1,381 research outputs found

    A Second Step Towards Complexity-Theoretic Analogs of Rice's Theorem

    Get PDF
    Rice's Theorem states that every nontrivial language property of the recursively enumerable sets is undecidable. Borchert and Stephan initiated the search for complexity-theoretic analogs of Rice's Theorem. In particular, they proved that every nontrivial counting property of circuits is UP-hard, and that a number of closely related problems are SPP-hard. The present paper studies whether their UP-hardness result itself can be improved to SPP-hardness. We show that their UP-hardness result cannot be strengthened to SPP-hardness unless unlikely complexity class containments hold. Nonetheless, we prove that every P-constructibly bi-infinite counting property of circuits is SPP-hard. We also raise their general lower bound from unambiguous nondeterminism to constant-ambiguity nondeterminism.Comment: 14 pages. To appear in Theoretical Computer Scienc

    Index theory of one dimensional quantum walks and cellular automata

    Full text link
    If a one-dimensional quantum lattice system is subject to one step of a reversible discrete-time dynamics, it is intuitive that as much "quantum information" as moves into any given block of cells from the left, has to exit that block to the right. For two types of such systems - namely quantum walks and cellular automata - we make this intuition precise by defining an index, a quantity that measures the "net flow of quantum information" through the system. The index supplies a complete characterization of two properties of the discrete dynamics. First, two systems S_1, S_2 can be pieced together, in the sense that there is a system S which locally acts like S_1 in one region and like S_2 in some other region, if and only if S_1 and S_2 have the same index. Second, the index labels connected components of such systems: equality of the index is necessary and sufficient for the existence of a continuous deformation of S_1 into S_2. In the case of quantum walks, the index is integer-valued, whereas for cellular automata, it takes values in the group of positive rationals. In both cases, the map S -> ind S is a group homomorphism if composition of the discrete dynamics is taken as the group law of the quantum systems. Systems with trivial index are precisely those which can be realized by partitioned unitaries, and the prototypes of systems with non-trivial index are shifts.Comment: 38 pages. v2: added examples, terminology clarifie

    Weakly-Unambiguous Parikh Automata and Their Link to Holonomic Series

    Get PDF
    We investigate the connection between properties of formal languages and properties of their generating series, with a focus on the class of holonomic power series. We first prove a strong version of a conjecture by Castiglione and Massazza: weakly-unambiguous Parikh automata are equivalent to unambiguous two-way reversal bounded counter machines, and their multivariate generating series are holonomic. We then show that the converse is not true: we construct a language whose generating series is algebraic (thus holonomic), but which is inherently weakly-ambiguous as a Parikh automata language. Finally, we prove an effective decidability result for the inclusion problem for weakly-unambiguous Parikh automata, and provide an upper-bound on its complexity

    Languages Generated by Iterated Idempotencies.

    Get PDF
    The rewrite relation with parameters m and n and with the possible length limit = k or :::; k we denote by w~, =kW~· or ::;kw~ respectively. The idempotency languages generated from a starting word w by the respective operations are wDAlso other special cases of idempotency languages besides duplication have come up in different contexts. The investigations of Ito et al. about insertion and deletion, Le., operations that are also observed in DNA molecules, have established that w5 and w~ both preserve regularity.Our investigations about idempotency relations and languages start out from the case of a uniform length bound. For these relations =kW~ the conditions for confluence are characterized completely. Also the question of regularity is -k n answered for aH the languages w- D 1 are more complicated and belong to the class of context-free languages.For a generallength bound, i.e."for the relations :"::kW~, confluence does not hold so frequently. This complicatedness of the relations results also in more complicated languages, which are often non-regular, as for example the languages WWithout any length bound, idempotency relations have a very complicated structure. Over alphabets of one or two letters we still characterize the conditions for confluence. Over three or more letters, in contrast, only a few cases are solved. We determine the combinations of parameters that result in the regularity of wDIn a second chapter sorne more involved questions are solved for the special case of duplication. First we shed sorne light on the reasons why it is so difficult to determine the context-freeness ofduplication languages. We show that they fulfiH aH pumping properties and that they are very dense. Therefore aH the standard tools to prove non-context-freness do not apply here.The concept of root in Formal Language ·Theory is frequently used to describe the reduction of a word to another one, which is in sorne sense elementary.For example, there are primitive roots, periodicity roots, etc. Elementary in connection with duplication are square-free words, Le., words that do not contain any repetition. Thus we define the duplication root of w to consist of aH the square-free words, from which w can be reached via the relation w~.Besides sorne general observations we prove the decidability of the question, whether the duplication root of a language is finite.Then we devise acode, which is robust under duplication of its code words.This would keep the result of a computation from being destroyed by dupli cations in the code words. We determine the exact conditions, under which infinite such codes exist: over an alphabet of two letters they exist for a length bound of 2, over three letters already for a length bound of 1.Also we apply duplication to entire languages rather than to single words; then it is interesting to determine, whether regular and context-free languages are closed under this operation. We show that the regular languages are closed under uniformly bounded duplication, while they are not closed under duplication with a generallength bound. The context-free languages are closed under both operations.The thesis concludes with a list of open problems related with the thesis' topics

    Why Philosophers Should Care About Computational Complexity

    Get PDF
    One might think that, once we know something is computable, how efficiently it can be computed is a practical question with little further philosophical importance. In this essay, I offer a detailed case that one would be wrong. In particular, I argue that computational complexity theory---the field that studies the resources (such as time, space, and randomness) needed to solve computational problems---leads to new perspectives on the nature of mathematical knowledge, the strong AI debate, computationalism, the problem of logical omniscience, Hume's problem of induction, Goodman's grue riddle, the foundations of quantum mechanics, economic rationality, closed timelike curves, and several other topics of philosophical interest. I end by discussing aspects of complexity theory itself that could benefit from philosophical analysis.Comment: 58 pages, to appear in "Computability: G\"odel, Turing, Church, and beyond," MIT Press, 2012. Some minor clarifications and corrections; new references adde

    Computer Science Logic 2018: CSL 2018, September 4-8, 2018, Birmingham, United Kingdom

    Get PDF

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 31 regular papers presented in this volume were carefully reviewed and selected from 98 submissions. The papers cover topics such as categorical models and logics; language theory, automata, and games; modal, spatial, and temporal logics; type theory and proof theory; concurrency theory and process calculi; rewriting theory; semantics of programming languages; program analysis, correctness, transformation, and verification; logics of programming; software specification and refinement; models of concurrent, reactive, stochastic, distributed, hybrid, and mobile systems; emerging models of computation; logical aspects of computational complexity; models of software security; and logical foundations of data bases.

    Algebraic Systems and Pushdown Automata

    Full text link
    The theory of algebraic power series in noncommuting variables, as we un-derstand it today, was initiated in [2] and developed in its early stages by the French school. The main motivation was the interconnection with context-free grammars: the defining equations were made to correspond to context-fre
    corecore