320 research outputs found

    TVL<sub>1</sub> Planarity Regularization for 3D Shape Approximation

    Get PDF
    The modern emergence of automation in many industries has given impetus to extensive research into mobile robotics. Novel perception technologies now enable cars to drive autonomously, tractors to till a field automatically and underwater robots to construct pipelines. An essential requirement to facilitate both perception and autonomous navigation is the analysis of the 3D environment using sensors like laser scanners or stereo cameras. 3D sensors generate a very large number of 3D data points when sampling object shapes within an environment, but crucially do not provide any intrinsic information about the environment which the robots operate within. This work focuses on the fundamental task of 3D shape reconstruction and modelling from 3D point clouds. The novelty lies in the representation of surfaces by algebraic functions having limited support, which enables the extraction of smooth consistent implicit shapes from noisy samples with a heterogeneous density. The minimization of total variation of second differential degree makes it possible to enforce planar surfaces which often occur in man-made environments. Applying the new technique means that less accurate, low-cost 3D sensors can be employed without sacrificing the 3D shape reconstruction accuracy

    Essential techniques for laparoscopic surgery simulation

    Get PDF
    Laparoscopic surgery is a complex minimum invasive operation that requires long learning curve for the new trainees to have adequate experience to become a qualified surgeon. With the development of virtual reality technology, virtual reality-based surgery simulation is playing an increasingly important role in the surgery training. The simulation of laparoscopic surgery is challenging because it involves large non-linear soft tissue deformation, frequent surgical tool interaction and complex anatomical environment. Current researches mostly focus on very specific topics (such as deformation and collision detection) rather than a consistent and efficient framework. The direct use of the existing methods cannot achieve high visual/haptic quality and a satisfactory refreshing rate at the same time, especially for complex surgery simulation. In this paper, we proposed a set of tailored key technologies for laparoscopic surgery simulation, ranging from the simulation of soft tissues with different properties, to the interactions between surgical tools and soft tissues to the rendering of complex anatomical environment. Compared with the current methods, our tailored algorithms aimed at improving the performance from accuracy, stability and efficiency perspectives. We also abstract and design a set of intuitive parameters that can provide developers with high flexibility to develop their own simulators

    Output-Sensitive Rendering of Detailed Animated Characters for Crowd Simulation

    Get PDF
    High-quality, detailed animated characters are often represented as textured polygonal meshes. The problem with this technique is the high cost that involves rendering and animating each one of these characters. This problem has become a major limiting factor in crowd simulation. Since we want to render a huge number of characters in real-time, the purpose of this thesis is therefore to study the current existing approaches in crowd rendering to derive a novel approach. The main limitations we have found when using impostors are (1) the big amount of memory needed to store them, which also has to be sent to the graphics card, (2) the lack of visual quality in close-up views, and (3) some visibility problems. As we wanted to overcome these limitations, and improve performance results, the found conclusions lead us to present a new representation for 3D animated characters using relief mapping, thus supporting an output-sensitive rendering. The basic idea of our approach is to encode each character through a small collection of textured boxes storing color and depth values. At runtime, each box is animated according to the rigid transformation of its associated bone in the animated skeleton. A fragment shader is used to recover the original geometry using an adapted version of relief mapping. Unlike competing output-sensitive approaches, our compact representation is able to recover high-frequency surface details and reproduces view-motion parallax e ects. Furthermore, the proposed approach ensures correct visibility among di erent animated parts, and it does not require us to prede ne the animation sequences nor to select a subset of discrete views. Finally, a user study demonstrates that our approach allows for a large number of simulated agents with negligible visual artifacts

    Method And Apparatus For Optically Digitizing A Three-dimensional Object

    Get PDF
    An apparatus and method for digitizing an object for creating a three-dimensional digital model of the object comprises a turntable for rotating the object about a rotation axis, at least first and second light sources positioned and oriented for directing a thin sheet of light toward the object along an illumination plane substantially parallel to and substantially intersecting with the rotation axis, a first detector positioned to one side of the illumination plane and oriented for detecting light reflected along a first detection plane from the object for creating a plurality of first side contours as the object rotates, a second detector positioned to a side of the illumination plane, opposite the one side, for detecting light reflected along a second detection plane from the object for creating a plurality of second side contours as the object rotates, a third detector for capturing illumination on-axis contours in the form of a vertical straight line to derive an instantaneous color of the object's surface as a function of the height of the object, and a combining and evaluating computer for combining the first side contours, the second side contours, and the illumination on-axis contours for generating a plurality of composite contours and for evaluating the composite contours for creating a three-dimensional digital model of the object.Georgia Tech Research Corporatio

    QuadStack: An Efficient Representation and Direct Rendering of Layered Datasets

    Get PDF
    We introduce QuadStack, a novel algorithm for volumetric data compression and direct rendering. Our algorithm exploits the data redundancy often found in layered datasets which are common in science and engineering fields such as geology, biology, mechanical engineering, medicine, etc. QuadStack first compresses the volumetric data into vertical stacks which are then compressed into a quadtree that identifies and represents the layered structures at the internal nodes. The associated data (color, material, density, etc.) and shape of these layer structures are decoupled and encoded independently, leading to high compression rates (4× to 54× of the original voxel model memory footprint in our experiments). We also introduce an algorithm for value retrieving from the QuadStack representation and we show that the access has logarithmic complexity. Because of the fast access, QuadStack is suitable for efficient data representation and direct rendering. We show that our GPU implementation performs comparably in speed with the state-of-the-art algorithms (18-79 MRays/s in our implementation), while maintaining a significantly smaller memory footprint

    Per-Pixel Extrusion Mapping with Correct Silhouette

    Get PDF
    Per-pixel extrusion mapping consists of creating a virtual geometry stored in a texture over a polygon model without increasing its density. There are four types of extrusion mapping, namely, basic extrusion, outward extrusion, beveled extrusion, and chamfered extrusion. These different techniques produce satisfactory results in the case of plane surfaces, but when it is about the curved surfaces, the silhouette is not visible at the edges of the extruded forms on the 3D surface geometry because they not take into account the curvature of the 3D meshes. In this paper, we presented an improvement that consists of using a curved ray-tracing to correct the silhouette problem by combining the per-pixel extrusion mapping techniques and the quadratic approximation computed at each vertex of the 3D mesh

    Towards Predictive Rendering in Virtual Reality

    Get PDF
    The strive for generating predictive images, i.e., images representing radiometrically correct renditions of reality, has been a longstanding problem in computer graphics. The exactness of such images is extremely important for Virtual Reality applications like Virtual Prototyping, where users need to make decisions impacting large investments based on the simulated images. Unfortunately, generation of predictive imagery is still an unsolved problem due to manifold reasons, especially if real-time restrictions apply. First, existing scenes used for rendering are not modeled accurately enough to create predictive images. Second, even with huge computational efforts existing rendering algorithms are not able to produce radiometrically correct images. Third, current display devices need to convert rendered images into some low-dimensional color space, which prohibits display of radiometrically correct images. Overcoming these limitations is the focus of current state-of-the-art research. This thesis also contributes to this task. First, it briefly introduces the necessary background and identifies the steps required for real-time predictive image generation. Then, existing techniques targeting these steps are presented and their limitations are pointed out. To solve some of the remaining problems, novel techniques are proposed. They cover various steps in the predictive image generation process, ranging from accurate scene modeling over efficient data representation to high-quality, real-time rendering. A special focus of this thesis lays on real-time generation of predictive images using bidirectional texture functions (BTFs), i.e., very accurate representations for spatially varying surface materials. The techniques proposed by this thesis enable efficient handling of BTFs by compressing the huge amount of data contained in this material representation, applying them to geometric surfaces using texture and BTF synthesis techniques, and rendering BTF covered objects in real-time. Further approaches proposed in this thesis target inclusion of real-time global illumination effects or more efficient rendering using novel level-of-detail representations for geometric objects. Finally, this thesis assesses the rendering quality achievable with BTF materials, indicating a significant increase in realism but also confirming the remainder of problems to be solved to achieve truly predictive image generation

    Output-Sensitive Rendering of Detailed Animated Characters for Crowd Simulation

    Get PDF
    High-quality, detailed animated characters are often represented as textured polygonal meshes. The problem with this technique is the high cost that involves rendering and animating each one of these characters. This problem has become a major limiting factor in crowd simulation. Since we want to render a huge number of characters in real-time, the purpose of this thesis is therefore to study the current existing approaches in crowd rendering to derive a novel approach. The main limitations we have found when using impostors are (1) the big amount of memory needed to store them, which also has to be sent to the graphics card, (2) the lack of visual quality in close-up views, and (3) some visibility problems. As we wanted to overcome these limitations, and improve performance results, the found conclusions lead us to present a new representation for 3D animated characters using relief mapping, thus supporting an output-sensitive rendering. The basic idea of our approach is to encode each character through a small collection of textured boxes storing color and depth values. At runtime, each box is animated according to the rigid transformation of its associated bone in the animated skeleton. A fragment shader is used to recover the original geometry using an adapted version of relief mapping. Unlike competing output-sensitive approaches, our compact representation is able to recover high-frequency surface details and reproduces view-motion parallax e ects. Furthermore, the proposed approach ensures correct visibility among di erent animated parts, and it does not require us to prede ne the animation sequences nor to select a subset of discrete views. Finally, a user study demonstrates that our approach allows for a large number of simulated agents with negligible visual artifacts

    High quality texture synthesis

    Get PDF
    Texture synthesis is a core process in Computer Graphics and design. It is used extensively in a wide range of applications, including computer games, virtual environments, manufacturing, and rendering. This thesis investigates a novel approach to texture synthesis in order to significantly improve speed, memory requirements, and quality. An analysis of texture properties is created, to enable the gathering a representative dataset, and a qualitative evaluation of texture synthesis algorithms. A new algorithm to make non-repeating texture synthesis on-the-fly possible is developed, tested, and evaluated. This parallel patch-based method allows repeatable sampling without cache, without creating visually noticeable repetitions, as confirmed by a perceptive objective study on quality. In order to quantify the quality of existing algorithms and to facilitate further development in the field, desired texture properties are classified and analysed, and a minimal set of textures is created according to these properties to allow subjective evaluation of texture synthesis algorithms. This dataset is then used in a user study which evaluates the quality of texture synthesis algorithms. For the first time in the field of texture synthesis, statistically significant findings quantify the quality of selected repeatable algorithms, and make it possible to evaluate new improved methods. Finally, in an effort to make these findings applicable in the British tile manufacturing industry, the developed texture synthesis technology is made available to Johnson Tiles
    corecore