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Abstract

We introduce QuadStack , a novel algorithm for volumetric data compression and direct rendering. Our algorithm exploits
the data redundancy often found in layered datasets which are common in science and engineering fields such as geology,
biology, mechanical engineering, medicine, etc. QuadStack first compresses the volumetric data into vertical stacks which
are then compressed into a quadtree that identifies and represents the layered structures at the internal nodes. The
associated data (color, material, density, etc.) and shape of these layer structures are decoupled and encoded independently,
leading to high compression rates (4× to 54× of the original voxel model memory footprint in our experiments). We also
introduce an algorithm for value retrieving from the QuadStack representation and we show that the access has logarithmic
complexity. Because of the fast access, QuadStack is suitable for efficient data representation and direct rendering. We
show that our GPU implementation performs comparably in speed with the state-of-the-art algorithms (18-79 MRays/s in our
implementation), while maintaining a significantly smaller memory footprint.
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Fig. 1. QuadStack efficiently compresses and directly renders layered data like large terrain (left), outputs of a magnetic reconstruction simulation
(middle), or microstructures (right). We report the compression ratios and rendering performance on an NVIDIA 970 GTX.

1 INTRODUCTION

Geometric data often contain redundancies that can be represented in a compact way to save space. A compact represen-
tation usually requires a certain amount of work to convert the data to the original representation, but algorithms often
exist that can access the original values, in an efficient way, directly. Various applications have different needs and these
give rise to a wide spectrum of data representations. The focus of this paper is on discrete volumetric data that is usually
represented in an uncompressed form as a 3D grid of volumetric elements (voxels).
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The key observation of our work is that many research and engineering fields produce layered volumetric data which
have strong directional anisotropy and high coherency in a prevailing direction. An example is geology (Fig. 1 left), where
geological strata are made up of layers of continuous material. Many biological materials such as skin or leaves are also
layered, but on a much smaller scale. Even though certain volumetric materials are not composed of clearly visible layers,
they include organized stacks of uniform material; an example is particles in materials such as stones, microstructures, or
even atmospheric data with layers of air at different humidity, temperature, and velocity. Although existing algorithms
can be applied to layered data and provide good compression, representation, and fast access, we argue that by exploiting
their layered structure, we can achieve better results in both data storage and retrieval.

We introduce QuadStack, a novel algorithm for volumetric data representation of layered datasets. QuadStack uses
a quadtree for data representation while efficiently encoding the layers in the tree. The layers are converted to stacks,
and the algorithm decouples the voxel values from their height values. We also introduce an algorithm for value retrieval
from the QuadStack representation and we show that the access requires O(log(n) + m) time, where n = w × h for a
voxel space with dimensions w × h × d and m is the maximum stack size. In practice, m is small compared to n in a
layered model, so the method can be assumed to run in logarithmic time. Because of its fast access, QuadStack is suitable
for efficient rendering of layered data and can be implemented on the GPU as we show in a raycasting implementation.

We apply our algorithm to real datasets from different domains. In particular, we show its performance on geological
datasets [1], industrial models [2], microstructural data [3], and with a snapshot of a magnetic reconnection simulation [4].
We render these datasets by using QuadStack which has comparable performance to other state-of-art techniques, but has
66% to 99% less memory requirements compared to the uncompressed data. An example in Fig. 1 shows three layered data
from various applications compressed and rendered by using QuadStack.

We claim the following contributions: 1) QuadStack, a novel data structure that arranges volumetric layered datasets
into a set of heightfields, isolating them from the attribute values, and compressing them into a quadtree, 2) a fast method
for the QuadStack construction based on string matching, and 3) a rendering algorithm that displays the compressed data
directly.

2 PREVIOUS WORK

Here we review related methods for representing and visualizing general volumetric data followed by an overview of
methods specific for heightfields and layered data.

The most common volumetric data representation is the use of regular grids [5], [6] that allow quick random access
and modifications needed by many data processing algorithms. However, regular grids are often highly redundant and do
not provide scalable data representation. The grids are compressed into Octrees [7], hierarchical grids [8], or collections of
tetrahedra [9]. In general, these methods are able to focus on the details of representation into the corresponding data, but
modifications can require recalculation of the compressed representations.
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Fig. 2. Overview: The input volumetric data is converted to stacks then similar stacks are put into groups of stacks (gstacks) that are organized in
a quadtree. When using the QuadStack , the quadtree is traversed first, and the topology of the given part of the volume is reconstructed. Then the
corresponding layer boundaries encoded as heightfields are sampled to determine the result.

A specific class of volumetric representation is layered representation, which has been studied in the context of
geological structures such as terrains and landscapes. An inspiration for our work is the layered data structure for terrain
representation introduced by Benes and Forsbach [10], extended to enable interactive modeling of terrains, including
simulations of natural processes such as erosion [11], and the evolution of snow covered mountains [12]. Peytavie et al.
[13] used this representation for modeling and visualizing complex terrain, including features like arches or overhanged
cliffs. Later, Löffler et al. [14] achieved realtime rendering using a LoD hierarchy. Both methods convert the layered data to
a triangle mesh prior to the visualization, and only the surface is rendered. Also, based on this data structure, the recent
work of Graciano et al. [15] introduced the Stack-Based Representation (SBR) that is a compact representation for a layered
volumetric datasets. This work also introduced a GPU-based method for direct rendering of layered geological structures
by using SBR. QuadStack, the method being introduced in the present work, goes further by proposing compression of
stacks using a quadtree without compromising realtime visualization.

Volume data visualization is often conducted by using direct volume ray casting that provides a flexible approach
to handle varying density of the data, implementing transfer functions, or focusing the visualization by clipping [16].
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Amanatides and Woo [5] introduced a fast algorithm for traversing volumetric data encoded in a regular grid using a 3D-
DDA algorithm. Levoy [8] extended the traversal to hierarchical representation. Danskin and Hanrahan [17] introduced
several adaptive acceleration methods for volume ray tracing using homogeneity and opacity accumulation. Cohen and
Sheffer [18] proposed proximity clouds to accelerate traversal of empty regions. Revelles et al. [7] developed an optimized
Octree ray tracing using a fast recursive algorithm. Efficient skipping techniques for Octree traversal were proposed by
Grimm et al. [19] and Lim and Shin [20]. Crassin et al. [21] used node and brick pools to optimize the ray traversal and
data filtering using sparse voxel Octrees [22]. A detailed discussion of direct volume rendering techniques can be found in
surveys [16], [23].

Kämpe et al. [24] encoded the geometry of high resolution volumetric models obtained using DAGs. These models are
typically generated from high-resolution rasterization of surface representation into binary voxels representing either full
or occupied model parts. Later,Dado et al. [25] and Dolonius et al. [26] proposed techniques for attaching attributes to
geometry compressed using DAGs. Our method also decouples geometry, and attributes and encodes them separately. A
notable difference in our method is that our representation primarily structures the data according to attributes (layers).
This allows us to optimize direct rendering of the compressed data for transfer functions that cull many layers that are
often used to study the layered datasets.

Guthe and Goesele [27] proposed a method using block-wise compression of general volumetric data and block-wise
decompression optimized for direct volume rendering in CUDA. Our method also compresses geometric information, but
it also stores semantic information about the layers that can be used, for example, to render individual layers differently.
We compare to this method in Sect 7.

Volumetric data can be also visualized by converting to boundary representation and applying efficient ray tracing
methods for B-reps such as kD-Trees [28] or BVHs [29], [30]. There are several powerful implementations for both CPU [31],
[32] and GPU ray tracing [33]. Limited bandwidth and data access latency are two of the main limitations for GPU
rendering. Cache efficient layouts [34] and compressed data representation [35], [36] mitigate both of these issues.

We focus on layered data that can be thought of as a general form of heightfields that are commonly used to represent
terrains with a single layer of material [37], [38], [39], [40].

Early heightfield rendering used a 2D grid traversal with a DDA [41]. Later techniques often used precomputed hierar-
chical representations [42], [43]. Henning and Stephenson [44] focused on accelerating ray tracing and local reconstruction
for the ray at the intersection. An efficient GPU implementation of terrain ray casting was proposed by Dick et al. [45], and
a hybrid rendering technique for terrains combining rasterization with ray casting was proposed by Ammann et al. [46].
Lux and Fröhlich [47] focused on out-of-core large terrains rendering. Acceleration of terrain rendering by skipping empty
regions of space was addressed by Baboud et al. [48] and more recently by Lee et al. [49].

Scandolo et al. [50] used compressed hierarchical representation to encode high resolution shadow maps, which are
similar to heightfield compression. Their method maintains accurate shadows by encoding depths with values within
limits provided by two consecutive depth layers. For other applications, such as representing and rendering general
layered models, the method only provides a lossy compression of individual layers and is optimized for lookups using
point queries instead of ray queries needed for direct visualization.

A number of other efficient techniques for multi-resolution heightfield representations and rendering have been
surveyed by Pajarola and Gobbetti [51].

Our method builds on previous work by combining the layered representation of general volumetric data with
hierarchical representation using quadtrees and a collection of heightfields. We hierarchically encode the volume into regions
that have constant layer topology for which simple compressed heightfield representation can be used. This representation
achieves high compression rates while still allowing efficient data retrieval. Thus, the method reduces memory usage as
well as the bandwidth and latency when directly rendering the compressed representation.

3 METHOD OVERVIEW

Datasets are often composed of horizontal layers of identical values of a certain material or physical property that we refer
to as attributes. The approach of our method is in representing the layers as run-length encoded vertical stacks [10] that are
encoded further into a horizontal quadtree. In this way, a QuadStack is an efficient data structure for layered volumetric data
that decouples the attribute data (layer attribute values) from the geometric data (layer heights).

Without a loss of generality, we assume that the direction of the layers is known, and that the data is oriented so layers
are parallel to the (horizontal) direction xy. Although the height of each layer may vary by location, the vertical sequence
(the order) of the layer attributes is spatially coherent as can be seen in Fig. 2 on the left. The height of the layers may vary
between two vertical columns, but their order, often, will not change. A common change in real-world data sets is that one
layer disappears or a new one is introduced.

The input volumetric data V (Fig. 2) with dimensions w × h × d is first converted to a set of stacks S, where the
stack Sx,y ∈ S represent the columns of voxels Vx,y encoded as a sequence of intervals i1, i2, . . . , in. Each interval consists
of voxels with the same attribute value. The conversion to stacks is depicted as the first step of the construction in Fig. 2.
A detailed representation of a layered volumetric dataset as stacks is shown in Fig. 3 and explained in Sec. 4.

In the second step, a region quadtree organizes S into quadrants of stacks with the same sequence of attribute values,
referred to as groups of stacks, or simply as gstacks. A gstack G encodes the stacks in the quadrant [xminymin, xmaxymax] in
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a compact manner, and is defined as a sequence of n intervals i1, i2,. . . ,in. The attributes a1, a2, . . . , an of the intervals of
G are common to all the stacks in the quadrant: Sx,y ∈ S where xmin ≤ x ≤ xmax and ymin ≤ y ≤ ymax. A quadtree of
gstacks is denoted as QuadStack (see Fig. 2 and Sec. 5).

The QuadStack provides a lossless compression of the input data. It can be easily converted back to a voxel-based
representation by point sampling (see Fig. 2 right). A similar sampling procedure can be used to directly render data
represented in QuadStack by using a modified ray traversal algorithm for quadtree (Sec. 6).

4 STACK-BASED REPRESENTATION

Given a voxel grid V with resolution w× h× d, each voxel vx,y,z ∈ V stores one or more attributes, such as color, material,
or density, that depend on the application. Layers are the maximal sets of connected voxels with a constant value for a
given attribute.

The Stack-Based Representation (SBR) of V (see Fig. 3) is its decomposition into a set S of vertical stacks, where each
stack Sx,y ∈ S comprises the space defined by the column of voxels at position xy:

Sx,y
∼= Vx,y =

d⋃
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Fig. 3. Stack-Based Representation: A voxel dataset of resolution w × h × d composed of layers is organized into vertical stacks consisting of
intervals. Each interval ik = 〈ak, hk〉 with the attribute value ak and height hk.

A stack is compacted as a run-length encoding of voxels with the same value for the attribute. Therefore, the stack Sx,y

is a sequence of intervals i1, i2,. . . , in along the z axis where ik is a tuple ik = 〈ak, hk〉 that represents the space comprised
by a range of voxels of the column Vx,y with identical attribute value ak:

ik ∼=
hk⋃

i=1+hk−1

vx,y,i.

If k = 1 then hk−1 is assumed to be 0. The intervals are sorted by height in ascending order: hk < hk+1 for any given k
such that 1 ≤ k ≤ n.

The complexity of the SBR construction is O(n), where n = w × h × d is the number of voxels, because each voxel
needs to be processed exactly once. The SBR construction is embarrassingly parallel, because the stack construction does
not require information about neighboring stacks.
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Fig. 4. The QuadStack construction: The initial QuadStack is a quadtree that is optimized by merging intervals of equal or similar attributes.

5 THE QuadStack DATA STRUCTURE

A simple approach to compressing SBR data would be to use a hierarchical data structure such as a quadtree that would
efficiently encode the neighboring stacks with the same sequence of intervals, i.e., stacks that have identical attribute values
and heights. However, variations in the interval heights are common and would lead to low compression rates due to the
high number of tree subdivisions.

Our observation is that while stacks differ significantly in their height values, their attribute values do not change very
often between neighboring stacks. This change happens only when a layer disappears, or when a new layer appears, as
can be seen in the left image in Fig. 2. Therefore our approach is to pack groups of neighbouring stacks with an identical
sequences of attribute values into a single structure denoted as a group of stacks or gstack.

5.1 Group of Stacks - gstacks
Given the decomposition of volume V into stacks S, a gstack G represents a rectangular region of S with the same number
of intervals n and identical sequence of attribute values a1, a2, . . . , an. More specifically, G represents the stacks Sx,y of
a rectangle [xminymin, xmaxymax] of S, where 1 ≤ xmin ≤ x ≤ xmax ≤ w and 1 ≤ ymin ≤ y ≤ ymax ≤ h. Since the
attribute information of the stacks Sx,y is identical, G can be encoded in a compact way as a sequence of intervals i1, i2,
. . . , in. Each interval ik = 〈ak, Hk〉 contains the attribute value ak, common to all the intervals ik of Sx,y , and a heightfield
Hk with dimensions (xmax − xmin + 1) × (ymax − ymin + 1) that stores the heights of these intervals. More specifically,
the height hk of Sx,y is mapped to the height hx−xmin,y−ymin

of Hk. The intervals and the attribute values are consistently
ordered for all stacks Sx,y therefore the heightfields Hk never intersect i.e., given hi,j,k ∈ Hk and hi,j,k+1 ∈ Hk+1, where
1 ≤ k ≤ n, the condition hi,j,k < hi,j,k+1 is always met.

A gstack is simple and space-efficient encoding for a group of stacks with identical attribute information. Although only
attribute information is compressed, the geometry information is stored as a set of non-intersecting heightfields that can
also be compressed by using any existing heightfield encoding method.

Gstacks are built during the construction of a QuadStack that combines the spatial decomposition of a quadtree with the
compact representation for groups of similar stacks given by gstacks.

5.2 Group of Stacks Hierarchies
A QuadStack represents the stacks as a hierarchy of gstacks. It divides the volume in the direction of xy recursively until a
quadrant can be represented by a gstack. These quadrants are not guaranteed to be squared, or a power of two, since there
are no restrictions on the dimensions of the volume.

A QuadStack stores information, not only in leaf nodes, but also in internal nodes, which further improves the
compression. An internal node can contain a gstack grouping intervals common to all its descendants. Since these intervals
are not necessarily consecutive, the gaps between them, corresponding to one or more intervals that are stored elsewhere
(i.e., in a descendant or ancestor node), are represented with a new type of interval called wildcard interval or ∗-interval. This
enables a flexible form of a gstack that combines intervals (hereinafter referred to as terminal intervals) with areas lacking
information on this level of the QuadStack. These intervals, in many cases, correspond to intervals with different attribute
information that could not be directly represented by the gstack.
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Fig. 5. Details of the QuadStack construction: initial construction as a quadtree encoding groups of stacks with the same sequence of attributes (a),
merging gstacks in nodes n1 and n2 into a gstack with common intervals and ∗-intervals (b), propagation of the new gstack to the parent node n0,
restructuring heightfields (c) and optimization, deleting ∗-intervals in nodes n1 and n2 associated to the intervals propagated to the parent node (d).

Fig. 5a shows a 2D depiction of a SBR and its corresponding QuadStack represented as a binary tree. The gstacks in
nodes n1 and n2 encode the stacks as intervals of different attributes with their associated heightfields. Fig. 5c shows an
equivalent QuadStack where the blue intervals, common to nodes n1 and n2, have been stored in the gstack at n0, together
with a ∗-interval that represents the rest of intervals of the block of stacks (intervals orange and yellow). The blue interval
in gstacks of the leaf nodes is replaced by ∗-intervals, since it is already stored in an ancestor.

Just like a terminal interval, a ∗-interval has an associated heightfield. Let G be a gstack stored in node n and let iw ∈ G
be a ∗-interval, defined as iw = 〈∗, Hw〉. If iw represents the intervals ik, ik+1, . . . ,ik+j of gstack Gd in a descendant nd of
node n, then the heightfield Hk+j of the top interval ik+j corresponds to a quadrant of Hw. In this way Hw combines the
heightfields of the top intervals of all the sets of intervals existing in descendant nodes which are grouped by iw. This is
depicted in Fig. 5c as the heightfield associated to the ∗-interval in n0. If the ∗-interval in G refers to a group of intervals in
gstack Ga from an ancestor na of n, Hw corresponds to a quadrant of the heightfield Hk+j , since Ga covers a larger part of
the xy plane than G. This case corresponds to the heightfields of the ∗-intervals in nodes n1 and n2.

5.3 QuadStack Construction
The QuadStack is constructed in two steps: a top-down subdivision, and a bottom-up merging. The subdivision step is a
standard quadtree construction of the stacks by using the criterion of same attribute sequence. This criterion ensures that
the blocks of stacks at each leaf node can be encoded as a gstack, and the resulting data structure is already a QuadStack.
Fig. 4 illustrates the resulting QuadStack.

Although the first step generates a more compact representation for the volumetric model than an SBR, layers of
common attributes lead to duplicate intervals in many leaf nodes, as shown by the blue, yellow, and green attributes on
the left part of Fig. 4. The second step extracts and merges these duplicate intervals in ancestor nodes. It proceeds from the
bottom-up by propagating to a node every interval common to all its children (i.e., having the same attribute value). We
map the attribute values of the intervals of the four gstacks in the children to a common sequence of attribute values, using
∗ to group non-matching attributes (Fig. 6).

We are interested in mapping with the highest number of terminal intervals. The search space can be very large and
our problem is related to finding common motifs with gaps, with applications in text mining and the analysis of DNA
sequences. Many solutions have been proposed [52], [53], [54] that assume certain restrictions (e.g., motif size, maximum
gap size, etc.) and require an exact match of the motifs, or accepting a certain degree of similarity.
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However, our sequences are rather short and we propose a brute-force solution for this problem (Alg. 1). The input is
two gstacks and the output is two gstacks with a matching sequence of interval attribute values. The algorithm takes every
possible pair of intervals from the first and second gstack and tests if their attribute values match; if a matching pair i1,s,
i2,t is found, the intervals are added to their corresponding result gstack and the function calls itself with the remaining
intervals i1,s+1, . . . , i1,n and i2,t, . . . , i2,m. If i1,s and i2,t are not in the first positions of their gstacks (i.e., s > 0 and t > 0),
the predecessors intervals i1,1, . . . , i1,s−1 and i2,1, . . . , i2,t are grouped into two ∗-intervals associated to the heightfields of
the top intervals i1,1 and i2,1. The number of terminal intervals of the solution obtained are computed, and finally the best
solution is returned. Generalizing this solution to the four children of a QuadStack node is straightforward. The theoretical
complexity of this algorithm is O((m!)4) for four stacks with m intervals, but it performs much better in practice with the
heuristics described in Sec. 5.5.

If the derived gstacks have at least one terminal interval, they are merged into a single gstack at the parent node (Fig. 5b-
c). The heightfields of the newly created gstack are generated by packing the four heightfields of the intervals of the derived
gstacks. Finally the derived gstacks are deleted, and every propagated interval is converted to an ∗-interval at the children
gstacks, grouping adjacent intervals if necessary (Fig. 5c). If a gstack ends up as a single ∗-interval, it can be safely deleted
from the node since it does not provide any information.

The time complexity is O(n log n) for the initial quadtree construction and O(n × (m!)4) for the interval propagation
phase, where n is the number of stacks in the SBR (n = w × h) and m the maximum number of intervals in a gstack.

*

*

Gstack 1
Gstack 2

Merged 
gstack

Fig. 6. Finding a common mapping for two gstacks that maximizes the number of terminal intervals.

5.4 Heightfield compression
QuadStack implements a compact encoding of the ordered sequence of attributes, but does not deal with the compression
of the interval heights. In our approach, attribute and heightfield representation are decoupled, therefore heightfields can
be stored in a raw form, or compressed by any existing method such as the algorithm of [55].

A simple delta encoding provides good results, since height values usually vary progressively. However, the main
problem is that the access to any data requires decompressing the whole dataset which limits the practical use in
applications where efficient queries or traversals are required (e.g., realtime visualization).

We propose a method that provides a trade-off between compression and access time, inspired by the work of
Andujar [56]. This method partitions the heightfield into equal-sized blocks and compresses the values in each block
independently. Consider a heightfield H partitioned into w × h blocks with the same dimensions m × n. For each block
Bi,j ∈ H the lower height value is taken as the base value, encoding the m × n elements in the block as differences from
this base value. Using blocks of a relatively small size makes these differences close to zero, allowing them to be encoded
with a reduced number of fixed bits. This enables random access to a particular location with only two reads: a first one to
a header that comprises the base value of the block and the number of bits required to encode each height difference, and a
second one to the actual difference located at the bit field. Other predictors for a value in a block are possible: for instance
it can be encoded as the difference with respect to the bilinear interpolation of the height values at the four corners of the
block.
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Input: gstacks Gi
1 = {i1,1, . . . ,i1,n} and Gi

2 = {i2,1, . . . ,i2,m}. Interval ii,k = 〈ai,k, Hi,k〉 where ai,k and Hi,k are its
attribute value and heightfield respectively.

Output: gstacks Go
1 and Go

2 with the same sequence of attribute values.

if Gi
1 6= ∅ and Gi

2 6= ∅ then
Go

1 ← {〈∗, H1,1〉}
Go

2 ← {〈∗, H2,1〉}
else

Go
1 ← ∅

Go
2 ← ∅

scbest ← 0
foreach interval i1,s from Gi

1 do
foreach interval i2,t from Gi

2 do
if a1,s = a2,t and a1,s 6= ∗ and
(s > 1 xor t > 1) and
(s < n xor t < m) then
Gr

1, G
r
2 ← matchGS({i1,s+1, . . . , i1,n},

{i2,t+1, . . . , i2,m})
sc← numTerminalIntervals(Gr

1)
if sc > scbest then

scbest ← sc

if s > 0 then
Go

1 ← {< ∗, H1,1 >} ∪ {i1,s} ∪Gr
1

Go
2 ← {< ∗, H2,1 >} ∪ {i2,t} ∪Gr

2
else

Go
1 ← {i1,s} ∪Gr

1

Go
2 ← {i2,t} ∪Gr

2
end

end

return Go
1, G

o
2

Algorithm 1: Algorithm matchGS.

5.5 Optimizations
The QuadStack construction algorithm described in Sec. 5.3 generates a compact representation of the attributes of the
model. This can be further improved if ∗-intervals that do not provide useful information for sampling operations are
removed. Good candidates are the ∗-intervals representing information that can be found elsewhere in an ancestor node,
such as the top ∗-intervals in the gstacks of nodes n1 and n2 in Fig. 5c. The information represented by these intervals is
included in the blue interval in the gstack of the node n0. These intervals are never reached during sampling (Sec. 6), and
can be discarded during the bottom-up phase of the QuadStack construction algorithm. When an interval is propagated to
an ancestor (Fig. 5b-c), it is completely removed from the initial gstack, instead of being converted to an ∗-interval. Note
that the result is no longer a gstack, since it represents only a subset of intervals instead of the full range of the stacks. We
refer to this as a partial gstack. Under the described conditions, gstacks can be converted into partial gstacks reducing the
QuadStack space requirements without affecting its performance in sampling or rendering operations. Fig. 5d shows the
resulting QuadStack after this optimization.

An optimal match of the gstacks during the bottom-up phase is essential for a good attribute compression. Alg. 1 finds
the optimal matching, although its time complexity is high. We use two efficient heuristics to reduce its computation time.

First, the exploration of a new solution can be avoided if the minimum of the lengths of the two lists of explored
intervals is less than the best score so far, since a better score cannot be found. Notice that the score of a solution is the
number of terminal intervals, so at least two lists with a higher number of intervals are required to be able to find a better
solution.

Second, we store the optimal matching found for four given lists of intervals, since certain combinations are explored
repeatedly. For this purpose we use a simple map with a key computed from the length of the four lists of intervals.
This improvement reduces the time requirements of the algorithm to O(m5). To illustrate this, in the computer used for
our experiments (Sec. 7) matching 4 stacks with 30 intervals is solved in less than 26 ms compared to 764 ms without
optimizations (30× faster).
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6 QuadStack SAMPLING AND
DIRECT RENDERING

We discuss two techniques for retrieving data from QuadStack representation. The first is point sampling that is crucial for
compression/decompression applications, the second technique uses ray casting and enables direct rendering of QuadStack
data.

6.1 Point Sampling for Selective Decompression
The QuadStack decompression can be performed selectively by using point sampling of the QuadStack representation. Alg. 2
shows the regular structure of a point sampling procedure in a hierarchical data structure adapted to a QuadStack. Querying
a point p is carried out by recursive traversing of the quadtree data structure. First, an inclusion test between p and the
bounding box of the data is computed, if the test is successful, the query can start by sampling the root node. In order
to sample a node, the heightfield Hk of each interval in the gstack must be sampled at the xy position of p, comparing
its height with the z coordinate. The iteration stops when the lowest interval whose height is above z is found. If it is a
terminal interval, regardless of whether a leaf node is reached or not, the attribute is returned. When an ∗-interval is found,
the traversal continues in the successive nodes.

The overall time complexity is O(log n+m) since, in the worst case, it is necessary to reach a leaf of the tree to retrieve
the interval, checking at most m intervals during the traversal. Point sampling can also be easily generalized to decompress
an arbitrary rectangular region or box of the model into stacks, or further into voxel data.

6.2 Ray Casting for Direct Volume Rendering
GPU-accelerated ray casting is currently the most common approach for the visualization of volumetric data providing a
good trade-off between simplicity, quality, and speed. Models represented by QuadStack can be rendered by ray casting
without using an intermediate representation (e.g., a SBR or a 3D grid of voxels). Similar to other hierarchical data structures
QuadStack allows an efficient implementation of ray casting, which is solved at the gstack level first, then at the interval
level, and finally at the heightfield level, as depicted in Fig. 7.

Input: node n to be sampled; sampling point p.
Output: final node and attribute value sampled at p.

ar ← null
nr ← null
if pz > 0 then

foreach interval ik = 〈ak, Hk〉 from gstack G in n do
if hpx,py

≥ pz then
ar ← ak
nr ← n
break

end
if r = ∗ then

C ← getChildren(n)
if C 6= ∅ then

Given C = {c0, c1, c2, c3, c4}
if insideQuadrant(c0, p) then

ar, nr ← sampleQS(c0, p)
else if insideQuadrant(c1, p) then

ar, nr ← sampleQS(c1, p)
else if insideQuadrant(c2, p) then

ar, nr ← sampleQS(c2, p)
else if insideQuadrant(c3, p) then

ar, nr ← sampleQS(c3, p)

return ar, nr

Algorithm 2: Function sampleQS.

The rendering procedure starts by computing the intersection between the ray and the gstack at the root node. This
can be computed efficiently, considering that a gstack defines a cuboid that spans the entire z dimension of the volumetric
space. Then, the first intersection with an interval ik of the gstack is calculated. This involves computing the intersection of
the ray with its four lateral faces and two bounding heightfields: Hk (top) and Hk−1 (bottom). If the interval ik is terminal,
its contribution to the accumulated color and opacity is computed as the integral of the transfer function for the attribute
ak between the entry and exit points of the ray, together with an opacity correction due to adaptive sampling [57]. The
ray processing stops if the opacity of the color is close to one. If ik is an ∗-interval, a recursive call is made to compute
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Fig. 7. QuadStack raycasting is first resolved at the QuadStack level, then at the interval level and finally, at the heightfield level (a). When an
∗-interval is found, a recursive call to traverse the gstacks in children nodes is required (b). After processing a gstack, the traverse continues with
the next one, until the ray exits the volumetric model.
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Fig. 8. a) Rendering procedure overview and GPU memory structure for the direct rendering of a QuadStack represented. b) Its heightfield
arrangement. c) Indices in the heightfield buffer indicate the QuadStack level to which the heightfield belongs.

the contribution by the ray traversal of the gstacks in the four descendant nodes. After ik has been processed, the traversal
continues with a new interval until the ray exits the gstack. If the gstack is at the root node the QuadStack sampling is
completed. In general, it implies the return of a recursive call and further processing of the gstack at the parent node.

The most time-consuming step in the QuadStack raycasting is the ray-heightfield intersection computation. In order to
accelerate this step, each heightfield is mipmapped storing the min-max instead of averaging values [58]. Each mipmap
level defines a bounding geometry for the heightfield with the shape of a set of cuboids with the same dimensions in
the xy plane. The highest mipmap level represents the coarsest approximation (i.e., a bounding box) and the level zero
represents the finest (i.e., the heightfield itself). To test if a ray intersects the heightfield associated with a given interval of
a gstack, first the intersection with the bounding cuboid defined by the highest mipmap level is computed. If the cuboid
is hit, the intersection computation continues with the four contained cuboids in the preceding mipmap level, until the
ray passes by or hits the heightfield at level zero. The extra memory required (66% for each heightfield) can be reduced
by using heightfield compression explained in Sec. 5.4, resulting in a good trade-off between rendering time and memory
footprint.

7 IMPLEMENTATION AND RESULTS

We have implemented our algorithm in C++ with support of OpenGL and GLSL. Results were generated on a desktop
computer with an Intel i7-4790 quad-core processor running at 3.6 GHz, 16 GB of RAM, and a NVIDIA GTX 970 GPU.
Below, we first discuss details of the GPU implementation and then present results and comparisons.

7.1 QuadStack encoding in the GPU memory
The key for an efficient raycasting is a careful encoding of the model representation in the GPU memory. Our memory
layout for QuadStack consists of three buffers: a tree buffer that encodes the QuadStack structure, a lookup table (LUT) for
the set of gstacks, and a heightfield buffer that packs the heightfields associated with each gstack (Fig. 8).
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Terrain 1 Terrain 2 Battery Wing Magnetic
Resolution 1024× 512× 250 512× 512× 400 512× 512× 210 1024× 1024× 163 512× 512× 512

Max Layers 14 12 34 19 32
Construction Time [sec]

Voxel Grid — — — — —
SBR 4.5 2.2 2.7 8.4 2.1

Octree 1.2 0.6 1.3 1.0 2.3
GigaVoxels (Octree) [59] 1080 180 180 1080 180

Guthe & Goesele [27] 3.2 2.5 2.3 5.0 2.8
QuadStack 7.3 3.5 8.6 2.2 4.3

Memory Size [MB / bpv (ratio)]
Voxel Grid 125 / 8 (100%) 100 / 8 (100%) 53 / 8 (100%) 163 / 8 (100%) 128 / 8 (100%)

SBR 15 / 0.96 (12%) 6 / 0.48 (6%) 21 / 3.2 (40%) 11 / 0.54 (6.75%) 8 / 0.5 (6.25%)
Octree 35 / 2.24 (28%) 17 / 1.36 (17%) 46 / 7 (87.62%) 7 / 0.34 (4.29%) 26 / 1.63 (20.31%)

GigaVoxels (Octree) [59] 459 / 29.4 (367%) 459 / 36.7 (459%) 459 / 69.3 (866%) 459 / 22.5 (282%) 459 / 28.7 (359%)
Guthe & Goesele [27] 10 / 0.64 (8%) 6 / 0.48 (6%) 10 / 1.52 (19.05%) 9 / 0.44 (5.52%) 6 / 0.37 (4.69%)

QuadStack 19 / 0.60 (15.2%) 5 / 0.40 (5%) 13 / 1.98 (24.5%) 3 / 0.15 (1.84%) 6 / 0.37 (4.69%)
Rendering Performance [ms / frame (ratio)]

VTK (Voxel Grid) 4.45 (100%) 6.02 (100%) 4.08 (100%) 15.36 (100%) 5.27 (100%)
OSPRay (Voxel Grid) 51.20 (1150%) 40.07 (665%) 51.20 (1255%) 153.60 (998%) 32.91 (624%)

SBR 24.91 (560%) 20.03 (333%) 8.86 (217%) 57.60 (375%) 92.16 (1748%)
GigaVoxels (Octree) [59] 34.48 (775%) 7.74 (192%) 7.46 (183%) 24.63 (160%) 8.50 (161%)

Guthe & Goesele [27] 48.51 (1090%) 92.16 (1530%) 48.50 (1189%) 115.20 (750%) 54.21 (1028%)
QuadStack 12.80 (288%) 17.72 (294%) 38.40 (941%) 51.20 (333%) 11.67 (221%)

TABLE 1
Results measured from five test datasets. The table shows the characteristics of the datasets, construction times, memory requirements, and

rendering performance for QuadStack and several alternative representations. The results for the method with the lowest memory consumption
and best rendering performance are highlighted in bold.

The structure of the tree buffer is inspired by [60], where each tree node keeps either the data itself (leaf), or an index to
its descendants (otherwise). Contrary to the previous work, an inner node in our structure also contains the corresponding
gstack. Therefore, a node in the tree buffer holds indices of its children and an extra pointer to the gstack LUT indicating the
beginning of the sequence of intervals and its size.

The gstack LUT comprises every gstack in a consecutive manner. Each element of this buffer defines a gstack interval
formed by its attribute and a pointer to the beginning of its corresponding heightfield in the heightfield buffer.

Heightfields are compressed by using the approach described in Sec. 5.4. The detailed structure of the heightfield buffer
is shown in Fig. 9. A header contains a field with the number of blocks into which the heightfield is divided, followed
by a sequence of block descriptors that comprises the base value, the number of bits required for encoding the height
differences, and the address of the height data. Next, the encoded height data for each block is stored. Morton encoding
layout both for block metadata and height differences provides the required spatial coherence when accessing data. As
shown in Fig. 8, an index indicating the level of the QuadStack to which the heightfield is associated (base level) has been
added. When a gstack in a descendant node references a specific quadrant of this heightfield, the use of this index avoids
adding extra information at the LUT buffer: the actual quadrant can be quickly determined from the base level of the
heightfield and the level queried.

7.2 Volumetric Data Compression
We evaluated the QuadStack to perform lossless compression of the input volumetric data. We used five datasets for the
tests that exhibit strong to medium layered structure: two terrain models with several layers of different geological content
(Terrain1, Terrain2) from [1], microstructure of a Li-Pol battery (Battery) [3], a part of an industrial model of a wing of a
plane (Wing) [2], and a magnetic reconnection simulation (Magnetic). We wanted to cover a wide spectrum of applications
and a wide variety of layers and structures.

The measured results are shown in Tab. 1. Interestingly, models with comparable maximum number of layers (e.g.,
Terrain1 and Terrain2) lead to different compression ratios, regardless of the method used. This is caused by their structural
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Fig. 9. Heightfield compression scheme.

differences leading to variability of the average number of layers per stack (that can be far from the maximum), and the
sequences of layers of neighboring stacks. We leave the study of these factors and eventually the development of a measure
that could show the compression potential of a layered model for future work (Section 8).

The memory for the input volume data, using 8 bits to encode each voxel, ranges from 53 MB to 163 MB. The voxel
representation uses 8 bits per voxel [bpv]. QuadStack requires from 3 MB to 19 MB of memory for our datasets, demanding
less than 2 bpv for all the scenarios. The achieved compression ratio is between 4× and 54×. It also obtained a more
compact representation of the volumetric data than the SBR, except for the Terrain 1 dataset in which SBR achieved the
highest compression ratio.

Tab. 1 also shows the construction time and memory consumption of a standard octree-based volume representation.
Further, we report results of the publicly available implementation of the GigaVoxels algorithm [59] that uses an octree
enhanced by a brick pool for optimized rendering of very large volumes (we used the default settings with brick size 83).
QuadStack provided more compact storage than both Octree and GigaVoxels. The storage requirements and construction
times for GigaVoxels are higher due to preallocated fixed size buffers for nodes and bricks and the associated brick pool
construction overhead [59]. However, the brick pool used by the GigaVoxels enables efficient filtering and out-of-core
rendering that are currently not supported by our implementation of QuadStack.

This study is completed with the recent volume compression method of Guthe and Goesele (GG) [27], which is inspired
by 2D texture compression techniques. Volume is structured into 4×4×4 blocks that are independently compressed using
the approach that best suits the data in the particular block (constant, difference to the maximum/minimum, gradient or
Haar wavelet). Overall, QuadStack and GG are comparable in terms of compression performance for the dataset in our
experiments. They provided the same compression ratio for Magnetic (5%), GG achieved a better compression for Terrain
1 (8% vs 15%) and Battery (19% vs 25%), and finally, QuadStack outperformed GG with Terrain 2 (5% vs 6%) and the Wing
model (2% vs 6%). Beyond these results, GG compresses data without providing any particular insight into it. In contrast,
our method holds topological information of the existing layers, enabling operations such as analysis of the structure of
the model, fast generation of a triangle mesh from a given layer, direct extraction or modification of the transparency of a
layer during rendering, etc.

A breakdown of the memory budget for QuadStack is shown in Tab. 2. Most of the memory is used by the quadtree and
attribute information. The min-max mipmaps require slightly less memory and the compressed heightfields require the
least amount of memory. In addition, the amount of memory required to encode raw heightfields is included. The memory
required to store the min-max mipmaps is optional; min-max mipmaps act only as rendering acceleration data structure
and they are not required for a compression only application.

7.3 Direct Volume Visualization
The second aspect that we have examined is the performance of the GPU-based direct visualization of QuadStack by using
the five datasets from Sec. 7.2. As reference, we used two visualization backends implemented in the Paraview software: the
GPU accelerated rendering using VTK, and CPU based rendering using OSPRay. For all scenes we used five representative
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Dataset Attributes
[MB (%)]

Heightfields
[MB raw

/compressed (%)]

Mipmaps
[MB (%)]

Total
[MB (%)]

Terrain 1 11.4 (59%) 5.9/3.3 (17%) 4.7 (24%) 19.4 (100%)
Terrain 2 2.9 (62%) 2.3/1.0 (21%) 0.8 (17%) 4.7 (100%)
Battery 6.4 (49%) 8.3/4.6 (36%) 1.9 (15%) 13.1 (100%)
Wing 1.3 (52%) 3.1/0.8 (32%) 0.4 (16%) 2.5 (100%)
Magnetic 3.4 (58%) 4.6/1.5 (25%) 1.0 (17%) 5.9 (100%)

TABLE 2
Breakdown of the QuadStack memory requirements. The columns represent memory needed for representing the quadtree and attributes, raw

and compressed heightfields, and min-max mipmaps.

views for which we measured the rendering times that were converted to performance numbers expressed in milliseconds
required to generate a frame [ms/frame]. To provide a more concise overview, we report average performance for each
scene and method using values averaged over different views.

The lower part of Tab. 1 shows an overview of the rendering performance results. VTK uses a highly optimized
GPU ray caster of uncompressed volume data and we can observe that it achieves the highest rendering performance
for most camera positions, generally followed by the GigaVoxels octree-based representation. The QuadStack rendering
is between 2.21 − 9.42× slower. The OSPRay renderer is CPU-based and it generally achieves the lowest performance
on the tested scenes. It is 1.3 − 4× slower than the direct QuadStack visualization. The direct SBR rendering uses an
equidistant sampling to satisfy the Nyquist-Shannon sampling theorem. The direct SBR rendering is slower than the
QuadStack (between 1.13− 7.9×) for all datasets excluding the Battery scenario where the SBR is 4.33× faster.

QuadStack performs better than the rest of renderers/techniques when a ray has to skip a large empty space that is
encoded in high levels of the tree structure (Terrain 1-2 and the Wing). As we highlighted in the previous subsection, the
lack of structure of the compressed data in [27] also penalizes the efficiency of this empty space step. However, the VTK
renderer provided a better overall performance. This is primarily due to the heightfield decompression overhead implicit
in each sampling step of the QuadStack traversal. Since QuadStack uses just a fraction of memory required by the VTK
renderer, it provides a good tradeoff between memory usage and rendering performance.

Fig. 10 shows the time [ms] required to generate each dataset. Our rendering method performs in realtime or close
to it in every scenario in resolution of 1,280×720. Terrain1 presents an outlier in one camera position. This results from
rendering the dataset from the bottom and consequently no empty space-skipping was required.

Fig. 10. Rendering results [ms] per frame. The whisker plot show the time distribution.
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8 CONCLUSIONS AND FUTURE WORK

We introduced QuadStack, a novel algorithm for layered data compression and direct rendering. The key inspiration for
our work is the common output of many science and engineering applications and measurements that produce data with
strong directional anisotropy in the form of layers. QuadStack compresses the layers into stacks and then compresses the
stacks into a quadtree while considering the representing patterns among neighboring layers. We also introduce a novel
algorithm for direct rendering of the compressed data and we show its GPU implementation that performs comparably to
state-of-the art algorithms for direct volume rendering, but instead of using full data it works directly with the compressed
volumes.

Our method has several specific advantages that are possible for layered models. It allows for the extraction of
an individual layer during rendering and its conversion to a triangle mesh on-the-fly if required. Layers can also be
individually hidden/visible, which is relevant in many practical fields such as geology. We can also render layers that
include water by using transparency or even refraction effects. Finally, it supports lossless and lossy compression (within
the limit of numerical representation).

While the field of data compression and rendering has been active for many years, there are still many open problems
that may have been enabled by our algorithm. Our algorithm could be extended to time-varying datasets that are common
in fluid simulations or simulations of eroded terrains. Also, many datasets are cylindrical and it would be an interesting
extension to apply QuadStack to a non-linear domain. We have not fully explored the internal structure of the layers and its
relation to the compression factor. It would be possible to first sample and rotate the input data to detect a direction that
would provide good compression factor. The construction algorithm uses rather simple matching and a possible extension
would improve its efficiency for scenes with many layers. We would also like to study the possibility of using DAGs [24],
[25], [26] for compressing the layer attributes as well as the layer geometry for high resolution data sets.
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Adam Pospı́šil is a researcher at the Czech Technical University in Prague. He received his B.S. from the same institution.
His main area of research is in spatial data structures, and global illumination.
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