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Abstract

Rice’s Theorem states that every nontrivial language property of the recursively enumerable
sets is undecidable. Borchert and Stephan (1997) initiated the search for complexity-theoretic
analogs of Rice’s Theorem. In particular, they proved that every nontrivial counting property of
circuits is UP-hard, and that a number of closely related problems are SPP-hard.
The present paper studies whether their UP-hardness result itself can be improved to SPP-

hardness. We show that their UP-hardness result cannot be strengthened to SPP-hardness unless
unlikely complexity class containments hold. Nonetheless, we prove that every P-constructibly
bi-in�nite counting property of circuits is SPP-hard. We also raise their general lower bound from
unambiguous nondeterminism to constant-ambiguity nondeterminism. c© 2000 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Rice’s Theorem ([28, 29]; see also [4]) states that every nontrivial language property
of the recursively enumerable sets is either RE-hard or coRE-hard and thus is certainly
undecidable (a corollary that itself is often referred to as Rice’s Theorem).
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Theorem 1 (Rice’s Theorem, Version I). Let A be a nonempty proper subset of the
class of recursively enumerable sets. Then either the halting problem or its comple-
ment many-one reduces to the problem: Given a Turing machine M; is L(M)∈A?

Corollary 2 (Rice’s Theorem, Version II). Let A be a nonempty proper subset of the
class of recursively enumerable sets. Then the following problem is undecidable: Given
a Turing machine M; is L(M)∈A?

Rice’s Theorem conveys quite a bit of information about the nature of programs
and their semantics. Programs are completely nontransparent. One can (in general)
decide nothing – emptiness, nonemptiness, in�niteness, etc. – about the languages of
given programs other than the trivial fact that each accepts some language and that
language is a recursively enumerable language. 3 Recently, Kari [21] has proven, for
cellular automata, an analog of Rice’s Theorem: All nontrivial properties of limit sets
of cellular automata are undecidable.
A bold and exciting paper of Borchert and Stephan [4] proposes and initiates the

search for complexity-theoretic analogs of Rice’s Theorem. Borchert and Stephan note
that Rice’s Theorem deals with properties of programs, and they suggest as a promising
complexity-theoretic analog properties of Boolean circuits. In particular, they focus
on counting properties of circuits. Let N denote {0; 1; 2; : : :}. Boolean functions are
functions that for some n map {0; 1}n to {0; 1}. Circuits built over Boolean gates (and
encoded in some standard way – in fact, for simplicity of expression, we will often
treat a circuit and its encoding as interchangeable) are ways of representing Boolean
functions. As Borchert and Stephan point out, the parallel is a close one. Programs
are concrete objects that correspond in a many-to-one way with the semantic objects,
languages. Circuits (encoded into �∗) are concrete objects that correspond in a many-
to-one way with the semantic objects, Boolean functions. Given an arity n circuit
c; #(c) denotes under how many of the 2n possible input patterns c evaluates to 1.

De�nition 3. (1) [4] Each A⊆N is a counting property of circuits. If A 6= ∅, we say
it is a nonempty property, and if A 6=N, we say it is a proper property.

3 One must stress that Rice’s Theorem refers to the languages accepted by the programs (Turing machines)
rather than to machine-based actions of the programs (Turing machines) – such as whether they run for at
least seven steps on input 1776 (which is decidable) or whether for some input they do not halt (which is
not decidable, but Rice’s Theorem does not speak directly to this issue, that is, Rice’s Theorem does not
address the computability of the set {M | there is some input x on which M (x) does not halt}).
We mention in passing a related research line about “independence results in computer science”. That line

started with work of Hartmanis and Hopcroft [16] based on the nontransparency of machines, and has now
reached the point where it has been shown, by Regan, that for each �xed recursively axiomatizable proof
system there is a language with certain properties that the system cannot prove, no matter how the language
is represented in the system (say, by a Turing machine accepting it). For instance, for each �xed recursively
axiomatizable proof system there is a low-complexity language that is in�nite, but for no Turing machine
accepting the language can the proof system prove that that Turing machine accepts an in�nite language.
See [26, 27] and the references therein.
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(2) [4] Let A be a counting property of circuits. The counting problem for A,
Counting(A), is the set of all circuits c such that #(c)∈A.
(3) (see Garey and Johnson [10]) For each complexity class C and each set B⊆�∗,

we say B is C-hard if (∀L∈C) [L6p
TB], where as is standard 6

p
T denotes polynomial-

time Turing reducibility.
(4) (following usage of [4]) Let A be a counting property and let C be a complexity

class. By convention, we say that counting property A is C-hard if the counting problem
for A, Counting(A), is C-hard. (Note in particular that by this we do not mean C⊆PA
– we are speaking just of the complexity of A’s counting problem.)

For succinctness and naturalness, and as it introduces no ambiguity here, throughout
this paper we use “counting” to refer to what Borchert and Stephan originally referred
to as “absolute counting”. For completeness, we mention that their sets Counting(A)
are not entirely new: For each A, Counting(A) is easily seen (in light of the fact that
circuits can be parsimoniously simulated by Turing machines, which themselves, as
per the references cited in the proof of Theorem 9, can be parsimoniously transformed
into Boolean formulas) to be many-one equivalent to the set, known in the literature
as SATA or A-SAT, {f | the number of satisfying assignments to Boolean formula f
is an integer contained in the set A} [5, 15]. Thus, Counting(A) inherits the various
properties that the earlier papers on SATA established for SATA, such as completeness
for certain counting classes. We will at times draw on this earlier work to gain insight
into the properties of Counting(A).
The results of Borchert and Stephan that led to the research reported on in the

present paper are the following. Note that Theorem 4 is a partial analog of The-
orem 1, 4 and Corollary 5 is a partial analog of Corollary 2. UP

⊕
coUP denotes

{A⊕B |A∈UP∧B∈ coUP}, where A⊕B= {0x | x∈A}∪ {1y |y∈B}.

Theorem 4 (Borchert and Stephan [4], see also the comments at the start of the proof
of Theorem 9). Let A be a nonempty proper subset of N. Then one of the following
three classes is 6p

m-reducible to Counting(A) : NP; coNP; or UP
⊕
coUP.

Corollary 5 (Borchert and Stephan [4], see also the comments at the start of the proof
of Theorem 9). Every nonempty proper counting property of circuits is UP-hard.

Borchert and Stephan’s paper proves a number of other results – regarding an arti-
�cial existentially quanti�ed circuit type yielding NP-hardness, de�nitions and results
about counting properties over rational numbers and over Z, and so on – and we highly
commend their paper to the reader. They also give a very interesting motivation. They

4 Passing on a comment from an anonymous referee, we mention that the reader may want to also compare
the UP

⊕
coUP occurrence in Borchert and Stephan [4] with the so-called Rice–Shapiro theorem (see, e.g.,

[27, 30]). We mention that in making such a comparison one should keep in mind that the Rice–Shapiro
theorem deals with showing non-membership in RE and coRE, rather than with showing many-one hardness
for those classes.
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show that, in light of the work of Valiant and Vazirani [35], any nontrivial counting
property of circuits is hard for either NP or coNP, with respect to randomized re-
ductions. Their paper and this one seek to �nd to what extent or in what form this
behavior carries over to deterministic reductions.
The present paper makes the following contributions. First, we extend the above-

stated results of Borchert and Stephan, Theorem 4 and Corollary 5. Regarding the
latter, from the same hypothesis as their Corollary 5 we derive a stronger lower bound
– UPO(1)-hardness. That is, we raise their lower bound from unambiguous nondeter-
minism to low-ambiguity nondeterminism. Second, we show that our improved lower
bound cannot be further strengthened to SPP-hardness unless an unlikely complexity
class containment – SPP⊆PNP – occurs. Third, we nonetheless under a very natural hy-
pothesis raise the lower bound on the hardness of counting properties to SPP-hardness.
The natural hypothesis strengthens the condition on the counting property to require
not merely that it is nonempty and proper, but also that it is in�nite and coin�nite in
a way that can be certi�ed by polynomial-time machines.

2. The complexity of counting properties of circuits

All the notations and de�nitions in this paragraph are standard in the literature. Fix
the alphabet �= {0; 1}. FP denotes the class of polynomial-time computable func-
tions from �∗ to �∗. Given any two sets A; B⊆�∗, we say A polynomial-time
many-one reduces to B (A6p

m B) if (∃f∈FP) (∀x∈�∗) [x∈A⇔f(x)∈B]. For
each set A; ‖A‖ denotes the number of elements in A. The length of each string
x∈�∗ is denoted by |x|. We use DPTM (respectively, NPTM) as a shorthand for
deterministic polynomial-time Turing machine (nondeterministic polynomial-time Tur-
ing machine). Turing machines and their languages (with or without oracles) are
denoted as is standard, as are complexity classes (with or without oracles),
e.g., M; MA; L(M); L(MA), P, and PA. We allow both languages and functions to
be used as oracles. In the latter case, the model is the standard one, namely, when
query q is asked to a function oracle f the answer is f(q). For each k ∈N, the
notation “[k]” denotes a restriction of at most k oracle questions (in a sequential –
i.e., “adaptive” or “Turing” – fashion). For example, PFP[2] denotes {L | (∃DPTMM)
(∃f∈FP) [L=L(Mf)∧ (∀x∈�∗) [Mf(x) makes at most two oracle queries]]},
which happens to be merely an ungainly way of describing the complexity class
P. The notation “[O(1)]” denotes that, for some constant k, a “[k]” restriction
holds.
We will de�ne, in a uniform way via counting functions, some standard ambiguity-

limited classes and counting classes. To do this, we will take the standard “#” operator
([32] for the concept and [36] for the notation, see the discussion in [19]) and will make
it 
exible enough to describe a variety of types of counting functions that are well-
motivated by existing language classes. In particular, we will add a general restriction
on the maximum value it can take on. (For the speci�c case of a polynomial restriction
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such an operator, #few, was already introduced by Hemaspaandra and Vollmer [19], see
below).

De�nition 6. For each function g :N→N and each class C, de�ne #g·C={f :�∗→N|
(∃L∈C) (∃ polynomial s) (∀x∈�∗) [f(x)6g(|x|)∧‖{y | |y|= s(|x|)∧ 〈x; y〉 ∈L}‖=
f(x)]}.

Note that for the very special case of C=P, which is the case of importance in
the present paper, this de�nition simply yields classes that speak about the number of
accepting paths of Turing machines that obey some constraint on their number of
accepting paths. In particular, the following clearly holds for each
g : #g · P= {f :�∗→N | (∃ NPTM N ) (∀x∈�∗) [N (x) has exactly f(x) accepting
paths and f(x)6g(|x|)]}.
In using De�nition 6, we will allow a bit of informality regarding describing the

functions g. For example, we will write #1 when formally we should write #�x:1, and
so on in similar cases. Also, we will now de�ne some versions of the #g operator that
focus on collections of bounds of interest to us.

De�nition 7. (1) For each class C; #const · C= {f :�∗→N | (∃k ∈N) [f∈ #k · C]}.
(2) (Hemaspaandra and Vollmer [19]) For each class C; #few ·C= {f :�∗→N | (∃

polynomial s) [f∈ #s · C]}.

De�nition 8. (1) [34] #P= {f :�∗→N | (∃ NPTM N ) (∀x∈�∗) [N (x) has exactly
f(x) accepting paths]}.
(2) [33] UP= {L | (∃f∈ #1 · P) (∀x∈�∗) [x∈L⇔f(x)¿0]}.
(3) ([2], see also [37]) For each k ∈N−{0}; UP6k = {L | (∃f∈ #k ·P) (∀x∈�∗) [x∈

L⇔f(x)¿0]}.
(4) ([20], see also [2]) UPO(1) = {L | (∃f∈ #const · P) (∀x∈�∗) [x∈L⇔f(x)¿0]}.

(Equivalently, UPO(1) =
⋃
k¿1 UP6k .)

(5) [1] FewP= {L | (∃f∈ #few · P) (∀x∈�∗) [x∈L⇔f(x)¿0]}.
(6) [7] Few=P(#few·P) [1].
(7) Const =P(#const·P) [O(1)]. 5

(8) [8, 24] SPP= {L | (∃f∈ #P) (∃g∈FP) (∀x∈�∗) [(x =∈L⇔f(x)= 2|g(x)|)∧ (x∈L
⇔f(x)= 2|g(x)| + 1)]}.

It is well known that UP=UP61⊆UP62⊆ · · ·⊆UPO(1)⊆FewP⊆Few⊆SPP (the
�nal containment is due to K�obler et al. [22], see also [8] for a more general result),
and clearly UPO(1)⊆Const⊆Few. SPP plays a central role in much of complexity
theory (see [9]), and in particular is closely linked to the closure properties of #P
[24]. Regarding relationships with the polynomial hierarchy, P⊆UP⊆FewP⊆NP, and
Few⊆PFewP (so Few⊆PNP). It is widely suspected that SPP*PH (where PH denotes

5 As we will note in the proof of Theorem 9, P(#const·P) [O(1)] = P(#const·P) [1]. Thus, the de�nition of Const
is more analogous to the de�nition of Few than one might realize at �rst glance.
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the polynomial hierarchy), though this is an open research question. UP, UPO(1), and
FewP are tightly connected to the issue of whether one-way functions exist [1, 14, 20],
and Watanabe [37] has shown that P=UP if and only if P=UPO(1).
Intuitively, UP captures the notion of unambiguous nondeterminism, FewP allows

polynomially ambiguous nondeterminism and, most relevant for the purposes of the
present paper, UPO(1) allows constant-ambiguity nondeterminism. Corollary 10 raises
the UP lower bound of Borchert and Stephan (Corollary 5) to a UPO(1) lower bound.
This result is obtained via the even stronger bound provided by Theorem 9, which
itself extends Theorem 4.

Theorem 9. Let A be a nonempty proper subset of N. Then one of the following
three classes is 6p

m-reducible to Counting(A): NP; coNP; or Const.

Corollary 10. Every nonempty proper counting property of circuits is UPO(1)-hard
(indeed; is even UPO(1)-6

p
1−tt-hard

6 ):

Our proof applies a constant-setting technique that Cai and Hemaspaandra (then
Hemachandra) [7] used to prove that FewP⊆⊕P, and that K�obler et al. [22] extended
to show that Few⊆SPP. Borchert, Hemaspaandra, and Rothe [3] have used the method
to study the complexity of equivalence problems for OBDDs (ordered binary decision
diagrams) and other structures.

Proof of Theorem 9. Let A be a nonempty proper subset of N. The paper of Borchert
and Stephan [4] (see Theorem 4 above) and – using di�erent nomenclature – earlier
papers [5, 15] have shown that (a) if A is �nite and nonempty, then Counting(A) is
6p
m-hard for coNP, and (b) if A is co�nite and a proper subset of N, then Counting(A)

is 6p
m-hard for NP.

We will now show that if A is in�nite and coin�nite, then Counting(A) is 6p
m-hard

for Const. Actually, it is not hard to see that P(#const·P) [O(1)] = P(#const·P) [1], and so we
need deal just with P(#const·P) [1]. 7 The reason the just-mentioned equality holds is that
since each of the constant number of questions (say v) has at most a constant number
of possible answers (say w) one can by brute force accept each P(#w·P) [v] language
via DPTMs that make at most (wv+1 − 1)=(w− 1) queries in a truth-table fashion to a
function (in fact, the same function) from #w ·P. However, the same encoding argument
([7], see also [25]) that shows that bounded-truth-table access to a #P function can be
replaced by one query to a #P function in fact also shows that (wv+1−1)=(w−1)-truth-
table access to a #w · P function can be replaced by one query to a #

w
wv+1−1
w−1 −1

· P
function.

6 Where 6p
1−tt as is standard denotes polynomial-time 1-truth-table reductions [23].

7 This is a property that seems to be deeply dependent on the “const”-ness. For example, it is not known
whether P#P[1] = P#P[2], and indeed it is known that if this seemingly unlikely equality holds then two
complexity classes associated with self-specifying machines are equal [18].
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Let B be an arbitrary set in P(#const·P) [1], and let B∈P(#const·P) [1] be witnessed by some
DPTM M that makes at most one query (and without loss of generality we assume that
on each input x it in fact makes exactly one query) to some function h∈ #const ·P. Let
N ′ be some NPTM and let k be some constant such that for each string z ∈�∗; N ′(z)
has exactly h(z) accepting paths and h(z)6k. Such a machine exists by the equality
mentioned just after De�nition 6. For each input x to M , let qx be the single query to
h in the run of M (x).
We will call a nonnegative integer ‘ such that ‘∈A and ‘+1 =∈A a boundary event

(of A), and we will in such cases call ‘+1 a boundary shadow (see, for comparison,
[11–13]). Since A is in�nite and coin�nite, note that it has in�nitely many boundary
events. We now de�ne a function g∈ #P such that

(∀x∈�∗) [Mh(x) accepts⇔ g(x)∈A]: (1)

We will do so by mapping x for which Mh(x) accepts to boundary events, and by
mapping x for which Mh(x) rejects to boundary shadows. To de�ne g, we now describe
an NPTM N that witnesses g∈ #P.
On input x; N �rst computes the oracle query qx of M (x). Then N (x) chooses k+1

constants c0; c1; : : : ; ck as follows.
M�z:j(x)∈{0; 1} denotes the result of the computation of M (x) assuming the answer

of the oracle was h(qx)= j, where our convention is that M�z:j(x)= 0 stands for “reject”
and M�z:j(x)= 1 stands for “accept”. Let a0 be the least boundary event of A (recall
that boundary events are nonnegative integers, and thus it does make sense to speak
of the least boundary event). Initially, choose

c0 =

{
a0 if M�z:0(x)= 1;

a0 + 1 if M�z:0(x)= 0:

Successively, for i=1; : : : ; k, do the following:
• Let c0; : : : ; ci−1 be the constants that have already been chosen. For each i∈N; ( i0 )=
1 as is standard. Let bi=(

i
0 )c0 + (

i
1 )c1 + (

i
2 )c2 + · · ·+ ( i

i−1 )ci−1.
• Let ai be the least boundary event of A such that bi6ai.
• Set the constant

ci=
{
ai − bi if M�z:i(x)= 1;
ai + 1− bi if M�z:i(x)= 0:

After having chosen these constants, 8 N (x) guesses an integer j∈{0; 1; : : : ; k}, and
immediately splits into c0 accepting paths if the guess was j=0. For each j¿0 guessed,
N (x) nondeterministically guesses each j-tuple of distinct paths of N ′(qx). On each such
path of N (x), where the j-tuple (�1; �2; : : : ; �j) of paths of N ′(qx) has been guessed,

8 Note that as 2k+1 is also a constant we could alternatively simply build into the machine N a table that,
for each of the 2k+1 behavior patterns M can have on an input (in terms of whether it accepts or rejects
for each given possible answer from the oracle), states what constants c0; : : : ; ck to use. The procedure just
given would be used to decide the values of this table, which would then be hardwired into N .
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N (x) splits into exactly cj accepting paths if each �m; 16m6j, is an accepting path
of N ′(qx). If, however, for some 16m6j; �m is a rejecting path of N ′(qx), then N (x)
simply rejects (along the current path). This completes the description of N .
Recall that h(qx)∈{0; 1; : : : ; k} is the true answer of the oracle. Then, by the above

construction, the number of accepting paths of N (x) is

g(x) = c0 +
(
h(qx)
1

)
c1 +

(
h(qx)
2

)
c2 + · · ·+

(
h(qx)

h(qx)− 1
)
ch(qx)−1

+
(
h(qx)
h(qx)

)
ch(qx):

However, ch(qx) has been chosen such that g(x)= bh(qx) + ch(qx) = ah(qx) ∈A if Mh(x)
accepts, and g(x)= bh(qx)+ch(qx) = ah(qx)+1 =∈A if Mh(x) rejects. Since each ai; 06i6k,
is a boundary event and each ai + 1; 06i6k, is a boundary shadow, this completes
our proof of Eq. (1).
By the well-known observation (mentioned by Garey and Johnson [10, p. 169], see

also the primary sources [31, 34]) that the many-one reductions of the Cook–Karp–
Levin Theorem can be altered so as to be “parsimonious”, there is a 6p

m-reduction
that on input x (N is not an input to this 6p

m-reduction, but rather is hardwired
into the reduction) outputs a Boolean formula �x(y1; : : : ; yn), where n is polynomial
in |x|, such that the number of satisfying assignments of �x(y1; : : : ; yn) equals g(x).
Let c�x(y1; : : : ; yn) denote (the representation of) a circuit for that formula. There is
a DPTM implementing this formula-to-circuit transformation. Our reduction from B
to Counting(A) is de�ned by f(x)= c�x(y1; : : : ; yn). Clearly, f is polynomial-time
computable, which together with Eq. (1) implies B6p

m Counting(A) via f.

Corollary 10 raised the lower bound of Corollary 5 from UP to UPO(1). It is natural
to wonder whether the lower bound can be raised to SPP. This is especially true in
light of the fact that Borchert and Stephan obtained SPP-hardness results for their
notions of “counting problems over Z” and “counting problems over the rationals”;
their UP-hardness result for standard counting problems (i.e., over N) is the short leg
of their paper. However, we note that extending the hardness lower bound to SPP
under the same hypothesis seems unlikely. Let BH denote the Boolean hierarchy [6].
It is well-known that NP⊆BH⊆PNP⊆PH.

Proposition 11. If A⊆N is �nite or co�nite; then Counting(A)∈BH.

This result needs no proof, as it follows easily from Lemma 3.1 and Theorem 3.1.1(a)
of [5] (those results exclude the case 0∈A but their proofs clearly apply also to that
case) or from [15, Theorem 15], in light of the relationship between Counting(A)
and SATA mentioned earlier in the present paper. Similarly, from earlier work one
can conclude that, though for all �nite and co�nite A it holds that Counting(A) is
in the Boolean hierarchy, these problems are not good candidates for complete sets
for that hierarchy’s higher levels – or even its second level. In particular, from the
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approach of the theorem and proof of [5, Theorem 3.1.2] (see also [15, Theorem 15])
it is not too hard to see that (∃B) [(∀ �nite A) [Counting(A) is not 6p; B

m -hard for
NPB] ∧ (∀ co�nite A) [Counting(A) is not 6p; B

m -hard for coNPB]].
In light of the fact that SPP-hardness means SPP-6p

T-hardness, the bound of
Proposition 11 yields the following result (one can equally well state the stronger
claim that no �nite or co�nite counting property of circuits is SPP-6p

m-hard unless
SPP⊆BH).

Corollary 12. No �nite or co�nite counting property of circuits is SPP-hard unless
SPP⊆PNP.

Though we have not in this paper discussed models of relativized circuits and rela-
tivized formulas to allow this work to relativize cleanly (and we do not view this as
an important issue), we mention in passing that there is a relativization in which SPP
is not contained in PNP (indeed, relative to which SPP strictly contains the polynomial
hierarchy) [9].
Corollary 12 makes it clear that if we seek to prove the SPP-hardness of counting

properties, we must focus only on counting properties that are simultaneously in�nite
and coin�nite. Even this does not seem su�cient. The problem is that there are in�nite,
coin�nite sets having “gaps” so huge as to make the sets have seemingly no interest-
ing usefulness at many lengths (consider, to take one example the set {i | (∃j) [i=
AckermannFunction(j; j)]}). Of course, in a recursion-theoretic context this would
be no problem, as a Turing machine in the recursion-theoretic world is free from time
constraints and can simply run until it �nds the desired structure (which we will see
is a boundary event). However, in the world of complexity theory we operate within
(polynomial) time constraints. Thus, we consider it natural to add a hypothesis, in our
search for an SPP-hardness result, requiring that in�niteness and coin�niteness of a
counting property be constructible in a polynomial-time manner.
Recall that a set of nonnegative integers is in�nite exactly if it has no largest element.

We will say that a set is P-constructibly in�nite if there is a polynomial-time function
that yields elements of the set at least as long as each given input.

De�nition 13. (1) Let B⊆�∗. We say that B is P-constructibly in�nite if

(∃f∈FP) (∀x∈�∗) [f(x)∈B ∧ |f(x)|¿|x|]:

(2) Let us adopt the standard bijection between �∗ and N – the natural number i
corresponds to the lexicographically (i + 1)st string in �∗ : 0↔ �; 1↔ 0; 2↔ 1;
3↔ 00, etc. If A⊆N, we say that A is P-constructibly in�nite if A, viewed as a
subset of �∗ via this bijection, is P-constructibly in�nite according to Part 1 of
this de�nition.

(3) If A⊆�∗ and A (or A⊆N and N − A) are P-constructibly in�nite, we will say
that A is P-constructibly bi-in�nite.
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The above is our formal, type-correct de�nition, and is the de�nition we employ
within our proof of Theorem 14. However, Part 2 of the de�nition is a bit long.
Following a referee’s suggestion, as an aside we mention a di�erent, more intuitive
de�nition that happens to yield the same class. Let us say that A⊆N belongs to NICE
if there is a polynomial-time function g (mapping from N to N) such that for all n∈N
we have g(n)∈A and |g(n)|¿|n|, where both the explicit “length-of”s (|g(n)| and |n|)
and the one implicit in speaking of a “polynomial-time function” are with respect to the
standard way of writing integers in binary without super
uous leading zeros. Though
this de�nition di�ers from that of Part 2 of De�nition 13 (e.g., the boundaries between
lengths fall at di�erent places), it in fact is not too hard to see that it does de�ne
exactly the same class; that is, NICE is exactly {A⊆N |A is P-constructibly in�nite}.
Note that some languages that are in�nite (respectively, bi-in�nite) are not P-cons-

tructibly in�nite (respectively, bi-in�nite), e.g., languages with huge gaps between suc-
cessive elements.
Borchert and Stephan [4] also study “counting problems over the rationals”, and in

this study they use a root-�nding-search approach to establishing lower bounds. In the
following proof, we apply this type of approach (by which we mean the successive
interval contraction of the same 
avor used when trying to capture the root of a
function on [a; b] when one knows initially that, say, f(a)¿0 and f(b)¡0) to counting
problems (over N). In particular, we use the P-constructibly bi-in�nite hypothesis to
“trap” a boundary event of A.

Theorem 14. Every P-constructibly bi-in�nite counting property of circuits is SPP-
hard.

Proof. Let A⊆N be any P-constructibly bi-in�nite counting property of circuits. Let L
be any set in SPP. Since L∈SPP, there are functions f∈ #P and g∈FP such that, for
each x∈�∗: (x∈L⇔ f(x)= 2|g(x)| +1)∧ (x =∈L⇔ f(x)= 2|g(x)|). Let h and h be FP
functions certifying that A and A are P-constructibly in�nite, in the exact sense of Part 2
of De�nition 13. We will describe a DPTM N that 6p

T-reduces L to Counting(A). For
clarity, let ŵ henceforth denote the natural number that in the above bijection between
N and �∗ corresponds to the string w. For convenience, we will sometimes view A as
a subset of N and sometimes as a subset of �∗ (and in the latter case we implicitly
mean the transformation of A to strings under the above-mentioned bijection).
Since clearly A6p

mCounting(A), 9 we for convenience will sometimes informally
speak as if the set A (viewed via the bijection as a subset of �∗) is an oracle of
the reduction. Formally, when we do so, this should be viewed as a shorthand for the

9 Either one can encode a string n (corresponding to the number n̂ in binary) directly into a circuit cn
such that #(cn)= n̂ (which is easy to do), or one can note the following indirect transformation: Let N ′
be an NPTM that on input n produces exactly n̂ accepting paths. Using a parsimonious Cook–Karp–Levin
reduction (as described earlier), we easily obtain a family of circuits { c̃n}n∈�∗ such that, for each n∈�∗,
#(̃cn)= n̂.
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complete 6p
T-reduction that consists of the 6

p
T-reduction between L and A followed

by the 6p
m-reduction between A and Counting(A).

We now describe the machine N . On input x; |x|= n, N proceeds in three steps. (As
a shorthand, we will consider x �xed and will write N rather than N Counting (A)(x).)
(1) N runs h and h on suitable inputs to �nd certain su�ciently large strings in A

and A. In particular, let h(0|g(x)|+1)=y. So we have y =∈A and |y|¿|g(x)|+1, and thus
ŷ¿2|g(x)|+1−1¿2|g(x)|. Recall that |x|= n. Since both h and g are in FP, there exists a
polynomial p such that |y|6p(n), and thus certainly ŷ¡2p(n)+1. So let h(0p(n)+2)= z,
which implies z ∈A and |z|¿p(n)+2. Thus, ẑ¿2p(n)+2−1¿2p(n)+1¿ŷ. Since h∈FP,
there clearly exists a polynomial q such that ẑ¡2q(n). To summarize, N has found in
time polynomial in |x| two strings y =∈A and z ∈A such that 2|g(x)|6ŷ¡ẑ¡2q(n).
(2) N performs a search on the interval [ ŷ; ẑ ]⊆N to �nd some û∈N that is a bound-

ary event of A. That is, û will satisfy: (a) ŷ6 û6 ẑ, (b) û =∈A, and (c) û + 1∈A.
Since ẑ¡2q(n), the search will terminate in time polynomial in |x|. For complete-
ness we mention the very standard algorithm to search to �nd a boundary event of
A (recall the comment above regarding access to A being in e�ect available to the
algorithm):

Input ŷ and ẑ satisfying ŷ¡ ẑ; ŷ =∈A, and ẑ ∈A.
Output û, a boundary event of A satisfying ŷ6 û6 ẑ.
û := ŷ;
while ẑ¿û+1 do

â := b û+̂z2 c; if â =∈A then û := â else ẑ := â
end while

(3) Now consider the #P function e(〈m; x〉)=m+f(x) and the underlying NPTM E
witnessing that e∈ #P. Let dE be the parsimonious Cook–Karp–Levin reduction that on
each input 〈m; x〉 outputs a circuit (representation) c̃〈m; x〉 such that #(c̃〈m; x〉)= e(〈m; x〉).
Recall that N has already computed û (which itself depends on x and the oracle).
N , using dE to build its query, now queries its oracle, Counting(A), as to whether
c̃〈̂u−2|g(x)| ; x〉 ∈ Counting(A), and N accepts its input x if and only if the answer is “yes”.
This completes the description of N .
As argued above, N runs in polynomial time. We have to show that it correctly

6p
T-reduces L to Counting(A). Assume x =∈L. Then f(x)= 2|g(x)|, and thus

e(〈û − 2|g(x)|; x〉)= û =∈A. This implies that the answer to the query “ c̃〈̂u−2|g(x)| ; x〉 ∈
Counting(A)?” is “no”, and so N rejects x. Analogously, if x∈L, then f(x)=
2|g(x)| + 1, and thus e(〈û− 2|g(x)|; x〉)= û+ 1∈A, and so N accepts x.

Finally, though we have stressed ways in which hypotheses that we feel are natu-
ral yield hardness results, we mention that for a large variety of complexity classes
(amongst them R, coR, BPP, PP, and FewP) one can state somewhat arti�cial hy-
potheses for A that ensure that Counting(A) is many-one hard for the given class.
For example, if A is any set such that either {i | i is a boundary event of A} is
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P-constructibly in�nite or {i | i is a boundary event of A} is P-constructibly in�nite,
then Counting(A) is SPP-6p

m-hard.
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