6,464 research outputs found

    Probabilistic simultaneous pose and non-rigid shape recovery

    Get PDF
    We present an algorithm to simultaneously recover non-rigid shape and camera poses from point correspondences between a reference shape and a sequence of input images. The key novel contribution of our approach is in bringing the tools of the probabilistic SLAM methodology from a rigid to a deformable domain. Under the assumption that the shape may be represented as a weighted sum of deformation modes, we show that the problem of estimating the modal weights along with the camera poses, may be probabilistically formulated as a maximum a posterior estimate and solved using an iterative least squares optimization. An extensive evaluation on synthetic and real data, shows that our approach has several significant advantages over current approaches, such as performing robustly under large amounts of noise and outliers, and neither requiring to track points over the whole sequence nor initializations close from the ground truth solution.Postprint (author’s final draft

    A bayesian approach to simultaneously recover camera pose and non-rigid shape from monocular images

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/In this paper we bring the tools of the Simultaneous Localization and Map Building (SLAM) problem from a rigid to a deformable domain and use them to simultaneously recover the 3D shape of non-rigid surfaces and the sequence of poses of a moving camera. Under the assumption that the surface shape may be represented as a weighted sum of deformation modes, we show that the problem of estimating the modal weights along with the camera poses, can be probabilistically formulated as a maximum a posteriori estimate and solved using an iterative least squares optimization. In addition, the probabilistic formulation we propose is very general and allows introducing different constraints without requiring any extra complexity. As a proof of concept, we show that local inextensibility constraints that prevent the surface from stretching can be easily integrated. An extensive evaluation on synthetic and real data, demonstrates that our method has several advantages over current non-rigid shape from motion approaches. In particular, we show that our solution is robust to large amounts of noise and outliers and that it does not need to track points over the whole sequence nor to use an initialization close from the ground truth.Peer ReviewedPostprint (author's final draft

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    Survey on 2D and 3D human pose recovery

    Get PDF
    Human Pose Recovery approaches have been studied in the eld of Computer Vision for the last 40 years. Several approaches have been reported, and signi cant improvements have been obtained in both data representation and model design. However, the problem of Human Pose Recovery in uncontrolled environments is far from being solved. In this paper, we de ne a global taxonomy to group the model based methods and discuss their main advantages and drawbacks.Peer ReviewedPostprint (published version

    Non-Rigid Structure from Motion for Complex Motion

    Get PDF
    Recovering deformable 3D motion from temporal 2D point tracks in a monocular video is an open problem with many everyday applications throughout science and industry, or the new augmented reality. Recently, several techniques have been proposed to deal the problem called Non-Rigid Structure from Motion (NRSfM), however, they can exhibit poor reconstruction performance on complex motion. In this project, we will analyze these situations for primitive human actions such as walk, run, sit, jump, etc. on different scenarios, reviewing first the current techniques to finally present our novel method. This approach is able to model complex motion into a union of subspaces, rather than the summation occurring in standard low-rank shape methods, allowing better reconstruction accuracy. Experiments in a wide range of sequences and types of motion illustrate the benefits of this new approac

    Sequential non-rigid structure from motion using physical priors

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.We propose a new approach to simultaneously recover camera pose and 3D shape of non-rigid and potentially extensible surfaces from a monocular image sequence. For this purpose, we make use of the Extended Kalman Filter based Simultaneous Localization And Mapping (EKF-SLAM) formulation, a Bayesian optimization framework traditionally used in mobile robotics for estimating camera pose and reconstructing rigid scenarios. In order to extend the problem to a deformable domain we represent the object's surface mechanics by means of Navier's equations, which are solved using a Finite Element Method (FEM). With these main ingredients, we can further model the material's stretching, allowing us to go a step further than most of current techniques, typically constrained to surfaces undergoing isometric deformations. We extensively validate our approach in both real and synthetic experiments, and demonstrate its advantages with respect to competing methods. More specifically, we show that besides simultaneously retrieving camera pose and non-rigid shape, our approach is adequate for both isometric and extensible surfaces, does not require neither batch processing all the frames nor tracking points over the whole sequence and runs at several frames per second.Peer ReviewedPostprint (author's final draft

    Improving Facial Analysis and Performance Driven Animation through Disentangling Identity and Expression

    Full text link
    We present techniques for improving performance driven facial animation, emotion recognition, and facial key-point or landmark prediction using learned identity invariant representations. Established approaches to these problems can work well if sufficient examples and labels for a particular identity are available and factors of variation are highly controlled. However, labeled examples of facial expressions, emotions and key-points for new individuals are difficult and costly to obtain. In this paper we improve the ability of techniques to generalize to new and unseen individuals by explicitly modeling previously seen variations related to identity and expression. We use a weakly-supervised approach in which identity labels are used to learn the different factors of variation linked to identity separately from factors related to expression. We show how probabilistic modeling of these sources of variation allows one to learn identity-invariant representations for expressions which can then be used to identity-normalize various procedures for facial expression analysis and animation control. We also show how to extend the widely used techniques of active appearance models and constrained local models through replacing the underlying point distribution models which are typically constructed using principal component analysis with identity-expression factorized representations. We present a wide variety of experiments in which we consistently improve performance on emotion recognition, markerless performance-driven facial animation and facial key-point tracking.Comment: to appear in Image and Vision Computing Journal (IMAVIS
    • …
    corecore