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Abstract. The modern emergence of automation in many industries
has given impetus to extensive research into mobile robotics. Novel per-
ception technologies now enable cars to drive autonomously, tractors to
till a field automatically and underwater robots to construct pipelines.
An essential requirement to facilitate both perception and autonomous
navigation is the analysis of the 3D environment using sensors like laser
scanners or stereo cameras. 3D sensors generate a very large number of
3D data points when sampling object shapes within an environment, but
crucially do not provide any intrinsic information about the environment
which the robots operate within.

This work focuses on the fundamental task of 3D shape reconstruction
and modelling from 3D point clouds. The novelty lies in the represen-
tation of surfaces by algebraic functions having limited support, which
enables the extraction of smooth consistent implicit shapes from noisy
samples with a heterogeneous density. The minimization of total vari-
ation of second differential degree makes it possible to enforce planar
surfaces which often occur in man-made environments.

Applying the new technique means that less accurate, low-cost 3D sen-
sors can be employed without sacrificing the 3D shape reconstruction
accuracy.

1 Introduction

The analysis and perception of environments from static or mobile 3D sensors
is widely envisioned as a major technological breakthrough and is expected to
herald a significant impact upon both society and the economy in the future.
As identified by the German Federal Ministry of Education and Research [25],
spatial perception plays a pivotal role in robotics, having an impact onmany vital
technologies in the fields of navigation, automotive, safety, security and human-
robot-interaction. The key task in spatial perception is the reconstruction of the
shape of the observed environment. Improvements in shape reconstruction have
direct impact on three fundamental research disciplines: self localization from
camera images [13], inspection in remote sensing [26] and object recognition [12].
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Fig. 1: a) Stereo System, b) sample RGB and depth image, c) acquired 3D point cloud.

Applying 3D sensors in uncontrolled practical environments, however, leads to
strong noise and many data outliers. Homogeneous surface colours and dynamic
illumination conditions lead to outliers and reduce drastically the quality of
computed 3D samples. Figure 1 shows an example 3D point cloud obtained from

a stereo camera traversing a building. Many 3D points such as marked by 1
suffer from strong noise. Occlusions or over-exposure frequently occur in realistic

scenes 2 and make automated shape reconstruction even more challenging.

Dealing with noise and outliers inevitably involves applying statistical tech-
niques. In the last decade, so-called kernel-based methods have become well-
accepted in statistical processing. Successful techniques like deep learning or
support vector machines exploit kernel-based methods in the fields of machine
learning and robotics for interpolation and extrapolation [36]. Since shape in-
terpolation and extrapolation are required when dealing with error-prone 3D
samples, the application of kernel-based techniques for shape approximation is
especially relevant to this domain. The initial aim was the investigation and de-
velopment of a suitable kernel for geometrical shape modelling from noisy 3D
samples.

Many indoor and urban outdoor environments can be represented by a small
set of planar shapes. This information can be exploited to help to achieve higher
approximation accuracy. Integrating piecewise smoothness into the approxima-
tion task has attracted a lot of interest in the image processing community.
Several research groups applied a regularization technique, also known as Total
Variation (TV) minimization, to penalize strong variations in the colour values
[34, 21]. Bredies [9] extended the traditional TV approach to second derivatives
of the filtered image pixels. Figure 2 shows the comparison of Bredies’s TVL1 ap-
proach with state-of-the-art statistical filtering techniques. The extension of the
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Fig. 2: Comparison of total variation minimization with standard statistical techniques
for height maps filtering. Image courtesy: [9].

TV technique to 3D shapes is still a fertile area of research which is considered
as the second aim in this work.

A further challenge in automated shape approximation is the processing of
large datasets. A realistic dataset usually contains several millions of 3D points.
However, kernel-based and total variation techniques suffer from high computa-
tional complexity prohibiting their application to datasets which contain more
than a few thousand points [5]. Methods that require a set of linear equations to
be solved incur O(N3) complexity. Even if such a method could feasibly process
N = 1, 000 points in 10 ms, it would still take 115 days to process 1, 000, 000
points. This major complexity issue motivated the third aim of this work which
is to develop efficient strategies for handling non-smooth (L1) total variation
regularization on large datasets.

The remainder of this paper is organized as follows: A short overview of 3D
shape reconstruction approaches is provided in Section 2, including issues such
as approximation quality and stability. Section 3 discusses the three main con-
tributions of this work: i) application of smooth kernels for implicit 3D shape
modelling, ii) integration of non-smooth TVL1 regularization for noise suppres-
sion, and iii) efficient optimization reducing the computation complexity from
O(N3) to O(N). A critical quantitative analysis is presented in Section 4, and
concluding comments are provided in Section 5.

2 Literature Review

The problem of reconstructing a surface of an object from a set of scattered 3D
points attracted a lot of attention [2, 29, 23]. This section will review existing
techniques relating to the aims of this paper, namely: shape representation us-
ing radial basis functions, statistical planarity-aware regularization model, and
efficient optimization.
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Fig. 3: Smooth shape representation from scattered points and surface orientations
(arrows) via an implicit function f(x).

2.1 Shape Reconstruction

Two general shape representation approaches for 3D data currently exist: explicit
and implicit representations.

Explicit models are polygon meshes, non-uniform B-Splines (NURBS) or
Bezier curves [27]. Research in computer graphics leads to a large number of soft-
ware frameworks such as OpenGL [42] that enables the visualization of paramet-
ric polygon meshes with the help of parallel graphics hardware. For this reason
initial research on automated shape reconstruction from 3D scattered points
focused on the direct construction of triangle meshes, also known as Delaunay-
Triangulation. Methods such as α shapes [18, 6, 7] aim at creating a polygonal
mesh by connecting the input samples with triangle edges. This, however, leads
to inaccurate results when error-prone samples are provided. Another family of
parametric shapes are NURBS [32, 33] and Bezier curves [1], which are com-
monly used in 3D modelling. These methods are able to create smooth surfaces
for non-uniform control point sets. In order to apply these methods to automated
shape reconstruction from scattered 3D points, the surface is defined as a graph
in the parameter space. This makes the problem non-polynomial (NP) hard so
its application to larger datasets is prohibited [44].

Implicit models: Several state-of-the-art techniques represent a shape im-
plicitly by an indicator function f(x) to indicate inside f(x) < 0 or outside
f(x) > 0 of the object with x ∈ R3 as the location in the 3D space. The surface
of the object is the set of all x where f gives zero. Figure 3 illustrates an implicit
shape where the dots indicate the samples on the surface (f(x) = 0) and the
point orientations the normal of the shape (∇f(xi) = ni). This representation
allows to extract smooth surfaces from irregularly sampled, noisy and incomplete
datasets [23].

Facing the noise sensibility issues of Delaunay-Triangulation techniques, Alexa
et al. proposed to apply moving least squares (MLS) for smoothing (averaging)
the point samples prior to reconstructing a mesh via a Delaunay-Triangulation
technique [2]. A simple implicit shape is for instance a plane defined by its four
parameters nTx + d = 0 with n ∈ R3 as the plane normal vector and d as
offset to the origin along n. Defining a shape function as f(x) = b(x)Tu with
b(x) = (x1, x2, x3, 1) and u as the plane coefficients u = (n1, n2, n3, d) allows
to find u via a regression task [3]. Similarly, Guennebaud extended the shape
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model to spheres and proposed the popular Algebraic Point Set Surfaces (APSS)
method [24]. Ohtake et al. and Oztireli et al. addressed the over-smoothing is-
sues by applying non-linear regression for shape approximation [29, 31]. The MLS
techniques are well capable of filtering datasets with moderate or small noise.
However, it is still not feasible for realistic datasets as introduced in Figure 1.

Implicit models with basis functions: Motivated by the drawbacks of
MLS approaches, Calakli and Taubin proposed applying a global optimization
process [11]. Acquired 3D samples are structured with an octree and the implicit
values of f(x) are distributed on the corners of the octree nodes (voxels). This
approach enables large holes to be closed and allows to handle sparse spatial sam-
ples which lead to isolated fragments when MLS is applied. A similar approach
is proposed by Kazhdan and Hoppe, where the voxel corners are the B-Splines
control points [28]. Both approaches suffer from the fundamental drawback that
a priori information is required from an expert user to define the depth of the
octree structure, which makes using it in automated applications very difficult.

Another family of implicit surface reconstruction algorithms uses smooth
radial basis functions (RBF). The main difference between RBF-based appro-
ximation and discrete octree models [11, 28] is that RBFs are not necessarily
centred on the octree leaves but directly on the samples. This reduces the risk
of applying inappropriate discretization and to lose shape details [23, 14].

Novel approaches [43] propose creating a dense grid of a user-specified reso-
lution and to use the L1 norm to penalize the changes between the implicit grid
corner values. Accurate results are achieved when a fine grid is applied, although
the approach does not consider the smoothness of the second derivative of the
shape leading to non-smooth reconstruction. Another drawback of the method
is that it is restricted to small and compact objects since the computation time
and memory consumption for the dense grid quickly become prohibitive.

Bredies et al. proposed to apply so-called generalized total variation mini-
mization on depth images to penalize the variance in the second derivatives
leading to piecewise smooth shapes (Figure 2). The accuracy of the method mo-
tivates its extension to 3D shapes, which has not been reported in the literature.
Bredies et al. state that the stability of the approach heavily depends on the
smoothness of the data, which is feasible when smooth RBFs are applied [9].
Thus, when developing an RBF-based approximation model with a TV regular-
ization, the choice of an appropriate RBF type is crucial.

With a popular RBF example being Gaussian, which is of infinite differential
degree but tends to smooth out fine detail, Wahba studied the application of
Duchon’s Thin Plate Splines [16] that facilitate control of the smoothness degree
[39]. Due to their global definition domain, Thin Plate Splines do not result in
sparse systems and lead to complex computations. Even more adverse, a change
of a single RBF centre affects the complete shape model in the full approximation
domain, which is not the case for RBF using compact support such as Gaussians.
Later, Wendland proposed several RBF types with compact support of minimal
smoothness degree [40]. Wendland’s RBFs also control the smoothness of the
approximated function and still lead to sparse and efficient linear regression
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systems. Moreover, as presented in Section 3, the smaller the smoothness degree
the more stable is the regression process. The Thin Plate RBFs, however, have
been shown to achieve superior approximation quality in the presence of noise
[37]. Important aspects when selecting an appropriate RBF type are presented
in Section 3.1.

Table 1: Shape approximation comparison. Here + indicates that a method is moder-
ately successful in a particular aspect, and ++ indicates that a method is very suc-
cessful.

Method Missing Data Noise Outliers Comput. Speed Sharp Edges

α shapes
[18]

++ +

Adaptive α shapes
[6]

+ ++ +

APSS
[24]

+ + + +

SSD
[11]

++ + + +

Poisson
[28]

++ + + +

TVL1 Depth
Fusion [9]

++ ++ ++ ++

2.2 Efficient L1 Optimization

Extending the shape approximation with a L1 penalty requires more advanced
techniques to solve the optimization task. This issue has been discussed for some
time in the statistics and numerical optimization community. However, efficient
techniques being capable of dealing with thousands or millions of data samples
are focussed in current research.

Tibshirani proposed the Least Absolute Shrinkage and Selection (Lasso) tech-
nique to minimize cost functions such as

‖ y −Kα ‖22 + ‖ α ‖1 (1)

with ‖ α ‖1=
∑N
j |αi| enabling its application on images with several hundreds

of thousands of entries in α [38]. This form is common for regression problems
where the signal y is approximated linearly by the model matrix K. The addi-
tional ‖ · ‖1 penalty term enforces only a small amount of non-zeros entries in α.
This behaviour is suitable for problems where the vector α is expected to have
many zero entries. A common application is for example signal approximation
by only a small set of frequencies represented by α.
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When representing a shape with N RBFs

f(x) =

N∑
i

ϕ(x,xi)αi = kTα (2)

with ki = ϕ(x,xi), its second derivatives are penalized by ‖ Dα ‖1 with
Dj,i = ∂2xxϕ(xj ,xi). This way ‖ Dα ‖1 penalizes the amount of non-smooth
regions in the extracted model. However, since the entries in Dα are not sep-
arated as it is the case in (1), such problems are solved with more difficulty
and using the Lasso technique is not possible. Initially, interior active sets me-
thods have been applied to solve the TVL1 objective [4]. Chen et al. additionally
demonstrated that the efficiency of primal-dual methods is of magnitudes higher
than that of the interior methods [15]. Also Goldstein et al. proposed a primal-
dual approach known as the Bregman Split [10] to separate the smooth data term
fd =‖ y − Kα ‖22 from the non-smooth regularization term fr =‖ Dα ‖1 and
to optimize each of them independently [22]. Boyd et al. extended the Bregman
Split approach by Dykstra’s alternating projections technique [17] and proposed
the Alternating Direction Method of Multipliers (ADMM) [8], which further im-
proves the convergence. Discussions related to applications of ADMM are re-
ported by Parikh and Boyd (2014).

The bottleneck of ADMM is the minimization of the smooth part fd =‖
y −Kα ‖22. Solving this for α with efficient Cholesky factorization suffers from
a complexity of O(N3). However, an iterative linear solver such as Jacobian
or Gauss-Seidel may reduce the complexity to O(N) as discussed by Saad or
Friedman et al. relating to L1 regularization [35, 20]. Nevertheless, further in-
vestigations on the applicability of iterative linear solvers and ADMM on 3D
shape modelling do not exist.

2.3 Summary

The presented state of the art in robust shape approximation and optimization
methods covers several appropriate options for investigation. Table 1 shows the
seminal methods summarizing the benefits and drawbacks of each technique. The
TVL1 approach [9] delivers high quality with artefacts such as missing data,
noise, outliers, or sharp edges in the image domain. This technique, however,
suffers from high computational complexity and needs to be extended to 3D
shape approximation. Section 2.2 states that the ADMM technique is expected
to outperform the efficiency of existing TVL1 algorithms when extended with
an iterative solver.

The next section investigates the impact of different RBFs applied for sig-
nal and shape approximation from scattered 3D points before the new ADMM
technique for TVL1 optimization on large datasets is presented.

3 The Method

The first part of this section pursues the first research objective and discusses
the fundamentals of RBF-based approximation and compares different types
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of RBFs with respect to quality and stability when least squares optimization
is performed. Section 3.2 applies the proposed RBFs and defines the convex
optimization task to perform shape reconstruction from scattered 3D samples
augmented with a TV regularization term. The last part of this section presents
the developed optimization technique that allows to reduce the computational
complexity while still being able to solve TVL1 regularized approximation tasks.

3.1 Interpolation with Radial Basis Functions

When approximating any signal from a set of measurements, the general aim is
to determine a function f : Rd 7→ R from a set of N sample values at xi ∈ Rd.
The core idea of RBF-based approximation is that the function f(x) may be
represented by a linear combination of M weighted functions such as

f(x) =

M∑
j

ϕ(x, xj)αj . (3)

Each of the basis functions ϕ(x, xj) is centered at each measurement xj , and
basically computes the similarity between x and xj ∈ Rd. One possible form
for ϕ is a Gaussian ϕ(x, xj) = e−‖x−xj‖/σ with σ influencing the width of the
support.

The underlying idea of RBF approximation is illustrated for a one-dimensional
signal in Figure 4, where f is defined as a sum of all given Gaussians with their
weights αj respectively. Usually it is assumed that the widths σ of the basis
functions are known a priori so only the weighting factors αj are to be found,
leading to f(x). The task is therefore to perform regression over N samples and

Fig. 4: Illustrative example of smooth f(x) (red line) constructed by a weighted linear
combination of Gaussian radial basis functions ϕi.

to find M weights via minimization of

min
α

N∑
i

(yi −
M∑
j

αjϕ(xi, xj))
2,
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where yi is the i-th measured sample at position xi. This can also be rewritten
in matrix-vector form as:

min
α
‖ y −Kα ‖22 (4)

where K is often referred to as the design matrix or the kernel matrix with
Ki,j = ϕ(xi, xj). The solution is obtained via

α = A−1KTy (5)

with A = (KTK). This is the well known linear least squares regression. Note
that the function f(x) itself is not restricted to be linear.

In the last two decades several types of RBFs have been proposed for differ-
ent applications. For the application on shape approximation three RBF types
are investigated. i) The Gaussian which is the state of the art, ii) Thin Plate
splines [16] with global smooth properties and the iii) compactly supported RBFs
(CSRBFS) [40] that enable sparse regression systems to be created and to control
the smoothness of the solution. Table 2 shows the three types of the investigated
RBFs with the corresponding explicit forms for data dimension d = 3. Note that
the scaling of each RBF type is achieved by scaling the argument

ϕs(r) = ϕ(
r

s
) with r =‖ xi − xj ‖2 . (6)

Table 2: Investigated radial basis functions for data dimension d = 3.

Type ϕ(r) Cont. m

Gaussian e−r
2

C∞

CSRBF (1− r)2+ C0

(1− r)4+(4r + 1) C2

(1− r)6+(35r2 + 18r + 1) C4

Thin Plate r2m−3 Cm

In order to make a systematic decision which RBF type is best suited for
the underlying application, the stability and the approximation quality is con-
sidered. When solving for α in (5), the condition of K cond K = |λmax

λmin
| plays

an important role. λmin and λmax are the minimal and maximal eigenvalues
of K respectively. In practice, it is not feasible to evaluate the condition num-
ber on large systems since the computation of the eigenvalues has a complexity
of O(N3). Therefore, a generalized approach to assess the stability a priori is
proposed.

Considering the minimal distance between two samples as qx := 1
2 minj 6=i ‖

xi − xj ‖2 and interpreting f(x) =
∑M
j ϕ(x)αj as a transfer function, it is

proposed to analyze the system behaviour in the frequency domain. The key to
this is the Fourier-Bessel transform of ϕ(r) [41]. Interpreting the frequency ω as
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a) b)

Fig. 5: a) Lower bounds for λmin (higher is better), b) lower bounds (lower is better)
for the approximation error of each RBF type.

the minimal distance qx between the approximated samples provides the best-
case stability of the regression model without having to perform experiments on
data. More practically, the boundaries for the lowest eigenvalue are discussed
and put in relation to the expected sample radius qx. This enables qualitative
assessment of a basis function without performing any numerical experiments.
Regarding the stability evaluation presented in Figure 5a, the Thin Plate RBF
is the only type that remains stable for all qx. Depending on the smoothness,
CSRBF with C0 and C2 follow. The Gaussian RBF is the least stable basis
function with λmin slightly below zero.

Another important aspect when selecting an RBF type is the approximation
quality. Similarly to the case of stability assessment, numerical experiments often
only indicate the behaviour of the RBFs restricted to the given dataset. Thus,
it is proposed to appraise the theoretical error bounds in a similar way, as has
been shown with the generalized stability. The diagram in Figure 5b presents the
best achievable error up to a positive scale factor for each RBF type given the
sampling density qx. It is clear that the higher the sampling density the better
the approximation quality. Notably, the CSRBF-C2 achieves higher quality than
other compact RBFs with lower sampling density qx and is very similar (overlays)
with the global Thin Plate RBF.

This evaluation indicates the superior performance of the Thin Plate RBF,
though this is not applicable in most realistic applications because the sup-
port is not restricted to the neighbouring domain. Furthermore, the presented
evaluations claim that applying the compactly supported RBFs with C2 or C0

achieves comparable properties. Table 3 shows the summarized investigation re-
sults, where a higher number of plus signs reflect better performance. According
to the evaluation it is clear that CSRBF is more stable and more accurate than
the Gaussian RBFs and provides comparable performance to the Thin Plate
splines without requiring global support. These key observations imply that us-
ing CSRBF for 3D data approximation is an attractive option which will now
be examined in the next section.
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Table 3: Comparative overview of the RBF models

Gaussian Thin Plate CS-RBF

Stability + + + + + +
Approximation + + + + + + + +
Smoothness + + + + + + ++
Efficiency + + +

3.2 Shape Reconstruction from Scattered Points

The principal idea of shape modelling with RBF is to extract an implicit function
which represents the shape by its zero value as introduced in Figure 3. More
formally, an algebraic function f(x), f : R3 7→ R needs to be constructed by
regression. Given a set of measured 3D points, the task is further to find a
function f(x) which returns zero on every i-th sample xi and interpolates well
between the samples. Since the zero level alone does not provide information
about the orientation of the surface, the surface normals ni at every sample
are used as constraints for the gradient ∇f(x) wrt. x. The task is now to find
f(xi) = 0 giving zero at every sample position and ∇f(xi) = ni. Integrating all
this information, a convex cost functional is defined:

min
α

N∑
i

‖ f(xi) ‖22 + ‖ ni −∇f(xi) ‖22 . (7)

To simplify the optimization problem the normalization term ‖ ∇f(xi) ‖2= 1 is
omitted. In order to obtain the gradient ∇f , only the gradient of ϕ needs to be
computed, which is precomputed analytically. Putting (7) into matrix notation
leads to the short form of the cost function

min
ααα
‖ Kααα ‖22 + ‖ n−K∇α ‖22 . (8)

The matrix K contains the values of the RBFs Kn,m = ϕ(xn,xm) ∈ R and
K∇n,m = ∇ϕ(xn,xm) ∈ R3 represents the derivatives of ϕ wrt. xn. The matrices
are of sizes K ∈ RN×M and K∇ ∈ R3N×M . At this point it becomes clear
that radial basis functions with local support return zeros for distant points
xn,xm which leads to sparse matrices K and K∇ improving the storage and
the computation efficiency. Figure 6 shows example matrices K and K∇ when a
RBF with compact support is applied. Black dots illustrate the non-zero matrix
values. Since most of the entries in K and K∇ are zero, they can be dismissed
in the computation process.

Figure 7 shows an example of applying CSRBF-C2 on a synthetic point set.
The red line in Figure 7a) indicates the cut-plane at which Figure 7b has been
rendered, while Figure 7c shows the 3D shape reconstruction.

Next, it is proposed to extend the cost term with an additional total variation
regularization term enforcing piecewise smoothness. In computer vision it is
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Fig. 6: Example of sparse matrices K∇ and K for equation (10) when CSRBF is applied.

accepted practise [21] to measure the total variation by computing the Frobenius
norm of a Hessian matrix. In contrast, it is proposed to compute the second
derivatives with respect to the radius r of the RBF ϕ(r). Comparing the single
computation ∂2rrϕ(r) to the evaluation of the 3 × 3 Hessian matrix with nine
elements, this reduces the computational cost by a factor of nine and is easier
to compute analytically. Similar to the case when computing the gradients of f ,
the second derivative is also a sum of derived RBFs:

TV (x) =

M∑
m

∂2rrϕ(r)αm (9)

with r =‖ xm−x ‖2. Applying the TV regularization, the cost function becomes

min
α
‖ Kα ‖22 + ‖ n−K∇α ‖22 +λ ‖ Dα ‖1 (10)

with Dn,m = ∂2rrϕ(xn,xm) and λ as the weighting of the regularization term.
The factors αm corresponding to the largest eigenvalue of D are attenuated the
most while weights lying in the kernel of D are not affected at all. Figure 8 shows

a) b) c)

Fig. 7: a) Synthetic input points, b) the cut plane visualizing f(x) as red (f < 0) and
green (f > 0), c) reconstructed shape from a).
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an example where the input samples have been perturbed by noise (Figure 9a
and the shape is reconstructed via a) simple least squares (LSQ) and b) TV L1.
In both images the red colour corresponds to the TV cost intensity (9). Clearly,
when applying TV minimization, the shape accuracy of the reconstruction is
improved and the red TV intensity is reduced significantly.

Increasing the normally distributed sample noise up to σ ≈ 30% of the bound-
ing box, the effect of the regularization is demonstrated in Figure 9. While the
simple LSQ model does not achieve a smooth shape (Figure 9b the new regular-
ized approach in Figure 9c shows considerable perceptual improvement in terms
of the quality of the shape reconstruction.

In the next section, the proposed numerical technique to solve the TVL1 task
efficiently is presented.

a) b)

Fig. 8: a) The TV cost (red) overlaid with the unregularized shape obtained via LSQ.
b) The reduced TV cost (less red colour) after performing regularized approximation
following (10).

a) b) c)

Fig. 9: a) Noisy 3D samples of the step function. b) Direct LSQ. c) TV L1 regularized
approximation.
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3.3 TVL1 Solver

To minimize the task (10), it is proposed to apply the Lagrangian approach from
the Alternating Direction Method of Multipliers (ADMM) [8]. Formally, (10) is
restated to

min
α,z

L(α, z) = f1(α) + f2(z)+

bT (Dα− z) +
ρ

2
‖ Dα− z ‖22,

(11)

where f1(α) is the data part from (10) depending on α, and f2(z) = λ ‖ z ‖1
is the non-smooth regularization part weighted by λ. The basic approach is to
minimize for α, then for z iteratively. The terms bT (Dα− z) and ‖ Dα− z ‖2
make sure that Dα is close to z after an iteration finishes reducing the duality
gap. This restriction is controlled by ρ which is usually a large scalar. The iter-
ative optimization process between α and z is summarized in Algorithm 1. The
minimization for z involves a sub gradient over ‖ · ‖1 and its solution is known
as the shrinkage operator [19] being applied on each element zi independently:

zi = shrink(a, b)

= a− b · sign(b− a)+

where a =
bi
ρ

+ (Dα)i, b =
λ

ρ

(12)

with (Dα)i as the i-th element of the vector Dα and sign(b−a)+ gives 1 if b > a
and zero otherwise.

Algorithm 1: ADMM for L1 approximation

1. Solve for α: (KT
∇K∇ +KTK + ρDTD)α = KT

∇n +DT (ρz− b)
2. Evaluate: zk+1

i = shrink( bi
ρ

+ (Dα)i, λ/ρ)

3. Evaluate: bk+1 := bk + (Dαk+1 − zk+1)ρ

While steps 2 and 3 are direct evaluations and can be performed in parallel after
Dαk+1 has been precomputed, step 1 incurs high computational complexity.
It is proposed to solve αk+1 via Gauss-Seidel iterations, which are well known
from large scale linear system optimization [35]. However, the standard Gauss-
Seidel process suffers from difficult convergence conditions. Thus, successive over
relaxation (SOR) is applied with a weight factor ω. By applying SOR in step 1,
Algorithm 1 changes to

αk+1
i = αki + ω

yi − (KT
∇iK∇ +KT

i K + ρDT
i D)αk

KT
∇iK∇i +KT

i Ki + ρDT
i Di

(13)

with yi = KT
∇in +DT

i (zρ−b) and i-th columns of a matrix respectively. Consi-
dering that K∇, K and D are sparse when CSRBF is applied, the computation
is reduced to Algorithm 2.
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Fig. 10: a) The impact of the scaling parameter s, b) the over relaxation weighting ω,
c) convergence behaviour for ω = 0.15 when CSRBF-C2 or CSRBF-C4 are applied.

Algorithm 2: Matrix free TVL1

1. For each RBF centre αi compute:
(a) Find all neighbouring centres and all neighbouring samples located in the

support of αi.
(b) Compute the equation (13) using only the collected neighbours.
(c) Precompute Dα with the new αk+1

i .
2. Evaluate: zk+1

i = shrink( bi
ρ

+ (Dα)i, λ/ρ)

3. Evaluate: bk+1 := bk + (Dαk+1 − zk+1)ρ

The optimization is controlled by two important parameters: ω for the successive
over relaxation and the RBF scaling s as introduced in Table 2 and (6). Figure
10 shows the effect of these parameters on the approximation quality and the
achieved convergence rates. The experiments have been performed on the syn-
thetic dataset from Figure 7. Figure 10a illustrates the approximation quality
over the scaling s. The quality attains its optimum when s = 10 is reached.
This observation corresponds to the generalized investigations from Figure 5,
where s = 10 is qx = 0.1. Furthermore, the empirical impact analysis of the
over relaxation parameter ω on the convergence concludes that ω ≤ 0.15 allows
to remove the instability issues for CSRBF-C2 and CSRBF-C4 when SOR is
applied. Note that when applying the Gaussian RBF, ω is required to be very
small (ω ≈ 1e − 3), leading to an impractically high number of iterations. This
fact is a consequence of the stability properties of the Gaussian investigated in
Section 3.1.

The next section evaluates the proposed TVL1 shape approximation frame-
work with respect to existing methods by applying the algorithms on a large
dataset with an existing ground truth.

4 Evaluation

This section evaluates the proposed shape reconstruction framework on different
datasets and compares it with two successful surface reconstruction techniques:
the Poisson approximation [28] and the Smooth-Signed-Distance (SSD) algo-
rithm [11]. The selected methods have been identified as successful techniques
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Fig. 11: Evaluation results for the proposed TVL1 and the compared techniques. See
text for details.
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for shape reconstruction under strong noise. Both use the implicit model to rep-
resent the shapes. However, in contrast to the presented work, the compared
methods structure the data via an octree of predefined depth and apply discrete
optimization via finite differences to extract the zero level of the surface.

The presented analysis uses a 3D point cloud as input. A virtual camera flight
was simulated in order to generate error prone data with an established ground
truth. The simulation of the moving camera and noisy 3D measurements were
achieved by extending the CAD software Blender [30]. This enabled the control of
the noise level on the samples and an accurate model of the observed object. An
outdoor scene was selected since similar environments are used in many robotic
applications. Figure 11a shows the ground truth model used for the simulated
measurements in assessing the quality of reconstructed 3D shapes in Figure 11g.
Figures 11b - e show the model coloured according to the local reconstruction
error. Red areas indicate larger errors. The facade consisted of large planar ar-

eas with a number of sharp edges as identified in point 1 . The proposed TVL1

technique performs significantly better than the Poisson approach and similarly

well compared to SSD. During the simulation several areas 2 have been oc-
cluded by the railing, thus have not been sampled. This increases the difficulty
of the reconstruction task. At these locations TVL1 interpolates a shape which
is more similar to the ground truth than other techniques. The area marked by

3 is the balcony, where only a small part of the floor has been sampled. In
such areas, both TVL1 and SSD perform well, significantly outperforming the
Poisson approach. The diagram in Figure 11f shows the cumulative error distri-
bution of the reconstructed shapes. It states for example, that only 77% of all
samples have a smaller error than 0.3m when Poisson is applied. The diagram is
produced by re-sampling the ground truth model and the approximated shapes
with 5M points and by measuring the distance between a reconstructed sample
and its nearest neighbour from the ground truth set. The point-to-point (ptp)
error is shown on the horizontal axis. The increased accuracy of TVL1 techniques
can also be observed in the coloured error models in Figures 11b-e.

Another evaluation scenario has been considered where real point clouds from
a mobile stereo system have been processed to shapes. As previously illustrated
in Figure 1, the small stereo system has been carried inside of a building at high
speed, computing the 3D point clouds in real time. This data has been processed
by the Poisson, SSD and TVL1-C2 techniques, and is shown in Figure 12. Fig-
ure 12a and below show larger overview, which has been selected because of the
difficult conditions. Floor reflections, occlusions and blending from ceiling illu-
mination lead to error prone data. Poisson and SSD are designed to reconstruct
closed surfaces and thus generate wrong surfaces even in the open entries. TVL1

however, extrapolates the measurements to some extent but does not close the
entries correctly indicating open and traversable space.

Figures 12b show a part from the DLR building. It can be observed, that
Poisson provides over-smoothed surfaces, SSD tends to interpolate noisy samples
and TVL1 manages smooth surface but also representing the edges between the
walls and the floor.
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5 Conclusion

This paper has presented a new 3D shape modelling strategy for noisy error
prone 3D data samples. Modelling 3D shapes with radial basis functions has
been proposed with the choice of the most appropriate RBF corroborated using
generalized stability and approximation quality assessments. The shape regres-
sion model has been extended by non-smooth L1 regularization assuming planar
areas to improve the accuracy of the reconstructed shape in indoor and urban
environments. Since the TVL1 optimization task is computationally expensive,
a low complexity optimization technique has been developed. The optimization
process exploits the Lagrangian form of the optimization task with an iterative
over relaxation technique. This enables realistic datasets containing several mil-
lion points to be effectively processed. Quantitative analysis confirms that the
proposed method achieves superior accuracy on the synthetic objects.

For future research, the presented solution will be adapted and extended to
recursive, real-time 3D mapping applications where environment measurements
are received as a data stream. The corresponding 3D shape approximation model
then will be able to recursively modify its shape as new measurements become
available.
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