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Abstract

Laparoscopic surgery is a complex minimum invasive operation which requires

long learning curve for the new trainees to get adequate experience to become a qual-

ified surgeon. With the development of virtual reality technology, VR based surgery

simulation is playing increasingly important role in the surgery training. The simu-

lation of laparoscopic surgery is challenging because it involves large nonlinear soft
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tissue deformation, frequent surgical tool interaction and complex anatomical environ-

ment. Current researches mostly focus on very specific topics (such as deformation,

collision detection etc.) rather than a consistent and efficient framework. The direct

use of the existing methods cannot achieve high visual/haptic quality and a satisfactory

refreshing rate at the same time, especially for complex surgery simulation. In this pa-

per, we proposed a set of tailored key technologies for laparoscopic surgery simulation,

ranging from the simulation of soft tissues with different properties, the interactions

between surgical tools and soft tissues and the rendering of complex anatomical envi-

ronment. Compared to the current methods, our tailored algorithms aimed at improving

the performance from accuracy, stability and efficiency perspectives. We also abstract

and design a set of intuitive parameters which can provide developers with high flexi-

bility to develop their own simulators.

Keywords: Laparoscopic surgery simulation, deformation, collision detection, dissection,

rendering
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1 Introduction

Laparoscopy surgery is a popular minimally invasive operation. It allows the surgeon to

access the inside of the human body without having to make large incisions on the skin.

However, due to the limitation of manipulation space and viewing angle, there is a higher

risk of damaging the internal organs, nerves and major arteries. For new surgeons, perform-

ing operations under the supervision of experienced surgeons becomes a practical solution

in many scenarios. However, it will inevitably involve a long learning curve for the trainee

to gain adequate skills to become a qualified surgeon. With the development of virtual real-

ity technology, training surgeons with a VR based simulator has proven to be effective and

can greatly reduce both the risk to patients and the training costs.

Most of the current research on surgical simulation focuses on very specific topics (de-

formation [1], haptic rendering [2], dissection [3] etc.) rather than the practical framework,

especially for larparoscopic surgical simulation. The widely used laparocopic surgery sim-

ulators and frameworks in the market such as LapSim and SOFA [4] aim only for training

basic skills following strict and relatively simplistic routines. They are not capable of simu-

lating the whole surgery procedure because of the unsolved technique bottlenecks. Getting

familiar with the whole surgery procedure is essential not only for developing the surgeons

perception in understanding the overall surgical procedure, but also allows them to plan and

master the operation tasks in complex operations. There is a high demand from the surgery

training market to develop a practical and efficient framework for education oriented surgery
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simulation.

In this paper, we are aiming to tackle some of the main challenging issues of laparoscopic

surgery simulation, including large deformation of soft tissues, surgical tool interactions,

and the rendering of complex materials. We propose an efficient and stable framework inte-

grating a set of specially tailored and designed techniques, ranging from rendering, deforma-

tion simulation, collision detection and soft tissue dissection. From a scientific perspective,

the main contribution of this paper is the proposal of efficient, stable and fast converging de-

formation and interaction techniques. They are versatile in simulating complex anatomical

soft tissues with different properties. In particular, we are:

• Proposing a set of efficient, fast converging nonlinear large deformation techniques

for soft tissue simulation. The biomechanical behaviours can be controlled by the

designated parameters.

• Proposing an adaptive spherical collision detection and resolution method, which can

improve the convergence rate and alleviate the collision tunnelling artefacts.

• Proposing an interactive haptic dissection approach using implicit shapes.

• Proposing a physically based rendering pipeline to visualize different materials, rang-

ing from soft tissues with muscous layer to metal surgical tools.
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2 Related Works

2.1 Deformation Simulation

The simulation of deformable objects has been an active research topic in computer graphics

area for decades. A few good surveys [5][6] give a comprehensive overview of this area.

For the deformable object simulation, force based dynamics and position based dynamics

[7] are two widely used models. Mass spring and finite element are typical force based

methods which will suffer from instability especially under explicit integration. Finite ele-

ment is based on the continuum mechanics which provides an accurate computation model

for elastic objects of different material property, but the main disadvantages of finite element

method is its high computation cost. Position based dynamics gradually gain its popular-

ity and has been integrated into many commercialized softwares (such as Houdini, Blender

etc.) due to its robustness and efficiency. The main feature of PBD is its direct control over

vertex positions which eliminates the instability problem in force based method and simpli-

fies the implementation process. Projective dynamics [8] as a more general form of PBD

is dependent on the solution of a pre-factorized linear system, which is not efficient when

mesh topology changed.

From stability perspective, position based dynamics is the most stable method. Due to

the fact that mass spring method and finite element method are force based methods, they

suffer from overshoot problem under large time steps or high material stiffness [9]. To solve

the stability problem of the force based method, implicit integration method is used which is
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computationally expensive because of the computation of the derivate of force with respect

to position and velocity. Position based dynamics computes the position changes in each

simulation step directly, based on the solution of a quasi-static problem. It provide a stable

high level of control even under large time step.

From the efficiency perspective, finite element method is the most inefficient method

because it involves expensive global and local matrix operations, such as stiffness assem-

bling, SVD etc. The same problem also exists in mass spring method when assembling the

large stiffness matrix and solving large sparse linear system. Position based dynamics is

the most efficient method due to the use of the Gauss-Seidel or Jacobian style solver which

solve constraint one by one. However, PBD constraint solving style suffers from low con-

vergence rate compared to the global constraint solving method but it can generate visual

plausible results under low iteration and deal with topology change more efficiently than

global constraint solving method.

From accuracy perspective, finite element method is the most accurate method which

can accurately simulate deformable object with different material properties. Mass spring

method is based on the hook’s law, which can be viewed as a simplified version of finite

element method but it cannot capture the volume effect of the solid object. Position based

dynamics is comparatively accurate because it is geometrical motivated. However, by inte-

grating continuous material constraint [10], it can also become more physically accurate.

Thus, we choose PBD as the dynamic model for the laparoscopic surgery simulator by

balancing the above factors.
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2.2 Collision Detection

Collision detection is essential for an interactive real-time application but it could easily

become the bottleneck for complex simulation. At coarse level, high efficient spatial data

structure, such as bounding volume hierarchies (BVH), spatial hash, distance fields and

image based method are proposed to accelerate the broad phase and narrow phase collision

detection process. A comprehensive survey has been made in [11][12]. Our method only

focuses on the finest level collision detection and resolution so it is compatible with all the

above hierarchical spatial data structures and their optimization strategies.

Although many fast polygon intersection test algorithms [13][14] have been proposed,

polygon intersection test is still the bottleneck of collision detection especially for com-

plex collision scenarios between deformable objects. To solve this problem, the idea of

using computationally efficient and simplified representation for collision primitives be-

comes popular. Sphere is the most used simplified representation due to its efficiency in

overlapping test. For rigid body, generating sphere packing structure based on medial axis

[15][16] and inners sphere tree [17] are very popular. However, as the computation of these

methods are expensive and mostly occurs in the initial configuration, they are not suitable

for dynamic updating of deformable objects. Mendoza [18] proposed a time-critical col-

lision detection algorithm for deformable objects based on a sphere tree constructed using

an adaptive medial-axis. Mendoza used detailed mesh for deformation and coarse mesh

for sphere tree which is not good for handling detailed collision. Also, this sphere repre-
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sentation and similar works [17] does not approximate the original surface well. BD-tree

(Bounded Deformation Tree) [19] proposed an output sensitive collision detection for re-

duced deformable models, but it will suffer from over conservative bound, computational

and memory overhead when use high resolution models. Pan [20] proposed a metaball based

collision detection method, but it can not provide adaptive approximation when mesh de-

formed. Algorithms focus on solving sliding collision between tissues in quasi-permanent

state have been proposed in [21] [22]. The spherical colliding contact model proposed in

[22] is based on the spherical sampling table (SST), which can provide efficient localiza-

tion of the potentially collided surrounding areas. However, it requires the relative motion

between colliding objects is small. In this paper, we proposed a dynamically generated cir-

cumsphere structure which is not only computationally efficient for overlapping test but also

can approximate the original mesh surface better than existing methods.

2.3 Soft Tissue Dissection

There are two types of dissection procedures for laparoscopic surgery training. One is called

electrosurgical dissection. This procedure usually involves a membranous fat tissue which

can be simplified as a 2D mesh. The other type is cutting a substantial soft tissue like

a polyp, this type is called scalpel dissection. For electrosurgical dissection, tearing and

cutting are commonly employed. Müller [7] first introduced tearing of cloth in PBD and

Maciel [23] had used this method in the laparoscopic surgery simulation. Pan [24] used
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triangle subdivision to simulate surface cutting procedure, but it is only suitable for coarse

mesh. In this paper, we propose a surface cutting method suitable for mesh at any resolution

using a unified implicit shape.

Volumetric mesh is commonly used in scalpel dissection. To obtain a smooth incision

surface, element subdivision is a conventional way. Mor [3] subdivided the colliding tetra-

hedron into sub-elements at minimal quantity, and it has been employed by recent work [25]

[26] for its practicability. Other dissection methods for volumetric mesh can be found in sur-

vey [27]. In this paper, both electrosurgical dissection and scalpel dissection are provided.

2.4 Realistic Rendering

The scene inside the patient’s abdomen is complex because of the presence of various types

of soft tissues, blood vessels and the dynamic glistening of the membrane under the illumi-

nation of the head light. Most previous works on the rendering of surgical simulation use

the traditional shading models [28] or video image based method [29]. The traditional shad-

ing model needs physically plausible albedo, normal, specular and shininess (gloss) maps.

The video image based method combined the image mosaicing and view-dependent texture-

mapping techniques used the images obtained from video. However, the flexibility of those

techniques are limited by the quality of the image. Due to the development of game indus-

try, physically based rendering gradually replaced the traditional shading model and widely

used in photo-realistic rendering [30][31]. Physically based rendering (PBR) refers to the
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concept of using realistic shading models along with measured surface values to accurately

represent real-world materials. Yet, little literature focuses on PBR in surgical simulation.

In this paper, we will introduce a PBR based rendering pipeline for surgical simulation.

3 Deformation Simulation for Laparoscopic Surgery

The direct use of PBD and existing types of constraints is not efficient, flexible enough

to simulate laparoscopic surgery because it involves many types of tissue with different

properties. The soft tissues involved in a laparoscopic surgery can be categorized into three

types: volumetric tissue (such as the human organs), tubiform and glandular soft tissue

(blood vessels, nerves and glands), fascia soft tissue (such as mesentery). In the following

sections, we will introduce how each type of soft tissues is simulated.

3.1 Volumetric Soft Tissue Simulation

Most of the organs inside the abdomen will keep the shape during the surgery procedure.

When a surgical tool contacts them, the deformation will only happen in the local con-

tact area. The deformation algorithm needs to keep the global shape as well as the local

deformation. If using volumetric mesh filled with tetrahedral elements, it will cost more

computation and memory resources. If using a surface mesh, shape matching can preserve

the shape but it cannot handle local deformation well because it provides a global transfor-

mation approximation. The core idea of shape matching is to find the optimal least square
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best-fit transformation from the rest state (x0
i ) to the current configuration (xi) which equals

to minimize
∑n

i=1 wi(A(x0
i − x0

cm)− (xi − xcm))2, where n is the number of vertices of the

mesh, x0
cm and xcm are the centre of mass of rest state and deformed state respectively, wi

are weights of individual vertices. The global transformation matrix A can be calculated as:

A =
n∑
i

mi(xi − xcm)(x0
i − x0

cm)T (1)

The rotation matrix R can be extracted from A using polar decomposition A = RS [32].

The goal position gi can be calculated using R for each vertex i.

gi = R(x0
i − x0

cm) + xcm (2)

Then each vertex is dragged towards its goal position to recover to the original shape. To

achieve the local and non-linear deformation, cluster could be used to discretize the shape

matching area. However, too many clusters will greatly influence the overall performance.

On the other hand, less clusters cannot handle detailed local deformation well (such as

collision with small object) because the optimal transformation matrix A is a global rigid

transformation matrix. When collision happened, obvious oscillation or collision tunneling

will happen. The oscillation is caused by the repetitive violation of the collision constraint

(unilateral constraint, which is solved only when it is violated) by shape matching. The col-

lision tunneling is caused by the tendency of recovering to goal position. The goal position

may be far from current position so that the recovery step may make the vertex run through

thin object, resulting in collision tunneling.
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In this paper, we solve this problem by dynamically limiting the tendency of going back

to the goal position. For a vertex xi and its predicted position pi , we interpolate its goal

position gi and pi by a dynamic recovering factor ηi ∈ [0, 1], gi = gi + ηi(pi − gi). When

ηi = 0, xi will directly move to the goal position. When collision happened we set ηi = 1,

then gi = pi which means pi will not move immediately. After that it will be dragged to

original shape gradually by recovering ηi at the user defined rate Rr, ηi = ηi − Rr (See

Figure 1). During the process, both ηi and (pi − gi) will decrease with the evolving of

time which means the speed of recovering to original shape is decreasing with time (see

Algorithm 1). This can well reflect the property of highly damped soft tissue and its shape

recovery procedure. The value of ηi can be determined by the further evaluation process

performed by surgeons.

3.2 Fascia Simulation

The property of most fascia is not totally inextensible. The extensibility of fascia varied

according to the way it connected to surrounding tissues. Low convergence rate of PBD

will result in the stretchy looking of the fascia, making it like a piece of cloth. Long range

attachment (LRA) [33] constraint is used to deal with the inextensibility of cloth in a fast

converged manner. The core idea of LRA constraint is confining each unconstrained vertex

within the initial distance of the attached vertices. The LRA method can be divided into

two steps: Firstly, calculate an initial distance dLRA′
i between unconstrained vertex (xi)
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and attached vertex (xai ). Secondly. if the unconstrained vertex is out of range of the initial

distance, project it back to the range of the sphere centered at the attached vertex with radius

of dLRA′
i .

For each unconstrained vertex, it may be constrained by different attached vertices. The

influence of each attached vertex to the unconstrained vertex can be averaged using Jacobian

style. However, the fascia does not like inextensible cloth. If directly using LRA in fascia

simulation, obvious artefact and oscillation will appear when surgical tool drag the fascia.

This is because the LRA constraint is too hard which conflicts with the drag constraint. In

fact, the portion of fascia which is far from attached vertex is more stretching than the part

near attached vertex, see Figure 3. In order to take the advantage of the fast convergence

rate of LRA, we make relaxation to the LRA constraint, making each vertex’s tendency of

stretching evolves with the distance to attach point (xai ) (See Figure 2):

dLRAi = dLRA
′

i + βmax((‖xai − xi‖ − dLRA
′

i ), 0) (3)

where β is a user-defined parameter controlling the level of relaxation, which influences the

stiffness of the fascia. dLRAi is the new LRA constraint distance between xi and xai . Such

relaxation turns the hard LRA constraint into a soft constraint which can benefit the stability

and convergence rate.
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3.3 Tubiform and Glandular Soft Tissue Simulation

Compared to the organs and fascia, the nonlinearity property of tubiform and glandular soft

tissue are more obvious because the internal of these tissue are not completely solid, which

is usually composed of loose packed fat, protein and fibres. Thus, tetrahedral discretization

is not suitable for such structure although it is widely used for the simulation of contin-

uum object. Also, frequent expensive inversion handling and memory inefficiency makes

tetrahedral discretization not suitable for such tissue simulation. Simply use or combine

existing constraint, such as bending, stretching, pressure, volume preservation etc., is hard

to effciently achieve such complex nonlinear effect (see Figure 4). In this paper, due to the

tubiform and thin shape of this kind of tissue, we inspired by the truss structure[34] from

structural engineering (see Figure 4), which is a triangle based support structure. We fill the

tubiform and glandular soft tissue with elastic truss with different stiffness as a simplified

approximation to the internal of these non-solid soft tissues, achieving high efficiency and

high flexibility.

Such designing cannot only preserve the shape of the soft tissue to certain extent but also

provide high movement flexibility by strut with different stiffness. In the pre-processing

stage, we generate the truss structure as described in Algorithm 2: Firstly, localize potential

strut pair. For vertex xi with normal ni, we find the nearest face intersected by −ni. Using

the vector determined by the face center and xi to generate a cone with the user-define angle

θ. Marking the vertices inside the cone as the potential strut pair (Line 2-9 in algorithm 2,
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also see Figure 5). Secondly, from the strut candidates, if cosine of the angle between the

potential strut vertex’s normal and ni satisfies the user-defined bending threshold (θthreshold),

then connect them as a strut. The value of θthreshold determines the bending feature of the

object. During this process, the maximum and minimum strut length was used for stiffness

coefficient calculation (Line 11-18 in algorithm 2). Thirdly, define the shortest strut as

the most stiff one. Based on a user-defined minimum stiffness factor kmin, we make an

interpolation between the shortest and longest struts to determine the stiffness factor for each

strut (Line 19-22 in algorithm 2). For the detail of the algorithm, please refer to Algorithm

2.

4 Collision Detection and Resolution

In this part, we present an adaptive implicit circumsphere collision detection and resolution

method based on the local geometry features and material properties, which is a much faster

alternative for polygon collision tests. Under the PBD framework, we demonstrate that our

method can effectively accelerate the convergence rate without causing noticeable visual

artefacts. What’s more, although our method cannot eliminate collision tunnelling com-

pletely, our method can actually provide better prevention to collision tunnelling without

applying any continuous collision detection because the structure of circumsphere actually

provide a well approximated safety thickness for the thin surface, which is different from

the bad approximated safety thickness provided by traditional methods (such as collision
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margin, sweep volume etc.).

4.1 Overview

In the broad phase, we use the spatial hash structure to localize the potentially colliding

pairs due to its convenience to handle self-collision. Our method concentrates on the sub-

sequent narrow phase where we separate it into two sub-phases, bounding sphere phase and

circumsphere phase. For the bounding sphere phase, potentially colliding pairs are checked

by a simple bounding sphere test of the triangle primitives. When the likelihood of collision

is established, it moves on to the circumsphere phase, in which we test the overlap of the

dynamically generated circumsphere for the underlying primitives and use the circumsphere

for the succeeding collision resolution.

4.2 Adaptive Circumsphere Generation

The circumsphere is generated based on a shift of the circumcenter center of the triangle

along the negative direction of the surface normal. How far to shift the circumscenter will

determine how well the circumsphere approximates the surface. If we use uniform scale to

shift the circumpshere, it will generate bad initial approximation because the size of each

triangle primitive may be different, as can be seen in Figure 6. To create a better initial

approximation, we generate the initial circumsphere according to the primitive size:

x = xc − NcϕRbcotθ (4)
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where xc is the circumcenter of the corresponding triangle primitive, Nc is the normal-

ized surface normal at xc and ϕ is a global scale factor for translating x along−Nc, Rb is the

bounding sphere’s radius, θ is a fixed angle called safe angle.

4.3 Local Feature Based Circumsphere

However, such circumsphere approximation will become more and more inaccurate when

the mesh is deformed. To improve the approximation accuracy, we take the surface cur-

vature as a factor to influence the position of the circumsphere. To cater for the need of

real-time response, we adopt a computationally efficient dual mesh [35] based structure to

approximate the curvature of the original triangle mesh surface. We connect the geomet-

ric centre of the neighbour faces to construct a dual mesh structure and use the curvature

of the dual mesh’s vertices to approximate the curvature of its corresponding original sur-

face. However, the dual mesh structure is composed of polygons rather than triangles. It

is difficult to approximate the curvature at dual mesh’s vertex because the curvature cal-

culation method such as Gauss-Bonnet requires the computation of surrounding polygon

area. To make the area calculation easier, we make the following modification to the dual

mesh structure. Inside each polygon of dual mesh, there must be one vertex of the original

mesh. We connect this original mesh’s vertex with its surrounding dual mesh’s vertices,

decomposing the polygon dual mesh into triangles, as can be seen in Figure 7.

Then we can use the Gauss-Bonnet scheme to approximate the local curvature of the
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dual mesh vertex xduali [36]. To integrate the influence of curvature into the position of

circumsphere, we need to apply a factor (we use H3(K) ) associating with curvature to in-

fluence the shifting distance (−NcϕRbcotθ) in Equation 4. The range of curvature can be

(−∞,+∞). When the mesh surface is a plane (zero curvature), we want curvature factor

has no influence on the circumsphere adjustment (circumsphere shift), which can also inter-

preted as we use the initial circumsphere for plane area. For the very large curvature area,

we want the circumsphere to shrink to bounding spheres which means the curvature factor

should cancel the influence of circumsphere shift. Although the bounding sphere provides

bad approximation to the surface, it actually provides a safety range and better tolerance to

collision tunneling for the large curvature area. Also, it can reduce the unnecessary collision

detection using this shrinked circumsphere.

To achieve this, we use cubic Hermite interpolation H3(K) as the curvature factor to

interpolate the curvature into the range of [0,1] (see Equation 5 and Figure 8). WhenK = 0,

we use the initial circumsphere to approximate the mesh surface (H3(K)=1). When K →

∞, we let the circumsphere shrink to the bounding sphere of the primitive (H3(K) = 0).

The cubic Hermite can be written as:

H3(x) = y0h0(x) + y1h1(x) + y′0H0(x) + y′1H1(x) (5)

, where the constraint point of the interpolation curve are (x0, y0) = (0, 1), (x1, y1) = (∞, 0)

and the corresponding tangent are y′0(x0) = 0, y′1(x1) = 0. h0(x), h1(x), H0(x), H1(x) are

the Hermite basis functions. This interpolation mapping function can be calculated at the
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initial configuration and used directly afterwards. After applying the curvature factor, the

equation for circumsphere’s center becomes:

Ccir = xc − NcϕRbcotθH3(K) (6)

4.4 Material Property Based Circumsphere

For a deformable object, the surface geometry feature changes all the time especially when

collision occurs. When the collided area is subject to large deformation, the circumsphere’s

size should be larger for the collided area to approximate the deformed surface better and

provide more accurate collision response. Thus a physical quantity which used to describe

the material property is needed. The deformation can be measured by the amount of energy

stored inside the deformed area. The energy accumulated in the deformed object is deter-

mined by the deformation gradient which provides a good reflection of how much the object

deformed. The deformation gradient can be defined as

F =
∂x
∂X

(7)

where x and X are the coordinate of vertex in deformed state and rest state respectively.

How to calculate the deformation gradient for triangle primitive can be found in [37]. How

to define the form of energy is dependent on the constitutive model used, such as St.Venant-

Kirchoff model, Neohooken model, corotated model etc. Due to the corotated model and

Neohookean model both need the expensive computation of SVD. Here we used the St.
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Venant-Kirchoff model to define the energy:

E = µ‖ε‖2 +
λ

2
tr2(ε) (8)

Where ε is the strain ε =
1

2
(FTF− I), λ and µ are láme cofficient. The energy reflects

the tendency of recovering to initial state so that we used a scalar energy factor ε = E to dy-

namically adjust the size of circumsphere according to the material property. Theoretically,

the energy can be infinite large or small. We add is a scalar which can reflect the change of

energy rather than the accurate energy. So we applied a user defined scalar factor ς to scale

the influence of the energy factor on the position of circumsphere (see Figure 9).

Ccir = xc − Nc(ϕRbcotθH3(K) + ςε) (9)

4.5 Updating of Circumsphere

Instead of updating each frame, we update the circumsphere structure only when the shape

change of its underlying primitive exceeds a threshold δ compared to the last frame. The

determinant of deformation gradient reveals the shape change. We donate hshape = |F|

where F is the deformation gradient. However, for a triangle mesh, F ∈ R3×2 is not a square

matrix. Due to the use of St. Venant Kirchhoff model, we reflect the shape change using

hshape = |FTF|. If ‖hshape − 1‖ < δ where δ is a user defined threshold, it means the shape

change ratio is less than a certain threshold then we just update the centre of corresponding

circumsphere using the same curvature factor and material factor in last frame. Otherwise,

when ‖hshape − 1‖ ≥ δ, we update both the curvature factor and energy factor. There is no
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denying that such updating method will affect accuracy but it does not have obvious influ-

ence on the visual plausibility. The tradeoff is the improvement of real-time performance.

The analysis of the choosing of δ is made in section 4.7.

4.6 Collision Resolution

When collision happened, we bounced the collided circumsphere pair and its underlying

triangle primitive away. Firstly, we find the state which collision just happened. Secondly,

update the velocity for each sphere using the principle of linear impulse and momentum.

Finally, along the direction of new velocity, move each sphere to final position. Then update

the position of sphere’s underlying triangle primitive using the translation of sphere.

4.7 Method Analysis

We compare our method with polygon based method [13] and bounding sphere based method

[18] from accuracy, stability and efficiency perspectives. In order to compare with ground

truth, we devised a special experiment of collision detection between a rigid cylinder and a

deformable soft tissue as can be seen in Figure 10. Thus the exact distance for collided part

and the main axis of rigid cylinder should be the cylinder’s radius. This exact distance dexa

will be compared in the following experiments.

For accuracy comparison, we use the average distance dave from collided vertices to the

main axis of the cylinder to measure accuracy. In Figure 11, we show the record of dave
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for each method during the simulation and compare them with dexa. When the iteration is

low, although the polygon based method is the most accurate, such accuracy is achieved at

the cost of introducing artefact because some part of the curve fall below the exact result.

This means the collided primitive has run into collision object. Although such artefacts

can be avoided by using collision margin, safety bound or sweep volume, they provide bad

approximation compared to our method, as can be seen in Figure 12. Bounding sphere

method is the most inaccurate method because its poor approximation of the mesh surface.

The fluctuation of the vertex position reflects stability. We therefore measure the average

position change for all the collided vertices in each frame to evaluate the stability. From Fig-

ure 13, the polygon and bounding sphere based methods are subject to dramatic fluctuation

when the number of iteration is small. For the polygon based method, the high variability

of polygon shape is the main cause of the instability. The high variability of polygon shape

could easily increase the chance to break the already solved constraint. For the bounding

sphere based method, the instability is caused by its poor approximation of mesh surface.

Our circumphere structure, on the contrary, can not only provides good approximation of

the mesh surface, but also adds fewer unstable factors to the constraint solving process due

to its uniform shape, making our method the best performer especially when the number of

iteration is low.

Time consumed by collision detection and resolution in each frame is a good measure-

ment of algorithm efficiency. As can be seen in Figure 14, the bounding sphere method is the

most efficient method because it only needs to update the centre, radius and perform overlap
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test when collision happens. Our method needs re-calculation of circumsphere when the

shape change of underlying primitive exceeds a given threshold. The polygon intersection

based method is the most time consuming one because polygon intersection test should be

performed for each potentially collided pair in each frame.

As to the update threshold δ proposed in Section 4.5, we test accuracy, stability and

efficiency for different δ. As can be seen in Figure 15, the accuracy measured by the relative

error of dave, stability measured by the variance of dave. When δ = 0, circumsphere will be

updated in each frame which results in instability and inefficiency. The cause of instability is

that the ever changing size of circumsphere constantly add unstable factor to the constraint

solving process. And the cause of inefficiency is the re-calculation of circumsphere in each

frame. Relative error of accuracy evolves with the increasing of δ because the approximation

becomes inaccurate. The larger δ is, the less time is needed for circumsphere updating. The

extreme situation is no update for circumsphere. Then the circumsphere’s approximation of

deformed mesh is the worst which can result in instability. As shown in Figure 15, when

δ is less than around 70%, stability improves with the increase of δ. For different types of

simulation purposes, different updating rate should be utilized.

5 Soft Tissue Dissection with Implicit Shape

There are two types of dissection procedures in laparoscopic surgery: electrosurgical dis-

section and scalpel dissection. Electrosurgical dissection mainly used to split thin soft tissue
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like membrane (surface mesh). Scalpel dissection is used to cut solid soft tissue (volumetric

mesh). In the field of computer graphics, tearing and cutting are two major methods for dis-

section simulation. Tearing splits the originally connected vertices apart. Cutting changes

the topology of the original mesh by a cutting geometry. In this section, we proposed a

generalized dissection method based on implicit shape.

5.1 Implicit Shape for Surgical Instrument

Rather than a simple cutting plane, the real surgical instruments used for dissection have

various shapes, such as column, sphere, polyhedron etc. Considering the applicability of

implicit shape, we employ a combination of implicit shapes to represent the dissection part

of the surgical instrument. Then dissection simulation with different surgical instruments

can be unified into a general framework. During dissection, we move the surgical instrument

and generate a sweep volume by connecting the implicit shapes at different times. The

surface mesh or the volumetric mesh is dissected by the sweep volume. The details of the

dissection method will be introduced in the following sections.

5.2 Surface Mesh Dissection

For the surface mesh dissection, we integrate both cutting and tearing. We employ implicit

shape to generalize the cutting procedure. The surface mesh is composed of triangle faces.

The algorithm is summarized in Algorithm 3. First, we generate the sweep volume Vsweep.
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Then we compute intersections and remove all the faces inside Vsweep (line 3-5). For each

intersected face fj , we compute the area Aj and subdivide it into a set of small triangles

{fjk}. From line 10 -15, we remove fjk if it is inside Vsweep or it does not satisfy a user

defined threshold υthreshold (see Algorithm 3). Figure 16 illustrates the process of surface

cutting. In Figure 16, the purple triangles are the primitives intersected with sweep volume.

After cutting, the green triangles which are contained in the sweep volume are deleted, also

the yellow primitives which are too small are deleted.

In real surgery environment, the most commonly used shape for surgical instruments

in surface dissection is column. A sweep surface is generated by connecting the shapes at

different times. The intersections on the sweep surface are intuitive. There may be more than

one intersections on the shape’s boundary. If there are more than one boundary intersections

and no sweep surface intersection, we combine these intersections into a median point to

represent the intersection on the boundary as Figure 17 shows. Then we subdivide the

intersected triangle. Compared with previous works, our method is suitable for mesh at any

resolution. For the tearing of the surface, we utilize the method proposed by Müller [7].

5.3 Volumetric Mesh Dissection

We use volumetric mesh dissection to exsect a polyp on the tissue surface. The volumetric

mesh is composed of tetrahedral elements. When dissecting the volumetric mesh, line is

selected as the implicit shape for surgical instrument, and the sweep volume turns into a
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sweep surface. The dissection algorithm for volumetric mesh is similar to surface cutting:

finding the intersections and subdividing the original primitives. There are two types of

intersections between the tetrahedral mesh and sweep surface: edge intersections and face

intersection. We encode the edges and faces of tetrahedron in binary, and the intersecting

state can be represented by a tuple of edge code and face code when there is an intersection.

Then the intersected tetrahedra are split into small elements according to the intersecting

state. We employed the method in [3] to subdivide the tetrahedron. Figure 18 shows the

dissection of fascia and volumetric mesh in the simulator.

6 Realistic Rendering

There are several models of surface BRDFs. The empirical model (Blinn, Phong etc.) and

microfacet model are the most widely used. The empirical model is a fast computational

model adjustable by parameters, but without considering the physics behind it. The micro-

facet model is inspired by real physical process. Due to the complex anatomical structures

and their glistening effect under light, our material rendering is based on the microfacet

model.

6.1 Material Model

The microfacet model can be decomposed into the diffuse part (fd) and specular part (fr).

This model can be described in the general Equation 10, each component and parameter can
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be modified according to practical needs:

fd/r =

∫
Ω
fm(v, l,h,S)G(v, l,S)D(S, α)(v · S)(l · S)dS

(n · v)(n · l)
(10)

n is the surface normal , l is the lighting direction, v is the viewing direction, h is the

half vector, the integration
∫

Ω
dS indicates an integral over a hemisphere of all directions,

D(S, α) is the normal distribution (NDF) function, G(v, l,S) is the geometry attenuation

term and fm(v, l,h,S) is the Fresnel term. The difference between fd and fr is dependent

on the Fresnel term fm. For the specular term fr, it can be written as the general Cook-

Torrance form:

fr(v, l,h, α) =
F (v,h)G(v, l,h, α)D(h, α)

4(n · v)(n · l)
(11)

where F (v,h) is the Fresnel term for specular light. The term D determines the appear-

ance of surfaces. To capture the real world better, we use the GGX distribution [38] which

can produce realistic ”long tailed” effect.

D(h, α) =
α2

π((n · h)2(α2 − 1) + 1)2
(12)

Where α = roughness2. The term G is used for describing how much the microfacet is

occluded by others. Heitz et al.[39] point out that approximating Smith visibility function

using Schlick model [40] and Disney’s modification [38] are not accurate enough. The

heigh-correlated Smith function which can model the correlation between the masking and

shadowing according to the height of the microfacet is a good choice.

G(v, l,h, α) =
χ+(v · h)χ+(l · h)

Λ(v) + Λ(l)
(13)
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Where Λ(x) =
−1+
√

1+α2 tan2(θx)

2
, θx is the angle between normal and x, χ+(a) is the Heav-

iside function: return 1 if a > 0, return 0 if a ≤ 0.

The typical choice for the Fresnel term F is Schlick’s approximation [40]. We utilize a

spherical Gaussian approximation method proposed in [41] which is more computationally

efficient for hardware. We adjust the term F as:

F (v,h) = F0 + (1− F0)× 2−6.745372(v·h)2+35.324156(v·h) (14)

For the diffuse term fd, we take the form of Disney’s empirical method which takes the

roughness of material into account and generates retro-reflection at grazing angles. This

model can approximate the main features of the MERL database’s material.

fd(v, l,h, α) =

(1 + (FD90 − 1)(1− (n · v))5)(1 + (FD90 − 1)(1− (n · l))5)

π/ρ

(15)

Where FD90 = 0.5 + cos(l · h)2α. In real world, the energy received by material is no

less than the reflected energy. The energy conservation can cope with the effect at grazing

angle where the light is tend to be scattered more. To keep the computation efficiency, we

adopt the Disney method which multiply the Fresnel reflectance (1− F (n, l))(1− F (l, v))

to Equation 15.

6.2 Lighting Model

Under the effect of light, some soft tissues will reflect the surrounding environment. Image

based lighting (IBL) allows us to represent the incident light surrounding a point by an

28



environment map, making the object fit into the environment without expensive lighting

computation. To achieve this, incident light should be in consistent with BRDF equation

especially for layered material. However, the computation of the interaction between IBL

(L) and BRDF material (f ) is a costly operation which needs to integrate all the direction of

the light:

L(v) =

∫
Ω

f(l, v)L(l)dl (16)

To improve efficiency, pre-integration can be used for IBL computation. For the specular

lighting computation, the Equation 16 can be approximated using the method proposed in

[42]:

Lr(v) ≈
N∑
i

(F (v,h)G(l, v,h, α)(v · h))
N∑
i

(L(l)(n · l)) (17)

Where N is the number of light probes. We can see that Lr(v) is approximated by two

summation term, called DFG term and LD term respectively,both can be precomputed sep-

arately. Similarly, for diffuse material, it can be calculated as:

Ld(v) ≈
N∑
i

fd(v,h, l, α)

π

N∑
i

(L(l)(n · l)) (18)

∑N
i (L(l)(n · l)) can be efficiently calculated using spherical harmonic method [43]. Spheri-

cal harmonics uses a frequency space to represent an image over a sphere, which is continu-

ous and rotationally invariant. The usage of this representation can produce accurate diffuse
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reflection from a surface using nine spherical harmonic basis functions:

c1L22(x2 − y2) + c3L20z
2 + c4L20 − c5L20+

2c1(L2−2xy + L21xz + L2−1yz) + 2c2(L11x+ L1−1y + L10z)

where Li are the nine lighting coefficients and coefficient ci are constant value which can

be found in [43]. Figure 19 is the demonstration of objects using different material with

different roughness.

6.3 Rendering Pipeline

For the rendering component of a game engine, the most time consuming part is the post-

processing stage, such as SSAO, depth of field, HDR, soft shadow and motion blur etc.

Those post-processing techniques have one thing in common: expensive pixel operation.

Excessive pixel sampling operation may cause the sampler stall phenomenon which means

that GPU is too busy to handle all the sampling instruction. Considering the practical scene

and lighting complexity of laparoscopic surgery, our reduced deferred shading based render-

ing pipeline focuses on the lighting and material rendering. Our pipeline will not consume

much computational resource but provide high quality rendering effect for laparoscopic

surgery. Figure 20 shows an example of the rendering procedure and the structure of the

whole rendering pipeline.
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7 Implementation and Results

Implementing the above discussed techniques, we have built a rectum cancer surgery sim-

ulator using C++, OpenGL and OpenHaptics which runs on a desktop with a Xeon 5 CPU

and Quadro K2000 GPU. We use two Omni Phantoms haptic devices running at the rate

of 1KHz, as can be seen in Figure 21. To determine the optimal values of the control pa-

rameters of the physical simulation, we have tested our system with the help of experienced

practitioners. Our aim was to achieve the same or very similar effect in the simulation of the

operations. In table 1, parameters used for the simulator are listed.

To evaluate the computational cost, we have designed an experiment to include all the

key operations for the rectum surgery. We recorded the time cost while performing the

surgical operation (see Figure 21). We analyzed the cost distribution of each component

such as graphical rendering, collision detection, deformation and haptic rendering. In detail,

we also measured the cost of major deformation algorithms such as relaxed LRA, truss and

goal limiting shape matching. The computational cost for deformation is dependent on the

current surgical operation and operative site. In the initial stage of the simulation (frame 1 to

500), the main interaction is between the large volumetric organ and surgical tools so that the

goal limiting shape matching is the major deformation algorithm. From frame 500 to 1500,

the operative site focused more on the separation of tubiform and glandular soft tissues. The

truss based deformation algorithm begins to play its role at this stage. From frame 1500 to

2146, mobilizing bilateral sides of the colon from its connected fascia is the main operation,
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which is mainly simulated by relaxed LRA. Successive over-relaxation technique [44] has

been used to average each kind of deformation constraint in a soft manner. Such over-

relaxation propagates constraint corrections faster which will benefit convergence speed.

8 Future Works

To further improve our system, there are still a few aspects needed to be developed in the

future. Currently, our constraint solving procedure consumes most of the computation re-

sources. Migrating this procedure onto GPU using parallel computing could further improve

the performance of the system. Yet, this system does not support smoke and fluid simula-

tion which can further enhance the visual effects making the simulation more immersive and

realistic.
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Figure 1: Comparison between our method and shape matching. The goal position of our

method is limited to the position of collided vertex and then gradually recover to the position

of original shape.

Figure 2: Comparison between original LRA and relaxed LRA

Figure 3: The improvement by using relaxed LRA
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Figure 4: Truss structure based deformation and comparison of the deformation results using

existing constraints

Figure 5: Truss based structure initialization

Figure 6: The generation of the initial circumpshere
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Figure 7: The structure of dual mesh and auxiliary edges

Figure 8: Adjust the size of circumsphere according to curvature

Figure 9: Adjust the size of circumsphere according to material property
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Figure 10: Overview of the comparison between our method and other methods

Figure 11: Method analysis from accuracy perspective
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Figure 12: Compare our method with the collision margin and sweep volume

Figure 13: Stability comparison under different iteration number
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Figure 14: Efficiency comparison between our method and others

Figure 15: Comparison of accuracy, stability and efficiency for different δ
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Figure 16: The process of surface cutting. (a)The intersected triangles are in purple color.

(b)After cutting, the green triangles (inside Vsweep) and yellow triangles (too small) are re-

moved, blue triangles are reserved.

Figure 17: Combination and subdivision. (a)The green points are the intersections on the

shape’s boundary, the purple point is the intersection on the sweep surface. (b)The boundary

intersections on the same edge are combined into a median point. (c)The triangle primitive

is subdivide according to these intersections.

Figure 18: The dissection of fascia and volumetric mesh.
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Figure 19: Demonstration of objects using different material

Figure 20: Overview of the rendering procedure and pipeline
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Figure 21: Computatioanl cost distribution analysis
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Model Abdominal

Tissue

Rectum Nerve and

Vessel

Fascia

goal limiting factor (η) 0.75 0.15 0.01 -

level of relaxation β - - - 0.1∼0.4

bending threshold θthreshold - - π/3 -

minimum stiffness factor kmin - - 0.05 -

safe angle θ π/6 π/6 π/6 π/6

global scale factor ϕ 2 3 1 2

energy scale factor ς 0.9 0.7 0.95 0.85

circumsphere updating threshold δ 1 0.7 0.7 0.65

eliminating threshold υthreshold - 2 2 0.15

Table 1: Parameter settting for the laparoscopic surgery simulator.

49



Algorithm 1 Goal Limiting Shape Matching

1: Parameters: time step (h), goal position limiting factor for xi (ηi), vertex velocity (vi),

position in rest configuration (x0
i ), recovering rate (Rr), stiffness factor (α)

2: procedure GOAL POSITION LIMITING

3: for all Vertex xi do

4: vi = vi + α gi−xi
h

+ hfext/mi

5: pi = xi + vih
endfor

6: for all cluster ci ∈C do

7: Compute the mass center pcicm for all pi ∈ ci

8: Compute the mass center x0ci
cm for all vertices x0

i ∈ ci

9: Compute Aci =
∑n

i mi(pi − pcicm)(x0
i − x0ci

cm)

10: Caculate Rci=polorDecomposition(Aci)

11: for all pi ∈ci do

12: if pi has been collided then

13: ηi = 1

14: else

15: ηi = max(ηi −Rr, 0)

16: gcii = R(x0
i − x0ci

cm) + pcicm

17: gi+ = gcii + ηi(pi − gcii )
endfor

endfor

18: for all cluster ci ∈C do

19: Get the number of clusters (nc) sharing gi.

20: gi/ = nc
endfor

21: for all vertex xi do

22: vi = (pi − xi)/h

23: xi = pi
endfor
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Algorithm 2 Truss Structure Pre-processing
Input: vertex position (xi), vertex normal (ni), cone angle (θ), minimum strut stiffness

(kmin)

procedure TRUSS STRUCTURE GENERATION

for all vertex xi do

for all Face fk do

Caculate face normal nfk

if dotproduct(ni,nfk) < 0 then

Find the nearest face (fn) intersected with −ni
endfor

d = fcentern − xi, where fcentern is the center of fn

Using d and user-define θ to generate a cone κi
endfor

for all vertex xi do

for all vertex j inside the cone κi do

if dotproduct(ni,nj) < θthreshold then

Connect xi with xj as strut;
endfor

Find max and minimum strut length Dmax and Dmin;

for all vertex j inside the cone κi do

Calculate the stiffness factor

kij = (distance(xi, xj)−Dmax)/(Dmin−

Dmax) + kmin
endfor

endfor
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Algorithm 3 Surface Cutting
1: procedure SURFACE CUTTING

2: Generate the sweep volume Vsweep

3: Compute intersections

4: for all face fi inside sweep volume Vsweep do

5: Delete fi from the mesh
end for

6: for all intersected face fj do

7: Compute the area Aj for face fj

8: Subdivide face fj into small triangles {fjk}

9: for all newly generated face fjk do

10: if face fjk is inside Vsweep then

11: Delete face fjk

12: else

13: Compute the area Ajk for fjk

14: if Ajk/Aj < υthreshold then

15: Delete face fjk
end for

end for
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