
UNIVERSITAT POLITÈCNICA DE CATALUNYA

DEPARTAMENT DE LLENGUATGES I SISTEMES INFORMÀTICS

MASTER IN COMPUTING

MASTER THESIS

Output-Sensitive Rendering of
Detailed Animated Characters for

Crowd Simulation

STUDENT: Alejandro Beacco Porres
DIRECTORS: Nuria Pelechano, Carlos Andújar

Date: June 2010

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Objectives . 3
1.3 Contributions . 3
1.4 Organization . 5

2 State of the Art 7
2.1 Character Animation and Skinning 7
2.2 Crowd Rendering Acceleration 9
2.3 Relief Mapping . 18
2.4 Conclusions . 27

3 Our Approach 31
3.1 Overview . 31
3.2 Construction of the Impostors 35
3.3 Real-Time Crowd Rendering 43
3.4 Conclusions . 48

4 Experimental Results and Discussion 49
4.1 Performance Tests . 49
4.2 Image Quality . 52
4.3 Discussion . 55

5 Conclusions and Future Work 61
5.1 Conclusions . 61
5.2 Future Work . 62

Bibliograf́ıa 63

A Vertex Shader 67

B Fragment Shader 71
B.1 Input . 71
B.2 Ray-Heightfiel Intersection Search 72

i

ii CONTENTS

B.3 Main . 74

List of Figures

1.1 A crowd example . 2
1.2 Overview of the presented approach 4
1.3 Crowd with about 5,000 agents, all of them rendered with our

relief impostors. 4

2.1 An avatar with 4000 polygons (left) and the same reduced to
500 polygons (right) . 9

2.2 5 models of the same avatar with decreasing number of poly-
gons as they are far away. 10

2.3 An impostor . 11
2.4 View direction discretization 12
2.5 Pre-generated Impostors Shadows 13
2.6 Geopostors . 14
2.7 Volumetric layered based impostors rendering scheme 15
2.8 A layered impostor of a cow. 15
2.9 A polypostor animation . 16
2.10 Polypostor lack of data . 16
2.11 A relief texture . 18
2.12 Linear search . 19
2.13 Relief Mapping with one polygon 20
2.14 Relief Mapping with 6 faces of a box 21
2.15 Single depth vs. dual-depth relief textures problems 21
2.16 Dual-depth relief textures . 21
2.17 Parallax Occlusion Mapping results 22
2.18 Parallax Occlusion Mapping ray intersection 23
2.19 The Safety Radius . 24
2.20 Cone Step Mapping . 24
2.21 ORIs (Omni-directional Relief Impostors) 25
2.22 Animated Relief Impostors control points 26

3.1 A character in a reference pose 31
3.2 Bones influence over the mesh 32
3.3 Oriented Bounding Boxes, one for each bone. 33

iii

iv LIST OF FIGURES

3.4 Collection of textures projected into the OBB faces. 33
3.5 Relief Impostors Overview . 34
3.6 Construction steps of our relief impostors 35
3.7 Capturing textures problems 37
3.8 The section of a character’s mesh representing a foot 37
3.9 Association of mesh triangles with impostors (Option 1) . . . 38
3.10 Association of mesh triangles with impostors (Option 2) . . . 39
3.11 Under arm zone of a mesh in a reference pose 40
3.12 A character’s mesh in a walking pose (on the left) and it’s

under arm zone with the same pose 40
3.13 Color, normal and depth textures 42
3.14 Distance Threshold . 44
3.15 Impostor parameters . 47
3.16 Ray-heightfield intersection search 47

4.1 Performance results with one type of character 50
4.2 Performance results with ten types of characters 51
4.3 Crowd with about 5,000 agents, all of them rendered with our

relief impostors. 51
4.4 Agents rendered with relief impostors 52
4.5 Rigidly animated relief impostors 53
4.6 Two screenshots from two of our videos used in our user study. 54
4.7 Polygonal meshes vs. our impostors 56
4.8 Different texture resolutions 57
4.9 Sampling and distance variation 58
4.10 Artifacts due to rigid animation 59

Abstract

High-quality, detailed animated characters are often represented as tex-
tured polygonal meshes. The problem with this technique is the high cost
that involves rendering and animating each one of these characters. This
problem has become a major limiting factor in crowd simulation. Since we
want to render a huge number of characters in real-time, the purpose of
this thesis is therefore to study the current existing approaches in crowd
rendering to derive a novel approach.

The main limitations we have found when using impostors are (1) the
big amount of memory needed to store them, which also has to be sent
to the graphics card, (2) the lack of visual quality in close-up views, and
(3) some visibility problems. As we wanted to overcome these limitations,
and improve performance results, the found conclusions lead us to present
a new representation for 3D animated characters using relief mapping, thus
supporting an output-sensitive rendering.

The basic idea of our approach is to encode each character through a
small collection of textured boxes storing color and depth values. At run-
time, each box is animated according to the rigid transformation of its asso-
ciated bone in the animated skeleton. A fragment shader is used to recover
the original geometry using an adapted version of relief mapping. Unlike
competing output-sensitive approaches, our compact representation is able
to recover high-frequency surface details and reproduces view-motion par-
allax effects. Furthermore, the proposed approach ensures correct visibility
among different animated parts, and it does not require us to predefine the
animation sequences nor to select a subset of discrete views. Finally, a user
study demonstrates that our approach allows for a large number of simulated
agents with negligible visual artifacts.

v

vi LIST OF FIGURES

Chapter 1

Introduction

1.1 Introduction

In the recent years crowd simulations are becoming an important area in
computer graphics. Crowd simulations typically require hundreds or thou-
sands of agents, each one with its own individual behavior. Its rendering is
a key ingredient in many applications, from urban planning and emergency
simulation, to video games and entertainment. Some of these applications
require not only to render realistic and detailed animated characters but
also to perform well in real-time. Because of this, real-time crowd rendering
is still a challenging problem in computer graphics.

Detailed characters are often represented as textured polygonal meshes
which provide a high-quality representation at the expense of a high render-
ing cost. The animation of polygonal meshes is usually achieved through
skeletal animation techniques: a set of geometric transformations are ap-
plied to the character’s skeleton, and a weighted association between the
mesh vertices and the skeleton bones (skinning) defines how these trans-
formations modify the mesh geometry. Polygonal meshes are suitable for
simulations involving a relatively small number of agents, but not for large-
scale crowd simulations, as the rendering cost of each animated character is
roughly proportional to the complexity of its polygonal representation.

A number of techniques have been proposed to accelerate rendering of
animated characters. Besides view-frustum and occlusion culling techniques,
related work has focused mainly on providing level-of-detail (LOD) repre-
sentations so that agents located far away from the viewpoint are rendered
in a more efficient way with little or no impact on the visual quality of the
resulting images [26]. A typical approach is to store, for each animated
character, a small subset of independent polygonal meshes, each one rep-
resenting the character at a different level of detail. Unfortunately, most
surface simplification methods are devoted to simplifying static geometry
and do not work well with dynamic articulated meshes. As a consequence,

1

2 CHAPTER 1. INTRODUCTION

the simplified versions of each character have to be created manually. More-
over, these simplified representations either retain a large number of vertices,
or suffer from a substantial loss of detail, which is particularly noticeable
along character silhouettes.

Image-based precomputed impostors [12, 30, 31] provide a substantial
speed up by rendering distant characters as a textured polygon, but suf-
fer from two major limitations: all animations cycles have to be known in
advance (and thus animation blending is not supported), and resulting tex-
tures are huge (as each character must be rendered for each animation frame
and view angle); otherwise characters appear pixelized.

Figure 1.1: An example of a crowd simulation rendered with animated char-
acters. Here distant agents are rendered by precomputed impostors. [12]

Using separate impostors for different body parts provides a much more
memory-efficient approach. Polypostors [17] subdivide each animated char-
acter into a collection of pieces, each one represented using 2D polygonal
impostors. Unfortunately, the representation is view-dependent, the ani-
mation sequence still has to be known at construction time, and character
decomposition is done manually.

Relief mapping [25] has been proven to be a powerful tool to encode de-
tailed geometry and appearance information. Most importantly, since relief
maps support efficient random-access, impostors based on relief mapping are
output sensitive, i.e. their rendering cost is roughly proportional to the area
of their screen projection. This feature makes relief impostors especially
suitable for accelerating the rendering of scenes involving a huge number of
distant objects, which are not projected in a large number of pixels. That is
the reason why we could consider them as an option for rendering crowds.

1.2. OBJECTIVES 3

1.2 Objectives

Applications visualizing crowd simulations require rendering multiple agents
reacting to an environment in real-time. An important problem in this area
is the trade-off between speed and realism when rendering a large number of
virtual agents populating virtual environments. Therefore, the main purpose
of this thesis has been to improve crowd simulation achieving a large number
of realistically rendered agents in a real time crowd simulation.

In order to achieve our goal, we first studied the previous work that
has been done in the field of simulation and rendering of crowds. We fo-
cused more specifically on the work based in the use of impostors applied to
crowds. Impostors typically employ a minimal set of textures to replace the
geometry mesh of each agen, and thus reducing the computational time re-
quired for rendering. We also studied the basis of image-based techniques for
impostors, such as relief mapping and its possible acceleration algorithms.

The idea was to study the feasibility of employing relief mapping tech-
niques combined with novel ideas to construct our own agent impostors.
We wanted these impostors to be easily and automatically constructed. We
also wanted our technique to be general enough so that it can be applied to
any kind of character mesh, and any kind of skeletal based animation. So
we have proposed a novel approach unifying those aspects and analyzed its
results in terms of perception and rendering performance.

1.3 Contributions

In this work, after analyzing the state of the art, we present a new represen-
tation for animated characters (Figure 1.2) which uses relief impostors to
represent the different body parts of the character delimited by the skeleton
bones. Each character is encoded through a collection of oriented bounding
boxes (OBB), each box representing the geometry influenced by a skeletal
bone, along with textures projected orthogonally onto the six faces of each
box, each texture storing color and depth values. During animation the
bounding boxes are transformed rigidly by a vertex shader according to the
transformation of the associated bone in the animated skeleton. A fragment
shader efficiently recovers the details of the avatar’s skin and clothing using
an adapted version of relief mapping.

Unlike competing output-sensitive approaches, our compact representa-
tion has very low preprocessing requirements and does not require us to
predefine the animation sequences nor to select a subset of discrete views.
Our performance experiments show a significant improvement with respect
to geometry rendering by achieving a larger number of agents in crowd sim-
ulations with a higher level of realism (see Figure 1.3).

4 CHAPTER 1. INTRODUCTION

(a) (b) (c) (d) (e)

Figure 1.2: Overview of the presented approach: A bounding box is created
for each articulated part of an animated character (a). Color (b), normal
(c) and depth (d) information is projected onto the box faces, which are
rendered through relief mapping (e).

Figure 1.3: Crowd with about 5,000 agents, all of them rendered with our
relief impostors.

1.4. ORGANIZATION 5

Finally, since we wanted our new image-based representation to offer
visual results as close as possible to those obtained when rendering the full
geometry of the characters, we have run a user study to validate our new
approach for rendering agents at middle and far distances from the observer.
This user study is to determine the extend to which a user can or cannot
notice the differences between the two types of rendering.

As a result of this work, a paper has been submitted and accepted for
publication in CEIG 2010 (Congreso Español de Informática Gráfica) [8],
which will take place in September 2010 in Valencia.

1.4 Organization

The rest of the work is organized as follows. In the next chapter we discuss
the state of the art on crowd rendering with impostors, relief mapping, and
animation with relief impostors. In chapter 3 we make an overview of the
presented solution, explain how we construct and use our relief impostors, as
well as how the real time rendering and animation works. The details about
the user perception tests that we have run are discussed in chapter 4 together
with the results obtained. Finally, in chapter 5 we present conclusions and
future work.

6 CHAPTER 1. INTRODUCTION

Chapter 2

State of the Art

In order to understand the current state of the art on crowd rendering,
this chapters starts with a short summary about character animation and
skinning techniques. Then we proceed with a compilation of some of the
most important and most recent approaches on crowd rendering accelera-
tion: LOD (Level Of Detail), impostors, hybrid systems and several GPU
acceleration techniques. The requirements of these methods to be valid for
crowd simulation are efficient rendering and animation of each agent, and a
good visual quality with almost unnoticeable artifacts (if any). We there-
fore analyze such existing methods in terms of memory and computing cost,
and seeking for any visualization problems. Finally, since relief impostors
are lately being used to replace geometry, we explore and evaluate the main
approaches on relief mapping, which might be a good option for crowd ren-
dering.

2.1 Character Animation and Skinning

Before discussing the details on rendering large crowds composed of hun-
dreds of animated agents, we should take a look on how each avatar or
character representing an agent is usually animated and rendered. In this
section we want to explain some general aspects of character animation
which can or can not be exploited for crowd rendering. These aspects go
from how a 3D character is usually represented to how this representation
is modified to become animated.

In some cases we will want a physically accurate mesh deformation. For
that cases there are physically based methods which, logically simulate the
internal structure of the body: bones, muscles and fat tissues [5]. Those
methods generally obtain a high level of realism (delivering also dynamic
effects and muscle bulges), but at high computational costs. However, in the
case of crowd simulations in real time, a fast method capable of animating
multiple models interactively is needed.

7

8 CHAPTER 2. STATE OF THE ART

The most extended technology for animation of 3D characters is the
skeletal animation [20]. In this technique, most suitable for vertebrates,
the character is represented by its mesh or ”‘skin”’, and by its underlying
skeleton. The skin is a 3D triangular mesh with no assumed topology or
connectivity and the skeleton is a hierarchy of bones, which are carefully
placed so that they fit inside the skin (both are designed in a reference
pose), which will be deformed with the bones movement.

Each bone is associated with a section of the mesh. In most cases, the
bone is linked to a subset of the mesh vertices. For example, all the vertices
forming the left hand will be linked to the left hand bone. In several cases, a
subsection of the mesh can be associated to more than one bone, by defining
a weight associated to each one. Those vertices will then be deformed based
on the weights of all its linked bones that are being moved. Therefore, an
animation can be defined by the movement of the bones, and the associated
vertices will move along the skeleton.

At some point, the weight (amount of influence) of all influencing bones
must be specified. This weighting, as well as skeleton fitting, is called rigging
and it is typically done manually. However, recently an automatic procedure
has been described [7], thus simplifying the rigging process considerably.

An animation is defined by a series of keyframes, each one defining a
different pose for a time t, by applying a geometric transformation to each
bone of the skeleton. These geometric transformations are usually encoded
in matrices, so we have one matrix per bone and per keyframe. During the
animation, at a time not corresponding to any of the keyframes, the new
pose is computed by interpolating the matrices of the bones between the
two closest keyframes.

The standard algorithm for low-cost skinning is known by many names:
linear blend skinning, vertex blending, skeletal subspace deformation or en-
veloping. It is sometimes used not only for skin deformation (as the name
suggests) but also to animate other deforming elements, for example cloth,
because it is considerably faster than physically based cloth simulation [11].
The basic principle is that skinning transformations are represented by the
skeleton matrices, which are blended linearly in function of the applied rig-
ging.

The direct linear combination of matrices is a troublesome way of blend-
ing transformations. This might produce artifacts in the deformed skin.
Dual quaternions approaches [16] are supposed to reduce those artifacts in
an elegant way, by blending quaternions.

There is an alternative straight forward technique known as morph target
animation, where the vertices positions are stored for each frame, or for
each keyframe and then interpolated between them [19, 32]. An advantage
of using morph target animation over skeletal animation is that the artist

2.2. CROWD RENDERING ACCELERATION 9

can have more control over the movements because it allows to define the
individual positions of the vertices within a keyframe, rather than being
constrained by skeletons. This can be useful for animating cloth, skin, and
facial expressions because it can be difficult to conform those things to the
bones that are required for skeletal animation.

But, its basic idea implies a large amount of memory to store animations.
For that reason it is not a suitable technique for crowd rendering. Therefore
we will not take it into account.

2.2 Crowd Rendering Acceleration

Rendering a large number of highly realistic animated characters can be-
come a major bottleneck if we render the full geometry of all characters
with animation and skinning. To speed up the rendering of a geometrical
scene, and to achieve highly realistic populated scenes in real time several
techniques have been developed. They mainly fall into three categories:
culling, geometrical level-of-detail (LOD), and image-based rendering (such
as the use of impostors).

Culling algorithms are basically made to discard objects or parts of ob-
jects which are not visible. So if objects are not in the camera frustum or
occluded, they are not sent to the graphics card. One drawback of occlu-
sion culling is that it usually requires an organization of the whole geometry.
When it comes to rendering crowds, where agents are in constant movement,
it would be difficult to apply such technique.

Figure 2.1: An avatar with 4000 polygons (left) and the same reduced to
500 polygons (right)

10 CHAPTER 2. STATE OF THE ART

2.2.1 Level-Of-Detail (LOD)

A well known solution to the problem of accelerating crowd rendering in-
volves applying level-of-detail (LOD) for the characters depending on their
distance to the camera [26]. LOD usually consists on decreasing the com-
plexity of the 3D object or avatar representation as it moves away from the
camera (see figure 2.1). Since it is further away, the viewer should not notice
any difference (see figure 2.2).

Figure 2.2: 5 models of the same avatar with decreasing number of polygons
as they are far away.

The main problem of using LOD is related to the problem of multi-
resolution modeling. The automatic generation of a simplified model that
bear as strong a resemblance as possible to the original object has never
been an easy problem, because removing too much detail can produce blocky
results. Moreover the fact that we might apply LOD on animated characters,
it can also introduce animation artifacts, due basically to the loss of joint
vertices.

De Heras Ciechomski et al. [9] avoid computing the deformation of a
character’s mesh by storing pre-computed deformed meshes for each key-
frame of animation, and then carefully sorting these meshes to take cache
coherency into account.

2.2.2 Impostors

One of the most known techniques suggested to avoid rendering 3D geom-
etry, is the use of Impostors during simulation time. An Impostor is in
essence something simple that has the capacity to fool the viewer.

As opposed to LOD, Impostors are not a reduced complexity version
of the original geometry, but a different entity made to replace it with its

2.2. CROWD RENDERING ACCELERATION 11

appearance. As Impostors we can find from simple billboards (3D sprites)
with an image of the rendered object, to a minimal set of textured polygons
retrieving surface details and parallax. Although impostors are easier to be
applied with static objects, there is several work in the literature where they
have been applied to crowds and animated agents.

Since Impostors are essentially images, there are two main approaches:
to generate dynamically those images at runtime, or to pre-compute and
store them into a texture atlas and access them when necessary.

Dynamic Impostors

The virtual human impostor used by Aubel et al [4] is a simple textured
plane which rotates to face continuously the viewer. A snapshot of the
virtual human is mapped onto it and re-used over several frames, so the
geometry complexity is reduced to a single plane (see figure 2.3).

Figure 2.3: A brazilian football player and its impostor. [4]

As the humanoid moves or the camera moves, the mapped texture might
need to be refreshed. To take updated snapshots they set-up an off-screen
buffer to receive it and they place their multiresolution virtual human in
front of the camera in the right posture. Then they render it and copy into
texture memory, ready to be mapped onto the billboard.

To decide whether to refresh or not the render of the texture they pro-
posed two fast algorithms. The first one tests distance variations between
some pre-selected points in the skeleton, so they can decide if the posture
has changed significantly. In a way this sub-samples the motion.

The second algorithm does not test independently the camera motion
and the character’s orientation because it is not important to know what
factor caused the visual variation. Instead, they test the variations of the
”view” matrix corresponding to the transformation under which the viewer
sees the virtual human. These impostors are dynamic in the sense that they
are not pre-computed, but that they change dynamically depending on the
results of these two algorithms at every frame.

12 CHAPTER 2. STATE OF THE ART

The off-screen buffer can be set up in a pre-process, adjusting the frustum
to the character. It can also be re-used for other human meshes. Because of
that, and since posing up the character would have been done with the whole
geometry, the approach is not slower than rendering the 3D geometry. But
even if the impostor is re-used, after a few frames it will finally be discarded.

The main limitation of these kind of approaches is that replacing the
whole geometry by a textured plane might introduce visibility problems. For
example, depending on what the character is doing and how he is interacting
with the rest of the scene, occlusion problems could arise.

Pre-generated Impostors

Pre-generated impostors were first used by Tecchia et. al. [30] by rendering
each character from several viewpoints and for every animation frame of a
simple animation cycle (see Figure 2.4). The images were stored in a single
texture atlas, and each crowd agent was rendered as a single polygon with
suitable texture coordinates according to the view angle and frame.

(a) (b)

Figure 2.4: Discretising the view direction between the object and the view-
point (a) allows to generate a texture with all the captured directions for
one frame of one animation (b). The process can be repeated for every
animation frame. [30]

Pre-generated impostors with improved shading have also been used in
[31]. They add shadows for each agent. Since the shadow is just the projec-
tion onto the ground of the character’s silhouette, they can just project the
polygon of the impostor onto the ground. Then they map on the ground
polygon the same image than on the impostor polygon, but appropriately
darkened to reflect the shadow coverage (see Figure 2.5). This fake shadow
is valid only on a ground with a parallel light source but give realistic results
in the available computing time.

Pre-generated impostors can achieve rendering of crowds consisting of
tens of thousands of agents. But, although image and texture compression
techniques can be applied to these resulting texture atlas, they require a

2.2. CROWD RENDERING ACCELERATION 13

(a) (b)

Figure 2.5: A scene with shadowing pre-generated impostors (a). The
shadow of each agent is the projection onto the ground of the character’s
silhouette (b). [31]

large amount of memory. Moreover, depending on the texture resolution,
at short distances they appear pixelated. Another limitation of impostors
is that they do not allow interpolation or blending between two or more
different animations, since they just use their pre-computed images.

2.2.3 Hybrid Systems

Hybrid approaches are the ones which combine more than one character
rendering technique for different groups of agents in the same scene. It is
the same concept as the LOD one, but instead of using different LODs of
geometry, they use different approaches. For example, depending on the
distance to the camera, an agent is rather rendered as pure 3D geometry, or
rendered with an Impostor.

Geopostors

Dobbyn et. al. [12] introduced the first hybrid system, known as Geo-
postors, that was presented by using pre-generated impostors on top of a
full, geometry-based human animation system, and switching between the
two representations with minimal popping artifacts. Figure 2.6 shows how
impostors are used for far agents while the ones close to the camera are
rendered with full geometry.

The switching between the mesh and the impostor is based on an im-
postor image pixel size to impostor texel size ratio, and it is made when this
ratio equals a certain threshold. Ideally this ratio should be 1:1, because
aliasing starts when a texel is bigger than a pixel.

An extension of this approach was made by Pettre et al. [23], combining
the animation quality of dynamic meshes with impostors and adding a third

14 CHAPTER 2. STATE OF THE ART

Figure 2.6: Geopostors. Far agents are rendered with impostors while closer
ones are rendered with geometry. [12]

LOD using the high performance offered by static meshes, i.e. meshes where
animated poses were already computed.

Volumetric layered based impostor

In geopostors, when switching and for some angles of view, the visual gap
between flat impostor and geometry is too big to completely avoid popping
artifacts. Coic et. al, [10] described a similar hybrid system but with three
LODs, by introducing a volumetric layered based impostor between flat
impostor and geometry to help to achieve continuity during transitions:
Instead of one single textured polygon, an adaptive number of layers of the
color texture are drawn, depending on the texel’s depth. These layers fill a
volume in the 3D scene instead of a single polygon.

At an intermediate LODs, they extended the single-polygon fixed-shaded
impostors by their dynamically-shaded layered impostors approach (see Fig-
ure 2.7), thus enhancing the texture information with depth and normal.
Depth information helps to give a 3D aspect to the impostor and the nor-
mal is used to compute a per pixel dynamic lighting.

The impostor is rendered in layers parallel to the viewpoint. For each of
these layers, they select the pixels that correspond to a certain depth. After
selecting the required number of layers, they divide the volume captured
during the preprocessing in as many intervals as the number of layers, defin-
ing the intervals of depth for selecting pixels in the color texture. By this
mean, they reconstruct the initial volume with several layers. The selection
of the right pixels for each depth interval is done in a fragment shader, where
lighting is also computed.

To extend the validity of the layered impostors, they can use the over-
lapping depth intervals. Without overlapping, cracks appear on the layered
impostor as soon as the viewpoint differ a little bit from the pre-computed
one. By drawing a small part of the previous and next layer, they avoid

2.2. CROWD RENDERING ACCELERATION 15

Figure 2.7: Volumetric layered based impostors rendering scheme: between
geometry and the one-polygon impostor, an adaptive number of layers is
used for a layered impostor. [10]

these gaps from more farther viewpoints, extending the lifetime of the lay-
ered impostor and decreasing the density of precomputed views (see Figure
2.8).

Figure 2.8: A cow rendered with 5 layers and dynamic lighting, without
(left) and with overlapping (right). [10]

Although this approach improves visual quality and fills the gap between
the polygonal representation and the flat impostors, they add more data
(normal, depth and several layers), which grows the memory problem. Their
layered impostors rendering is also slower than the one-polygon impostors
rendering.

Polypostors

In order to reduce the memory requirements of pre-generated impostors,
while keeping a high level rendering efficiency, 2D polygonal impostors (called
polypostors) have been used [17], where an impostor is used per body part
and viewing direction, thus avoiding the per frame memory consumption.

The original 3D character is cut into several body parts in order to resolve
occlusion issues. The original skeletal animation is applied to the body
parts. This, when composed together, gives exactly the same animation

16 CHAPTER 2. STATE OF THE ART

as the originally provided. For the first frame of the animation, each body
part is rendered and enclosed within textured 2D polygons, using a standard
contour tracing algorithm.

For all subsequent frames, an algorithm based on dynamic program-
ming shifts the vertices of the 2D polygons so that they approximate the
actual rendered image as closely as possible (see Figure 2.9). This algorithm
matches two textured polygons in an optimal way with respect to a chosen
error metric.

At run-time, the deformed polygons are composited in depth order, cre-
ating the illusion of an animated 3D character. But since polypostors ap-
proximate the animation by deforming their texture, they are not as accurate
as other impostors. They can only be applicable for animations that can be
described as deformations of the initial key-frame. They may also produce
artifacts with views where there is a lack of texture information in the first
key-frame (see Figure 2.10).

Figure 2.9: An example of a polypostor animation (overlaid with wireframe).
Note that the character animation is created simply by displacing polygon
vertices (stretching the texture accordingly). [17]

Figure 2.10: The Polypostor texture is generated from the fist key-frame
(left) and deformed for subsequents key-frames, producing artifacts due to
lack of data in areas that have become visible (right). [17]

2.2. CROWD RENDERING ACCELERATION 17

2.2.4 Pseudo Instancing

To render nearby characters, instancing is a technique that uses certain at-
tributes in current graphics hardware to optimize rendering of several copies
of an object using a single draw call. Through instancing, graphics processor
deals with per-instance geometry transformations and appearance modifica-
tions, releasing the main processor from this task. A GPU acceleration
crowd rendering is presented in [21], alternating the use of a single impostor
per agent with pseudo-instancing of polygonal meshes.

Even when instancing is originally designed for static objects, a similar
technique may be used to render large crowds of animated characters. To
achieve this goal, a pseudo-instancing technique is used, where geometry is
updated on every animation frame and sent to the graphics memory to be
used later for rendering nearby characters. Pseudo-instancing takes advan-
tage on the efficiency of using persistent vertex attributes, such as color or
transformations, to provide information for an entire instance.

However, this model update implies copying information into graphics
memory. Hence, to maximize the outcome of this technique, several copies
of the same object must be rendered in every frame. This is a problem when
using animated models, since every different animation pose needs to be sent
to the graphics memory. As a workaround, a few poses can be selected, and
nearby characters are rendered using the closest pose to the ones selected.

2.2.5 Dynamic Caching

Recently, Lister et. al. [18] improved the efficiency of linear-blend skin-
ning by utilizing the temporal and intracrowd coherencies that are inherent
within populated scenes. They achieved it through the allocation of a small
geometry cache within which transformed key-poses can be stored. This
key-poses are then re-used by multi-pass rendering, between multiple agents
and across multiple frames.

The cache of skinned key-posed is a maintained fixed-sized cache, from
which crowd members can be reconstructed by interpolation. So, crucially,
the generic poses may be shared amongst crowd members to significantly
reduce the number that must be stored.

This cache size becomes also a trade off between the rendering perfor-
mance and the memory usage, because it is the number of characters that
have the key-poses from which to interpolate stored in the cache that will
have the greatest effect on the rendering performance. Clearly, the choice of
which key-poses to store is fundamental to maximizing the potential of the
approach. Since this is a NP-hard problem, they present a greedy algorithm
suitable for real-time applications.

18 CHAPTER 2. STATE OF THE ART

2.3 Relief Mapping

During the last decades a number of image-based representations (includ-
ing plain textures and depth textures) and rendering techniques (including
bump mapping, parallax mapping and relief mapping) have been proposed
for the efficient visualization of 3D models [15]. Textures naturally provide
random-access to its elements, making these techniques output-sensitive,
their rendering time being proportional to the screen projection of the model
rather than to the model’s complexity. Moreover, these techniques fit well in
current hardware architectures and can be implemented as fragment shaders.

Among image-based techniques, relief mapping by Policarpo and Oliveira
[25] has proven to be useful for recovering high-frequency geometric and
appearance details.

2.3.1 Relief Maps

Relief maps store surface details in RGBA textures in the form of a height
field, or, more precisely, a depth map, because the stored values represent
depth measured under a reference plane. Typically the RGB channels encode
a normal or a color map, while the alpha channel stores quantized depth
values, scaled to the [0, 1] range (see figure 2.11).

Figure 2.11: A relief texture with depth map (left) and normal map (right).
On the depth map, brighter pixels represent deeper geometry. [25]

The mapping of relief details to a polygonal model is done in the con-
ventional way, by assigning a pair of texture coordinates to each vertex of
the model. During rendering, the depth map can be dynamically rescaled
to achieve different effects, and correct occlusion is achieved by properly
updating the depth buffer.

2.3.2 Relief Rendering

The programmability of modern GPUs allows us to recover the original
geometry by a simple ray-heightfield intersection algorithm executed in the
fragment shader [25]. Conceptually we can divide relief rendering in three
steps:

2.3. RELIEF MAPPING 19

1. For each fragment f with some texture coordinates (s, t), we transform
the view direction to the tangent space of f .

2. Find the intersection P of the transformed viewing ray against the
depth map. Let (k, l) be the texture coordinates of such intersection
point.

3. Use the corresponding position of P , expressed in camera space, and
the color and/or normal stored at (k, l) to shade f .

In order to perform the second step, a linear search is performed along
the view ray to find a first point inside the surface (see figure 2.12). For each
search step, a texture access is made to know the depth value at the actual
point and whether the point is inside the surface or not (that is, whether
the depth along the viewing ray is bigger than the stored depth). The linear
search is followed by a binary one in order to refine the search and find a
more accurate intersection point.

Figure 2.12: Linear search, from A to B, for the first point inside the hight-
field surface. [25]

2.3.3 One vs. Several Polygons

Relief mapping can be applied to just one simple polygon (see Figure 2.13).
This gives good results as long as the polygon is not seen at a too much
grazing angle. In those cases, the flattening of the polygon will be noticeable.

But relief mapping can also be used by mapping multiple depth maps
onto more than one polygon. For example, we can use the 6 faces of a
bounding box to map the corresponding 6 relief maps (see Figure 2.14).
This avoids the previous problem and preserves the parallax effect, because

20 CHAPTER 2. STATE OF THE ART

Figure 2.13: Color image rendered as a conventional texture (left) and relief
texture mapped on one polygon (right). [25]

all the geometry is completely inside the bounding box and thus can be
retrieved with the 6 faces.

2.3.4 Multiple Depth Layers

Extending this idea, relief maps can have multiple layers allowing to store
more than one depth map. Dual-depth relief textures [25], for example, can
be used to produce representations for closed-surface objects using only one
relief-mapped polygon. They store and combine a front and back depth
layer to produce tight bounds of the represented object. This avoids the
presence of artifacts, like ”‘skins”‘ (see Figure 2.15) which appear with one
single layer since there is no information about what lays behind the object
(see Figure 2.16).

2.3.5 Ray-Heightfield Intersection Acceleration Techniques

Acceleration techniques for computing the ray-heightfield intersection in-
clude, among others, linear search plus binary search refinement [25] (which
we have already commented), varying sampling rates [29], precomputed dis-
tance maps [6] and cone maps [13, 24]. Szirmay-Kalos et. al, in [28], review
all this particular GPU based methods, as well as their numerous variations,
providing also implementation details of the shader programs.

Parallax Occlusion Mapping

The previously seen linear and binary search helps approximating the height-
field intersection. Using bilinear texture filtering to interpolate the inter-
section point can result in visible stair-stepping artifacts at steep viewing

2.3. RELIEF MAPPING 21

Figure 2.14: A 3D object rendered by relief texture-mapping the visible
faces of a box. Object rendered showing the borders of the quads (left) and
without borders (right). [25]

Figure 2.15: A single depth relief texture may produce skins (left), while
dual-depth one avoid them with a tighter bound of the object (right). [25]

Figure 2.16: Dual-depth relief textures combine front and back depth layers
and produce a better bound of the object surface. [25]

22 CHAPTER 2. STATE OF THE ART

angles, since just 8 bits of precision are used (see Figure 2.17 on the left).
Depth biasing toward the horizon hides these artifacts but introduces ex-
cessive feature flattening at oblique angles (see Figure 2.17 in the middle).
In order to reduce these artifacts, Tatarchuk proposed a method in [29] for
increased precision of the critical ray-heightfield intersection and adaptive
heightfield sampling.

Figure 2.17: Relief mapping rendered with both linear and binary search but
without depth bias applied, can produce artifacts due to sampling aliasing at
grazing angles (on the left). With depth bias applied, we can still notice the
flattening of surface features towards the horizon (in the middle). Parallax
occlusion mapping avoids those artifacts (on the right). [29]

The idea is to sample the heightfield with a linear search and approxi-
mating the height profile as a piecewise linear curve (see Figure 2.18). This
allows us to combine the 8 bit precision due to bilinear texture filtering with
the full 32 bit precision for root finding during the line intersection. Figure
2.17 shows on the right the improved visual results with the lack of aliasing
using this approach.

The accuracy of the technique corresponds to the sampling interval δ.
So some aliasing artifacts appear, as in previous methods, if too few samples
are used for a relatively high-frequency height field, though the amount will
differ between the techniques. But δ can not be determined using the texture
resolution. At grazing angles, the parallax amount is quite large and thus
we must march along a long parallax offset vector in order to arrive at the
actual displaced point. In that case, the step size is frequently much larger
than a texel, and thus unrelated to the texture resolution. To solve this,
they provide both directable and automatic controls, and they express the
sampling rate as a linear function of the angle between the normal and the
view direction ray. This assures that they increase the sampling rate along
the steep viewing angles.

Precomputed distance maps

Baboud et. al proposed precomputed distance maps in [6]. They analyze
the heightfield in a preprocess step and store extra information in the depth
texture.

2.3. RELIEF MAPPING 23

Figure 2.18: For each linear segment of the green piecewise linear curve the
heighfield profile is sampled along parallax offset vector P. The intersection
yields parallax-shifted texture coordinate offset toff . δ is the interval step
size. [29]

They define a safety radius r for each pixel with texture coordinates (x, y)
and angle θ, giving a lower bound on the distance to the second intersection,
if any, for unblocked rays. In other word, unblocked rays can have at most
one intersection with the heightfield in the neighborhood defined by r (see
Figure 2.19).

They use this safety radius to find the intersections. At a current position
along the ray, above the heightfield, instead of moving a fixed amount dt
they advance an amount corresponding to the safety radius r. Therefore, by
property, there can be at most one intersection between the two positions.
If the new one is above the heightfield, there is no intersection. Otherwise,
there is exactly one and we can run a binary search to find it.

A conservative discrete 2D version of the safety radius is stored in a 2D
texture. For a texel (i, j) the safety radius is now a number of pixels n
such that any ray, whose projection crosses the centerlines within the texel,
has at most one intersection with the heightfield within the 2n× 2n square
centered on (i, j).

Cone Maps

Cone step mapping [13] replaces both the linear and binary search steps with
a single search based on a cone map. A cone map associates a circular cone
to each texel of the depth texture. The angle of each cone is the maximum
angle that would not cause the cone to intersect the height field. Therefore,
at each step along the ray, we can compute its intersection with the current
cone (see Figure 2.20).

24 CHAPTER 2. STATE OF THE ART

Figure 2.19: The safety radius r(x, y, q) indicates a region in which rays
passing above pixel (x, y) with direction q can have at most one intersection
with the heightfield. [6]

Figure 2.20: At each pass of the iteration, the ray advances to its intersection
with the cone centered at the current texel. [13]

2.3. RELIEF MAPPING 25

Although cone step mapping is guaranteed to get the first intersection
of a ray with a height field, it may require too many steps to converge
to the actual intersection. For performance reasons, however, one is often
required to specify a maximum number of iterations. As a result, the ray
tends to stop before the actual intersection, implying that the returned
texture coordinates used to sample the normal and color maps are, in fact,
incorrect.

A better and more efficient ray-height-field intersection algorithm is the
relaxed cone stepping [24]. It combines the strengths of both approaches:
the space-leaping properties of cone step mapping followed by the better
accuracy of the binary search. Because the binary search requires one input
point to be under and another point to be over the relief surface, we can
relax the constraint that the cones in a cone map cannot pierce the surface.
The idea is to make the radius of each cone as large as possible, observing
the following constraint: As a viewing ray travels inside a cone, it cannot
pierce the relief more than once.

Note that the radius used by RCS is considerably larger, making the
technique converge to the intersection using a smaller number of steps. The
use of wider relaxed cones eliminates the need for the linear search and,
consequently, its associated artifacts. As the ray pierces the surface once, it
is safe to proceed with the fast and more accurate binary search.

2.3.6 Minimal Supporting Geometry

A few recent techniques adopt a relief mapping approach to encode details
in arbitrary 3D models with minimal supporting geometry. In [3], new al-
gorithms were presented for the construction, selection and rendering of a
compact view-dependent representation, called ORIS (Omnidirectional Re-
lief Impostors) for interactive exploration of complex models. They optimize
the set of viewing planes supporting a small collection of properly-oriented
relief maps to encode arbitrary objects (see figure 2.21).

Figure 2.21: ORIs: Several relief maps are combined to provide an impostor
set that can be rendered from arbitrary directions. [3]

Unfortunately, output-sensitive approaches like this one or [6] are limited
to static geometry.

26 CHAPTER 2. STATE OF THE ART

2.3.7 Animated Relief Impostors

Only a few works attempt to animate geometry encoded as relief impos-
tors. Alternatively to the use of static textures cyclically mapped onto some
polygons, texture-based animation can use image warping techniques.

Pamplona et. al [22] described a technique for animating relief impostors
using radial basis functions (RBF). It allows the viewer to observe changes
in occlusion and parallax during the animation, as relief impostors usually
do.

To produce the animations, the user has to manually specify in a pre-
processing step, a set of control points over the texture space of the relief
impostor. When moving the control points over the 2D texture, makes the
texture warp. The new positions of the control points provides new poses,
which can then be used as animation key-frames (see figure 2.22).

Figure 2.22: Control points (dark dots) are placed over the original relief
impostor (left). When moved, the texture is warped, giving a new pose
(center and right). [22]

The position of the control points is also interpolated for the inside
frames, and a linear system is solved for each of them to obtain the inter-
polated RBF coefficients. The control points and coefficients can be stored
in a textured and used at runtime in the fragment shader.

Interpolated control points and RBF coefficients allows interpolated warps,
giving the effect of motion to the relief impostor. The RBF-based animation
is added to the relief mapping pixel shader just before the call to the linear
search.

2.4. CONCLUSIONS 27

The above method suffers from two major limitations: control points
defining the animation are just moved in 2D, because image warping tech-
niques are limited to some planar deformations, and it does not support
standard skeletal animation which we need for character animation.

2.4 Conclusions

The most extended technology in character animation is the skeletal ani-
mation [20], where an underlying skeleton is animated and its bones move
the associated vertices of the mesh in relation to certain weights. Due to
its simplicity it is also the straight forward technique we would use for a
crowd rendering system. The problem of this method is that it is a geomet-
ric approach, and therefore the performance of such a system will depend
on the geometric complexity, i.e. number of rendered agents and number of
polygons per agent. That is the main reason why this approach is not the
most suitable for real-time crowd rendering.

To overpass this problem novel crowd rendering acceleration techniques
started to appear in the literature. We could separate them in three types,
which are geometry- based, image-based and hybrids. The first geometry-
based approaches involved have different level of details (LOD) of simplified
meshes depending on the distance [26]. Its main problem is to obtain those
simplified meshes and the loss of vertices which produce artifacts when they
are animated. Image-based approaches appeared with dynamic [4] and pre-
generated [30, 31] impostors , where each character was represented by a tex-
ture projected on a simple polygon. The main problem of those approaches
are some visibility problems, a huge memory cost (for pre-generated im-
postors) and a pixelization when they are too close to the camera. Hybrid
systems [12, 10, 17] then used the same distance to the camera concept
as LOD to switch between a geometry render and an impostor one. This
systems reduce the artifacts for close agents (since they use geometry) but
still have the memory problems. Finally, some other geometry-based ap-
proaches [21, 18] try to pre-load and re-use a maximum of meshes exploiting
the temporal and intracoherence of crowds.

We have summarized in Table 2.1 all these approaches in crowd render-
ing. There we classify and compare them stating for each one what data
they preprocess, what is their chosen representation for characters and the
animation technique they use for them. We also remark the parameter or
element that can be considered as the one causing the trade-off between
visual quality and performance. In the last columns we evaluate (as high,
medium or low) the limitations of each method in terms of memory cost,
visual artifacts and computing cost.

It seems clear then that best crowd rendering approaches are the hybrid
ones, where impostors are an important factor. To create those impostors, a

28 CHAPTER 2. STATE OF THE ART

Table 2.1: Table comparing the analyzed approaches in crowd rendering.

2.4. CONCLUSIONS 29

good choice could be an image based approach as relief mapping [25], which
is becoming very popular with the increased use and performance of new
GPUs. Relief mapping allow us to retrieve geometry from relief textures
on a simple polygons, thus reducing the geometric complexity of the scene
(at the expense of a higher per fragment cost). All the relief mapping ap-
proaches [25, 29, 6, 13, 24, 3] are based in different kinds of searches for the
intersection of a viewing ray with the surface encoded in the texture. The
main limitations is the existing tradeoff between the performance and the
arising visual artifacts, which are due to the sampling and the algorithm
used for the ray intersection search. Finally, relief mapping approaches are
made mostly for static objects, except one where impostors are animated
warping a texture [22]. The limitation of this method is that it is com-
pletely independent from skeletal animation and requires too much human
intervention.

As mentioned in the previous chapter, our main objective is to improve
crowd simulations designing a new approach based on impostors which will
allow us to represent a large number of agents in real time. The state of
the art in rendering acceleration techniques, together with the limitations of
the traditional impostors employed for animated characters, motivated our
work to explore a new approach for rendering large numbers of animated
characters in real time.

To take advantage of current skeletal animation techniques, we have
worked on a new technique which combines the best of image-based crowd
rendering and the best of skeletal animation. Instead of having a single
impostor (or a single set of impostors) for each set ”agent, animation frame,
camera angle” we could use one reduced set of impostors for each bone of
the skeleton of each agent, which is independent from both camera angle
and animation frame. The impostors would then be animated with the
same principle as the mesh is moved in the classical skinning, applying the
rotations of the associated joint.

30 CHAPTER 2. STATE OF THE ART

Chapter 3

Our Approach

This chapter first presents a short overview of the proposed approach. It is
followed by the detailed explanations of the needed preprocessing steps with
all its consequent problems. Finally we show our approach for the rendering
process.

3.1 Overview

Based on our conclusions over the current state of the art in crowd rendering
and relief mapping, we aim at using relief impostors for crowd rendering,
and analyzing its viability. For this purpose we propose a hybrid approach
where close characters are rendered with pure geometry, and far ones are
rendered with our novel set of relief impostors.

Figure 3.1: A character in a reference pose

We aim at increasing the number of simulated agents in real-time crowd
simulations by reducing the rendering cost of individual agents. This in-
volves using a simple representation for animated characters supporting
output-sensitive rendering, so that rendering times are roughly proportional

31

32 CHAPTER 3. OUR APPROACH

to the number of rendered fragments, instead of depending on the complex-
ity of the underlying surface. Therefore only characters that are very close to
the observer are rendered as polygonal meshes, while the rest of the agents
are rendered using our new relief impostor method.

We assume the input character conforms to the de facto standard in the
video games industry and thus consists of a textured polygonal mesh (skin),
a hierarchical set of bones (skeleton) and vertex weights. We assume that
both the skin and the skeleton have been designed in a reference pose (see
Figure 3.1).

Figure 3.2: Bones influence over the mesh: Each vertex is influenced by a
maximum of 4 bones. In this render, for each fragment, we have assigned the
weights of at most 3 bones to the three color channels (RGB). So vertices in
red zones are influenced only by one bone, while other zones are influenced
by two or three different bones.

The nodes of the skeleton represent joints and the edges represent the
bones. Since each bone can be easily identified by its origin, we can use
the term joint interchangeably. The transformations affecting joints in the
hierarchy are assumed to be rigid. The vertex weights describe the amount
of influence of each joint on each vertex. In our implementation a vertex
can be influenced by a maximum number of 4 bones (see Figure 3.2).

Our approach for representing distant characters consists of a collection
of oriented bounding boxes (OBB), one for each bone in the skeleton (see
Figure 3.3), along with a collection of textures projected into the OBB faces,
each texture encoding color and depth values (see Figure 3.4).

In a preprocessing step this representation needs to be constructed (see
Figure 3.5). This construction is explained in the next section. During the
rendering process, detailed in the last section of the chapter, the OBB will
be transformed in the same way as the bones of the skeleton, giving the
impression that our impostor character is animated.

Our approach differs from previous work in several aspects. First, we
do not attempt to animate a single relief impostor representing a whole

3.1. OVERVIEW 33

Figure 3.3: Oriented Bounding Boxes, one for each bone.

Figure 3.4: Collection of textures projected into the OBB faces.

34 CHAPTER 3. OUR APPROACH

Figure 3.5: From a character composed of a mesh and a skeleton we want
to construct a relief impostor with bounding boxes (one for each bone) and
project on them relief textures. Animations applied to the skeleton will be
applied to the bounding boxes.

character, but to provide relief impostors representing an already animated
character. Second, we require much less memory than competing image-
based approaches which require prerendering the character for every possible
animation frame for every view angle. Third, our technique allows a straight
use of skeletal animations, which cannot be done with any of the previous
image based rendering techniques. Finally, our method provides a detailed
rendering for any character, viewpoint, and animation sequence.

Halca animation library

Our technique relies on the Halca animation library [27, 14] to draw the an-
imated characters from which we create our impostors. Halca is a hardware
accelerated library for character animation which is based on the Cal3D
XML file format [1] to describe skeleton weighted meshes, animations, and
materials.

This library uses shaders for rendering and skinning. Owing to the highly
parallel nature of this problem, graphics hardware can carry out the required
computations much more efficiently than the CPU. In addition, since only
joint transformations are sent instead of all the vertices of the mesh, much
less data is transferred between the CPU and the GPU.

Our current implementation works with any animated avatar and any
animation that can be exported to the Cal3D format.

3.2. CONSTRUCTION OF THE IMPOSTORS 35

Figure 3.6: Construction steps of our relief impostors: 1) Each triangle has
to be associated with one joint Ji. We might have problems with triangles
affected by more than one joint (red zones). 2) We must choose a suitable
pose to reduce the possible future artifacts. 3) We compute the bounding
box of each joint. 4) We project the model onto each face of the bounding
box using an orthonormal camera.

3.2 Construction of the Impostors

The construction of our relief impostors from a given 3D character proceeds
through the following steps, described in detail below, and illustrated in
figure 3.6:

1. Associate mesh triangles with impostors: Our new character
representation will divide it in a set of bounding boxes of the bones.
The textures we will capture will be projected over the OBBs, recov-
ering the mesh geometry. We must then decide which geometry is
recovered by which OBB textures. In order to do so we must define
an association of the mesh triangles with our impostors.

2. Select a suitable pose for capturing the impostors: Using a
reference pose when capturing the textures can derive in some arti-
facts later. This is due to inherent problems with the linear blend
skinning technique. We must then find a better pose for capturing the
impostors.

3. Compute the bounding boxes with the chosen pose: We have
to compute the OBBs in function of the positions of the mesh’ vertices
in the chosen pose.

36 CHAPTER 3. OUR APPROACH

4. Capture the textures of each bounding box: Once everything is
set up, we have to capture one texture for each of the 6 faces of each
OBB with an orthonormal camera.

The following subsections detail each one of the above steps.

3.2.1 Step 1: Associate mesh triangles with impostors

We start by assigning mesh triangles with impostors, where each impostor
corresponds to a joint of the articulated character. We assume that each
input vertex vi is attached to joints J1, . . . Jn with weights w = (w1, . . . wn).
Now the challenge is, given a triangle with vertices v1, v2, v3, to decide which
impostors the triangle will be attached to. This determines which triangles
will be captured by the impostor.

The challenge when assigning triangles to impostors appears because we
cannot simply render the complete mesh when creating the textures of one
concrete bone. If we did so, we would have several problems to deal with:

• Occlusion problems: Since we are going to need to render the dif-
ferent parts of our character from 6 different views (the ones defining
the planes of the OBB), it is clear that some of these parts will be
occluded by other parts of the mesh. Although we can avoid this ad-
justing the near and far clipping planes to the ones of the OBB, there
could still some occlusion problems due to precision problems with the
clipping values (see Figure 3.7 (a)).

• Redundancy problems: The OBB of one bone is computed in a
way that it includes all the vertices influenced by that bone, but it can
be in such a way that other vertices remain inside too. This can derive
in parts of the mesh that appear inside more than one bounding box
(see Figure 3.7 (b)). But moreover, this parts will be also move along
with the bounding box when we will animate it, so they will have a
wrong transformations and artifacts will arise.

With the purpose of keeping preprocessing as reduced and automatic as
possible we studied two different approaches to assign triangles to impostors
trying to avoid the cited problems.

To illustrate the different approaches that we explored we will use a
section of the character’s mesh which corresponds to a foot as an example
(Figure 3.8). This area of the foot is linked to three different joints: the
foot itself, the toes, and the ankle. For each approach we will show images
of how the different solutions affect the triangles association to the foot’s
OBB.

3.2. CONSTRUCTION OF THE IMPOSTORS 37

Figure 3.7: If we render all the mesh, we can have occlusion problems when
rendering some of the faces of the OBB (a), or triangles which are associated
to other bones can be rendered inside the current OBB (b).

Figure 3.8: The section of a character’s mesh representing a foot

38 CHAPTER 3. OUR APPROACH

Option 1: Triangles assigned to the bone with highest influence
over one vertex of the triangle

The first option is to distribute mesh triangles into joints, attaching each
triangle to the joint with the highest influence over the triangle (measured
e.g. as the sum of the corresponding vertex weights). With this approach
each triangle is associated to a unique joint. The main problem with this
partition is that it tends to produce visible gaps around the joint boundaries
during animation, the higher the deviation with respect to the reference
pose, the larger the resulting gaps.

In the Figure 3.9 we can see how gaps are formed by triangles which
have a maximum linking weight with the toes or the ankle.

Figure 3.9: Option 1: A triangle is drawn if the maximum weight of its 3
vertices is assigned to the current bone (in this case, the foot). On the left
image we can see how gaps are formed in the foot parts near to the toes and
the ankle, since those parts had vertices with a higher weight associated to
these bones. Center and right images show the same but in wireframe and
with a minimal change. We can see how triangles are missing at the gap
zones because vertices are discarted.

Option 2: Triangles assigned to all bones with some influence over
one vertice of the triangle

To solve the previous problem where gaps appear at zones with vertices
influenced by more than one bon, we studied a different approach. Each
triangle is assigned to a bone if at least one of its vertices is influenced by
the bone, regardless of the corresponding weight. Therefore those triangles
around joints will be assigned to a variable number of impostors. Notice that
the above strategy only uses vertex weights and thus is pose-independent.

Figure 3.10 shows that the gaps we had with the previous solution are
now filled.

This approach avoided occlusion problems, reduced reasonably redun-
dancy problems, and offered better visual results than our previous option
by filling gaps. Thus we decided to implement this method in our work.

3.2. CONSTRUCTION OF THE IMPOSTORS 39

Figure 3.10: Option 2: A triangle is drawn if at least one of its 3 vertices
is assigned to the current bone (has a weight greater than 0). The gaps of
the previous option are filled and even some triangles out of the bounding
box are drawn. Those triangles associated with more than one bone will be
rendered when creating both correspondent bone impostor textures.

3.2.2 Step 2: Select a suitable pose for capturing the impos-
tors

The second step is to choose a suitable pose for capturing the impostors.
Triangles will be captured according to the chosen pose, i.e. after mesh ver-
tices have been blended according to the pose by using linear blend skinning.
This choice of the pose affects both the extent of the impostor’s bounding
box and the captured geometry.

Ideally, we should select a pose fulfilling two requirements:

• (a) The pose should minimize the overall volume of the bounding boxes
to save memory space.

• (b) The pose should represent an average pose of the animation se-
quence to minimize the visible artifacts during the animation.

In most cases the animations have a reference pose similar to that shown
in Figure 3.1. This is a pose that usually has all the triangles “visible”,
because it is normally the pose used to model the mesh and texture its
surface. Although this seems to be a good approach to capture the impostor
texture because we would be covering all the triangles, it is not usually the
case due to the inherent artifacts of the linear blend skinning technique.
Thus selecting a pose with the above properties is necessary.

For example, Figure 3.11 shows the under arm of one character in a refer-
ence pose. Note that the surface is continuous and presents no creases, so all
the triangles are visible. Figure 3.12 shows the same zone in a walking pose.
We can see that in such conditions, it is common to have auto-intersections
and triangles that are not visible anymore. So, if we capture the impostors
with the reference pose we would be covering triangles, that we will not want
to see during the animation.

Therefore, if the animation sequence shows a character walking with
the arms in a rest position, it is better to capture the triangles around the

40 CHAPTER 3. OUR APPROACH

Figure 3.11: Under arm zone of the mesh in a reference pose (in wireframe
mode on the right). This is the original mesh pose, the one used to model
it. At the red zone, the surface is continuous and presents no creases, so all
the triangles are visible.

Figure 3.12: A character’s mesh in a walking pose (on the left) and it’s
under arm zone with the same pose (in wireframe mode on the right). At
the red zone, we can see how, due to linear blend skinning, we have some
auto-intersections and triangles that are not visible anymore.

3.2. CONSTRUCTION OF THE IMPOSTORS 41

shoulder with the arms in such a position rather than e.g. stretching arms out
sideways. Since impostors will undergo only a rigid transformation, choosing
a pose corresponding to a walking animation keyframe tends to minimize
artifacts around joints. Our current implementation just picks a random
pose from a walking animation sequence, rather than using the reference
pose. We do not guarantee finding an optimal pose but our results are
reasonably good enough. Notice that the above choice only affects triangles
influenced by multiple joints; triangles influenced by a single joint will be
reconstructed in their exact position regardless of the selected pose.

3.2.3 Step 3: Compute the bounding boxes with the chosen
pose

At first, the bounding boxes are computed when the character in its refer-
ence pose. The bounding box of each bone is computed as the axis-aligned
bounding box (AABB) of the vertices with a weight associated to the bone.
Once a suitable pose has been chosen, we need to apply it by transforming
the bounding box.

To apply the chosen pose, the bounding box of the joint J is rigidly
transformed accordingly by applying linear blend skinning to its vertices,
i.e. the transformed bounding box vertex v′ is computed as

v′ = MJv

where MJ is the rigid transformation matrix from the reference-pose of joint
J to its actual position in the chosen posture. The bounding box of each
impostor will then be oriented when we will capture the textures.

Another option we should contemplate is to compute bounding boxes
aligned with the bone, called oriented bounding boxes (OBB), but once the
character’s mesh is deformed by the chosen pose with linear blend skinning.
For an arm or a leg bone, it is easy to decide which axis the box should
be aligned with. We might have some problems with some bones which are
more spherical like the head, but in general we would align the box along
the axis formed by the vector going from the current joint to its parent in
the hierarchy. Unfortunately, at its current version, Halca just let us to
compute AABB of the reference pose.

3.2.4 Step 4: Capture the textures of each bounding box

The last step is to render the deformed mesh to capture the relief maps
corresponding to each one of the six faces of its bounding box. In order to
do so, for each bounding box face we set up an orthographic camera with
its viewing direction aligned with the face’s normal vector, and then render
the triangles assigned to the corresponding impostor.

42 CHAPTER 3. OUR APPROACH

To apply relief mapping we need relief textures, i.e. one or more depth
layers. We also need the surface color, and surface normal if we want to
apply lighting computation. The idea is then to have one texture for color
values, and another for normal values. Each one of this textures can use
its alpha channel to store one depth value, so we choose to use two depth
layers: front depth values and back depth values.

Front depth values are captured by rendering the attached triangles with
the default GL LESS depth comparison function. Likewise, back depth val-
ues are captured by clearing the depth buffer with a zero value (instead of
the default unit value) and switching depth comparison to GL GREATER.
Although storing both depth values is redundant (front depth values of a
face equal one minus back depth values of the opposing face), we have chosen
this option to improve the locality of texture fetches during rendering.

So, we store the following RGBA textures (Figure 3.13):

• Color map: the RGB channels encode the color, and the alpha channel
encodes the minimum (front) depth value zf .

• Normal map: the RGB channels encode the normal vector, and the
alpha channel encodes the maximum (back) depth value zb.

(a) (b) (c) (d)

Figure 3.13: Color (a), normal (b), front depth (c) and back depth (d).
Values are encoded as two RGBA textures. The first one encodes color
(RGB channels) and front depth (Alpha channel). The second one stores
the normal (RGB channels) and the back depth (Alpha channel).

3.2.5 Storage of the Impostors

Once the bounding boxes are computed and the relief textures are created,
we might want to store them in order to not recompute them later. The
bounding box computation is fast enough, so we do not need to store it
in a hard drive memory, but we can store it graphic memory in order to
re-use for all instances of the same type of character. The color and normal
relief textures though, need to be stored in a hard drive memory, since

3.3. REAL-TIME CROWD RENDERING 43

its generation is not so fast due to the number of them that we need to
capture for each character. Although, when used at rendering time, as for
the bounding boxes, we need to load the textures into the graphic memory
using an efficient data structure.

The vertices of all bounding boxes of a character are stored in a single
Vertex Buffer Object (VBO), which is used for all the instances of the same
character. In fact, along with the vertex coordinates, we put in the VBO
the needed face attributes that we will need to apply relief mapping.

Assuming a typical animated character for crowd simulation consists of
about 40 bones, this accounts for storing 40× 6× 2 = 480 RGBA textures
per character. This is quite reasonable, considering that competing output-
sensitive approaches need to capture the character for each view angle (typi-
cally 136 discrete view directions are sampled) and for each animation frame
(typically sampled at 10Hz). Using 64× 64 textures (which provides a reso-
lution of about 1cm/texel for geometry, colors and normals), each character
requires only about 7.5 MB of storage (10 MB with mipmapped textures).

Color and normal maps of each character are stored in texture arrays
[2] (one for color maps and one for normal maps) to avoid texture switching
while rendering the instances of the same articulated character. If we would
not use texture arrays, binding and unbinding the textures into the GPU
could dramatically slow down the rendering performance.

The textures are arranged in the array using the bone’s id, which is also
stored in the VBO of the OBB along each vertex. This way, for the face
f ∈ {0, 1, 2, 3, 4, 5} of the joint Ji with id = i, the color and normal maps of
our relief impostor will be in the position i ∗ 6 + f of the texture arrays.

3.3 Real-Time Crowd Rendering

Our proposed hybrid model uses two level-of-detail representations for each
character type; a textured polygonal mesh which is used for agents close to
the viewpoint, and the impostor set described above for the rest of agents
(see Figure 3.14). Since we are talking about humanoids, we assume that
our characters will all have approximatively the same size. So the distance
to the camera is inversely proportional to the projection size and can be used
to decide whether to use or not impostors. For that reason we choose to
switch between the two representation as a function of the distance instead
of the pixel size of the character’s projection.

Crowd Rendering Algorithm

Our crowd rendering algorithm, at each frame, works as follows:

1. For each agent, the Halca animation library [27] must update its loaded
animation. In order to do so, the geometric transformations of each
bone are updated depending on the current time and the speed at

44 CHAPTER 3. OUR APPROACH

(a) (b)

(c) (d)

Figure 3.14: Distance Threshold: Agents closer than 5m (a and b) or than
10 m (c and d) are rendered with pure geometry while far ones are rendered
with our impostors. Agents with a red aura (b and d) are the impostors.

which the animation is played. This produces the rigid transformation
matrices M1, ...,Mn (where n is the number of bones of the current
agent) of each bone corresponding to the current pose of the agent.

2. For each agent, its distance to the camera is computed and it is decided
whether it will be rendered with pure geometry or with impostors,
using a user defined threshold.

3. Agents are sorted by character type (mesh, textures, set of anima-
tions). In order to minimize rendering state changes we will render all
instances of a same character type before changing to another char-
acter type. This way, all shared data between those instances will be
sent to the GPU just once per frame and re-used for all of them.

4. For all agents, render nearby polygonal agents with the Halca anima-
tion library [27], using linear blend skinning to deform meshes.

5. For all agents, render the far ones as impostors. Each one of those
characters is rendered through an adapted version of relief mapping
over the fragments produced by the rasterization of the transformed
bounding boxes.

3.3. REAL-TIME CROWD RENDERING 45

The following subsections detail how our novel impostors are rendered.
We decomposite its explanation in three parts: (1) the part containing all
the operations to be done by the CPU, (2) the vertex shader with all the
operations to be done for each of the bounding boxes vertices, and (3) the
fragment shader part which is the most relevant part because it is where the
geometry is retrieved from the relief textures.

3.3.1 CPU Process

The CPU-based part of the rendering algorithm proceeds through the fol-
lowing steps:

1. Bind to the GPU the corresponding texture arrays (color and normal
maps) into different texture units.

2. Bind also to the GPU the vertex buffer object (VBO) with the geome-
try of OBBs, which we have computed, in a preprocessing step, in the
same way as in the creation of the impostor textures. As mentioned
in the creation section, this VBO contains other properties apart from
the vertices coordinates, such as faces’ normals or bone identifying
number. These steps are performed only once per character type, as
it will be reused for all instances of the same type.

3. Use the Halca animation library [27] to send to the GPU the uni-
form variables encoding the rigid transformation matrices M1, . . .Mn

(where n is the number of bones) of each bone corresponding to the
current pose to make this information available to the shaders. Since
each agent has its own independent animation been played, this step
must be performed once per instance.

4. Draw the 6 faces of the OBB associated to each bone, just to ensure
that a fragment will be created for any viewing ray intersecting the
underlying geometry.

3.3.2 Vertex Shader Program

The purpose of the vertex shader is to transform the incoming vertices before
the triangles are drawn, in order to achieved the motion and the desired
animation of the whole character.

The vertex shader multiplies the incoming vertices of the bounding boxes
by the corresponding rigid transformation matrix so that they follow the
original skeleton animation. Also, we can send as varyings to the fragment
shader all the vertex attributes containing information about the relief im-
postor. For each fragment, varyings are interpolated by the GPU from all

46 CHAPTER 3. OUR APPROACH

the vertices of the triangle from which the fragment comes. Since the vary-
ing parameters would have the same value for all the vertices of one face,
they would not be altered when being interpolated.

These attributes are basically vectors encoding the orientation and loca-
tion in space of each relief map. Since we stored them in our VBO when our
character was at its initial pose, we must transform them too in the vertex
shader as we transform the OBB where the relief texture will be projected.
So we have to rotate them with the correspondent bone rotation matrix,
which we can extract from the bone transform matrix used before. You can
find the GLSL code of the vertex shader in the appendix A.

3.3.3 Fragment Shader Program

The most relevant part of the rendering relies on the fragment shader, which
uses the depth values stored in the A component of the color and normal
maps to find the intersection P of the fragment’s viewing ray with the un-
derlying geometry. For this particular task any ray-heightfield intersection
algorithm can be adopted. Our current prototype is based on the relief
mapping algorithm described in [25].

The fragment shader, which GLSL code is in the appendix B, receives
as input the following information (see also Figures 3.15 and 3.16):

• World space viewpoint coordinates E.

• World space fragment coordinates C.

• The origin P0 of the face, i.e. the vertex whose texture coordinates
are (0, 0).

• An orthonormal basis of the bounding box face, consisting of a normal
vector ~n and two vectors (~u,~v) aligned along the horizontal and vertical
sides of the transformed face.

• Impostor depth factors (du, dv) = (zfar−znear

‖~u‖ ,
zfar−znear

‖~v‖) : where zfar

and znear are the distance to the clipping planes of the orthonormal
camera used to render the relief texture.

• Impostor depth range dr = ‖zfar − znear‖.

The viewpoint coordinates are available as a uniform variable which is
set only once per application frame. The fragment coordinates are encoded
as a varying variable computed by interpolation of the vertices transformed
by the vertex shader. The face origin and basis vectors are available through
flat varying variables. The impostor depth factors and impostor depth range
are also available through varying variables.

3.3. REAL-TIME CROWD RENDERING 47

Figure 3.15: Impostor parameters stored in the VBO, transformed by the
vertex shader and used by the fragment shader.

Figure 3.16: Ray-heightfield intersection search. At each search step, the
current depth d is compared with the front depth zf and the back depth zb
to check whether we are inside the geometry or not.

48 CHAPTER 3. OUR APPROACH

The fragment shader computes the intersection of the fragment’s viewing
ray r = (C − E) with the height field encoded by the displacement values
stored in the relief map (see Figure 3.16). If no intersection is found, the
fragment is discarded. As in [25], we use first a linear search by sampling
the ray r at regular intervals to find a ray sample inside the object, and then
a binary search to find the intersection point. This allows us to retrieve the
diffuse color of the fragment being processed, along with a normal vector
to compute per-fragment lighting. Unlike classic relief mapping, we use two
depth values zf (in the A component of the color map) and zb (in the A
component of the normal map) per texel. During the search processes, a
sample along the ray with depth d is classified as interior to the object iff
zf ≤ d ≤ zb.

3.4 Conclusions

We have presented a new hybrid approach for crowd rendering in real-time
using a novel kind of relief impostors. We have explained how to create
these impostors, how to efficiently store them, and how to use them to
render and animate distant characters of a crowd by using a classic relief
mapping technique. We need now to objectively analyze the performance
and the visual quality of our method, and evaluate if it is a valid method.
This is done in the next chapter, where we also discuss some of its current
limitations.

Chapter 4

Experimental Results and
Discussion

In this chapter we show the experimental evaluation realized to analyze
the viability of our proposed approach. These tests basically compare the
achieved frames per second using our impostors against rendering with pure
geometry, and also as a function of the number of pixels they occupy in the
screen. We also explain the setup and results of our user study, which has
helped us to validate the visual quality of this new approach. Finally we
discuss some aspects of our work that might need to be improved.

4.1 Performance Tests

Our performance tests are based in the measure of the achieved frames per
second of each considered approach, as a function of the total number of
agents in the crowd simulation. We first compared performance using two
radical approaches:

• Pure geometric rendering: The used characters have polygonal meshes
having between 4K and 6K triangles, with 2048× 2048 texture atlases
for color and normal values, and skeletons of 53 bones (because they
are fully articulated and for example, each finger is consider individu-
ally and formed by 3 bones).

• Pure impostor rendering: Each impostor was represented by 53 OBBs,
one for each bone (we do not group individual finger bones in our
current prototype), using 128 × 128 array textures for color, normal
and depth values. Taking into account that for each OBB we have 6
faces, each one with 2 textures of 128 × 128 pixels, with 4 channels
RGBA of 1 byte, this resulted in 53× 6× 2× 1282 × 4 = 41.6 MB for
character type. For all the impostors rendering, in the ray-heightfield

49

50 CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION

intersection search, the linear search was made with a maximum of 16
steps, and the binary search with a maximum of 7 steps.

We expected our impostor-based approach to have a better rendering
performance, since they are output sensitive as opposed to being dependent
on the number of agents, i.e. the geometric complexity. Figures 4.1 and 4.2
shows the results with a varying number of agents, using the same character
type for all instances (4.1) or using ten character types (4.2). All times were
measured on an Intel Core2 Quad Q6600 PC equipped with a GF 8800 GT,
using a 1280× 1024 viewport.

Performance vs. number of agents

0

40

80

120

160

200

100 250 500 750 1000
Agents

F
ps

Polygonal mesh
Impostors (15% viewport occupancy)
Impostors (90% viewport occupancy)

Figure 4.1: Performance results with one type of character

By viewport occupancy we mean the proportion of the screen pixels where
the impostors are drawn, and thus need to be processed by the impostor frag-
ment shader. In a typical impostor usage scenario with the distant agents
covering a 15% of the viewport, as depicted in Figure 4.3, pure impostor
rendering clearly outperforms geometry-based rendering, enabling e.g. 1,000
fully-animated agents at about 40 fps; using polygonal meshes, only about
one quarter of the agents can be rendered at the same frame rate. If we have
more than one character type (Figure 4.2), we have to bind and unbind the
different impostors textures, so the achieved framerate is bit worst, but still
better than with polygonal meshes.

We also measured impostor performance on a much more stressing sit-
uation, changing the camera position such that agents covered 90% of the
viewport. In this extreme case, fragment processing becomes a major bot-
tleneck and reduces impostor performance. Therefore, performance is max-
imized by using polygonal meshes for very close-up agents (with a large
screen projection) and relief impostors for the rest of agents. The optimal

4.1. PERFORMANCE TESTS 51

Performance vs. number of agents

0

40

80

120

160

200

100 250 500 750 1000
Agents

F
ps

Polygonal mesh
Impostors (15% viewport occupancy)
Impostors (90% viewport occupancy)

Figure 4.2: Performance results with ten types of characters

Figure 4.3: Crowd with about 5,000 agents, all of them rendered with our
relief impostors.

52 CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION

agent-to-viewpoint distance for switching from mesh rendering to impostor
rendering depends on a number of factors including mesh complexity and the
particular CPU/GPU configuration. We did not study the optimal switch
distance from a performance point of view (this is an interesting avenue
for further research); instead, we focused on the effect of the above switch
distance from an image-quality point of view, as discussed in next section.

The problem is that, studying the performance of our relief impostors in
a crowd simulation system, we have actually reached a different bottleneck.
As we can see in Figures 4.1 and 4.2, from a certain number of agents (around
1000) the system looses all interactivity and the frames per second are close
to 0. After studying the problem closely, we believe that the bottleneck is
now in the transfer of the transformation matrices of each agent. Since each
agent has its own independent animation, with 53 transform matrices to be
sent to the GPU to be used by the vertex shader, its cost is still linearly
dependent on the number of agents.

4.2 Image Quality

Figures 4.4 show images of three different types of characters rendered using
relief impostors in a random walk pose. Figure 4.5 shows two of these char-
acters in an walking animation sequence, showing how the OBB are rigidly
animated give good results combined with our relief mapping rendering.

Figure 4.4: Agents rendered with relief impostors

4.2. IMAGE QUALITY 53

Although the images show some artifacts around joints, these artifacts
are very hard to perceive in the context of a crowd simulation since we
would be rendering many animated agents far away from the camera. Also,
retrieving the normal and computing a per-fragment lightning can help to
diminish those artifacts.

We conducted a preliminary user study to evaluate our impostor-based
approach in terms of image quality. The objective was to know the switch
distance at where the impostor became unnoticeable to the human eye, when
compared to the geometry rendering.

Figure 4.5: Relief impostors are rigidly animated by transforming the ver-
tices of the supporting bounding boxes

4.2.1 User Study

The main goal of the experiment was to evaluate whether users perceive any
image quality loss when using our impostors instead of polygonal meshes,
for different switch distances.

For this purpose, we rendered a crowd simulation with multiple switch
distances, ranging from 0.0 (pure impostor rendering) to ∞ (pure geomet-
ric rendering). We produced a 25 s movie for each resulting animation,
with switch distances d ∈ {0, 10 m, 15 m, ∞}, i.e. switching to impostor
rendering when the viewer-to-agent distance was above d.

54 CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION

In order to assess image quality with respect to the reference image,
we grouped these movies in pairs, stacking vertically one of the movies us-
ing impostors with the one using pure geometry (see Figure 4.6, and the
videos which can be downloaded from http://www.lsi.upc.edu/∼abeacco/
MasterThesisVideos.zip). The movie with pure geometry was stacked on
the top or on the bottom randomly.

Figure 4.6: Two screenshots from two of our videos used in our user study.

We did not force our crowd simulation engine to produce a deterministic
animation for the different simulations, as this would have enabled users to
compare the above/below images on a pixel-by-pixel basis; we believe that
our option better represents a typical impostor usage scenario. In order
to allow comparison with pure geometry, the height of the camera above
ground level was set so that the screen projection of each character was
below 60× 120 pixels.

Nine subjects aged 23-35 participated in the experiment. Users were
requested to watch all the movie pairs in a random order and decide which
of the two images (above/below) had better image quality, if any.

Considering all answers, in a 40% of the trials users were unable to choose
the best image; in the remaining 60%, in a 29% of the trials users choose the
pure geometry render and in a 31% they choose the one using impostors.
We got similar percentages when considering the answers grouped by the
switch distance ranges (0, 10 − 15m); the hit/fail percentages (hit means
choosing the pure geometry image as the best one) where 52%/48% for
d = 0, and 40%/60% for d = 10 − 15 m. Notice for example that, when
switching to impostors at d = 10 − 15 m, which produces a nearly error-
free image, in a 60% of the trials users choose the movie using impostors as
the highest-quality one. Our best explanation for this is that, since image
quality differences were very hard to notice (particularly for large switch
distances, see accompanying videos), most users made a somewhat random

http://www.lsi.upc.edu/~abeacco/MasterThesisVideos.zip
http://www.lsi.upc.edu/~abeacco/MasterThesisVideos.zip

4.3. DISCUSSION 55

choice. In summary, for a moderate screen projection of the individual
agents, replacing polygonal geometry by impostors produces negligible visual
artifacts. This is best evaluated and explained in the next subsection.

4.2.2 Image Difference

To find an explanation to our user study results, and to have an objective
and quantified evaluation of our method, we have proceed to make image
differences of the same scenes with geometry and with impostors. The basic
idea behind image difference is to compare each pixel color of two different
renders by making the difference between each color component.

In order to do so, we have created pseudocolored images with Photoshop
software . Pseudocolored images help to see the zones where differences are
and its magnitude. The resulting image from making color differences is
converted to a grayscale image, and from there each gray value is indexed
to a color from a pseudocolor table.

Figure 4.7) shows an example of image difference between the render
of one scene with geometry and our impostors. The pseudocolor bar at the
bottom of the pseudocolor image indicates the color scale used for each error
value. This way, dark blue indicates images have exactly the same equal
color at that pixel, while red indicates the maximum error between colors.
As we can see in the figure, only a few pixels show to have minimal color
differences between our two methods. Moreover, these differences seem to be
only around the silhouettes of the impostors. This could be explain by some
of the problems of relief mapping at retrieving surface on silhouettes: since
it is where the view ray is tangent, the ray-heighfield intersection search
might not find a point inside the surface, and therefore the sampling we
made is more important. In any case, the difference is very small, and the
impostors are shown from a distance big enough to be almost unnoticeable
for the human eye.

4.3 Discussion

Despite the good results we obtained in terms of quality and performance,
we find that our new approach has some aspects and limitations that could
be handled in next phases of our research.

4.3.1 Distance Trade-Off

In section 3.3 we say that agents close to the camera are rendered with
original geometry, while the others are rendered as impostors. Although
this seems to be the most extended solution to decide whether to use or not
impostors, we have not really searched for the optimal distance to switch
between render modes.

56 CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION

(a)

(b)

(c)

Figure 4.7: Image rendered with polygonal meshes (a) and our impostors
(b). Image difference is shown in (c).

4.3. DISCUSSION 57

When close agents are rendered with impostors, artifacts become more
noticeable. As they occupy a bigger area on the screen, the performance is
also drastically reduced. But at some distance they become visually indis-
tinguishable and have better performance than geometry. So, clearly, there
is a trade-off regarding this distance that we should take into account more
seriously.

4.3.2 Texture Resolution

In our current implementation, as mentioned in section 3.2.4, we use tex-
ture arrays to avoid a continuous binding and unbinding of textures. The
disadvantage of textures 2D arrays is that we must use for all the textures
the same resolution. This is not perfectly convenient because we might not
want to have the same resolution and detail for all the bounding boxes. For
example we do not need the same resolution for a hand (where there are
not many details) as we would need for the head (where we want to sample
the complete face of the character). Figure 4.8 shows this with 3 different
texture resolutions. An adaptive resolution for the relief maps would be an
important enhancement of the system, since less memory would be used and
transferred to the GPU while visual quality would be almost the same, with
unnoticeable differences.

Figure 4.8: Reducing the resolution of relief textures reduces the sampling
and visual quality of the retrieved surface. For some parts, like the head, a
good resolution is needed as there is a lot of detail. For other parts, like a
hand, which is smaller and with much less detail, a smaller resolution can
be enough.

58 CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION

4.3.3 Ray-Heightfield Intersection Sampling

Regardless of the combination of several relief textures, the final visual
quality of our approach, as well as its performance, still depends on the
relief mapping technique and the chosen ray-heightfield intersection algo-
rithm. More specifically, it critically depends on the sampling we made,
i.e. the number of steps we take in the linear and binary searches for the
ray-heighfield intersection.

Although we have made no study about the visual quality and the perfor-
mance when varying these parameters, we expect that an adapted sampling
version of our approach would improve our results. For example, a version
where the number of steps would vary as a function of the viewing distance.
Figure 4.9 shows a character rendered with impostors varying distance and
sampling. As we can see, for far views we could use fewer steps without
noticing any differences.

Figure 4.9: A character render with impostors at different distances and
with different number of search steps in the linear and binary search for
ray-heightfield intersection.

4.3. DISCUSSION 59

4.3.4 Artifacts due to Rigid Transformations

As seen in section 3.2, when capturing the textures of our impostors, we
choose a walking pose instead of a reference one in order to dissimulate
some artifacts. The artifacts we were talking about where the ones due
to the inherent problems of skeletal animation and linear blend skinning.
But there is another kind of artifacts due to the rigid transformations we
are applying over the OBBs. When we animate our impostor characters,
we are just translating and rotating those boxes, with its whole underlying
geometry. We expected this kind of artifacts, but surprisingly these were
not so noticeable when using a similar pose to create the impostors as the
one we were trying to use (a walking one).

Figure 4.10 shows how are exactly these artifacts, produced above all the
joints links. In this figure the impostors were captured in a reference pose.
The problem is that we are not recreating the effect of linear blend skinning,
where some vertices are influenced by more than one bone. In our approach,
all the underlying geometry of an impostor OBB is fully influenced by its
corresponding bone. Therefore the skin is not bended in any way.

Figure 4.10: Due to the rigid animation we apply to all the impostor OBB,
artifacts can arise at the joint links. HHere we can particularly notice these
artifacts around the knees.

60 CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION

An elegant solution would be to really animate in a dynamic way our
impostors. A similar approach to the one presented in [22], where relief
textures are warped in time to simulate an animation, could help to really
animate the underlying geometry. This is, in fact, an option we want to
explore in our future research. The warping could be done as a function of
the rigging weights, which could be encoded in another texture, for example.

Chapter 5

Conclusions and Future
Work

5.1 Conclusions

The main problem behind crowd rendering lies in the amount of geometry
we have to render and animate for each one of the represented agents. The
more difficult is to render one character, the less agents we will be able
to have in a crowd simulation. After studying the state of the art in crowd
rendering and knowing its limitations, we have noticed that impostors, which
are largely used in other areas, are starting to become the core of new crowd
rendering approaches. Moreover, we have also studied the state of the art in
a particular technique to create relief impostors: relief mapping. We have
then proposed a novel approach to test the validity of using relief impostors
for crowd rendering.

We have presented a new method to accelerate the rendering of crowds
by using static relief impostors on rigidly animated bounding volumes. This
method allows for real time rendering of thousands of agents. Compared to
previous work where impostors were used, our method provides the advan-
tage of being independent from both the viewing direction and the anima-
tion clips available. These two advantages offer not only important savings
in terms of the memory required to store the impostors, but also that the
library of animations can be increased on-the-fly without the need for cap-
turing new impostors.

The proposed approach works with relief impostors captured for each
of the 6 faces of the bounding box associated to each bone of the skeleton.
Our current prototype provides good quality rendering for those characters
rendered farther away from the camera so we can combine static relief im-
postors with geometry rendering depending on a threshold distance, by the
moment given by the user. At closer distances, some artifacts appear in
the relief impostor rendering, since our current solution does not take into

61

62 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

account how the joint transformations affect the appearance of the character
skin. In summary, the validity of our new method encourages us to extend
and improve this first approach using relief impostors for crowd rendering.

A paper with the content of this thesis has been submitted and accepted
for publication in CEIG 2010 (Congreso Español de Informática Gráfica)
[8], which also confirms that we are in a good research direction.

5.2 Future Work

As discussed in the previous chapter, there are some aspects and limitations
we would like to work on in our future research. First we would like to
consider a new kind of dynamic impostors, where the relief impostors would
be dynamically animated, for instance by warping the textures, depending
on another set of textures capturing the rigging information.

Rendering time could be further accelerated by calculating the inter-
section between the ray and the relief mapping fragment shader using a
cubemapping-like projection. Cube mapping would suit nicely the geome-
try we are dealing with, since each body part of the character can be easily
fitted with spheres and cylinders. Also, an adaptive sampling when search-
ing along the ray as function of the distance to the camera of the agent could
accelerate the system without loosing visual quality.

Uploading the animation to the GPU beforehand would also reduce
bandwidth requirements and would enable to perform all motion-blending
computations on the GPU. We would also like to study the possibility of
adapting the texture size according to the relevance of the body part, for
instance increasing resolution for the head textures with respect to those for
the legs.

Finally, once some of these improvements were done, we would like to
repeat with more users our user tests to further validate our approach.

Bibliography

[1] Cal3d. 3d character animation library.
http://home.gna.org/cal3d/.

[2] Nvidia texture array.
http://developer.download.nvidia.com/opengl/specs/
GL EXT texture array.txt.

[3] C. Andujar, J. Boo, P. Brunet, M. Fairen, I. Navazo, P. Vazquez, and
A. Vinacua. Omni-directional relief impostors. Computer Graphics
Forum, 26(3):553–560, September 2007.

[4] A. Aubel, R. Boulic, and D. Thalmann. Animated impostors for real-
time display of numerous virtual humans. In VW ’98: Proceedings
of the First International Conference on Virtual Worlds, pages 14–28,
London, UK, 1998. Springer-Verlag.

[5] A. Aubel and D. Thalmann. Realistic deformation of human body
shapes. In Proc. Computer Animation and Simulation 2000, pages 125–
135, 2000.

[6] L. Baboud and X. Décoret. Rendering geometry with relief textures.
In GI ’06: Proceedings of Graphics Interface 2006, pages 195–201,
Toronto, Ont., Canada, Canada, 2006. Canadian Information Process-
ing Society.

[7] I. Baran and J. Popović. Automatic rigging and animation of 3d char-
acters. ACM Trans. Graph., 26(3):72, 2007.

[8] A. Beacco, C. Andujar, B. Spanlang, and N. Pelechano. Output-
sensitive rendering of detailed animated characters for crowd simula-
tion. Congreso Español de Informática Gráfica, CEIG10, September.

[9] K. Cain, Y. Chrysanthou, and F. Silberman. A case study of a virtual
audience in a reconstruction of an ancient roman odeon in aphrodisias.
In SIGGRAPH ’05: ACM SIGGRAPH 2005 Courses, page 4, New
York, NY, USA, 2005. ACM.

63

http://home.gna.org/cal3d/
http://developer.download.nvidia.com/opengl/specs/GL EXT texture array.txt.
http://developer.download.nvidia.com/opengl/specs/GL EXT texture array.txt.

64 BIBLIOGRAPHY

[10] J. Coic, C. Loscos, and A. Meyer. Three lod for the realistic and
real-time rendering of crowds with dynamic lighting. Research Report
RN/06/20, Université Claude Bernard, LIRIS, France, April 2007.

[11] F. Cordier and N. Magnenat-Thalmann. A data-driven approach for
real-time clothes simulation. Computer Graphics Forum, 24:173–183,
2005.

[12] S. Dobbyn, J. Hamill, K. O’Conor, and C. O’Sullivan. Geopostors: a
real-time geometry / impostor crowd rendering system. In I3D ’05:
Proceedings of the 2005 symposium on Interactive 3D graphics and
games, pages 95–102, New York, NY, USA, 2005. ACM.

[13] J. Dummer. Cone step mapping: An iterative ray-heightfield intersec-
tion algorithm. IEEE Comput. Graph. Appl., 2006.

[14] M. Gillies and B. Spanlang. Real-time character engines comparing and
evaluating real-time character engines for virtual environments. Special
Issue on Presence, 2010.

[15] S. Jeschke, M. Wimmer, and W. Purgathofer. Image-based representa-
tions for accelerated rendering of complex scenes. In Eurographics 05
State of the Art Reports [STAR], pages 1–20. The Eurographics Asso-
ciation and The Image Synthesis Group, 2005. Vortrag: Eurographics,
Dublin, Irland; 2005-08-29 – 2005-09-02.

[16] L. Kavan, S. Collins, J. Zara, and C. O’Sullivan. Geometric skinning
with approximate dual quaternion blending. volume 27, page 105, New
York, NY, USA, 2008. ACM Press.

[17] L. Kavan, S. Dobbyn, S. Collins, J. Žára, and C. O’Sullivan. Polypos-
tors: 2d polygonal impostors for 3d crowds. In I3D ’08: Proceedings
of the 2008 symposium on Interactive 3D graphics and games, pages
149–155, New York, NY, USA, 2008. ACM.

[18] W. Lister, R.G. Laycock, and A.M. Day. A dynamic cache for real-time
crowd rendering. Computer Graphics Forum, 2010.

[19] T. Lorach. Gpu blend shapes. NVidia Whitepaper, 2007.

[20] N. Magnenat-Thalmann, R. Laperrire, D. Thalmann, and Université De
Montréal. Joint-dependent local deformations for hand animation and
object grasping. In In Proceedings on Graphics interface’88, pages 26–
33, 1988.

[21] E. Millan and I. Rudomin. Impostors and pseudo-instancing for gpu
crowd rendering. In GRAPHITE ’06: Proceedings of the 4th interna-
tional conference on Computer graphics and interactive techniques in

BIBLIOGRAPHY 65

Australasia and Southeast Asia, pages 49–55, New York, NY, USA,
2006. ACM.

[22] V. Pamplona, M. Oliveira, and L. Nedel. Game Programming Gems
VII, chapter Animating Relief Impostors Using Radial Basis Functions
Textures, pages 401–412. Charles River Media, Inc., Hingham, Mas-
sachusetts, 2008.

[23] J. Pettré, P. Ciechomski, J. Mäım, B. Yersin, J. Laumond, and D. Thal-
mann. Real-time navigating crowds: scalable simulation and rendering:
Research articles. Comput. Animat. Virtual Worlds, 17(3-4):445–455,
2006.

[24] F. Policarpo and M. Oliveira. Relaxed cone stepping for relief map-
ping. In GPU Gems 3: Programming Techniques for High-Performance
Graphics and General-Purpose Computation, pages 409–428. Addison-
Wesley Professional, 2007.

[25] F. Policarpo, M. Oliveira, and J. Comba. Real-time relief mapping
on arbitrary polygonal surfaces. In I3D ’05: Proceedings of the 2005
symposium on Interactive 3D graphics and games, pages 155–162, New
York, NY, USA, 2005. ACM.

[26] D. Pratt, S. Pratt, P. Barham, R. Barker, M. Waldrop, J. Ehlert, and
C. Chrislip. Humans in large-scale, networked virtual environments.
Presence, 6(5):547–564, 1997.

[27] B. Spanlang. Halca hardware acclerated library for character animation.
Technical report, 2009.

[28] L. Szirmay-Kalos and T. Umenhoffer. Displacement mapping on the
GPU - State of the Art. Computer Graphics Forum, 27(1), 2008.

[29] N. Tatarchuk. Dynamic parallax occlusion mapping with approximate
soft shadows. In I3D ’06: Proceedings of the 2006 symposium on In-
teractive 3D graphics and games, pages 63–69, New York, NY, USA,
2006. ACM.

[30] F. Tecchia and Y. Chrysanthou. Real-time rendering of densely pop-
ulated urban environments. In Proceedings of the Eurographics Work-
shop on Rendering Techniques 2000, pages 83–88, London, UK, 2000.
Springer-Verlag.

[31] F. Tecchia, C. Loscos, and Y. Chrysanthou. Image-based crowd ren-
dering. IEEE Comput. Graph. Appl., 22(2):36–43, 2002.

[32] T. Winkler, J. Drieseberg, M. Alexa, and K. Hormann. Multi-scale ge-
ometry interpolation. Computer Graphics Forum, 29(2):309–318, May
2010. Proceedings of Eurographics.

66 BIBLIOGRAPHY

Appendix A

Vertex Shader

The following is the vertex shader program of our impostors in GLSL.

// The array o f t rans format ion matr ices o f the bones . 68 i s the
cons idered maximum number o f bones .

uniform mat4 t rans forms [6 8] ;

// A l l the v e r t e x a t t r i b u t e s coming to the shader from the VBO

// The OBB ve r t e x coord ina t e s
attribute vec3 inVertex ;

// The v e r t e x t e x t u r e coord ina t e s . The t h i r d component has the
index o f the t e x t u r e in the t e x t u r e array corresponding to
the current f ace o f the OBB. The f ou r t h one has the index to
the t e x t u r e o f the oppo s i t e f ace o f the OBB.

attribute vec4 texCoord inates ;

// Numbering o f the impostor v e r t i c e s :
// p2−−−−−−p3
// | |
// | |
// | |
// p0−−−−−−p1

// The impostor v e r t e x a t t r i b u t e s (a l s o in the VBO)
attribute vec3 impostorPzero ; // impostor p0 (world space)
attribute vec3 impostorNormal ; // impostor normal (world space)
attribute vec3 impostorU ; // vec t o r p1−p0 (normal ized)
attribute vec3 impostorV ; // vec t o r p2−p0 (normal ized)
attribute vec2 impostorDepthFactor ; // vec2 ((z far−znear) / | | p1−p0

| | , (z far−znear) / | | p0−p2 | |)
attribute f loat impostorDepthRange ; // abs (z far−znear)

// The bone i d e n t i f y i n g number to which i s a s s o c i a t e d the
curren t v e r t e x

attribute f loat boneId ;

67

68 APPENDIX A. VERTEX SHADER

// A l l the vary ing parameters t ha t have to be passed to the
fragment shader but app l y ing the correspondent transform
matrix

varying vec3 coord ; // Vertex coord ina t e s (world space)
varying vec3 impPzero ;
varying vec3 normal ;
varying vec3 impU ;
varying vec3 impV ;
varying vec2 depthFactor ;
varying f loat depthRange ;

varying f loat bId ;

varying vec3 l i g h tD i r ;

varying mat3 rotMat ;

void main ()
{

int bone = int (boneId) ;
bId = boneId ;

// We take the transform matrix o f the current OBB
mat4 transformMat ;
transformMat = trans forms [bone] ;

// The ro t a t i on matrix comes from the transform matrix
rotMat [0] = vec3 (transformMat [0]) ; rotMat [1] = vec3 (

transformMat [1]) ; rotMat [2] = vec3 (transformMat [2]) ;

// inVertex has the v e r t e x coord ina t e s from the VBO.
// coord needs to have the f i n a l coord inates , a f t e r the

transform matrix i s app l i e d . That i s why we mu l t i p l y
inVertex by the transformMat .

coord = (transformMat ∗ vec4 (inVertex , 1 . 0)) . xyz ;

// impostorPzero i s a po in t and must a l s o be mu l t i p l i e d by
transformMat

impPzero = (transformMat ∗ vec4 (impostorPzero , 1 . 0)) . xyz ;

// impU and impU are v e c t o r s and j u s t need to be ro t a t e d .
// So , they are mu l t i p l i e d by rotMat .
normal = rotMat∗ impostorNormal ;
impU = rotMat∗ impostorU ;
impV = rotMat∗ impostorV ;

// These are magnitude va l u e s .
// Since the animations are r i g i d (t r a n s l a t i o n + ro t a t i on) ,

they do not need to be transformed .
// I f s c a l i n g was permit ted , they would .
depthFactor = impostorDepthFactor ;
depthRange = impostorDepthRange ;

69

// The t e x t u r e coord ina t e s do not change because o f the
animation

gl TexCoord [0] = texCoord inates ;

// We crea t e a l i g h t d i r e c t i o n vec to r
l i g h tD i r = normalize (vec3 (0 ,−1 ,1)) ;

// We f i n a l l y app ly the camera t rans format ion to the v e r t e x
coord ina t e s

gl Position = gl ModelViewProjectionMatrix ∗ vec4 (coord , 1 . 0)
;

}

70 APPENDIX A. VERTEX SHADER

Appendix B

Fragment Shader

The following is the fragment shader program of our impostors in GLSL.
Due to its extension we have divided it in three parts. The first one has
the declaration of all the input variables. To better understand them we
refer to Figure 3.15. The second part includes the function performing the
ray-heightfield intersection search with a linear search followed by a binary
one. The third and last part includes the main function of the fragment
shader.

B.1 Input

// Fragment shader used in the paper ”Omnidirec t iona l R e l i e f
Impostors ”

// Modif ied f o r the t h e s i s ”Output−S en s i t i v e Rendering o f
De ta i l ed Animated Characters f o r Crowd Simulat ion ”

// The array o f t rans format ion matr ices o f the bones . 68 i s the
cons idered maximum number o f bones . I t i s used here to
compute the co r r e c t z va lue o f the fragment

uniform mat4 t rans forms [6 8] ;

// The number o f s t e p s o f the l i n e a r and b inary search are
uniforms s e t by the user .

uniform int l i n e a r s e a r c h s t e p s ; // 16 i s recommended
uniform int b i na r y s e a r ch s t ep s ; // 7 i s recommended

// The 2 t exure arrays wi th the r e l i e f t e x t u r e s
uniform sampler2DArray sampler0 ; // RGBZ t e x t u r e array (f r on t

r e l i e f map)
uniform sampler2DArray sampler1 ; // normal map array (back

r e l i e f map)

uniform vec3 eye ; // v i ewpo in t coord ina t e s (world space)

// The bone i d e n t i f y i n g number to which i s a s s o c i a t e d the
curren t fragment

71

72 APPENDIX B. FRAGMENT SHADER

varying f loat bId ;

varying vec3 coord ; // fragment coord ina t e s (world space)

// Numbering o f the impostor v e r t i c e s :
// p2−−−−−−p3
// | |
// | |
// | |
// p0−−−−−−p1

// The impostor parameters
varying vec3 impPzero ; // impostor p0 (world space)
varying vec3 normal ; // impostor normal (world space)
varying vec3 impU ; // vec t o r p1−p0 (normal ized)
varying vec3 impV ; // vec t o r p2−p0 (normal ized)
varying vec2 depthFactor ; // vec2 ((z far−znear) / | | p1−p0 | | , (z far−

znear) / | | p0−p2 | |)
varying f loat depthRange ; // abs (z far−znear)

varying vec3 l i g h tD i r ; // The l i g h t d i r e c t i o n vec t o r

varying mat3 rotMat ; // The ro t a t i on matrix from the animation (
to be app l i e d to the normal and compute co r r e c t l i g h t n i n g)

B.2 Ray-Heightfiel Intersection Search

// Ray−su r f a c e i n t e r s e c t i o n code . Based on the paper by
Pol icarpo , O l i v e i ra , Comba , Real−Time Re l i e f Mapping on
Arb i t rary Polygona l Surfaces , I3D 2005

void r a y i n t e r s e c t b i n a r y s e a r c h (vec2 dp , vec2 ds , out f loat
best depth , out f loat be s t d ep th ou t s i d e)

{
f loat depth step = 1 .0 / f loat (l i n e a r s e a r c h s t e p s) ;
f loat s i z e = depth step ;
f loat depth = 0 . 0 ;
bes t depth = 1 . 0 ;
b e s t d ep th ou t s i d e = 0 . 0 ;

// l i n e a r search
// search from f r on t to back f o r f i r s t po in t i n s i d e the

o b j e c t

bool found = f a l s e ;
f o r (int i =0; i<l i n e a r s e a r c h s t e p s −1 && ! found ; i++)
{

depth += s i z e ;
vec2 newTexel = dp+ds∗depth ;

// i f the new t e x e l has coord ina t e s i n s i d e [0 ; 1]

B.2. RAY-HEIGHTFIEL INTERSECTION SEARCH 73

i f (newTexel . s <=1.0 && newTexel . s >=0.0 && newTexel . t
<=1.0 && newTexel . t >=0.0)

{
// the curren t l a y e r o f the t e x t u r e array i s encoded

in the 4 th t e x t u r e coord ina te
vec4 t= texture (sampler0 , vec3 (newTexel , gl TexCoord

[0] . p)) ; // The f r on t depth
vec4 t2= texture (sampler1 , vec3 (newTexel , gl TexCoord

[0] . p)) ; // The back depth

// i f f r on t and back depths are equal , we are on a
s p e c i a l case where the ray might be tangent to
the su r f a c e

// the r e f o r e , we j u s t check the i n t e r s e c t i o n wi th
the f r on t depth

i f (t . a == t2 . a)
{

i f (t . a <= depth) // i n s i d e
{

found = true ;
bes t depth=depth ; // s t o r e b e s t depth

}
}
e l s e // we check i f we are i n s i d e the su r f a c e us ing

the two depths
{

i f (t . a <= depth && t2 . a >= depth) // i n s i d e
{

found = true ;
bes t depth=depth ; // s t o r e b e s t depth

}
}

}
e l s e // i f we are out o f the t e x t u r e

discard ;
}

be s t d ep th ou t s i d e = depth − s i z e ;

// i f i n t e r s e c t i o n not found −> d i s ca rd the fragment
i f (! found) discard ;

depth = best depth ;

// b inary search around f i r s t po in t (depth) f o r c l o s e s t
match

f o r (int i =0; i<b i na r y s e a r ch s t ep s ; i++)
{

s i z e ∗=0.5; // b inary search
vec2 newTexel = dp+ds∗depth ;

vec4 t=texture (sampler0 , vec3 (newTexel , gl TexCoord [0] . p))
;

74 APPENDIX B. FRAGMENT SHADER

vec4 t2=texture (sampler1 , vec3 (newTexel , gl TexCoord [0] . p)
) ;

// as be fore , i f f r on t and back depths are equal , we are
on a s p e c i a l case where the ray might be tangent to

the su r f a c e
// the r e f o r e , we j u s t check the i n t e r s e c t i o n wi th

the f r on t depth
i f (t . a == t2 . a)
{

i f (t . a <= depth) // s t i l l i n s i d e
{

best depth = depth ; // b e s t d e p t h i n s i d e
depth −= 2.0 ∗ s i z e ;

}
e l s e

b e s t d ep th ou t s i d e = depth ;
}
e l s e // we check i f we are i n s i d e the su r f a c e us ing the

two depths
{

i f (t . a <= depth && t2 . a >= depth) // s t i l l i n s i d e
{

best depth = depth ; // b e s t d e p t h i n s i d e
depth −= 2.0 ∗ s i z e ;

}
e l s e

b e s t d ep th ou t s i d e = depth ;
}
depth+=s i z e ;

}
}

B.3 Main

void main ()
{

vec3 v = normalize (coord − eye) ; // view ray

vec3 vp = normalize (vec3 (dot (impU , v) ,dot (impV , v) ,−dot (
normal , v))) ;

vec2 s t a r tTexe l = gl TexCoord [0] . s t ;

vec2 d i r = depthFactor ∗ vp . xy / vp . z ;

f loat d in , d out ;
r a y i n t e r s e c t b i n a r y s e a r c h (s ta r tTexe l , d i r , d in , d out) ;
// a f t e r the search , d in has the depth j u s t i n s i d e the

su r f a c e and d out has the b e s t d e p t h j u s t ou t s i d e the

B.3. MAIN 75

su r f a c e .

vec2 s t i n = s ta r tTexe l + d in ∗ d i r ;
vec2 s t ou t = s ta r tTexe l + d out ∗ d i r ;

vec4 c o l o r i n = texture (sampler0 , vec3 (s t i n , gl TexCoord [0] .
p)) ;

vec4 c o l o r ou t = texture (sampler0 , vec3 (s t out , gl TexCoord
[0] . p)) ;

// we s e l e c t the b e s t o f the two depths (i n s i d e or out)
vec2 s t ;
vec4 c o l o r ;
i f (abs (c o l o r i n . a − d in) < abs (c o l o r ou t . a − d out))
{

s t = s t i n ;
c o l o r = c o l o r i n ;

}
e l s e
{

s t = s t ou t ;
c o l o r = co l o r ou t ;

}

vec3 surfaceNormal = texture (sampler1 , vec3 (st , gl TexCoord
[0] . p)) . xyz ;

// the su r f a c e normal i s encoded wi th va l u e s between [0 , 1] ,
we need to transform i t to have them between [−1 ,1] .

// to have a co r r e c t l i g h t n i n g we have to r o t a t e the normal
wi th the animation t rans format ion and mu l t i p l y i t by the
normal matrix .

surfaceNormal = gl NormalMatrix∗ rotMat ∗(surfaceNormal ∗2 .0 −
vec3 (1 . 0 , 1 . 0 , 1 . 0)) ;

// we app ly a s imple l i g h t n i n g
f loat i n t en s = dot (l i gh tD i r , surfaceNormal) ∗1 . 2 0 ;

vec4 r e sCo lo r=vec4 (c o l o r . rgb∗ in tens , 1 . 0) ;

gl FragColor = resCo lo r ;

}

	Introduction
	Introduction
	Objectives
	Contributions
	Organization

	State of the Art
	Character Animation and Skinning
	Crowd Rendering Acceleration
	Relief Mapping
	Conclusions

	Our Approach
	Overview
	Construction of the Impostors
	Real-Time Crowd Rendering
	Conclusions

	Experimental Results and Discussion
	Performance Tests
	Image Quality
	Discussion

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliografía
	Vertex Shader
	Fragment Shader
	Input
	Ray-Heightfiel Intersection Search
	Main

