As a result, although we would

like to agree with the DepBank annotation here, there is no possible bracketing which makes it so.

Even without taking these problems into account, these results show that consistently and
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    -
NER only 94.16 32.57 48.40
All 94.84 54.86 69.51
−NER 97.46 41.31 58.02
−Company and name endings 94.55 41.42 57.60
−Brackets and speech marks 95.03 50.62 66.05
−Possessives 94.51 50.95 66.20
All, Section 00 95.64 59.36 73.25
All, Section 23 94.29 56.81 70.90

Table 3.8: Suggestion rule performance

correctly bracketing noun phrase structure is possible, and that inter-annotator agreement is at an

excellent level.

3.5 Evaluating the Annotation Tool’s Suggestions

This last analysis of our corpus evaluates the annotation tool’s suggestion feature. This

will serve as a baseline for NP bracketing performance in Chapter 4, and will be a much stronger

baseline than making all NPs left or right-branching. A left-branching baseline would perform

poorly, as Table 3.3 showed that only 38% of NPs have left-branching structure. A right-branching

baseline would be even worse as no brackets would be inserted, resulting in an F-score of 0.0%.

The annotation tool was run over the entire Penn Treebank in its original state. Sug-

gestions were automatically followed where possible and no manual changes were made. All the

suggestion rules (described in Section 3.2.1) were used, except for those from the annotator’s previ-

ous bracketings, as these would not be available unless the annotation had already been completed.

The results in Table 3.8 show that in all cases, the suggestion rules have high precision and low

recall. This indicates that the rules are helpful, but only in certain cases. NER-based features, for ex-

ample, are only helpful in NPs that dominate named entities, although whenever they can be applied,

they are almost always correct.

The subtractive analysis shows that each of the suggestion types increases performance,

with NER and company and name endings providing the biggest gains. Surprisingly, precision im-

proves with the removal of the NER suggestion type. We suspect that this is caused by some of the

annotation choices in the BBN corpus that do not align well with the parse structure. For exam-
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ple, Mr in Mr Vinken has no NER tag, rather than PERSON; while all three tokens in a few years are

annotated as DATE.

Note that all of the results in Table 3.8, except for the last two lines, are evaluating over

the entire corpus, as there was no need for training data. With this baseline, we have set a significant

challenge for finding further improvement.

3.6 Summary

The results of this chapter have demonstrated that consistent annotation of NP structure is

indeed possible. We have verified the statement of Quirk et al. (1985, page 1343) “that obscurity in

premodification exists only for the hearer or reader who is unfamiliar with the subject concerned”

and after annotating the entire corpus, we are quite familiar with its subject matter. The quality

of our annotations has also been demonstrated by measuring inter-annotator agreement in multiple

ways. The figures we calculated were very high, both when comparing against a second annotator

and against the independently annotated DepBank. This chapter has also shown how the suggestion

feature of the annotation tool supplies a strong baseline on which to improve.

The construction of this corpus was made possible by the principled approach we applied

while building it. Having a well-defined set of guidelines based on an existing, successful project

has allowed the creation of a large-scale, consistent corpus of NP annotations. We are now ready to

begin experimenting with the extended Penn Treebank. Indeed, this corpus makes possible all of

the experiments in the following chapters and therefore allows NP structure to be recovered by Penn

Treebank-trained parsers for the first time.



Chapter 4

Parsing with Collins’ Models

In the previous chapter, we described the augmentation of the Penn Treebank with NP

structure. This extended corpus will now be used as the data set for parsing experiments. We use

the Bikel (2004) implementation of the Collins (2003) model, as it is a widely-used and well-known

parser with state-of-the-art performance. It is important to make the distinction between Collins’

and Bikel’s parsers, as they are not identical. The same is true for their underlying models, which

again have slight differences. We use Bikel’s parser in all of our experiments, but will still refer to

Collins’ models for the most part.

Collins’ models generate NPs in a different way to all other constituents, which is particu-

larly relevant for our experiments. Section 4.1.2 will describe these differences and why they were

implemented. This will be important later in the chapter, where we make alterations to the model

and analyse its performance.

4.1 Collins’ Models

All of the Collins (2003) models use a Probabilistic Context Free Grammar (PCFG), with

the Penn Treebank training data used to define the grammar and to estimate the probabilities of the

grammar rules being used. The CKY algorithm is used to find the optimal tree for each sentence.

More formally, the conditional probability of each individual rule LHS → RHS is

determined by taking counts from the corpus:

P(RHS |LHS ) =
count(LHS → RHS )

count(LHS )
(4.1)

The product of the probability of individual rules can then be used to calculate the joint probability

51
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S

hhhhhhhhhhhhh

VVVVVVVVVVVVV

NP

qqqqqqq
MMMMMMM NP VP

qqqqqqq
MMMMMMM

JJ NN NNP VBD NNP

Last week IBM bought Lotus

Figure 4.1: Example parse tree from Collins (2003)

of a tree T with a given sentence S :

P(T, S ) =

n∏
i=1

P(RHS i|LHS i) (4.2)

And the optimal tree T ∗ maximises this probability:

T ∗ = argmax
T

P(T |S ) = argmax
T

P(T, S )
P(S )

= argmax
T

P(T, S ) (4.3)

4.1.1 Lexicalisation

The grammar is also lexicalised, i.e. each non-terminal is associated with a head token and

its POS tag. The head is determined using the rules in Collins (1999, Appendix A). Lexicalisation

can be very informative, allowing a better parsing decision to be made. However, in practice it also

creates a sparse data problem. Collins (2003, page 594) gives the example in Figure 4.1, where the

top-level rule S → NP NP VP occurs often enough that statistics from the corpus provide a reliable

estimate of its frequency. This rule is put into Equation 4.1 to calculate the estimate:

P(NP NP VP|S) =
count(S→ NP NP VP)

count(S)
(4.4)

However, when the rule is lexicalised with words and POS tags it becomes:

S(bought, VBD)→ NP(week, NN) NP(IBM, NNP) VP(bought, VBD) (4.5)

and its probability is:

P(NP(week, NN) NP(IBM, NNP) VP(bought, VBD) | S(bought, VBD)) =

count(S(bought, VBD)→ NP(week, NN) NP(IBM, NNP) VP(bought, VBD)
count(S(bought, VBD))

(4.6)
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The problem here is that even though week, IBM and bought are all reasonably common words and

the POS tags are similarly frequent, the number of times that this lexicalised rule occurs is still very

low. For most rules, the numerator in Equation 4.6 is likely to be zero, meaning that all rules will

appear improbable. As a result, the statistical model that is built will not perform well.

In order to get more reasonable estimates, Collins (2003) splits the generation probabili-

ties into smaller steps, instead of calculating the probability of the entire rule. Note that each rule

can be framed as follows:

P(h)→ Ln(ln) . . . L1(l1)H(h)R1(r1) . . .Rm(rm) (4.7)

where H is the head child, Ln(ln) . . . L1(l1) are its left modifiers and R1(r1) . . .Rm(rm) are its right

modifiers. Making independence assumptions between the modifiers and then using the chain rule

yields the following expressions:

Ph(H|Parent, h) (4.8)∏
i=1...n+1 Pl(Li(li)|Parent,H, h) (4.9)∏

i=1...m+1 Pr(Ri(ri)|Parent,H, h) (4.10)

The head is generated first, then the left and right modifiers, which are conditioned on the head

but not on any other modifiers. A special STOP symbol is also introduced (the n + 1th and m + 1th

modifiers), which is generated when there are no more modifiers to the left or right.

Going back to the example in Figure 4.1, the probability of the rule would be calculated

as the product of five individual terms, each of which will occur often enough in the corpus to give

a reliable estimate.

P(NP(week, NN) NP(IBM, NNP) VP(bought, VBD) | S(bought, VBD)) =

Ph(VP | S, 〈bought, VBD〉) ×

Pl(NP(IBM, NNP) | S, VP, 〈bought, VBD〉) ×

Pl(NP(week, NN) | S, VP, 〈bought, VBD〉) ×

Pl(STOP | S, VP, 〈bought, VBD〉) ×

Pr(STOP | S, VP, 〈bought, VBD〉) (4.11)

The resulting probability will thus be more effective than that calculated using one very large rule.

This is a key part of Collins’ models, allowing lexical information to be included while still calcu-

lating useful probability estimates.
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4.1.2 Generating NPs

For base-NPs, the parser generates modifiers using a slightly different model. Instead of

conditioning on the head, the current modifier is dependent on the previous modifier, resulting in

what is almost a bigram model. Formally, equations 4.9 and 4.10 above are changed as shown

below: ∏
i=1...n+1

Pl(Li(li)|Parent, Li−1(li−1)) (4.12)∏
i=1...m+1

Pr(Ri(ri)|Parent,Ri−1(ri−1)) (4.13)

There are a few reasons given by Collins for this. Most relevant for this work, is that

because the Penn Treebank does not fully bracket NPs, the head is unreliable. When generating

crude in the NP crude oil prices, we would want to condition on oil, the true head of the internal NP

structure. However, prices is the head that would be found. Using the NP submodel thus results in

the correct behaviour. As Bikel (2004) notes, the model is not conditioning on the previous modifier

instead of the head, the model is treating the previous modifier as the head.

With the augmented Penn Treebank that we have created, the true head can now be iden-

tified. This may remove the need to condition on the previous modifier, and will be experimented

with in Section 4.3.

The separate NP submodel also allows the parser to learn NP boundaries effectively, i.e.

that it is rare for words to precede a determiner in an NP. Collins (2003, page 602) gives the example

Yesterday the dog barked, where conditioning on the head of the NP, dog, results in incorrectly

generating Yesterday as part of the NP. On the other hand, if the model is conditioning on the

previous modifier, the, then the correct STOP category is much more likely to be generated, as words

do not often come before the in an NP.

Collins also notes that a separate X-bar level is helpful for the parser’s performance. For
this reason, and to implement the separate base-NP submodel, a preprocessing step is taken wherein
NP brackets that do not dominate any other non-possessive NP nodes are relabelled as NPB. For
consistency, an extra NP bracket is inserted around NPB nodes not already dominated by an NP. These
NPB nodes are removed before evaluation. An example of this transformation can be seen below:

(S (S

(NP (DT The) (NN dog) ) (NP

(VP (VBZ barks) ) ) (NPB (DT The) (NN dog) ) )

(VP (VBZ barks) ) )
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4.1.3 Extensions to the Basic Model

Collins (2003) describes a number of additions to the model, which add back some of

the information lost by the independence assumptions made in Section 4.1.1. The first is a distance

measure, which aims to predispose the model to right-branching structure and favour modification

by the most recent verb. Equations 4.9 and 4.10 are altered to include a distance function:∏
i=1...n+1

Pl(Li(li)|Parent, h,H, distancel(i − 1)) (4.14)∏
i=1...m+1

Pr(Ri(ri)|Parent, h,H, distancer(i − 1)) (4.15)

which looks at the surface string of the previous modifiers. The two pieces of information carried

by distancel and distancer are whether or not the string is empty, and whether or not it contains a

verb. These allow the model to learn the biases mentioned above. This is Collins’ Model 1.

Collins’ Model 2 makes use of subcategorisation frames, which help the model differen-

tiate between adjuncts and complements. Collins identifies which is which using various heuristics

based on the constituent labels and the Treebank II semantic tags: DIR, LOC, TMP, etc. This informa-

tion is included in the model as an extra step between generating the head and the modifiers. Left

and right subcategorisation frames, LC and RC, specify the complements required and are generated

with the following probabilities:

Plc(LC|Parent, h,H) (4.16)

Prc(RC|Parent, h,H) (4.17)

These values are then included in the generation of the left and right modifiers:∏
i=1...n+1

Pl(Li(li)|Parent, h,H, distancel(i − 1), LC) (4.18)∏
i=1...m+1

Pr(Ri(ri)|Parent, h,H, distancer(i − 1),RC) (4.19)

This is the most-widely used of Collins’ models and the one that we experiment with.

Collins’ Model 3 adds support for traces and Wh-movement, using a mechanism similar

to that used in Generalized Phrase Structure Grammar (GPSG) (Gazdar et al., 1985). As with the

subcategorisation frames, this model introduces a new parameter which is generated (conditioned

on the head) and then used in the subsequent generation of the modifiers. This gap parameter serves

to propagate the trace through the tree. When a gap has been probabilistically determined, it is

added to the parameter. A trace will then be generated further down in the tree.
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None of these extensions are particularly relevant for parsing NPs. The distance features

for example are made entirely ineffectual by treating the previous modifier as the head. This means

that they will always have the same values: the surface string is always empty and never contains

a verb. Because of this, we have not described the additional terms in great detail. However, it is

important to note the measures that must be taken in order to add new information sources to the

model.

Coordination

Collins’ models have difficulties with coordination, as the head-finding rules and prob-

ability estimates do not handle multiple heads. The independence assumptions that are necessary

to allow lexicalisation also remove the information that is required to model coordinate structures

well. As a result, constituents with unbalanced conjunctions, such as NP CC and NP CC NP NP, are

given too much probability mass.

Collins (1999) introduces a solution to this problem, generating the conjunct and the fol-

lowing constituent together. For each constituent, a binary flag is generated. If the flag is true, then

an additional step is taken which creates the conjunct node. An extra term is added to the product of

rule probabilities, alongside those in Equation 4.11. This parameter Pα is conditioned on the words

being coordinated, their constituent labels and the resulting constituent label. For example:

Pα(CC, and|Bill,Ted, NP, NP, NP) (4.20)

Punctuation

One deficiency of the original Collins (1997) model is that it did not generate punctuation

at all, ignoring the information that it can provide. Collins (1999) takes some measures towards

including punctuation, generating commas and colons, although not in the same way as other con-

stituents are. Other punctuation marks are still ignored, as are any punctuation marks that begin or

end a sentence. The remaining commas and colons are raised as high in the tree as possible, which

means they always occur between constituents. Figure 4.2 shows an example of the process taken

from Collins (2003, page 604). Once this transformation is performed, punctuation is generated

in the same way as coordination. A flag is generated with every constituent, and when it is true,

an additional term is included in the calculation of the rule probability. The punctuation flag is

conditioned on the same variables as the coordination flag. An example is shown below:

Pp(comma, comma|Vinken, old, NP, NPB, ADJP) (4.21)
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(a) (b)
S

eeeeeeeeeeeeeeeeeee

MMMMMMM

NP

hhhhhhhhhhhhh

qqqqqqq
MMMMMMM

VVVVVVVVVVVVV VP .

NPB , ADJP ,

S

hhhhhhhhhhhhh
MMMMMMM

NP

qqqqqqq
MMMMMMM , VP

NPB , ADJP

Figure 4.2: (a) Before punctuation preprocessing (b) After punctuation transformation

The standard evaluation used by Collins’ and most other researchers since, actually ig-

nores punctuation entirely. This may be because speech marks in particular were given the lowest

priority in the Treebank and are thus inconsistent. The bracketing guidelines (Bies et al., 1995, page

54) say:

. . . [speech marks] just get yanked around by whatever is inside them.

They are at the very bottom of the pecking order.

Thus, the addition of punctuation to Collins’ model is not so that they are recovered better, but

to increase the model’s ability to recover other structures using the information that punctuation

provides.

Bikel’s treatment of coordination and punctuation

The two previous sections have described the treatment of coordination and punctuation

in Collins’ models. Bikel (2004, §3.5.4) points out that this approach causes the model to be in-

consistent, as the number of intervening conjunctive items is not taken into account. This means

that there are an infinite number of sentence/tree pairs (with different amounts of coordination and

punctuation) all of which must be assigned some probability mass. This causes the sum of the

probability of all trees to diverge.

To solve this problem, Bikel implements a different solution that generates conjunctions
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and punctuation in the same manner as other constituents. A mapping function is used:

δ(Mi) =



+START+ if i = 0

CC if Mi = CC

+PUNC+ if Mi = , or Mi = :

+OTHER+ otherwise

(4.22)

where Mi is a left or right modifier. This function is then included in the conditioning context, rather

than as a separate parameter class as in Collins’ models. That is, Equations 4.9 and 4.10 are altered

as shown shown below: ∏
i=1...n+1

Pm(Mi(mi)|Parent,H, h, δ(Mi−1), side) (4.23)

where side indicates whether the modifier is to the left or right of the head. This approach properly

estimates the joint probability for coordination and punctuation, without causing the model to be

inconsistent.

4.2 Initial Experiments

To begin with, we compare the parser’s performance on the original Penn Treebank and

the new NML and JJP bracketed version. We report the standard Parseval measures (Black et al.,

1991) labelled bracket precision, recall and F-scores over all sentences. F-score is the harmonic

mean of precision and recall: F = 2PR
P+R . Both the label and the placement of the bracket must be

correct, although we follow Collins (2003) in ignoring punctuation.

As is the standard split, Sections 02–21 are used for training, Section 00 for development,

and testing is carried out on Section 23. Table 4.1 shows the results on Section 00. The first row

comes from training and evaluating on the original Penn Treebank, while the next three are all

using the extended NP corpus. The first of these, Original structure, evaluates only the brackets

that existed before the NP augmentation. That is, the NML and JJP brackets are removed before

calculating these figures, in the same way that the NPB brackets added as part of Collins’ parsing

process are excised. The next figures, for NML and JJP brackets only, work in the opposite manner,

with all brackets besides NML and JJP being ignored. The final row shows the results when all of the

brackets — NMLs, JJPs and the original structure — are evaluated.

These figures supply a more detailed picture of how performance has changed, showing

that although the new brackets make parsing marginally more difficult overall (by about 0.5% in
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  -
Original PTB 88.88 88.85 88.86
Original structure 88.81 88.88 88.85
NML and JJP brackets only 76.32 60.42 67.44
All brackets 88.55 88.15 88.35

Table 4.1: Parsing performance, Section 00

F-score), accuracy on the original structure is only negligibly worse. The new NML and JJP brackets

are the cause of the performance drop, with an F-score more than 20% lower than the overall figure.

The all-brackets result compares well to the original Penn Treebank model, as the latter is

not recovering or being evaluated on NP structure and as such, has a much easier task. However the

parser’s performance on NML and JJP brackets is surprisingly poor. Indeed, the figure of 67.44% is

over 5% lower than the baseline established using the annotation tool’s suggestions (see Table 3.8).

And even though the suggestions were in part based on NER information that the parser does not

possess, this still demonstrates the difficulty it has in bracketing NPs. The rest of this chapter will

describe a number of attempts to improve the parser’s performance, by altering the data being used

and the parser model itself.

4.2.1 Relabelling NML and JJP

The data that Collins’ model was originally designed for did not include NML or JJP brack-

ets and these new labels could cause problems. For example, head-finding for these constituents is

undefined. Further, changing the structure of NPs (which are already treated differently in many as-

pects of Collins’ model) also has deeper implications, as we shall experiment with in Section 4.4. In

an attempt to remove any complications introduced by the new labels, we ran an experiment where

the new NML and JJP labels were relabelled as NP and ADJP. These are the labels that would be given

if NPs were originally bracketed with the rest of the Penn Treebank. This approach is also easy to

implement, and negates the need for any change to the parser itself.

Relabelling the brackets means that the model does not have to discriminate between two
different types of noun and adjective structures, and for this reason, we might expect to see an
increase in performance. The figures in Table 4.2 show that this is not the case, as the all-brackets
F-score has dropped by almost half a percent, compared to the numbers in Table 4.1. To evaluate
the NML and JJP brackets only, we compare against the corpus without relabelling, and whenever a
test NP matches a gold NML we count it as a correct bracketing. The same is done for ADJP and JJP
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  - 

Original structure 87.92 88.68 88.30 −0.55
NML and JJP brackets only – 53.54 – −6.88
All brackets 88.09 87.77 87.93 −0.42

Table 4.2: Parsing performance with relabelled brackets

brackets. For example, if the parser’s output is:

(NP

(NP (NN crude) (NN oil) )

(NNS prices) )

then the bolded bracket will be marked as correct against the following test data:

(NP

(NML (NN crude) (NN oil) )

(NNS prices) )

However, only recall can be measured in this way, and not precision, as the parser does not produce

NML or JJP brackets that can be evaluated. These nodes can only be known when they have already

been matched against the gold-standard, which falsely suggests a precision of 100%. The incorrect

NML and JJP nodes are hidden by incorrect NP or ADJP nodes and the difference cannot be recovered.

This also means that the figures given for the original structure are not entirely accurate, as the

original NPs cannot be distinguished from the NMLs we annotated and have converted to NPs. This

explains why precision drops by 0.89%, while recall is only 0.20% lower. Thus the NML and JJP

brackets difference in Table 4.2 is for recall, not F-score.

Despite all these complications, the decreases in performance on every evaluation make it
clear that the relabelling has not been successful. We carried out a visual inspection of the errors that
were made in this experiment, which had not been made when the NP and NML labels were distinct.
It was noticeable that many of these errors occurred when a company name or other entity needed
to be bracketed, such as W.R. Grace in the example NP below:

(NP

(ADVP (RB formerly) )

(DT a) (NML (NNP W.R.) (NNP Grace) )

(NN vice) (NN chairman) )
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  - 

Original structure 88.78 88.86 88.82 −0.03
NML and JJP brackets only 75.27 58.33 65.73 −1.71
All brackets 88.51 88.07 88.29 −0.06

Table 4.3: Parsing performance with correct head-finding rules

We conclude that the model was not able to generalise a rule that multiple tokens with the proper

noun POS tag should be bracketed. Even though NML brackets often follow this rule, NPs do not. As

a result, the distinction between the labels should be retained, and we must change the parser itself

to deal with the new labels properly.

4.2.2 Head-Finding Rules

The first and simplest change was to create head-finding rules for NML and JJP con-

stituents. In the previous experiments, these nodes would be covered by the catch-all rule, which

simply chooses the left-most child as the head. Label-specific rules are defined for all other con-

stituent types, meaning that this catch-all rule would only be used for NML and JJP brackets. This

rule is incorrect in most NMLs and JJPs, where the head is usually the right-most child.

To define the NML and JJP rules, we copy those for NPs and ADJPs respectively. Because

of the limited types of structure in NMLs and JJPs, these effectively make the right-most child the

head of the constituent. We also add to the rules for NPs, so that child NML and JJP nodes can be

recursively examined, in the same way that NPs and ADJPs are. This change is not needed for other

labels, as NMLs and JJPs only exist under NPs. We trained and ran the parser again with this change,

and achieved the results in Table 4.3. The differences shown are against the original results from

Table 4.1.

Once again, we were surprised to find that the F-score has been reduced, though by only a

small amount overall, which chiefly comes from the NML and JJP brackets. This can be explained by

considering an example NML: lung cancer. The corrected head-finding rule conditions the modifier

lung on the head cancer. This NML constituent would then be quite likely, as the set of possible

modifiers is restricted by the probability distribution. However, the reverse: conditioning the head

cancer on the modifier lung, would also be informative, as the set of heads is likewise restricted. A

NML’s left-most token is rarely the or another uninformative token, and thus the uncorrected head-

finding rules are also quite effective.
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Furthermore, for NMLs such as Judge Curry or Mr Vinken, the left-most token is actually

a much better generalisation to pass up the tree and base probabilistic actions upon. Finally, Bikel

(2004, §6.1.1) and Chiang and Bikel (2002) note that head-finding rules do not affect Collins’ mod-

els to a large degree. Using a much simpler set of rules degrades performance by only a small

amount, while an optimal set of rules derived using Expectation Maximisation (EM) does not per-

form significantly better than the standard ones. For these reasons, choosing the left or right-most

token as the head achieves similar performance.

4.3 The Base-NP Submodel

The next alteration to the parser is to turn off the base-NP submodel. Collins (1999, page

179) explains that this separate model is used because the Penn Treebank does not fully annotate

internal NP structure, something that we have now done. Hopefully, with these new brackets in

place, we can remove the NP submodel and perhaps even improve performance in doing so.

We experimented with three different approaches to turning off the base-NP model. All

three techniques involved editing the Bikel (2004) parser code:

1. Changing the isBaseNP() method to always return false. This means that the main model,

rather than the NP submodel, is always used.

2. Removing the preprocessing step that creates NPB nodes (described in Section 4.1.2). This

alteration will have the same effect as the one above, and will also remove the distinction

between NP and NPB nodes.

3. Changing the isNP() method to return true for NMLs. This will affect which NPs are turned into

NPBs during the preprocessing step, as NPs that dominate NMLs will no longer be basal.

The third change does not turn off the base-NP model, but it does modify where it functions.

The results are in Table 4.4, and in all cases the overall F-score has decreased. With the

first change, to isBaseNP(), performance on only NML and JJP brackets has actually increased by

3.78% F-score, although the original structure is almost 10% worse. The second change, to the

preprocessing step, results in a much smaller loss to the original structure, but also not as big an

increase on the internal NP brackets. The third change, to isNP(), is most notable for the large drop

in performance on the internal NP structure.
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  - 

Original structure 72.09 88.19 79.33 −9.52
1 NML and JJP brackets only 72.93 69.58 71.22 +3.78

All brackets 72.11 87.71 79.14 −9.21
Original structure 87.75 87.65 87.70 −1.05

2 NML and JJP brackets only 72.36 69.27 70.78 +3.34
All brackets 87.37 87.17 87.27 −1.08
Original structure 86.90 88.66 87.77 −1.08

3 NML and JJP brackets only 48.61 3.65 6.78 −60.66
All brackets 86.83 86.46 86.64 −1.71

Table 4.4: Performance with the base-NP model off

NP

qqqqqqq
MMMMMMM

NP

qqqqqqq
MMMMMMM PP

NP PP

Figure 4.3: An unlikely structure

There are a few reasons for these rather terrible results, which demonstrate the necessity of

the base-NP submodel. Collins (1999, §8.2.2) explains why the distinction between NP and NPB nodes

is needed: otherwise, structures such as that in Figure 4.3, which never occur in the Treebank, are

given too high a probability. The parser needs to know where NPs will not recurse anymore (when

they are basal), so that it can generate the correct flat structure. Furthermore, the third change

effectively treats NP and NML nodes as equivalent, and we have already seen problems caused by this

approach in Section 4.2.1.

4.4 Bracket Structure

We have now seen how a Collins-style parser performs on internal NP structure, but a

question remains about whether the structure itself is optimal. Treebank structure can have a large

effect on parser performance, as has been studied by many researchers. Collins (2003, page 621)

notes that binary trees would be a poor choice, as the parser loses some context sensitivity, and the
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  - 

Original structure 87.96 88.06 88.01 −0.84
NML and JJP brackets only 82.33 74.28 78.10 +10.66
All brackets 87.33 86.36 86.84 −1.51

Table 4.5: Explicit right-branching structure

distance measures become ineffective. He advocates one level of bracketing structure per X-bar

level.

Goodman (1997) on the other hand, explicitly converts trees to a binary branching format

as a preprocessing step, in order to avoid problems from varying structures. Johnson (1998) finds

that the performance of simple PCFGs can be improved through tree transformations, while Klein

and Manning (2001) observe that some simple tree transformations can increase parser speed. The

variation shown in these approaches, all for the same task, highlights the difficulty in identifying

optimal tree structure.

The issue of treebank structure extends to other languages as well, and implies further

difficulties when comparing between languages. Kübler (2005) investigates two German treebanks

with different annotation schemes, and finds that certain properties, such as having unary nodes

and flatter clauses, increase performance. Rehbein and van Genabith (2007) suggest that evaluation

methods are also affected by treebank structure, showing that the Parseval measures are biased to-

wards an increased number of non-terminal nodes. We will experiment with an alternate annotation

scheme in this section, and see how it affects NP structure performance.

4.4.1 Explicit Right-Branching Structure

It may be argued that explicitly bracketing right-branching structure would increase per-

formance. For example, in the NP the New York Stock Exchange, if there were a bracket around

New York Stock Exchange, then it would be useful training for when the parser comes across New

York Stock Exchange composite trading (which it does quite often). The parser should learn to add

a bracket in both cases. The current bracketing guidelines do not mark such right-branching con-

stituents, they are simply assumed implicitly to be there. We can automatically add them and then

examine what difference this change makes.

We find, in Table 4.5, that overall performance drops by 1.51% F-score. This is a sur-

prising result, as there are a number of easily recoverable brackets that are introduced by making
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  -
Original PTB 88.58 88.45 88.52
Suggestion baseline 94.29 56.81 70.90
Original structure 88.49 88.53 88.51
NML and JJP brackets only 80.06 63.70 70.95
All brackets 88.30 87.80 88.05

Table 4.6: Parsing performance, Section 23

right-branching structure explicit. For example, a POS tag sequence of DT NN NN is always right-

branching. This explains the more than 10% increase in F-score when evaluating internal NP brack-

ets only. As Rehbein and van Genabith (2007) found, increasing the number of non-terminal nodes

has caused an increase in performance, though we may question, as they do, whether performance

has truly increased, or whether the figure is inflated by the evaluation method. Either way, the dele-

terious effect on overall performance suggests that right-branching structure should be left implicit.

4.5 Test Set Results

Having found that the best performing model is the initial one with no alterations, we now

evaluate its results on the test data: Section 23. Table 4.6 shows that, as with the Section 00 results,

the original Penn Treebank structure is barely affected by the additional NML and JJP brackets. The

new brackets themselves are recovered slightly better than they were on the development data,

achieving a figure that is almost the same as the suggestion baseline in this case.

These results confirm those we saw in our initial experiments: recovering NP structure is a

difficult task for the Collins (2003) parser. As a result, there is a slight drop in overall performance.

4.6 Error Analysis

Despite the large number of experiments we have performed in this chapter, we are no

closer to outperforming the suggestion baseline established in the previous chapter. The highest

accuracy has come from the unaltered parser, while changes to the corpus and model have proven

unsuccessful. We need to look at the errors being made by the parser, so that any problems that

appear can be solved. Accordingly, we categorised each of the 560 NML and JJP errors in our initial

model through manual inspection. The results of this analysis are shown in Table 4.7, together with
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examples of the errors being made. Only relevant brackets and labels are shown in the examples,

while the final column describes whether or not the bracketing shown is correct.

The largest group in the table (38.04%) is made up of modifier attachment errors that do

not fit into any more specific category. In the example, because there is no bracket around lung

cancer, there is a dependency between lung and deaths, instead of lung and cancer. We can further

divide these errors into general NML and JJP cases, and instances where the error occurs inside a

company name or in a person’s title.

As this is the largest cause of errors, we performed some analysis to determine their

cause. We searched the training data for each of the 142 unique false negatives (i.e. lung cancer in

the example from the table) and found that 93 of them do not occur at all. A further 17 of the n-

grams do occur, but not as constituents, which would make reaching the correct decision even more

difficult for the parser. In order to fix this problem, it appears that an outside source of information

must be consulted, as the lexical information is currently not available.

The next largest source of errors (16.43%) is mislabelling the bracket itself. In particular,

distinguishing between using NP and NML labels, as well as ADJP and JJP, accounts for 75 of the 92 er-

rors. This is not surprising, as we noted during the final preparation of the corpus (see Section 3.3.2)

that the labels of some NPs were inconsistent. The previous relabelling experiment suggests that we

should not evaluate the pairs of labels equally, meaning that the best way to fix these errors would

be to change the training data itself. This would require alterations to the original Penn Treebank

brackets, something we deliberately avoided during the annotation process.

Conjunctions are another significant source of errors (16.43% again), and are quite a

difficult problem. This is because coordinating multi-token constituents requires brackets around

each of the constituents, as well as a further bracket around the entire conjunction. Getting just a

single decision wrong can mean that a number of these brackets are in error.

Another notable category of errors arises from possessive NPs, which always have a
bracket placed around the possessor (South Korea in the example in Table 4.7) in our annotation
scheme. The parser is not very good at replicating this pattern, perhaps because these constituents
would usually not be bracketed if it were not for the possessive. In particular, NML nodes that begin
with a determiner are quite rare, only occurring when a possessive follows. For example:

(NP

(NP (NML (DT a) (NN dog) )

(POS ’s) )

(NN life) )
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The parser also has difficulty in replicating the constituents around speech marks and

brackets. This may be because, as we described in Section 4.1.3, annotation of these constituents is

far from consistent.

There are a number of NML and JJP brackets in the parser’s output that are clearly incor-

rect, either because they define right-branching structure (which we leave implicit) or because they

dominate only a single token. Single token NMLs only exist in conjunctions, but unfortunately the

parser is too liberal with this rule. The final group of errors is caused by structural problems; that is,

the entire parse for the sentence is malformed. In the Table 4.7 example, figures is actually a noun.

4.7 Summary

In this chapter, we have had the first indication of the tremendous difficulty involved in

parsing NPs. Despite all the experiments that have been performed, the Collins (2003) parser was

unable to outperform the rule-based suggestion baseline from Chapter 3. However, we have gained

some important insights into how best to build data and models for NP parsing:

• NML labels should remain distinct from NPs1;

• head-finding rules for these new brackets do not significantly affect performance;

• the base-NP submodel remains an integral part of the parsing model;

• right-branching structure is best left implicit;

• the primary difficulty in bracketing NPs is a lack of lexical information.

This last point is perhaps the most important. The error analysis in Section 4.6 demonstrated that

the modifier attachment problem is the best avenue to pursue. Not only is it the largest cause of

errors, but it suggests a potential approach to reducing the lexicalisation problem: find and make

use of more data.

Incorporating this additional data into a parsing model is still a challenging task. One way

to include this information into a Collins-style parser would be to add a new probability distribution

to the model (akin to the subcategorisation frames and distance measures). However, we will take

a different approach in Chapter 5: applying NP Bracketing techniques. In this way, we can make

1It may also be true that JJP and ADJP brackets should remain distinct, although we have not shown this explicitly.
Due to their relative infrequency, it is a minor point either way.
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use not only of n-gram counts, but also a wide range of other features drawn from many different

sources.



70 Chapter 4: Parsing with Collins’ Models



Chapter 5

Noun Phrase Bracketing

Using a general parser is only one way to recover NP structure. There are a number of

approaches that have been used for this task. Chunking (Ramshaw and Marcus, 1995) involves

identifying noun phrases (and other types of phrases) and is a well-explored task. However internal

NP structure is not analysed as part of the task. Recursive NP chunking — as in the CoNLL 1999

shared task and as performed by Daumé III and Marcu (2004) — is closer, but still does not recover

full sub-NP structure. This is in part because gold-standard annotations have not been available in

the past. The CoNLL 1999 data for example, was automatically derived from the Penn Treebank,

which as we have seen, does not fully annotate NP structure.

Multi-word expressions (MWEs) can be used to identify some NP structure. For example,

knowing that stock market is a MWE may help bracket stock market prices correctly, and named

entities (NEs) can be used the same way. However, this only resolves some of the structure and only

in those NPs that dominate MWEs or NEs. NP Bracketing is applicable to all NPs and covers the full

depth of syntactic structure.

Our goal is to construct the first large-scale wide-coverage NP Bracketing system. We

will begin with the data set used by most researchers in the past, in order to have a meaningful

comparison between our work and theirs. This model will then be used as a basis for experiments

later in the chapter. The supervised models that we will implement are the first to achieve high

performance, and are capable of bracketing realistic NPs from the Penn Treebank.

One immediate application of our NP Bracketing system will be to build a post-processor

for the Collins (2003) parsing experiments in the previous chapter. The NPs that the parser produces

will be extracted, reparsed by the NP Bracketing system, and then inserted back into the parser out-

put. This will allow us to include a wide range of information on which to base NP parsing decisions,

71
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without having to make significant structural changes to the parser model itself. Performance on NML

and JJP brackets should improve as a result.

One note before we begin, is that throughout this thesis we will refer to the task as Noun

Phrase Bracketing. Other researchers have called the task Noun Compound Bracketing or Noun-

Noun Bracketing, however we are intending to build general purpose models that do not restrict the

possible inputs in some arbitrary way. Thus, we take a simple and pragmatic view of how the NPs

being bracketed are defined: an NP is what the Penn Treebank tells us an NP is. And seeing that we

are bracketing NPs with no further delineation, it seems sensible to call the task NP Bracketing.

5.1 Task Description

The traditional NP Bracketing task, as framed by Marcus (1980, page 253) and Lauer

(1995b), is: given a three word noun phrase like those below, decide whether it is left branching

(5.1) or right branching (5.2).

((crude oil) prices) (5.1)

(world (oil prices)) (5.2)

Most NP Bracketing research has restricted itself to cases like this, which we call simple

NPs, as they do not reflect the full variety of NP structures. Non-noun parts of speech are excluded

from this definition, meaning that the wider vocabulary of adjectives, pronouns and prepositions

is omitted. Furthermore, the NP must consist of exactly three words, ignoring the difficulties that

longer phrases create. We do allow proper nouns into our data set of simple NPs, although NPs where

all three tokens are proper nouns are removed (see Section 5.3.1). Simple NPs will be experimented

with in Section 5.4.

As a more realistic view of the NP Bracketing task, we also define complex NPs as those

that may be longer than three words and may include non-noun parts of speech. This definition

matches our aim of dealing with all NPs in the Penn Treebank. Bracketing NPs of arbitrary length

necessitates using an algorithm that manages the additional levels of structure, rather than simply

having a classifier choose from two possibilities. This makes complex NP Bracketing a significantly

harder task than only analysing simple NPs. We suggest that complex NPs present a more interesting,

difficult and relevant task for the NLP community. Section 5.5 details our experiments on complex

NPs.
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5.2 Previous Work

Marcus (1980, Appendix A) presents an algorithm to choose between left and right-

branching bracketings, which has been the basis of almost every approach since. The idea of the

algorithm is to compare the relationship between words 1-2 to that between words 2-3. For example,

comparing crude oil to oil prices. The comparison being made is of semantic acceptability, which

Marcus describes as “the relative ‘goodness’ of [the] two possible noun-noun modifier pairs”. That

is, how likely it is that the bigram forms a coherent semantic unit. Marcus does not suggest a way to

measure such a value, but instead makes his own semantic judgements, leaving a general solution

as an exercise for the reader.

The solution that a number of researchers have proposed is to calculate the semantic

acceptability of a bigram based on how often it occurs in a corpus. Pustejovsky, Berger, and Anick

(1993, page 341) briefly mention this idea, while Liberman and Sproat (1992) use more than the

raw counts, applying the pointwise mutual information measure to make the bracketing decision.

Resnik (1993, §5.5) applies the selectional association measure derived in his thesis,

which involves mapping words onto classes from a thesaurus. This provides a more generalised

measure of bigram acceptability than simply calculating on the raw bigram count. However, the use

of semantic classes can also introduce problems, because distinguishing between different senses of

a word is a difficult task. Resnik chooses the class that maximises the association measure, which

can give an overly optimistic score for the relationship between the words.

Resnik also provides an evaluation of his system, rather than simply looking at a handful

of examples as had been done previously. The test set used is 200 three noun compounds from

the Wall Street Journal section of the Penn Treebank, 64.1% of which were left-branching. The

evaluation exposes a problem of coverage, where 18.5% of the NPs contain a word that is not in the

thesaurus. Resnik’s algorithm also uses a parameter that can be used to bias the bracketing decision

towards left or right-branching. However, the parameter is not optimised on a development set. The

best result achieved is 72.6%, outperforming a left-branching baseline by about 8%.

5.2.1 Adjacency and Dependency

Lauer (1995a; 1995b) presents the seminal work on Noun Phrase Bracketing. All of the

methods described previously are labelled as adjacency models, which compare the association

between words 1-2 to words 2-3. Lauer suggests a new variation, the dependency model where

words 1-2 are compared to words 1-3. Both models are illustrated in Figure 5.1. The dependency
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N1 N2 N3

Dependency

L
? ?

R
6 6

Prefer
left-branching

iff
L is more

acceptable
than R

N1 N2 N3

Adjacency

L
? ?

R
6 6

Figure 5.1: The associations in the adjacency and dependency models, from Lauer (1995)

model has the advantage that it better matches the parse tree formed by the NP. That is, the goal is

to determine whether word 1 attaches to word 2 or word 3, and the semantic acceptability between

words 2-3 (as measured in the adjacency model) does not factor into this.

Lauer’s data is drawn from Grolier’s encyclopedia, by searching for a sequence of words

that are unambiguously nouns surrounded by non-noun tokens. This results in a training set of

35,343 noun pairs and a test set of 625 triples. Lauer also uses Resnik’s idea of smoothing words

into semantic classes, choosing Roget’s thesaurus where Resnik used WordNet (Fellbaum, 1998).

This means that the data set can only contain words that are present in the thesaurus, reducing the

test set to 308 noun compounds. Manual inspection also showed that 29 of the compounds were

errors. These came from sentences like In monsoon regions rainfall does not. . . , where the three

noun sequence monsoon regions rainfall is not actually a single syntactic structure. There were

also 35 indeterminate noun compounds, which as we described in Section 3.1, do not fit into left or

right-branching categories. Some examples from Lauer’s data set are shown in Table 5.1.

Lauer does not supply any context, making the error cases in particular difficult to under-

stand. Requiring that all tokens exist in the thesaurus can also be viewed as limiting the domain

for the task, or that the coverage of Lauer’s algorithm is only 49% ( 308
625 ). The final set of 244 (216

unique) noun compounds is undoubtedly small, but despite all this, Lauer’s data set has been used

by most researchers since.

Lauer finds that the dependency model performs better than the adjacency model in all his

experiments. The best performance is achieved using the Brill (1993) POS tagger to extract training

data, rather than the unambiguous nouns used previously. With this addition, the dependency model

achieves 80.7% accuracy compared to the adjacency model’s 72%.1

Lauer also experiments with not using the semantic classes, finding that performance

1This is an estimate from the graph that Lauer provides, as no exact figure is given.
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 

minority business development
Left disaster relief assistance

customs enforcement vehicles
satellite data systems

Right county extension agents
world food production
principle organ systemsError
quality movie animation
engine lubrication systemIndeterminate
speech communication skills

Table 5.1: Examples from Lauer’s data set

drops by about 4% with the dependency model, and by about 0.5% with the adjacency model.2

Also notable in this experiment is that the guess rates, i.e. how often the training data does not

provide any information, increase dramatically. From under 5% when using semantic classes, they

rise to over 15% in the adjacency model and over 25% in the dependency model.

Buckeridge and Sutcliffe (2002) present four different data sets from four different do-

mains: a software manual, library science abstracts, aeronautics abstracts and magazine articles.

Each of these corpora contains 200-300 NPs. Buckeridge and Sutcliffe use Latent Semantic Index-

ing (LSI) to measure semantic acceptability, the idea being that LSI will capture the associations

across documents better than the word-word co-occurrences that previous researchers have used.

Their results vary greatly, ranging from 62% to 84% over the four corpora. We suspect

that this large variation in performance is partially a result of the size of the data. We have found

that unsupervised techniques are particularly sensitive to the counts being used, and this is magnified

when using such small data sets.

Another point of interest is that the adjacency model outperforms the dependency model

on two of the corpora and on the other two they are equal. This is contrary to Lauer’s (1995b)

results, and suggests that the superiority of either model is corpus dependent.

More recently, the web has been used as a source of bigram counts and to thus measure

semantic acceptability. Lapata and Keller (2004) derive estimates from the Altavista search engine,

comparing the raw counts returned at a lexical level. They achieve 78.7% accuracy on Lauer’s data

set. Although this is less than Lauer’s best result, considering the small size of the corpora the

2Again, these are estimates from the graph.
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difference may not be significant. Another explanation for Lapata and Keller’s lower performance

is that they did not use the semantic classes that Lauer found so effective.

Nakov and Hearst (2005a) also use web counts, but incorporate additional counts from

several variations on simple bigram queries. These include concatenating the bigram or joining it

with a hyphen, as well as a number of more complicated permutations that include morphological

analyses and appending some amount of context. For example, the NP brain stem cells generates

queries for stemcells, stem-cells, stem cell, the brain associated with stem cells and many more.

There can be hundreds or even thousands of queries for a single three word noun phrase.

In order to combine the multitude of counts that the different queries return, Nakov and

Hearst (2005a) use a rather ad-hoc voting method. Each query will have a left and right-branching

alternative, for example brainstem vs stemcells, and whichever count is larger will determine the

vote. However additional scaling constants are required for some queries. These hand-tuned weights

are necessary when one count will naturally be much larger than another, for example, an NP with

its first two words reversed compared to the original NP.

The vote of each query variation is also weighted, again using parameters that are hand-

tuned on the test set itself. This allows the most effective variations to contribute an appropriately

large amount to the final decision. Nakov and Hearst’s (2005a) system is successful, resulting in an

impressive 89.3% accuracy. However, reaching this figure requires a multitude of queries, each of

which is parameterised manually, and the vast majority of which result in a zero count. Expanding

the range of bigram counts being used is an excellent idea, although it creates a new problem of how

best to combine these competing factors. This motivates our use of supervised methods, beginning

in Section 5.4.4.

Nakov and Hearst (2005a) also present their own corpus, made up of 430 simple NPs from

the biomedical domain. They achieve 95.4% accuracy on this data set, although the left-branching

baseline on this set is also much high than on Lauer’s, at 84.0%.

5.2.2 Supervised Approaches

All of the work described in the previous section employs unsupervised techniques, as

bigram counts can easily be drawn from unannotated text. Lauer (1995b, page 15) specifically

says “While some medium-sized parsed corpora are available, the effort involved in constructing

them is enormous and relies on semi-automatic methods to be feasible (see for example, Marcus et

al, 1993). If [Statistical Language Learning] is to tap into the enormous volumes of on-line text,
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unsupervised techniques must be developed.” Despite this, we have found that there are a number

of informative features — the simplest example being the lexical items in the NP, rather than their

counts — that a supervised model could take advantage of. The multitude of queries performed by

Nakov and Hearst (2005a) could be combined in a robust manner with such a model, rather than the

idiosyncratic voting and weighting scheme they use.

Girju et al. (2005) build a supervised model, despite a shortage of gold-standard data.

They train a decision tree classifier using 362 manually annotated NPs from the Wall Street Journal

(WSJ) as training data, and test on Lauer’s data. For each of the three words in the NP, they extract

five features from WordNet. These are:

1. The related verb, which is the derivationally related form of the noun;

2. the top semantic class of the noun;

3. the second top semantic class of the noun;

4. the third top semantic class of the noun;

5. whether or not the noun is a nominalisation according to NomLex (Macleod et al., 1998).

This approach achieves 73.1% accuracy, although when they shuffled their WSJ data with Lauer’s

to create a new test and training split, performance increased to 83.1%. This may be a result of the

∼10% duplication in Lauer’s data set.

5.2.3 Complex NPs

The bracketing of complex NPs has been largely neglected in the literature, as all of the

approaches that we have described so far are only effective for three word NPs. Marcus (1980,

Appendix A) posits that an NP of arbitrary length can be bracketed by “iteratively examining only

the three left-most nouns in the modifier string”. However we find that this does not work for right-

branching NPs. Consider an NP: (A (B (C D))). The three left-most nouns cannot be bracketed in any

way until D is included. In the same way, iteratively moving from right to left does not work for left-

branching NPs. Marcus does give some examples of NPs with which his arbitrary length algorithm

has problems, and comes to the conclusion that they “all seem to have an initial noun that describes

a time, a place, or the stuff out of which something is made”. We find that the common factor is that

they are all right-branching NPs.

Barker (1998) describes an algorithm for bracketing complex NPs, which we will describe

in full in Section 5.5.1. Like Marcus’ idea, the algorithm uses a sliding three word window, re-
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ducing the complex NP problem to making multiple simple NP decisions. However, unlike Marcus’

algorithm, the window can move back and forth and only inserts brackets when the correct structure

has been fully determined. In the example above, the algorithm would observe that if A B C is

right-branching, then a bracket cannot be added yet, but that the window should be shifted to the

right.

Barker’s system is actually an interactive bracketing tool, as although it makes a decision

automatically, the result is then shown to a user for confirmation. The system bases its bracketing

decisions on NPs that it has seen earlier in the process. For example, it may first come across the NP:

laser printer and learn that this is an acceptable constituent. When it is subsequently presented with

laser printer stand, it will suggest that this is a left-branching NP, which the user will then accept.

Not surprisingly, the system performs noticeably better as it progresses through the data, as it has

learnt from a greater number of NPs in these later stages.

Barker (1998) experiments with two data sets drawn from a computer installation manual

and a book on the mechanics of small engines. On the former, there are 188 individual bracketing

decisions, on which the system achieves 65% accuracy. On the latter data set there are 164 decisions

to be made, of which the system gets 62% correct.

5.3 Data

In order to build an NP Bracketing system, there must be data to evaluate it, and for

supervised models, to train on as well. We extract both a simple and a complex NP data set from the

extended Penn Treebank that we annotated in Chapter 3.

5.3.1 Simple NPs

Simple NPs are extracted from our extended Penn Treebank data using the following

method. If the last three children of an NP or NML are nouns, then they became an example in

our data set. We mark the example as left branching if the first and second words are bracketed, and

as right branching otherwise. Note that because only the right-most part of the NP is being looked

at, we know that incomplete NPs are not being extracted. This is assuming that the head of the NP

is right-most, following the Collins (1999) head-finding rules. For example, in the NP the aver-

age seven-day compound yield, which is fully right-branching, we can extract seven-day compound

yield. However, we do not extract average seven-day compound because it is not right-most. This
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 #   (%)  (%)
Penn Treebank 5569 59 41
Lauer (1995b) 244 67 33
Buckeridge and Sutcliffe (2002) AmiPro 307 58 42
Buckeridge and Sutcliffe (2002) CISI 235 63 37
Buckeridge and Sutcliffe (2002) CRAN 223 74 26
Buckeridge and Sutcliffe (2002) Time 214 48 52
Nakov and Hearst (2005a) Biomedical 430 84 16
Barker (1998) SPARC 188 45 55
Barker (1998) small engines 164 91 9

Table 5.2: A comparison of NP bracketing corpora

sequence is made up of modifiers without a head and as such is nonsensical on its own. Note that

we are making the assumption here that the head of the phrase will be final. This is true almost

all the time (it is one of Collins’ head-finding rules) and so does not cause any problems. We also

remove examples where each word has the same NER tag, ignoring many flat base-NP cases such as

John A. Smith, as these will not fit into a left or right-branching category.

This process extracts 5569 three word NPs, which is an order of magnitude larger than all

previous data sets. Previous researchers have typically used Lauer’s set (244 NPs) or created their

own small data set (∼500 NPs at most). This new, much larger corpus means that we can carry out

large-scale machine learning effectively, rather than using unsupervised methods.

Statistics comparing our new data set to those used by other researchers are shown in

Table 5.2. As can be seen, the Penn Treebank-based corpus is significantly larger than all other data

sets. The distribution of left and right-branching NPs also appears to vary greatly, which may be

affected by the content of the corpus. The Nakov and Hearst (2005a) biomedical and Barker (1998)

small engines data sets are both very technical texts, while the Buckeridge and Sutcliffe (2002)

AmiPro software manual and Buckeridge and Sutcliffe (2002) Time magazine articles are probably

aimed at a more general audience.

We also measured the amount of lexical overlap between our Penn Treebank corpus and

Lauer’s data set, shown in Table 5.3. This displays the percentage of n-grams in Lauer’s corpus

that are also in our corpus. We can clearly see that the two corpora are quite dissimilar, as even on

unigrams barely half are shared.
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n- 

Unigrams 51.20%
Adjacency bigrams 6.09%
Dependency bigrams 3.61%
All bigrams 5.50%
Trigrams 1.40%

Table 5.3: Lexical overlap between Lauer’s data set and our Penn Treebank corpus

# H  

2228 0.00 ( NNP , NN ) [ABC] Co , [the market] leader
1796 1.00 ( ( NNP NNP ) NNP ) John Smith Co.
1762 1.00 ( NNP NNP NNP ) John A. Smith
1481 0.54 ( JJ NN NNS ) high interest rates
1359 0.59 ( DT JJ NN NN ) the high interest rate
1054 0.13 ( JJ JJ NNS ) big red cars

Table 5.4: Complex NP POS tag sequences

5.3.2 Complex NPs

To create a set of complex NPs, we retrieve each NP of length three or more in the Penn

Treebank. This includes non-base-NPs, although only the heads of the non-leaf constituents are

represented so that we can treat them in the same manner as base-NPs. Some common POS tag

sequences (e.g. initial determiner and final possessive) are unambiguous in three word NPs, and so

we remove these cases. This has the side effect of increasing the ambiguity in the data and making

the task harder. 53,568 instances are left in our data set, which is two orders of magnitude larger

than any that has been created previously.

Table 5.4 shows the most common POS tag sequences in our complex NP data set. The

entropy, H, describes the distribution of bracketings for each POS tag sequence. These values thus

give an indication of the difficulty of the task. Larger entropy means that the sequence is more

ambiguous, because there are many bracketing alternatives to choose from and/or because the alter-

natives are close to equally likely. The entropy figure for the NNP NNP NNP bracketings reinforce the

result we saw in Section 4.6: a sequence of three nouns is very hard to bracket, as there is no good

baseline decision.

Figure 5.2 shows a histogram of the entropy distribution across POS tag sequences. While
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Figure 5.2: Entropy of NP POS tag sequences

43.71% of all sequences have a single bracketing, the majority of sequences are ambiguous. There

is a spike just below 1, mostly made up of sequences with two almost equally likely bracketings.

This demonstrates that complex NP bracketing is far from a trivial task.

5.4 Experiments with Simple NPs

With our new data set of simple NPs, we can now run experiments similar to those in the

literature. We will implement both an adjacency and a dependency model and compare the results

on Lauer’s data set and on our Penn Treebank corpus.

5.4.1 Association Measures and n-gram Counts

Before we begin experimenting, the association measures and source of n-gram counts

must be determined. As we described in Section 5.2, there have been a number of different ap-

proaches taken by researchers in the past. We will follow Nakov and Hearst (2005a) and use three

different association measures: the raw bigram count, the bigram probability, and χ2. All of these

are defined below:

Raw bigram count = count(wi,w j) (5.3)

P(wi|w j) =
count(wi,w j)

count(w j)
(5.4)



82 Chapter 5: Noun Phrase Bracketing

χ2(wi,w j) =
N(AD − BC)2

(A + C)(B + D)(A + B)(C + D)
(5.5)

where A = count(wi,w j) (5.6)

B = count(wi, w̄ j) (5.7)

C = count(w̄i,w j) (5.8)

D = count(w̄i, w̄ j) (5.9)

and N = A + B + C + D (5.10)

w̄ indicates any word except w

Nakov and Hearst drew bigram counts from the number of hits returned by the Google

and MSN search engines and we will do the same. We performed the queries during March 2007,

with the search engine language filter set to English.

In addition to these search engines, we also use the Google Web 1T corpus (Brants and

Franz, 2006) as a third source of counts. This corpus supplies counts for n-grams of length 1–5,

drawn from approximately 1 trillion words of web text. The web text was tokenised in a similar

manner to the Penn Treebank, with the main exception being hyphens, which are split into separate

tokens. We split all queries in the same way before searching the corpus in order to account for this

difference. Automatic sentence boundary detection was also applied to the web text, with special

tokens marking the beginning and end of sentences. A frequency cutoff of 200 was applied to all

unigrams, with words that fell below the threshold being replaced with a special unknown word

token. A cutoff of 40 was applied to all other n-grams. The immense amount of data in the Web 1T

corpus allows for accurate counts with excellent coverage.

It is difficult to calculate D in Equation 5.9, as it requires a count of every bigram in the

corpus that does not include two specific words. Instead, we determine a figure for N and then

calculate D = N − A − B − C. When using search engine counts, we take the same estimate for N

as Nakov and Hearst (2005a): 8 trillion. For the Web 1T corpus, we can count the total number of

bigrams, giving a figure of 910,884,463,583 for N.

One problem with the bigram probability and χ2 measures is that a single zero count will

cause the entire measure to be zero, ignoring the effect of other non-zero counts. To solve this

problem, Nakov and Hearst (2005a) apply a basic form of smoothing: Lidstone’s Law (Manning

and Schutze, 1999, page 204), by adding 0.5 to the denominator of both measures. Although this is

not a particularly effective form of smoothing, we use the same technique so that our results will be

comparable with theirs.
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 


 . χ2  . χ2

Google 72.5 68.4 73.0 77.5 75.0 76.2
MSN 71.3 65.6 72.1 75.0 74.6 74.6
Web 1T 74.2 70.5 75.4 81.2 82.8 77.5

Table 5.5: Unsupervised results for Lauer’s data set

 


 . χ2  . χ2

Google 75.53 69.85 79.98 69.58 68.61 69.94
MSN 76.53 74.38 80.07 69.22 69.29 69.82
Web 1T 80.05 79.62 79.33 74.18 75.18 70.71

Table 5.6: Unsupervised results for Penn Treebank data set

5.4.2 Initial Results

The results from the experiments, on both Lauer’s and our data set, are shown in Tables 5.5

and 5.6 respectively. Our results on Lauer’s corpus are similar to those reported in the literature:

the 78.7% achieved by Lapata and Keller (2004) and the 80.7% attained by Lauer (1995b). The

dependency model outperforms the adjacency model on all measures, while the Web 1T counts are

the most effective. The raw counts – the simplest association measure – also work surprisingly well.

The results on the Penn Treebank corpus are also surprising, as the adjacency model outperforms

the dependency model by a wide margin. Once again, the Web 1T counts perform well in all cases,

although the best result uses the MSN search engine. The χ2 measure gives the highest accuracy

for both search engines, but is least effective with the Web 1T counts. The two search engines give

reasonably similar results on both data sets, a result that is not unexpected.

Our analysis shows that the good performance of the adjacency model comes from the

large number of named entities in the corpus. When we remove all items that have any word

as a named entity, the results are reversed, and the dependency model is superior. On the 1,556

NPs that remain, using Web 1T counts and the χ2 measure, the adjacency model achieves 71.85%

accuracy, while the dependency model attains 73.84%. The results using the other count sources

and association measures show the same trend.

Table 5.7 shows the correlation between the count sources on the two data sets. It is
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   

Google / MSN 0.97 0.72
Google / Web 1T 0.92 0.60
MSN / Web 1T 0.93 0.81

Table 5.7: Correlation between counts

clear that the Penn Treebank corpus has a much larger degree of variability than Lauer’s data set.

However, Tables 5.5 and 5.6 showed that in most cases, the results for both corpora were more

affected by the association measure and whether the adjacency or dependency model was used,

rather than the source of counts. These results agree with those of Nakov and Hearst (2005b), who

found that although the counts returned by search engines varied, it did not have a significant impact

on the performance of their NP bracketing system.

5.4.3 n-gram Variations

Both the adjacency and dependency models are relatively knowledge-poor, only utilising

a pair of bigram counts in order to make a decision. In order to increase the amount of information

available, we retrieved hit counts for a number of other variations on the simple bigrams, as proposed

by Nakov and Hearst (2005a). We did not perform the morphological or paraphrase queries of

Nakov and Hearst, as they would increase the number of searches dramatically. The full list of

query variations that we used is shown in Table 5.8, together with whether or not each count source

used that particular pattern. Some patterns cannot be used by some count sources, for example,

n-grams that are longer than five words are not listed in the Web 1T corpus. In some of these cases,

we instead included a different query variation that was intended to capture the same information,

e.g. the multiple abbreviation and possessive queries. Also, we no longer use MSN because of its

similarity to Google. Snippets is another source of counts suggested by Nakov and Hearst (2005a),

utilising the short piece of text that comes with each search result. The variations involving hyphens

are not ideal when using Web 1T, as it cannot be determined whether the author intended them as a

separate token, or whether they were tokenised when the corpus was created.

As we described in Section 5.2.1, Nakov and Hearst (2005a) used n-gram variations in a

complicated voting scheme, where different counts from different sources were given hand-tuned

weights and then combined. Rather than implementing such a complex algorithm, we performed

some simpler voting experiments. Each n-gram variation, as well as the standard adjacency and
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  1 

Wildcard 2 Dependency probability Possessive
Abbreviation Concatenation triple Capitalisation
Possessive Abbreviation with brackets Internal hyphenation

Capitalisation Right brackets
Internal hyphenation
Internal slash
External slash
Left brackets
Right brackets

Table 5.9: Optimal set of voters on Lauer’s data set

dependency models, was given a single unweighted vote. If the left and right counts were equal,

then the variation supplied no vote, and if the final votes were equally split, then we defaulted to a

left-branching decision.

We performed a greedy search through the possible sets of voters, attempting to optimise

performance on Lauer’s data. Our best result uses the list of voters in Table 5.9. This set achieves

90.2% accuracy, a similar figure to Nakov and Hearst’s 89.3%, without using the morphological or

paraphrase queries, and without manually weighting any features.

However, both of these voting systems are effectively supervised models, where the train-

ing process determines the optimal set of features (and weights for Nakov and Hearst’s model). As

such, a separate training set should be used to avoid over-estimating performance. Due to the small

size of Lauer’s data set, we followed Nakov and Hearst (2005a) in developing on the test data itself.

They note that Lapata and Keller (2004) divided Lauer’s in half to develop, and that the difference in

performance on the two halves was negligible. Despite this, we argue that neither of the results give

an accurate representation of NP Bracketing performance. The optimal set of voters we identified is

unlikely to be as effective for any other data set.

We can actually test this by applying the Lauer optimal voter set (from Table 5.9) to the

Penn Treebank data. This results in 76.49% accuracy, which is lower than using the adjacency model

alone. Considering the seemingly random variations in the set of voters, this is not particularly

surprising, although it may be because of the different performance levels of the dependency and

adjacency models on the two corpora. It could also be a result of the lexical differences between

the two corpora, as we showed in Table 5.3. In the following section, we will perform the reverse

operation, training on the Penn Treebank data and testing on Lauer’s. This will provide a better idea
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of the true performance levels.

The main problem with a voting technique is that it is does not effectively combine com-

peting factors into a single model. The new Penn Treebank data set enables a much better solution:

apply a robust supervised model. This Penn Treebank data set is an order of magnitude larger than

Lauer’s, making available a sufficient amount of training, development and test data for the first

time.

5.4.4 Supervised Models

Supervised models typically outperform unsupervised models for most NLP tasks. For

NP bracketing, the small quantity of gold-standard data has meant that few supervised models have

been implemented, and those that have been, performed poorly. With our new, significantly larger

data set covering the Penn Treebank, we have built the first large-scale supervised NP bracketer.

We use the MegaM Maximum Entropy classifier (Daumé III, 2004), which, as we de-

scribed in Section 2.6, allows diverse and overlapping features to be incorporated in a principled

manner. We also discretise non-binary features using Hawker’s (2007) implementation of Fayyad

and Irani’s (1993) supervised entropy-based discretisation algorithm.

The data set is split into training, development and test sets, with 4451, 559 and 559 NPs

respectively. Our initial features use counts from Google, Web 1T and the snippets. We use the

adjacency and dependency models with counts from Google and Web 1T, and all three association

measures. The n-gram variations in Table 5.8 for the three count sources are also used, but only the

raw count. This is because the counts are often too small for the other measures to be effective. For

each of these, there is a feature for the left and right association measure score, as well as a binary

feature representing the left or right vote. If the left and right measures are equal, then neither vote

feature is active. This first supervised model has 947 features in total.

The results on our Penn Treebank development set are shown in Table 5.10, compared to

an unsupervised adjacency model, and the unsupervised voting system from Section 5.4.3. As we

described there, calling the latter model unsupervised is a misnomer, as the set of voters needs to

be optimised on training data. With the larger Penn Treebank corpus available, we can now “train”

this unsupervised voting model on the training set, rather than on the test set itself. This avoids

over-estimating its performance figures.

The supervised model outperforms the unsupervised voting model by 0.6%, even though

both models are using the same information to base their decisions on. This improvement comes
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 -
Unsupervised, Web 1T adjacency 82.5
Unsupervised, voting 89.6
Supervised model 90.2

Table 5.10: Comparing unsupervised approaches to a supervised model

from the supervised model’s ability to weight the individual contributions of all the unsupervised

counts from Google and the Web 1T corpus.

We can also test on Lauer’s data set using the supervised model trained on Penn Treebank

data. The result is an 82.4% accuracy figure, which is higher than our unsupervised dependency

model and Lauer’s. However, it is much lower than Nakov and Hearst’s (2005a) best result and our

own voting scheme. This suggests that the voting schemes, by training on their own test data, have

over-estimated their performance by about 9%.

Additional Features

One of the main advantages of using a Maximum Entropy classifier is that we can easily

incorporate a wide range of features in the model. We now add lexical features for all unigrams,

bigrams and the trigram within the NP. All of these features are labelled with the position of the

n-gram within the NP.

Since we are bracketing NPs in situ, rather than stand-alone NPs as performed by Lauer,

the context around the NP can be exploited as well. To do this we added bag-of-word features for

all words in the surrounding sentence, as well as specific features for a two-word window around

the NP. For the context sentence, there are features for words before the NP, after the NP, and either

before or after the NP. As an example, when bracketing lung cancer deaths, in the sentence:

The number of lung cancer deaths has grown recently.

the context sentence bag-of-words features would be The, number, of, has, grown, recently. And the

context window features would be:

word−2 = number word−1 = of
word+1 = has word+2 = grown

We have access to gold-standard POS and NER tags, from the Penn Treebank and the BBN

Pronoun Coreference and Entity Type Corpus (Weischedel and Brunstein, 2005) respectively. These
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are used by adding generalised features for every n-gram and context window feature, replacing

the words with their POS and NER tags. POS tags are included even though all the words in the

NP are nouns for these simple NP experiments, as they may be proper and/or plural. We use the

coarse-grained NER tags, of which there are 28 (plus O), including the B- and I-. Using the lung

cancer deaths example again, its POS tag trigram would be NN NN NNS and its NER tag trigram is O

B-DISEASE O.

Finally, we incorporate semantic information from WordNet (Fellbaum, 1998). For each

sense of each word in the NP, we extract a semantic feature for its synset, and also the synset of each

of its hypernyms up to the WordNet root. These features are marked with how far up the tree from

the original synset the hypernym is, but there is also an unordered bag-of-hypernyms for all senses.

All of these semantic features are applied to each word in the NP, including a label de-

scribing whether it is the first, second or third word. For the word cancer there are five synsets

to which it belongs: malignant neoplastic disease, Crab, Cancer, Cancer the Crab, genus Cancer

all of which are included. The first level of hypernyms for these synsets is malignant tumor, per-

son, arthropod genus (two of the senses have no hypernyms), and this continues up the tree. The

bag-of-hypernyms would include all of the synsets we have listed and many more.

These additional feature types increase the number of features in the maximum entropy

classifier to 86,116, compared to the 947 we had previously. This number is still small compared to

some other tasks, because our data set is comparatively small, being made up of only 4,263 unique

tokens. Almost all of the models converge after 50 training iterations, the one exception being that

using only unsupervised features, which takes about 200.

Results

Table 5.11 shows the results for a model using only the additional features, and also once

the “unsupervised” features used in Table 5.10 are included. The additional features do not perform

as well as the unsupervised ones, but once they are combined a further performance increase of

3.5% is attained.

Table 5.11 also presents a subtractive analysis of all feature groups. The Google and

snippets features do not appear to contribute at all, probably because they overlap significantly with

each other and the Web 1T searches. Of the supervised features, the context window and NER are

most important but all make a positive contribution, except for the semantic features. Our best

performance of 93.8% F-score is obtained by removing this group.
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 -
Unsupervised, voting 89.6
Additional features 89.5
Additional + unsupervised features 93.0
−Google 93.0
−Snippets 93.0
−Web 1T corpus 92.1
−Lexical 92.3
−POS 92.5
−NER 92.1
−Context sentence 92.7
−Context window 92.0
−Semantic 93.8

Table 5.11: Subtractive analysis of simple NP features on development set

 

Unsupervised, Web 1T adjacency 77.6
Unsupervised, voting 86.8
Best supervised model 93.4

Table 5.12: Test set results for the supervised model

Finally, results on the test set are shown in Table 5.12. The supervised model has improved

over the unsupervised baseline by 6.6%. This larger increase, compared to the development set,

shows that the voting method’s performance is quite variable, while the Maximum Entropy model

remains consistent.

5.5 Experiments with Complex NPs

All of our experiments so far have been on simple NPs. Complex NPs can be longer,

resulting in higher levels of ambiguity and making the correct bracketing significantly more difficult

to find. Adjectives, determiners and other non-nominal parts of speech also complicate the task.

But the greatest difficulty introduced by complex NPs is constructing an architecture that can choose

between potential bracketings.

The number of possible bracketings depends on, and grows exponentially with, the length

of the phrase. Incorporating this into a machine learner may be difficult, and a better solution
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w is the current position of the window

1. w initially covers the last 3 words

2. Bracket the words in w

3. If w is left branching:

(a) If w is in the left-most position, bracket the left two words in w

(b) Otherwise, move w one word to the left. We cannot left bracket yet, because it might be

X)Y)Z, not (XY)Z

4. If w is right branching:

(a) Bracket the right two words in w

5. If there are only two words left, then finish. Otherwise, go to step 2

Figure 5.3: Barker’s (1998) NP bracketing algorithm

may be to break the complex NP bracketing decision into multiple smaller decisions. This would

be analogous to the way that the Collins (2003) model makes independence assumptions when

calculating grammar rule probabilities. The algorithm we use functions in this way, as will be

described in the following section.

Unfortunately, this does cause one complication with our terminology. When our complex

NP Bracketing system splits up a complex NP into multiple three word NPs, these three word NPs may

not be simple. That is, they may contain adjectives and other non-noun parts of speech. Despite this,

we will apply simple NP Bracketing techniques to them. It is important to remember the distinction

between simple and complex NPs before entering into the experiments of this section.

5.5.1 Barker’s Algorithm

Barker (1998) describes a method for bracketing complex NPs, by reducing the problem

to a series of three word bracketing decisions using a sliding window. In this way, the algorithm

allows us to take advantage of the supervised models that we developed and that proved effective on

simple NPs. Barker’s algorithm is shown in Figure 5.3.
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When a pair of words is bracketed, the head is chosen to represent the phrase and remains

in the window. We use the standard head-finding rules of Collins (1999). The window then expands

one word to the right, unless it is already right-most in which case it grows to the left.

For these experiments, we use the complex NP data set previously described in Sec-

tion 5.3.2. The 53,568 complex NPs are split in a 8:1:1 ratio, giving 42,854 examples for training

and 5357 each for development and testing.

5.5.2 Evaluation Measures

The complex NP results are evaluated using several measures. Firstly, matching brackets

is one of the standard Parseval evaluation methods (Black et al., 1991). Secondly, because our an-

notation only marks left-branching structure explicitly (see Section 3.1), we can also report implicit

matching brackets, where we automatically insert the implicit right-branching brackets for evalua-

tion purposes. This takes into account fully right-branching NPs, which contribute no score using

the harsher, explicit matching brackets evaluation. For example, a baseline of always choosing right

branching will achieve 0.0% F-score, as no explicit brackets will be inserted.

We also measure exact NP match, which measures the percentage of complex NPs that

are entirely correct, and the model’s performance on the three word NPs that are processed during

Barker’s algorithm. We only report accuracy for implicit brackets, as there is a set number of

brackets dependent on the length of the word, and so precision and recall are always equal. Finally,

note that the three word NPs are different for each model, as the next three word NP to bracket

depends on the decisions made previously for this complex NP. Consequently, the numbers for this

measure are not directly comparable.

5.5.3 Results

Our first experiment implements Barker’s algorithm, using only the χ2 dependency and

adjacency methods to make each decision. We only use counts from the Web 1T corpus, since

performing web searches has become impractical with the increased data set size and NP length.

The difficulty of complex NP bracketing can be seen in Table 5.13, by the drop in performance using

these simple approaches, e.g. the adjacency model drops from 79.33% in Table 5.6 to 56.29% here.

We next apply our supervised approach to complex NPs. This is more complicated now

as we need to extract a training set of three word windows from the complex NPs. To do this,

we run Barker’s algorithm on the 42,854 complex NPs. At each decision point, we bracket left or
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 


P R F
  

Right-branching 0.00 0.00 0.00 74.67 69.31 74.82
χ2 Dependency 13.79 42.84 20.87 38.40 24.32 48.11
χ2 Adjacency 16.13 41.00 23.15 49.27 34.50 56.29
All features 89.14 84.26 86.63 94.96 92.18 95.67
−Web 1T corpus 89.58 82.79 86.05 94.75 91.69 95.55
−Lexical 87.95 83.00 85.40 94.57 91.58 95.30
−POS 89.09 83.37 86.13 94.73 91.92 95.44
−NER 89.27 84.11 86.61 94.88 92.25 95.64
−Context sentence 91.45 86.11 88.70 95.69 93.19 96.33
−Context window 90.41 85.37 87.82 95.32 92.79 96.00
−Semantic 89.61 84.00 86.72 94.97 92.14 95.67
−Non-head words 84.84 81.58 83.18 94.03 90.76 94.80
−Border words 89.69 84.74 87.14 95.18 92.48 95.85
−POS tag sequence 89.93 85.05 87.42 95.26 92.70 95.96
−Parser 89.35 84.32 86.76 95.04 92.25 95.78
Best 92.09 86.37 89.14 95.88 93.49 96.48

Table 5.13: Complex NP results on development data

right according to the gold standard, and store the three word window as a training example. This

process is similar to a shift-reduce parser, like that used in the RASP parser (Briscoe and Carroll,

2006) or Ratnaparkhi’s (1997) maximum entropy parsing model. The complex NP data produces

95,964 training examples.

We experiment with the same features used for simple NPs, as well as some novel fea-

tures. Firstly, we add features encoding the non-head words when the window already contains a

bracket. This means that for each bracket that has already been inserted for the complex NP, all

words dominated by the bracket are labelled with their position in the window and added as fea-

tures. For example, consider the NP French onion soup bowl after onion soup has been bracketed.

Although only soup remains in the window, onion is added as a feature and labelled as the first word

of the second node in the window. The POS tag, NER tag and Web 1T count of these words are also

included as separate features. This feature group proved to be very informative for the model.

Secondly, we add the bigram of the words on the NP border, that is, where it overlaps with

the context. This combines the n-gram features with the context window. For example, lung cancer

deaths would have two features: of lung and deaths has.

Thirdly, we measured the entropy of every POS tag sequence in the training data. Some
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 


P R F
  

Right-branching 0.00 0.00 0.00 72.79 68.08 72.98
χ2 Adjacency 17.76 41.89 24.95 50.08 36.64 57.07
Best 91.32 88.19 89.73 95.95 93.69 96.68

Table 5.14: Complex NP results on test data

of these figures were shown earlier in Table 5.4. Those sequences with entropy below 0.05 bits, i.e.

the ones that are quite unambiguous, were then extracted. For example, DT JJ NN is almost always

right-branching. We then implemented a feature explicitly encoding their most common branching.

There are only two features for left and right-branching, rather than features for each POS tag.

Finally, we introduce features based on the Bikel (2004) parser’s output, which have been

informative in PCFG parsing. For the parent and grandparent of the NP, we add a feature for the

constituent label, as well as the head-word and its POS tag, NER tag, and Web 1T count.

The results are shown in Table 5.13. The supervised methods significantly outperform

the unsupervised methods, with a matched brackets F-score comparable to the Bikel (2004) parser’s

overall performance. We hope that a similar performance figure is reached later on, when we use

a post-processor to improve the parser’s performance on NP structure. We carry out a subtractive

analysis of the feature types and find that both context feature groups, as well as the semantic,

border, POS tag rule and parser features all have a negative impact on performance. Our optimal

result comes from removing these feature groups. The 89.14% F-score achieved with this model is

shown as Best in Table 5.13. All experiments were run using 500 iterations in MegaM, to allow the

estimation to converge.

Finally, we applied our best model to the test data. The results in Table 5.14 are similar

to those we achieved on the development set. This demonstrates that our complex NP Bracketing

system achieves high performance on a wide range of inputs.

5.6 Parser Post-Processor

This final set of experiments uses the complex NP models as a post-processing step for

the Bikel (2004) parser. As we saw in Chapter 4, the parser failed to outperform the suggestion

baseline of 73.12% on NML and JJP brackets. We intend to surpass this figure with our NP bracketing

technique. This will be made more difficult by the fact that the post-processor is dependent on NPs
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 


P R F
  

Right-branching 0.00 0.00 0.00 81.83 80.31 81.86
χ2 Dependency 9.93 39.90 15.90 36.46 31.20 43.23
χ2 Adjacency 12.50 42.55 19.32 47.24 41.41 51.37
All features 76.37 83.53 79.79 93.04 92.42 93.70
−Web 1T corpus 77.10 80.53 78.78 92.90 92.45 93.55
−Lexical 73.67 81.73 77.49 92.23 91.66 92.97
−POS 76.61 83.05 79.70 93.36 92.65 93.96
−NER 76.78 85.46 80.89 93.43 92.70 94.08
−Context sentence 78.53 84.86 81.57 93.78 93.26 94.38
−Context window 76.41 84.50 80.25 93.33 92.57 93.98
−Semantic 75.73 83.65 79.50 93.11 92.37 93.83
−Non-head words 74.21 81.97 77.90 93.15 91.97 93.78
−Border words 76.37 83.53 79.79 93.27 92.50 94.01
−POS tag sequence 76.77 84.62 80.50 93.55 92.68 94.27
−Parser 76.33 84.50 80.21 93.33 92.60 93.95
Best 78.78 85.70 82.10 94.08 93.41 94.67

Table 5.15: Complex NPs for parsing results

identified by the parser, which are incorrect in approximately 10% of cases.

Atterer and Schütze (2007) use a similar approach, applying prepositional phrase attach-

ment techniques to parser output, rather than to manually prepared, gold-standard examples. Doing

so provides a more realistic view of a PP attachment system’s performance, as it must contend with

the additional difficulties created by parser error. The same applies to our NP Bracketing system.

We train the complex NP bracketer on gold-standard NPs from Sections 02–21, extracting

78,757 complex NPs that produce 132,195 three word training examples. The development set is

created by first parsing Section 00 using the Bikel (2004) parser. We then extract the base-NPs that

the parser identifies and insert the gold-standard NP bracketing for evaluation. We reject brackets

that cross an NP boundary (i.e. a parsing error). This results in a development set of 3,946 complex

NPs. A test set of 4,834 NPs is also produced in the same way from Section 23.

The results of these experiments, including subtractive analysis on the feature types, are

shown in Table 5.15. Unfortunately, many of the features are not helpful, and our best model utilises

only the Web 1T, lexical, POS and non-head word features. It achieves 82.10% matched bracket F-

score.

This is 7.04% lower than the figure previously achieved for complex NPs, despite the fact



96 Chapter 5: Noun Phrase Bracketing

  P R F
Suggestions 95.64 59.36 73.25

NML JJP Parser 76.32 60.42 67.44
Post-processor 76.40 76.56 76.48
Parser 88.55 88.15 88.35All brackets
Post-processor 88.49 88.56 88.53

Table 5.16: Development data performance

that unambiguous NPs are now included in the data. There are a number of reasons for this. Firstly,

the test NPs produced by the parser may be incorrect, while the model is trained on gold-standard

NPs. Also, the brackets that we rejected for crossing NP boundaries would introduce a noticeable

amount of noise, and mean that the evaluation might not be entirely accurate. Finally, the POS tags

used in these experiments are no longer gold standard, as they come from the parser’s output.

5.6.1 Parsing Evaluation

Finally, we can now put the rebracketed NPs back into the parser output and re-evaluate.

This requires the additional task of labelling the brackets. There are only two labels to distinguish

between (NML and JJP), and they can be inferred directly from the POS tag of the head. If it is a

verb or an adjective, we label the node as JJP, and otherwise it is a NML. A small number of errors

(0.42% drop in matched bracket F-score) are introduced by this method, because of errors in the

Penn Treebank POS tags and in our annotation, as well as errors in head finding.

Tables 5.16 and 5.17 show the final results. A suggestion result is not shown for all

brackets since they only apply to NMLs and JJPs and it is difficult to post-process the parser’s output

with them. The post-processor outperforms the parser by 9.04% and 8.10% on the development and

test data respectively. The post-processor has also improved on the suggestion baseline established

earlier. These results demonstrate the effectiveness of large-scale NP bracketing techniques, and

show that internal NP structure can be recovered with better performance than has ever been possible

in the past.

We also measure statistical significance using a computer-intensive, randomised, stratified

shuffling technique, as described in Noreen (1989) and Cohen (1995, §5.3). The null hypothesis —

that the results are produced by the same model — is tested by swapping the scores on individual

sentences between the two models. These swaps are performed repeatedly, with precision, recall
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  P R F
Suggestions 94.29 56.81 70.90

NML JJP Parser 80.06 63.70 70.95
Post-processor 79.44 78.67 79.05
Parser 88.30 87.80 88.05All brackets
Post-processor 88.23 88.24 88.23

Table 5.17: Test data performance

and F-score recalculated for each model at each iteration. A count is kept of how many times the

difference between these recalculated metrics is greater than or equal to the difference between the

original figures. The null hypothesis is rejected if this number is sufficiently low.

Ideally, all possible permutations would be performed, however this is infeasible, as it

would require testing 2n permutations, where n is the number of sentences (2,416). Instead, an

approximate randomised test can be used with a sufficiently large number of iterations, in this case

10,000. The p-value is then calculated as:

p =
c + 1
n + 1

(5.11)

where c is the number of random swaps that resulted in a difference greater than or equal to the

original difference, and n is the number of iterations performed.

The p-value on the test data all-brackets F-score is 0.0001. This is the smallest p-value

attainable for the number of iterations we performed. That is, there were no iterations whatsoever

where randomly swapped figures resulted in an F-score difference that was as large as the original,

unswapped permutation. The p-value for the recall measure gave the same result. For precision,

where the parser is actually superior to the post-processor, we calculated a p-value of 0.0163. Thus,

this difference is also statistically significant, although less so than the recall and F-score metrics.

5.7 Summary

We have created the first large-scale supervised models that achieve excellent results.

These experiments are also the first to scale effectively to complex NPs, attaining similarly high

levels of performance. We expect that the data and models described in this chapter will provide the

impetus for much more work on NP Bracketing in the future.
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One particularly important contribution of this chapter is the data sets that we have cre-

ated. These data sets are orders of magnitude larger than those used previously, and have made

possible the wide range of experiments we carried out. The final result of this chapter, where our

post-processor outperforms the Collins (2003) parser, is another of the major contributions of this

thesis. We previously observed the tremendous difficulty in bracketing NPs, demonstrated by the

below-baseline performance of the parser in Chapter 4. We have now overcome this difficulty and

outperformed the suggestion baseline.



Chapter 6

Parsing with CCG

Although the NP Bracketing system was successful, using a post-processor is hardly an

elegant solution. A better solution would be to include the NP model into a standard parsing model,

as this would allow NP structure to be optimised together with the entire sentence. In this chapter, we

will make such an addition to the C&C CCG parser (Clark and Curran, 2007b). There are a number

of advantages to this approach:

• The C&C parser uses a maximum entropy model, which will make it relatively easy to add

NP-based features, compared to the Collins (2003) models.

• It will allow us to correct the errors in the CCG corpus, CCGbank, which we described in

Section 2.5.1.

• Utilising a second parser will demonstrate that NP structure is recoverable across multiple

parsing architectures.

6.1 The C&C Parser

In Section 2.5.2, we described the C&C parser (Clark and Curran, 2007b). Here, we will

describe the features used by the parser in its Maximum Entropy model. This will be relevant for

when the novel features we have added are described in Section 6.5.

Firstly, the model uses a lexical feature that combines the word and its lexical category.

Another feature generalises the word to its POS tag. There are also features that are only active for

the root constituent of the sentence. These are the root category; the root category and its head word;

99
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and the root category and its head word’s POS tag. Another feature that applies to all non-terminal

constituents is the rule that was applied to generate it. Once again, this feature is also expanded to

the head word of the constituent, and generalised to the head word’s POS tag.

All of the above features are identical in both the normal-form and dependency models.

However, for the following features, the former uses local rule applications, such as S[dcl] →

NP S[dcl]\NP; while the latter uses the predicate-argument dependencies, like the one that will be

described in Section 6.2.1. The dependency model can thus include information from long-range

dependencies.

For any non-terminal constituent, the head words of the child nodes form a feature. The

rule or dependency involved is also included, for the normal-form and dependency models respec-

tively. This feature is also generalised, to the first word’s POS tag; the second word’s POS tag; and

the first and second word’s POS tag.

The last feature group adds distance information to the models. The number of words,

verbs and punctuation marks between the head words of the child constituents are counted. All

counts two or greater are subsumed into a single class. The feature also includes the parent con-

stituent’s head word, and the rule or dependency that applies.

Most of these features will be described again in Section 6.5.1, where we give examples

of the original features compared to their generalisations that use named entity tags.

6.2 Hockenmaier’s Conversion Process

Converting sentences from the Penn Treebank Phrase Structure to a CCG representation

is a very complex task. Hockenmaier and Steedman’s (2007) algorithm and the resulting corpus,

CCGbank, must not only carry out the translation itself, but also robustly deal with significant dif-

ferences between the two corpora. A large part of these differences arise from the need to translate

Penn Treebank traces and their co-indexation to CCG long-range dependencies. The two also differ

on how to analyse various syntactic constructions, such as the small clause example below:

(S (NP-SBJ that volume)

(VP (VBZ makes)

(S (NP-SBJ it)

(NP-PRD the largest supplier...in Europe) ) ) )
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Following Pollard and Sag (1992) and Steedman (1996), CCGbank treats these constructions as

having two NP complements, rather than a nested sentence. Here, we will not describe every such

complication, but give an outline of how the conversion algorithm works.

The basic algorithm applied to every sentence in the Treebank is:

1. Determine the type of each constituent (head, complement or adjunct);

2. binarise the tree;

3. assign lexical categories;

4. assign dependencies.

The first step labels each constituent in the tree with its syntactic role. Heads are identified

using heuristics adapted from Magerman (1994) and Collins (1999), while additional heuristics are

applied to distinguish between adjuncts and complements. For example, NPs that are children of VPs

are labelled as complements, except where the NP has a function marker such as LOC, DIR or TMP.

Binarisation is a simple step, requiring only the constituent head as information. All

children to the left of the head are placed into additional right-branching nodes, while all children

on the right of the head are placed into new left-branching nodes. Note that this is the step that

transforms the Penn Treebank’s flat, underspecified NPs into CCGbank’s right-branching, possibly

incorrect representation.

CCG lexical categories are assigned to the tree in a recursive, top-down process. Firstly, the

root node’s label is determined according to the root Penn Treebank label. For example, S, SINV and

SQ all become S in the CCGbank tree, while additional features provide a further level of information.

S[dcl] indicates a declarative sentence, which is applied when the head word is an auxiliary with the

POS tag VBZ. Other features include S[wq] for wh-questions, and S[frg] for fragments. Complements

are assigned a category in a similar way, using a mapping from the Penn Treebank constituent label.

The simplest of these rules being NP becomes NP and PP becomes PP.

Each head node is assigned a label based on its parent, as well as any complement that is

present. These two lexical categories are combined, with the direction of the slash determined by the

relative positions of the head and its complement. That is, with a parent node X and a complement

Y , the head will be assigned the category X/Y if the complement is on the right, or X\Y if the

complement is on the left.

Adjuncts function as modifiers that return the original category, and are thus given the

label X/X or X\X, where X is the lexical category of the head. Applying this method in all cases
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leads to an unnecessary proliferation of categories, as it requires a modifier label for each head

subcategorisation. To avoid this, the translation algorithm takes advantage of the CCG composition

rules, stripping off the head’s outermost forward arguments before generating the adjunct label.

6.2.1 Dependencies

The final step in the basic algorithm is to generate the dependency structure for each

sentence. Dependencies are represented as 4-tuples: 〈h f , f , s, ha〉, where h f is the head of the

predicate; f is the lexical category of h f ; s describes which argument of f is being filled; and ha is

the head of the argument. For example, the dependency encoding company as the object of bought

(as in IBM bought the company) is represented by:

〈bought, (S\NP1)/NP2, 2, company〉 (6.1)

In this dependency, company is filling the second argument slot, the object.

These dependencies are generated in a bottom-up process, using the lexical head infor-

mation on all CCGbank categories. This information is shown as the indices on the arguments in

the example above. For modifier categories, co-indexation is necessary to specify that the head of

the category is the head of its argument. For example, in the category (S\NP)i/(S\NP)i, the match-

ing indices represent this relationship. Using this lexical head information, a dependency can be

generated between the two heads whenever a rule is applied.

6.2.2 Traces and Long-Range Dependencies

One of the most important parts of the CCGbank conversion algorithm is to translate Penn

Treebank traces into the correct CCG long-range dependencies. The * null trace is used to identify

passive, control, raising and extraposition constructions, which can then be interpreted accordingly.

Extraction traces, marked with *T* in the Penn Treebank are more complicated to deal

with. These traces are passed up the tree, in a manner similar to Collins’ Model 3 and the GPSG

slash-feature passing technique (Gazdar et al., 1985) it was based upon. When lexical categories are

subsequently assigned, the trace that has percolated up the tree indicates that non-normal-form rules

should be applied. Thus, the correct derivation is reached, including the co-indexation that will in

turn create the appropriate long-range dependency.



Chapter 6: Parsing with CCG 103

6.3 Our Conversion Process

In order to train and test the C&C parser on our NP data, we will have to convert it from

the Penn Treebank matched bracket format into the CCG formalism. This process will correct the NP

structure errors that currently exist in CCGbank, which we described in Section 2.5.1. Over a quarter

of the sentences in CCGbank need to be altered, demonstrating the magnitude of the NP problem and

how important it is that these errors are fixed.

Honnibal and Curran (2007) have altered CCGbank in a similar way, in an attempt to

improve the distinction between complements and adjuncts. PropBank (Palmer, Gildea, and Kings-

bury, 2005) was used as a gold-standard to inform these decisions, in the same way that we use the

NP data from Chapter 3.

6.3.1 The Algorithm

For each NML and JJP bracket in the augmented Penn Treebank, the conversion process

will form a CCG constituent that dominates the same tokens in the corresponding CCGbank sentence.

We generate the two forms of output that CCGbank contains: AUTO files, which represent the

tree structure of each sentence; and PARG files, which list the predicate-argument dependencies

(Hockenmaier and Steedman, 2005, Appendix D).

One preprocessing step is applied to the Penn Treebank data, where if multiple tokens are
enclosed by brackets, then a NML node is placed around those tokens. For example, we would insert
the NML bracket shown in bold below:

(NP (DT a)

(NML (-LRB- -LRB-)

(NML (RB very) (JJ negative) )

(-RRB- -RRB-) )

(NN reaction) )

This simple heuristic captures NP structure not explicitly bracketed in the annotation scheme.

The conversion algorithm applies the following steps for each NML or JJP bracket:

1. Identify the CCGbank lowest spanning node, i.e. the lowest constituent that dominates all of

the words in the NML or JJP bracket;

2. flatten the lowest spanning node, to remove the right-branching structure;

3. insert new left-branching structure;
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(a) (b) (c)
N

qqqqqqq
MMMMMMM

N/N N

qqqqqqq
MMMMMMM

lung N/N N

cancer deaths

N

qqqqqqq
MMMMMMM

???

qqqqqqq
MMMMMMM ???

??? ??? deaths

lung cancer

N

qqqqqqq
MMMMMMM

N/N

qqqqqqq
MMMMMMM N

(N/N)/(N/N) N/N deaths

lung cancer

Figure 6.1: (a) Original right-branching CCGbank (b) Left-branching (c) Left-branching with new
lexical categories

4. identify heads;

5. assign lexical categories;

6. generate new dependencies.

It is noticeable, and unsurprising, that some of these steps are common to both our algorithm and
that of Hockenmaier and Steedman (2007). As an example, we will follow the conversion process
for the Penn Treebank NML bracket below:

(NP (NML (NN lung) (NN cancer) )

(NNS deaths) )

The corresponding CCGbank lowest spanning node, which incorrectly has cancer deaths

as a constituent, is shown in Figure 6.1(a). To flatten the node, we recursively remove brackets that

partially overlap the NML bracket. Nodes that don’t overlap at all are left intact. This process results

in a list of nodes (which may or may not be leaves), which in our example is [lung, cancer, deaths].

We then insert the correct left-branching structure, shown in Figure 6.1(b). At this stage, the lexical

categories are still incomplete.

Heads are then assigned using heuristics adapted from Hockenmaier (2003a, Appendix

A.1). Since we are applying these to CCGbank NP structures rather than the Penn Treebank, the POS

tag based heuristics are sufficient to determine heads accurately.

Next, lexical categories are assigned to the new structure. We want to minimise the num-

ber of changes that are made to the entire sentence’s derivation, and so the lexical category of the

dominating node is fixed. Categories are then propagated recursively down the tree. For a node with
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category X, its head child is also given the category X. The non-head child is always treated as an

adjunct, and given the category X/X or X\X as appropriate. Figure 6.1(c) shows the final result of

this step for our example.

6.3.2 Dependency Generation

The changes described so far have generated the new tree structure, but the last step is

to create the corresponding dependencies. We recursively traverse the tree, at each level creating a

dependency between the heads of the left and right children. These dependencies are never long-

range, and are therefore easy to generate. We may also need to change dependencies reaching from

inside to outside the NP, if the head(s) of the NP have changed. In these cases we simply replace

the old head(s) with the new one(s) in the relevant dependencies. The number of heads may change

because we now analyse conjunctions correctly, as will be discussed in Section 6.3.3.

In our example, the original dependencies were:

〈lung,N/N1, 1, deaths,−〉 (6.2)

〈cancer,N/N1, 1, deaths,−〉 (6.3)

while after the conversion process, the dependency in (6.2) becomes:

〈lung, (N/N1)/(N/N)2, 2, cancer,−〉 (6.4)

To determine that the conversion process worked correctly, we manually inspected its

output for unique tree structures in Sections 00 – 07. This identified problem cases to correct, such

as those described in the following section.

6.3.3 Exceptional Cases

Firstly, when the lowest spanning node covers the NML or JJP bracket exactly, no changes

need to be made to CCGbank. These cases occur when CCGbank had already received the correct

structure during the original conversion process. For example, brackets separating a possessive from

its possessor were detected automatically.

A more complex case is conjunctions, which do not follow the simple head/adjunct method

of assigning lexical categories. Instead, conjuncts are identified during the head-finding stage, and

then assigned the lexical category dominating the entire coordination. Intervening non-conjunct
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(a) (b)
N

qqqqqqq
MMMMMMM

N/N N

qqqqqqq
MMMMMMM

conj N

qqqqqqq
MMMMMMM

N/N N

cotton and acetate fibers

N

qqqqqqq

DD
DD

DD
DD

DD
DD

DD
DD

N/N

qqqqqqq
MMMMMMM

N/N N/N[conj]

qqqqqqq
MMMMMMM N

conj N/N

cotton and acetate fibers

Figure 6.2: (a) Incorrect CCG derivation from Hockenmaier (2007) (b) The correct derivation

nodes are given the same category with the conj feature, resulting in a derivation that can be parsed

with the binary coordination rules used in CCGbank:

con j X ⇒ X[con j] (6.5)

X X[con j] ⇒ X (6.6)

An example CCGbank derivation is shown in Figure 6.2(a), while the correct coordination derivation

that we produce is in Figure 6.2(b). The process solves the problem we described in Section 2.5.1,

where conjunctions are treated as modifiers instead of forming coordinate structures.

As a result of the conversion process, applications of the non-CCG rule in (2.9) are reduced

from 1,378 to 145 cases. Most of the remaining cases included a conjunction that was already

structured correctly. For example, president and chief executive officer has the correct implicit

structure, even when unbracketed in the Penn Treebank. In NPs like these, the lowest spanning

nodes were already correct and so no change was made during the conversion process. Removing

this non-CCG rule from the grammar is an important step, as it allows it to be removed from the

parser as well. This would reduce the ambiguity that the parser must resolve and the size of the

charts that it has to build.

Some POS tags require special behaviour. Punctuation marks receive the same lexical

category as their POS tag, and this should not be changed by the conversion process. Determiners

and possessive pronouns are both usually given the lexical category NP[nb]/N, and this should not

be altered either. In order to make this possible, the categories of other tokens often needed to be
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(a) (b)
NP

qqqqqqq
MMMMMMM

NP[nb]/N N

qqqqqqq
MMMMMMM

N/N N

qqqqqqq
MMMMMMM

N N\N

the Roman numeral IX

NP

qqqqqqq

DD
DD

DD
DD

DD
DD

DD
DD

NP

qqqqqqq
MMMMMMM

NP[nb]/N N

qqqqqqq
MMMMMMM NP\NP

N/N N

the Roman numeral IX

Figure 6.3: Special behaviour for a determiner (a) Original CCGbank tree (b) The corrected deriva-
tion

changed. The NP in Figure 6.3 is an example of this, before and after the conversion process has

been applied. The sibling of the DT node, Roman numeral, is given the category N, rather than the

dominating node’s label. The NP formed by the determiner is made the head of the constituent, and

its sibling, IX, is assigned the adjunct category NP\NP.
Finally, there are cases where the lowest spanning node covers a constituent that should

not be changed. For example, in the following NP:

(NP

(NML (NN lower) (NN court) )

(JJ final) (NN ruling) )

with the original CCGbank lowest spanning node:

(N (N/N lower)

(N (N/N court)

(N (N/N final) (N ruling) ) ) )

the (N final ruling) constituent should not be altered.

It may seem trivial to process in this case, but consider a similarly structured NP: lower

court ruling that the U.S. can bar the use of . . . Although this NP begins in the same way, it also

contains a subordinate clause that could dominate a wide range of linguistic structure. Our mini-

malist approach avoids reanalysing complex constructions such as these, as it would unnecessarily

replicate the much larger task of creating CCGbank in its entirety. As a result, we only flatten those

constituents that partially overlap the NML or JJP bracket. The existing structure and dependencies
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# %
Possessive 224 43.75
Apposition with DT/PRP$ 87 16.99
Non-leaf assignment 66 12.89
Conjunction 35 6.84
False positive 26 5.08
Entity with internal brackets 23 4.49
Determiner 22 4.30
NML/JJP bracket is an error 12 2.34
Other 17 3.32
Total 512 100.00

Table 6.1: Manual analysis

of other constituents are retained. Note that we are still converting every NML and JJP bracket, as

even in the subordinate clause example, only the structure around lower court needs to be altered.

6.3.4 Manual Annotation

A handful of problems that occurred during the conversion process were corrected manu-

ally. The first indicator of a problem was the presence of a possessive. This is unexpected, because

possessives were already bracketed properly when CCGbank was originally created (Hockenmaier,

2003a, §3.6.4). Secondly, a non-flattened node should not be assigned a lexical category that it did

not already have. This is because, as described in the previous section, a non-leaf node could dom-

inate any kind of structure. Finally, we expect the lowest spanning node to cover only the NML or

JJP bracket and one more constituent to the right. If it does not, because of unusual punctuation or

an incorrect bracket, then it may be an error. In all these cases, which occur throughout the corpus,

we manually analysed the derivation and corrected any errors that were observed. 512 cases were

flagged by this approach, or 1.90% of the 26,993 brackets converted to CCG. Table 6.1 shows the

causes of these problems.

The most common cause was possessives, as the conversion process highlighted many

instances where the original CCGbank analysis was incorrect. An example of this error is in Fig-

ure 6.4(a), where the possessive doesn’t take any arguments. Instead, largest aid donor incorrectly

modifies the NP one word at a time. The correct derivation after manual analysis is in (b).

Possessives nested inside a left-branching structure also cause problems, as in Figure 6.5.

Most possessives are assigned the lexical category (NP[nb]/N)\NP, and combine with the preceding
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(a) the world ’s largest aid donor

NP[nb]/N N/N N NP\NP NP\NP NP\NP
>

N
>

NP
<

NP
<

NP
<

NP
(b) the world ’s largest aid donor

NP[nb]/N N (NP[nb]/N)\NP N/N N/N N
> >

NP N
< >

NP[nb]/N N
>

NP

Figure 6.4: (a) Original CCGbank derivation with a possessive (b) The corrected derivation

machinists ’ union advisers

NP (NP[nb]/N)/(N/N))\NP N/N N
<

(NP[nb]/N)/(N/N)
>

NP[nb]/N
>

NP

Figure 6.5: A possessive nested into left-branching structure

NP to form the standard determiner category. When the bare NP expected by this “determiner” is

a nominal modifier instead, the possessive category must be altered accordingly. For example, the

lexical category of the possessive in Figure 6.5 reflects the fact that union is acting as a modifier to

advisers. This manually assigned lexical category which corrects the derivation did not previously

exist in CCGbank.

Figure 6.6 shows the second-most common reason for manual analysis: an apposition

inside an NP that also includes a determiner or possessive pronoun. As there is no punctuation on

which to coordinate (which is how CCGbank treats most appositions) the best derivation we can

obtain is to have Victor Borge modify the preceding NP.

The non-leaf assignment errors in Table 6.1 were cases like the lower court ruling exam-

ple we gave in Section 6.3.3. There were also problems caused by conjunctions in some NPs, while

others were simply false positives in the error detection algorithm. Entities with internal brackets,
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(a) a guest comedian Victor Borge

NP[nb]/N N/N N/N N/N N
>

N
>

N
>

N
>

NP
(b) a guest comedian Victor Borge

NP[nb]/N N/N N (NP\NP)/(NP\NP) NP\NP
> >

N NP\NP
>

NP
<

NP

Figure 6.6: (a) Original CCGbank derivation with apposition and DT (b) The corrected derivation

such as Citibank (Madrid), were problematic because CCGbank often gives the opening bracket a

functional category such as (N\N)/NP, rather than the same lexical category as its POS tag. Sim-

ilarly, some determiners in CCGbank receive a non-standard lexical category when they are part of

an entity. For example, in Budget Rent a Car, the determiner is given a modifier category N/N.

6.3.5 Grammar Validation

The final step in the conversion process was to validate the corpus against the CCG gram-

mar, first by those productions used in the existing CCGbank, and then against those actually licensed

by CCG (with pre-existing ungrammaticalities removed). Sixteen errors were identified by this pro-

cess and subsequently corrected by manual analysis.

In total, we have altered 12,475 of the 48,934 CCGbank sentences (25.5%) and 20,409 out

of 1,046,136 dependencies (1.95%).

6.4 Initial Experiments

Having converted our NP annotations to CCGbank, we can now experiment with the data

using the C&C CCG parser (Clark and Curran, 2007b). The parser is evaluated on predicate-argument

dependencies derived from CCGbank, which we earlier described in Section 6.2.1. We train on Sec-

tions 02–21, develop on Section 00 and test on Section 23, as is the standard split in parsing experi-

ments. All of the experiments below are evaluated on Section 00, except those in Section 6.6.2.
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  -
Original 91.85 92.67 92.26
NP corrected 91.22 92.08 91.65

Table 6.2: Supertagging results

  -
Original 85.34 84.55 84.94
NP corrected 85.08 84.17 84.63
NP dependencies only – 77.03 –

Table 6.3: Parsing results with gold-standard POS tags

6.4.1 Supertagging

Before we begin full parsing experiments, we evaluate on the supertagger alone. The

supertagger, described in Section 2.5.2, is an important stage of the CCG parsing process and its

results will affect performance in later experiments.

Table 6.2 shows that F-score has dropped by 0.61%. This is not surprising, as the conver-

sion process has increased the ambiguity of supertags in NPs, and thus the difficulty of determining

them. Previously, a bare NP could only have a sequence of N/N tags followed by a final N. There

are now more complex possibilities, equal to the Catalan number of the length of the NP. This is an

exponential increase in ambiguity.

In fact, there are even more potential supertags for words in an NP, even for tokens that

are normally unambiguous. Possessives now have a wider ranger of categories, as we saw in Fig-

ure 6.5, and even regular nouns can have complex categories like (NP\NP)/(NP\NP), as we saw

in Figure 6.6. Unsurprisingly, the supertagger has difficulty dealing with this increased level of

ambiguity.

6.4.2 Parsing Results

We use the normal-form parser model and report labelled precision, recall and F-score

for all dependencies. Table 6.3 shows the results from comparing parser performance on our NP

corrected version of the corpus to that on original CCGbank. The F-score drops by 0.31% in our new

version of the corpus. However, this comparison is not entirely fair, as the original CCGbank test
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  - 

Original 83.65 82.81 83.23 −1.71
NP corrected 83.31 82.33 82.82 −1.81
NP dependencies only – 75.21 – −1.82

Table 6.4: Parsing results with automatic POS tags

data does not include the NP structure that the NP corrected model is being evaluated on. We saw

a similar drop in the Collins (2003) parsing experiments in Section 4.2, where the F-score for NML

and JJP brackets was about 20% lower than the overall figure. We suspect that a similar effect is

causing the drop in performance here.

Unfortunately, there are no explicit NML and JJP brackets in the CCG corpus. In order to

evaluate the new NP structure, we take the same approach as the relabelling experiments of Sec-

tion 4.2.1. The dependencies that were altered during the NP conversion process, for example the

one in (6.2), can be marked in the test data, and we can then evaluate only the marked brackets.

However, as before, this approach can only supply a recall figure, as the dependencies outputted by

the parser are not marked. Table 6.3 shows that NP structure performance is about 7% lower than

the overall recall, which compares favourably to the almost 30% recall drop in the Collins (2003)

parsing experiments (see Table 4.1). Although of course, because of the different data, formalism

and evaluation, as well as the gold-standard POS tags being used here, the results are not directly

comparable.

Automatic POS and NER tags

We have also experimented with using automatically assigned POS tags, using the C&C

POS tagger. The tagger achieves an accuracy figure of 96.49%, trained on Sections 02–21 and tested

on Section 00. Table 6.4 shows that, unsurprisingly, performance is lower without the gold-standard

data. The NP corrected model drops an additional 0.1% F-score over the original model, suggesting

that POS tags are even more important for recovering internal NP structure.

6.5 Novel Features

Now that we have a baseline model from the NP corrected CCGbank, we can improve upon

it. To this end, we will implement new features targeted at increasing performance on NP structure.
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These novel features will be based on Named Entity Recognition (NER) and counts from the Web

1T corpus. We chose these features because of their contributions to the experiments in Chapter 5,

where they were the best performing features that are not already included in the C&C parser.

6.5.1 Named Entity Recognition

Named entity recognition provides information that is particularly relevant for NP pars-

ing, as the entities suggest a likely syntactic structure. For example, knowing that Air Force is an

entity tells us that Air Force contract is a left-branching NP. The evaluation of the annotation tool’s

suggestion feature in Section 3.5 also demonstrated the usefulness of NER-based features. The BBN

SIFT parser (Miller et al., 1998) is an existing system that makes use of NER information. There

is also more recent work combining NER and parsing in the biomedical field. Lewin (2007) exper-

iments with detecting base-NPs using NER information, while Buyko, Tomanek, and Hahn (2007)

use a Conditional Random Field (CRF) to identify coordinate structure in biological named entities.

We draw NE tags from the BBN Pronoun Coreference and Entity Type Corpus (Weischedel

and Brunstein, 2005), which annotates 28 different entity types. These include the standard person,

location and organisation classes, as well as person descriptions (generally occupations), NORP

(National, Other, Religious or Political groups), and works of art. Some classes also have finer-

grained subtypes, although we use only the coarse tags in our experiments.

We have implemented a number of novel NER features in the C&C parser, most of which

are generalisations of existing features that use head words and/or their POS tags. The original model

used 489,196 features and this figure rises to 540,898 when our NER features are included. This is

an increase of 51,702 or 11%.

Lexical

Our first addition is a lexical feature describing the NE tag of each token in the sentence

together with its lexical category. The same feature already exists in the model for the word and its

POS tag. This new feature, and all others that we describe here, are not active when the NE tag(s) are

O, as there is no NER information from tokens that are not entities.

Local Tree

The next group of features is based on the local tree (a parent and two child nodes) formed

by every grammar rule application. We add a feature where the rule being applied is combined with
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the head of the parent node’s NE tag. For example, when joining two constituents1: 〈five, CD, CARD,

N/N〉 and 〈builders, NNS, PER DESC, N〉, the feature would be:

N → N/N N + PER DESC

as the head of the constituent is builders. This feature is based on the following pre-existing

features that use the head word and its POS tag instead of the NE tag:

N → N/N N + builders

N → N/N N + NNS

The local tree feature type also combines the grammar rule with the child nodes. There

are already features in the model describing each combination of the children’s head words and POS

tags, which we extend to include combinations with the NE tags. Using the same example as above,

the pre-existing features would be:

N → N/N N + five + builders

N → N/N N + five + NNS

N → N/N N + CD + builders

N → N/N N + CD + NNS

to which we add five new features:

N → N/N N + five + PER DESC

N → N/N N + CARD + builders

N → N/N N + CD + PER DESC

N → N/N N + CARD + NNS

N → N/N N + CARD + PER DESC

Entity Spanning

Another feature group is based on the NE spanning categories. We identify constituents

that dominate tokens that all have the same NE tag, as these nodes will not cause a “crossing bracket”

with the named entity. For example, the constituent Force contract, in the NP Air Force contract,

spans two different NE tags, and should be penalised by the model. Air Force, on the other hand,

only spans ORG tags, and should be preferred accordingly. We also take into account whether the

1These 4-tuples are the node’s head and the head’s POS tag, NE tag and lexical category.
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constituent spans the entire named entity. Combining these nodes with others of different NE tags

should not be penalised by the model, as the NE must combine with the rest of the sentence at some

point. This feature group has no equivalent in the pre-existing C&C model.

There are two NE spanning features for each grammar rule instantiation: one for the parent

node and a second for the child nodes. These features also describe whether or not the nodes

span entire entities. There are two possibilities for the parent node, it does or it doesn’t, and four

possibilities for the child nodes, depending on whether neither, the left, the right or both nodes span

the entire NE.

Consider the example NP: Royal Air Force contract. When Air and Force combine, the

parent feature would be:

N → N/N N + PARTIAL + ORG

and when Royal and Air Force subsequently combine, the parent feature would be:

N → N/N N + ENTIRE + ORG

We expect that both of these features would be assigned positive weights by the model, with the

latter given the greater magnitude of the two.

On the other hand, if Air Force and contract were incorrectly joined, then the parent

feature would be:

N → N/N N + PARTIAL + X

where X indicates that disparate NE tags have been combined. Thus, no X constituents can span an

entire entity. The presence of Xmeans that this latter feature should have a negative weight, resulting

in an accordingly lower probability for the constituent. Note that an X would also be in the parent

feature when Royal Air Force and contract are combined, even though this is the correct structure.

This will be moderated by the child features as described below.

For the child features, joining Royal and Air Force would result in:

N → N/N N + NEITHER + ORG + ORG

as neither child spans the entire entity. This feature should still receive a positive weight. When

Royal Air Force and contract form the entire NP node, then (assuming that there are more O tags to

the right) the child feature will be:

N → N/N N + LEFT + ORG + O
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The left child does span the entire entity in this case, and so this feature should be given a sufficiently

high weight to overcome the negative weight that may be assigned by the parent feature with its X.

Incorrect constituents will still have low probability, such as Air combined with Force contract

which produces the following feature:

N → N/N N + NEITHER + ORG + X

because neither node spans an entire entity and X is present.

Entity Spanning without Rules

It may be argued that the spanning feature group does not need to describe the grammar

rule being applied, as only the NE tags are relevant. We experimented with this by adding back-off

features, namely the spanning categories without rules. These features work in the same way as the

previous feature group, only without conditioning on the grammar rule. For example, the parent

feature for Air Force would be:

ENTIRE + ORG

and the child feature combining Air Force and contract would be:

LEFT + ORG + O

Distance

The final feature group is based on the distance features that the parser currently uses.

They give a measure of the distance between the heads of the constituents being combined. Individ-

ual features exist that count the number of words, verbs and punctuation marks in the intervening

tokens. These features already include the head word of the combined constituent and generalise to

its POS tag. We add another generalisation to the NER tag.

For example, if Air were combining with Force contract, then there would be one word

between the heads (Force), and the following word distance features would be created:

N → N/N N + contract + 1

N → N/N N + NN + 1

Our additional NER-based feature would be:

N → N/N N + O + 1

The same is done analogously for the verb and punctuation distance features.
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6.5.2 Web 1T

We saw in Section 4.6 that the primary cause of NP structure errors was a lack of lexical

information. There is no reason why we should not suffer from the same problem when parsing with

CCG, as the text in the training data remains the same. In these cases where the parser has not seen

the lexical items, the bigram count from an unannotated corpus will serve as an alternative source

of information on which to base a parsing decision. We draw these bigram counts from Google’s

Web 1T corpus (Brants and Franz, 2006), as was done previously in the NP Bracketing experiments.

The new feature is implemented as the bigram count of the head words of the two con-

stituents being combined. This is made slightly more complicated as the C&C parser uses binary

features only and thus we must discretise the bigram counts, as was done previously in Chapter 5.

However in this case, adding the multitude of features produced by the Fayyad and Irani (1993)

algorithm would be problematic, because of complications in the current C&C parser architecture

and also because of the increased difficulty in optimising the resulting Maximum Entropy model.

Instead, we discretise based on the order of magnitude of the count. This simpler method still

describes the frequency of the bigram, while only requiring a small, predeterminable number of

features.

We also experimented with using the χ2 measure described and used in Chapter 5. Again

this results in a real-valued figure, which we discretise to a number of binary features using the order

of magnitude technique. Using the Web 1T corpus increases the total feature count to 545,777. This

is an additional 4,879 features, or 1% of the original model’s count.

6.6 Results

Table 6.5 shows the results achieved with our novel features on the NP corrected CCGbank.

We report the overall dependency figures, as well as the NP recall measure described in Section 6.4.2.

The second and third rows show that the χ2 version of the Web 1T features outperforms

the raw counts. An 0.94% F-score increase is achieved over the initial model. The rest of Table 6.5

presents a subtractive analysis of individual feature groups, using the χ2 version of the Web 1T

features. The figures show that none of the features provide a tremendous improvement on their

own, but together, the increase is quite substantial. The Web 1T features provide the biggest gain,

although it appears that this is because they are informative in a different way to all of the NER

features, whose improvements overlap. This can be seen by comparing the last two rows of the
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  - NP 

No new features 85.08 84.17 84.63 77.03
All features, Web 1T raw counts 85.95 85.03 85.49 76.75
All features, Web 1T χ2 86.05 85.09 85.57 77.45
−Lexical 86.04 85.09 85.56 77.73
−Local tree 85.97 85.02 85.49 78.29
−Entity spanning 85.87 84.97 85.42 77.03
−Entity spanning without rules 86.02 85.07 85.54 78.01
−Distance 85.91 85.00 85.45 76.75
−Web 1T χ2 85.79 84.59 85.34 77.73
Web 1T χ2, no new NER features 85.60 84.67 85.13 76.89

Table 6.5: Feature analysis on NP corrected CCGbank

table, where using only the Web 1T χ2 features is inferior to using only the NER features (i.e.

subtracting Web 1T).

The figures for NP recall are calculated over only 714 NP dependencies, and as such,

the changes are relatively minor in all cases. The 0.42% improvement from using all features

and Web 1T χ2 only recovers three more dependencies than the no new features model. This is

very unexpected, as the novel features are specifically intended to improve NP performance. The

subtractive analysis actually suggests that some features are harmful for NP performance, although

the small changes mean that the features are merely indifferent. Also, because we can only measure

recall and not precision, the NP figures do not provide the most accurate view of the performance

changes. Because of this, we cannot draw too many conclusions from them. It does appear that our

novel features have actually been successful at improving parser performance as a whole, rather than

the NP dependencies we were aiming for. This is a positive result for the parsing field in general,

rather than NPs in particular.

Considering the negligible changes in NP recall, the best performing model according to

the subtractive analysis uses all NER feature groups and the Web 1T features with χ2 scores.

Having determined the optimal set of features, we now compare performance on the NP

corrected version of CCGbank to that on the original. Table 6.6 shows the results, along with the

improvements from using all of the feature groups and the χ2 Web 1T counts. We do not show NP

recall, since there are no NP dependencies marked in the original corpus.

Performance has increased by 0.71% F-score on the original CCGbank, and by 0.94% F-

score on the NP corrected version. This difference is not surprising, as the incorrect right-branching
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  -
Original 85.34 84.55 84.94
Original, with novel features 86.10 85.21 85.65
NP corrected 85.08 84.17 84.63
NP corrected, with novel features 86.05 85.09 85.57

Table 6.6: Comparing the NP corrected CCGbank to the original

  -
Original 83.65 82.81 83.23
Original, with NER features 83.99 83.13 83.56
Original, with all features 84.07 83.21 83.64
NP corrected 83.31 82.33 82.82
NP corrected, with NER features 83.71 82.76 83.23
NP corrected, with all features 83.84 82.89 83.36

Table 6.7: Results using automatically assigned POS and NER tags

NPs would introduce noise to our novel features, causing them to be less effective. For example, Air

Force contract is annotated as right-branching in the original CCGbank. The NER features will thus

appear inconsistent in NPs like this, as the gold-standard constituent Force contract crosses the NE

boundary. Likewise, the Web 1T features will have a high count for Air Force, although this is not

a gold-standard constituent. In the NP corrected version of the corpus, both of these inconsistencies

will disappear, allowing the model to add more weight to the features. These results are further

evidence of the effectiveness of our novel features.

6.6.1 Automatic POS and NER Tags

As in Section 6.4.2, we experimented with automatically assigning POS tags. In light of

the features we have added, automatic NER tags were also experimented with. We use the C&C

NER tagger (Curran and Clark, 2003), which attains 84.45% F-score on all non-O classes, with

precision being 78.35% and recall 91.57%. These figures are achieved on Section 00, after training

on Sections 02–21, and use automatically generated POS tags.

The results are shown in Table 6.7. The automatic POS and NER tags have caused the all-

features models to drop by 2.21% and 2.01% F-score on the NP corrected and original versions of

CCGbank respectively. This is a larger increase than the 1.81% and 1.71% drops when using none of
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  - NP 

Original 85.94 85.25 85.59 –
Original, with novel features 86.57 85.90 86.23 –
NP corrected 85.59 84.95 85.27 76.10
NP corrected, with novel features 86.26 85.64 85.95 78.12

Table 6.8: Final test set results

the novel features. The gap between the NP corrected and original corpora has also increased from

0.1% to 0.2% F-score. These figures show that the novel features in particular become less effective

when parsing raw text. This is to be expected, as the NER features will be less reliable when the NEs

are not gold-standard.

6.6.2 Test Set Results

Our final set of figures presents results on Section 23 of the corpus. These are shown

in Table 6.8. As with our development results, the original CCGbank F-score is higher than the

NP corrected version. And also as before, the performance increase from using the novel features

is slightly greater on the NP corrected corpus, although the difference here is very small. These

test set figures are more encouraging for NP recall, showing an increase of 2.02% or 21 additional

dependencies being recovered.

We perform statistical significance tests on these results, using the same randomised shuf-

fling technique earlier described in Section 5.6.1. We can only compare models trained on the same

version of CCGbank, as the dependencies being evaluated differ between the two versions of the

corpora. Comparing the original CCGbank model to that using novel features (the first two rows of

Table 6.8), we calculate a p-value of 0.0001 for precision, recall and F-score. This is the smallest

p-value attainable for the 10,000 iterations performed. The same p-values are achieved when com-

paring the two models trained on the NP corrected version of CCGbank. For NP recall, we calculate

a p-value of 0.0092, demonstrating that this 2.02% increase is a statistically significant increase in

performance.
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  -
Original, gold parses 86.86 81.61 84.15
NP corrected, gold parses 87.97 82.54 85.17

Table 6.9: Upper bound on performance for the DepBank evaluation

6.7 DepBank Evaluation

One problem with the evaluation in the previous section, is that the original CCGbank is

not expected to recover internal NP structure, making its task easier and inflating its performance.

To remove this variable, we carry out a second, formalism and annotator-independent evaluation

against the Briscoe and Carroll (2006) reannotation of DepBank (King et al., 2003), as described

in Clark and Curran (2007a). Parser output is made similar to the Grammatical Relations (GRs) of

the Briscoe and Carroll (2006) data, however, the conversion remains complex. Clark and Curran

(2007a) report an upper bound on performance, using gold-standard CCGbank dependencies, of

84.76% F-score.

This evaluation is particularly relevant for our full parsing of NPs, as the Briscoe and Car-

roll (2006) corpus has been annotated for internal NP structure. With our new version of CCGbank,

the parser will be able to recover these GRs correctly, whereas before this was unlikely. The evalua-

tion is particularly important, as it allows a comparison between the same GRs before and after the

NP structure has been corrected. In the earlier experiments with the C&C and Collins (2003) parsers,

we could only evaluate NP structure after making alterations to the corpus. Thus, this DepBank

evaluation will best show the effect that NP structure has on parsing performance.

Table 6.9 shows the figures achieved using the gold-standard CCGbank derivations. In the

NP corrected version of the corpus, performance has increased by 1.02% F-score. This decisive

result is a reversal of those we saw in Section 6.6 and in the Collins (2003) experiments. It demon-

strates that correct NP structure improves parsing performance, rather than decreasing it, and that

the alterations we have made to CCGbank represent NP structure in a measurably better way com-

pared to the original corpus. Because of this increase to the upper bound of performance, we are

now even closer to a true formalism-independent evaluation. Note that our original CCGbank recall

figure is slightly different to that reported by Clark and Curran (2007a). The reason for this is still

unresolved.

We now move to evaluating the C&C parser itself and the improvement gained by the
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  -
Original 82.57 81.29 81.92
NP corrected 83.53 82.15 82.84
Original, novel features 83.22 81.95 82.58
NP corrected, novel features 84.27 83.05 83.65
Original, novel features, auto. POS and NER 83.01 81.63 82.31
NP corrected, novel features, auto. POS and NER 84.13 82.81 83.46

Table 6.10: DepBank evaluation results

novel features in Section 6.5. Table 6.10 shows the results with no new features; the best model

from Section 6.6, which uses all of the novel features; and the effect of automatic POS and NER

tags on the all-features model. As we saw in the gold-standard results, the NP corrected corpus

performs better than the original CCGbank in all cases. This further validates the superiority of the

NP corrected corpus.

In the models without any new features, training on the corrected NP structure outperforms

the original CCGbank by 0.92% F-score. Adding in our novel features results in a further improve-

ment of 0.81% F-score. Thus, our work has increased the parser’s performance by 1.73% F-score in

total. These results demonstrate that our NP data and novel features have both been very successful.

Furthermore, the performance increase of 0.81% on the NP corrected corpus is more than

the 0.66% increase on the original. This is the same result we saw in Section 6.6 and again validates

our expectation that NER and Web 1T features are particularly helpful for NP structure. The figures

for automatic POS and NER tags show the same trend, providing a greater increase on the NP cor-

rected corpus. These increases are, as we would expect, not as large as when using gold-standard

tags. However, the novel features still provide a noticeable gain. We also note that the drop in

performance when using automatic POS and NER tags is smaller in this evaluation, compared to that

experienced in Section 6.6.1. The DepBank evaluation is less sensitive to the errors introduced by

using automatic taggers.

6.8 Error Analysis

The results achieved in this chapter have been excellent. The CCG parser has performed

extremely well at recovering NP structure and there was a noticeable improvement from using the NP

corrected corpus. However, it is still informative to perform an error analysis in order to determine
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 # %
Modifier attachment 64 39.02
Mislabelling 32 19.51
Named Entities 31 18.90
Apposition with DT 12 7.32
Possessives 10 6.10
Conjunctions 5 3.05
Other 10 6.10
Total 164 100.00

Table 6.11: Error analysis

where future improvements may lie. Accordingly, we manually examined and categorised the NP

errors being made by the parser on the development data in the original model, i.e. before including

the novel features in Section 6.5. The results are in Table 6.11.

As with the Collins (2003) parser analysis in Table 4.7, about 40% of the errors are caused

by a general modifier attachment problem. Section 6.8.1 will analyse these errors in more detail.

The next-most common cause of errors (19.51%) is the supertags assigned to the lexical

items. In these cases, the dependency created is correct, but the label is not. For example, a pair

of modifiers might be assigned the categories N/N and N instead of (N/N)/(N/N) and N/N. As

we mentioned in Section 6.4.1, the NP corrected corpus causes an increase in NP supertag ambiguity

and so it is not surprising to see a number of these errors.

Although named entities are present in a significant proportion of the errors (18.90%), we

noted that only 18 of the cases (10.98% of the total errors) could conceivably be corrected by the

NER information. This is because when the error is internal to the entity, the NE tags remain uninfor-

mative. For example, the fact that Consolidated Gold Fields PLC is marked as an organisation does

not disambiguate between Consolidated forming a dependency with Gold, Fields or PLC. This may

explain why the NER features did not increase NP performance overmuch. The overall increase from

these features is still understandable, as the NE tags on Consolidated Gold Fields PLC do effectively

demarcate the NP’s boundaries.

The errors caused by appositions and possessives are the same problems that were man-

ually analysed during the conversion process in Section 6.3.4. The unusual supertags that were as-

signed in those analyses, such as (NP\NP)/(NP\NP) for Victor in the guest comedian Victor Borge

are not surprisingly, difficult for the parser to recover. Similarly, possessives with a non-standard
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  

  346 18 364
   204 146 350
 550 164 714

Table 6.12: The effect of lexical information on NP accuracy

  

  20,183 2,174 22,357
   13,119 4,088 17,207
 33,302 6,262 39,564

Table 6.13: The effect of lexical information on overall accuracy

supertag, such as (NP[nb]/N)/(N/N))\NP in Figure 6.5, were problematic.

It is interesting to note that the mislabelling, apposition and possessive errors could all be

improved with a better supertagger analysis. We have implemented novel features for the parser, but

it would also be feasible to apply these kinds of features to the supertagger. Section 7.2 will discuss

this possibility further.

6.8.1 The Effect of NP Lexicalisation

Table 6.12 displays a deeper analysis of the NP lexicalisation problem. It details the num-

ber of NP dependencies that were recovered correctly or incorrectly by the parser and whether

those dependencies are present in the training data. Note that the entire NP, e.g. lung cancer

deaths, is not necessarily seen in the training data, only the specific labelled dependency, e.g.

〈cancer, (N/N)/(N/N), 1, lung,−〉. The figures show that a dependency that occurs in the train-

ing data has a 95% ( 346
364 ) chance of being recovered correctly. On the other hand, a dependency that

does not occur in the training data has only a 58% ( 204
350 ) chance of being correct. Assuming that the

surrounding decisions have been made correctly, the baseline for a three word NP is 50%, (the two

choices being left or right-branching), and so this latter figure seems quite poor.

Of course, lexicalisation can be informative for parsing and so these proportions may

seem reasonable. To demonstrate that they are relatively anomalous, Table 6.13 displays the same

figures for all dependencies. These are recall figures only and so remain comparable to the previous

NP only table. In this case, only 90% ( 20183
22357 ) of dependencies that occur in the training data are
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recovered correctly, while 76% ( 13119
17207 ) of dependencies that the parser has not been trained on are

also correct. That is, NP structure performance is higher on dependencies that exist in the training

data, while still being lower on unseen dependencies.

This analysis gives a excellent indication of the difficulty involved in parsing NPs. Con-

sider an ambiguous NP, brain stem cells, which may describe stem cells from the brain, or cells

from the brain stem. The 95% result from Table 6.12 suggests that NPs like this are quite rare, and

that most NPs will have only a single attested bracketing. But despite this, the NP parsing problem

remains more difficult than parsing in general. The productivity of NPs means that many will occur

only once, and even though just a single example is enough to inform all further decisions, it will not

help if the NP has never been seen. These results support those found in Chapter 4, demonstrating

that poor lexicalisation of NP structure is a parser-independent problem.

Considering all this, the obvious question is: why are the Web 1T features not a panacea

for the problem? Bikel (2004, §7.4) suggests a possible reason: the bilexical statistics that we

are including as features here are not actually very useful to the Collins (2003) parser. It is the

lexico-structural dependencies, i.e. those that describe how lexical items form constituents, that are

important.

Another possibility is that the bigram counts do not discriminate effectively. For a node

high in the tree, the two head words may be quite distant in the stream of words, and actually

hardly ever be seen next to one another. Thus, they will have a low bigram count even in correct

structures. Returning to an example from Chapter 1, there is a dependency between eat and spoon

in the sentence I eat the cake with the spoon, and the semantic relationship between the pair of

words is clear. However, their Web 1T bigram count is only 226. One possibility, that may reduce

the negative effect of dependencies between non-contiguous words, is to include the grammar rule

in the feature. The rule will be indicative of height in the tree, allowing the model to learn that low

counts are not necessarily a bad thing in these cases. However, it is hard to tell if this is true. It

may be that removing the rule, as was successful for the NER spanning features, would also improve

performance here, as it would allow the model to generalise more. Modelling the height of the

constituent directly may be a better alternative, although it would be harder to implement in the

parser.

Finally, it may be that the Maximum Entropy model is depending too heavily on the

lexical features. As we have seen, they are extremely effective when available, however when they

are not, it may be better to have more weight placed upon the Web 1T features. It remains to be

seen how best to incorporate this unannotated information into a supervised parsing model.
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6.9 Summary

In this chapter, we experimented with NP parsing using Combinatory Categorial Grammar.

The data from Chapter 3 was converted to this different formalism and used to correct important

errors which were systematic in CCGbank. We have also implemented a number of novel features in

the parser: using Named Entity Recognition, which is a source of semantic information unused by

most parsers; and also counts from the Web 1T corpus, as a replacement for lexical information on

unknown NPs.

Our experimental results have shown that this more accurate representation of CCGbank’s

NP structure increases parser performance. The DepBank evaluation in particular showed that cor-

recting CCGbank’s NP structure results in a large performance gain. The use of our novel features

then allowed these figures to be raised even higher. NP structure is now recoverable by the C&C

parser and its overall performance has been increased by 1.73% F-score.



Chapter 7

Future Work

This thesis is the first to create and make use of a large-scale corpus of NP annotations.

Our experiments with this new data have set a high benchmark for NP parsing. In many cases, there

has been no previous work or state-of-the-art result to compare to, only experiments on a data set

that is limited in scale and coverage. Our NP Bracketing experiments in Chapter 5 for example, set a

new bar for what can be achieved, and demonstrate the applicability of supervised methods. There

is now a tremendous amount of future work that can be performed on the subject of NP parsing.

7.1 NP Annotation

In Chapter 3, we extended the Penn Treebank with NP annotations. For the first time,

this widely-used corpus could train parsers to recover NP structure. We are aware of only one other

corpus that has been annotated with a large volume of NP structure: the Biomedical Information

Extraction Project (Kulick et al., 2004). Because these are the first NP annotation schemes, it seems

probable that they can be improved. We suggest some potential refinements here.

7.1.1 More Detailed NP Structure Categorisation

In our work, and in the Biomedical Project, there are only two possible structures: left-

branching and right-branching. Other possibilities have been noted by different researchers, which

we also came across during the annotation process.

127
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Flat NPs

Firstly, there are NPs that are neither left nor right-branching, but exhibit only a flat, mono-

lithic structure. Entities such as John A. Smith and International Business Machines are examples of

this. In these cases, there is no real head-modifier relationship, John is not modifying Smith, but the

tokens taken together still convey a meaning. McInnes, Pedersen, and Pakhomov (2007) recognise

monolithic NPs in their annotation of medical terms, giving the example serous otitus media.

Perhaps the easiest way to annotate these flat NPs is to change their tokenisation, joining
them together as a single token. This would simplify any structural problems and let a parser (or
any NLP system) treat the entity as the single object that it is. This would not be a very practical
approach to the problem, as much important lexical information would be lost. A better annotation
scheme would be to add a marker to the relevant bracket in the corpus, in the same way that semantic
markers (CLR, PRD, etc) are used:

(NP-FLAT (NNP John) (NNP A.) (NNP Smith) )

(NP

(NML-FLAT (NNP John) (NNP A.) (NNP Smith) )

(NNS apples) )

Another possibility is to include flat NPs into the parsing algorithm itself. The mono-

lithic structure could be inserted at the appropriate level in the chart, rather than being formed as

a constituent via a combination of lexical items. These two structures could then probabilistically

compete, with the parser choosing the most likely option. However, this could introduce a problem

similar to the bias in PCFGs, where smaller derivations are more likely because they involve multiply-

ing fewer probabilities. The monolithic structure would likewise be made up of fewer probabilities.

Other problems would be deciding how to apply the feature set to multiple words together, and how

to determine which NPs are flat in the first place. If these issues could be resolved, then the resulting

model would be able to statistically decide between left, right, and flat structures.

Indeterminate NPs

The second additional category is semantically indeterminate NPs, which we noted the
presence of in Section 3.1. These NPs can be thought of as both left and right-branching, i.e. a
dependency should exist between all word pairs. Lauer (1995b) found that 35 out of the 279 non-
error NPs in his data set fitted this category, for example city sewerage systems and government

policy decisions. It is the government policy in question in the latter example, but also policy
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decisions and government decisions, resulting in all three possible dependencies. In the same way
as flat NPs, a marker could be added to the bracket to denote indeterminate NPs:

(NP-IND (NN government) (NN policy) (NNS decisions) )

(NP

(NML-IND (NN government) (NN policy) (NNS decisions) )

(NN report) )

Note that some NPs may appear to be indeterminate, but can actually be resolved. For

example, in American President George Bush, George Bush is American, and the President, and the

American President. However, the first meaning in this list is not intended by the utterance. Bush’s

nationality is not relevant in the document, and so we argue that that the right-branching dependency

should not be created. This NP should be annotated as left-branching.

Marcus, Santorini, and Marcinkiewicz (1993) make some mention of indeterminate NPs,

calling them permanent predictable ambiguities, a term they ascribe to Martin Kay. The example a

boatload of warriors blown ashore is given, which is similar to those in Hindle and Rooth (1993).

In Section 3.1.1 we described how both meanings of the prepositional phrase attachment are true

in cases like this: the boatload was blown ashore, and so were the warriors. Marcus et al. (1994)

describe the *PPA* trace used in the Penn Treebank, which is applied to these permanent predictable

ambiguities, or as we have called them, indeterminates. However *PPA* is also applied to cases of

general ambiguity (those described in the following paragraphs), whereas we would separate the

two.

Ambiguous NPs

The final category that we suggest is for ambiguous NPs. These NPs do have a left or

right-branching structure, however the annotator has no hope of determining which is correct. This

may be because of technical jargon, e.g. senior subordinated debentures, or simply an ambiguity

that cannot be resolved by the given context, as in the often cited PP-attachment example: I saw

the man with the telescope. In these cases, there is a definite correct answer. The man either has

a telescope, or a telescope is being used to do the seeing, but not both.1 This differentiates these

ambiguous cases from indeterminate NPs, where both readings are true.

1In theory, the telescope could be with the man and used to do the seeing, but we will ignore this rather pathological
possibility.
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The Penn Treebank’s X constituent exists for when the correct category is unknown or

uncertain, demonstrating that this problem occurs in the Treebank. However, we expect that the

consistent use of this label is difficult at best. In any annotation task there will be hard-to-bracket

cases, but drawing a line between those that are unresolvable and those that are merely complex

would be up to individual annotators, whose opinions could vary greatly. In our experience, it is

better to simply make a decision between left and right-branching. Accordingly, Section A.1.2 of

our guidelines instructs annotators to leave an NP flat when they are unsure. Having this default

strategy is one way to manage this problem, similar to high PP attachment in the Penn Treebank

(Bies et al., 1995, §5.2.1) and in the Redwoods Treebank (Oepen et al., 2002).

The Frequency of these Additional Categories

Annotating for each of these flat, indeterminate and ambiguous NPs would require a fur-

ther pass through the corpus, which would be a significant amount of work. From a pragmatic point

of view, it may be better to leave them as is, as they comprise such a small proportion of all NPs. We

can present no gold-standard figures for the Penn Treebank, as the annotation of these additional NP

structure categories has not been performed as yet. However, considering that the annotator only

marked 915 of the 60,959 inspected NPs as difficult (1.50%), we suggest that almost all NPs can

be assigned to left or right-branching classes. From our experience annotating, we estimate that

approximately 5% of NPs do not fit into one of these major categories. Indeterminate NPs would be

the least part of these, and ambiguous NPs (relating to financial jargon) the most.

McInnes, Pedersen, and Pakhomov (2007) found that flat NPs comprised 10.3% of their

corpus, however another category of NPs that they define, non-branching, appears to be equivalent

to right-branching NPs. Also, one of the flat examples given, difficulty finding words, does not seem

to be an NP. For these reasons, a comparison between our corpus and theirs may not be reliable.

In Lauer’s data set, 12.54% of NPs are indeterminate, however we suspect that many of

these cases could fit into a left or right-branching category. The same logic we applied to American

President George Bush could be used for some of Lauer’s indeterminate NPs, such as college bas-

ketball players. The NP is unlikely to be stressing that the players are college students, rather that

they are playing in an official college basketball league. Although the lack of context adds some

confusion, we suspect this is actually a left-branching NP.

Flat, indeterminate and ambiguous NPs are interesting problems, but they are only a small

part of the larger NP parsing task.
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7.1.2 Improving Consistency

In Section 4.6, we saw that a number of errors occurred where the parser mislabelled an

NP as NML, or vice versa (and the same with JJP and ADJP). Section 3.3.2 earlier pointed out that the

extended Penn Treebank retained some inconsistencies, which could only be corrected by altering

the original Penn Treebank brackets.

It seems clear then, that our principle of retaining all pre-existing brackets has reduced

performance somewhat. This does not mean that our approach was flawed, as it was necessary to

allow a direct comparison between the old corpus and the new. However, now that this has been

performed, we have little doubt that changing some of the original Penn Treebank brackets would

create a better corpus. Machine learning techniques would be more effective, and performance of

statistical models would be higher, if the original Penn Treebank annotations and ours were made

more consistent.

Performing manual reanalysis with another annotation phase would provide guaranteed

coverage of all those cases that need to be made consistent. However, sufficient consistency is per-

haps achievable using an automated approach. Hogan (2007) uses such a technique, automatically

detecting and correcting NPs in the Penn Treebank that were bracketed differently to the guidelines’

(Bies et al., 1995) specifications. For example, coordinations with nouns only should not receive

internal structure, while coordinations with shared non-nominal modifiers should. This pattern

matching approach increases Treebank consistency and parser performance as a result.

7.1.3 Head Marking

Another issue raised during the annotation process was that an NP’s head may not neces-

sarily be the right-most token. For example, the head of IBM Australia (the Australian division of

the company) is IBM, and not Australia. This problem may create inaccurate probability estimates.

For example, bought IBM Australia is a likely utterance. However, the bigram of the verb and the

head of the NP, bought Australia, is unlikely (one cannot buy a country). Identifying the correct

head would result in a much more likely bigram bought IBM, and thus a better probabilistic model.

The hand-written head-finding rules applied by a parser do not correctly deal with cases like this.

Magerman (1994, §9.2), whose original head-finding table has been a basis for Collins

(2003) and in turn Hockenmaier (2003a), also objects to using head-finding rules. He calls them

a “blatant violation” of his goal to minimise manual knowledge engineering. The principle of a

statistical parser should be to extract its knowledge from a treebank, rather than defining it explicitly.
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Thus, a better solution for NPs and treebanks in general, would be to annotate the head of each

constituent.

Many different approaches could be undertaken for this task, e.g. marking syntactic vs

semantic heads, or annotating the DP analysis (Abney, 1987). However, doing this for every NP in

the Penn Treebank would be a tremendous task in itself, and annotating every constituent would

be exponentially greater. Considering the general effectiveness of the head-finding rules and their

minor impact on performance (as we found in Section 4.2.2), a solution for this problem may not

be available for some time to come.

7.1.4 Apposition

Appositions are a very common linguistic construction in English NPs. They have been

used in areas such as Information Extraction (Sudo, Sekine, and Grishman, 2003) and Question An-

swering systems (Moldovan et al., 2003). However, there is little work on automatically identifying

them. Researchers have typically used simple patterns for this task, although the accuracy of this

method has not been determined.
Apposition in the Penn Treebank is extremely common, as shown in the (slightly edited)

example below:

(NP-SBJ

(NP (NNP Darrell) (NNP Phillips) )

(, ,)

(NP (NN vice) (NN president) ))

This annotation does not describe in any way that Darrell Phillips is the vice president. As a result,

a parser will not be able to identify the correct semantic structure. A better interpretation would be

to treat the NP as a multi-headed construct, rather than a single entity (or even worse, as two different

entities).
Appositions are particularly problematic in CCGbank, where they are treated in exactly the

same manner as conjunctions. The derivation in Figure 7.1 shows this. By annotating apposition
explicitly, using an additional bracket, these problems can be solved.

(NP-SBJ

(APP

(NP (NNP Darrell) (NNP Phillips) )

(, ,)

(NP (NN vice) (NN president) )))
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NP

hhhhhhhhhhhhh
MMMMMMM

NP

qqqqqqq
MMMMMMM NP[conj]

qqqqqqq
MMMMMMM

Darrell Phillips , NP

qqqqqqq
MMMMMMM

, vice president

Figure 7.1: Apposition treated as conjunction in CCGbank

7.2 NP Parsing

We experimented with three different parsing architectures in this thesis: the Collins

(2003) model; NP Bracketing; and with the CCG formalism. In each of these cases, our experiments

can now be built on in an attempt to find further improvement.

Our experiments in Chapter 4 highlighted the difficulty of parsing NPs. However, the

information sources that were successfully applied in later chapters could be used to good effect in

a Collins-style parser. In particular, the possibility exists to include NER and Web 1T features as

additional probability distributions in the model. It would be interesting to observe the change in

performance compared to what was seen using the C&C parser.

Our NP Bracketing experiments were the first on large-scale data sets. We hope that other

researchers will now make use of our data to carry out further NP Bracketing research. In particular,

being able to construct supervised models opens the field for new features, models and represen-

tations. Other machine learning algorithms, such as Support Vector Machines (SVM), could be

experimented with to good effect. There is also always the possibility that new features will be

devised and implemented, and our data means that this kind of exploration is now possible.

One specific point of future improvement is our use of the Barker (1998) algorithm, de-

scribed in Section 5.5.1. This is only one way to bracket complex NPs, which is a standard structured

search problem. Another potential framing would be to treat the task as a sequence tagging prob-

lem, where the goal is to generate some number of brackets between individual tokens. For an NP

of length n, there would be n + 1 decision points where brackets could be inserted, as shown below:

d1 w1 d2 w2 . . . dn wn dn+1 (7.1)

where the the words in the NP are w1...n and the decision points are d1...n+1. So for the NP crude
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oil prices, an opening bracket should be inserted at d1 (before crude) and a closing bracket at d3

(after oil). The systems in Daumé III and Marcu (2004) and Bergsma and Wang (2007) function in

a similar manner.

As part of our experiments with the C&C CCG parser, we added novel features based on

NER and Web 1T information. The representation of these features is a possible area for improve-

ment. For example, the Web 1T features could be conditioned on how distant the head words are

in the sentence or how high in the tree the constituent is. We would also like to add Nakov and

Hearst (2005a)-style query variations with the Web 1T features, however implementing this multi-

tude of features would be difficult given the current parser architecture. It would also be interesting

to use the actual n-gram counts, rather than discretising. Unfortunately, the C&C parser only accepts

binary features at present.

The supertagger used by the CCG parser is another likely source of performance gains.

The features that we implemented in the parsing model would also be applicable there. In fact,

considering that a number of the NP errors made by the parser were related to the lexical categories,

it may be the most likely and easiest way to improve performance. An increase in supertagger

accuracy would then in turn, result in a more effective parsing model.

Chapter 6 demonstrated the advantages of converting NP structure data to CCG. However,

as we described in Section 2.4, CCGbank is just one of a number of corpora that were created by

conversion from the Penn Treebank. Other formalisms such as TAG, HPSG and LFG could benefit in

the same way by converting our NP data to their respective corpora. Thus, our work allows an even

wider range of parsers to recover NP structure for the first time.

7.3 Applications

Now that gold-standard NP structure data is available and parsers can be trained using it,

the next step is to actually show that this is useful for NLP applications. Although we increased

performance over the Collins’ parser with our NP Bracketing system and over the C&C parsing

baseline, it is still interesting to see how this improvement translates to downstream systems like

Anaphora Resolution (AR). Due to the importance of NP structure in tasks such as this, as described

in Section 1.1, we would expect a performance improvement even greater than what the parsing

results have shown.

Furthermore, it may also prove useful to add features from downstream systems back into

the parsing model. For example, jointly maximising the parsing structure and anaphora resolution
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would allow the overall best interpretation to be found. In this way, both systems could take ad-

vantage of the information supplied by the other. Such a model is only possible now that that NP

structure is annotated properly and parsers are able to analyse it effectively.

Applicability to real-word tasks is a tremendously important part of our work. This can

be seen in the effort made to bracket complex NPs in Chapter 5, rather than only considering the

simplified problem. Because of this approach, our models are able to accurately recover NP structure

in a wide-coverage large-scale context. Downstream systems can now take advantage of this crucial

NP information, which is one of the most important outcomes of this thesis.
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Chapter 8

Conclusion

This thesis has presented a thorough examination of statistical NP parsing. There are many

tasks that we have accomplished in order to make this possible. From creating a NP data set that

is much larger than all others, to experimenting with multiple parsers and creating a large-scale,

wide-coverage bracketing system, we have addressed the NP parsing problem from beginning to

end.

Chapter 3 began by annotating the entire Wall Street Journal section of the Penn Treebank.

NP annotation was not present in the corpus previously, which in turn has caused most statistical

parsers in the literature to ignore the problem. Correcting this inadequacy finally allows this long-

existing problem to be solved.

Our annotation process has also refuted a long-held belief that NP structure is too difficult

to bracket consistently. The inter-annotator agreement scores we achieved dispelled this belief com-

prehensively and were further supported by a comparison to DepBank. Our experience conclusively

shows that humans are able to bracket NP structure correctly and consistently.

In Chapter 4, we put the NP augmented Penn Treebank to use in training and evaluating

the Collins (2003) parsing model. The results of these experiments demonstrated the difficulty that

statistical methods have in bracketing NPs. The parsing model could not effectively adapt to the

productivity of NP structure, and as a result, its performance was lower than the baseline we set

using deterministic rules. This baseline from the annotation tool’s suggestion feature outperformed

the parser by 5.81%.

Despite this, our analysis of Collins’ model highlighted a number of interesting points.

In particular, the continued importance of the base-NP submodel was a surprising result, as perfor-

mance dropped spectacularly when it was removed. We also observed that NML and NP brackets

137
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should remain distinct. However, it is likely that performance would be increased if the pre-existing

Penn Treebank annotations and our NP augmentations were made consistent. We also found that

the head-finding rules were relatively unimportant, while leaving right-branching structure implicit

performed better than bracketing it explicitly.

Lastly, our comprehensive error analysis showed that the largest cause of errors was a lack

of lexical information in the training data. This theme was repeated throughout the thesis, and many

of our approaches were designed to mitigate this problem. Although increased performance figures

were not achieved in this chapter, the detailed analysis that we carried out was, in many ways, even

more informative.

Chapter 5 saw the development of our NP Bracketing system. This is the first NP Brack-

eter that uses a supervised model to good effect and that can analyse NPs of arbitrary length and

complexity. The initial simple NP bracketing experiments demonstrated that we could achieve per-

formance on Lauer’s small data set akin to that of previous researchers, e.g. Lauer (1995b) and

Nakov and Hearst (2005a). However, our much larger data set from the Penn Treebank allowed us

to build supervised models with even higher performance.

We moved onto the more realistic task of bracketing complex NPs. Utilising the supervised

model we built for simple NPs, and including a wide range of features, both novel and based on those

used by other researchers, we achieved an excellent performance figure of 89.14% matched bracket

F-score. These results demonstrated that complex NP Bracketing is an interesting task with much

room for innovation.

Using this complex NP Bracketer, we constructed a post-processor for the parsing experi-

ments from the previous chapter. In doing so, we finally outperformed the suggestion baseline and

improved on the parser’s result by 9.04% F-score. That our NP Bracketing system performed better

than a state-of-the-art parsing model is an excellent result.

In Chapter 6, many of the results from throughout the thesis were reinforced. We created

a corpus with the correct NP structure and trained and evaluated a parser on this extended data.

We then improved on the initial results using a number of novel information sources. Finally, we

performed a thorough error analysis and determined that the main difficulty in parsing NPs is a lack

of lexical information.

It was particularly important to solve the problems with the existing CCGbank. Previ-

ously, the annotation of NP structure and conjunctions were explicitly wrong, rather than merely

underspecified as in the Penn Treebank. Correcting these errors is a substantial improvement to the

corpus.
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Having solved this problem, we began experimenting with the C&C parser. By imple-

menting novel features using NER information and counts from the Web 1T corpus, performance

was improved by 0.94% F-score. Most of these features have not been used before in any statistical

parser.

The cross-formalism evaluation against DepBank was perhaps even more important. These

results demonstrated that even though annotating NP structure lowered performance in previous ex-

periments, this was only because the original model was not being evaluated on the NP structure.

On this DepBank evaluation we found that after correcting the NP errors in CCGbank, performance

rose by 0.92% F-score, even without any additional features. When our novel features were added,

a total performance increase of 1.73% F-score was achieved.

Finally, we performed another error analysis, and again found that the model’s greatest

difficulty was parsing NPs that weren’t in the training data. The disparity between NP dependencies

and all dependencies was clear: previously seen NPs are very easy to parse, while unseen NPs are

extremely difficult. Unfortunately, the nature of NPs means that each individual NP is likely to occur

only once, and never be seen again. This behaviour is extremely difficult for a statistical model to

deal with, as attested data is unavailable for so many NPs.

This thesis has been an important step on the road to better NP interpretation. Now that

large-scale statistical NP parsing is possible, we expect to see further research on this problem in the

future. Our annotation of the Penn Treebank has shown that consistent NP annotation is feasible,

but also suggested many improvements, which will provide an even greater level of detail. The

information supplied by explicitly bracketed NP structure can be used to good effect in parsing, as

well as any system analysing NPs, which is one of the primary contributions of this thesis.

We have experimented with three different systems for parsing NPs, demonstrating that

the results we achieved are widely applicable. In each case, we performed many experiments, not

only identifying the best performing model, but also providing an in depth analysis of the models

themselves. This approach has supplied a much better view of the various aspects involved in

parsing NPs, the difficulties that are involved, and potential solutions to overcoming these problems.

Our work establishes NP parsing as a complex, interesting task. From our annotation of a

large-scale data set, to the parsing experiments and detailed analysis we performed, we have made

numerous contributions to this very difficult problem. The benefit of these results is now available

for further research in many areas of Natural Language Processing. NP structure is particularly

relevant for a number of downstream systems, all of which can now take advantage of this crucial

information source.
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Appendix A

Annotation Guidelines

This document describes guidelines for bracketing noun phrase (NP) structure in the Penn

Treebank. These guidelines are in addition to the Treebank II Guidelines (Bies et al., 1995). They

are also based on, and overlap with the Addendum for BioMedical Annotation (Warner et al., 2004).

An earlier version (0.9) of these guidelines was used in the annotation described in Vadas and Curran

(2007a), while this version was used in a subsequent pass over the data.

A.1 Bracketing NPs

The goal of our annotation is to identify and bracket multi-token premodifiers in NPs.

Quirk et al. (1985, page 1321) describes such premodifiers, which include adjectives, participles,

nouns, genitives and adverbs. All of these items are modifiable themselves, and this is precisely the

behaviour that we have annotated. Indeed, NPs with multiple premodifiers can be recursive to an

arbitrary depth (though more than 3 or 4 levels is unusual), and the underlying structure is by no

means always right-branching. However, we can still resolve this ambiguity, as (with our emphasis)

. . . obscurity in premodification exists only for the hearer or reader who is unfamiliar
with the subject concerned. . . (Quirk et al., 1985, page 1343)

Thus, our most difficult cases come from the financial jargon of the Wall Street Journal, but the

correct bracketing of most NPs is simple to ascertain.

The main change described in these guidelines is a different way of representing NP struc-

ture. Treebank II Style is to leave NPs flat, not specifying additional structure. In our extension, we

assume a right-branching structure in all NPs, and mark explicitly any left-branching constituents.

141
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As most NPs are right-branching, this reduces the amount of bracketing required and thus increases

legibility. This means that NPs like this one do not need further bracketing:

(NP (DT The) (JJ average)

(JJ seven-day) (NN compound) (NN yield) )

And the implicit structure represented is:

(NP (DT The)

(NODE (JJ average)

(NODE (JJ seven-day)

(NODE (NN compound)

(NODE (NN yield) ) ) ) ) )

When a left-branching modifier is present, as in the NP below,

(NP (NN lung) (NN cancer) (NNS deaths) )

it is bracketed explicitly. To specify that lung cancer is a constituent, we insert a bracket around

those words:

(NP

(NML (NN lung) (NN cancer) )

(NNS deaths) )

Though less frequent, brackets can also be necessary in non-base-NPs, as in these examples:

(NP-SBJ

(NML (JJ former)

(NAC (NNP Ambassador)

(PP (TO to)

(NP (NNP Costa) (NNP Rica) ) ) ) )

(NNP Francis) (NNP J.) (NNP McNeil) )
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(NP

(NML

(NP (NN Wendy) (POS ’s) )

(NNP International) )

(NNP Inc.) )

In the first example, we join former and the NAC node, as he is formerly the Ambassador, not for-

merly Mr. McNeil.

Multiple words can be included in a bracket, and internal to the bracket, are still implicitly

right-branching.

(NP

(NML (JJ chief) (JJ financial) (NN officer) )

(NNP John) (NNP Pope) )

(NP

(NML (JJ hot-dipped) (JJ galvanized) (NN sheet) )

(NNS products) )

So the sheet is hot-dipped and galvanized, and the products are made of this sheet. Alternate,

incorrect bracketings could suggest the galvanization is hot-dipped (a NML node around those two

words) or that the products themselves are hot-dipped and galvanized (if no NML node was used).

New brackets can be nested, and this is needed quite often.

(NP

(NML

(NML (NNP New) (NNP York) )

(NNP Stock) (NNP Exchange) )

(JJ composite) (NN trading) )

This correct bracketing describes composite trading on the Stock Exchange of New York.

Note that we never alter existing Treebank brackets or POS tags, we only add new brackets

to specify our extended representation. Similarly, we have not corrected errors that have been

noticed during the annotation process. This is so that the corpus remains as comparable as possible

to the original version. However, pre-existing errors can mean that the correct extended annotation
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cannot possibly be implemented. In these cases, we try to markup any constituents that we still can,

while not adding any brackets that are incorrect. This often results in the opposite to what is done

in the normal case.

(NP

(NP (DT the) (NNP Carper) (POS ’s) )

(NNP Creek)

(NN wine) )

In this example, the determiner should be outside the inner NP, so that it has scope over

wine. Normally, we would bracket the Carper to separate it from the possessive (see Section A.2.7),

but that is incorrect here. Similarly, we do not bracket the Carper’s Creek because it would include

the, This would be incorrect, as the is the determiner for the overall NP, not just Carper’s Creek.

A.1.1 Node Labels

We use two new node labels: NML and JJP. We have distinguished these from the existing

NP and ADJP labels, so that we can analyse them separately. This approach has the advantage that

they can be mapped back to the existing labels if needed. NML is used when the modifier’s head is

a noun, as in previous examples, while JJP is used when the head is adjectival, as in the example

below.

(NP (JJP (JJ dark) (JJ red) )

(NN car) )

The label should also be JJP in cases where the head is a gerund.

(NP (DT the)

(JJP (JJS fastest) (VBG developing) )

(NNS trends) )

A JJP node is needed when an adverb modifies an adjective:

(NP

(JJP (RB relatively) (JJR higher) )

(NNS rates) )
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Finally, we also apply the JJP label to coordinated adjectives premodifying a noun. In

cases like these with multiple heads, only one head needs to be adjectival for the label to be JJP. We

do not have a label similar to UCP.

(NP (PRP$ its)

(JJP (JJ current)

(CC and) (JJ former) )

(NNS ratepayers) )

(NP (DT the)

(JJP (JJ British)

(CC and) (NNP U.S.) )

(NNS troops) )

In all other cases (the vast majority), a NML label should be used. This means that cases with unusual

heads, like the one below where DTs are being coordinated, are labelled NML.

(NP

(NML (DT any)

(CC or) (DT all) )

(NNS warrants) )

If any POS tag has been incorrectly annotated, then the label used should reflect the correct

POS tag, rather than propagate the error.

A.1.2 Ambiguous Cases

In general, if an annotator is unsure as to whether bracketing is needed, or if both alter-

natives seem equally likely, then they should leave the NP flat. The NPs below are examples of such

semantically ambiguous cases. In the first, both dependencies are true, i.e. the players are in college,

and they play basketball. While the third example has a genuinely flat structure.

(NP (NN college) (NN basketball) (NNS players) )

(NP (NN army) (NN ordnance) (NN depot) )

(NP (NNP John) (NNP A.) (NNP Smith) )
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A.1.3 Head Derivation

Head-finding rules for NML and JJP constituents are the same as for NP and ADJP nodes

respectively. For a detailed description of these rules, see Collins (1999, page 238). In most cases,

the head is either the right-most noun, or inside the right-most NML node.

This is more complicated with coordinated and apposited structures, which will have mul-

tiple heads. The individual heads can still be determined with the standard rules.

A.1.4 Identifying the Correct Bracketing

The bracketing task involves deciding which words belong together as constituents. It is

often useful to reword the sentence to see whether a constituent makes sense. In doing so, the aim is

to determine the dependencies that will be formed, i.e. to create a syntactic structure which yields

the correct semantic structure. Here are a few ways this can be done:

1. Inversion – In the following NP, we are deciding whether or not to bracket other two.

(NP-LGS (DT the) (JJ other)

(CD two) (JJ outside) (NNS bidders) )

If we invert these words to two other, then the NP retains the same meaning. Therefore other

does not modify two and they should not be bracketed.

2. Removal – This test involves trying to force one word to modify another by placing them side

by side, removing the intervening text.

In the example below, does Japanese modify auto maker or Mazda Motor Corp? If we remove

auto maker, then the NP would not make sense, and so it must be the former. We have inserted

the appropriate NML node.

(NP (NML (JJ Japanese) (NN auto) (NN maker) )

(NML (NNP Mazda) (NNP Motor) )

(NNP Corp) )

3. Postmodifier – If we move a premodifier to the end of the NP, making it postmodify the head,

then the correct bracketing should become clearer. In the following description of a car that

is a certain shade of red,
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(NP (JJ tomato) (JJ red) (NN car) )

if we change the NP to red car that is tomato then we get a meaning that doesn’t make sense.

As this is not the case, we know that tomato and red should be joined in a constituent.

(NP

(JJP (JJ tomato) (JJ red) )

(NN car) )

A.2 Specific Cases

A.2.1 Conjunctions

Conjunctions are one of the most difficult structures to bracket in NPs. This is because of

the multi-headed nature of such constructs. We should not read the first example below as implicitly

right-branching, but with dependencies between Bill and and, and Ted and and. It does not need

further bracketing.

(NP (NNP Bill) (CC and) (NNP Ted) )

On the other hand, the following example does need the NML bracket shown:

(NP (DT the)

(NML (NNPS Securities)

(CC and) (NNP Exchange) )

(NNP Commission) )

Otherwise, its implicit structure would be as follows:

(NP (DT the)

(NODE

(NODE (NNPS Securities) )

(CC and)

(NODE (NNP Exchange)

(NODE (NNP Commission) ) ) ) )
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The erroneous meaning here is the Securities and the Exchange Commission, rather than the correct

the Securities Commission and the Exchange Commission.

Bracketing is also needed in the first example below, or else the interpretation will be rock

stars and rock royalty, which is clearly incorrect. However, this is the case in the second example

(both the words and actions are rude) and so no new brackets are needed there.

(NP (NML (NN rock) (NNS stars) )

(CC and)

(NML (NN royalty) ) )

(NP (JJ rude) (NNS words)

(CC and) (NNS actions) )

Also note that royalty is bracketed as a single word. This is because whenever one coordinated

constituent is bracketed, all other constituents of the coordinate must be bracketed as well, even

single tokens as above. This has changed since version 0.9 of these guidelines.

The implicit structure of the NP is correct below, as rock stars is already right-most.

(NP (NN royalty)

(CC and) (NN rock) (NNS stars) )

However, this NP should be treated in the same way as the one above. We therefore insert brackets

around rock stars and royalty as before.

(NP (NML (NN royalty) )

(CC and)

(NML (NN rock) (NNS stars) ) )

If any constituent to be coordinated is multi-token (even right-most and implicitly correct ones),

then all constituents of the coordinator must be explicitly bracketed. This is another change since

the version 0.9 guidelines, which would not add any new brackets to the example above.

Lists do not need any bracketing.

(NP (NNS cars)

(, ,)

(NNS trucks)

(CC and) (NNS buses) )
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This is true even when the conjunction is missing:

(NP

(NP (DT no) (NN crack) (NNS dealers) )

(, ,)

(NP

(NP (DT no) (JJ dead-eyed) (NNS men) )

(VP (VBG selling)

(NP

(NP (JJ four-year-old) (NNS copies) )

(PP (IN of)

(NP (NNP Cosmopolitan) )))))

(, ,)

(NP

(NP (DT no) (PRP one) )

(VP (VBD curled)

(PRT (RP up) )

(PP-LOC (IN in)

(NP (DT a) (NN cardboard) (NN box) )))))

However, the entire list may still need to be bracketed before being joined to words outside the list,

as below:

(NP

(NP (NNP Mazda) (POS ’s) )

(NNP U.S.)

(NML (NNS sales)

(, ,)

(NN service)

(, ,)

(NNS parts)

(CC and) (NN marketing) )

(NNS operations) )
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A list of attributes separated by commas does not need any bracketing:

(NP

(JJ tricky)

(, ,)

(JJ unproven) (NN chip) (NN technology) )

This is because tricky and unproven are not being coordinated here. They are simply both acting as

modifiers on technology, like in the NP: big red car.

Conjunctions over a neither/nor pair do not need any bracketing.

(NP-SBJ (DT Neither)

(NP (NNP Lorillard) )

(CC nor)

(NP

(NP (DT the) (NNS researchers) )

(SBAR

(WHNP-3 (WP who) )

(S

(NP-SBJ (-NONE- *T*-3) )

(VP (VBD studied)

(NP (DT the) (NNS workers) ))))))

A.2.2 Speech Marks

Tokens surrounded by speech marks should be bracketed:

(NP-PRD (DT a)

(NML (‘‘ ‘‘) (JJ long) (NN term) (’’ ’’) )

(NN decision) )

This includes when there is only a single token inside the speech marks, and when the speech marks

are right-most:

(NP-PRD (DT a)

(JJP (‘‘ ‘‘) (JJ long) (’’ ’’) )

(NN decision) )
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(NP-PRD (DT a)

(NML (‘‘ ‘‘) (JJ long) (NN term) (’’ ’’) ) )

Note that the label of the bracket should reflect the internal head, as in the first example in the

previous block, where JJP is used.

If the speech marks and the tokens they surround are the only items under the NP, then a

new bracket should not be added.

(NP-PRD (‘‘ ‘‘) (JJ long) (NN term) (’’ ’’) )

The bracketing of speech marks has changed since the 0.9 version guidelines. The internal tokens

were bracketed previously, while right-most speech marks were not.

Conventional editorial style for speech marks does not lend itself to bracketing easily.

Because of this, there are a number of exceptions and corner cases when annotating NPs with speech

marks. Firstly, in the example below:

(NP (‘‘ ‘‘)

(NP-TTL (DT A) (NNP Place) (IN in) (NNP Time) )

(, ,)

(’’ ’’)

(NP

(NP (DT a) (JJ 36-minute) (JJ black-and-white) (NN film) )

(PP (IN about)

(NP

(NP (DT a) (NN sketch) (NN artist) )

(, ,)

(NP

(NP (DT a) (NN man) )

(PP (IN of)

(NP (DT the) (NNS streets) ) ) ) ) ) ) )

the comma serves to separate the film’s title from its description, while the speech marks surround

just the title. This causes a “crossing” constituent, as we cannot bracket the speech marks and the

title together without including the comma. In these cases, we still add a NML bracket around the

speech marks:
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(NP

(NML (‘‘ ‘‘)

(NP-TTL (DT A) (NNP Place) (IN in) (NNP Time) )

(, ,)

(’’ ’’) )

(NP

(NP (DT a) (JJ 36-minute) (JJ black-and-white) (NN film) )

(PP (IN about)

(NP

(NP (DT a) (NN sketch) (NN artist) )

(, ,)

(NP

(NP (DT a) (NN man) )

(PP (IN of)

(NP (DT the) (NNS streets) ) ) ) ) ) ) )

Many NPs contain a single opening or closing speech mark, whose partner is stranded in

another constituent. For example, the NP below, with more context containing the closing speech

mark shown afterwards.

(NP (DT the) (‘‘ ‘‘)

(NML (NN type) (NN F) )

(NN safety) (NN shape) )

(NP

(NP (DT the) (‘‘ ‘‘)

(NML (NN type) (NN F) )

(NN safety) (NN shape) )

(, ,)

(’’ ’’)

(NP

(NP (DT a) (JJ four-foot-high) (JJ concrete) (NN slab) )

(PP (IN with)

(NP (DT no) (NNS openings) ) ) ) )
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In these cases, we could not bracket the speech marks properly without altering the existing struc-

ture. So once again, we do not add any new brackets in NPs such as this. In the next example, the

speech marks have not been put in the right place:

(NP-PRD (‘‘ ‘‘) (DT a) (JJ worst-case) (’’ ’’) (NN scenario) )

The determiner should be outside the speech marks. In cases such as these, the annotator should not

follow the incorrect placement. Because no accurate bracketing can be inserted, no brackets should

be added at all.

A.2.3 Brackets

These should be treated the same as speech marks, and bracketed as described above.

(NP (DT an)

(JJP (-LRB- -LCB-) (VBG offending) (-RRB- -RCB-) )

(NN country) )

An example of another corner case is shown below:

(NP (-LRB- -LCB-)

(NML (NNP Fed) (NNP Chairman) )

(NNP Alan)

(-RRB- -RCB-)

(NNP Greenspan) )

Once again, the tokens cannot be bracketed without a crossing constituent. We can still bracket Fed

Chairman, but beyond that, no other brackets should be added.

A.2.4 Companies

Company names may need to be bracketed a number of ways. When there are postmod-

ifiers such as Corp. or Ltd., the rest of the company needs to be separated if it is longer than one

word.

(NP-SBJ

(NML (NNP Pacific) (NNP First) (NNP Financial) )

(NNP Corp.) )
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(NP

(NML (NNP W.R.) (NNP Grace) )

(CC &) (NNP Co.) )

(NP

(NML (NNP Goldman)

(, ,)

(NNP Sachs) )

(CC &) (NNP Co.) )

Other identifiable nominal groups within the company name, such as locations, also need to be

bracketed separately.

(NP

(NP (NN today) (POS ’s) )

(NML (NNP New) (NNP England) )

(NNP Journal) )

(NP (DT the)

(NML (NNP Trade)

(CC and) (NNP Industry) )

(NNP Ministry) )

A.2.5 Final Adverbs

The tokens preceding a final adverb should be separated:

(NP (NML (NN college) (NNS radicals) )

(RB everywhere) )

A.2.6 Names

Names are to be left unbracketed:

(NP (NNP Brooke) (NNP T.) (NNP Mossman) )
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However, numbers, as well as Jr., Sr., etc should be separated:

(NP

(NML (NNP William) (NNP H.) (NNP Hudnut) )

(NNP III) )

Titles that are longer than one word also need to be bracketed separately.

(NP

(NML (NNP Vice) (NNP President) )

(NNP John) (NNP Smith) )

A.2.7 Possessives

NPs preceding possessives need to be bracketed.

(NP (NML (NNP Grace) (NNP Energy) )

(POS ’s) )

A.2.8 Postmodifying Constituents

The words preceding a postmodificational constituent, such as a preposition or SBAR, do

not need to be bracketed.

(NP

(DT the) (JJ common) (NN kind)

(PP (IN of)

(NP (NN asbestos) )))

A.2.9 Unit Traces

This trace is necessary to make the unit (dollars in the example below) the head of the NP.

(NP (RB over) ($ $) (CD 27) (-NONE- *U*) )

If the NP is longer, and there are words to the right of the amount, then the trace should be inside the

bracket.

(NP (DT a)

(NML ($ $) (CD 27) (-NONE- *U*) )

(NN charge) )
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A.2.10 Unusual Punctuation

Sometimes a period indicating an acronym will be separated from the initial letter(s). In

these cases, a bracket should be added to join them back together, as below:

(NP (NNP Finmeccanica)

(NML (NNP S.p) (. .) )

(NNP A.) )

Some NPs also include final punctuation. These are mostly short fragmental sentences. In

these cases, the rest of the NP should have a bracket placed around it:

(NP

(NML

(NML (NNP New) (NNP York) )

(NNP City) )

(: :) )

A.3 Future Improvements

Here we describe improvements to these guidelines and the bracketing scheme that we

intend to carry out in the future. We noticed these issues during the first pass through the corpus,

and all of them require another full pass.

A.3.1 Flat Structures

There are a number of NPs in the Penn Treebank that display genuinely flat structure. For

some examples, refer back to Section A.1.2. We would like to distinguish these from the implicitly

right-branching structures that make up the majority of the corpus. To do this, we intend to use a

marker on the NP, NML or JJP label itself, as shown below:

(NP-FLAT (NNP John) (NNP A.) (NNP Smith) )

(NP

(NML-FLAT (NNP John) (NNP A.) (NNP Smith) )

(NNS apples) )
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A.3.2 Appositions

Appositions are a multi-headed structure, similar but still different to coordination. They

are extremely common throughout the Penn Treebank, and usually fit the pattern shown below, with

a person’s name and their position separated by a comma:

(NP-SBJ

(NP (NNP Rudolph) (NNP Agnew) )

(, ,)

(NP

(NP (JJ former) (NN chairman) )

(PP (IN of)

(NP (NNP Gold) (NNP Fields) (NNP PLC) ) ) ) )

We would like to mark these structures explicitly, so that they can be treated appropriately.

This raises issues of what is and isn’t an apposition (whether they are truly co-referential), and

whether to discriminate between different types.

A.3.3 Head Marking

For some NPs, Collins’ standard head-finding rules do not work correctly. In the example

below, IBM is the head, but Australia would be found.

(NP (NNP IBM) (NNP Australia) )

Marking heads explicitly would require a much larger degree of work, as NPs of length

two would be ambiguous. All other annotation described here only needs to look at NPs of length

three or more.



158 Appendix A: Annotation Guidelines



Appendix B

Company and Name Endings

As described in Section 3.2.1, the annotation tool makes bracketing suggestions based on

frequently occurring endings of company and person names. These endings are listed here.

 

Ltd. CO. Ltd . S.A .
Corp. CORP. Corp . L.P .
Co. Cos. & Co. Cos .
Inc. N.V. Inc . Co. Inc.
Co L.P. Co . Co. PLC
Inc B.V. & Co CORP .
PLC Pty. PLC . & CO.
Corp NV Co. Ltd.
INC. AB
Ltd S.A
AG G.m.b.H.
S.A. AS

Table B.1: Company name endings

 

Sr. III Jr .
II Jr. Sr .
. Jr

Table B.2: Person name endings
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