
23rd International Conference, FOSSACS 2020
Held as Part of the European Joint Conferences 
on Theory and Practice of Software, ETAPS 2020
Dublin, Ireland, April 25–30, 2020, Proceedings

Foundations 
of Software Science and 
Computation StructuresLN

CS
 1

20
77

AR
Co

SS
Jean Goubault-Larrecq
Barbara König (Eds.)



Lecture Notes in Computer Science 12077

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China
Bernhard Steffen , Germany

Gerhard Woeginger , Germany
Moti Yung, USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen , University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0001-9619-1558


More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407


Jean Goubault-Larrecq • Barbara König (Eds.)

Foundations
of Software Science and
Computation Structures
23rd International Conference, FOSSACS 2020
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2020
Dublin, Ireland, April 25–30, 2020
Proceedings



Editors
Jean Goubault-Larrecq
Université Paris-Saclay,
ENS Paris-Saclay, CNRS
Cachan, France

Barbara König
University of Duisburg-Essen
Duisburg, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-45230-8 ISBN 978-3-030-45231-5 (eBook)
https://doi.org/10.1007/978-3-030-45231-5

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© The Editor(s) (if applicable) and The Author(s) 2020. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-5879-3304
https://orcid.org/0000-0002-4193-2889
https://doi.org/10.1007/978-3-030-45231-5
http://creativecommons.org/licenses/by/4.0/


ETAPS Foreword

Welcome to the 23rd ETAPS! This is the first time that ETAPS took place in Ireland in
its beautiful capital Dublin.

ETAPS 2020 was the 23rd instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of four conferences: ESOP, FASE, FoSSaCS, and TACAS. Each
conference has its own Program Committee (PC) and its own Steering Committee
(SC). The conferences cover various aspects of software systems, ranging from
theoretical computer science to foundations of programming language developments,
analysis tools, and formal approaches to software engineering. Organizing these
conferences in a coherent, highly synchronized conference program enables researchers
to participate in an exciting event, having the possibility to meet many colleagues
working in different directions in the field, and to easily attend talks of different
conferences. On the weekend before the main conference, numerous satellite
workshops took place that attracted many researchers from all over the globe. Also, for
the second time, an ETAPS Mentoring Workshop was organized. This workshop is
intended to help students early in the program with advice on research, career, and life
in the fields of computing that are covered by the ETAPS conference.

ETAPS 2020 received 424 submissions in total, 129 of which were accepted,
yielding an overall acceptance rate of 30.4%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their
contributions, and in particular the PC (co-)chairs for their hard work in running this
entire intensive process. Last but not least, my congratulations to all authors of the
accepted papers!

ETAPS 2020 featured the unifying invited speakers Scott Smolka (Stony Brook
University) and Jane Hillston (University of Edinburgh) and the conference-specific
invited speakers (ESOP) Işıl Dillig (University of Texas at Austin) and (FASE) Willem
Visser (Stellenbosch University). Invited tutorials were provided by Erika Ábrahám
(RWTH Aachen University) on the analysis of hybrid systems and Madhusudan
Parthasarathy (University of Illinois at Urbana-Champaign) on combining Machine
Learning and Formal Methods. On behalf of the ETAPS 2020 attendants, I thank all the
speakers for their inspiring and interesting talks!

ETAPS 2020 took place in Dublin, Ireland, and was organized by the University of
Limerick and Lero. ETAPS 2020 is further supported by the following associations and
societies: ETAPS e.V., EATCS (European Association for Theoretical Computer
Science), EAPLS (European Association for Programming Languages and Systems),
and EASST (European Association of Software Science and Technology). The local
organization team consisted of Tiziana Margaria (general chair, UL and Lero),
Vasileios Koutavas (Lero@UCD), Anila Mjeda (Lero@UL), Anthony Ventresque
(Lero@UCD), and Petros Stratis (Easy Conferences).



The ETAPS Steering Committee (SC) consists of an Executive Board, and
representatives of the individual ETAPS conferences, as well as representatives of
EATCS, EAPLS, and EASST. The Executive Board consists of Holger Hermanns
(Saarbrücken), Marieke Huisman (chair, Twente), Joost-Pieter Katoen (Aachen and
Twente), Jan Kofron (Prague), Gerald Lüttgen (Bamberg), Tarmo Uustalu (Reykjavik
and Tallinn), Caterina Urban (Inria, Paris), and Lenore Zuck (Chicago).

Other members of the SC are: Armin Biere (Linz), Jordi Cabot (Barcelona), Jean
Goubault-Larrecq (Cachan), Jan-Friso Groote (Eindhoven), Esther Guerra (Madrid),
Jurriaan Hage (Utrecht), Reiko Heckel (Leicester), Panagiotis Katsaros (Thessaloniki),
Stefan Kiefer (Oxford), Barbara König (Duisburg), Fabrice Kordon (Paris), Jan
Kretinsky (Munich), Kim G. Larsen (Aalborg), Tiziana Margaria (Limerick), Peter
Müller (Zurich), Catuscia Palamidessi (Palaiseau), Dave Parker (Birmingham),
Andrew M. Pitts (Cambridge), Peter Ryan (Luxembourg), Don Sannella (Edinburgh),
Bernhard Steffen (Dortmund), Mariëlle Stoelinga (Twente), Gabriele Taentzer
(Marburg), Christine Tasson (Paris), Peter Thiemann (Freiburg), Jan Vitek (Prague),
Heike Wehrheim (Paderborn), Anton Wijs (Eindhoven), and Nobuko Yoshida
(London).

I would like to take this opportunity to thank all speakers, attendants, organizers
of the satellite workshops, and Springer for their support. I hope you all enjoyed
ETAPS 2020. Finally, a big thanks to Tiziana and her local organization team for all
their enormous efforts enabling a fantastic ETAPS in Dublin!

February 2020 Marieke Huisman
ETAPS SC Chair

ETAPS e.V. President

vi ETAPS Foreword



Preface

This volume contains the papers presented at the 23rd International Conference on
Foundations of Software Science and Computation Structures (FoSSaCS), which took
place in Dublin, Ireland, during April 27–30, 2020. The conference series is dedicated
to foundational research with a clear significance for software science. It brings
together research on theories and methods to support the analysis, integration, syn-
thesis, transformation, and verification of programs and software systems.

This volume contains 31 contributed papers selected from 98 full paper submis-
sions, and also a paper accompanying an invited talk by Scott Smolka (Stony Brook
University, USA). Each submission was reviewed by at least three Program Committee
members, with the help of external reviewers, and the final decisions took into account
the feedback from a rebuttal phase. The conference submissions were managed using
the EasyChair conference system, which was also used to assist with the compilation
of these proceedings.

We wish to thank all the authors who submitted papers to FoSSaCS 2020, the
Program Committee members, the Steering Committee members and the external
reviewers. In addition, we are grateful to the ETAPS 2020 Organization for providing
an excellent environment for FoSSaCS 2020 alongside the other ETAPS conferences
and workshops.

February 2020 Jean Goubault-Larrecq
Barbara König



Organization

Program Committee

Parosh Aziz Abdulla Uppsala University, Sweden
Thorsten Altenkirch University of Nottingham, UK
Paolo Baldan Università di Padova, Italy
Nick Benton Facebook, UK
Frédéric Blanqui Inria and LSV, France
Michele Boreale Università di Firenze, Italy
Corina Cirstea University of Southampton, UK
Pedro R. D’Argenio Universidad Nacional de Córdoba, CONICET,

Argentina
Josée Desharnais Université Laval, Canada
Jean Goubault-Larrecq Université Paris-Saclay, ENS Paris-Saclay,

CNRS, LSV, Cachan, France
Ichiro Hasuo National Institute of Informatics, Japan
Delia Kesner IRIF, Université de Paris, France
Shankara Narayanan

Krishna
IIT Bombay, India

Barbara König Universität Duisburg-Essen, Germany
Sławomir Lasota University of Warsaw, Poland
Xavier Leroy Collège de France and Inria, France
Leonid Libkin University of Edinburgh, UK, and ENS Paris, France
Jean-Yves Marion LORIA, Université de Lorraine, France
Dominique Méry LORIA, Université de Lorraine, France
Matteo Mio LIP, CNRS, ENS Lyon, France
Andrzej Murawski University of Oxford, UK
Prakash Panangaden McGill University, Canada
Amr Sabry Indiana University Bloomington, USA
Lutz Schröder Friedrich-Alexander-Universität Erlangen-Nürnberg,

Germany
Sebastian Siebertz Universität Bremen, Germany
Benoît Valiron LRI, CentraleSupélec, Université Paris-Saclay, France

Steering Committee

Andrew Pitts (Chair) University of Cambridge, UK
Christel Baier Technische Universität Dresden, Germany
Lars Birkedal Aarhus University, Denmark
Ugo Dal Lago Università degli Studi di Bologna, Italy



Javier Esparza Technische Universität München, Germany
Anca Muscholl LaBRI, Université de Bordeaux, France
Frank Pfenning Carnegie Mellon University, USA

Additional Reviewers

Accattoli, Beniamino
Alvim, Mario S.
André, Étienne
Argyros, George
Arun-Kumar, S.
Ayala-Rincon, Mauricio
Bacci, Giorgio
Bacci, Giovanni
Balabonski, Thibaut
Basile, Davide
Berger, Martin
Bernardi, Giovanni
Bisping, Benjamin
Bodeveix, Jean-Paul
Bollig, Benedikt
Bonchi, Filippo
Bonelli, Eduardo
Boulmé, Sylvain
Bourke, Timothy
Bradfield, Julian
Breuvart, Flavien
Bruni, Roberto
Bruse, Florian
Capriotti, Paolo
Carette, Jacques
Carette, Titouan
Carton, Olivier
Cassano, Valentin
Chadha, Rohit
Charguéraud, Arthur
Cho, Kenta
Choudhury, Vikraman
Ciancia, Vincenzo
Clemente, Lorenzo
Colacito, Almudena
Corradini, Andrea
Czerwiński, Wojciech
de Haan, Ronald
de Visme, Marc

Dell’Erba, Daniele
Deng, Yuxin
Eickmeyer, Kord
Exibard, Leo
Faggian, Claudia
Fijalkow, Nathanaël
Filali-Amine, Mamoun
Francalanza, Adrian
Frutos Escrig, David
Galletta, Letterio
Ganian, Robert
Garrigue, Jacques
Gastin, Paul
Genaim, Samir
Genest, Blaise
Ghica, Dan
Goncharov, Sergey
Gorla, Daniele
Guerrini, Stefano
Hirschowitz, Tom
Hofman, Piotr
Hoshino, Naohiko
Howar, Falk
Inverso, Omar
Iván, Szabolcs
Jaax, Stefan
Jeandel, Emmanuel
Johnson, Michael
Kahrs, Stefan
Kamburjan, Eduard
Katsumata, Shin-Ya
Kerjean, Marie
Kiefer, Stefan
Komorida, Yuichi
Kop, Cynthia
Kremer, Steve
Kuperberg, Denis
Křetínský, Jan
Laarman, Alfons

x Organization



Laurent, Fribourg
Levy, Paul Blain
Li, Yong
Licata, Daniel R.
Liquori, Luigi
Lluch Lafuente, Alberto
Lopez, Aliaume
Malherbe, Octavio
Manuel, Amaldev
Manzonetto, Giulio
Matache, Christina
Matthes, Ralph
Mayr, Richard
Melliès, Paul-André
Merz, Stephan
Miculan, Marino
Mikulski, Łukasz
Moser, Georg
Moss, Larry
Munch-Maccagnoni, Guillaume
Muskalla, Sebastian
Nantes-Sobrinho, Daniele
Nestra, Härmel
Neumann, Eike
Neves, Renato
Niehren, Joachim
Padovani, Luca
Pagani, Michele
Paquet, Hugo
Patterson, Daniel
Pedersen, Mathias Ruggaard
Peressotti, Marco
Pitts, Andrew
Potapov, Igor
Power, John
Praveen, M.
Puppis, Gabriele
Péchoux, Romain
Pérez, Guillermo
Quatmann, Tim
Rabinovich, Roman
Radanne, Gabriel
Rand, Robert
Ravara, António
Remy, Didier

Reutter, Juan L.
Rossman, Benjamin
Rot, Jurriaan
Rowe, Reuben
Ruemmer, Philipp
Sammartino, Matteo
Sankaran, Abhisekh
Sankur, Ocan
Sattler, Christian
Schmitz, Sylvain
Serre, Olivier
Shirmohammadi, Mahsa
Siles, Vincent
Simon, Bertrand
Simpson, Alex
Singh, Neeraj
Sprunger, David
Srivathsan, B.
Staton, Sam
Stolze, Claude
Straßburger, Lutz
Streicher, Thomas
Tan, Tony
Tawbi, Nadia
Toruńczyk, Szymon
Tzevelekos, Nikos
Urbat, Henning
van Bakel, Steffen
van Breugel, Franck
van de Pol, Jaco
van Doorn, Floris
Van Raamsdonk, Femke
Vaux Auclair, Lionel
Verma, Rakesh M.
Vial, Pierre
Vignudelli, Valeria
Vrgoc, Domagoj
Waga, Masaki
Wang, Meng
Witkowski, Piotr
Zamdzhiev, Vladimir
Zemmari, Akka
Zhang, Zhenya
Zorzi, Margherita

Organization xi



Contents

Neural Flocking: MPC-Based Supervised Learning of Flocking Controllers . . . . 1
Usama Mehmood, Shouvik Roy, Radu Grosu, Scott A. Smolka,
Scott D. Stoller, and Ashish Tiwari

On Well-Founded and Recursive Coalgebras . . . . . . . . . . . . . . . . . . . . . . . 17
Jiří Adámek, Stefan Milius, and Lawrence S. Moss

Timed Negotiations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
S. Akshay, Blaise Genest, Loïc Hélouët, and Sharvik Mital

Cartesian Difference Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Mario Alvarez-Picallo and Jean-Simon Pacaud Lemay

Contextual Equivalence for Signal Flow Graphs . . . . . . . . . . . . . . . . . . . . . 77
Filippo Bonchi, Robin Piedeleu, Paweł Sobociński, and Fabio Zanasi

Parameterized Synthesis for Fragments of First-Order Logic Over
Data Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Béatrice Bérard, Benedikt Bollig, Mathieu Lehaut,
and Nathalie Sznajder

Controlling a Random Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Thomas Colcombet, Nathanaël Fijalkow, and Pierre Ohlmann

Decomposing Probabilistic Lambda-Calculi . . . . . . . . . . . . . . . . . . . . . . . . 136
Ugo Dal Lago, Giulio Guerrieri, and Willem Heijltjes

On the k-synchronizability of Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Cinzia Di Giusto, Laetitia Laversa, and Etienne Lozes

General Supervised Learning as Change Propagation with Delta Lenses. . . . . 177
Zinovy Diskin

Non-idempotent Intersection Types in Logical Form . . . . . . . . . . . . . . . . . . 198
Thomas Ehrhard

On Computability of Data Word Functions Defined by Transducers . . . . . . . 217
Léo Exibard, Emmanuel Filiot, and Pierre-Alain Reynier

Minimal Coverability Tree Construction Made Complete and Efficient . . . . . 237
Alain Finkel, Serge Haddad, and Igor Khmelnitsky



Constructing Infinitary Quotient-Inductive Types. . . . . . . . . . . . . . . . . . . . . 257
Marcelo P. Fiore, Andrew M. Pitts, and S. C. Steenkamp

Relative Full Completeness for Bicategorical Cartesian Closed Structure . . . . 277
Marcelo Fiore and Philip Saville

A Duality Theoretic View on Limits of Finite Structures . . . . . . . . . . . . . . . 299
Mai Gehrke, Tomáš Jakl, and Luca Reggio

Correctness of Automatic Differentiation via Diffeologies
and Categorical Gluing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

Mathieu Huot, Sam Staton, and Matthijs Vákár

Deep Induction: Induction Rules for (Truly) Nested Types . . . . . . . . . . . . . . 339
Patricia Johann and Andrew Polonsky

Exponential Automatic Amortized Resource Analysis . . . . . . . . . . . . . . . . . 359
David M. Kahn and Jan Hoffmann

Concurrent Kleene Algebra with Observations: From Hypotheses
to Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

Tobias Kappé, Paul Brunet, Alexandra Silva, Jana Wagemaker,
and Fabio Zanasi

Graded Algebraic Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
Satoshi Kura

A Curry-style Semantics of Interaction: From Untyped to Second-Order
Lazy kl-Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

James Laird

An Axiomatic Approach to Reversible Computation . . . . . . . . . . . . . . . . . . 442
Ivan Lanese, Iain Phillips, and Irek Ulidowski

An Auxiliary Logic on Trees: on the Tower-Hardness of Logics Featuring
Reachability and Submodel Reasoning. . . . . . . . . . . . . . . . . . . . . . . . . . . . 462

Alessio Mansutti

The Inconsistent Labelling Problem of Stutter-Preserving
Partial-Order Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482

Thomas Neele, Antti Valmari, and Tim A. C. Willemse

Semantical Analysis of Contextual Types . . . . . . . . . . . . . . . . . . . . . . . . . . 502
Brigitte Pientka and Ulrich Schöpp

Ambiguity, Weakness, and Regularity in Probabilistic Büchi Automata . . . . . 522
Christof Löding and Anton Pirogov

xiv Contents



Local Local Reasoning: A BI-Hyperdoctrine for Full Ground Store . . . . . . . . 542
Miriam Polzer and Sergey Goncharov

Quantum Programming with Inductive Datatypes:
Causality and Affine Type Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562

Romain Péchoux, Simon Perdrix, Mathys Rennela,
and Vladimir Zamdzhiev

Spinal Atomic Lambda-Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582
David Sherratt, Willem Heijltjes, Tom Gundersen, and Michel Parigot

Learning Weighted Automata over Principal Ideal Domains . . . . . . . . . . . . . 602
Gerco van Heerdt, Clemens Kupke, Jurriaan Rot, and Alexandra Silva

The Polynomial Complexity of Vector Addition Systems with States. . . . . . . 622
Florian Zuleger

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643

Contents xv



Neural Flocking: MPC-based Supervised
Learning of Flocking Controllers

(�)Usama Mehmood1, Shouvik Roy1, Radu Grosu2, Scott A. Smolka1,
Scott D. Stoller1, and Ashish Tiwari3

1 Stony Brook University, Stony Brook NY, USA
umehmood@cs.stonybrook.edu

2 Technische Universitat Wien, Wien, Austria
3 Microsoft Research, San Francisco CA, USA

Abstract. We show how a symmetric and fully distributed flocking con-
troller can be synthesized using Deep Learning from a centralized flocking
controller. Our approach is based on Supervised Learning, with the cen-
tralized controller providing the training data, in the form of trajectories
of state-action pairs. We use Model Predictive Control (MPC) for the cen-
tralized controller, an approach that we have successfully demonstrated
on flocking problems. MPC-based flocking controllers are high-performing
but also computationally expensive. By learning a symmetric and dis-
tributed neural flocking controller from a centralized MPC-based one,
we achieve the best of both worlds: the neural controllers have high
performance (on par with the MPC controllers) and high efficiency. Our
experimental results demonstrate the sophisticated nature of the dis-
tributed controllers we learn. In particular, the neural controllers are
capable of achieving myriad flocking-oriented control objectives, includ-
ing flocking formation, collision avoidance, obstacle avoidance, predator
avoidance, and target seeking. Moreover, they generalize the behavior
seen in the training data to achieve these objectives in a significantly
broader range of scenarios. In terms of verification of our neural flock-
ing controller, we use a form of statistical model checking to compute
confidence intervals for its convergence rate and time to convergence.

Keywords: Flocking · Model Predictive Control · Distributed Neural Controller
· Deep Neural Network · Supervised Learning

1 Introduction

With the introduction of Reynolds rule-based model [16,17], it is now possible
to understand the flocking problem as one of distributed control. Specifically, in
this model, at each time-step, each agent executes a control law given in terms
of the weighted sum of three competing forces to determine its next acceleration.
Each of these forces has its own rule: separation (keep a safe distance away
from your neighbors), cohesion (move towards the centroid of your neighbors),
and alignment (steer toward the average heading of your neighbors). Reynolds

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 1–16, 2020.
https://doi.org/10.1007/978-3-030-45231-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_1&domain=pdf


Fig. 1: Neural Flocking Architecture

controller is distributed ; i.e., it is executed separately by each agent, using
information about only itself and nearby agents, and without communication.
Furthermore, it is symmetric; i.e., every agent runs the same controller (same
code).

We subsequently showed that a simpler, more declarative approach to the
flocking problem is possible [11]. In this setting, flocking is achieved when the
agents combine to minimize a system-wide cost function. We presented centralized
and distributed solutions for achieving this form of “declarative flocking” (DF),
both of which were formulated in terms of Model-Predictive Control (MPC) [2].

Another advantage of DF over the ruled-based approach exemplified by
Reynolds model is that it allows one to consider additional control objectives
(e.g., obstacle and predator avoidance) simply by extending the cost function
with additional terms for these objectives. Moreover, these additional terms are
typically quite straightforward in nature. In contrast, deriving behavioral rules
that achieve the new control objectives can be a much more challenging task.

An issue with MPC is that computing the next control action can be compu-
tationally expensive, as MPC searches for an action sequence that minimizes the
cost function over a given prediction horizon. This renders MPC unsuitable for
real-time applications with short control periods, for which flocking is a prime
example. Another potential problem with MPC-based approaches to flocking is
its performance (in terms of achieving the desired flight formation), which may
suffer in a fully distributed setting.

In this paper, we present Neural Flocking (NF), a new approach to the
flocking problem that uses Supervised Learning to learn a symmetric and fully
distributed flocking controller from a centralized MPC-based controller. By doing
so, we achieve the best of both worlds: high performance (on par with the MPC
controllers) in terms of meeting flocking flight-formation objectives, and high
efficiency leading to real-time flight controllers. Moreover, our NF controllers can
easily be parallelized on hardware accelerators such as GPUs and TPUs.

Figure 1 gives an overview of the NF approach. A high-performing centralized
MPC controller provides the labeled training data to the learning agent: a
symmetric and distributed neural controller in the form of a deep neural network
(DNN). The training data consists of trajectories of state-action pairs, where a
state contains the information known to an agent at a time step (e.g., its own
position and velocity, and the position and velocity of its neighbors), and the
action (the label) is the acceleration assigned to that agent at that time step by
the centralized MPC controller.

We formulate and evaluate NF in a number of essential flocking scenarios:
basic flocking with inter-agent collision avoidance, as in [11], and more advanced

2 U. Mehmood et al.



scenarios with additional objectives, including obstacle avoidance, predator avoid-
ance, and target seeking by the flock. We conduct an extensive performance
evaluation of NF. Our experimental results demonstrate the sophisticated nature
of NF controllers. In particular, they are capable of achieving all of the stated
control objectives. Moreover, they generalize the behavior seen in the training
data in order to achieve these objectives in a significantly broader range of scenar-
ios. In terms of verification of our neural controller, we use a form of statistical
model checking [5, 10] to compute confidence intervals for its rate of convergence
to a flock and for its time to convergence.

2 Background

We consider a set of n dynamic agents A = {1, . . . , n} that move according to
the following discrete-time equations of motion:

pi(k + 1) = pi(k) + dt · vi(k), |vi(k)| < v̄

vi(k + 1) = vi(k) + dt · ai(k), |ai(k)| < ā
(1)

where pi(k) ∈ R2, vi(k) ∈ R2, ai(k) ∈ R2 are the position, velocity and accelera-
tion of agent i ∈ A respectively at time step k, and dt ∈ R+ is the time step. The
magnitudes of velocities and accelerations are bounded by v̄ and ā, respectively.
Acceleration ai(k) is the control input for agent i at time step k. The acceleration
is updated after every η time steps i.e., η · dt is the control period. The flock
configuration at time step k is thus given by the following vectors (in boldface):

p(k) = [pT1 (k) · · · pTn (k)]T (2)

v(k) = [vT1 (k) · · · vTn (k)]T (3)

a(k) = [aT1 (k) · · · aTn (k)]T (4)

The configuration vectors are referred to without the time indexing as p,
v, and a. The neighborhood of agent i at time step k, denoted by Ni(k) ⊆ A,
contains its N -nearest neighbors, i.e., the N other agents closest to it. We use
this definition (in Section 2.2 to define a distributed-flocking cost function) for
simplicity, and expect that a radius-based definition of neighborhood would lead
to similar results for our distributed flocking controllers.

2.1 Model-Predictive Control

Model-Predictive control (MPC) [2] is a well-known control technique that has
recently been applied to the flocking problem [11,19,20]. At each control step,
an optimization problem is solved to find the optimal sequence of control actions
(agent accelerations in our case) that minimizes a given cost function with respect
to a predictive model of the system. The first control action of the optimal control
sequence is then applied to the system; the rest is discarded. In the computation

Neural Flocking: MPC-based Supervised Learning of Flocking Controllers 3



of the cost function, the predictive model is evaluated for a finite prediction
horizon of T control steps.

MPC-based flocking models can be categorized as centralized or distributed. A
centralized model assumes that complete information about the flock is available
to a single “global” controller, which uses the states of all agents to compute
their next optimal accelerations. The following optimization problem is solved by
a centralized MPC controller at each control step k:

min
a(k|k),...,a(k+T−1|k)< ā

J(k) + λ ·
T−1∑
t=0

‖a(k + t | k)‖2 (5)

The first term J(k) is the centralized model-specific cost, evaluated for T control
steps (this embodies the predictive aspect of MPC), starting at time step k. It
encodes the control objective of minimizing the cost function J(k). The second
term, scaled by a weight λ > 0, penalizes large control inputs: a(k + t | k) are
the predictions made at time step k for the accelerations at time step k + t.

In distributed MPC, each agent computes its acceleration based only on its
own state and its local knowledge, e.g., information about its neighbors:

min
ai(k|k),...,ai(k+T−1|k)< ā

Ji(k) + λ ·
T−1∑
t=0

‖ai(k + t | k)‖2 (6)

Ji(k) is the distributed, model-specific cost function for agent i, analogous to J(k).
In a distributed setting where an agent’s knowledge of its neighbors’ behavior
is limited, an agent cannot calculate the exact future behavior of its neighbors.
Hence, the predictive aspect of Ji(k) must rely on some assumption about
that behavior during the prediction horizon. Our distributed cost functions are
based on the assumption that the neighbors have zero accelerations during the
prediction horizon. While this simple design is clearly not completely accurate,
our experiments show that it still achieves good results.

2.2 Declarative Flocking

Declarative flocking (DF) is a high-level approach to designing flocking algorithms
based on defining a suitable cost function for MPC [11]. This is in contrast to the
operational approach, where a set of rules are used to capture flocking behavior,
as in Reynolds model. For basic flocking, the DF cost function contains two terms:
(1) a cohesion term based on the squared distance between each pair of agents in
the flock; and (2) a separation term based on the inverse of the squared distance
between each pair of agents. The flock evolves toward a configuration in which
these two opposing forces are balanced. The cost function JC for centralized DF,
i.e., centralized MPC (CMPC), is as follows:

JC (p) =
2

|A| · (|A| − 1)
·
∑
i∈A

∑
j∈A,i<j

‖pij‖2 + ωs · 1

‖pij‖2 (7)

4 U. Mehmood et al.



Neural Flocking: MPC-based Supervised Learning of Flocking Controllers 5

where ωs is the weight of the separation term and controls the density of the flock.

The cost function is normalized by the number of pairs of agents, |A|·(|A−1|)
2 ;

as such, the cost does not depend on the size of the flock. The control law for
CMPC is given by Eq. (5), with J(k) =

∑T
t=1 J

C (p(k + t | k)).
The basic flocking cost function for distributed DF is similar to that for

CMPC, except that the cost function JD
i for agent i is computed over its set of

neighbors Ni(k) at time k:

JD
i (p(k)) =

1

|Ni(k)| ·
∑

j∈Ni(k)

‖pij‖2 + ωs ·
∑

j∈Ni(k)

1

‖pij‖2 (8)

The control law for agent i is given by Eq. (6), with Ji(k)=
∑T

t=1 J
D
i (p(k + t | k)).

3 Additional Control Objectives

The cost functions for basic flocking given in Eqs. (7) and (8) are designed to
ensure that in the steady state, the agents are well-separated. Additional goals
such as obstacle avoidance, predator avoidance, and target seeking are added
to the MPC formulation as weighted cost-function terms. Different objectives
can be combined by including the corresponding terms in the cost function as a
weighted sum.

Cost-Function Term for Obstacle Avoidance. We consider multiple rectangular
obstacles which are distributed randomly in the field. For a set of m rectangular
obstacles O = {O1,O2, ...,Om}, we define the cost function term for obstacle
avoidance as:

JOA(p,o) =
1

|A||O|
∑
iεA

∑
jεO

1∥∥∥pi − o
(i)
j

∥∥∥2 (9)

where o is the set of points on the obstacle boundaries and o
(i)
j is the point on

the obstacle boundary of the jth obstacle Oj that is closest to the ith agent.

Cost-Function Term for Target Seeking. This term is the average of the squared
distance between the agents and the target. Let g denote the position of the fixed
target. Then the target-seeking term is as defined as

JTS(p) =
1

|A|
∑
i∈A

‖pi − g‖2 (10)

Cost-Function Term for Predator Avoidance. We introduce a single predator,
which is more agile than the flocking agents: its maximum speed and acceleration
are a factor of fp greater than v̄ and ā, respectively, with fp > 1. Apart from
being more agile, the predator has the same dynamics as the agents, given by



Eq. (1). The control law for the predator consists of a single term that causes it
to move toward the centroid of the flock with maximum acceleration.

For a flock of n agents and one predator, the cost-function term for predator
avoidance is the average of the inverse of the cube of the distances between the
predator and the agents. It is given by:

JPA (p, ppred) =
1

|A|
∑
iεA

1

‖pi − ppred‖3
(11)

where ppred is the position of the predator. In contrast to the separation term
in Eqs. (5)-(6), which we designed to ensure inter-agent collision avoidance, the
predator-avoidance term has a cube instead of a square in the denominator. This
is to reduce the influence of the predator on the flock when the predator is far
away from the flock.

NF Cost-Function Terms. The MPC cost functions used in our examination of
Neural Flocking are weighted sums of the cost function terms introduced above.
We refer to the first term of our centralized DF cost function JC(p) (see Eq. (7))
as Jcohes(p) and the second as Jsep(p). We use the following cost functions J1,
J2, and J3 for basic flocking with collision avoidance, obstacle avoidance with
target seeking, and predator avoidance, respectively.

J1(p) = Jcohes(p) + ωs · Jsep(p) (12a)

J2(p,o) = Jcohes(p) + ωs · Jsep(p) + ωo · JOA(p,o) + ωt · JTS(p) (12b)

J3(p, ppred) = Jcohes(p) + ωs · Jsep(p) + ωp · JPA(p, ppred) (12c)

where ωs is the weight of the separation term, ωo is the weight of the obstacle
avoidance term, ωt is the weight of the target-seeking term, and ωp is the weight
of the predator-avoidance term. Note that J1 is equivalent to JC (Eq. (7)). The
weight ωs of the separation term is experimentally chosen to ensure that the
distance between agents, throughout the simulation, is at least dmin, the minimum
inter-agent distance representing collision avoidance. Similar considerations were
given to the choice of values for ωo and ωp. The specific values we used for the
weights are: ωs = 2000, ωo = 1500, ωt = 10, and ωp = 500.

We experimented with an alternative strategy for introducing inter-agent
collision avoidance, obstacle avoidance, and predator avoidance into the MPC
problem, namely, as constraints of the form dmin − pij < 0, dmin − ||pi −
o
(i)
j || < 0, and dmin − ||pi − ppred|| < 0, respectively. Using the theory of exact
penalty functions [12], we recast the constrained MPC problem as an equivalent
unconstrained MPC problem by converting the constraints into a weighted
penalty term, which is then added to the MPC cost function. This approach
rendered the optimization problem difficult to solve due to the non-smoothness
of the penalty term. As a result, constraint violations in the form of collisions
were observed during simulation.

6 U. Mehmood et al.



Neural Flocking: MPC-based Supervised Learning of Flocking Controllers 7

4 Neural Flocking

We learn a distributed neural controller (DNC) for the flocking problem using
training data in the form of trajectories of state-action pairs produced by a CMPC
controller. In addition to basic flocking with inter-agent collision avoidance, the
DNC exhibits a number of other flocking-related behaviors, including obstacle
avoidance, target seeking, and predator avoidance. We also show how the learned
behavior exhibited by the DNC generalizes over a larger number of agents than
what was used during training to achieve successful collision-free flocking in
significantly larger flocks.

We use Supervised Learning to train the DNC. Supervised Learning learns a
function that maps an input to an output based on example sequences of input-
output pairs. In our case, the trajectory data obtained from CMPC contains both
the training inputs and corresponding labels (outputs): the state of an agent in
the flock (and that of its nearest neighbors) at a particular time step is the input,
and that agent’s acceleration at the same time step is the label.

4.1 Training Distributed Flocking Controllers

We use Deep Learning to synthesize a distributed and symmetric neural controller
from the training data provided by the CMPC controller. Our objective is to learn
basic flocking, obstacle avoidance with target seeking, and predator avoidance.
Their respective CMPC-based cost functions are given in Sections 2.2 and 3. All
of these control objectives implicitly also include inter-agent collision avoidance
by virtue of the separation term in Eq. 7.

For each of these control objectives, DNC training data is obtained from
CMPC trajectory data generated for n = 15 agents, starting from initial con-
figurations in which agent positions and velocities are uniformly sampled from
[−15, 15]2 and [0, 1]2, respectively. All training trajectories are 1,000 time steps
in duration.

We further ensure that the initial configurations are recoverable; i.e., no two
agents are so close to each other that they cannot avoid a collision by resorting
to maximal accelerations. We learn a single DNC from the state-action pairs of
all n agents. This yields a symmetric distributed controller, which we use for
each agent in the flock during evaluation.

Basic Flocking. Trajectory data for basic flocking is generated using the cost
function given in Eq. (7). We generate 200 trajectories, each of which (as noted
above) is 1,000 time steps long. The input to the NN is the position and velocity
of each agent along with the positions and velocities of its N -nearest neighbors.
This yields 200 · 1, 000 · 15 = 3M total training samples.

Let us refer to the agent (the DNC) being learned as A0. Since we use
neighborhood size N = 14, the input to the NN is of the form [px0 py0 vx0 vy0 px1 py1
vx1 vy1 . . . px14 py14 vx14 v

y
14], where px0 , p

y
0 are the position coordinates and vx0 , v

y
0

velocity coordinates for agent A0, and px1...14, p
y
1...14 and vx1...14, v

y
1...14 are the

position and velocity vectors of its neighbors. Since this input vector has 60
components, the input to the NN consists of 60 features.



(a) Basic flocking (b) Obstacle avoid. (c) Predator avoid. (d) Target seeking

Fig. 2: Snapshots of DNC flocking behaviors for 30 agents

Obstacle Avoidance with Target Seeking. For obstacle avoidance with target
seeking, we use CMPC with the cost function given in Eq. (12b). The target is
located beyond the obstacles, forcing the agents to move through the obstacle
field. For the training data, we generate 100 trajectories over 4 different obstacle
fields (25 trajectories per obstacle field). The input to the NN consists of the 92
features [px0 py0 vx0 vy0 ox0 oy0 . . . p

x
14 py14 vx14 v

y
14 ox14 oy14 gx gy], where ox0 , o

y
0 is the

closest point on any obstacle to agent A0; o
x
1...14 , oy1...14 give the closest point on

any obstacle for the 14 neighboring agents, and gx, gy is the target location.

Predator Avoidance. The CMPC cost function for predator avoidance is given in
Eq. (12c). The position, velocity, and the acceleration of the predator are denoted
by ppred, vpred, apred, respectively. We take fp = 1.40; hence v̄pred = 1.40 v̄ and
āpred = 1.40 ā. The input features to the NN are the positions and velocities
of agent A0 and its N -nearest neighbors, and the position and velocity of the
predator. The input with 64 features thus has the form [px0 py0 vx0 vy0 . . . px14 py14
vx14 v

y
14 pxpred pypred vxpred vypred].

5 Experimental Evaluation

This section contains the results of our extensive performance analysis of the
distributed neural flocking controller (DNC), taking into account various control
objectives: basic flocking with collision avoidance, obstacle avoidance with target
seeking, and predator avoidance. As illustrated in Fig. 1, this involves running
CMPC to generate the training data for the DNCs, whose performance we then
compare to that of the DMPC and CMPC controllers. We also show that the
DNC flocking controllers generalize the behavior seen in the training data to
achieve successful collision-free flocking in flocks significantly larger in size than
those used during training. Finally, we use Statistical Model Checking to obtain
confidence intervals for DNC’s correctness/performance.

5.1 Preliminaries

The CMPC and DMPC control problems defined in Section 2.1 are solved using
MATLAB fmincon optimizer. In the training phase, the size of the flock is

8 U. Mehmood et al.



Neural Flocking: MPC-based Supervised Learning of Flocking Controllers 9

n = 15. For obstacle-avoidance with target-seeking, we use 5 obstacles with the
target located at [60,50]. The simulation time is 100, dt=0.1 time units, and
η = 3, where (recall) η · dt is the control period. Further, the agent velocity and
acceleration bounds are v̄=2.0 and ā=1.5.

We use dmin = 1.5 as the minimum inter-agent distance for collision avoidance,
dobsmin = 1 as the minimum agent-obstacle distance for obstacle avoidance, and

dpredmin = 1.5 as the minimum agent-predator distance for predator avoidance. For
initial configurations, recall that agent positions and velocities are uniformly
sampled from [−15, 15]2 and [0, 1]2, respectively, and we ensure that they are
recoverable; i.e., no two agents are so close to each other that they cannot avoid
a collision when resorting to maximal accelerations. The predator starts at rest
from a fixed location at a distance of 40 from the flock center.

For training, we considered 15 agents and 200 trajectories per agent, each
trajectory 1,000 time steps in length. This yielded a total of 3,000,000 training
samples. Our neural controller is a fully connected feed-forward Deep Neural
Network (DNN), with 5 hidden layers, 84 neurons per hidden layer, and with a
ReLU activation function. We use an iterative approach for choosing the DNN
hyperparameters and architecture where we continuously improve our NN, until
we observe satisfactory performance by the DNC.

For training the DNNs, we use Keras [3], which is a high-level neural network
API written in Python and capable of running on top of TensorFlow. To generate
the NN model, Keras uses the Adam optimizer [8] with the following settings:
lr=10−2, β1 =0.9, β2 =0.999, ε=10−8. The batch size (number of samples
processed before the model is updated) is 2,000, and the number of epochs
(number of complete passes through the training dataset) used for training is
1,000. For measuring training loss, we use the mean-squared error metric.

For basic flocking, DNN input vectors have 60 features and the number
of trainable DNN parameters is 33,854. For flocking with obstacle-avoidance
and target-seeking, input vectors have 92 features and the number of trainable
parameters is 36,542. Finally, for flocking with predator-avoidance, input vectors
have 64 features and the resulting number of trainable DNN parameters is 34,190.

To test the trained DNC, we generated 100 simulations (runs) for each of the
desired control objectives: basic flocking with collision avoidance, flocking with
obstacle avoidance and target seeking, and flocking with predator avoidance. The
results presented in Tables 1, were obtained using the same number of agents and
obstacles and the same predator as in the training phase. We also ran tests that
show DNC controllers can achieve collision-free flocking with obstacle avoidance
where the numbers of agents and obstacles are greater than those used during
training.

5.2 Results for Basic Flocking

We use flock diameter, inter-agent collision count and velocity convergence [20] as
performance metrics for flocking behavior. At any time step, the flock diameter
D(p) = max(i,j)∈A ‖pij‖ is the largest distance between any two agents in the
flock. We calculate the average converged diameter by averaging the flock diameter



0 20 40 60 80 100

Time

12

14

16

18

20

22

24

D

(a) Flock diameter

0 20 40 60 80 100

Time

0

0.5

1

V
C

(b) Velocity convergence

Fig. 3: Performance comparison for basic flocking with collision avoidance, aver-
aged over 100 test runs.

in the final time step of the simulation over the 100 runs. An inter-agent collision
(IC) occurs when the distance between two agents at any point in time is less than
dmin. The IC rate (ICR) is the average number of ICs per test-trajectory time-

step. The velocity convergence VC (v) = (1/n)
(∑

i∈A ‖vi − (
∑n

j=1 vj)/n‖2
)
is

the average of the squared magnitude of the discrepancy between the velocities of
agents and the flock’s average velocity. For all the metrics, lower values are better,
indicating a denser and more coherent flock with fewer collisions. A successful
flocking controller should also ensure that values of D(p) and VC (v) eventually
stabilize.

Fig. 3 and Table 1 compare the performance of the DNC on the basic-flocking
problem for 15 agents to that of the MPC controllers. Although the DMPC and
CMPC outperform the DNC, the difference is marginal. An important advantage
of the DNC over DMPC is that they are much faster. Executing a DNC controller
requires a modest number of arithmetic operations, whereas executing an MPC
controller requires simulation of a model and controller over the prediction horizon.
In our experiments, on average, the CMPC takes 1209 msec of CPU time for the
entire flock and DMPC takes 58 msec of CPU time per agent, whereas the DNC
takes only 1.6 msec.

Table 1: Performance comparison for BF with 15 agents on 100 test runs
Avg. Conv. Diameter ICR Velocity Convergence

DNC 14.13 0 0.15
DMPC 13.67 0 0.11
CMPC 13.84 0 0.10

10 U. Mehmood et al.



Neural Flocking: MPC-based Supervised Learning of Flocking Controllers 11

Table 2: DNC Performance Generalization for BF
Agents Avg. Conv. Conv. Avg. Conv. ICR

Diameter Rate (%) Time

15 14.13 100 52.15 0
20 16.45 97 58.76 0
25 19.81 94 64.11 0
30 23.24 92 72.08 0
35 30.57 86 83.84 0.008
40 38.66 81 95.32 0.019

5.3 Results for Obstacle and Predator Avoidance

For obstacle and predator avoidance, collision rates are used as a performance
metric. An obstacle-agent collision (OC) occurs when the distance between an
agent and the closest point on any obstacle is less than dobsmin. A predator-agent
collision (PC) occurs when the distance between an agent and the predator is less

than dpredmin . The OC rate (OCR) is the average number of OCs per test-trajectory
time-step, and the PC rate (PCR) is defined similarly. Our test results show
that the DNC, along with the DMPC and CMPC, is collision-free (i.e., each
of ICR, OCR, and PCR is zero) for 15 agents, with the exception of DMPC
for predator avoidance where PCR = 0.013. We also observed that the flock
successfully reaches the target location in all 100 test runs.

5.4 DNC Generalization Results

Tables 2–3 present DNC generalization results for basic flocking (BF), obstacle
avoidance (OA), and predator avoidance (PA), with the number of agents ranging
from 15 (the flock size during training) to 40. In all of these experiments, we use
a neighborhood size of N = 14, the same as during training. Each controller was
evaluated with 100 test runs. The performance metrics in Table 2 are the average
converged diameter, convergence rate, average convergence time, and ICR.

The convergence rate is the fraction of successful flocks over 100 runs. The
collection of agents is said to have converged to a flock (with collision avoidance)
if the value of the global cost function is less than the convergence threshold.
We use a convergence threshold of J1(p) ≤ 150, which was chosen based on its
proximity to the value achieved by CMPC. We use the cost function from Eq. 12a
to calculate our success rate because we are showing convergence rate for basic
flocking. The average convergence time is the time when the global cost function
first drops below the success threshold and remains below it for the rest of the
run, averaged over all 100 runs. Even with a local neighborhood of size 14, the
results demonstrate that the DNC can successfully generalize to a large number
of agents for all of our control objectives.



Table 3: DNC Generalization Performance for OA and PA

OA PA

Agents ICR OCR ICR PCR

15 0 0 0 0
20 0 0 0 0
25 0 0 0 0
30 0 0 0 0
35 0.011 0.009 0.013 0.010
40 0.021 0.018 0.029 0.023

5.5 Statistical Model Checking Results

We use Monte Carlo (MC) approximation as a form of Statistical Model Check-
ing [5,10] to compute confidence intervals for the DNC’s convergence rate to a
flock with collision avoidance and for the (normalized) convergence time. The
convergence rate is the fraction of successful flocks over N runs. The collection
of agent is said to have converged to a successful flock with collision avoidance
if the global cost function J1(p) ≤ 150, where J1(p) is cost function for basic
flocking defined in Eq. 12a.

The main idea of MC is to use N random variables, Z1, . . . , ZN , also called
samples, IID distributed according to a random variable Z with mean μZ , and to
take the sum μ̃Z = (Z1 + . . .+ ZN )/N as the value approximating the mean μZ .
Since an exact computation of μZ is almost always intractable, an MC approach
is used to compute an (ε, δ)-approximation of this quantity.

Additive Approximation [6] is an (ε, δ)-approximation scheme where the mean
μZ of an RV Z is approximated with absolute error ε and probability 1− δ:

Pr[μZ − ε ≤ μ̃Z ≤ μZ + ε] ≥ 1− δ (13)

where μ̃Z is an approximation of μZ . An important issue is to determine the
number of samples N needed to ensure that μ̃Z is an (ε, δ)-approximation of μZ . If
Z is a Bernoulli variable expected to be large, one can use the Chernoff-Hoeffding
instantiation of the Bernstein inequality and take N to be N = 4 ln(2/δ)/ε2,
as in [6]. This results in the additive approximation algorithm [5], defined in
Algorithm 1.

We use this algorithm to obtain a joint (ε, δ)-approximation of the mean
convergence rate and mean normalized convergence time for the DNC. Each
sample Zi is based on the result of an execution obtained by simulating the
system starting from a random initial state, and we take Z = (B,R), where B
is a Boolean variable indicating whether the agents converged to a flock during
the execution, and R is a real value denoting the normalized convergence time.
The normalized convergence time is the time when the global cost function first
drops below the convergence threshold and remains below it for the rest of the
run, measured as a fraction of the total duration of the run. The assumptions

12 U. Mehmood et al.



Neural Flocking: MPC-based Supervised Learning of Flocking Controllers 13

Algorithm 1: Additive Approximation Algorithm

Input: (ε, δ) with 0 < ε < 1 and 0 < δ < 1
Input: Random variables Zi, IID
Output: μ̃Z approximation of μZ

N = 4 ln(2/δ)/ε2;
for (i=0; i ≤ N ; i++) do

S = S + Zi;

μ̃Z = S/N ; return μ̃Z ;

Table 4: SMC results for DNC convergence rate and normalized convergence
time; ε = 0.01, δ = 0.0001

Agents μ̃CR μ̃CT

15 0.99 0.53
20 0.97 0.58
25 0.94 0.65
30 0.91 0.71
35 0.86 0.84
40 0.80 0.95

about Z required for validity of the additive approximation hold, because RV B
is a Bernoulli variable, the convergence rate is expected to be large (i.e., closer
to 1 than to 0), and the proportionality constraint of the Bernstein inequality is
also satisfied for RV R.

In these experiments, the initial configurations are sampled from the same
distributions as in Section 5.1, and we set ε = 0.01 and δ = 0.0001, to obtain N =
396,140. We perform the required set of N simulations for 15, 20, 25, 30, 35 and
40 agents. Table 4 presents the results, specifically, the (ε, δ)-approximations μ̃CR

and μ̃CT of the mean convergence rate and the mean normalized convergence
time, respectively. While the results for the convergence rate are (as expected) nu-
merically similar to the results in Table 2, the results in Table 4 are much stronger,
because they come with the guarantee that they are (ε, δ)-approximations of the
actual mean values.

6 Related Work

In [18], a flocking controller is synthesized using multi-agent reinforcement learning
(MARL) and natural evolution strategies (NES). The target model from which
the system learns is Reynolds flocking model [16]. For training purposes, a list
of metrics called entropy are chosen, which provide a measure of the collective
behavior displayed by the target model. As the authors of [18] observe, this
technique does not quite work: although it consistently leads to agents forming
recognizable patterns during simulation, agents self-organized into a cluster
instead of flowing like a flock.



In [9], reinforcement learning and flocking control are combined for the
purpose of predator avoidance, where the learning module determines safe spaces
in which the flock can navigate to avoid predators. Their approach to predator
avoidance, however, isn’t distributed as it requires a majority consensus by the
flock to determine its action to avoid predators. They also impose an α-lattice
structure [13] on the flock. In contrast, our approach is geometry-agnostic and
achieves predator avoidance in a distributed manner.

In [7], an uncertainty-aware reinforcement learning algorithm is developed
to estimate the probability of a mobile robot colliding with an obstacle in an
unknown environment. Their approach is based on bootstrap neural networks
using dropouts, allowing it to process raw sensory inputs. Similarly, a learning-
based approach to robot navigation and obstacle avoidance is presented in [14].
They train a model that maps sensor inputs and the target position to motion
commands generated by the ROS [15] navigation package. Our work in contrast
considers obstacle avoidance (and other control objectives) in a multi-agent
flocking scenario under the simplifying assumption of full state observation.

In [4], an approach based on Bayesian inference is proposed that allows an
agent in a heterogeneous multi-agent environment to estimate the navigation
model and goal of each of its neighbors. It then uses this information to compute
a plan that minimizes inter-agent collisions while allowing the agent to reach its
goal. Flocking formation is not considered.

7 Conclusions

With the introduction of Neural Flocking (NF), we have shown how machine
learning in the form of Supervised Learning can bring many benefits to the
flocking problem. As our experimental evaluation confirms, the symmetric and
fully distributed neural controllers we derive in this manner are capable of
achieving a multitude of flocking-oriented objectives, including flocking formation,
inter-agent collision avoidance, obstacle avoidance, predator avoidance, and target
seeking. Moreover, NF controllers exhibit real-time performance and generalize
the behavior seen in the training data to achieve these objectives in a significantly
broader range of scenarios.

Ongoing work aims to determine whether a DNC can perform as well as
the centralized MPC controller for agent models that are significantly more
realistic than our current point-based model. For this purpose, we are using
transfer learning to train a DNC that can achieve acceptable performance on
realistic quadrotor dynamics [1], starting from our current point-model-based
DNC. This effort also involves extending our current DNC from 2-dimensional
to 3-dimensional spatial coordinates. If successful, and preliminary results are
encouraging, this line of research will demonstrate that DNCs are capable of
achieving flocking with complex realistic dynamics.

For future work, we plan to investigate a distance-based notion of agent neigh-
borhood as opposed to our current nearest-neighbors formulation. Furthermore,
motivated by the quadrotor study of [21], we will seek to combine MPC with

14 U. Mehmood et al.



Neural Flocking: MPC-based Supervised Learning of Flocking Controllers 15

reinforcement learning in the framework of guided policy search as an alternative
solution technique for the NF problem.

References

1. Bouabdallah, S.: Design and control of quadrotors with application to autonomous
flying (2007)

2. Camacho, E.F., Bordons Alba, C.: Model Predictive Control. Springer (2007)
3. Chollet, F., et al.: Keras (2015), https://github.com/keras-team/keras.git
4. Godoy, J., Karamouzas, I., Guy, S.J., Gini, M.: Moving in a crowd: Safe and

efficient navigation among heterogeneous agents. In: Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelligence. pp. 294–300. IJCAI’16,
AAAI Press (2016)

5. Grosu, R., Peled, D., Ramakrishnan, C.R., Smolka, S.A., Stoller, S.D., Yang,
J.: Using statistical model checking for measuring systems. In: 6th International
Symposium, ISoLA 2014. Corfu, Greece (Oct 2014)

6. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: Steffen, B., Levi, G. (eds.) Verification, Model Checking, and
Abstract Interpretation. pp. 73–84. Springer Berlin Heidelberg, Berlin, Heidelberg
(2004)

7. Kahn, G., Villaflor, A., Pong, V., Abbeel, P., Levine, S.: Uncertainty-aware re-
inforcement learning for collision avoidance. arXiv preprint arXiv:1702.01182.
pp. 1–12 (2017)

8. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings (2015)

9. La, H.M., Lim, R., Sheng, W.: Multirobot cooperative learning for predator avoid-
ance. IEEE Transactions on Control Systems Technology 23(1), 52–63 (2015)

10. Larsen, K.G., Legay, A.: Statistical model checking: Past, present, and future. In:
6th International Symposium, ISoLA 2014. Corfu, Greece (Oct 2014)

11. Mehmood, U., Paoletti, N., Phan, D., Grosu, R., Lin, S., Stoller, S.D., Tiwari, A.,
Yang, J., Smolka, S.A.: Declarative vs rule-based control for flocking dynamics. In:
Proceedings of SAC 2018, 33rd Annual ACM Symposium on Applied Computing.
pp. 816–823 (2018)

12. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York, NY, USA,
second edn. (2006)

13. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: Algorithms and theory.
IEEE Transactions on automatic control 51(3), 401–420 (2006)

14. Pfeiffer, M., Schaeuble, M., Nieto, J.I., Siegwart, R., Cadena, C.: From perception
to decision: A data-driven approach to end-to-end motion planning for autonomous
ground robots. In: 2017 IEEE International Conference on Robotics and Automation,
ICRA 2017, Singapore, Singapore, May 29 - June 3, 2017. pp. 1527–1533 (2017)

15. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop on
Open Source Software (2009)

16. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. SIG-
GRAPH Comput. Graph. 21(4) (Aug 1987)

17. Reynolds, C.W.: Steering behaviors for autonomous characters. In: Proceedings of
Game Developers Conference 1999. pp. 763–782 (1999)

https://github.com/keras-team/keras.git


18. Shimada, K., Bentley, P.: Learning how to flock: Deriving individual behaviour
from collective behaviour with multi-agent reinforcement learning and natural
evolution strategies. In: Proceedings of the Genetic and Evolutionary Computation
Conference Companion. pp. 169–170. ACM (2018)

19. Zhan, J., Li, X.: Flocking of multi-agent systems via model predictive control based
on position-only measurements. IEEE Transactions on Industrial Informatics 9(1),
377–385 (2013)

20. Zhang, H.T., Cheng, Z., Chen, G., Li, C.: Model predictive flocking control for
second-order multi-agent systems with input constraints. IEEE Transactions on
Circuits and Systems I: Regular Papers 62(6), 1599–1606 (2015)

21. Zhang, T., Kahn, G., Levine, S., Abbeel, P.: Learning deep control policies for
autonomous aerial vehicles with MPC-guided policy search. In: 2016 IEEE Interna-
tional Conference on Robotics and Automation, ICRA 2016, Stockholm, Sweden,
May 16-21, 2016. pp. 528–535 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.

0/), which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

16 U. Mehmood et al.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


On Well-Founded and Recursive Coalgebras�

Jiří Adámek1,��, Stefan Milius2,� � �,(�) , and Lawrence S. Moss3,†

1 Czech Technical University, Prague, Czech Republic
j.adamek@tu-braunschweig.de

2 Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
mail@stefan-milius.eu

3 Indiana University, Bloomington, IN, USA
lmoss@indiana.edu

Abstract This paper studies fundamental questions concerning category-
theoretic models of induction and recursion. We are concerned with
the relationship between well-founded and recursive coalgebras for an
endofunctor. For monomorphism preserving endofunctors on complete
and well-powered categories every coalgebra has a well-founded part,
and we provide a new, shorter proof that this is the coreflection in
the category of all well-founded coalgebras. We present a new more
general proof of Taylor’s General Recursion Theorem that every well-
founded coalgebra is recursive, and we study conditions which imply the
converse. In addition, we present a new equivalent characterization of
well-foundedness: a coalgebra is well-founded iff it admits a coalgebra-to-
algebra morphism to the initial algebra.

Keywords: Well-founded · Recursive · Coalgebra · Initial Algebra ·
General Recursion Theorem

1 Introduction

What is induction? What is recursion? In areas of theoretical computer science,
the most common answers are related to initial algebras. Indeed, the dominant
trend in abstract data types is initial algebra semantics (see e.g. [19]), and this
approach has spread to other semantically-inclined areas of the subject. The
approach in broad slogans is that, for an endofunctor F describing the type of
algebraic operations of interest, the initial algebra μF has the property that
for every F -algebra A, there is a unique homomorphism μF → A, and this is
recursion. Perhaps the primary example is recursion on N, the natural numbers.
Recall that N is the initial algebra for the set functor FX = X + 1. If A is any
set, and a ∈ A and α : A → A + 1 are given, then initiality tells us that there is
a unique f : N → A such that for all n ∈ N,

f(0) = a f(n + 1) = α(f(n)). (1.1)
� A full version of this paper including full proof details is available on arXiv [5].

�� Supported by the Grant Agency of the Czech Republic under grant 19-00902S.
� � � Supported by Deutsche Forschungsgemeinschaft (DFG) under project MI 717/5-2.

† Supported by grant #586136 from the Simons Foundation.

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 17–36, 2020.
https://doi.org/10.1007/978-3-030-45231-5_2

http://orcid.org/0000-0002-2021-1644
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_2&domain=pdf


Then the first additional problem coming with this approach is that of how to
“recognize” initial algebras: Given an algebra, how do we really know if it is
initial? The answer – again in slogans – is that initial algebras are the ones with
“no junk and no confusion.”

Although initiality captures some important aspects of recursion, it cannot be
a fully satisfactory approach. One big missing piece concerns recursive definitions
based on well-founded relations. For example, the whole study of termination
of rewriting systems depends on well-orders, the primary example of recursion
on a well-founded order. Let (X, R) be a well-founded relation, i.e. one with no
infinite sequences · · · x2 R x1 R x0. Let A be any set, and let α : PA → A. (Here
and below, P is the power set functor, taking a set to the set of its subsets.)
Then there is a unique f : X → A such that for all x ∈ X,

f(x) = α({f(y) : y R x}). (1.2)

The main goal of this paper is the study of concepts that allow one to extend
the algebraic spirit behind initiality in (1.1) to the setting of recursion arising
from well-foundedness as we find it in (1.2). The corresponding concepts are
those of well-founded and recursive coalgebras for an endofunctor, which first
appear in work by Osius [22] and Taylor [23, 24], respectively. In his work on
categorical set theory, Osius [22] first studied the notions of well-founded and
recursive coalgebras (for the power-set functor on sets and, more generally, the
power-object functor on an elementary topos). He defined recursive coalgebras
as those coalgebras α : A → PA which have a unique coalgebra-to-algebra
homomorphism into every algebra (see Definition 3.2).

Taylor [23,24] took Osius’ ideas much further. He introduced well-founded
coalgebras for a general endofunctor, capturing the notion of a well-founded rela-
tion categorically, and considered recursive coalgebras under the name ‘coalgebras
obeying the recursion scheme’. He then proved the General Recursion Theorem
that all well-founded coalgebras are recursive, for every endofunctor on sets (and
on more general categories) preserving inverse images. Recursive coalgebras were
also investigated by Eppendahl [12], who called them algebra-initial coalgebras.
Capretta, Uustalu, and Vene [10] further studied recursive coalgebras, and they
showed how to construct new ones from given ones by using comonads. They
also explained nicely how recursive coalgebras allow for the semantic treatment
of (functional) divide-and-conquer programs. More recently, Jeannin et al. [15]
proved the General Recursion Theorem for polynomial functors on the category
of many-sorted sets; they also provide many interesting examples of recursive
coalgebras arising in programming.

Our contributions in this paper are as follows. We start by recalling some pre-
liminaries in Section 2 and the definition of (parametrically) recursive coalgebras
in Section 3 and of well-founded coalgebras in Section 4 (using a formulation
based on Jacobs’ next time operator [14], which we extend from Kripke poly-
nomial set functors to arbitrary functors). We show that every coalgebra for a
monomorphism preserving functor on a complete and well-powered category has
a well-founded part, and provide a new proof that this is the coreflection in the

18 J. Adámek et al.



category of well-founded coalgebras (Proposition 4.19), shortening our previous
proof [6]. Next we provide a new proof of Taylor’s General Recursion Theorem
(Theorem 5.1), generalizing this to endofunctors preserving monomorphisms on a
complete and well-powered category having smooth monomorphisms (see Defini-
tion 2.8). For the category of sets, this implies that “well-founded ⇒ recursive”
holds for all endofunctors, strengthening Taylor’s result. We then discuss the
converse: is every recursive coalgebra well-founded? Here the assumption that F
preserves inverse images cannot be lifted, and one needs additional assumptions.
In fact, we present two results: one assumes universally smooth monomorph-
isms and that the functor has a pre-fixed point (see Theorem 5.5). Under these
assumptions we also give a new equivalent characterization of recursiveness
and well-foundedness: a coalgebra is recursive if it has a coalgebra-to-algebra
morphism into the initial algebra (which exists under our assumptions), see Co-
rollary 5.6. This characterization was previously established for finitary functors
on sets [3]. The other converse of the above implication is due to Taylor using
the concept of a subobject classifier (Theorem 5.8). It implies that ‘recursive’
and ‘well-founded’ are equivalent concepts for all set functors preserving inverse
images. We also prove that a similar result holds for the category of vector spaces
over a fixed field (Theorem 5.12).

Finally, we show in Section 6 that well-founded coalgebras are closed under
coproducts, quotients and, assuming mild assumptions, under subcoalgebras.

2 Preliminaries

We start by recalling some background material. Except for the definitions of
algebra and coalgebra in Subsection 2.1, the subsections below may be read as
needed. We assume that readers are familiar with notions of basic category theory;
see e.g. [2] for everything which we do not detail. We indicate monomorphisms
by writing � and strong epimorphisms by �.

2.1 Algebras and Coalgebras. We are concerned throughout this paper
with algebras and coalgebras for an endofunctor. This means that we have an
underlying category, usually written A ; frequently it is the category of sets or
of vector spaces over a fixed field, and that a functor F : A → A is given. An
F -algebra is a pair (A, α), where α : FA → A. An F -coalgebra is a pair (A, α),
where α : A → FA. We usually drop the functor F . Given two algebras (A, α)
and (B, β), an algebra homomorphism from the first to the second is h : A → B
in A such that h · α = β · Fh. Similarly, a coalgebra homomorphism satisfies
β · h = Fh · α. We denote by Coalg F the category of all coalgebras for F .

Example 2.1. (1) The power set functor P : Set → Set takes a set X to the set
PX of all subsets of it; for a morphism f : X → Y , Pf : PX → PY takes a
subset S ⊆ X to its direct image f [S]. Coalgebras α : X → PX may be identified
with directed graphs on the set X of vertices, and the coalgebra structure α
describes the edges: b ∈ α(a) means that there is an edge a → b in the graph.

On Well-Founded and Recursive Coalgebras 19



(2) Let Σ be a signature, i.e. a set of operation symbols, each with a finite arity.
The polynomial functor HΣ associated to Σ assigns to a set X the set

HΣX =
∐

n∈N

Σn × Xn,

where Σn is the set of operation symbols of arity n. This may be identified with
the set of all terms σ(x1, . . . , xn), for σ ∈ Σn, and x1, . . . , xn ∈ X. Algebras for
HΣ are the usual Σ-algebras.
(3) Deterministic automata over an input alphabet Σ are coalgebras for the
functor FX = {0, 1} × XΣ . Indeed, given a set S of states, a next-state map
S × Σ → S may be curried to δ : S → SΣ . The set of final states yields the
acceptance predicate a : S → {0, 1}. So an automaton may be regarded as a
coalgebra 〈a, δ〉 : S → {0, 1} × SΣ .
(4) Labelled transitions systems are coalgebras for FX = P(Σ × X).
(5) To describe linear weighted automata, i.e. weighted automata over the input
alphabet Σ with weights in a field K, as coalgebras, one works with the category
VecK of vector spaces over K. A linear weighted automaton is then a coal-
gebra for FX = K × XΣ .

2.2 Preservation Properties. Recall that an intersection of two subobjects
si : Si � A (i = 1, 2) of a given object A is given by their pullback. Analogously,
(general) intersections are given by wide pullbacks. Furthermore, the inverse
image of a subobject s : S � B under a morphism f : A → B is the subobject
t : T � A obtained by a pullback of s along f .

All of the ‘usual’ set functors preserve intersections and inverse images:

Example 2.2. (1) Every polynomial functor preserves intersections and inverse
images.
(2) The power-set functor P preserves intersections and inverse images.
(3) Intersection-preserving set functors are closed under taking coproducts,
products and composition. Similarly, for inverse images.
(4) Consider next the set functor R defined by RX = {(x, y) ∈ X × X : x �=
y} + {d} for sets X. For a function f : X → Y put Rf(x, y) = (f(x), f(y if
f(x) �= f(y), and d otherwise. R preserves intersections but not inverse images.

Proposition 2.3 [27]. For every set functor F there exists an essentially unique
set functor F̄ which coincides with F on nonempty sets and functions and
preserves finite intersections (whence monomorphisms).

Remark 2.4. (1) In fact, Trnková gave a construction of F̄ : she defined F̄∅ as
the set of all natural transformations C01 → F , where C01 is the set functor with
C01∅ = ∅ and C01X = 1 for all nonempty sets X. For the empty map e : ∅ → X
with X �= ∅, F̄ e maps a natural transformation τ : C01 → F to the element given
by τX : 1 → FX.
(2) The above functor F̄ is called the Trnková hull of F . It allows us to achieve
preservation of intersections for all finitary set functors. Intuitively, a functor on

))

20 J. Adámek et al.



sets is finitary if its behavior is completely determined by its action on finite sets
and functions. For a general functor, this intuition is captured by requiring that
the functor preserves filtered colimits [8]. For a set functor F this is equivalent to
being finitely bounded, which is the following condition: for each element x ∈ FX
there exists a finite subset M ⊆ X such that x ∈ Fi[FM ], where i : M ↪→ X is
the inclusion map [7, Rem. 3.14].

Proposition 2.5 [4, p. 66]. The Trnková hull of a finitary set functor preserves
all intersections.

2.3 Factorizations. Recall that an epimorphism e : A → B is called strong
if it satisfies the following diagonal fill-in property: given a monomorphism
m : C � D and morphisms f : A → C and g : B → D such that m · f = g · e
then there exists a unique d : B → C such that f = d · e and g = m · d.

Every complete and well-powered category has factorizations of morphisms:
every morphism f may be written as f = m · e, where e is a strong epimorphism
and m is a monomorphism [9, Prop. 4.4.3]. We call the subobject m the image
of f . It follows from a result in Kurz’ thesis [16, Prop. 1.3.6] that factorizations
of morphisms lift to coalgebras:

Proposition 2.6 (Coalg F inherits factorizations from A ). Suppose that
F preserves monomorphisms. Then the category Coalg F has factorizations of
homomorphisms f as f = m · e, where e is carried by a strong epimorphism and
m by a monomorphism in A . The diagonal fill-in property holds in Coalg F .

Remark 2.7. By a subcoalgebra of a coalgebra (A, α) we mean a subobject
in Coalg F represented by a homomorphism m : (B, β) � (A, α), where m is
monic in A . Similarly, by a strong quotient of a coalgebra (A, α) we mean one
represented by a homomorphism e : (A, α) � (C, γ) with e strongly epic in A .

2.4 Chains. By a transfinite chain in a category A we understand a functor
from the ordered class Ord of all ordinals into A . Moreover, for an ordinal λ, a
λ-chain in A is a functor from λ to A . A category has colimits of chains if for
every ordinal λ it has a colimit of every λ-chain. This includes the initial object
0 (the case λ = 0).

Definition 2.8. (1) A category A has smooth monomorphisms if for every
λ-chain C of monomorphisms a colimit exists, its colimit cocone is formed
by monomorphisms, and for every cone of C formed by monomorphisms, the
factorizing morphism from colim C is monic. In particuar, every morphism from
0 is monic.
(2) A has universally smooth monomorphisms if A also has pullbacks, and
for every morphism f : X → colim C, the functor A / colim C → A /X forming
pullbacks along f preserves the colimit of C. This implies that initial object 0
is strict, i.e. every morphism f : X → 0 is an isomorphism. Indeed, consider the
empty chain (λ = 0).

Example 2.9. (1) Set has universally smooth monomorphisms.

On Well-Founded and Recursive Coalgebras 21



(2) VecK has smooth monomorphisms, but not universally so because the initial
object is not strict.
(3) Categories in which colimits of chains and pullbacks are formed “set-like”
have universally smooth monomorphisms. These include the categories of posets,
graphs, topological spaces, presheaf categories, and many varieties, such as
monoids, groups, and unary algebras.
(4) Every locally finitely presentable category A with a strict initial object (see
Remark 2.12(1)) has smooth monomorphisms. This follows from [8, Prop. 1.62].
Moreover, since pullbacks commute with colimits of chains, it is easy to prove
that colimits of chains are universal using the strictness of 0.
(5) The category CPO of complete partial orders does not have smooth mono-
morphisms. Indeed, consider the ω-chain of linearly ordered sets An = {0, . . . , n}+
{
} (
 a top element) with inclusion maps An → An+1. Its colimit is the linearly
ordered set N+ {
, 
′} of natural numbers with two added top elements 
′ < 
.
For the sub-cpo N+ {
}, the inclusions of An are monic and form a cocone. But
the unique factorizing morphism from the colimit is not monic.

Notation 2.10. For every object A we denote by Sub(A) the poset of all subob-
jects of A (represented by monomorphisms s : S � A), where s ≤ s′ if there exists
i with s = s′ · i. If A has pullbacks we have, for every morphism f : A → B, the
inverse image operator, viz. the monotone map

←−
f : Sub(B) → Sub(A) assigning

to a subobject s : S � A the subobject of B obtained by forming the inverse
image of s under f , i.e. the pullback of s along f .

Lemma 2.11. If A is complete and well-powered, then
←−
f has a left adjoint

given by the (direct) image operator
−→
f : Sub(A) → Sub(B). It maps a subobject

t : T � B to the subobject of A given by the image of f · t; in symbols we have−→
f (t) ≤ s iff t ≤ ←−

f (s).

Remark 2.12. If A is a complete and well-powered category, then Sub(A) is a
complete lattice. Now suppose that A has smooth monomorphisms.

(1) In this setting, the unique morphism ⊥A : 0 → A is a monomorphism and
therefore is the bottom element of the poset Sub(A).
(2) Furthermore, a join of a chain in Sub(A) is obtained by forming a colimit, in
the obvious way.
(3) If A has universally smooth monomorphisms, then for every morphism
f : A → B, the operator

←−
f : Sub(B) → Sub(A) preserves unions of chains.

Remark 2.13. Recall [1] that every endofunctor F yields the initial-algebra
chain, viz. a transfinite chain formed by the objects F i0 of A , as follows: F 00 = 0,
the initial object; F i+10 = F (F i0), and for a limit ordinal i we take the colimit
of the chain (F j0)j<i. The connecting morphisms wi,j : F i0 → F j0 are defined
by a similar transfinite recursion.

22 J. Adámek et al.



3 Recursive Coalgebras

Assumption 3.1. We work with a standard set theory (e.g. Zermelo-Fraenkel),
assuming the Axiom of Choice. In particular, we use transfinite induction on
several occasions. (We are not concerned with constructive foundations in this
paper.)

Throughout this paper we assume that A is a complete and well-powered
category A and that F : A → A preserves monomorphisms.

For A = Set the condition that F preserves monomorphisms may be dropped.
In fact, preservation of non-empty monomorphism is sufficient in general (for a
suitable notion of non-empty monomorphism) [21, Lemma 2.5], and this holds
for every set functor.

The following definition of recursive coalgebras was first given by Osius [22].
Taylor [24] speaks of coalgebras obeying the recursion scheme. Capretta et al. [10]
extended the concept to parametrically recursive coalgebra by dualizing completely
iterative algebras [20].

Definition 3.2. A coalgebra α : A → FA is called recursive if for every algebra
e : FX → X there exists a unique coalgebra-to-algebra morphism e† : A → X,
i.e. a unique morphism such that the square on the left below commutes:

A X

FA FX

α

e†

F e†
e

A X

FA × A FX × A

e†

〈α,A〉
F e†×A

e

(A, α) is called parametrically recursive if for every morphism e : FX × A → X
there is a unique morphism e† : A → X such that the square on the right above
commutes.

Example 3.3. (1) A graph regarded as a coalgebra for P is recursive iff it has
no infinite path. This is an immediate consequence of the General Recursion
Theorem (see Corollary 5.6 and Example 4.5(2)).
(2) Let ι : F (μF ) → μF be an initial algebra. By Lambek’s Lemma, ι is an
isomorphism. So we have a coalgebra ι−1 : μF → F (μF ). This algebra is (para-
metrically) recursive. By [20, Thm. 2.8], in dual form, this is precisely the same
as the terminal parametrically recursive coalgebra (see also [10, Prop. 7]).
(3) The initial coalgebra 0 → F0 is recursive.
(4) If (C, γ) is recursive so is (FC, Fγ), see [10, Prop. 6].
(5) Colimits of recursive coalgebras in Coalg F are recursive. This is easy to
prove, using that colimits of coalgebras are formed on the level of the underlying
category.
(6) It follows from items (3)–(5) that in the initial-algebra chain from Re-
mark 2.13 all coalgebras wi,i+1 : F i0 → F i+10, i ∈ Ord, are recursive.

On Well-Founded and Recursive Coalgebras 23



(7) Every parametrically recursive coalgebra is recursive. (To see this, form for
a given e : FX → X the morphism e′ = e · π, where π : FX × A → FX is the
projection.) In Corollaries 5.6 and 5.9 we will see that the converse often holds.

algebra α : RA → A the constant map h : C → A with h(0) = h(1) = α(d) is the
unique coalgebra-to-algebra morphism.

However, (C, γ) is not parametrically recursive. To see this, consider any
morphism e : RX × {0, 1} → X such that RX contains more than one pair
(x0, x1), x0 �= x1 with e((x0, x1), i) = xi for i = 0, 1. Then each such pair yields
h : C → X with h(i) = xi making the appropriate square commutative. Thus,
(C, γ) is not parametrically recursive.
(8) Capretta et al. [11] showed that recursivity semantically models divide-and-
conquer programs, as demonstrated by the example of Quicksort. For every
linearly ordered set A (of data elements), Quicksort is usually defined as the
recursive function q : A∗ → A∗ given by

q(ε) = ε and q(aw) = q(w≤a) � (aq(w>a)),

where A∗ is the set of all lists on A, ε is the empty list, � is the concatenation of
lists and w≤a denotes the list of those elements of w which are less than or equal
than a; analogously for w>a.

Now consider the functor FX = 1 + A × X × X on Set, where 1 = {•}, and
form the coalgebra s : A∗ → 1 + A × A∗ × A∗ given by

s(ε) = • and s(aw) = (a, w≤a, w>a) for a ∈ A and w ∈ A∗.

We shall see that this coalgebra is recursive in Example 5.3. Thus, for the
F -algebra m : 1 + A × A∗ × A∗ → A∗ given by

m(•) = ε and m(a, w, v) = w � (av)

there exists a unique function q on A∗ such that q = m · Fq · s. Notice that the
last equation reflects the idea that Quicksort is a divide-and-conquer algorithm.
The coalgebra structure s divides a list into two parts w≤a and w>a. Then Fq
sorts these two smaller lists, and finally in the combine- (or conquer-) step, the
algebra structure m merges the two sorted parts to obtain the desired whole
sorted list.

Jeannin et al. [15, Sec. 4] provide a number of recursive functions arising in
programming that are determined by recursivity of a coalgebra, e.g. the gcd of
integers, the Ackermann function, and the Towers of Hanoi.

4 The Next Time Operator and Well-Founded Coalgebras

As we have mentioned in the Introduction, the main issue of this paper is the
relationship between two concepts pertaining to coalgebras: recursiveness and

24 J. Adámek et al.

Here is an example where the converse fails [ ]. Let R : Set → Set be the
functor defined in Example 2.2(4). Also, let C = {0, 1}, and define γ : C → RC
by γ(0) = γ(1) = (0, 1). Then (C, γ) is a recursive coalgebra. Indeed, for every

3



well-foundedness. The concept of well-foundedness is well-known for directed
graphs (G, →): it means that there are no infinite directed paths g0 → g1 → · · · .
For a set X with a relation R, well-foundedness means that there are no backwards
sequences · · · R x2 R x1 R x0, i.e. the converse of the relation is well-founded as a
graph. Taylor [24, Def. 6.2.3] gave a more general category theoretic formulation
of well-foundedness. We observe here that his definition can be presented in a
compact way, by using an operator that generalizes the way one thinks of the
semantics of the ‘next time’ operator of temporal logics for non-deterministic (or
even probabilistic) automata and transitions systems. It is also strongly related
to the algebraic semantics of modal logic, where one passes from a graph G
to a function on PG. Jacobs [14] defined and studied the ‘next time’ operator
on coalgebras for Kripke polynomial set functors. This can be generalized to
arbitrary functors as follows.

Recall that Sub(A) denotes the complete lattice of subobjects of A.
Definition 4.1 [4, Def. 8.9]. Every coalgebra α : A → FA induces an endo-
function on Sub(A), called the next time operator

© : Sub(A) → Sub(A), ©(s) = ←−α (Fs) for s ∈ Sub(A).
In more detail: we define ©s and α(s) by the pullback in (4.1). (Being a pullback
is indicated by the “corner” symbol.) In words, ©
assigns to each subobject s : S � A the inverse image
of Fs under α. Since Fs is a monomorphism, ©s is a
monomorphism and α(s) is (for every representation
©s of that subobject of A) uniquely determined.

©S FS

A FA

α(s)

©s F s

α

(4.1)

Example 4.2. (1) Let A be a graph, considered as a coalgebra for P : Set → Set.
If S ⊆ A is a set of vertices, then ©S is the set of vertices all of whose successors
belong to S.
(2) For the set functor FX = P(Σ × X) expressing labelled transition systems
the operator © for a coalgebra α : A → P(Σ × A) is the semantic counterpart
of the next time operator of classical linear temporal logic, see e.g. Manna and
Pnüeli [18]. In fact, for a subset S ↪→ A we have that ©S consists of those states
all of whose next states lie in S, in symbols:

©S =
{

x ∈ A | (s, y) ∈ α(x) implies y ∈ S, for all s ∈ Σ
}

.

The next time operator allows a compact definition of well-foundedness as
characterized by Taylor [24, Exercise VI.17] (see also [6, Corollary 2.19]):
Definition 4.3. A coalgebra is well-founded if idA is the only fixed point of its
next time operator.
Remark 4.4. (1) Let us call a subcoalgebra m : (B, β) � (A, α) cartesian
provided that the square (4.2) is a pullback. Then
(A, α) is well-founded iff it has no proper cartesian
subcoalgebra. That is, if m : (B, β) � (A, α) is a
cartesian subcoalgebra, then m is an isomorphism.
Indeed, the fixed points of next time are precisely the

B FB

A FA

β

m F m

α

(4.2)

On Well-Founded and Recursive Coalgebras 25



cartesian subcoalgebras.
(2) A coalgebra is well-founded iff © has a unique pre-fixed point ©m ≤ m.
Indeed, since Sub(A) is a complete lattice, the least fixed point of a monotone
map is its least pre-fixed point. Taylor’s definition [24, Def. 6.3.2] uses that
property: he calls a coalgebra well-founded iff © has no proper subobject as a
pre-fixed point.

Example 4.5. (1) Consider a graph as a coalgebra α : A → PA for the power-
set functor (see Example 2.1). A subcoalgebra is a subset m : B ↪→ A such
that with every vertex v it contains all neighbors of v. The coalgebra structure
β : B → PB is then the domain-codomain restriction of α. To say that B is a
cartesian subcoalgebra means that whenever a vertex of A has all neighbors in
B, it also lies in B. It follows that (A, α) is well-founded iff it has no infinite
directed path, see [24, Example 6.3.3].
(2) If μF exists, then as a coalgebra it is well-founded. Indeed, in every pull-
back (4.2), since ι−1 (as α) is invertible, so is β. The unique algebra homomorph-
ism from μF to the algebra β−1 : FB → B is clearly inverse to m.
(3) If a set functor F fulfils F∅ = ∅, then the only well-founded coalgebra is the
empty one. Indeed, this follows from the fact that the empty coalgebra is a fixed
point of ©. For example, a deterministic automaton over the input alphabet Σ,
as a coalgebra for FX = {0, 1} × XΣ , is well-founded iff it is empty.
(4) A non-deterministic automaton may be considered as a coalgebra for the set
functor FX = {0, 1} × (PX)Σ . It is well-founded iff the state transition graph
is well-founded (i.e. has no infinite path). This follows from Corollary 4.10 below.
(5) A linear weighted automaton, i.e. a coalgebra for FX = K × XΣ on VecK ,
is well-founded iff every path in its state transition graph eventually leads to 0.
This means that every path starting in a given state leads to the state 0 after
finitely many steps (where it stays).

Notation 4.6. Given a set functor F , we define for every set X the map
τX : FX → PX assigning to every element x ∈ FX the intersection of all
subsets m : M ↪→ X such that x lies in the image of Fm:

τX(x) =
⋂

{m | m : M ↪→ X satisfies x ∈ Fm[FM ]}. (4.3)

Recall that a functor preserves intersections if it preserves (wide) pullbacks
of families of monomorphisms.

Gumm [13, Thm. 7.3] observed that for a set functor preserving intersections,
the maps τX : FX → PX in (4.3) form a “subnatural” transformation from F
to the power-set functor P. Subnaturality means that (although these maps do
not form a natural transformation in general) for every monomorphism i : X → Y
we have a commutative square:

FX PX

FY PY

τX

F i Pi

τY

(4.4)

26 J. Adámek et al.



Remark 4.7. As shown in [13, Thm. 7.4] and [23, Prop. 7.5], a set functor F
preserves intersections iff the squares in (4.4) above are pullbacks. Moreover,
loc. cit. and [13, Thm. 8.1] prove that τ : F → P is a natural transformation,
provided F preserves inverse images and intersections.

Definition 4.8. Let F be a set functor. For every coalgebra α : A → FA its
canonical graph is the following coalgebra for P: A

α−→ FA
τA−−→ PA.

Thanks to the subnaturality of τ one obtains the following results.

Proposition 4.9. For every set functor F preserving intersections, the next
time operator of a coalgebra (A, α) coincides with that of its canonical graph.

Corollary 4.10 [24, Rem. 6.3.4]. A coalgebra for a set functor preserving
intersections is well-founded iff its canonical graph is well-founded.

Example 4.11. (1) For a (deterministic or non-deterministic) automaton, the
canonical graph has an edge from s to t iff there is a transition from s to t for
some input letter. Thus, we obtain the characterization of well-foundedness as
stated in Example 4.5(3) and (4).
(2) Every polynomial functor HΣ : Set → Set preserves intersections. Thus, a
coalgebra (A, α) is well-founded if there are no infinite paths in its canonical
graph. The canonical graph of A has an edge from a to b if α(a) is of the form
σ(c1, . . . , cn) for some σ ∈ Σn and if b is one of the ci’s.
(3) Thus, for the functor FX = 1 + A × X × X, the coalgebra (A∗, s) of
Example 3.3(8) is easily seen to be well-founded via its canonical graph. Indeed,
this graph has for every list w one outgoing edge to the list w≤a and one to w>a

for every a ∈ A. Hence, this is a well-founded graph.

Lemma 4.12. The next time operator is monotone: if m ≤ n, then ©m ≤ ©n.

Lemma 4.13. Let α : A → FA be a coalgebra and m : B � A a subobject.
(1) There is a coalgebra structure β : B → FB for which m gives a subcoalgebra
of (A, α) iff m ≤ ©m.
(2) There is a coalgebra structure β : B → FB for which m gives a cartesian
subcoalgebra of (A, α) iff m = ©m.

Lemma 4.14. For every coalgebra homomorphism f : (B, β) → (A, α) we have

©β · ←−
f ≤ ←−

f · ©α,

where ©α and ©β denote the next time operators of the coalgebras (A, α) and
(B, β), respectively, and ≤ is the pointwise order.

Corollary 4.15. For every coalgebra homomorphism f : (B, β) → (A, α) we
have ©β · ←−

f = ←−
f · ©α, provided that either

On Well-Founded and Recursive Coalgebras 27



(1) f is a monomorphism in A and F preserves finite intersections, or
(2) F preserves inverse images.

Definition 4.16 [4]. The well-founded part of a coalgebra is its largest well-
founded subcoalgebra.

The well-founded part of a coalgebra always exists and is the coreflection
in the category of well-founded coalgebras [6, Prop. 2.27]. We provide a new,
shorter proof of this fact. The well-founded part is obtained by the following:
Construction 4.17 [6, Not. 2.22]. Let α : A → FA be a coalgebra. We know
that Sub(A) is a complete lattice and that the next time operator © is monotone
(see Lemma 4.12). Hence, by the Knaster-Tarski fixed point theorem, © has a
least fixed point, which we denote by a∗ : A∗ � A.

By Lemma 4.13(2), we know that there is a coalgebra structure α∗ : A∗ → FA∗

so that a∗ : (A∗, α∗) � (A, α) is the smallest cartesian subcoalgebra of (A, α).

Proposition 4.18. For every coalgebra (A, α), the coalgebra (A∗, α∗) is well-
founded.

Proof. Let m : (B, β) � (A∗, α∗) be a cartesian subcoalgebra. By Lemma 4.13,
a∗ · m : B → A is a fixed point of ©. Since a∗ is the least fixed point, we have
a∗ ≤ a∗ · m, i.e. a∗ = a∗ · m · x for some x : A∗ � B. Since a∗ is monic, we thus
have m · x = idA∗ . So m is a monomorphism and a split epimorphism, whence
an isomorphism. ��
Proposition 4.19. The full subcategory of Coalg F given by well-founded coal-
gebras is coreflective. In fact, the well-founded coreflection of a coalgebra (A, α)
is its well-founded part a∗ : (A∗, α∗) � (A, α).

Proof. We are to prove that for every coalgebra homomorphism f : (B, β) →
(A, α), where (B, β) is well-founded, there exists a coalgebra homomorphism
f � : (B, β) → (A∗, α∗) such that a∗ · f � = f . The uniqueness is easy.

For the existence of f �, we first observe that
←−
f (a∗) is a pre-fixed point of

©β : indeed, using Lemma 4.14 we have ©β(←−f (a∗)) ≤ ←−
f (©α(a∗)) = ←−

f (a∗).
By Remark 4.4(2), we therefore have idB = b∗ ≤ ←−

f (a∗) in Sub(B). Using the
adjunction of Lemma 2.11, we have

−→
f (idB) ≤ a∗ in Sub(A). Now factorize f as

B
e
� C

m
� A. We have

−→
f (idB) = m, and we then obtain m = −→

f (idB) ≤ a∗,
i.e. there exists a morphism h : C � A∗ such that a∗ · h = m. Thus, f � =
h · e : B → A∗ is a morphism satisfying a∗ · f � = a∗ · h · e = m · e = f . It follows
that f � is a coalgebra homomorphism from (B, β) to (A∗, α∗) since f and a∗ are
and F preserves monomorphisms. ��
Construction 4.20 [6, Not. 2.22]. Let (A, α) be a coalgebra. We obtain
a∗, the least fixed point of ©, as the join of the following transfinite chain of
subobjects ai : Ai � A, i ∈ Ord. First, put a0 = ⊥A, the least subobject of A.
Given ai : Ai � A, put ai+1 = ©ai : Ai+1 = ©Ai � A. For every limit ordinal
j, put aj =

∨
i<j ai. Since Sub(A) is a set, there exists an ordinal i such that

ai = a∗ : A∗ � A.

28 J. Adámek et al.



Remark 4.21. Note that, whenever monomorphisms are smooth, we have A0 =
0 and the above join aj is obtained as the colimit of the chain of the subobject
ai : Ai � A, i < j (see Remark 2.12).

If F is a finitary functor on a locally finitely presentable category, then the

Example 4.22. Let (A, α) be a graph regarded as a coalgebra for P (see
Example 2.1). Then A0 = ∅, A1 is formed by all leaves; i.e. those nodes with no
neighbors, A2 by all leaves and all nodes such that every neighbor is a leaf, etc.
We see that a node x lies in Ai+1 iff every path starting in x has length at most
i. Hence A∗ = Aω is the set of all nodes from which no infinite paths start.

We close with a general fact on well-founded parts of fixed points (i.e. (co)alge-
bras whose structure is invertible). The following result generalizes [15, Cor. 3.4],
and it also appeared before for functors preserving finite intersections [4, The-
orem 8.16 and Remark 8.18]. Here we lift the latter assumption (see [5, The-
orem 7.6] for the new proof):

Theorem 4.23. Let A be a complete and well-powered category with smooth
monomorphisms. For F preserving monomorphisms, the well-founded part of
every fixed point is an initial algebra. In particular, the only well-founded fixed
point is the initial algebra.

Example 4.24. We illustrate that for a set functor F preserving monomorph-
isms, the well-founded part of the terminal coalgebra is the initial algebra.
Consider FX = A × X + 1. The terminal coalgebra is the set A∞ ∪ A∗ of finite
and infinite sequences from the set A. The initial algebra is A∗. It is easy to
check that A∗ is the well-founded part of A∞ ∪ A∗.

5 The General Recursion Theorem and its Converse

The main consequence of well-foundedness is parametric recursivity. This is
Taylor’s General Recursion Theorem [24, Theorem 6.3.13]. Taylor assumed that
F preserves inverse images. We present a new proof for which it is sufficient that
F preserves monomorphisms, assuming those are smooth.

Theorem 5.1 (General Recursion Theorem). Let A be a complete and
wellpowered category with smooth monomorphisms. For F : A → A preserving
monomorphisms, every well-founded coalgebra is parametrically recursive.

Proof sketch. (1) Let (A, α) be well-founded. We first prove that it is recursive.
We use the subobjects ai : Ai � A of Construction 4.204, the corresponding
4 One might object to this use of transfinite recursion, since Theorem 5.1 itself could

be used as a justification for transfinite recursion. Let us emphasize that we are
not presenting Theorem 5.1 as a foundational contribution. We are building on the
classical theory of transfinite recursion.

On Well-Founded and Recursive Coalgebras 29

least ordinal i with a∗ = ai is at most ω, but in general one needs transfinite
iteration to reach a fixed point.



morphisms α(ai) : Ai+1 = ©Ai → FAi (cf. Definition 4.3), and the recursive
coalgebras (F i0, wi,i+1) of Example 3.3(6). We obtain a natural transformation
h from the chain (Ai) in Construction 4.20 to the initial-algebra chain (F i0) (see
Remark 2.13) by transfinite recursion.

Now for every algebra e : FX → X, we obtain a unique coalgebra-to-algebra
morphism fi : F i0 → X, i.e. we have that fi = e · Ffi · wi,i+1. Since (A, α) is
well-founded, we know that α = α∗ = α(ai) for some i. From this it is not difficult
to prove that fi · hi is a coalgebra-to-algebra morphism from (A, α) to (X, e).

In order to prove uniqueness, we prove by transfinite induction that for any
given coalgebra-to-algebra homomorphism e†, one has e† · aj = fj · hj · aj for
every ordinal number j. Then for the above ordinal number i with ai = idA, we
have e† = fi · hi, as desired. This shows that (A, α) is recursive.
(2) We prove that (A, α) is parametrically recursive. Consider the coalgebra
〈α, idA〉 : A → FA × A for F (−) × A. This functor preserves monomorphisms
since F does and monomorphisms are closed under products. The next time
operator © on Sub(A) is the same for both coalgebras since the square (4.1) is a
pullback if and only if the square on the right below is one.
Since idA is the unique fixed point of ©
w.r.t. F (see Definition 4.3), it is also the
unique fixed point of © w.r.t. F (−) × A.
Thus, (A, 〈α, idA〉) is a well-founded coal-
gebra for F (−) × A. By the previous ar-
gument, this coalgebra is thus recursive for
F (−) × A;

©S FS × A

A FA × A

〈α(m),©m〉

©m F m×A

〈α,A〉

equivalently, (A, α) is parametrically recursive for F . ��

Proof sketch. For Set, we apply Theorem 5.1 to the Trnková hull F̄ (see Proposi-
tion 2.3), noting that F and F̄ have the same (non-empty) coalgebras. Moreover,
one can show that every well-founded (or recursive) F -coalgebra is a well-founded
(recursive, resp.) F̄ -coalgebra. For VecK , observe that monomorphisms split and
are therefore preserved by every endofunctor F . ��

Example 5.3. We saw in Example 4.11(3) that for FX = 1 + A × X × X
the coalgebra (A, s) from Example 3.3(8) is well-founded, and therefore it is
(parametrically) recursive.

Example 5.4. Well-founded coalgebras need not be recursive when F does
not preserve monomorphisms. We take A to be the category of sets with a
predicate, i.e. pairs (X, A), where A ⊆ X. Morphisms f : (X, A) → (Y, B) satisfy
f [A] ⊆ B. Denote by 1 the terminal object (1, 1). We define an endofunctor
F by F (X, ∅) = (X + 1, ∅), and for A �= ∅, F (X, A) = 1. For a morphism
f : (X, A) → (Y, B), put Ff = f + id if A = ∅; if A �= ∅, then also B �= ∅ and
Ff is id : 1 → 1.

30 J. Adámek et al.

Theorem 5.2. For every endofunctor on Set or VecK (vector spaces and linear
maps), every well-founded coalgebra is parametrically recursive.



The terminal coalgebra is id : 1 → 1, and it is easy to see that it is well-
founded. But it is not recursive: there are no coalgebra-to-algebra morphisms
into an algebra of the form F (X, ∅) → (X, ∅).

We next prove a converse to Theorem 5.1: “recursive =⇒ well-founded”.
Related results appear in Taylor [23, 24], Adámek et al. [3] and Jeannin et
al. [15].

Recall universally smooth monomorphisms from Definition 2.8(2). A pre-fixed
point of F is a monic algebra α : FA � A.

Theorem 5.5. Let A be a complete and wellpowered category with universally
smooth monomorphisms, and suppose that F : A → A preserves inverse images
and has a pre-fixed point. Then every recursive coalgebra is well-founded.

Proof. (1) We first observe that an initial algebra exists. This follows from results
by Trnková et al. [25] as we now briefly recall. Recall the initial-algebra chain
from Remark 2.13. Let β : FB � B be a pre-fixed point. Then there is a unique
cocone βi : F i0 → B satisfying βi+1 = β ·Fβi. Moreover, each βi is monomorphic.
Since B has only a set of subobjects, there is some λ such that for every i > λ,
all of the morphisms βi represent the same subobject of B. Consequently, wλ,λ+1
of Remark 2.13 is an isomorphism, due to βλ = βλ+1 · wλ,λ+1. Then μF = F λ0
with the structure ι = w−1

λ,λ+1 : F (μF ) → μF is an initial algebra.
(2) Now suppose that (A, α) is a recursive coalgebra. Then there exists a unique
coalgebra homomorphism h : (A, α) → (μF, ι−1). Let us abbreviate wiλ by
ci : F i0 � μF , and recall the subobjects ai : Ai � A from Construction 4.20.
We will prove by transfinite induction that ai is the inverse image of ci under h; in
symbols: ai = ←−

h (ci) for all ordinals i. Then it follows that aλ is an isomorphism,
since so is cλ, whence (A, α) is well-founded.

In the base case i = 0 this is clear since A0 = W0 = 0 is a strict initial object.
For the isolated step we compute the pullback of ci+1 : Wi+1 → μF along h

using the following diagram:

Ai+1 FAi FWi

A FA F (μF ) μF

ai+1

α(ai)

F ai

F hi

F ci

ci+1

α

h

F h ι

By the induction hypothesis and since F preserves inverse images, the middle
square above is a pullback. Since the structure map ι of the initial algebra is an
isomorphism, it follows that the middle square pasted with the right-hand triangle
is also a pullback. Finally, the left-hand square is a pullback by the definition of
ai+1. Thus, the outside of the above diagram is a pullback, as required.

For a limit ordinal j, we know that aj =
∨

i<j ai and similarly, cj =
∨

i<j ci

since Wj = colimi<j Wj and monomorphisms are smooth (see Remark 2.12(2)).
Using Remark 2.12(3) and the induction hypothesis we thus obtain

←−
h (cj) =←−

h
( ∨

i<j ci

)
=

∨
i<j

←−
h (ci) =

∨
i<j ai = aj . ��

On Well-Founded and Recursive Coalgebras 31



Corollary 5.6. Let A and F satisfy the assumptions of Theorem 5.5. Then the
following properties of a coalgebra are equivalent:
(1) well-foundedness,
(2) parametric recursiveness,
(3) recursiveness,
(4) existence of a homomorphism into (μF, ι−1),
(5) existence of a homomorphism into a well-founded coalgebra.

Proof sketch. We already know (1) ⇒ (2) ⇒ (3). Since F has an initial algebra (as
proved in Theorem 5.5), the implication (3) ⇒ (4) follows from Example 3.3(2).
In Theorem 5.5 we also proved (4) ⇒ (1). The implication (4) ⇒ (5) follows
from Example 4.5(2). Finally, it follows from [6, Remark 2.40] that (μF, ι−1) is
a terminal well-founded coalgebra, whence (5) ⇒ (4). ��
Example 5.7. (1) The category of many-sorted sets satisfies the assumptions
of Theorem 5.5, and polynomial endofunctors on that category preserve inverse
images. Thus, we obtain Jeannin et al.’s result [15, Thm. 3.3] that (1)–(4) in
Corollary 5.6 are equivalent as a special instance.
(2) The implication (4) ⇒ (3) in Corollary 5.6 does not hold for vector spaces.
In fact, for the identity functor on VecK we have μId = (0, id). Hence, every
coalgebra has a homomorphism into μId. However, not every coalgebra is recursive,
e.g. the coalgebra (K, id) admits many coalgebra-to-algebra morphisms to the
algebra (K, id). Similarly, the implication (4) ⇒ (1) does not hold.

We also wish to mention a result due to Taylor [23, Rem. 3.8]. It uses the concept
of a subobject classifier originating in [17] and prominent in topos theory. This is
an object Ω with a subobject t : 1 � Ω such that for every subobject b : B � A

definition, every elementary topos has a subobject classifier, in particular every
category SetC with C small.

Our standing assumption that A is a complete and well-powered category is
not needed for the next result: finite limits are sufficient.

Theorem 5.8 (Taylor [23]). Let F be an endofunctor preserving inverse im-
ages on a finitely complete category with a subobject classifier. Then every recursive
coalgebra is well-founded.

Corollary 5.9. For every set functor preserving inverse images, the following
properties of a coalgebra are equivalent:

well-foundedness ⇐⇒ parametric recursiveness ⇐⇒ recursiveness.

Example 5.10. The hypothesis in Theorems 5.5 and 5.8 that the functor
preserves inverse images cannot be lifted. In order to see this, we consider the
functor R : Set → Set of Example 2.2(4). It preserves monomorphisms but not
inverse images. The coalgebra A = {0, 1} with the structure α constant to (0, 1)
is recursive: given an algebra β : RB → B, the unique coalgebra-to-algebra

32 J. Adámek et al.

there is a unique b̂ : A → Ω such that b is the inverse image of t under b̂. By



homomorphism h : {0, 1} → B is given by h(0) = h(1) = β(d). But A is not
well-founded: ∅ is a cartesian subcoalgebra.

Recall that an initial algebra (μF, ι) is also considered as a coalgebra (μF, ι−1).
Taylor [23, Cor. 9.9] showed that, for functors preserving inverse images, the
terminal well-founded coalgebra is the initial algebra. Surprisingly, this result is
true for all set functors.

Theorem 5.11 [6, Thm. 2.46]. For every set functor, a terminal well-founded
coalgebra is precisely an initial algebra.

Theorem 5.12. For every functor on VecK preserving inverse images, the fol-
lowing properties of a coalgebra are equivalent:

well-foundedness ⇐⇒ parametric recursiveness ⇐⇒ recursiveness.

6 Closure Properties of Well-founded Coalgebras

In this section we will see that strong quotients and subcoalgebras (see Remark 2.7)
of well-founded coalgebras are well-founded again. We mention the following
corollary to Proposition 4.19. For endofunctors on sets preserving inverse images
this was stated by Taylor [24, Exercise VI.16]:

Proposition 6.1. The subcategory of Coalg F formed by all well-founded coal-
gebras is closed under strong quotients and coproducts in Coalg F .

This follows from a general result on coreflective subcategories [2, Thm. 16.8]:
the category Coalg F has the factorization system of Proposition 2.6, and its
full subcategory of well-founded coalgebras is coreflective with monomorphic
coreflections (see Proposition 4.19). Consequently, it is closed under strong
quotients and colimits.

We prove next that, for an endofunctor preserving finite intersections, well-
founded coalgebras are closed under subcoalgebras provided that the complete
lattice Sub(A) is a frame. This means that for every subobject m : B � A and
every family mi (i ∈ I) of subobjects of A we have m ∧ ∨

i∈I mi =
∨

i∈I(m ∧ mi).
Equivalently, ←−m : Sub(A) → Sub(B) (see Notation 2.10) has a right adjoint
m∗ : Sub(B) → Sub(A).

This property holds for Set as well as for the categories of posets, graphs,
topological spaces, and presheaf categories SetC , C small. Moreover, it holds for
every Grothendieck topos. The categories of complete partial orders and VecK

do not satisfy this requirement.

Proposition 6.2. Suppose that F preserves finite intersections, and let (A, α)
be a well-founded coalgebra such that Sub(A) a frame. Then every subcoalgebra
of (A, α) is well-founded.

On Well-Founded and Recursive Coalgebras 33



Proof. Let m : (B, β) � (A, α) be a subcoalgebra. We will show that the only
pre-fixed point of ©β is idB (cf. Remark 4.4(2)). Suppose s : S � B fulfils
©β(s) ≤ s. Since F preserves finite intersections, we have ←−m · ©α = ©β · ←−m by
Corollary 4.15(1). The counit of the above adjunction ←−m � m∗ yields ←−m(m∗(s)) ≤
s, so that we obtain ←−m(©α(m∗(s))) = ©β(←−m(m∗(s))) ≤ ©β(s) ≤ s. Using again
the adjunction ←−m � m∗, we have equivalently that ©α(m∗(s)) ≤ m∗(s); i.e. m∗(s)
is a pre-fixed point of ©α. Since (A, α) is well-founded, Corollary 4.15(1) implies
that m∗(s) = idA. Since ←−m is also a right adjoint and therefore preserves the top
element of Sub(B), we thus obtain idB = ←−m(idA) = ←−m(m∗(s)) ≤ s. ��
Remark 6.3. Given a set functor F preserving inverse images, a much better
result was proved by Taylor [24, Corollary 6.3.6]: for every coalgebra homo-
morphism f : (B, β) → (A, α) with (A, α) well-founded so is (B, β). In fact, our
proof above is essentially Taylor’s.

Corollary 6.4. If a set functor preserves finite intersections, then subcoalgebras
of well-founded coalgebras are well-founded.

Trnková [26] proved that every set functor preserves all nonempty finite
intersections. However, this does not suffice for Corollary 6.4:

Example 6.5. A well-founded coalgebra for a set functor can have non-well-
founded subcoalgebras. Let F∅ = 1 and FX = 1+1 for all nonempty sets X, and
let Ff = inl : 1 → 1 + 1 be the left-hand injection for all maps f : ∅ → X with
X nonempty. The coalgebra inr : 1 → F1 is not well-founded because its empty
subcoalgebra is cartesian. However, this is a subcoalgebra of id : 1 + 1 → 1 + 1
(via the embedding inr), and the latter is well-founded.

The fact that subcoalgebras of a well-founded coalgebra are well-founded does
not necessarily need the assumption that Sub(A) is a frame. Instead, one may
assume that the class of morphisms is universally smooth:

7 Conclusions

Well-founded coalgebras introduced by Taylor [24] have a compact definition based
on an extension of Jacobs’ ‘next time’ operator. Our main contribution is a new
proof of Taylor’s General Recursion Theorem that every well-founded coalgebra is
recursive, generalizing this result to all endofunctors preserving monomorphisms
on a complete and well-powered category with smooth monomorphisms. For
functors preserving inverse images, we also have seen two variants of the converse
implication “recursive ⇒ well-founded”, under additional hypothesis: one due
to Taylor for categories with a subobject classifier, and the second one provided
that the category has universally smooth monomorphisms and the functor has a
pre-fixed point. Various counterexamples demonstrate that all our hypotheses
are necessary.

34 J. Adámek et al.

Theorem 6.6. If A has universally smooth monomorphisms and F preserves
finite intersections, every subcoalgebra of a well-founded coalgebra is well-founded.



References

On Well-Founded and Recursive Coalgebras 35

1. Adámek, J.: Free algebras and automata realizations in the language of categories.
Comment. Math. Univ. Carolin. 15, 589–602 (1974)

2. Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories: The
Joy of Cats. Dover Publications, 3rd edn. (2009)

3. Adámek, J., Lücke, D., Milius, S.: Recursive coalgebras of finitary functors. Theor. In-
form. Appl. 41(4), 447–462 (2007)

4. Adámek, J., Milius, S., Moss, L.S.: Fixed points of functors. J. Log. Algebr. Methods
Program. 95, 41–81 (2018)

5. Adámek, J., Milius, S., Moss, L.S.: On well-founded and recursive coalgebras (2019),
full version; available online at http://arxiv.org/abs/1910.09401

6. Adámek, J., Milius, S., Moss, L.S., Sousa, L.: Well-pointed coalgebras. Log. Methods
Comput. Sci. 9(2), 1–51 (2014)

7. Adámek, J., Milius, S., Sousa, L., Wißmann, T.: On finitary functors.
available online at https://arxiv.org/abs/1902.05788

8. Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. Cambridge
University Press (1994)

9. Borceux, F.: Handbook of Categorical Algebra: Volume 1, Basic Category Theory.
Encyclopedia of Mathematics and its Applications, Cambridge University Press
(1994)

10. Capretta, V., Uustalu, T., Vene, V.: Recursive coalgebras from comonads. In-
form. and Comput. 204, 437–468 (2006)

11. Capretta, V., Uustalu, T., Vene, V.: Corecursive algebras: A study of general
structured corecursion. In: Oliveira, M., Woodcock, J. (eds.) Formal Methods:
Foundations and Applications, Lecture Notes in Computer Science, vol. 5902, pp.
84–100. Springer Berlin Heidelberg (2009)

12. Eppendahl, A.: Coalgebra-to-algebra morphisms. In: Proc. Category Theory and
Computer Science (CTCS). Electron. Notes Theor. Comput. Sci., vol. 29, pp. 42–49
(1999)

13. Gumm, H.: From T -coalgebras to filter structures and transition systems. In:
Fiadeiro, J.L., Harman, N., Roggenbach, M., Rutten, J. (eds.) Algebra and Coalgebra
in Computer Science, Lecture Notes in Computer Science, vol. 3629, pp. 194–212.
Springer Berlin Heidelberg (2005)

14. Jacobs, B.: The temporal logic of coalgebras via Galois algebras. Math. Structures
Comput. Sci. 12(6), 875–903 (2002)

15. Jeannin, J.B., Kozen, D., Silva, A.: Well-founded coalgebras, revisited. Math. Struc-
tures Comput. Sci. 27, 1111–1131 (2017)

16. Kurz, A.: Logics for Coalgebras and Applications to Computer Science. Ph.D. thesis,
Ludwig-Maximilians-Universität München (2000)

17. Lawvere, W.F.: Quantifiers and sheaves. Actes Congès Intern. Math. 1, 329–334
(1970)

18. Manna, Z., Pnüeli, A.: The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag (1992)

19. Meseguer, J., Goguen, J.A.: Initiality, induction, and computability. In: Algebraic
methods in semantics (Fontainebleau, 1982), pp. 459–541. Cambridge Univ. Press,
Cambridge (1985)

20. Milius, S.: Completely iterative algebras and completely iterative monads. In-
form. and Comput. 196, 1–41 (2005)

Theor. Appl.
Categ. 34, 1134–1164 (2019).

http://arxiv.org/abs/1910.09401
https://arxiv.org/abs/1902.05788


22. Osius, G.: Categorical set theory: a characterization of the category of sets. J. Pure
Appl. Algebra 4(79–119) (1974)

23. Taylor, P.: Towards a unified treatment of induction I: the general recursion theorem
(1995–6), preprint, available at www.paultaylor.eu/ordinals/#towuti

24. Taylor, P.: Practical Foundations of Mathematics. Cambridge University Press
(1999)

25. Trnková, V., Adámek, J., Koubek, V., Reiterman, J.: Free algebras, input processes
and free monads. Comment. Math. Univ. Carolin. 16, 339–351 (1975)

26. Trnková, V.: Some properties of set functors. Comment. Math. Univ. Carolin. 10,
323–352 (1969)

27. Trnková, V.: On a descriptive classification of set functors I. Com-
ment. Math. Univ. Carolin. 12, 143–174 (1971)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

36 J. Adámek et al.

21. Milius, S., Pattinson, D., Wißmann, T.: A new foundation for finitary corecursion
and iterative algebras. Inform. and Comput. 217 (2020), available online at https:
//doi.org/10.1016/j.ic.2019.104456.

https://doi.org/10.1016/j.ic.2019.104456
www.paultaylor.eu/ordinals/#towuti
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ic.2019.104456


Timed Negotiations�

S. Akshay1(�), Blaise Genest2, Löıc Hélouët3, and Sharvik Mital1

1 IIT Bombay, Mumbai, India {akshayss,sharky}@cse.iitb.ac.in
2 Univ Rennes, CNRS, IRISA, Rennes, France blaise.genest@irisa.fr

3 Univ Rennes, Inria, Rennes, France loic.helouet@inria.fr

Abstract. Negotiations were introduced in [6] as a model for concurrent
systems with multiparty decisions. What is very appealing with negotia-
tions is that it is one of the very few non-trivial concurrent models where
several interesting problems, such as soundness, i.e. absence of deadlocks,
can be solved in PTIME [3]. In this paper, we introduce the model of
timed negotiations and consider the problem of computing the minimum
and the maximum execution times of a negotiation. The latter can be
solved using the algorithm of [10] computing costs in negotiations, but
surprisingly minimum execution time cannot.
This paper proposes new algorithms to compute both minimum and
maximum execution time, that work in much more general classes of ne-
gotiations than [10], that only considered sound and deterministic nego-
tiations. Further, we uncover the precise complexities of these questions,
ranging from PTIME to ΔP

2 -complete. In particular, we show that com-
puting the minimum execution time is more complex than computing the
maximum execution time in most classes of negotiations we consider.

1 Introduction

Distributed systems are notoriously difficult to analyze, mainly due to the ex-
plosion of the number of configurations that have to be considered to answer
even simple questions. A challenging task is then to propose models on which
analysis can be performed with tractable complexities, preferably within poly-
nomial time. Free choice Petri nets are a classical model of distributed systems
that allow for efficient verification, in particular when the nets are 1-safe [4, 5].

Recently, [6] introduced a new model called negotiations for workflows and
business processes. A negotiation describes how processes interact in a dis-
tributed system: a subset of processes in a node of the system take a synchronous
decisions among several outcomes. The effect of this outcome sends contribut-
ing processes to a new set of nodes. The execution of a negotiation ends when
processes reach a final configuration. Negotiations can be deterministic (once an
outcome is fixed, each process knows its unique successor node) or not.

Negotiations are an interesting model since several properties can be decided
with a reasonable complexity. The question of soundness, i.e., deadlock-freedom:

� Supported by DST/CEFIPRA/INRIA Associated team EQuaVE and DST/SERB
Matrices grant MTR/2018/000744.

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 37–56, 2020.
https://doi.org/10.1007/978-3-030-45231-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_3&domain=pdf


whether from every reachable configuration one can reach a final configuration,
is PSPACE-complete. However, for deterministic negotiations, it can be decided
in PTIME [7]. The decision procedure uses reduction rules. Reduction techniques
were originally proposed for Petri nets [2, 8, 11, 16]. The main idea is to define
transformations rules that produce a model of smaller size w.r.t. the original
model, while preserving the property under analysis. In the context of negotia-
tions, [7, 3] proposed a sound and complete set of soundness-preserving reduction
rules and algorithms to apply these rules efficiently. The question of soundness
for deterministic negotiations was revisited in [9] and showed NLOGSPACE-
complete using anti patterns instead of reduction rules. Further, they show that
the PTIME result holds even when relaxing determinism [9]. Negotiation games
have also been considered to decide whether one particular process can force ter-
mination of a negotiation. While this question is EXPTIME-complete in general,
for sound and deterministic negotiations, it becomes PTIME [12].

While it is natural to consider cost or time in negotiations (e.g. think of the
Brexit negotiation where time is of the essence, and which we model as running
example in this paper), the original model of negotiations proposed by [6] is
only qualitative. Recently, [10] has proposed a framework to associate costs to
the executions of negotiations, and adapt a static analysis technique based on
reduction rules to compute end-to-end cost functions that are not sensitive to
scheduling of concurrent nodes. For sound and deterministic negotiations, the
end-to-end cost can be computed in O(n.(C + n)), where n is the size of the
negotiation and C the time needed to compute the cost of an execution. Requir-
ing soundness or determinism seems perfectly reasonable, but asking sound and
deterministic negotiations is too restrictive: it prevents a process from waiting
for decisions of other processes to know how to proceed.

In this paper, we revisit time in negotiations. We attach time intervals to
outcomes of nodes. We want to compute maximal and minimal executions times,
for negotiations that are not necessarily sound and deterministic. Since we are
interested in minimal and maximal execution time, cycles in negotiations can be
either bypassed or lead to infinite maximal time. Hence, we restrict this study to
acyclic negotiations. Notice that time can be modeled as a cost, following [10],
and the maximal execution time of a sound and deterministic negotiation can
be computed in PTIME using the algorithm from [10]. Surprisingly however, we
give an example (Example 3) for which the minimal execution time cannot be
computed in PTIME by this algorithm.

The first contribution of the paper shows that reachability (whether at least
one run of a negotiation terminates) is NP-complete, already for (untimed) deter-
ministic acyclic negotiations. This implies that computing minimal or maximal
execution time for deterministic (but unsound) acyclic negotiations cannot be
done in PTIME (unless NP=PTIME). We characterize precisely the complex-
ities of different decision variants (threshold, equality, etc.), with complexities
ranging from (co-)NP-complete to ΔP

2 .

We thus turn to negotiations that are sound but not necessarily determinis-
tic. Our second contribution is a new algorithm, not based on reduction rules,

38 S. Akshay et al.



to compute the maximal execution time in PTIME for sound negotiations. It is
based on computing the maximal execution time of critical paths in the nego-
tiations. However, we show that minimal execution time cannot be computed
in PTIME for sound negotiations (unless NP=PTIME): deciding whether the
minimal execution time is lower than T is NP-complete, even for T given in
unary, using a reduction from a Bin packing problem. This shows that minimal
execution time is harder to compute than maximal execution time.

Our third contribution consists in defining a class in which the minimal exe-
cution time can be computed in (pseudo) PTIME. To do so, we define the class
of k-layered negotiations, for k fixed, that is negotiations where nodes can be or-
ganized into layers of at most k nodes at the same depth. These negotiations can
be executed without remembering more than k nodes at a time. In this case, we
show that computing the maximal execution time is PTIME, even if the negoti-
ation is neither deterministic nor sound. The algorithm, not based on reduction
rules, uses the k-layer restriction in order to navigate in the negotiation while
considering only a polynomial number of configurations. For minimal execution
time, we provide a pseudo PTIME algorithm, that is PTIME if constants are
given in unary. Finally, we show that the size of constants do matter: deciding
whether the minimal execution time of a k-layered negotiation is less than T
is NP-complete, when T is given in binary. We show this by reducing from a
Knapsack problem, yet again emphasizing that the minimal execution time of a
negotiation is harder to compute than its maximal execution time.

This paper is organized as follows. Section 2 introduces the key ingredients of
negotiations, determinism and soundness, known results in the untimed setting,
and provides our running example modeling the Brexit negotiation. Section 3
introduces time in negotiations, gives a semantics to this new model, and for-
malizes several decision problems on maximal and minimal durations of runs in
timed negotiations. We recall the main results of the paper in Section 4. Then,
Section 5 considers timed execution problems for deterministic negotiations, Sec-
tion 6 for sound negotiations, and section 7 for layered negotiations. Proof details
for the last three sections are given in an extended version of this paper [1].

2 Negotiations: Definitions and Brexit example

In this section, we recall the definition of negotiations, of some subclasses (acyclic
and deterministic), as well as important problems (soundness and reachability).

Definition 1 (Negotiation [6, 10]). A negotiation over a finite set of pro-
cesses P is a tuple N = (N,n0, nf ,X ), where:

– N is a finite set of nodes. Each node is a pair n = (Pn, Rn) where Pn ⊆ P
is a non empty set of processes participating in node n, and Rn is a finite
set of outcomes of node n (also called results), with Rnf

= {rf}. We denote
by R the union of all outcomes of nodes in N .

– n0 is the first node of the negotiation and nf is the final node. Every process
in P participates in both n0 and nf .

Timed Negotiations 39



EU PM Pa

EU PM Pa

EU

no-backstop

EU

backstop

PM

court

PM

no-court

Pa Pa

court

EU PM

c-meet meet

EU PM Pa

recess defend

EU

deal w/backstopdeal agreed

PM Pa

debate

EU PM Pa

delay brexit delay

Fig. 1. A (sound but non-deterministic) negotiation modeling Brexit.

– For all n ∈ N , Xn : Pn ×Rn → 2N is a map defining the transition relation
from node n, with Xn(p, r) = ∅ iff n = nf , r = rf . We denote X : N × P ×
R → 2N the partial map defined on

⋃
n∈N ({n}×Pn×Rn), with X (n, p, a) =

Xn(p, a) for all p, a.

Intuitively, at a node n = (Pn, Rn) in a negotiation, all processes of Pn have
to agree on a common outcome r chosen from Rn. Once this outcome r is chosen,
every process p ∈ Pn is ready to move to any node prescribed by X (n, p, r). A
new node m can only start when all processes of Pm are ready to move to m.

Example 1. We illustrate negotiations by considering a simplified model of the
Brexit negotiation, see Figure 1. There are 3 processes, P = {EU,PM,Pa}. At
first EU decides whether or not to enforce a backstop in any deal (outcome back-
stop) or not (outcome no-backstop). In the meantime, PM decides to proroge
Pa, and Pa can choose or not to appeal to court (outcome court/no court). If it
goes to court, then PM and Pa will take some time in court (c-meet, defend),
before PM can meet EU to agree on a deal. Otherwise, Pa goes to recess, and
PM can meet EU directly. Once EU and PM agreed on a deal, PM tries to
convince Pa to vote the deal. The final outcome is whether the deal is voted, or
whether Brexit is delayed.

Definition 2 (Deterministic negotiations). A process p ∈ P is determinis-
tic iff, for every n ∈ N and every outcome r of n, X (n, p, r) is a singleton. A ne-
gotiation is deterministic iff all its processes are deterministic. It is weakly non-
deterministic [9] (called weakly deterministic in [3]) iff, for every node n, one of
the processes in Pn is deterministic. Last, it is very weakly non-deterministic [9]
(called weakly deterministic in [6]) iff, for every n, every p ∈ Pn and every out-
come r of n, there exists a deterministic process q such that q ∈ Pn′ for every
n′ ∈ X (n, p, r).

40 S. Akshay et al.



In deterministic negotiations, once an outcome is chosen, each process knows
the next node it will be involved in. In (very-)weakly non-deterministic nego-
tiations, the next node might depend upon the outcome chosen in other nodes
by other processes. However, once the outcomes have been chosen for all cur-
rent nodes, there is only one next node possible for each process. Observe that
the class of deterministic negotiations is isomorphic to the class of free choice
workflow nets [10]. In Example 1, the Brexit negotiation is non-deterministic,
because process PM is non-deterministic. Indeed, consider outcomes c-meet: it
allows two nodes, according to whether the backstop is enforced or not, which
is a decision taken by process EU .

Semantics: A configuration [3] of a negotiation is a mapping M : P → 2N .
Intuitively, it tells for each process p the setM(p) of nodes p is ready to engage in.
The semantics of a negotiation is defined in terms of moves from a configuration
to the next one. The initialM0 and finalMf configurations, are given byM0(p) =
{n0} and Mf (p) = ∅ respectively for every process p ∈ P . A configuration M
enables node n if n ∈ M(p) for every p ∈ Pn. When n is enabled, a decision
at node n can occur, and the participants at this node choose an outcome r ∈
Rn. The occurrence of (n, r) produces the configuration M ′ given by M ′(p) =
X (n, p, r) for every p ∈ Pn and M ′(p) = M(p) for remaining processes in P \Pn.

Moving fromM toM ′ after choosing (n, r) is called a step, denotedM
n,r−−→ M ′. A

run of N is a sequence (n1, r1), (n2, r2)...(nk, rk) such that there is a sequence of
configurations M0,M1, . . . ,Mk and every (ni, ri) is a step between Mi−1 and Mi.
A run starting from the initial configuration and ending in the final configuration
is called a final run. By definition, its last step is (nf , rf ).

An important class of negotiations in the context of timed negotiations is
acyclic negotiations, where infinite sequence of steps is impossible:

Definition 3 (Acyclic negotiations). The graph of a negotiation N is the
labeled graph GN = (V,E) where V = N , and E = {((n, (p, r), n′) | n′ ∈
X (n, p, r)}, with pairs of the form (p, r) being the labels. A negotiation is acyclic
iff its graph is acyclic. We denote by Paths(GN ) the set of paths in the graph of a
negotiation. These paths are of form π = (n0, (p0, r0), n1) . . . (nk−1, (pk, rk), nk).

The Brexit negotiation of Fig.1 is an example of acyclic negotiation. Despite
their apparent simplicity, negotiations may express involved behaviors as shown
with the Brexit example. Indeed two important questions in this setting are
whether there is some way to reach a final node in the negotiation from (i) the
initial node and (ii) any reachable node in the negotiation.

Definition 4 (Soundness and Reachability).

1. A negotiation is sound iff every run from the initial configuration can be
extended to a final run. The problem of soundness is to check if a given
negotiation is sound.

2. The problem of reachability asks if a given negotiation has a final run.

Timed Negotiations 41



Notice that the Brexit negotiation of Fig.1 is sound (but not deterministic).
It seems hard to preserve the important features of this negotiation while being
both sound and deterministic. The problem of soundness has received consider-
able attention. We summarize the results about soudness in the next theorem:

Theorem 1. Determining whether a negotiation is sound is PSPACE-Complete.
For (very-)weakly non-deterministic negotiations, it is co-NP-complete [9]. For
acyclic negotiations, it is in DP and co-NP-Hard [6]. Determining whether an
acyclic weakly non-deterministic negotiation is sound is in PTIME [3, 9]. Fi-
nally, deciding soundness for deterministic negotiations is NLOGSPACE-complete [9].

Checking reachability is NP-complete, even for deterministic acyclic negoti-
ations (surprisingly, we did not find this result stated before in the literature):

Proposition 1. Reachability is NP-complete for acyclic negotiations, even if
the negotiation is deterministic.

Proof (sketch). One can guess a run of size ≤ |N | in polynomial time, and verify
if it reaches nf , which gives the inclusion in NP. The hardness part comes from
a reduction from 3-CNF-SAT that can be found in the proof of Theorem 3. ��

k-Layered Acyclic Negotiations

We introduce a new class of negotiations which has good algorithmic properties,
namely k-layered acyclic negotiations, for k fixed. Roughly speaking, nodes of a
k-layered acyclic negotiations can be arranged in layers, and these layers contain
at most k nodes. Before giving a formal definition, we need to define the depth
of nodes in N .

First, a path in a negotiation is a sequence of nodes n0 . . . n� such that for
all i ∈ {1, . . . , �− 1}, there exists pi, ri with ni+1 ∈ X (ni, pi, ri). The length of a
path n0, . . . , n� is �. The depth depth(n) of a node n is the maximal length of a
path from n0 to n (recall that N is acyclic, so this number is always finite).

Definition 5. An acyclic negotiation is layered if for all node n, every path
reaching n has length depth(n). An acyclic negotiation is k-layered if it is layered,
and for all � ∈ N, there are at most k nodes at depth �.

The Brexit example of Fig. 1 is 6-layered. Notice that a layered negotiation
is necessarily k-layered for some k ≤ |N | − 2. Note also that we can always
transform an acyclic negotiation N into a layered acyclic negotiation N ′, by
adding dummy nodes: for every nodem ∈ X (n, p, r) with depth(m) > depth(n)+
1, we can add several nodes n1, . . . n� with � = depth(m)− (depth(n) + 1), and
processes Pni

= {p}. We compute a new relation X ′ such that X ′(n, p, r) =
{n1}, X (n�, p, r) = {m} and for every i ∈ 1..� − 1, X (ni, p, r) = ni+1. This
transformation is polynomial: the resulting negotiation is of size up to |N | ×
|X | × |P |. The proof of the following Theorem can be found in [1].

Theorem 2. Let k ∈ N+. Checking reachability or soundness for a k-layered
acyclic negotiation N can be done in PTIME.

42 S. Akshay et al.



3 Timed Negotiations

In many negotiations, time is an important feature to take into account. For
instance, in the Brexit example, with an initial node starting at the begining of
September 2019, there are 9 weeks to pass a deal till the 31st October deadline.

We extend negotiations by introducing timing constraints on outcomes of
nodes, inspired by timed Petri nets [14] and by the notion of negotiations with
costs [10]. We use time intervals to specify lower and upper bounds for the
duration of negotiations. More precisely, we attach time intervals to pairs (n, r)
where n is a node and r an outcome. In the rest of the paper, we denote by
I the set of intervals with endpoints that are non-negative integers or ∞. For
convenience we only use closed intervals in this paper (except for ∞), but the
results we show can also be extended to open intervals with some notational
overhead. Intuitively, outcome r can be taken at a node n with associated time
interval [a, b] only after a time units have elapsed from the time all processes
contributing to n are ready to engage in n, and at most b time units later.

Definition 6. A timed negotiation is a pair (N , γ) where N is a negotiation,
and γ : N×R → I associates an interval to each pair (n, r) of node and outcome
such that r ∈ Rn. For a given node n and outcome r, we denote by γ−(n, r) (resp.
γ+(n, r)) the lower bound (resp. the upper bound) of γ(n, r).

Example 2. In the Brexit example, we define the following timed constraints γ.
We only specify the outcome names, as the timing only depends upon them.
Backstop and no-backstop both take between 1 and 2 weeks: γ(backstop) =
γ(no-backstop) = [1, 2]. In case of no-court, recess takes 5 weeks γ(recess) =
[5, 5], and PM can meet EU immediatly γ(meet) = [0, 0]. In case of court ac-
tion, PM needs to spend 2 weeks in court γ(c-meet) = [2, 2], and depending on
the court delay and decision, Pa needs between 3 (court overules recess) to 5
(court confirms recess) weeks, γ(defend) = [3, 5]. Agreeing on a deal can take
anywhere from 2 weeks to 2 years (104 weeks): γ(deal agreed) = [2, 104]—some
would say infinite time is even possible! It needs more time with the backstop,
γ(deal w/backstop) = [5, 104]. All other outcomes are assumed to be immediate,
i.e., associated with [0, 0].

Semantics: A timed valuation is a map μ : P → R≥0 that associates a non-
negative real value to every process. A timed configuration is a pair (M,μ) where
M is a configuration and μ a timed valuation. There is a timed step from (M,μ)

to (M ′, μ′), denoted (M,μ)
(n,r)−−−→ (M ′, μ′), if (i) M

(n,r)−−−→ M ′, (ii) p /∈ Pn

implies μ′(p) = μ(p) (iii) ∃d ∈ γ(n, r) such that ∀p ∈ Pn, we have μ′(p) =
maxp′∈Pn

μ(p′) + d (d is the duration of node n).

Intuitively a timed step (M,μ)
(n,r)−−−→ (M ′, μ′) depicts a decision taken at

node n, and how long each process of Pn waited in that node before taking
decision (n, r). The last process engaged in n must wait for a duration contained
in γ(n, r). However, other processes may spend a time greater than γ+(n, r).

Timed Negotiations 43



A timed run is a sequence of steps ρ = (M0, μ0)
e1−→ (M1, μ1) . . . (Mk, μk)

where M0 is the initial configuration, μ0(p) = 0 for every p ∈ P , and each

(Mi, μi)
ei−→ (Mi+1, μi+1) is a timed step. It is final if Mk = Mf . Its execution

time δ(ρ) is defined as δ(ρ) = maxp∈P μk(p).
Notice that we only attached timing to processes, not to individual steps.

With our definition of runs, timing on steps may not be monotonous (i.e., non-
decreasing) along the run, while timing on processes is. Viewed by the lens of
concurrent systems, the timing is monotonous on the partial orders of the system
rather than the linearization. It is not hard to restrict paths, if necessary, to have
a monotonous timing on steps as well. In this paper, we are only interested in
execution time, which does not depend on the linearization considered.

Given a timed negotiation N , we can now define the minimum and maximum
execution time, which correspond to optimistic or pessimistic views:

Definition 7. Let N be a timed negotiation. Its minimum execution time, de-
noted mintime(N ) is the minimal δ(ρ) over all final timed run ρ of N . We
define the maximal execution time maxtime(N ) of N similarly.

Given T ∈ N, the main problems we consider in this paper are the following:

– The mintime problem, i.e., do we have mintime(N ) ≤ T?.
In other words, does there exist a final timed run ρ with δ(ρ) ≤ T?

– The maxtime problem, i.e., do we have maxtime(N ) ≤ T?.
In other words, does δ(ρ) ≤ T for every final timed run ρ?

These questions have a practical interest : in the Brexit example, the question
“is there a way to have a vote on a deal within 9 weeks ?” is indeed a minimum
execution time problem. We also address the equality variant of these decision
problems, i.e., mintime(N ) = T : is there a final run of N that terminates
in exactly T time units and no other final run takes less than T time units?
Similarly for maxtime(N ) = T .

Example 3. We use Fig. 1 to show that it is not easy to compute the minimal
execution time, and in particular one cannot use the algorithm from [10] to com-
pute it. Consider the node n with Pn = {PM,Pa} and Rn = {court, no court}.
If the outcome is court, then PM needs 2 weeks before (s)he can talk to EU
and Pa needs at least 3 weeks before he can debate. However, if the outcome is
no court, then PM need not wait before (s)he can talk to EU , but Pa wastes
5 weeks in recess. This means that one needs to remember different alternatives
which could be faster in the end, depending on the future. On the other hand,
the algorithm from [10] attaches one minimal time to process Pa, and one min-
imal time to process PM . No matter the choices (0 or 2 for PM and 3 or 5
for Pa), there will be futures in which the chosen number will over or underap-
proximate the real minimal execution time (this choice is not explicit in [10])4.

4 the authors of [10] acknowledged the issue with their algorithm for mintime.

44 S. Akshay et al.



For maximum execution time, it is not an issue to attach to each node a unique
maximal execution time. The reason for the asymmetry between minimal and
maximal execution times of a negotiation is that the execution time of a path
is maxp∈P μk(p), for μk the last timed valuation, which breaks the symmetry
between min and max.

4 High level view of the main results

In this section, we give a high-level description of our main results. Formal
statements can be found in the sections where they are proved. We gather in
Fig. 2 the precise complexities for the minimal and the maximal execution time
problems for 3 classes of negotiations that we describe in the following. Since we
are interested in minimum and maximum execution time, cycles in negotiations
can be either bypassed or lead to infinite maximal time. Hence, while we define
timed negotiations in general, we always restrict to acyclic negotiations (such as
Brexit) while stating and proving results.

In [10], a PTIME algorithm is given to compute different costs for negoti-
ations that are both sound and deterministic. One limitation of this result is
that it cannot compute the minimum execution time, as explained in Example
3. A second limitation is that the class of sound and deterministic negotiations
is quite restrictive: it cannot model situations where the next node a process
participates in depends on the outcome from another process, as in the Brexit
example. We thus consider classes where one of these restrictions is dropped.

We first consider (Section 5) negotiations that are deterministic, but with-
out the soundness restriction. We show that for this class, no timed problem
we consider can be solved in PTIME (unless NP=PTIME). Further, we show
that the equality problems (maxtime/mintime(N ) = T ), are complete for the
complexity class DP, i.e., at the second level of the Boolean Hierarchy [15].

We then consider (Section 6) the class of negotiations that are sound, but not
necessarily deterministic. We show that maximum execution time can be solved
in PTIME, and propose a new algorithm. However, the minimum execution time
cannot be computed in PTIME (unless NP=PTIME). Again for the mintime
equality problem we have a matching DP-completeness result.

Deterministic Sound k-layered

Max ≤ T
Max = T

co-NP-complete (Thm. 3)
DP-complete (Prop. 2)

PTIME (Prop. 3) PTIME (Thm. 6)

Min ≤ T NP-complete (Thm. 3) NP-complete� (Thm. 5)
pseudo-PTIME (Thm. 8)
NP-complete�� (Thm. 7)

Min = T DP-complete (Prop. 2) DP-complete� (Prop. 4) pseudo-PTIME (Thm. 8)

Fig. 2. Results for acyclic timed negotiations. DP refers to the complexity class, Dif-
ference Polynomial time [15], the second level of the Boolean Hierarchy.
� hardness holds even for very weakly non-deterministic negotiations, and T in unary.
�� hardness holds even for sound and very weakly non-deterministic negotiations.

Timed Negotiations 45



Finally, in order to obtain a polytime algorithm to compute the minimum
execution time, we consider the class of k-layered negotiations (see Section 7):
Given k ∈ N, we can show that maxtime(N ) can be computed in PTIME for
k-layered negotiations. We also show that while the mintime(N ) ≤ T? problem
is weakly NP-complete for k-layered negotiations, we can compute mintime(N )
in pseudo-PTIME, i.e. in PTIME if constants are given in unary.

5 Deterministic Negotiations

We start by considering the class of deterministic acyclic negotiations. We show
that both maximal and minimal execution times cannot be computed in PTIME
(unless NP=PTIME), as the threshold problems are (co-)NP-complete.

Theorem 3. The mintime(N ) ≤ T decision problem is NP complete, and the
maxtime(N ) ≤ T decision problem is co-NP-complete for acyclic deterministic
timed negotiations.

Proof. For mintime(N ) ≤ T , containment in NP is easy: we just need to guess a
run ρ (of polynomial size as N is acyclic), consider the associated timed run ρ−

where all decisions are taken at their earliest possible dates, and check whether
δ(ρ−) ≤ T , which can be done in time O(|N |+log T ).

For the hardness, we give the proof in two steps. First, we start with a proof
of Proposition 1 that reachability problem is NP-hard using reduction of 3-CNF
SAT, i.e., given a formula φ, we build a deterministic negotiation Nφ s.t. φ is
satisfiable iff Nφ has a final run. In a second step, we introduce timings on this
negotiation and show that mintime(Nφ) ≤ T iff φ is satisfiable.

Step 1: Reducing 3-CNF-SAT to Reachability problem.
Given a Boolean formula φ with variables vi, 1 ≤ i ≤ n and clauses cj , 1 ≤ j ≤

m, for each variable vi we define the sets of clauses Si,t = {cj | vi is present in cj}
and Si,f = {cj | ¬vi is present in cj}. Clauses in Si,t and Si,f are naturally
ordered: ci < cj iff i < j. We denote these elements Si,t(1) < Si,t(2) < . . ..
Similarly for set Si,f.

Now, we construct a negotiation Nφ (as depicted in Figure 3) with a process
Vi for each variable vi and a process Cj for each clause cj :

– Initial node n0 has a single outcome r taking each process Cj to node Lonecj ,
and each process Vi to node Lonevi .

– Lonecj has three outcomes: if literal vi ∈ cj , then ti is an outcome, taking
Cj to Paircj ,vi , and if literal ¬vi ∈ cj , then fi is an outcome, taking Cj to
Paircj ,¬vi

.
– The outcomes of Loneviare true and false. Outcome true brings Vi to

node T lonevi,1 and outcome false brings Vi to node Flonevi,1.
– We have a node T lonevi,j for each j ≤ |Si,t| and Flonevi,j for each j ≤ |Si,f|,

with Vi as only process. Let cr = Si,t(j). Node T lonevi,j has two outcomes
vton bringing Vi to T lonevi,j+1 (or nf if j = |Si,t|), and vtoci,r bringing Vi

to Paircr,vi . The two outcomes from Flonevi,j are similar.

46 S. Akshay et al.



V1 Vi Vn C1 Cj Ck Cm

Vi Cj Ck

r
r

r rr r r

Vi Vi

true false

vton vton

Vi

vton ctof

Vi

vton

vton

Vi

vton ctof

vton

Vi Cj

fi

vtoc
i,j

ctof

ti2
fi3

Vi Ck

fi

vto
ci,k

ti4
ti5

V1 Vi Vn C1 Cj Ck Cm

ctof

cto
f

ctof

n0

Lonevi Lonecj Loneck

T lonevi,1 Flonevi,1

Flonevi,r

Flonevi,r+1

Paircj ,¬vi

nf

[2, 2] [2, 2]

Fig. 3. A part of Nφ where clause cj is (i2 ∨ ¬i ∨ ¬i3) and clause ck is (i4 ∨ ¬i ∨ i5).
Timing is [0, 0] whereever not mentioned

– Node Paircr,vi
has Vi and Cr as its processes and one outcome ctof which

takes process Cr to final node nf and process Vi to T lonevi,j+1 (with cr =
Si,t(j)), or to nf if j = |Si,t|. Node Paircr,¬vi is defined in the same way
from Flonevi,j .

With this we claim that Nφ has a final run iff φ is satisfiable which completes
the first step of the proof. We give a formal proof of this claim in Appendix A
of [1]. Observe that the negotiation Nφ constructed is deterministic and acyclic
(but it is not sound).

Step 2 : Before we introduce timing on Nφ, we introduce a new outcome r′

at n0 which takes all processes to nf . Now, the timing function γ associated
with Nφ is: γ(n0, r) = [2, 2] and γ(n0, r

′) = [3, 3] and γ(n, r) = [0, 0], for all
node n �= n0 and all r ∈ Rn. Then, mintime(Nφ) ≤ 2 iff φ has a satisfiable
assignment: if mintime(Nφ) ≤ 2, there is a run with decision r taken at n0

which is final. But existence of any such final run implies satisfiability of φ. For

Timed Negotiations 47



reverse implication, if φ is satisfiable, then the corresponding run for satisfying
assignment takes 2 time units, which means that mintime(Nφ) ≤ 2.

Similarly, we can prove that the MaxTime problem is co-NP complete by
changing γ(n0, r

′
) = [1, 1] and asking if maxtime(Nφ) > 1 for the new Nφ. The

answer will be yes iff φ is satisfiable. ��
We now consider the related problem of checking if mintime(N ) = T (or if

maxtime(N ) = T ). These problems are harder than their threshold variant un-
der usual complexity assumptions: they are DP-complete (Difference Polynomial
time class, i.e., second level of the Boolean Hierarchy, defined as intersection of
a problem in NP and one in co-NP [15]).

Proposition 2. The mintime(N ) = T and maxtime(N ) = T decision prob-
lems are DP-complete for acyclic deterministic negotiations.

Proof. We only give the proof for mintime (the proof for maxtime is given in
Appendix A of [1]). Indeed, it is easy to see that this problem is in DP, as it can
be written as mintime(N ) ≤ T which is in NP and ¬(mintime(N ) ≤ T − 1)),
which is in co-NP. To show hardness, we use the negotiation constructed in the
above proof as a gadget, and show a reduction from the SAT-UNSAT problem
(a standard DP-complete problem).

The SAT-UNSAT Problem asks given two Boolean expressions φ and φ
′
, both

in CNF forms with three literals per clause, is it true that φ is satisfiable and φ
′

is unsatisfiable? SAT-UNSAT is known to be DP-complete [15]. We reduce this
problem to mintime(N ) = T .

Given φ, φ
′
, we first make the corresponding negotiations Nφ and Nφ′ as

in the previous proof. Let n0 and nf be the initial and final nodes of Nφ and

n
′
0 and n

′
f be the initial and final nodes of Nφ′ . (Similarly, for other nodes we

write ′ above the nodes to signify they belong to Nφ′ .)
In the negotiation Nφ′ , we introduce a new node nall, in which all the pro-

cesses participate (see Figure 4). The node nall has a single outcome r′all which

sends all the processes to nf . Also, for node n
′
0, apart from the outcome r which

sends all processes to different nodes, there is another outcome rall which sends
all the processes to nall. Now we merge the nodes nf and n

′
0 and call the merged

node nsep. Also nodes n0 and n′
f now have all the processes of Nφ and Nφ′

participating in them. This merged process gives us a new negotiation Nφ,φ′ in
which the structure above nsep is same as Nφ while below it is same as Nφ′ .
Node nsep now has all the processes of Nφ and Nφ′ participating in it. The
outcomes of nsep will be same as that of n′

0 (rall, r). For both the outcomes of
nsep the processes corresponding to Nφ directly go to nf of the Nφ,φ′ . Similarly
n0 of Nφ,φ′ which is same n0 of Nφ, sends processes corresponding to Nφ′ di-
rectly to nsep for all its outcomes. We now define timing function γ for Nφ,φ′

which is as follows: γ(Lone
′
vi , r) = [1, 1] for all vi ∈ φ

′
and r ∈ {true, false},

γ(nall, r
′
all) = [2, 2] and γ(n, r) = [0, 0] for all other outcomes of nodes. With this

construction, one can conclude that mintime(Nφ,φ′ ) = 2 iff φ is satisfiable and

φ
′
is unsatisfiable (see [1] for details). This completes the reduction and hence

proves DP-hardness. ��

48 S. Akshay et al.



V1 Vn C1 Cm V
′
1 V

′
n
′ C

′
1 C

′
m

′

r rr r

Structure
of Nφ

V1 Vn C1 Cm V
′
1 V

′
n
′ C

′
1 C

′
m

′

r rr r

vton vton ctof ctof

r r r r

Structure
of Nφ

′
V

′
1 V

′
n C

′
1 C

′
m

′

rall

rall rall rall

V1 Vn C1 Cm V
′
1 V

′
n
′ C

′
1 C

′
m

′

r, rall r, rall r, rall r, rall

r
′
all

r
′
all r

′
all

r
′
all

vton vton ctof ctof

n0

nsep

nf

nall

[0, 0]

[0, 0] [2, 2] [1, 1]

Fig. 4. Structure of Nφ,φ
′

Finally, we consider a related problem of computing the min and max time.
To consider the decision variant, we rephrase this problem as checking whether
an arbitrary bit of the minimum execution time is 1. Perhaps surprisingly, we
obtain that this problem goes even beyond DP, the second level of the Boolean
Hierarchy and is in fact hard for ΔP

2 (second level of the polynomial hierarchy),
which contains the entire Boolean Hierarchy. Formally,

Theorem 4. Given an acyclic deterministic timed negotiation and a positive
integer k,computing the kth bit of the maximum/minimum execution time is
ΔP

2 -complete.

Finally, we remark that if we were interested in the optimization variant and
not the decision variant of the problem, the above proof can be adapted to show
that these variants are OptP-complete (as defined in [13]). But as optimization
is not the focus of this paper, we avoid formal details of this proof.

6 Sound Negotiations

Sound negotiations are negotiations in which every run can be extended to
a final run, as in Fig. 1. In this section, we show that maxtime(N ) can be
computed in PTIME for sound negotiations, hence giving PTIME complexi-
ties for the maxtime(N ) ≤ T? and maxtime(N ) = T? questions. However, we

Timed Negotiations 49



show that mintime(N ) ≤ T is NP-complete for sound negotiations, and that
mintime(N ) = T is DP-complete, even if T is given in unary.

Consider the graph GN of a negotiation N . Let π = (n0, (p0, r0), n1) · · ·
(nk, (pk, rk), nk+1) be a path of GN . We define the maximal execution time of
a path π as the value δ+(π) =

∑
i∈0..k γ

+(ni, ri). We say that a path π =

(n0, (p0, r0), n1) · · · (n�, (p�, r�), n�+1) is a path of some run ρ = (M1, μ1)
(n1,r

′
1)−→

· · · (Mk, μk) if r0, . . . , r� is a subword of r′1, . . . , r
′
k.

Lemma 1. Let N be an acyclic and sound timed negotiation. Then maxtime(N )
= maxπ∈Paths(GN ) δ

+(π) + γ+(nf , rf ).

Proof. Let us first prove thatmaxtime(N ) ≥ maxπ∈Paths(GN ) δ
+(π)+γ+(nf , rf ).

Consider any path π of GN , ending in some node n. First, as N is sound, we can
compute a run ρπ such that π is a path of ρπ, and ρπ ends in a configuration
in which n is enabled. We associate with ρπ the timed run ρ+π which asso-
ciates to every node the latest possible execution date. We have easily δ(ρ+π ) ≥
δ+(π), and then we obtain maxπ∈Paths(GN ) δ(ρ

+
π ) ≥ maxπ∈Paths(GN ) δ

+(π). As
maxtime(N ) is the maximal duration over all runs, it is hence necessarily greater
than maxπ∈Paths(GN ) δ(ρ

+
π ) + γ+(nf , rf ).

We now prove that maxtime(N ) ≤ maxπ∈Paths(GN ) δ
+(π)+γ+(nf , rf ). Take

any timed run ρ = (M1, μ1)
(n1,r1)−→ · · · (Mk, μk) of N with a unique maximal node

nk. We show that there exists a path π of ρ such that δ(ρ) ≤ δ+(π) by induction
on the length k of ρ. The initialization is trivial for k = 1. Let k ∈ N. Because nk

is the unique maximal node of ρ, we have δ+(ρ) = maxp∈Pnk
μk−1(p)+γ+(nk, rk).

We choose one pk−1 maximizing μk−1(p). Let � < k be the maximal index of a
decision involving process pk−1 (i.e. pk−1 ∈ Pn�

). Now, consider the timed run
ρ′ subword of ρ, but with n� as unique maximal node (that is, it is ρ where
nodes ni, i > � has been removed, but also where some nodes ni, i < � have been
removed if they are not causally before n� (in particular, Pni

∩ Pn�
= ∅).)

By definition, we have that δ+(ρ) = δ+(ρ′) + γ+(n�, r�) + γ+(nk, rk). We
apply the induction hypothesis on ρ′, and obtain a path π′ of ρ′ ending in
n� such that δ+(ρ′) + γ+(n�, r�) ≤ δ+(π′). It suffices to consider path π =
π′.(n�, (pk−1, r�), nk) to prove the inductive step δ+(ρ) ≤ δ+(π) + γ+(nk, rk).

Thus maxtime(N ) = max δ+(ρ) ≤ maxπ∈Paths(GN ) δ
+(π) + γ+(nf , rf ). ��

Lemma 1 gives a way to evaluate the maximal execution time. This amounts
to finding a path of maximal weight in an acyclic graph, which is a standard
PTIME problem that can be solved using standard max-cost calculation.

Proposition 3. Computing the maximal execution time for an acyclic sound
negotiation N = (N,n0, nf ,X ) can be done in time O(|N |+ |X |).

A direct consequence is that maxtime(N ) ≤ T and maxtime(N ) = T prob-
lems can be solved in polynomial time when N is sound. Notice that if N is
deterministic but not sound, then Lemma 1 does not hold: we only have an
inequality.

50 S. Akshay et al.



We now turn to mintime(N ). We show that it is strictly harder to compute
for sound negotiations than maxtime(N ).

Theorem 5. mintime(N ) ≤ T is NP-complete in the strong sense for sound
acyclic negotiations, even if N is very weakly non-deterministic.

Proof (sketch). First, we can decide mintime(N ) ≤ T in NP. Indeed, one can
guess a final (untimed) run ρ of size ≤ |N |, consider ρ− the timed run corre-
sponding to ρ where all outcomes are taken at the earliest possible dates, and
compute in linear time δ(ρ−), and check that δ(ρ−) ≤ T .

The hardness part is obtained by reduction from the Bin Packing problem.
The reduction is similar to Knapsack, that we will present in Thm. 7. The
difference is that we use � bins in parallel, rather than 2 processes, one for the
weight and one for the value. The hardness is thus strong, but the negotiation
is not k-layered for a bounded k (it is 2�+ 1 bounded, with � depending on the
input). A detailed proof is given in Appendix B of [1]. ��

We show that mintime(N ) = T is harder to decide than mintime(N ) ≤ T ,
with a proof similar to Prop. 2.

Proposition 4. The mintime(N ) = T? decision problem is DP-complete for
sound acyclic negotiations, even if it is very weakly non-deterministic.

An open question is whether the minimal execution time can be computed in
PTIME if the negotiation is both sound and deterministic. The reduction from
Bin Packing does not work with deterministic (and sound) negotiations.

7 k-Layered Negotiations

In this section, we consider k-layeredness, a syntactic property that can be effi-
ciently verified (see Section 2).

7.1 Algorithmic properties

Let k be a fixed integer. We first show that the maximum execution time can be
computed in PTIME for k-layered negotiations. Let Ni be the set of nodes at
layer i. We define for every layer i the set Si of subsets of nodes X ⊆ Ni which
can be jointly enabled and such that for every process p, there is exactly one
node n(X, p) in X with p ∈ n(X, p). An element X in Si is a subset of nodes
that can be selected by solving all non-determnism with an appropriate choice of
outcomes. Formally, we define Si inductively. We start with S0 = {n0}. We then
define Si+1 from the contents of layer Si: we have Y ∈ Si+1 iff

⋃
n∈Y Pn = P

and there exist X ∈ Si and an outcome rm ∈ Rm for every m ∈ X, such that
n ∈ X (n(X, p), p, rm) for each n ∈ Y and p ∈ Pn.

Theorem 6. Let k ∈ N+. Computing the maximum execution time for a k-
layered acyclic negotiation N can be done in PTIME. More precisely, the worst-
case time complexity is O(|P | · |N |k+1).

Timed Negotiations 51



Proof (Sketch). The first step is to compute Si layer by layer, by following its
inductive definition. The set Si is of size at most 2k, as |Ni| < k by definition of
k-layeredness. Knowing Si, it is easy to build Si+1 by induction. This takes time
in O(|P ||N |k+1) : We need to consider all k-uples of outcomes for each layer.
There can be |N |k such tuples. We need to do that for all processes (|P |), and
for all layers (at most |N |).

We then keep for each subset X ∈ Si and each node n ∈ X, the maximal
time fi(n,X) ∈ N associated with n and X. From Si+1 and fi, we inductively
compute fi+1 in the following way: for all X ∈ Si with successor Y ∈ Si+1

for outcomes (rp)p∈P , we denote fi+1(Y, n,X) = maxp∈P (n) fi(X,n(X, p)) +
γ+(n(X, p), rp). If there are several choices of (rp)p∈P leading to the same Y ,
we take rp with the maximal fi(X,n(X, p)) + γ+(n(X, p), rp). We then define
fi+1(Y, n) = maxX∈Si

fi+1(Y, n,X). Again, the initialization is trivial, with
f0({n0}, n0) = 0. The maximal execution time of N is f({nf}, nf ). ��

We can bound the complexity precisely by O(d(N ) · C(N ) · ||R||k∗
), with:

– d(N ) ≤ |N | the depth of nf , that is the number of layers of N , and ||R|| is
the maximum number of outcomes of a node,

– C(N ) = maxi |Si| ≤ 2k, which we will call the number of contexts of N , and
which is often much smaller than 2k.

– k∗ = maxX∈
⋃

i Si
|X| ≤ k. We say that N is k∗-thread bounded, meaning

that there cannot be more that k∗ nodes in the same context X of any layer.
Usually, k∗ is strictly smaller than k = maxi |Ni|, as Ni =

⋃
X∈Si

X.

Consider again the Brexit example Figure 1. We have (k + 1) = 7, while
we have the depth d(N ) = 6, the negotiation is k∗ = 3-thread bounded (k∗ is
bounded by the number of processes), ||R|| = 2, and the number of contexts is
at most C(N ) = 4 (EU chooses to enforce backstop or not, and Pa chooses to
go to court or not).

7.2 Minimal Execution Time

As with sound negotiations, computing minimal time is much harder than com-
puting the maximal time for k-layered negotiations:

Theorem 7. Let k ≥ 6. The Min ≤ T problem is NP-Complete for k-layered
acyclic negotiations, even if the negotiation is sound and very weakly non-deterministic.

Proof. One can guess in polynomial time a final run of size ≤ |N |. If the exe-
cution time of this final run is smaller than T then we have found a final run
witnessing mintime(N ) ≤ T . Hence the problem is in NP.

Let us now show that the problem is NP-hard. We proceed by reduction from
the Knapsack decision problem. Let us consider a set of items U = {u1, . . . un}
of respective values v1, . . . vn and weight w1, . . . , wn and a knapsack of maximal
capacity W . The knapsack problem asks, given a value V whether there exists a
subset of items U ′ ⊆ U such that

∑
ui∈U ′ vi ≥ V and such that

∑
ui∈U ′ wi ≤ W .

52 S. Akshay et al.



n0 = C1

p1 p2 pn p2n pn+1pn+2

C2

p2 pn pn+2p2n

no no nonoyes yes yesyes

p1

no

p1

yes

pn+1

yes

pn+1

no

C3

p3 pn p2n pn+3p1 p2

b1 no

p1 p2

a1 yes

pn+1pn+2

c1 0no

pn+1pn+2

yes

Cn

pn p2n

p1 pnp1 pn

no

pn+1p2n

yes

pn+1p2n

no

p1 pn pn+1p2n

cn 0bnan

Fig. 5. The negotiation encoding Knapsack

We build a negotiation with 2n processes P = {p1, . . . p2n}, as shown in
Fig. 5. Intuitively, pi, i ≤ n will serve to encode the value of selected items as
timing, while pi, i > n will serve to encode the weight of selected items as timing.

Concerning timing constraints for outcomes we do the following: Outcomes
0, yes and no are associated with [0, 0]. Outcome ci is associated with [wi, wi],
the weight of ui. Last, outcome bi is associated with a more complex function,

such that
∑

i bi ≤ W iff
∑

i vi ≥ V . For that, we set [ (vmax−vi)W
n·vmax−V , vmaxW

n·vmax−vi
] for

outcome bi, where vmax is the largest value of an item, and V is the total value

we want to reach at least. Also, we set [ (vmax)W
n·vmax−V , vmaxW

n·vmax−vi
] for outcome ai. We

set T = W , the maximal weight of the knapsack.
Now, consider a final run ρ in N . The only choices in ρ are outcomes yes or

no from C1, . . . , Cn. Let I be the set of indices such that yes is the outcome from
all Ci in this path. We obtain δ(ρ) = max(

∑
i/∈I ai +

∑
i∈I bi,

∑
i∈I ci). We have

δ(ρ) ≤ T = W iff
∑

i∈I wi ≤ W , that is the sum of the weights is lower than

W , and
∑

i/∈I
(vmax)W
n·vmax−V +

∑
i∈I

(vmax−vi)W
n·vmax−V ≤ W . That is, n · vmax −

∑
i∈I vi ≤

n · vmax − V , i.e.
∑

i∈I vi ≥ V . Hence, there exists a path ρ with δ(ρ) ≤ T = W
iff there exists a set of items of weight less than W and of value more than V . ��

It is well known that Knapsack is weakly NP-hard, that is, it is NP-hard only
when weights/values are given in binary. This means that Thm. 7 shows that
minimum execution time ≤ T is NP-hard only when T is given in binary. We

Timed Negotiations 53



can actually show that for k-layered negotiations, the mintime(N ) ≤ T problem
can be decided in PTIME if T is given in unary (i.e. if T is not too large):

Theorem 8. Let k ∈ N. Given a k-layered negotiation N and T written in
unary, one can decide in PTIME whether the minimum execution time of N is
≤ T . The worst-case time complexity is O(|N | · |P | · (T · |N |)k).
Proof. We will remember for each layer i a set Ti of functions τ from nodes Ni

of layer i to a value in {1, . . . , T,⊥}. Basically, we have τ ∈ Ti if there exists a
path ρ reaching X = {n ∈ Ni | τ(n) �= ⊥}, and this path reaches node n ∈ X
after τ(n) time units. As for Si, for all p, we should have a unique node n(τ, p)
such that p ∈ n(τ, p) and τ(n(τ, p)) �= ⊥. Again, it is easy to initialize T0 = {τ0},
with τ0(n0) = 0, and τ0(n) = ⊥ for all n �= n0.

Inductively, we build Ti+1 in the following way: τi+1 ∈ Ti+1 iff there exists a
τi ∈ Ti and rp ∈ Rn(τi,p) for all p ∈ P such that for all n with τi+1(n) �= ⊥, we

have τi+1(n) = maxp τ
−
i (n(τi, p)) + γ(n(τi, p), rp).

We have that the minimum execution time for N is minτ∈Tn
τ(nτ ), for n the

depth of nf . There are at most T k functions τ in any Ti, and there are at most
|N | layers to consider, giving the complexity. ��

As with Thm. 6, we can more accurately state the complexity as O(d(N ) ·
C(N ) · ||R||k∗ ·T k∗−1). The k∗−1 is because we only need to remember minimal
functions τ ∈ Ti: if τ ′(n) ≥ τ(n) for all n, then we do not need to keep τ ′ in Ti.
In particular, for the knapsack encoding in the proof of Thm. 7, we have k∗ = 3,
||R|| = 2 and C(N ) = 4. Notice that if k is part of the input, then the problem
is strongly NP-hard, even if T is given in unary, as e.g. encoding bin packing
with � bins result to a 2�+ 1-layered negotiations.

8 Conclusion
In this paper, we considered timed negotiations. We believe that time is of the
essence in negotiations, as examplified by the Brexit negotiation. It is thus im-
portant to be able to compute in a tractable way the minimal and maximal
execution time of negotiations. We showed that we can compute in PTIME
the maximal execution time for acyclic negotiations that are either sound or
k-layered, for k fixed. We showed that we cannot compute in PTIME the max-
imal execution time for negotiations that are not sound nor k-layered, even if
they are deterministic and acyclic (unless NP=PTIME). We also showed that
surprisingly, computing the minimal execution time is much harder, with strong
NP-hardness results in most of the classes of negotiations, contradicting a claim
in [10]. We came up with a new reasonable class of negotiations, namely k-layered
negotiations, which enjoys a pseudo PTIME algorithm to compute the minimal
execution time. That is, the algorithm is PTIME when the timing constants
are given in unary. We showed that this restriction is necessary, as the prob-
lem becomes NP-hard for constants given in binary, even when the negotiation
is sound and very weakly non-deterministic. The problem to know whether the
minimal execution time can be computed in PTIME for deterministic and sound
negotiation remains open.

54 S. Akshay et al.



References

1. S. Akshay, B. Genest, L. Hélouët, and S. Mital. Timed Negotiations (extended
version). In Research report, https://hal.inria.fr/hal-02337887, 2020.

2. J. Desel. Reduction and Design of Well-behaved Concurrent Systems. In CONCUR
’90, Theories of Concurrency: Unification and Extension, Amsterdam, The Nether-
lands, August 27-30, 1990, Proceedings, volume 458 of Lecture Notes in Computer
Science, pages 166–181. Springer, 1990.

3. J. Desel, J. Esparza, and P. Hoffmann. Negotiation as Concurrency Primitive.
Acta Inf., 56(2):93–159, 2019.

4. J. Esparza. Decidability and Complexity of Petri Net Problems - An Introduc-
tion. In Lectures on Petri Nets I: Basic Models, Advances in Petri Nets, Dagstuhl,
September 1996, volume 1491 of Lecture Notes in Computer Science, pages 374–
428. Springer, 1998.

5. J. Esparza and J. Desel. Free Choice Petri Nets. Cambridge University Press,
1995.

6. J. Esparza and J. Desel. On Negotiation as Concurrency Primitive. In CON-
CUR 2013 - Concurrency Theory - 24th International Conference, CONCUR 2013,
Buenos Aires, Argentina, August 27-30, 2013. Proceedings, volume 8052 of Lecture
Notes in Computer Science, pages 440–454. Springer, 2013.

7. J. Esparza and J. Desel. On Negotiation as Concurrency Primitive II: Deterministic
Cyclic Negotiations. In FOSSACS’14, volume 8412 of Lecture Notes in Computer
Science, pages 258–273. Springer, 2014.

8. J. Esparza and P. Hoffmann. Reduction Rules for Colored Workflow Nets. In
Fundamental Approaches to Software Engineering - 19th International Confer-
ence, FASE 2016, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016,
Proceedings, volume 9633 of Lecture Notes in Computer Science, pages 342–358.
Springer, 2016.

9. J. Esparza, D. Kuperberg, A. Muscholl, and I. Walukiewicz. Soundness in Negoti-
ations. Logical Methods in Computer Science, 14(1), 2018.

10. J. Esparza, A. Muscholl, and I. Walukiewicz. Static Analysis of Deterministic Ne-
gotiations. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12, 2017.

11. S. Haddad. A Reduction Theory for Coloured Nets. In Advances in Petri Nets
1989, volume 424 of Lecture Notes in Computer Science, pages 209–235. Springer,
1990.

12. P. Hoffmann. Negotiation Games. In Javier Esparza and Enrico Tronci, editors,
Proceedings Sixth International Symposium on Games, Automata, Logics and For-
mal Verification, GandALF 2015, Genoa, Italy, 21-22nd September 2015., volume
193 of EPTCS, pages 31–42, 2015.

13. M. W. Krentel. The Complexity of Optimization Problems. Journal of computer
and system sciences, 36(3):490–509, 1988.

14. P.M. Merlin. A Study of the Recoverability of Computing Systems. PhD thesis,
University of California, Irvine, CA, USA, 1974.

15. C. H. Papadimitriou and M. Yannakakis. The Complexity of Facets (and Some
Facets of Complexity). In Proceedings of the Fourteenth Annual ACM Symposium
on Theory of Computing, STOC ’82, pages 255–260, New York, NY, USA, 1982.
ACM.

Timed Negotiations 55



16. R.H. Sloan and U.A. Buy. Reduction Rules for Time Petri Nets. Acta Inf.,
33(7):687–706, 1996.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

56 S. Akshay et al.



Cartesian Difference Categories

Mario Alvarez-Picallo1 and Jean-Simon Pacaud Lemay (�)2�

1 Department of Computer Science, University of Oxford, Oxford, UK
mario.alvarez-picallo@cs.ox.ac.uk

2 Department of Computer Science, University of Oxford, Oxford, UK
jean-simon.lemay@kellogg.ox.ac.uk

Abstract. Cartesian differential categories are categories equipped with
a differential combinator which axiomatizes the directional derivative.
Important models of Cartesian differential categories include classical
differential calculus of smooth functions and categorical models of the
differential λ-calculus. However, Cartesian differential categories cannot
account for other interesting notions of differentiation such as the calcu-
lus of finite differences or the Boolean differential calculus. On the other
hand, change action models have been shown to capture these examples
as well as more “exotic” examples of differentiation. However, change
action models are very general and do not share the nice properties of
a Cartesian differential category. In this paper, we introduce Cartesian
difference categories as a bridge between Cartesian differential categories
and change action models. We show that every Cartesian differential cat-
egory is a Cartesian difference category, and how certain well-behaved
change action models are Cartesian difference categories. In particular,
Cartesian difference categories model both the differential calculus of
smooth functions and the calculus of finite differences. Furthermore, ev-
ery Cartesian difference category comes equipped with a tangent bundle
monad whose Kleisli category is again a Cartesian difference category.

Keywords: Cartesian Difference Categories · Cartesian Differential Cat-
egories · Change Actions · Calculus Of Finite Differences · Stream Cal-
culus.

1 Introduction

In the early 2000s, Ehrhard and Regnier introduced the differential λ-calculus
[10], an extension of the λ-calculus equipped with a differential combinator ca-
pable of taking the derivative of arbitrary higher-order functions. This develop-
ment, based on models of linear logic equipped with a natural notion of “deriva-
tive” [11], sparked a wave of research into categorical models of differentiation.

One of the most notable developments in the area is the introduction of
Cartesian differential categories [4] by Blute, Cockett and Seely, which provide an
abstract categorical axiomatization of the directional derivative from differential

� The second author is financially supported by Kellogg College, the Oxford-Google
Deep Mind Graduate Scholarship, and the Clarendon Fund.

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 57–76, 2020.
https://doi.org/10.1007/978-3-030-45231-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_4&domain=pdf


calculus. The relevance of Cartesian differential categories lies in their ability to
model both “classical” differential calculus (with the canonical example being the
category of Euclidean spaces and smooth functions between) and the differential
λ-calculus (as every categorical model for it gives rise to a Cartesian differential
category [14]). However, while Cartesian differential categories have proven to
be an immensely successful formalism, they have, by design, some limitations.
Firstly, they cannot account for certain “exotic” notions of derivative, such as
the difference operator from the calculus of finite differences [16] or the Boolean
differential calculus [19]. This is because the axioms of a Cartesian differential
category stipulate that derivatives should be linear in their second argument (in
the same way that the directional derivative is), whereas these aforementioned
discrete sorts of derivative need not be. Additionally, every Cartesian differential
category is equipped with a tangent bundle monad [7, 15] whose Kleisli category
can be intuitively understood as a category of generalized vector fields. This
Kleisli category has an obvious differentiation operator which comes close to
making it a Cartesian differential category, but again fails the requirement of
being linear in its second argument.

More recently, discrete derivatives have been suggested as a semantic frame-
work for understanding incremental computation. This led to the development
of change structures [6] and change actions [2]. Change action models have been
successfully used to provide a model for incrementalizing Datalog programs [1],
but have also been shown to model the calculus of finite differences as well as
the Kleisli category of the tangent bundle monad of a Cartesian differential cate-
gory. Change action models, however, are very general, lacking many of the nice
properties of Cartesian differential categories (for example, addition in a change
action model is not required to be commutative), even though they are verified
in most change action models. As a consequence of this generality, the tangent
bundle endofunctor in a change action model can fail to be a monad.

In this work, we introduce Cartesian difference categories (Section 4.2), whose
key ingredients are an infinitesimal extension operator and a difference combi-
nator, whose axioms are a generalization of the differential combinator axioms
of a Cartesian differential category. In Section 4.3, we show that every Cartesian
differential category is, in fact, a Cartesian difference category whose infinites-
imal extension operator is zero, and conversely how every Cartesian difference
category admits a full subcategory which is a Cartesian differential category. In
Section 4.4, we show that every Cartesian difference category is a change action
model, and conversely how a full subcategory of suitably well-behaved objects of
a change action model is a Cartesian difference category. In Section 6, we show
that every Cartesian difference category comes equipped with a monad whose
Kleisli category again a Cartesian difference category. Finally, in Section 5 we
provide some examples of Cartesian difference categories; notably, the calculus
of finite differences and the stream calculus.

58 M. Alvarez-Picallo and J.-S. P. Lemay



2 Cartesian Differential Categories

In this section, we briefly review Cartesian differential categories, so that the
reader may compare Cartesian differential categories with the new notion of
Cartesian difference categories which we introduce in the next section. For a full
detailed introduction on Cartesian differential categories, we refer the reader to
the original paper [4].

2.1 Cartesian Left Additive Categories

Here we recall the definition of Cartesian left additive categories [4] – where
“additive” is meant being skew enriched over commutative monoids, which in
particular means that we do not assume the existence of additive inverses, i.e.,
“negative elements”. By a Cartesian category we mean a category X with chosen
finite products where we denote the binary product of objects A and B by
A× B with projection maps π0 : A× B → A and π1 : A× B → B and pairing
operation 〈−,−〉, and the chosen terminal object as � with unique terminal
maps !A : A → �.

Definition 1. A left additive category [4] is a category X such that each
hom-set X(A,B) is a commutative monoid with addition operation + : X(A,B)×
X(A,B) → X(A,B) and zero element (called the zero map) 0 ∈ X(A,B), such
that pre-composition preserves the additive structure: (f + g) ◦ h = f ◦ h+ g ◦ h
and 0◦f = 0. A map k in a left additive category is additive if post-composition
by k preserves the additive structure: k ◦ (f + g) = k ◦ f + k ◦ g and k ◦ 0 = 0.
A Cartesian left additive category [4] is a Cartesian category X which is
also a left additive category such all projection maps π0 : A × B → A and
π1 : A×B → B are additive.

We note that the definition given here of a Cartesian left additive category
is slightly different from the one found in [4], but it is indeed equivalent. By [4,
Proposition 1.2.2], an equivalent axiomatization is of a Cartesian left additive
category is that of a Cartesian category where every object comes equipped
with a commutative monoid structure such that the projection maps are monoid
morphisms. This will be important later in Section 4.2.

2.2 Cartesian Differential Categories

Definition 2. A Cartesian differential category [4] is a Cartesian left ad-
ditive category equipped with a differential combinator D of the form

f : A → B

D[f ] : A×A → B

verifying the following coherence conditions:

[CD.1] D[f + g] = D[f ] + D[g] and D[0] = 0

Cartesian Difference Categories 59



[CD.2] D[f ] ◦ 〈x, y + z〉 = D[f ] ◦ 〈x, y〉+ D[f ] ◦ 〈x, z〉 and D[f ] ◦ 〈x, 0〉 = 0
[CD.3] D[1A] = π1 and D[π0] = π0 ◦ π1 and D[π1] = π1 ◦ π1

[CD.4] D[〈f, g〉] = 〈D[f ],D[g]〉 and D[!A] =!A×A

[CD.5] D[g ◦ f ] = D[g] ◦ 〈f ◦ π0,D[f ]〉
[CD.6] D [D[f ]] ◦ 〈〈x, y〉, 〈0, z〉〉 = D[f ] ◦ 〈x, z〉
[CD.7] D [D[f ]] ◦ 〈〈x, y〉, 〈z, 0〉〉 = D [D[f ]] ◦ 〈〈x, z〉, 〈y, 0〉〉

Note that here, following the more recent work on Cartesian differential cat-
egories, we’ve flipped the convention found in [4], so that the linear argument is
in the second argument rather than in the first argument.

We highlight that by [7, Proposition 4.2], the last two axioms [CD.6] and
[CD.7] have an equivalent alternative expression.

Lemma 1. In the presence of the other axioms, [CD.6] and [CD.7] are equiv-
alent to:

[CD.6.a] D [D[f ]] ◦ 〈〈x, 0〉, 〈0, y〉〉 = D[f ] ◦ 〈x, y〉
[CD.7.a] D [D[f ]] ◦ 〈〈x, y〉, 〈z, w〉〉 = D [D[f ]] ◦ 〈〈x, z〉, 〈y, w〉〉

As a Cartesian difference category is a generalization of a Cartesian differ-
ential category, we leave the discussion of the intuition of these axioms for later
in Section 4.2 below. We also refer to [4, Section 4] for a term calculus which
may help better understand the axioms of a Cartesian differential category. The
canonical example of a Cartesian differential category is the category of real
smooth functions, which we will discuss in Section 5.1. Other interesting exam-
ples of can be found throughout the literature such as categorical models of the
differential λ-calculus [10, 14], the subcategory of differential objects of a tangent
category [7], and the coKleisli category of a differential category [3, 4].

3 Change Action Models

Change actions [1, 2] have recently been proposed as a setting for reasoning about
higher-order incremental computation, based on a discrete notion of differentia-
tion. Together with Cartesian differential categories, they provide the core ideas
behind Cartesian difference categories. In this section, we quickly review change
actions and change action models, in particular, to highlight where some of the
axioms of a Cartesian difference category come from. For more details on change
actions, we invite readers to see the original paper [2].

3.1 Change Actions

Definition 3. A change action A in a Cartesian category X is a quintuple
A ≡ (A,ΔA,⊕A,+A, 0A) consisting of two objects A and ΔA, and three maps:

⊕A : A×ΔA → A +A : ΔA×ΔA → ΔA 0A : � → ΔA

such that (ΔA,+A, 0A) is a monoid and ⊕A : A×ΔA → A is an action of ΔA
on A, that is, the following equalities hold:

⊕A ◦ 〈1A, 0A◦!A〉 = 1A ⊕A ◦(1A ×+A) = ⊕A ◦ (⊕A × 1ΔA)

60 M. Alvarez-Picallo and J.-S. P. Lemay



For a change action A and given a pair of maps f : C → A and g : C → ΔA,
we define f⊕Ag : C → A as f⊕Ag = ⊕A◦〈f, g〉. Similarly, for maps h : C → ΔA
and k : C → ΔA, define h +A k = +A ◦ 〈h, k〉. Therefore, that ⊕A is an action
of ΔA on A can be rewritten as:

1A ⊕A 0A = 1A 1A ⊕A (1ΔA +A 1ΔA) = (1A ⊕A 1ΔA)⊕A 1ΔA

The intuition behind the above definition is that the monoid ΔA is a type of
possible “changes” or “updates” that might be applied to A, with the monoid
structure on ΔA representing the capability to compose updates.

Change actions give rise to a notion of derivative, with a distinctly “discrete”
flavour. Given change actions on objects A and B, a map f : A → B can be
said to be differentiable when changes to the input (in the sense of elements
of ΔA) are mapped to changes to the output (that is, elements of ΔB). In
the setting of incremental computation, this is precisely what it means for f to
be incrementalizable, with the derivative of f corresponding to an incremental
version of f .

Definition 4. Let A ≡ (A,ΔA,⊕A,+A, 0A) and B ≡ (B,ΔB,⊕B ,+B , 0B) be
change actions. For a map f : A → B, a map ∂[f ] : A × ΔA → ΔB is a
derivative of f whenever the following equalities hold:

[CAD.1] f ◦ (x⊕A y) = f ◦ x⊕B (∂[f ] ◦ 〈x, y〉)
[CAD.2] ∂[f ] ◦ 〈x, y +A z〉 = (∂[f ] ◦ 〈x, y〉) +B (∂[f ] ◦ 〈x⊕A y, z〉) and

∂[f ] ◦ 〈x, 0B◦!B〉 = 0B◦!A×ΔA

The intuition for these axioms will be explained in more detail in Section
4.2 when we explain the axioms of a Cartesian difference category. Note that
although there is nothing in the above definition guaranteeing that any given
map has at most a single derivative, the chain rule does hold. As a corollary,
differentiation is compositional and therefore the change actions in X form a
category.

Lemma 2. Whenever ∂[f ] and ∂[g] are derivatives for composable maps f and
g respectively, then ∂[g] ◦ 〈f ◦ π0,∂[f ]〉 is a derivative for g ◦ f .

3.2 Change Action Models

Definition 5. Given a Cartesian category X, define its change actions category
CAct(X) as the category whose objects are change actions in X and whose arrows
f : A → B are the pairs (f,∂[f ]), where f : A → B is an arrow in X and
∂[f ] : A × ΔA → ΔB is a derivative for f . The identity is (1A, π1), while
composition of (f,∂[f ]) and (g,∂[g]) is (g ◦ f,∂[g] ◦ 〈f ◦ π0,∂[f ]〉).

There is an obvious product-preserving forgetful functor E : CAct(X) → X
sending every change action (A,ΔA,⊕,+, 0) to its base object A and every
map (f,∂[f ]) to the underlying map f . As a setting for studying differentiation,
the category CAct(X) is rather lacklustre, since there is no notion of higher

Cartesian Difference Categories 61



derivatives, so we will instead work with change action models. Informally, a
change action model consists of a rule which for every object A of X associates
a change action over it, and for every map a choice of a derivative.

Definition 6. A change action model is a Cartesian category X is a product-
preserving functor α : X → CAct(X) that is a section of the forgetful functor E.

For brevity, when A is an object of a change action model, we will write ΔA,
⊕A, +A, and 0A to refer to the components of the corresponding change action
α(A). Examples of change action models can be found in [2]. In particular, we
highlight that a Cartesian differential category always provides a change model
action. We will generalize this result, and show in Section 4.4 that a Cartesian
difference category also always provides a change action model.

4 Cartesian Difference Categories

In this section, we introduce Cartesian difference categories, which are gener-
alizations of Cartesian differential categories. Examples of Cartesian difference
categories can be found in Section 5.

4.1 Infinitesimal Extensions in Left Additive Categories

We first introduce infinitesimal extensions, which is an operator that turns a map
into an “infinitesimal” version of itself – in the sense that every map coincides
with its Taylor approximation on infinitesimal elements.

Definition 7. A Cartesian left additive category X is said to have an infinites-
imal extension ε if every homset X(A,B) comes equipped with a monoid mor-
phism ε : X(A,B) → X(A,B), that is, ε(f + g) = ε(f) + ε(g) and ε(0) = 0, and
such that ε(g ◦f) = ε(g)◦f and ε(π0) = π0 ◦ ε(1A×B) and ε(π1) = π1 ◦ ε(1A×B).

Note that since ε(g ◦ f) = ε(g) ◦ f , it follows that ε(f) = ε(1B) ◦ f and
ε(1A) : A → A is an additive map (Definition 1). In light of this, it turns out
that infinitesimal extensions can equivalently be described as a class of additive
maps εA : A → A such that εA×B = εA×εB . The equivalence is given by setting
ε(f) = εB ◦ f and εA = ε(1A). Furthermore, infinitesimal extensions equipped
each object with a canonical change action structure:

Lemma 3. Let X be a Cartesian left additive category with infinitesimal exten-
sion ε. For every object A, define the maps ⊕A : A×A → A as ⊕A = π0+ε(π1),
+A : A×A → A as π0+π1, and 0A : � → A as 0A = 0. Then (A,A,⊕A,+A, 0A)
is a change action in X.

Proof. As mentioned earlier, that (A,+A, 0A) is a commutative monoid was
shown in [4]. On the other hand, that ⊕A is a change action follows from the
fact that ε preserves the addition. �

62 M. Alvarez-Picallo and J.-S. P. Lemay



Setting A ≡ (A,A,⊕A,+A, 0A), we note that f⊕A g = f+ε(g) and f+A g =
f + g, and so in particular +A = +. Therefore, from now on we will omit the
subscripts and simply write ⊕ and +.

For every Cartesian left additive category, there are always at least two pos-
sible infinitesimal extensions:

Lemma 4. For any Cartesian left additive category X,

1. Setting ε(f) = 0 defines an infinitesimal extension on X and therefore in
this case, ⊕A = π0 and f ⊕ g = f .

2. Setting ε(f) = f defines an infinitesimal extension on X and therefore in
this case, ⊕A = +A and f ⊕ g = f + g.

We note that while these examples of infinitesimal extensions may seem triv-
ial, they are both very important as they will give rise to key examples of Carte-
sian difference categories.

4.2 Cartesian Difference Categories

Definition 8. A Cartesian difference category is a Cartesian left additive
category with an infinitesimal extension ε which is equipped with a difference
combinator ∂ of the form:

f : A → B

∂[f ] : A×A → B

verifying the following coherence conditions:

[C∂.0] f ◦ (x+ ε(y)) = f ◦ x+ ε (∂[f ] ◦ 〈x, y〉)
[C∂.1] ∂[f + g] = ∂[f ] + ∂[g], ∂[0] = 0, and ∂[ε(f)] = ε(∂[f ])
[C∂.2] ∂[f ] ◦ 〈x, y+ z〉 = ∂[f ] ◦ 〈x, y〉+∂[f ] ◦ 〈x+ ε(y), z〉 and ∂[f ] ◦ 〈x, 0〉 = 0
[C∂.3] ∂[1A] = π1 and ∂[π0] = π1;π0 and ∂[π1] = π1;π0

[C∂.4] ∂[〈f, g〉] = 〈∂[f ],∂[g]〉 and ∂[!A] =!A×A

[C∂.5] ∂[g ◦ f ] = ∂[g] ◦ 〈f ◦ π0,∂[f ]〉
[C∂.6] ∂ [∂[f ]] ◦ 〈〈x, y〉, 〈0, z〉〉 = ∂[f ] ◦ 〈x+ ε(y), z〉
[C∂.7] ∂ [∂[f ]] ◦ 〈〈x, y〉, 〈z, 0〉〉 = ∂ [∂[f ]] ◦ 〈〈x, z〉, 〈y, 0〉〉

Before giving some intuition on the axioms [C∂.0] to [C∂.7], we first observe
that one could have used change action notation to express [C∂.0], [C∂.2], and
[C∂.6] which would then be written as:

[C∂.0] f ◦ (x⊕ y) = (f ◦ x)⊕ (∂[f ] ◦ 〈x, y〉)
[C∂.2] ∂[f ] ◦ 〈x, y + z〉 = ∂[f ] ◦ 〈x, y〉+ ∂[f ] ◦ 〈x⊕ y, z〉 and ∂[f ] ◦ 〈x, 0〉 = 0
[C∂.6] ∂ [∂[f ]] ◦ 〈〈x, y〉, 〈0, z〉〉 = ∂[f ] ◦ 〈x⊕ y, z〉
And also, just like Cartesian differential categories, [C∂.6] and [C∂.7] have
alternative equivalent expressions.

Lemma 5. In the presence of the other axioms, [C∂.6] and [C∂.7] are equiv-
alent to:

Cartesian Difference Categories 63



[C∂.6.a] ∂ [∂[f ]] ◦ 〈〈x, 0〉, 〈0, y〉〉 = ∂[f ] ◦ 〈x, y〉
[C∂.7.a] ∂ [∂[f ]] ◦ 〈〈x, y〉, 〈z, w〉〉 = ∂ [∂[f ]] ◦ 〈〈x, z〉, 〈y, w〉〉
Proof. The proof is essentially the same as [7, Proposition 4.2]. �

The keen eyed reader will notice that the axioms of a Cartesian difference cat-
egory are very similar to the axioms of a Cartesian differential category. Indeed,
[C∂.1], [C∂.3], [C∂.4], [C∂.5], and [C∂.7] are the same as their Cartesian dif-
ferential category counterpart. The axioms which are different are [C∂.2] and
[C∂.6] where the infinitesimal extension ε is now included, and also there is the
new extra axiom [C∂.0]. On the other hand, interestingly enough, [C∂.6.a] is
the same as [CD.6.a]. We also point out that writing out [C∂.0] and [C∂.2]
using change action notion, we see that these axioms are precisely [CAD.1] and
[CAD.2] respectively. To better understand [C∂.0] to [C∂.7] it may be useful
to write them out using element-like notation. In element-like notation, [C∂.0]
is written as:

f(x+ ε(y)) = f(x) + ε (∂[f ](x, y))

This condition can be read as a generalization of the Kock-Lawvere axiom that
characterizes the derivative in from synthetic differential geometry [13]. Broadly
speaking, the Kock-Lawvere axiom states that, for any map f : R → R and any
x ∈ R and d ∈ D, there exists a unique f ′(x) ∈ R verifying

f(x+ d) = f(x) + d · f ′(x)

where D is the subset of R consisting of infinitesimal elements. It is by analogy
with the Kock-Lawvere axiom that we refer to ε as an “infinitesimal extension”
as it can be thought of as embedding the space A into a subspace ε(A) of
infinitesimal elements.

[C∂.1] states that the differential of a sum of maps is the sum of differentials,
and similarly for zero maps and the infinitesimal extension of a map. [C∂.2] is
the first crucial difference between a Cartesian difference category and a Carte-
sian differential category. In a Cartesian differential category, the differential of
a map is assumed to be additive in its second argument. In a Cartesian differ-
ence category, just as derivatives for change actions, while the differential is still
required to preserve zeros in its second argument, it is only additive “up to a
small perturbation”, that is:

∂[f ](x, y + z) = ∂[f ](x, y) + ∂[f ](x+ ε(y), z)

[C∂.3] tells us what the differential of the identity and projection maps are,
while [C∂.4] says that the differential of a pairing of maps is the pairing of their
differentials. [C∂.5] is the chain rule which expresses what the differential of a
composition of maps is:

∂[g ◦ f ](x, y) = ∂[g](f(x),∂[f ](x, y))

[C∂.6] and [C∂.7] tell us how to work with second order differentials. [C∂.6]
is expressed as follows:

∂ [∂[f ]] (x, y, 0, z) = ∂[f ](x+ ε(y), z)

64 M. Alvarez-Picallo and J.-S. P. Lemay



and finally [C∂.7] is expressed as:

∂ [∂[f ]] (x, y, z, 0) = ∂ [∂[f ]] (x, z, y, 0)

It is interesting to note that while [C∂.6] is different from [CD.6], its alternative
version [C∂.6.a] is the same as [CD.6.a].

∂ [∂[f ]] ((x, 0), (0, y)) = ∂[f ](x, z)

4.3 Another look at Cartesian Differential Categories

Here we explain how a Cartesian differential category is a Cartesian difference
category where the infinitesimal extension is given by zero.

Proposition 1. Every Cartesian differential category X with differential com-
binator D is a Cartesian difference category where the infinitesimal extension is
defined as ε(f) = 0 and the difference combinator is defined to be the differential
combinator, ∂ = D.

Proof. As noted before, the first two parts of the [C∂.1], the second part of
[C∂.2], [C∂.3], [C∂.4], [C∂.5], and [C∂.7] are precisely the same as their
Cartesian differential axiom counterparts. On the other hand, since ε(f) = 0,
[C∂.0] and the third part of [C∂.1] trivial state that 0 = 0, while the first
part of [C∂.2] and [C∂.6] end up being precisely the first part of [CD.2] and
[CD.6]. Therefore, the differential combinator satisfies the Cartesian difference
axioms and we conclude that a Cartesian differential category is a Cartesian
difference category. �

Conversely, one can always build a Cartesian differential category from a
Cartesian difference category by considering the objects for which the infinites-
imal extension is the zero map.

Proposition 2. For a Cartesian difference category X with infinitesimal exten-
sion ε and difference combinator ∂, then X0, the full subcategory of objects A
such that ε(1A) = 0, is a Cartesian differential category where the differential
combinator is defined to be the difference combinator, D = ∂.

Proof. First note that if ε(1A) = 0 and ε(1B) = 0, then by definition it also
follows that ε(1A×B) = 0, and also that for the terminal object ε(1�) = 0
by uniqueness of maps into the terminal object. Thus X0 is closed under finite
products and is therefore a Cartesian left additive category. Furthermore, we
again note that since ε(f) = 0, this implies that for maps between such objects
the Cartesian difference axioms are precisely the Cartesian differential axioms.
Therefore, the difference combinator is a differential combinator for this subcat-
egory, and so X0 is a Cartesian differential category. �

Cartesian Difference Categories 65



In any Cartesian difference category X, the terminal object � always satisfies
that ε(1�) = 0, and so therefore, X0 is never empty. On the other hand, applying
Proposition 2 to a Cartesian differential category results in the entire category.
It is also important to note that the above two propositions do not imply that
if a difference combinator is a differential combinator then the infinitesimal ex-
tension must be zero. In Section 5.3, we provide such an example of a Cartesian
differential category that comes equipped with a non-zero infinitesimal extension
such that the differential combinator is a difference combinator with respect to
this non-zero infinitesimal extension.

4.4 Cartesian Difference Categories as Change Action Models

In this section, we show how every Cartesian difference category is a particu-
larly well-behaved change action model, and conversely how every change action
model contains a Cartesian difference category.

Proposition 3. Let X be a Cartesian difference category with infinitesimal ex-
tension ε and difference combinator ∂. Define the functor α : X → CAct(X) as
α(A) = (A,A,⊕A,+A, 0A) (as defined in Lemma 3) and α(f) = (f,∂[f ]). Then
(X, α : X → CAct(X)) is a change action model.

Proof. By Lemma 3, (A,A,⊕A,+A, 0A) is a change action and so α is well-
defined on objects. While for a map f , ∂[f ] is a derivative of f in the change
action sense since [C∂.0] and [C∂.2] are precisely [CAD.1] and [CAD.2],
and so α is well-defined on maps. That α preserves identities and composition
follows from [C∂.3] and [C∂.5] respectively, and so α is a functor. That α
preserves finite products will follow from [C∂.3] and [C∂.4]. Lastly, it is clear
that α section of the forgetful functor, and therefore we conclude that (X, α) is
a change action model. �

It is clear that not every change action model is a Cartesian difference cat-
egory. For example, change action models do not require the addition to be
commutative. On the other hand, it can be shown that every change action
model contains a Cartesian difference category as a full subcategory.

Definition 9. Let (X, α : X → CAct(X)) be a change action model. An object A
is flat whenever the following hold:

[F.1] ΔA = A
[F.2] α(⊕A) = (⊕A,⊕A ◦ π1)
[F.3] 0⊕A (0⊕A f) = 0⊕A f for any f : U → A.
[F.4] ⊕A is right-injective, that is, if ⊕A ◦ 〈f, g〉 = ⊕A ◦ 〈f, h〉 then g = h.

We would like to show that for any change action model (X, α), its full sub-
category of flat objects, Flatα is a Cartesian difference category. Starting with
the finite product structure, since α preserves finite products, it is straightfor-
ward to see that � is Euclidean and if A and B are flat then so is A × B. The
sum of maps f : A → B and g : A → B in Flatα is defined using the change
action structure f +B g, while the zero map 0 : A → B is 0 = 0B◦!A. And so we
obtain that:

66 M. Alvarez-Picallo and J.-S. P. Lemay



Lemma 6. Flatα is a Cartesian left additive category.

Proof. Most of the Cartesian left additive structure is straightforward. However,
since the addition is not required to be commutative for arbitrary change actions,
we will show that the addition is commutative for Euclidean objects. Using that
⊕B is an action, that by [F.2] we have that ⊕B ◦ π1 is a derivative for ⊕B , and
[CAD.1], we obtain that:

0B ⊕B (f +B g) = (0B ⊕B f)⊕B g = (0B ⊕B g)⊕B f = 0B ⊕B (g +B f)

By [F.4], ⊕B is right-injective and we conclude that f + g = g + f . �

As an immediate consequence We note that for any change action model
(X, α), since the terminal object is always flat, Flatα is never empty.

We use the action of the change action structure to define the infinitesimal
extension. So for a map f : A → B in Flatα, define ε(f) : A → B as follows:

ε(f) = ⊕B ◦ 〈0B◦!A, f〉 = 0⊕B f

Lemma 7. ε is an infinitesimal extension for Flatα.

Proof. We show that ε preserve the addition. Following the same idea as in the
proof of Lemma 6, we obtain the following:

0B ⊕B ε(f +B g) = 0B ⊕B (0B ⊕B (f +B g))

= (0B ⊕B 0B)⊕B ((0B ⊕B f)⊕B g) = (0B ⊕B (0B ⊕B f))⊕B (0B ⊕B g)

= (0B ⊕B ε(f))⊕B ε(g) = 0B ⊕B (ε(f) +B ε(g))

Then by [F.3], it follows that ε(f+g) = ε(f)+ε(g). The remaining infinitesimal
extension axioms are proven in a similar fashion. �

Lastly, the difference combinator for Flatα is defined in the obvious way, that
is, ∂[f ] is defined as the second component of α(f).

Proposition 4. Let (X, α : X → CAct(X)) be a change action model. Then
Flatα is a Cartesian difference category.

Proof (Sketch). The full calculations will appear in an upcoming extended jour-
nal version of this paper, but we give an informal explanation. [C∂.0] and
[C∂.2] are a straightforward consequences of [CAD.1] and [CAD.2]. [C∂.3]
and [C∂.4] follow trivially from the fact that α preserves finite products and from
the structure of products in CAct(X), while [C∂.5] follows from composition in
CAct(X). [C∂.1], [C∂.6] and [C∂.7] are obtained by mechanical calculation in
the spirit of Lemma 6. Note that every axiom except for [C∂.6] can be proven
without using [F.3] �

Cartesian Difference Categories 67



4.5 Linear Maps and ε-Linear Maps

An important subclass of maps in a Cartesian differential category is the subclass
of linear maps [4, Definition 2.2.1]. One can also define linear maps in a Cartesian
difference category by using the same definition.

Definition 10. In a Cartesian difference category, a map f is linear if the
following equality holds: ∂[f ] = f ◦ π1.

Using element-like notation, a map f is linear if ∂[f ](x, y) = f(y). Linear
maps in a Cartesian difference category satisfy many of the same properties
found in [4, Lemma 2.2.2].

Lemma 8. In a Cartesian difference category,

1. If f : A → B is linear then ε(f) = f ◦ ε(1A);
2. If f : A → B is linear, then f is additive (Definition 1);
3. Identity maps, projection maps, and zero maps are linear;
4. The composite, sum, and pairing of linear maps is linear;
5. If f : A → B and k : C → D are linear, then for any map g : B → C, the

following equality holds: ∂[k ◦ g ◦ f ] = k ◦ ∂[g] ◦ (f × f);
6. If an isomorphism is linear, then its inverse is linear;
7. For any object A, ⊕A and +A are linear.

Using element-like notation, the first point of the above lemma says that if
f is linear then f(ε(x)) = ε(f(x)). And while all linear maps are additive, the
converse is not necessarily true, see [4, Corollary 2.3.4]. However, an immediate
consequence of the above lemma is that the subcategory of linear maps of a
Cartesian difference category has finite biproducts.

Another interesting subclass of maps is the subclass of ε-linear maps, which
are maps whose infinitesimal extension is linear.

Definition 11. In a Cartesian difference category, a map f is ε-linear if ε(f)
is linear.

Lemma 9. In a Cartesian difference category,

1. If f : A → B is ε-linear then f ◦ (x+ ε(y)) = f ◦ x+ ε(f) ◦ y;
2. Every linear map is ε-linear;
3. The composite, sum, and pairing of ε-linear maps is ε-linear;
4. If an isomorphism is ε-linear, then its inverse is again ε-linear.

Using element-like notation, the first point of the above lemma says that if
f is ε-linear then f(x+ ε(y)) = f(x) + ε(f(y)). So ε-linear maps are additive on
“infinitesimal” elements (i.e. those of the form ε(y)).

For a Cartesian differential category, linear maps in the Cartesian difference
category sense are precisely the same as the Cartesian differential category sense
[4, Definition 2.2.1], while every map is ε-linear since ε = 0.

68 M. Alvarez-Picallo and J.-S. P. Lemay



5 Examples of Cartesian Difference Categories

5.1 Smooth Functions

Every Cartesian differential category is a Cartesian difference category where the
infinitesimal extension is zero. As a particular example, we consider the category
of real smooth functions, which as mentioned above, can be considered to be the
canonical (and motivating) example of a Cartesian differential category.

Let R be the set of real numbers and let SMOOTH be the category whose
objects are Euclidean spaces Rn (including the point R0 = {∗}), and whose
maps are smooth functions F : Rn → Rm. SMOOTH is a Cartesian left additive
category where the product structure is given by the standard Cartesian product
of Euclidean spaces and where the additive structure is defined by point-wise
addition, (F + G)(x) = F (x) + G(x) and 0(x) = (0, . . . , 0), where x ∈ Rn.
SMOOTH is a Cartesian differential category where the differential combinator
is defined by the directional derivative of smooth functions. Explicitly, for a
smooth function F : Rn → Rm, which is in fact a tuple of smooth functions
F = (f1, . . . , fn) where fi : Rn → R, D[F ] : Rn×Rn → Rm is defined as follows:

D[F ] (x,y) :=

(
n∑

i=1

∂f1
∂ui

(x)yi, . . . ,

n∑
i=1

∂fn
∂ui

(x)yi

)
where x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Rn. Alternatively, D[F ] can also be
defined in terms of the Jacobian matrix of F . Therefore SMOOTH is a Carte-
sian difference category with infinitesimal extesion ε = 0 and with difference
combinator D. Since ε = 0, the induced action is simply x ⊕Rn y = x. Also a
smooth function is linear in the Cartesian difference category sense precisely if
it is R-linear in the classical sense, and every smooth function is ε-linear.

5.2 Calculus of Finite Differences

Here we explain how the difference operator from the calculus of finite differences
gives an example of a Cartesian difference category but not a Cartesian differ-
ential category. This example was the main motivating example for developing
Cartesian difference categories. The calculus of finite differences is captured by
the category of abelian groups and arbitrary set functions between them.

Let Ab be the category whose objects are abelian groups G (where we use
additive notation for group structure) and where a map f : G → H is simply
an arbitrary function between them (and therefore does not necessarily preserve
the group structure). Ab is a Cartesian left additive category where the product
structure is given by the standard Cartesian product of sets and where the
additive structure is again given by point-wise addition, (f+g)(x) = f(x)+g(x)
and 0(x) = 0. Ab is a Cartesian difference category where the infinitesimal
extension is simply given by the identity, that is, ε(f) = f , and and where the
difference combinator ∂ is defined as follows for a map f : G → H:

∂[f ](x, y) = f(x+ y)− f(x)

Cartesian Difference Categories 69



On the other hand, ∂ is not a differential combinator for Ab since it does not
satisfy [CD.6] and part of [CD.2]. Thanks to the addition of the infinitesimal
extension, ∂ does satisfy [C∂.2] and [C∂.6], as well as [C∂.0]. However, as
noted in [5], it is interesting to note that this ∂ does satisfy [CD.1], the second
part of [CD.2], [CD.3], [CD.4], [CD.5], [CD.7], and [CD.6.a]. It is worth
noting that in [5], the goal was to drop the addition and develop a “non-additive”
version of Cartesian differential categories.

In Ab, since the infinitesimal operator is given by the identity, the induced
action is simply the addition, x⊕Gy = x+y. On the other hand, the linear maps
in Ab are precisely the group homomorphisms. Indeed, f is linear if ∂[f ](x, y) =
f(y). But by [C∂.0] and [C∂.2], we get that:

f(x+ y) = f(x) + ∂[f ](x, y) = f(x) + f(y) f(0) = ∂[f ](x, 0) = 0

So f is a group homomorphism. Conversely, if f is a group homomorphism:

∂[f ](x, y) = f(x+ y)− f(x) = f(x) + f(y)− f(x) = f(y)

So f is linear. Since ε(f) = f , the ε-linear maps are precisely the linear maps.

5.3 Module Morphisms

Here we provide a simple example of a Cartesian difference category whose dif-
ference combinator is also a differential combinator, but where the infinitesimal
extension is neither zero nor the identity.

Let R be a commutative semiring and let MODR be the category of R-
modules and R-linear maps between them. MODR has finite biproducts and is
therefore a Cartesian left additive category where every map is additive. Every
r ∈ R induces an infinitesimal extension εr defined by scalar multiplication,
εr(f)(m) = rf(m). Then MODR is a Cartesian difference category with the
infinitesimal extension εr for any r ∈ R and difference combinator ∂ defined as:

∂[f ](m,n) = f(n)

R-linearity of f assures that [C∂.0] holds, while the remaining Cartesian dif-
ference axioms hold trivially. In fact, ∂ is also a differential combinator and
therefore MODR is also a Cartesian differential category. The induced action is
given by m ⊕M n = m + rn. By definition of ∂, every map in MODR is linear,
and by definition of εr and R-linearity, every map is also ε-linear.

5.4 Stream calculus

Here we show how one can extend the calculus of finite differences example
to stream calculus. The differential calculus of causal functions and interesting
applications have recently been studying in [17, 18].

For a set A, let Aω denote the set of infinite sequences of elements of A,
where we write [ai] for the infinite sequence [ai] = (a1, a2, a3, . . .) and ai:j for

70 M. Alvarez-Picallo and J.-S. P. Lemay



the (finite) subsequence (ai, ai+1, . . . , aj). A function f : Aω → Bω is causal
whenever the n-th element f ([ai])n of the output sequence only depends on the
first n elements of [ai], that is, f is causal if and only if whenever a0:n = b0:n
then f ([ai])0:n = f ([bi])0:n. We now consider streams over abelian groups, so

let Ab
ω

be the category whose objects are all the Abelian groups and whose
morphisms are causal maps from Gω to Hω. Ab

ω
is a Cartesian left-additive

category, where the product is given by the standard product of abelian groups
and where the additive structure is lifted point-wise from the structure of Ab,
that is, (f + g) ([ai])n = f ([ai])n + g ([ai])n and 0 ([ai])n = 0. In order to define
the infinitesimal extension, we first need to define the truncation operator z. So
let G be an abelian group and [ai] ∈ Gω, then define the sequence z([ai]) as:

z([ai])0 = 0 z ([ai])n+1 = an+1

The category Ab
ω
is a Cartesian difference category where the infinitesimal ex-

tension is given by the truncation operator, ε(f) ([ai]) = z (f ([ai])),
and where the difference combinator ∂ is defined as follows:

∂[f ] ([ai] , [bi])0 = f ([ai] + [bi])0 − f ([ai])0
∂[f ] ([ai] , [bi])n+1 = f ([ai] + z([bi]))n+1 − f ([ai])n+1

Note the similarities between the difference combinator on Ab and that on Ab
ω
.

The induced action is computed out to be:

([ai]⊕ [bi])0 = a0 ([ai]⊕ [bi])n+1 = an+1 + bn+1

A causal map is linear (in the Cartesian difference category sense) if and only
if it is a group homomorphism. While a causal map f is ε-linear if and only if
it is a group homomorphism which does not the depend on the 0-th term of its
input, that is, f ([ai]) = f (z([ai])).

6 Tangent Bundles in Cartesian Difference Categories

In this section, we show that the difference combinator of a Cartesian difference
category induces a monad, called the tangent monad, whose Kleisli category
is again a Cartesian difference category. This construction is a generalization
of the tangent monad for Cartesian differential categories [7, 15]. However, the
Kleisli category of the tangent monad of a Cartesian differential category is not
a Cartesian differential category, but rather a Cartesian difference category.

6.1 The Tangent Bundle Monad

Let X be a Cartesian difference category with infinitesimal extension ε and dif-
ference combinator ∂. Define the functor T : X → X as follows:

T(A) = A×A T(f) = 〈f ◦ π0,∂[f ]〉

Cartesian Difference Categories 71



and define the natural transformations η : 1X ⇒ T and μ : T2 ⇒ T as follows:

ηA := 〈1A, 0〉 μA := 〈π0 ◦ π0, π1 ◦ π0 + π0 ◦ π1 + ε(π1 ◦ π1)〉
Proposition 5. (T, μ, η) is a monad.

Proof. Functoriality of T will follow from [C∂.3] and the chain rule [C∂.5].
Naturality of η and μ and the monad identities will follow from the remain-
ing difference combinator axioms. The full lengthy brute force calculations will
appear in an upcoming extended journal version of this paper. �

When X is a Cartesian differential category with the difference structure aris-
ing from setting ε = 0, this tangent bundle monad coincides with the standard
tangent monad corresponding to its tangent category structure [7, 15].

6.2 The Kleisli Category of T

Recall that the Kleisli category of the monad (T, μ, η) is defined as the category
XT whose objects are the objects of X, and where a map A → B in XT is a map
f : A → T(B) in X, which would be a pair f = 〈f0, f1〉 where fj : A → B.
The identity map in XT is the monad unit ηA : A → T(A), while composition
of Kleisli maps f : A → T(B) and g : B → T(C) is defined as the composite
μC ◦T(g)◦f . To distinguish between composition in X and XT, we denote Kleisli
composition as g ◦T f = μC ◦T(g) ◦ f . If f = 〈f0, f1〉 and g = 〈g0, g1〉, then their
Kleisli composition can be explicitly computed out to be:

g ◦T f = 〈g0, g1〉 ◦T 〈f0, f1〉 = 〈g0 ◦ f0,∂[g0] ◦ 〈f0, f1〉+ g1 ◦ (f0 + ε(f1))〉
Kleisli maps can be understood as “generalized” vector fields. Indeed, T(A)
should be thought of as the tangent bundle over A, and therefore a vector field
would be a map 〈1, f〉 : A → T(A), which is of course also a Kleisli map. For
more details on the intuition behind this Kleisli category see [7]. We now wish
to explain how the Kleisli category is again a Cartesian difference category.

We begin by exhibiting the Cartesian left additive structure of the Kleisli
category. The product of objects in XT is defined as A × B with projections
πT
0 : A×B → T(A) and πT

1 : A×B → T(B) defined respectively as πT
0 = 〈π0, 0〉

and πT
1 = 〈π1, 0〉. The pairing of Kleisli maps f = 〈f0, f1〉 and g = 〈, g0, g1〉 is

defined as 〈f, g〉T = 〈〈f0, g0〉, 〈f1, g1〉〉. The terminal object is again � and where
the unique map to the terminal object is !TA = 0. The sum of Kleisli maps f Kleisli
maps f = 〈f0, f1〉 and g = 〈, g0, g1〉 is defined as f+Tg = f+g = 〈f0+g0, f1+g1〉,
and the zero Kleisli maps is simply 0T = 0 = 〈0, 0〉. Therefore we conclude that
the Kleisli category of the tangent monad is a Cartesian left additive category.

Lemma 10. XT is a Cartesian left additive category.

The infinitesimal extension εT for the Kleisli category is defined as follows
for a Kleisli map f = 〈f0, f1〉:

εT(f) = 〈0, f0 + ε(f1)〉

72 M. Alvarez-Picallo and J.-S. P. Lemay



Lemma 11. εT is an infinitesimal extension on XT.

It is interesting to point out that for an object A the induced action ⊕T
A can

be computed out to be:

⊕T
A = πT

0 +T εT(π1) = 〈π0, 0〉+ 〈0, π1〉 = 〈π0, π1〉 = 1T(A)

and we stress that this is the identity of T(A) in the base category X (but not
in the Kleisli category).

To define the difference combinator for the Kleisli category, first note that
difference combinators by definition do not change the codomain. That is, if
f : A → T(B) is a Kleisli arrow, then the type of its derivative qua Kleisli arrow
should be A×A → T(B)×T(B), which coincides with the type of its derivative
in X. Therefore, the difference combinator ∂T for the Kleisli category can be
defined to be the difference combinator of the base category, that is, for a Kleisli
map f = 〈f0, f1〉:

∂T[f ] = ∂[f ] = 〈∂[f0],∂[f1]〉
Proposition 6. For a Cartesian difference category X, the Kleisli category XT

is a Cartesian difference category with infinitesimal extension εT and difference
combinator ∂T.

Proof. The full lengthy brute force calculations will appear in an upcoming ex-
tended journal version of this paper. We do note that a crucial identity for this
proof is that for any map f in X, the following equality holds:

T(∂[f ]) = ∂ [T(f)] ◦ 〈π0 × π0, π1 × π1〉
This helps simplify many of the calculations for the difference combinator axioms
since T(∂[f ]) appears everywhere due to the definition of Kleisli composition. �

As a result, the Kleisli category of a Cartesian difference category is again a
Cartesian difference category, whose infinitesimal extension is neither the iden-
tity or the zero map. This allows one to build numerous examples of interesting
and exotic Cartesian difference categories, such as the Kleisli category of Carte-
sian differential categories (or iterating this process, taking the Kleisli category
of the Kleisli category). We highlight the importance of this construction in the
Cartesian differential case as it does not in general result in a Cartesian differ-
ential category. Indeed, even if ε = 0, it is always the case that εT �= 0. We
conclude this section by taking a look at the linear maps and the εT-linear maps
in the Kleisli category. A Kleisli map f = 〈f0, f1〉 is linear in the Kleisli category
if ∂T[f ] = f ◦T πT

1 , which amounts to requiring that:

〈∂[f0],∂[f1]〉 = 〈f0 ◦ π1, f1 ◦ π1〉
Therefore a Kleisli map is linear in the Kleisli category if and only if it is the
pairing of maps which are linear in the base category. On the other hand, f is
εT-linear if εT (f) = 〈0, f0 + ε(f1)〉 is linear in the Kleisli category, which in this
case amounts to requiring that f0 + ε(f1) is linear. Therefore, if f0 is linear and
f1 is ε-linear, then f is εT-linear.

Cartesian Difference Categories 73



7 Conclusions and Future Work

We have presented Cartesian difference categories, which generalize Cartesian
differential categories to account for more discrete definitions of derivatives while
providing an additional structure that is absent in change action models. We have
also exhibited important examples and shown that Cartesian difference cate-
gories arise quite naturally from considering tangent bundles in any Cartesian
differential category. We claim that Cartesian difference categories can facilitate
the exploration of differentiation in discrete spaces, by generalizing techniques
and ideas from the study of their differential counterparts. For example, Carte-
sian differential categories can be extended to allow objects whose tangent space
is not necessarily isomorphic to the object itself [9]. The same generalization
could be applied to Cartesian difference categories – with some caveats: for ex-
ample, the equation defining a linear map (Definition 10) becomes ill-typed, but
the notion of ε-linear map remains meaningful.

Another relevant path to consider is developing the analogue of the “tensor”
story for Cartesian difference categories. Indeed, an important source of exam-
ples of Cartesian differential categories are the coKleisli categories of a tensor
differential category [3, 4]. A similar result likely holds for a hypothetical “ten-
sor difference category”, but it is not clear how these should be defined: [C∂.2]
implies that derivatives in the difference sense are non-linear and therefore their
interplay with the tensor structure will be much different.

A further generalization of Cartesian differential categories, categories with
tangent structure [7] are defined directly in terms of a tangent bundle functor
rather than requiring that every tangent bundle be trivial (that is, in a tangent
category it may not be the case that TA = A × A). Some preliminary research
on change actions has already shown that, when generalized in this way, change
actions are precisely internal categories, but the consequences of this for change
action models (and, a fortiori, Cartesian difference categories) are not under-
stood. More recently, some work has emerged about differential equations using
the language of tangent categories [8]. We believe similar techniques can be ap-
plied in a straightforward way to Cartesian difference categories, where they
might be of use to give an abstract formalization of discrete dynamical systems
and difference equations.

An important open question is whether Cartesian difference categories (or a
similar notion) admit an internal language. It is well-known that the differen-
tial λ-calculus can be interpreted in Cartesian closed differential categories [14].
Given their similarities, we believe there will be a very similar “difference λ-
calculus” which could potentially have applications to automatic differentiation
(change structures, a notion similar to change actions, have already been pro-
posed as models of forward-mode automatic differentiation [12], although work
on the area seems to have stagnated).

Lastly, we should mention that there are adjunctions between the categories
of Cartesian difference categories, change action models, and Cartesian differ-
ential categories given by Proposition 1, 2, 3, and 4. These adjunctions will be
explored in detail in the upcoming journal version of this paper.

74 M. Alvarez-Picallo and J.-S. P. Lemay



References

1. Alvarez-Picallo, M., Eyers-Taylor, A., Jones, M.P., Ong, C.H.L.: Fixing incremental
computation. In: European Symposium on Programming. pp. 525–552. Springer
(2019)

2. Alvarez-Picallo, M., Ong, C.H.L.: Change actions: models of generalised differ-
entiation. In: International Conference on Foundations of Software Science and
Computation Structures. pp. 45–61. Springer (2019)

3. Blute, R.F., Cockett, J.R.B., Seely, R.A.G.: Differential categories. Mathematical
structures in computer science 16(06), 1049–1083 (2006)

4. Blute, R.F., Cockett, J.R.B., Seely, R.A.G.: Cartesian differential categories. The-
ory and Applications of Categories 22(23), 622–672 (2009)

5. Bradet-Legris, J., Reid, H.: Differential forms in non-linear cartesian differential
categories (2018), Foundational Methods in Computer Science

6. Cai, Y., Giarrusso, P.G., Rendel, T., Ostermann, K.: A theory of changes for higher-
order languages: Incrementalizing λ-calculi by static differentiation. In: ACM SIG-
PLAN Notices. vol. 49, pp. 145–155. ACM (2014)

7. Cockett, J.R.B., Cruttwell, G.S.H.: Differential structure, tangent structure, and
sdg. Applied Categorical Structures 22(2), 331–417 (2014)

8. Cockett, J., Cruttwell, G.: Connections in tangent categories. Theory and Appli-
cations of Categories 32(26), 835–888 (2017)

9. Cruttwell, G.S.: Cartesian differential categories revisited. Mathematical Struc-
tures in Computer Science 27(1), 70–91 (2017)

10. Ehrhard, T., Regnier, L.: The differential lambda-calculus. Theoretical Computer
Science 309(1), 1–41 (2003)

11. Ehrhard, T.: An introduction to differential linear logic: proof-nets, models and
antiderivatives. Mathematical Structures in Computer Science 28(7), 995–1060
(2018)

12. Kelly, R., Pearlmutter, B.A., Siskind, J.M.: Evolving the incremental {\lambda}
calculus into a model of forward automatic differentiation (ad). arXiv preprint
arXiv:1611.03429 (2016)

13. Kock, A.: Synthetic differential geometry, vol. 333. Cambridge University Press
(2006)

14. Manzonetto, G.: What is a categorical model of the differential and the resource
λ-calculi? Mathematical Structures in Computer Science 22(3), 451–520 (2012)

15. Manzyuk, O.: Tangent bundles in differential lambda-categories. arXiv preprint
arXiv:1202.0411 (2012)

16. Richardson, C.H.: An introduction to the calculus of finite differences. Van Nos-
trand (1954)

17. Sprunger, D., Jacobs, B.: The differential calculus of causal functions. arXiv
preprint arXiv:1904.10611 (2019)

18. Sprunger, D., Katsumata, S.y.: Differentiable causal computations via delayed
trace. In: 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS). pp. 1–12. IEEE (2019)

19. Steinbach, B., Posthoff, C.: Boolean differential calculus. In: Logic Functions and
Equations, pp. 75–103. Springer (2009)

Cartesian Difference Categories 75



which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

76 M. Alvarez-Picallo and J.-S. P. Lemay

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),



Contextual Equivalence for Signal Flow Graphs

Filippo Bonchi1, Robin Piedeleu2�, Pawe�l Sobociński3��, and
Fabio Zanasi2�(�)

1 Università di Pisa, Italy
2 University College London, UK, {r.piedeleu, f.zanasi}@ucl.ac.uk

3 Tallinn University of Technology, Estonia

Abstract. We extend the signal flow calculus—a compositional account
of the classical signal flow graph model of computation—to encompass
affine behaviour, and furnish it with a novel operational semantics. The
increased expressive power allows us to define a canonical notion of con-
textual equivalence, which we show to coincide with denotational equal-
ity. Finally, we characterise the realisable fragment of the calculus: those
terms that express the computations of (affine) signal flow graphs.

Keywords: signal flow graphs · affine relations · full abstraction · con-
textual equivalence · string diagrams

1 Introduction

Compositional accounts of models of computation often lead one to consider
relational models because a decomposition of an input-output system might
consist of internal parts where flow and causality are not always easy to assign.
These insights led Willems [33] to introduce a new current of control theory,
called behavioural control: roughly speaking, behaviours and observations are of
prime concern, notions such as state, inputs or outputs are secondary. Indepen-
dently, programming language theory converged on similar ideas, with contextual
equivalence [25,28] often considered as the equivalence: programs are judged to
be different if we can find some context in which one behaves differently from
the other, and what is observed about “behaviour” is often something quite
canonical and simple, such as termination. Hoare [17] and Milner [23] discovered
that these programming language theory innovations also bore fruit in the non-
deterministic context of concurrency. Here again, research converged on studying
simple and canonical contextual equivalences [24,18].

This paper brings together all of the above threads. The model of computa-
tion of interest for us is that of signal flow graphs [32,21], which are feedback
systems well known in control theory [21] and widely used in the modelling of
linear dynamical systems (in continuous time) and signal processing circuits (in

� Supported by EPSRC grant EP/R020604/1.
�� Supported by the ESF funded Estonian IT Academy research measure (project 2014-

2020.4.05.19-0001)

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 77–96, 2020.
https://doi.org/10.1007/978-3-030-45231-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_5&domain=pdf


discrete time). The signal flow calculus [10,9] is a syntactic presentation with
an underlying compositional denotational semantics in terms of linear relations.
Armed with string diagrams [31] as a syntax, the tools and concepts of program-
ming language theory and concurrency theory can be put to work and the cal-
culus can be equipped with a structural operational semantics. However, while
in previous work [9] a connection was made between operational equivalence
(essentially trace equivalence) and denotational equality, the signal flow calculus
was not quite expressive enough for contextual equivalence to be a useful notion.

The crucial step turns out to be moving from linear relations to affine rela-
tions, i.e. linear subspaces translated by a vector. In recent work [6], we showed
that they can be used to study important physical phenomena, such as current
and voltage sources in electrical engineering, as well as fundamental synchroni-
sation primitives in concurrency, such as mutual exclusion. Here we show that,
in addition to yielding compelling mathematical domains, affinity proves to be
the magic ingredient that ties the different components of the story of signal flow
graphs together: it provides us with a canonical and simple notion of observation
to use for the definition of contextual equivalence, and gives us the expressive
power to prove a bona fide full abstraction result that relates contextual equiv-
alence with denotational equality.

To obtain the above result, we extend the signal flow calculus to handle affine
behaviour. While the denotational semantics and axiomatic theory appeared
in [6], the operational account appears here for the first time and requires some
technical innovations: instead of traces, we consider trajectories, which are infi-
nite traces that may start in the past. To record the time, states of our transition
system have a runtime environment that keeps track of the global clock.

Because the affine signal flow calculus is oblivious to flow directionality, some
terms exhibit pathological operational behaviour. We illustrate these phenomena
with several examples. Nevertheless, for the linear sub-calculus, it is known [9]
that every term is denotationally equal to an executable realisation: one that
is in a form where a consistent flow can be identified, like the classical notion
of signal flow graph. We show that the question has a more subtle answer in
the affine extension: not all terms are realisable as (affine) signal flow graphs.
However, we are able to characterise the class of diagrams for which this is true.

Related work. Several authors studied signal flow graphs by exploiting concepts
and techniques of programming language semantics, see e.g. [4,22,29,2]. The most
relevant for this paper is [2], which, independently from [10], proposed the same
syntax and axiomatisation for the ordinary signal flow calculus and shares with
our contribution the same methodology: the use of string diagrams as a math-
ematical playground for the compositional study of different sorts of systems.
The idea is common to diverse, cross-disciplinary research programmes, includ-
ing Categorical Quantum Mechanics [1,11,12], Categorical Network Theory [3],
Monoidal Computer [26,27] and the analysis of (a)synchronous circuits [14,15].

Outline In Section 2 we recall the affine signal flow calculus. Section 3 introduces
the operational semantics for the calculus. Section 4 defines contextual equiv-
alence and proves full abstraction. Section 5 introduces a well-behaved class of

78 F. Bonchi et al.



circuits, that denotes functional input-output systems, laying the groundwork
for Section 6, in which the concept of realisability is introduced before a charac-
terisation of which circuit diagrams are realisable. Missing proofs can be found
in the extended version of this paper [7].

2 Background: the Affine Signal Flow Calculus

The Affine Signal Flow Calculus extends the signal flow calculus [9] with an
extra generator that allows to express affine relations. In this section, we
first recall its syntax and denotational semantics from [6] and then we highlight
two key properties for proving full abstraction that are enabled by the affine
extension. The operational semantics is delayed to the next section.

: (1, 2) : (1, 0) k : (1, 1) x : (1, 1) : (2, 1) : (0, 1) : (0, 1)

: (2, 1) : (0, 1) k : (1, 1) x : (1, 1) : (1, 2) : (1, 0) : (1, 0)

: (0, 0) : (1, 1) : (2, 2)

c : (n, z) d : (z,m)

c ; d : (n,m)

c : (n,m) d : (r, z)

c⊕d : (n+r,m+z)

Fig. 1. Sort inference rules.

2.1 Syntax

c :: = | | k | x | | | | (1)

| | k | x | | | | (2)

| | | c⊕ c | c ; c (3)

The syntax of the calculus, generated by the grammar above, is parametrised
over a given field k, with k ranging over k. We refer to the constants in rows (1)-
(2) as generators. Terms are constructed from generators, , , , and the
two binary operations in (3). We will only consider those terms that are sortable,
i.e. they can be associated with a pair (n, m), with n,m ∈ N. Sortable terms are
called circuits : intuitively, a circuit with sort (n, m) has n ports on the left and
m on the right. The sorting discipline is given in Fig. 1. We delay discussion of
computational intuitions to Section 3 but, for the time being, we observe that
the generators of row (2) are those of row (1) “reflected about the y-axis”.

2.2 String Diagrams

It is convenient to consider circuits as the arrows of a symmetric monoidal cat-
egory ACirc (for Affine Circuits). Objects of ACirc are natural numbers (thus

Contextual Equivalence for Signal Flow Graphs 79



ACirc is a prop [19]) and morphisms n → m are the circuits of sort (n, m),
quotiented by the laws of symmetric monoidal categories [20,31]4. The circuit
grammar yields the symmetric monoidal structure of ACirc: sequential composi-
tion is given by c ; d, the monoidal product is given by c⊕ d, and identities and
symmetries are built by pasting together and in the obvious way. We will
adopt the usual convention of writing morphisms of ACirc as string diagrams,

meaning that c ; c′ is drawn c c′...
...

... and c⊕ c′ is drawn
c

c′ ...

...
...

...

. More suc-

cinctly, ACirc is the free prop on generators (1)-(2). The free prop on (1)-(2) sans
and , hereafter called Circ, is the signal flow calculus from [9].

Example 1. The diagram x represents the circuit

(( ; )⊕ ) ; ( ⊕( ; )) ; ((( ⊕ x )⊕ ) ; (( ; )⊕ )).

2.3 Denotational Semantics and Axiomatisation

The semantics of circuits can be given denotationally by means of affine relations.

Definition 1. Let k be a field. An affine subspace of kd is a subset V ⊆ kd that
is either empty or for which there exists a vector a ∈ kd and a linear subspace
L of kd such that V = {a + v | v ∈ L}. A k-affine relation of type n → m is an
affine subspace of kn × km, considered as a k-vector space.

Note that every linear subspace is affine, taking a above to be the zero vector.
Affine relations can be organised into a prop:

Definition 2. Let k be a field. Let ARelk be the following prop:

– arrows n → m are k-affine relations.

– composition is relational: given G = {(u, v) |u ∈ kn, v ∈ km} and H =
{(v, w) | v ∈ km, w ∈ kl}, their composition is G ;H := {(u,w) | ∃v.(u, v) ∈
G ∧ (v, w) ∈ H}.

– monoidal product given by G⊕H =

{((
u
u′

)
,

(
v
v′

))
| (u, v) ∈ G, (u′, v′) ∈ H

}
.

In order to give semantics to ACirc, we use the prop of affine relations over
the field k(x) of fractions of polynomials in x with coefficients from k. Elements

q ∈ k(x) are a fractions k0+k1·x1+k2·x2+···+kn·xn

l0+l1·x1+l2·x2+···+lm·lm for some n,m ∈ N and ki, li ∈ k.
Sum, product, 0 and 1 in k(x) are defined as usual.

4 This quotient is harmless: both the denotational semantics from [6] and the opera-
tional semantics we introduce in this paper satisfy those axioms on the nose.

80 F. Bonchi et al.



Definition 3. The prop morphism [[·]] : ACirc → ARelk(x) is inductively defined
on circuits as follows. For the generators in (1)

�−→
{(

p,

(
p
p

))
| p ∈ k(x)

}
�−→

{((
p
q

)
, p+ q

)
| p, q ∈ k(x)

}
�−→ {(p, •) | p ∈ k(x)} �−→ {(•, 0)} �−→ {(•, 1)}

r �−→ {(p, p · r) | p ∈ k(x)} x �−→ {(p, p · x) | p ∈ k(x)}
where • is the only element of k(x)0. The semantics of components in (2) is
symmetric, e.g. is mapped to {(p, •) | p ∈ k(x)}. For (3)

�−→ {(p, p) | p ∈ k(x)} �−→
{((

p
q

)
,

(
q
p

))
| p, q ∈ k(x)

}
�−→ {(•, •)} c1 ⊕ c2 �−→ [[c1]]⊕ [[c2]] c1 ; c2 �−→ [[c1]] ; [[c2]]

The reader can easily check that the pair of 1-dimensional vectors
(
1, 1

1−x

)
∈

k(x)1 × k(x)1 belongs to the denotation of the circuit in Example 1.
The denotational semantics enjoys a sound and complete axiomatisation.

The axioms involve only basic interactions between the generators (1)-(2). The
resulting theory is that of Affine Interacting Hopf Algebras (aIH).The generators
in (1) form a Hopf algebra, those in (2) form another Hopf algebra, and the
interaction of the two give rise to two Frobenius algebras. We refer the reader
to [6] for the full set of equations and all further details.

Proposition 1. For all c, d in ACirc, [[c]] = [[d]] if and only if c
aIH
= d.

2.4 Affine vs Linear Circuits

It is important to highlight the differences between ACirc and Circ. The latter
is the purely linear fragment: circuit diagrams of Circ denote exactly the linear
relations over k(x) [8], while those of ACirc denote the affine relations over k(x).

The additional expressivity afforded by affine circuits is essential for our
development. One crucial property is that every polynomial fraction can be
expressed as an affine circuit of sort (0, 1).

Lemma 1. For all p ∈ k(x), there is cp ∈ ACirc[0, 1] with [[cp]] = {(•, p)}.
Proof. For each p ∈ k(x), let P be the linear subspace generated by the pair of
1-dimensional vectors (1, p). By fullness of the denotational semantics of Circ [8],
there exists a circuit c in Circ such that [[c]] = P . Then, [[ ; c]] = {(•, p)}.

The above observation yields the following:

Proposition 2. Let (u, v) ∈ k(x)n×k(x)m. There exist circuits cu ∈ ACirc[0, n]
and cv ∈ ACirc[m, 0] such that [[cu]] = {(•, u)} and [[cv]] = {(v, •)}.

Contextual Equivalence for Signal Flow Graphs 81



Proof. Let u =

(
p1

.

.

.
pn

)
and v =

(
q1

.

.

.
qm

)
. By Lemma 1, for each pi, there exists a

circuit cpi
such that [[cpi

]] = {(•, pi)}. Let cu = cp1
⊕ . . . ⊕ cpn

. Then [[cu]] =
{(•, u)}. For cv, it is enough to see that Proposition 1 also holds with 0 and 1
switched, then use the argument above.

Proposition 2 asserts that any behaviour (u, v) occurring in the denotation of
some circuit c, i.e., such that (u, v) ∈ [[c]], can be expressed by a pair of circuits
(cu, cv). We will, in due course, think of such a pair as a context, namely an
environment with which a circuit can interact. Observe that this is not possible
with the linear fragment Circ, since the only singleton linear subspace is 0.

Another difference between linear and affine concerns circuits of sort (0, 0).
Indeed k(x)0 = {•}, and the only linear relation over k(x)0×k(x)0 is the singleton
{(•, •)}, which is id0 in ARelk(x). But there is another affine relation, namely the
empty relation ∅ ∈ k(x)0 × k(x)0. This can be represented by , for instance,
since [[ ]] = {(•, 1)} ; {(0, •)} = ∅.

Proposition 3. Let c ∈ ACirc[0, 0]. Then [[c]] is either id0 or ∅.

3 Operational Semantics for Affine Circuits

Here we give the structural operational semantics of affine circuits, building on
previous work [9] that considered only the core linear fragment, Circ. We consider
circuits to be programs that have an observable behaviour. Observations are
possible interactions at the circuit’s interface. Since there are two interfaces: a
left and a right, each transition has two labels.

In a transition t � c
v−→
w

t′ � c′ , c and c′ are states, that is, circuits
augmented with information about which values k ∈ k are stored in each regis-
ter ( x and x ) at that instant of the computation. When transitioning
to c′, the v above the arrow is a vector of values with which c synchronises on the
left, and the w below the arrow accounts for the synchronisation on the right.
States are decorated with runtime contexts: t and t′ are (possibly negative) inte-
gers that—intuitively—indicate the time when the transition happens. Indeed,
in Fig. 2, every rule advances time by 1 unit. “Negative time” is important: as
we shall see in Example 3, some executions must start in the past.

The rules in the top section of Fig. 2 provide the semantics for the generators
in (1): is a copier, duplicating the signal arriving on the left; accepts
any signal on the left and discards it, producing nothing on the right; is
an adder that takes two signals on the left and emits their sum on the right,

emits the constant 0 signal on the right; k is an amplifier, multiplying
the signal on the left by the scalar k ∈ k. All the generators described so far

are stateless. State is provided by x
l

which is a register ; a synchronous one
place buffer with the value l stored. When it receives some value k on the left,
it emits l on the right and stores k. The behaviour of the affine generator

82 F. Bonchi et al.



t �
k−−→
k k

t+ 1 � t �
k−→• t+ 1 �

t �
k l−−→
k+l

t+ 1 � t �
•−→
0

t+ 1 �

t � x
l

k−→
l

t+ 1 � x
k

t � r
l−−→
rl

t+ 1 � r

0 �
•−→
1

1 � t �
•−→
0

t+ 1 � (t �= 0)

t �
k k−−→
k

t+ 1 � t �
•−→
k

t+ 1 �

t �
k+l−−−→
k l

t+ 1 � t �
0−→• t+ 1 �

t � x
l

l−→
k

t+ 1 � x
k

t � r
rl−−→
l

t+ 1 � r

0 �
1−→• 1 � t �

0−→• t+ 1 � (t �= 0)

t �
k−→
k

t+ 1 � t �
k l−−→
l k

t+ 1 � t �
•−→• t+ 1 �

t � c
u−→
v

t+ 1 � c′ t � d
v−→
w

t+ 1 � d′

t � c ; d
u−→
w

t+ 1 � c′ ; d′

t � c
u1−−→
v1

t+ 1 � c′ t � d
u2−−→
v2

t+ 1 � d′

t � c⊕ d
u1 u2−−−−→
v1 v2

t+ 1 � c′ ⊕ d′

Fig. 2. Structural rules for operational semantics, with p ∈ Z, k, l ranging over k and
u, v, w vectors of elements of k of the appropriate size. The only vector of k0 is written
as • (as in Definition 3), while a vector (k1 . . . kn)

T ∈ kn as k1 . . . kn.

depends on the time: when t = 0, it emits 1, otherwise it emits 0. Observe that
the behaviour of all other generators is time-independent.

So far, we described the behaviour of the components in (1) using the in-
tuition that signal flows from left to right: in a transition

v−→
w

, the signal v on
the left is thought as trigger and w as effect. For the generators in (2), whose
behaviour is defined by the rules in the second section of Fig. 2, the behaviour
is symmetric—indeed, here it is helpful to think of signals as flowing from right
to left. The next section of Fig. 2 specifies the behaviours of the structural con-
nectors of (3): is a twist, swapping two signals, is the empty circuit
and is the identity wire: the signals on the left and on the right ports are
equal. Finally, the rule for sequential ; composition forces the two components to
have the same value v on the shared interface, while for parallel ⊕ composition,

Contextual Equivalence for Signal Flow Graphs 83



components can proceed independently. Observe that both forms of composition
require component transitions to happen at the same time.

Definition 4. Let c ∈ ACirc. The initial state c0 of c is the one where all the
registers store 0. A computation of c starting at time t ≤ 0 is a (possibly infinite)
sequence of transitions

t � c0
vt−−→
wt

t+ 1 � c1
vt+1−−−→
wt+1

t+ 2 � c2
vt+2−−−→
wt+2

. . . (4)

Since all transitions increment the time by 1, it suffices to record the time at
which a computation starts. As a result, to simplify notation, we will omit the
runtime context after the first transition and, instead of (4), write

t � c0
vt−−→
wt

c1
vt+1−−−→
wt+1

c2
vt+2−−−→
wt+2

. . .

Example 2. The circuit in Example 1 can perform the following computation.

0 � x
0

1−→
1

x
1

0−→
1

x
1

0−→
1

· · ·

In the example above, the flow has a clear left-to-right orientation, albeit
with a feedback loop. For arbitrary circuits of ACirc this is not always the case,
which sometimes results in unexpected operational behaviour.

Example 3. In x is not possible to identify a consistent flow: goes from
left to right, while x from right to left. Observe that there is no computation
starting at t = 0, since in the initial state the register contains 0 while must
emit 1. There is, however, a (unique!) computation starting at time t = −1, that
loads the register with 1 before can also emit 1 at time t = 0.

−1 � x
0 •−→

1
x
1 •−→

0
x
0 •−→

0
x
0 •−→

0
. . .

Similarly, x x features a unique computation starting at time t = −2.

−2 � x x
0 0 •−→

1
x x
0 1 •−→

0
x x
1 0 •−→

0
x x
0 0 •−→

0
. . .

It is worthwhile clarifying the reason why, in the affine calculus, some compu-
tations start in the past. As we have already mentioned, in the linear fragment
the semantics of all generators is time-independent. It follows easily that time-
independence is a property enjoyed by all purely linear circuits. The behaviour
of , however, enforces a particular action to occur at time 0. Considering this

in conjunction with a right-to-left register results in x , and the effect is to
anticipate that action by one step to time -1, as shown in Example 3. It is obvi-
ous that this construction can be iterated, and it follows that the presence of a
single time-dependent generator results in a calculus in which the computation
of some terms must start at a finite, but unbounded time in the past.

84 F. Bonchi et al.



Example 4. Another circuit with conflicting flow is . Here there is no possible
transition at t = 0, since at that time must emit a 1 and can only synchro-
nise on a 0. Instead, the circuit can always perform an infinite computation

t �
•−→• •−→• . . . , for any t ≤ 0. Roughly speaking, the computations of

these two (0, 0) circuits are operational mirror images of the two possible denota-
tions of Proposition 3. This intuition will be made formal in Section 4. For now,
it is worth observing that for all c, ⊕ c can perform the same computations
of c, while ⊕ c cannot ever make a transition at time 0.

Example 5. Consider the circuit x x , which again features conflicting flow.
Our equational theory equates it with , but the computations involved are
subtly different. Indeed, for any sequence ai ∈ k, it is obvious that admits
the computation

0 �
a0−−→
a0

a1−−→
a1

a2−−→
a2

. . . (5)

The circuit x x admits a similar computation, but we must begin at time
t = −1 in order to first “load” the registers with a0:

−1 � x x
0 0

0−→
0

x x

a0 a0
a0−−→
a0

x x

a1 a1
a1−−→
a1

x x

a2 a2
a2−−→
a2

. . . (6)

The circuit x x , which again is equated with by the equational theory,

is more tricky. Although every computation of can be reproduced, x x

admits additional, problematic computations. Indeed, consider

0 � x x
0 0

0−→
1

x x
0 1

(7)

at which point no further transition is possible—the circuit can deadlock.

The following lemma is an easy consequence of the rules of Fig. 2 and follows
by structural induction. It states that all circuits can stay idle in the past.

Lemma 2. Let c ∈ ACirc[n,m] with initial state c0. Then t � c0
0−→
0

c0 if t < 0.

3.1 Trajectories

For the non-affine version of the signal flow calculus, we studied in [9] traces
arising from computations. For the affine extension, this is not possible since, as
explained above, we must also consider computations that start in the past. In
this paper, rather than traces we adopt a common control theoretic notion.

Definition 5. An (n,m)-trajectory σ is a Z-indexed sequence σ : Z → kn × km

that is finite in the past, i.e., for which ∃j ∈ Z such that σ(i) = (0, 0) for i ≤ j.

By the universal property of the product we can identify σ : Z → kn × km

with the pairing 〈σl, σr〉 of σl : Z → kn and σr : Z → km. A (k,m)-trajectory
σ and (m,n)-trajectory τ are compatible if σr = τl. In this case, we can define

Contextual Equivalence for Signal Flow Graphs 85



their composite, a (k, n)-trajectory σ ; τ by σ ; τ := 〈σl, τr〉. Given an (n1,m1)-
trajectory σ1, and an (n2,m2)-trajectory σ2, their product, an (n1+n2,m1+m2)-

trajectory σ1⊕σ2, is defined (σ1⊕σ2)(i) :=

(
σ(i)
τ(i)

)
. Using these two operations

we can organise sets of trajectories into a prop.

Definition 6. The composition of two sets of trajectories is defined as S ;T :=
{σ ; τ | σ ∈ S, τ ∈ T are compatible}. The product of sets of trajectories is defined
as S1 ⊕ S2 := {σ1 ⊕ σ2 | σ1 ∈ S1, σ2 ∈ S2}.

Clearly both operations are strictly associative. The unit for ⊕ is the singleton
with the unique (0, 0)-trajectory. Also ; has a two sided identity, given by sets
of “copycat” (n, n)-trajectories. Indeed, we have that:

Proposition 4. Sets of (n,m)-trajectories are the arrows n → m of a prop Traj
with composition and monoidal product given as in Definition 6.

Traj serves for us as the domain for operational semantics: given a circuit c
and an infinite computation

t � c0
ut−−→
vt

c1
ut+1−−−→
vt+1

c2
ut+2−−−→
vt+2

. . .

its associated trajectory σ is

σ(i) =

{
(ui, vi) if i ≥ t,

(0, 0) otherwise.
(8)

Definition 7. For a circuit c, 〈c〉 is the set of trajectories given by its infinite
computations, following the translation (8) above.

The assignment c �→ 〈c〉 is compositional, that is:

Theorem 1. 〈·〉 : ACirc → Traj is a morphism of props.

Example 6. Consider the computations (5) and (6) from Example 5. According
to (8) both are translated into the trajectory σ mapping i ≥ 0 into (ai, ai) and
i < 0 into (0, 0). The reader can easily verify that, more generally, it holds that

〈 〉 = 〈 x x 〉. At this point it is worth to remark that the two circuits
would be distinguished when looking at their traces: the trace of computation
(5) is different from the trace of (6). Indeed, the full abstraction result in [9] does
not hold for all circuits, but only for those of a certain kind. The affine extension
obliges us to consider computations that starts in the past and, in turn, this
drives us toward a stronger full abstraction result, shown in the next section.

Before concluding, it is important to emphasise that 〈 〉 = 〈 x x 〉
also holds. Indeed, problematic computations, like (7), are all finite and, by
definition, do not give rise to any trajectory. The reader should note that the use
of trajectories is not a semantic device to get rid of problematic computations.
In fact, trajectories do not appear in the statement of our full abstraction result;
they are merely a convenient tool to prove it. Another result (Proposition 9)
independently takes care of ruling out problematic computations.

86 F. Bonchi et al.



4 Contextual Equivalence and Full Abstraction

This section contains the main contribution of the paper: a traditional full ab-
straction result asserting that contextual equivalence agrees with denotational
equivalence. It is not a coincidence that we prove this result in the affine set-
ting: affinity plays a crucial role, both in its statement and proof. In particular,
Proposition 3 gives us two possibilities for the denotation of (0, 0) circuits: (i)
∅—which, roughly speaking, means that there is a problem (see e.g. Example 4)
and no infinite computation is possible—or (ii) id0, in which case infinite com-
putations are possible. This provides us with a basic notion of observation, akin
to observing termination vs non-termination in the λ-calculus.

Definition 8. For a circuit c ∈ ACirc[0, 0] we write c ↑ if c can perform an
infinite computation and c /↑ otherwise. For instance ↑, while /↑.

To be able to make observations about arbitrary circuits we need to intro-
duce an appropriate notion of context. Roughly speaking, contexts for us are
(0, 0)-circuits with a hole into which we can plug another circuit. Since ours
is a variable-free presentation, “dangling wires” assume the role of free vari-
ables [16]: restricting to (0, 0) contexts is therefore analogous to considering
ground contexts—i.e. contexts with no free variables—a standard concept of
programming language theory.

To define contexts formally, we extend the syntax of Section 2.1 with an
extra generator “−” of sort (n, m). A (0, 0)-circuit of this extended syntax is a
context when “−” occurs exactly once. Given an (n, m)-circuit c and a context
C[−], we write C[c] for the circuit obtained by replacing the unique occurrence
of “−” by c.

With this setup, given an (n, m)-circuit c, we can insert it into a context
C[−] and observe the possible outcome: either C[c] ↑ or C[c] /↑. This naturally
leads us to contextual equivalence and the statement of our main result.

Definition 9. Given c, d ∈ ACirc[n,m], we say that they are contextually equiv-
alent, written c ≡ d, if for all contexts C[−],

C[c] ↑ iff C[d] ↑ .

Example 7. Recall from Example 5, the circuits and x x . Take the
context C[−] = cσ ; − ; cτ for cσ ∈ ACirc[0, 1] and cτ ∈ ACirc[1, 0]. Assume that
cσ and cτ have a single infinite computation. Call σ and τ the corresponding

trajectories. If σ = τ , both C[ ] and C[ x x ] would be able to perform
an infinite computation. Instead if σ �= τ , none of them would perform any
infinite computation: would stop at time t, for t the first moment such that

σ(t) �= τ(t), while C[ x x ] would stop at time t+ 1.
Now take as context C[−] = ; − ; . In contrast to cσ and cτ ,

and can perform more than one single computation: at any time they can
nondeterministically emit any value. Thus every computation of C[ ] =

Contextual Equivalence for Signal Flow Graphs 87



can always be extended to an infinite one, forcing synchronisation of and

at each step. For C[ x x ] = x x , and may emit different
values at time t, but the computation will get stuck at t + 1. However, our

definition of ↑ only cares about whether C[ x x ] can perform an infinite
computation. Indeed it can, as long as and consistently emit the same
value at each time step.

If we think of contexts as tests, and say that a circuit c passes test C[−] if
C[c] perform an infinite computation, then our notion of contextual equivalence

is may-testing equivalence [13]. From this perspective, and x x are not

must equivalent, since the former must pass the test ; − ; while x x

may not. It is worth to remark here that the distinction between may and must
testing will cease to make sense in Section 5 where we identify a certain class
of circuits equipped with a proper flow directionality and thus a deterministic,
input-output, behaviour.

Theorem 2 (Full abstraction). c ≡ d iff c
aIH
= d

The remainder of this section is devoted to the proof of Theorem 2. We
will start by clarifying the relationship between fractions of polynomials (the
denotational domain) and trajectories (the operational domain).

4.1 From Polynomial Fractions to Trajectories

The missing link between polynomial fractions and trajectories are (formal)
Laurent series : we now recall this notion. Formally, a Laurent series is a function
σ : Z → k for which there exists j ∈ Z such that σ(i) = 0 for all i < j. We
write σ as . . . , σ(−1), σ(0), σ(1), . . . with position 0 underlined, or as formal sum∑∞

i=d σ(i)x
i. Each Laurent series σ has then a degree d ∈ Z, which is the first

non-zero element. Laurent series form a field k((x)): sum is pointwise, product
is by convolution, and the inverse σ−1 of σ with degree d is defined as:

σ−1(i) =

⎧⎪⎪⎨⎪⎪⎩
0 if i < −d

σ(d)−1 if i = −d
∑n

i=1

(
σ(d+i)·σ−1(−d+n−i)

)
−σ(d) if i=−d+n for n>0

(9)

Note (formal) power series, which form ‘just’ a ring k[[x]], are a particular case of
Laurent series, namely those σs for which d ≥ 0. What is most interesting for our
purposes is how polynomials and fractions of polynomials relate to k((x)) and
k[[x]]. First, the ring k[x] of polynomials embeds into k[[x]], and thus into k((x)):
a polynomial p0 + p1x + · · · + pnx

n can also be regarded as the power series∑∞
i=0 pix

i with pi = 0 for all i > n. Because Laurent series are closed under
division, this immediately gives also an embedding of the field of polynomial
fractions k(x) into k((x)). Note that the full expressiveness of k((x)) is required:
for instance, the fraction 1

x is represented as the Laurent series . . . , 0, 1, 0, 0, . . . ,

88 F. Bonchi et al.



which is not a power series, because a non-zero value appears before position 0.
In fact, fractions that are expressible as power series are precisely the rational

fractions, i.e. of the form k0+k1x+k2x
2···+knx

n

l0+l1x+l2x2···+lnxn where l0 �= 0.

Rational fractions form a ring k〈x〉 which, dif-
ferently from the full field k(x), embeds into
k[[x]]. Indeed, whenever l0 �= 0, the inverse of
l0 + l1x + l2x

2 · · · + lnx
n is, by (9), a bona fide

power series. The commutative diagram on the
right is a summary.

k[[x]] �
� �� k((x))

k〈x〉
� �

��

� �

��
k[x]

� 	
��

�� ��

�

��

k(x)
� 


��

Relations between k((x))-vectors organise themselves into a prop ARelk((x))

(see Definition 2). There is an evident prop morphism ι : ARelk(x) → ARelk((x)):
it maps the empty affine relation on k(x) to the one on k((x)), and otherwise
applies pointwise the embedding of k(x) into k((x)). For the next step, observe
that trajectories are in fact rearrangements of Laurent series: each pair of vectors
(u, v) ∈ k((x))n × k((x))m, as on the left below, yields the trajectory κ(u, v)
defined for all i ∈ Z as on the right below.

(u, v) =

⎛⎜⎝
⎛⎜⎝α1

...
αn

⎞⎟⎠,

⎛⎜⎝β1

...
βm

⎞⎟⎠
⎞⎟⎠ κ(u, v)(i) =

⎛⎜⎝
⎛⎜⎝α1(i)

...
αn(i)

⎞⎟⎠,

⎛⎜⎝β1(i)
...

βm(i)

⎞⎟⎠
⎞⎟⎠

Similarly to ι, the assignment κ extends to sets of vectors, and also to a prop
morphism from ARelk((x)) to Traj. Together, κ and ι provide the desired link
between operational and denotational semantics.

Theorem 3. 〈·〉 = κ ◦ ι ◦ [[·]]
Proof. Since both are symmetric monoidal functors from a free prop, it is enough
to check the statement for the generators of ACirc. We show, as an example, the

case of . By Definition 3, [[ ]] =

{(
p,

(
p
p

))
| p ∈ k(x)

}
. This is mapped

by ι to

{(
α,

(
α
α

))
| α ∈ k((x))

}
. Now, to see that κ(ι([[ ]])) = 〈 〉, it is

enough to observe that a trajectory σ is in κ(ι([[ ]])) precisely when, for all

i, there exists some ki ∈ k such that σ(i) =

(
ki,

(
ki
ki

))
.

4.2 Proof of Full Abstraction

We now have the ingredients to prove Theorem 2. First, we prove an adequacy
result for (0, 0) circuits.

Proposition 5. Let c ∈ ACirc[0, 0]. Then [[c]] = id0 if and only if c ↑.
Proof. By Proposition 3, either [[c]] = id0 or [[c]] = ∅, which, combined with
Theorem 3, means that 〈c〉 = κ ◦ ι(id0) or 〈c〉 = κ ◦ ι(∅). By definition of ι this
implies that either 〈c〉 contains a trajectory or not. In the first case c ↑; in the
second c /↑.

Contextual Equivalence for Signal Flow Graphs 89



Next we obtain a result that relates denotational equality in all contexts to
equality in aIH. Note that it is not trivial: since we consider ground contexts
it does not make sense to merely consider “identity” contexts. Instead, it is at
this point that we make another crucial use of affinity, taking advantage of the
increased expressivity of affine circuits, as showcased by Proposition 2.

Proposition 6. If [[C[c]]] = [[C[d]]] for all contexts C[−], then c
aIH
= d.

Proof. Suppose that c
aIH
�= d. Then [[c]] �= [[d]]. Since both [[c]] and [[d]] are affine

relations over k(x), there exists a pair of vectors (u, v) ∈ k(x)n×k(x)m that is in
one of [[c]] and [[d]], but not both. Assume wlog that (u, v) ∈ [[c]] and (u, v) /∈ [[d]].
By Proposition 2, there exists cu and cv such that [[cu ; c ; cv]] = [[cu]] ; [[c]] ; [[cv]] =
{(•, u)} ; [[c]] ; {(v, •)}. Since (u, v) ∈ [[c]], then [[cu ; c ; cv]] = {(•, •)}. Instead, since
(u, v) /∈ [[d]], we have that [[cu ; d ; cv]] = ∅. Therefore, for the context C[−] =
cu ; − ; cv, we have that [[C[c]]] �= [[C[d]]].

The proof of our main result is now straightforward.

Proof of Theorem 2. Let us first suppose that c
aIH
= d. Then [[C[c]]] = [[C[d]]] for

all contexts C[−], since [[·]] is a morphism of props. By Corollary 5, it follows
immediately that C[c] ↑ if and only if C[d] ↑, namely c ≡ d.

Conversely, suppose that, for all C[−], C[c] ↑ iff C[d] ↑. Again by Corollary
5, we have that [[C[c]]] = [[C[d]]]. We conclude by invoking Proposition 6.

5 Functional Behaviour and Signal Flow Graphs

There is a sub-prop SF of Circ of classical signal flow graphs (see e.g. [21]). Here
signal flows left-to-right, possibly featuring feedback loops, provided that these
go through at least one register. Feedback can be captured algebraically via an
operation Tr(·) : Circ[n+ 1,m+ 1] → Circ[n,m] taking c : n+ 1 → m+ 1 to:

c mn
x

Following [9], let us call C−→irc the free sub-prop of Circ of circuits built from (3)
and the generators of (1), without . Then SF is defined as the closure of C−→irc
under Tr(·). For instance, the circuit of Example 2 is in SF.

Signal flow graphs are intimately connected to the executability of circuits. In
general, the rules of Figure 2 do not assume a fixed flow orientation. As a result,
some circuits in Circ are not executable as functional input-output systems, as

we have demonstrated with x , and x x of Examples 3-5. Notice
that none of these are signal flow graphs. In fact, the circuits of SF do not have
pathological behaviour, as we shall state more precisely in Proposition 9.

At the denotational level, signal flow graphs correspond precisely to rational
functional behaviours, that is, matrices whose coefficients are in the ring k〈x〉

90 F. Bonchi et al.



of rational fractions (see Section 4.1). We call such matrices, rational matrices.
One may check that the semantics of a signal flow graph c : (n, m) is always
of the form [[c]] = {(v,A · v) | v ∈ k(x)n}, for some m × n rational matrix A.
Conversely, all relations that are the graph of rational matrices can be expressed
as signal flow graphs.

Proposition 7. Given c : (n, m), we have [[c]] = {(p,A · p) | p ∈ k(x)n} for
some rational m×n matrix A iff there exists a signal flow graph f , i.e., a circuit
f : (n, m) of SF, such that [[f ]] = [[c]].

Proof. This is a folklore result in control theory which can be found in [30]. The
details of the translation between rational matrices and circuits of SF can be
found in [10, Section 7].

The following gives an alternative characterisation of rational matrices—and
therefore, by Proposition 7, of the behaviour of signal flow graphs—that clarifies
their role as realisations of circuits.

Proposition 8. An m×n matrix is rational iff A · r ∈ k〈x〉m for all r ∈ k〈x〉n.
Proposition 8 is another guarantee of good behaviour—it justifies the name

of inputs (resp. outputs) for the left (resp. right) ports of signal flow graphs.
Recall from Section 4.1 that rational fractions can be mapped to Laurent series
of nonnegative degree, i.e., to plain power series. Operationally, these correspond
to trajectories that start after t = 0. Proposition 8 guarantees that any trajectory
of a signal flow graph whose first nonzero value on the left appears at time t = 0,
will not have nonzero values on the right starting before time t = 0. In other
words, signal flow graphs can be seen as processing a stream of values from left to
right. As a result, their ports can be clearly partitioned into inputs and outputs.

But the circuits of SF are too restrictive for our purposes. For example,

x
can also be seen to realise a functional behaviour transforming inputs

on the left into outputs on the right yet it is not in SF. Its behaviour is no
longer linear, but affine. Hence, we need to extend signal flow graphs to include
functional affine behaviour. The following definition does just that.

Definition 10. Let ASF be the sub-prop of ACirc obtained from all the genera-
tors in (1), closed under Tr(·). Its circuits are called affine signal flow graphs.

As before, none of x , and x x from Examples 3-5 are affine sig-
nal flow graphs. In fact, ASF rules out pathological behaviour: all computations
can be extended to be infinite, or in other words, do not get stuck.

Proposition 9. Given an affine signal flow graph f , for every computation

t � f0
ut−−→
vt

f1
ut+1−−−→
vp+1

. . . fn

there exists a trajectory σ ∈ 〈c〉 such that σ(i) = (ui, vi) for t ≤ i ≤ t+ n.

Proof. By induction on the structure of affine signal flow graphs.

Contextual Equivalence for Signal Flow Graphs 91



If SF circuits correspond precisely to k〈x〉-matrices, those of ASF correspond
precisely to k〈x〉-affine transformations.

Definition 11. A map f : k(x)n → k(x)m is an affine map if there exists an
m× n matrix A and b ∈ k(x)m such that f(p) = A · p+ b for all p ∈ k(x)n. We
call the pair (A, b) the representation of f .

The notion of rational affine map is a straightforward extension of the linear
case and so is the characterisation in terms of rational input-output behaviour.

Definition 12. An affine map f : p �→ A · p + b is rational if A and b have
coefficients in k〈x〉.
Proposition 10. An affine map f : k(x)n → k(x)m is rational iff f(r) ∈ k〈x〉m
for all r ∈ k〈x〉n.

The following extends the correspondence of Proposition 7, showing that ASF
is the rightful affine heir of SF.

Proposition 11. Given c : (n, m), we have [[c]] = {(p, f(p)) | p ∈ k(x)n} for
some rational affine map f iff there exists an affine signal flow graph g, i.e., a
circuit g : (n, m) of ASF, such that [[g]] = [[c]].

Proof. Let f be given by p �→ Ap + b for some rational m × n matrix A and
vector b ∈ k〈x〉m. By Proposition 7, we can find a circuit cA of SF such that

[[cA]] = {(p,A · p) | p ∈ k(x)}. Similarly, we can
represent b as a signal flow graph cb of sort (1, m).
Then, the circuit on the right is clearly in ASF and
verifies [[c]] = {(p,Ap+ b) | p ∈ k(x)} as required.

c : =

cA
m

n

cb

For the converse direction it is straightforward to check by structural in-
duction that the denotation of affine signal flow graphs is the graph (in the
set-theoretic sense of pairs of values) of some rational affine map.

6 Realisability

In the previous section we gave a restricted class of morphisms with good be-
havioural properties. We may wonder how much of ACirc we can capture with
this restricted class. The answer is, in a precise sense: most of it.

Surprisingly, the behaviours realisable in Circ—the purely linear fragment—
are not more expressive. In fact, from an operational (or denotational, by full
abstraction) point of view, Circ is nothing more than jumbled up version of SF.
Indeed, it turns out that Circ enjoys a realisability theorem: any circuit c of Circ
can be associated with one of SF, that implements or realises the behaviour of c
into an executable form.
But the corresponding realisation may not flow neatly
from left to right like signal flow graphs do—its inputs
and outputs may have been moved from one side to the
other. Consider for example, the circuit on the right

x

x

92 F. Bonchi et al.



It does not belong to SF but it can be read as a signal flow graph with an input
that has been bent and moved to the bottom right. The behaviour it realises
can therefore executed by rewiring this port to obtain a signal flow graph:

x

x

aIH
=

x

x

We will not make this notion of rewiring precise here but refer the reader to [9]
for the details. The intuition is simply that a rewiring partitions the ports of a
circuit into two sets—that we call inputs and outputs—and uses or to
bend input ports to the left and and output ports to the right. The realisability
theorem then states that we can always recover a (not necessarily unique) signal
flow graph from any circuit by performing these operations.

Theorem 4. [9, Theorem 5] Every circuit in Circ is equivalent to the rewiring
of a signal flow graph, called its realisation.

This theorem allows us to extend the notion of inputs and outputs to all
circuits of Circ.

Definition 13. A port of a circuit c of Circ is an input (resp. output) port, if
there exists a realisation for which it is an input (resp. output).

Note that, since realisations are not necessarily unique, the same port can be
both an input and an output. Then, the realisability theorem (Theorem 4) says
that every port is always an input, an output or both (but never neither).

An output-only port is an output port that is not an input port. Similarly
an input-only port in an input port that is not an output port.

Example 8. The left port of the register x is input-only whereas its right
port is output-only. In the identity wire, both ports are input and output ports.
The single port of is output-only ; that of is input-only.

While in the purely linear case, all behaviours are realisable, the general case
of ACirc is a bit more subtle. To make this precise, we can extend our definition
of realisability to include affine signal flow graphs.

Definition 14. A circuit of ACirc is realisable if its ports can be rewired so that
it is equivalent to a circuit of ASF.

Example 9. is realisable; x is not.

Notice that Proposition 11, gives the following equivalent semantic criterion
for realisability. Realisable behaviours are precisely those that map rationals to
rationals.

Theorem 5. A circuit c is realisable iff its ports can be partitioned into two
sets, that we call inputs and outputs, such that the corresponding rewiring of c
is an affine rational map from inputs to outputs.

Contextual Equivalence for Signal Flow Graphs 93



We offer another perspective on realisability below: realisable behaviours cor-
respond precisely to those for which the constants are connected to inputs of
the underlying Circ-circuit. First, notice that, since

(1-dup)
= and

(1-del)
=

in aIH, we can assume without loss of generality that each circuit contains exactly
one .

Proposition 12. Every circuit c of ACirc is equivalent to one with precisely one
and no .

For c : (n, m) a circuit of ACirc, we will call ĉ the circuit of Circ of sort
(n + 1, m) that one obtains by first transforming c into an equivalent circuit
with a single and no as above, then removing this , and replacing it by
an identity wire that extends to the left boundary.

Theorem 6. A circuit c is realisable iff is connected to an input port of ĉ.

7 Conclusion and Future Work

We introduced the operational semantics of the affine extension of the signal
flow calculus and proved that contextual equivalence coincides with denotational
equality, previously introduced and axiomatised in [6]. We have observed that,
at the denotational level, affinity provides two key properties (Propositions 2
and 3) for the proof of full abstraction. However, at the operational level, affin-
ity forces us to consider computations starting in the past (Example 3) as the
syntax allows terms lacking a proper flow directionality. This leads to circuits
that might deadlock ( in Example 4) or perform some problematic computa-

tions ( x x in Example 5). We have identified a proper subclass of circuits,
called affine signal flow graphs (Definition 10), that possess an inherent flow
directionality: in these circuits, the same pathological behaviours do not arise
(Proposition 9). This class is not too restrictive as it captures all desirable be-
haviours: a realisability result (Theorem 5) states that all and only the circuits
that do not need computations to start in the past are equivalent to (the rewiring
of) an affine signal flow graph.

The reader may be wondering why we do not restrict the syntax to affine
signal flow graphs. The reason is that, like in the behavioural approach to control
theory [33], the lack of flow direction is what allows the (affine) signal flow calcu-
lus to achieve a strong form of compositionality and a complete axiomatisation
(see [9] for a deeper discussion).

We expect that similar methods and results can be extended to other models
of computation. Our next step is to tackle Petri nets, which, as shown in [5], can
be regarded as terms of the signal flow calculus, but over N rather than a field.

94 F. Bonchi et al.



References

1. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Pro-
ceedings of the 19th Annual IEEE Symposium on Logic in Computer Science
(LICS), 2004. pp. 415–425. IEEE (2004)

2. Baez, J., Erbele, J.: Categories in control. Theory and Applications of Categories
30, 836–881 (2015)

3. Baez, J.C.: Network theory (2014), http://math.ucr.edu/home/baez/networks/,
website (retrieved 15/04/2014)

4. Basold, H., Bonsangue, M., Hansen, H., Rutten, J.: (Co)Algebraic characterizations
of signal flow graphs. In: van Breugel, F., Kashefi, E., Palamidessi, C., Rutten, J.
(eds.) Horizons of the Mind. A Tribute to Prakash Panangaden, Lecture Notes
in Computer Science, vol. 8464, pp. 124–145. Springer International Publishing
(2014)

5. Bonchi, F., Holland, J., Piedeleu, R., Sobociński, P., Zanasi, F.: Diagrammatic al-
gebra: from linear to concurrent systems. Proceedings of the 46th ACM SIGPLAN
Symposium on Principles of Programming Languages (POPL) 3, 1–28 (2019)

6. Bonchi, F., Piedeleu, R., Sobociński, P., Zanasi, F.: Graphical affine algebra. In:
Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS). pp. 1–12 (2019)

7. Bonchi, F., Piedeleu, R., Sobociński, P., Zanasi, F.: Contextual equivalence for
signal flow graphs (2020), https://arxiv.org/abs/2002.08874

8. Bonchi, F., Sobociński, P., Zanasi, F.: A categorical semantics of signal flow graphs.
In: Proceedings of the 25th International Conference on Concurrency Theory
(CONCUR). pp. 435–450. Springer (2014)

9. Bonchi, F., Sobocinski, P., Zanasi, F.: Full abstraction for signal flow graphs. In:
Proceedings of the 42nd Annual ACM SIGPLAN Symposium on Principles of
Programming Languages (POPL). pp. 515–526 (2015)

10. Bonchi, F., Sobocinski, P., Zanasi, F.: The calculus of signal flow diagrams I: linear
relations on streams. Information and Computation 252, 2–29 (2017)

11. Coecke, B., Duncan, R.: Interacting quantum observables. In: Proceedings of
the 35th international colloquium on Automata, Languages and Programming
(ICALP), Part II. pp. 298–310 (2008)

12. Coecke, B., Kissinger, A.: Picturing Quantum Processes - A first course in Quantum
Theory and Diagrammatic Reasoning. Cambridge University Press (2017)

13. De Nicola, R., Hennessy, M.C.: Testing equivalences for processes. Theoretical
Computer Science 34(1-2), 83–133 (1984)

14. Ghica, D.R.: Diagrammatic reasoning for delay-insensitive asynchronous circuits.
In: Computation, Logic, Games, and Quantum Foundations. The Many Facets of
Samson Abramsky, pp. 52–68. Springer (2013)

15. Ghica, D.R., Jung, A.: Categorical semantics of digital circuits. In: Proceedings of
the 16th Conference on Formal Methods in Computer-Aided Design (FMCAD).
pp. 41–48 (2016)

16. Ghica, D.R., Lopez, A.: A structural and nominal syntax for diagrams. In: Pro-
ceedings 14th International Conference on Quantum Physics and Logic (QPL). pp.
71–83 (2017)

17. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (1985)

18. Honda, K., Yoshida, N.: On reduction-based process semantics. Theoretical Com-
puter Science 152(2), 437–486 (1995)

Contextual Equivalence for Signal Flow Graphs 95

http://math.ucr.edu/home/baez/networks/
https://arxiv.org/abs/2002.08874


19. Mac Lane, S.: Categorical algebra. Bulletin of the American Mathematical Society
71, 40–106 (1965)

20. Mac Lane, S.: Categories for the Working Mathematician. Springer (1998)
21. Mason, S.J.: Feedback Theory: I. Some Properties of Signal Flow Graphs. MIT

Research Laboratory of Electronics (1953)
22. Milius, S.: A sound and complete calculus for finite stream circuits. In: Proceedings

of the 2010 25th Annual IEEE Symposium on Logic in Computer Science (LICS).
pp. 421–430 (2010)

23. Milner, R.: A Calculus of Communicating Systems, Lecture Notes in Computer
Science, vol. 92. Springer (1980)

24. Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Proceedings of the 19th Inter-
national Colloquium on Automata, Languages and Programming (ICALP). pp.
685–695 (1992)

25. Morris Jr, J.H.: Lambda-calculus models of programming languages. Ph.D. thesis,
Massachusetts Institute of Technology (1969)

26. Pavlovic, D.: Monoidal computer I: Basic computability by string diagrams. Infor-
mation and Computation 226, 94–116 (2013)

27. Pavlovic, D.: Monoidal computer II: Normal complexity by string diagrams.
arXiv:1402.5687 (2014)

28. Plotkin, G.D.: Call-by-name, call-by-value and the λ-calculus. Theoretical Com-
puter Science 1(2), 125–159 (1975)

29. Rutten, J.J.M.M.: A tutorial on coinductive stream calculus and signal flow graphs.
Theoretical Computer Science 343(3), 443–481 (2005)

30. Rutten, J.J.M.M.: Rational streams coalgebraically. Logical Methods in Computer
Science 4(3) (2008)

31. Selinger, P.: A survey of graphical languages for monoidal categories. Springer
Lecture Notes in Physics 13(813), 289–355 (2011)

32. Shannon, C.E.: The theory and design of linear differential equation machines.
Tech. rep., National Defence Research Council (1942)

33. Willems, J.C.: The behavioural approach to open and interconnected systems.
IEEE Control Systems Magazine 27, 46–99 (2007)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/

4.0/), which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

96 F. Bonchi et al.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Parameterized Synthesis for Fragments of
First-Order Logic over Data Words�

Béatrice Bérard1, Benedikt Bollig2, Mathieu Lehaut1(�), and Nathalie
Sznajder1

1 Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
2 CNRS, LSV & ENS Paris-Saclay, Université Paris-Saclay, Cachan, France

Abstract. We study the synthesis problem for systems with a parame-
terized number of processes. As in the classical case due to Church, the
system selects actions depending on the program run so far, with the aim
of fulfilling a given specification. The difficulty is that, at the same time,
the environment executes actions that the system cannot control. In con-
trast to the case of fixed, finite alphabets, here we consider the case of
parameterized alphabets. An alphabet reflects the number of processes,
which is static but unknown. The synthesis problem then asks whether
there is a finite number of processes for which the system can satisfy the
specification. This variant is already undecidable for very limited logics.
Therefore, we consider a first-order logic without the order on word posi-
tions. We show that even in this restricted case synthesis is undecidable
if both the system and the environment have access to all processes. On
the other hand, we prove that the problem is decidable if the environ-
ment only has access to a bounded number of processes. In that case,
there is even a cutoff meaning that it is enough to examine a bounded
number of process architectures to solve the synthesis problem.

1 Introduction

Synthesis deals with the problem of automatically generating a program that
satisfies a given specification. The problem goes back to Church [9], who formu-
lated it as follows: The environment and the system alternately select an input
symbol and an output symbol from a finite alphabet, respectively, and in this
way generate an infinite sequence. The question now is whether the system has a
winning strategy, which guarantees that the resulting infinite run is contained in
a given (ω)-regular language representing the specification, no matter how the
environment behaves. This problem is decidable and very well understood [8,37],
and it has been extended in several different ways (e.g., [24, 26, 28, 36, 43]).

In this paper, we consider a variant of the synthesis problem that allows us
to model programs with a variable number of processes. As we then deal with
an unbounded number of process identifiers, a fixed finite alphabet is not suit-
able anymore. It is more appropriate to use an infinite alphabet, in which every

� Partly supported by ANR FREDDA (ANR-17-CE40-0013).

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 97–118, 2020.
https://doi.org/10.1007/978-3-030-45231-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_6&domain=pdf


letter contains a process identifier and a program action. One can distinguish
two cases here. In [16], a potentially infinite number of data values are involved
in an infinite program run (e.g. by dynamic process generation). In a parameter-
ized system [4, 13], on the other hand, one has an unknown but static number
of processes so that, along each run, the number of processes is finite. In this
paper, we are interested in the latter, i.e., parameterized case. Parameterized
programs are ubiquitous and occur, e.g., in distributed algorithms, ad-hoc net-
works, telecommunication protocols, cache-coherence protocols, swarm robotics,
and biological systems. The synthesis question asks whether the system has a
winning strategy for some number of processes (existential version) or no matter
how many processes there are (universal version).

Over infinite alphabets, there are a variety of different specification languages
(e.g., [5, 11, 12, 19, 29, 33, 40]). Unlike in the case of finite alphabets, there is no
canonical definition of regular languages. In fact, the synthesis problem has been
studied for N-memory automata [7], the Logic of Repeating Values [16], and reg-
ister automata [15,30,31]. Though there is no agreement on a “regular” automata
model, first-order (FO) logic over data words can be considered as a canonical
logic, and this is the specification language we consider here. In addition to
classical FO logic on words over finite alphabets, it provides a predicate x ∼ y
to express that two events x and y are triggered by the same process. Its two-
variable fragment FO2 has a decidable emptiness and universality problem [5]
and is, therefore, a promising candidate for the synthesis problem.

Previous generalizations of Church’s synthesis problem to infinite alphabets
were generally synchronous in the sense that the system and the environment
perform their actions in strictly alternating order. This assumption was made,
e.g., in the above-mentioned recent papers [7, 15, 16, 30, 31]. If there are several
processes, however, it is realistic to relax this condition, which leads us to an
asynchronous setting in which the system has no influence on when the envi-
ronment acts. Like in [21], where the asynchronous case for a fixed number of
processes was considered, we only make the reasonable fairness assumption that
the system is not blocked forever.

In summary, the synthesis problem over infinite alphabets can be classified
as (i) parameterized vs. dynamic, (ii) synchronous vs. asynchronous, and (iii)
according to the specification language (register automata, Logic of Repeating
Values, FO logic, etc.). As explained above, we consider here the parameter-
ized asynchronous case for specifications written in FO logic. To the best of our
knowledge, this combination has not been considered before. For flexible model-
ing, we also distinguish between three types of processes: those that can only be
controlled by the system; those that can only be controlled by the environment;
and finally those that can be triggered by both. A partition into system and
environment processes is also made in [3,18], but for a fixed number of processes
and in the presence of an arena in terms of a Petri net.

Let us briefly describe our results. We show that the general case of the
synthesis problem is undecidable for FO2 logic. This follows from an adaptation
of an undecidability result from [16,17] for a fragment of the Logic of Repeating

98 B. Bérard et al.



Values [11]. We therefore concentrate on an orthogonal logic, namely FO without
the order on the word positions. First, we show that this logic can essentially
count processes and actions of a given process up to some threshold. Though
it has limited expressive power (albeit orthogonal to that of FO2), it leads to
intricate behaviors in the presence of an uncontrollable environment. In fact, we
show that the synthesis problem is still undecidable. Due to the lack of the order
relation, the proof requires a subtle reduction from the reachability problem in
2-counter Minsky machines. However, it turns out that the synthesis problem is
decidable if the number of processes that are controllable by the environment
is bounded, while the number of system processes remains unbounded. In this
case, there is even a cutoff k, an important measure for parameterized systems
(cf. [4] for an overview): If the system has a winning strategy for k processes,
then it has one for any number of processes greater than k, and the same applies
to the environment. The proofs of both main results rely on a reduction of the
synthesis problem to turn-based parameterized vector games, in which, similar to
Petri nets, tokens corresponding to processes are moved around between states.

The paper is structured as follows. In Section 2, we define FO logic (especially
FO without word order), and in Section 3, we present the parameterized synthesis
problem. In Section 4, we transform a given formula into a normal form and
finally into a parameterized vector game. Based on this reduction, we investigate
cutoff properties and show our (un)decidability results in Section 5. We conclude
in Section 6. Some proof details can be found in the long version of this paper [2]

2 Preliminaries

For a finite or infinite alphabet Σ, let Σ∗ and Σω denote the sets of finite and,
respectively, infinite words over Σ. The empty word is ε. Given w ∈ Σ∗ ∪ Σω,
let |w| denote the length of w and Pos(w) its set of positions: |w| = n and
Pos(w) = {1, . . . , n} if w = σ1σ2 . . . σn ∈ Σ∗, and |w| = ω and Pos(w) =
{1, 2, . . .} if w ∈ Σω. Let w[i] be the i-th letter of w for all i ∈ Pos(w).

Executions. We consider programs involving a finite (but not fixed) number
of processes. Processes are controlled by antagonistic protagonists, System and
Environment. Accordingly, each process has a type among T = {s, e, se}, and we
let Ps, Pe, and Pse denote the pairwise disjoint finite sets of processes controlled
by System, by Environment, and by both System and Environment, respectively.
We let P denote the triple (Ps,Pe,Pse). Abusing notation, we sometimes refer to
P as the disjoint union Ps ∪ Pe ∪ Pse.

Given any set S, vectors s ∈ ST are usually referred to as triples s =
(ss, se, sse). Moreover, for s, s′ ∈ NT, we write s ≤ s′ if sθ ≤ s′θ for all θ ∈ T.
Finally, let s+ s′ = (ss + s′s, se + s′e, sse + s′se).

Processes can execute actions from a finite alphabet A. Whenever an action
is executed, we would like to know whether it was triggered by System or by
Environment. Therefore, A is partitioned into A = As�Ae. LetΣs = As×(Ps∪Pse)
and Σe = Ae × (Pe ∪ Pse). Their union Σ = Σs ∪Σe is the set of events. A word
w ∈ Σ∗ ∪Σω is called a P-execution.

Parameterized Synthesis for First-Order Logic over Data Words 99



5
1

4

2
7

3

6
8

a
1 6

bcd
2

a d
6

b

s

se

e As = {a, b} Ae = {c, d}

d a
7 7 77

c
8 4

a
6

Fig. 1. Representation of P-execution as a mathematical structure

Logic. Formulas of our logic are evaluated over P-executions. We fix an infinite
supply V = {x, y, z, . . .} of variables, which are interpreted as processes from P
or positions of the execution. The logic FOA[∼, <,+1] is given by the grammar

ϕ ::= θ(x) | a(x) | x = y | x ∼ y | x < y | +1(x, y) | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ

where x, y ∈ V , θ ∈ T, and a ∈ A. Conjunction (∧), universal quantification (∀),
implication (=⇒), true, and false are obtained as abbreviations as usual.

Let ϕ ∈ FOA[∼, <,+1]. By Free(ϕ) ⊆ V , we denote the set of variables that
occur free in ϕ. If Free(ϕ) = ∅, then we call ϕ a sentence. We sometimes write
ϕ(x1, . . . , xn) to emphasize the fact that Free(ϕ) ⊆ {x1, . . . , xn}.

To evaluate ϕ over a P-execution w = (a1, p1)(a2, p2) . . ., we consider (P, w) as
a structure S(P,w) = (P � Pos(w),Ps,Pe,Pse, (Ra)a∈A,∼, <,+1) where P�Pos(w)
is the universe, Ps Pe, and Pse are interpreted as unary relations, Ra is the unary
relation {i ∈ Pos(w) | ai = a}, < = {(i, j) ∈ Pos(w) × Pos(w) | i < j},
+1 = {(i, i + 1) | 1 ≤ i < |w|}, and ∼ is the smallest equivalence relation over
P � Pos(w) containing

– (p, i) for all p ∈ P and i ∈ Pos(w) such that p = pi, and

– (i, j) for all (i, j) ∈ Pos(w)× Pos(w) such that pi = pj .

An equivalence class of ∼ is often simply referred to as a class. Note that it
contains exactly one process.

Example 1. Suppose As = {a, b} and Ae = {c, d}. Let the set of processes
P be given by Ps = {1, 2, 3}, Pe = {4, 5}, and Pse = {6, 7, 8}. Moreover, let
w = (a, 1)(b, 8)(d, 7)(c, 4)(a, 6)(c, 6)(a, 7)(d, 6)(b, 2)(d, 7)(a, 7) ∈ Σ∗. Figure 1 il-
lustrates S(P,w). The edge relation represents +1, its transitive closure is <. �

An interpretation for (P, w) is a partial mapping I : V → P ∪ Pos(w). Sup-
pose ϕ ∈ FOA[∼, <,+1] such that Free(ϕ) ⊆ dom(I). The satisfaction relation
(P, w), I |= ϕ is then defined as expected, based on the structure S(P,w) and in-
terpreting free variables according to I. For example, let w = (a1, p1)(a2, p2) . . .
and i ∈ Pos(w). Then, for I(x) = i, we have (P, w), I |= a(x) if ai = a.

We identify some fragments of FOA[∼, <,+1]. ForR ⊆ {∼, <,+1}, let FOA[R]
denote the set of formulas that do not use symbols in {∼, <,+1} \R. Moreover,
FO2

A[R] denotes the fragment of FOA[R] that uses only two (reusable) variables.

100 B. Bérard et al.



Let ϕ(x1, . . . , xn, y) ∈ FOA[∼, <,+1] be a formula and m ∈ N. We use
∃≥my.ϕ(x1, . . . , xn, y) as an abbreviation for

∃y1 . . . ∃ym.
∧

1≤i<j≤m

¬(yi = yj) ∧
∧

1≤i≤m

ϕ(x1, . . . , xn, yi) ,

if m > 0, and ∃≥0y.ϕ(x1, . . . , xn, y) = true. Thus, ∃≥my.ϕ says that there are at
least m distinct elements that verify ϕ. We also use ∃=my.ϕ as an abbreviation
for ∃≥my.ϕ∧¬∃≥m+1y.ϕ. Note that ϕ ∈ FOA[R] implies that ∃≥my.ϕ ∈ FOA[R]
and ∃=my.ϕ ∈ FOA[R].

Example 2. Let A, P, and w be like in Example 1 and Figure 1.

– ϕ1 = ∀x.((s(x) ∨ se(x)) =⇒ ∃y.(x ∼ y ∧ (a(y) ∨ b(y)))
)
says that each

process that System can control executes at least one system action. We
have ϕ1 ∈ FO2

A[∼] and (P, w) �|= ϕ1, as process 3 is idle.

– ϕ2 = ∀x.(d(x) =⇒ ∃y.(x ∼ y ∧ a(y))
)
says that, for every d, there is an a

on the same process. We have ϕ2 ∈ FO2
A[∼] and (P, w) |= ϕ2.

– ϕ3 = ∀x.(d(x) =⇒ ∃y.(x ∼ y∧x < y∧a(y))
)
says that every d is eventually

followed by an a executed by the same process. We have ϕ3 ∈ FO2
A[∼, <]

and (P, w) �|= ϕ3: The event (d, 6) is not followed by some (a, 6).

– ϕ4 = ∀x.((∃=2y.(x ∼ y ∧ a(y))
) ⇐⇒ (∃=2y.(x ∼ y ∧ d(y))

))
says that

each class contains exactly two occurrences of a iff it contains exactly two
occurrences of d. Moreover, ϕ4 ∈ FOA[∼] and (P, w) |= ϕ4. Note that ϕ4 �∈
FO2

A[∼], as ∃=2y requires the use of three different variable names. �

3 Parameterized Synthesis Problem

We define an asynchronous synthesis problem. A P-strategy (for System) is a
mapping f : Σ∗ → Σs ∪ {ε}. A P-execution w = σ1σ2 . . . ∈ Σ∗ ∪ Σω is f -
compatible if, for all i ∈ Pos(w) such that σi ∈ Σs, we have f(σ1 . . . σi−1) = σi.
We call w f -fair if the following hold: (i) If w is finite, then f(w) = ε, and (ii)
if w is infinite and f(σ1 . . . σi−1) �= ε for infinitely many i ≥ 1, then σj ∈ Σs for
infinitely many j ≥ 1.

Let ϕ ∈ FOA[∼, <,+1] be a sentence. We say that f is P-winning for ϕ if,
for every P-execution w that is f -compatible and f -fair, we have (P, w) |= ϕ.

The existence of a P-strategy that is P-winning for a given formula does not
depend on the concrete process identities but only on the cardinality of the sets
Ps, Pe, and Pse. This motivates the following definition of winning triples for a
formula. Given ϕ, let Win(ϕ) be the set of triples (ks, ke, kse) ∈ NT for which
there is P = (Ps,Pe,Pse) such that |Pθ| = kθ for all θ ∈ T and there is a P-strategy
that is P-winning for ϕ.

Let 0 = {0} and ke, kse ∈ N. In this paper, we focus on the intersection of
Win(ϕ) with the sets N × 0 × 0 (which corresponds to the usual satisfiability
problem); N × {ke} × {kse} (there is a constant number of environment and
mixed processes); N×N×{kse} (there is a constant number of mixed processes);
0× 0× N (each process is controlled by both System and Environment).

Parameterized Synthesis for First-Order Logic over Data Words 101



Definition 3 (synthesis problem). For fixed F ∈ {FO,FO2}, set of relation
symbols R ⊆ {∼, <,+1}, and Ns,Ne,Nse ⊆ N, the (parameterized) synthesis
problem is given as follows:

Synth(F[R],Ns,Ne,Nse)

Input: A = As �Ae and a sentence ϕ ∈ FA[R]

Question: Win(ϕ) ∩ (Ns ×Ne ×Nse) �= ∅ ?
The satisfiability problem for F[R] is defined as Synth(F[R],N, 0, 0).

Example 4. Suppose As = {a, b} and Ae = {c, d}, and consider the formulas
ϕ1–ϕ4 from Example 2.

First, we have Win(ϕ1) = NT. Given an arbitrary P and any total order �
over Ps ∪ Pse, a possible P-strategy f that is P-winning for ϕ1 maps w ∈ Σ∗ to
(a, p) if p is the smallest process from Ps ∪ Pse wrt. � that does not occur in w,
and that returns ε for w if all processes from Ps ∪ Pse already occur in w.

For the three formulas ϕ2, ϕ3, and ϕ4, observe that, since d is an environment
action, if there is at least one process that is exclusively controlled by Environ-
ment, then there is no winning strategy. Hence we must have Pe = ∅. In fact,
this condition is sufficient in the three cases and the strategies described below
show that all three sets Win(ϕ2), Win(ϕ3), and Win(ϕ4) are equal to N×0×N.

– For ϕ2, the very same strategy as for ϕ1 also works in this case, producing
an a for every process in Ps ∪ Pse, whether there is a d or not.

– For ϕ3, a winning strategy f will apply the previous mechanism itera-
tively, performing (a, p) for p ∈ Pse = {p0, . . . , pn−1} over and over again:
f(w) = (a, pi) where i is the number of occurrences of letters from Σs mod-
ulo n. By the fairness assumption, this guarantees satisfaction of ϕ3. A more
“economical” winning strategy f ′ may organize pending requests in terms of
d in a queue and acknowledge them successively. More precisely, given u ∈ P∗

and σ ∈ Σ, we define another word u�σ ∈ P∗ by u�(d, p) = u·p (inserting p
in the queue) and (p·u)�(a, p) = u (deleting it). In all other cases, u�σ = u.
Let w = σ1 . . . σn ∈ Σ∗, with queue ((ε� σ1)� σ2 . . .)� σn = p1 . . . pk. We
let f ′(w) = ε if k = 0, and f ′(w) = (a, p1) if k ≥ 1.

– For ϕ4, the strategy f ′ for ϕ3 ensures that every d has a corresponding a so
that, in the long run, there are as many a’s as d’s in every class. �

Another interesting question is whether System (or Environment) has a win-
ning strategy as soon as the number of processes is big enough. This leads to the
notion of a cutoff (cf. [4] for an overview): Let Ns,Ne,Nse ⊆ N and W ⊆ NT. We
call k0 ∈ NT a cutoff of W wrt. (Ns,Ne,Nse) if k0 ∈ Ns ×Ne ×Nse and either

– for all k ∈ Ns ×Ne ×Nse such that k ≥ k0, we have k ∈ W , or

– for all k ∈ Ns ×Ne ×Nse such that k ≥ k0, we have k �∈ W .

Let F ∈ {FO,FO2} and R ⊆ {∼, <,+1}. If, for every alphabet A = As � Ae

and every sentence ϕ ∈ FA[R], the set Win(ϕ) has a computable cutoff wrt.

102 B. Bérard et al.



Table 1. Summary of results. Our contributions are highlighted in bold.

Synthesis (N, 0, 0) (N, {ke}, {kse}) (N,N, 0) (0, 0,N)

FO2[∼, <,+1] decidable [5] ? ? undecidable

FO2[∼, <] NEXPTIME-c. [5] ? ? ?

FO[∼] decidable decidable ?∗ undecidable
∗We show, however, that there is no cutoff.

(Ns,Ne,Nse), then we know that Synth(F[R],Ns,Ne,Nse) is decidable, as it
can be reduced to a finite number of simple synthesis problems over a finite
alphabet. The latter can be solved, e.g., using attractor-based backward search
(cf. [42]). This is how we will show decidability of Synth(FO[∼],N, {ke}, {kse})
for all ke, kse ∈ N.

Our contributions are summarized in Table 1. Note that known satisfiability
results for data logic apply to our logic, as processes can be simulated by treating
every θ ∈ T as an ordinary letter. Let us first state undecidability of the general
synthesis problem, which motivates the study of other FO fragments.

Theorem 5. The problem Synth(FO2[∼, <,+1], 0, 0,N) is undecidable.

Proof (sketch). We adapt the proof from [16, 17] reducing the halting problem
for 2-counter machines. We show that their encoding can be expressed in our
logic, even if we restrict it to two variables, and can also be adapted to the
asynchronous setting. ��

4 FO[∼] and Parameterized Vector Games

Due to the undecidability result of Theorem 5, one has to switch to other frag-
ments of first-order logic. We will henceforth focus on the logic FO[∼] and es-
tablish some important properties, such as a normal form, that will allow us to
deduce a couple of results, both positive and negative.

4.1 Satisfiability and Normal Form for FO[∼]

We first show that FO[∼] logic essentially allows one to count letters in a class
up to some threshold, and to count such classes up to some other threshold.
Let B ∈ N and � ∈ {0, . . . , B}A. Intuitively, �(a) imposes a constraint on the
number of occurrences of a in a class. We first define an FOA[∼]-formula ψB,�(y)
verifying that, in the class defined by y, the number of occurrences of each letter
a ∈ A, counted up to B, is �(a):

ψB,�(y) =
∧

a∈A |
�(a)<B

∃=�(a)z.
(
y ∼ z ∧ a(z)

) ∧ ∧
a∈A |
�(a)=B

∃≥�(a)z.
(
y ∼ z ∧ a(z)

)

Parameterized Synthesis for First-Order Logic over Data Words 103



Theorem 6 (normal form for FO[∼]). Let ϕ ∈ FOA[∼] be a sentence. There
is a computable B ∈ N such that ϕ is effectively equivalent to a disjunction of
conjunctions of formulas of the form ∃��my.

(
θ(y) ∧ ψB,�(y)

)
where 
� ∈ {≥,=},

m ∈ N, θ ∈ T, and � ∈ {0, . . . , B}A.
The normal form can be obtained using known normal-form constructions

[23,41] for general FO logic [2], or using Ehrenfeucht-Fräıssé games [39], or using
a direct inductive transformation in the spirit of [23].

Example 7. Recall the formula ϕ4 = ∀x.((∃=2y.(x ∼ y ∧ a(y))
) ⇐⇒ (∃=2y.(x ∼

y ∧ d(y))
)) ∈ FOA[∼] from Example 2, over As = {a, b} and Ae = {c, d}. An

equivalent formula in normal form is ϕ′
4 =

∧
θ∈T, �∈Z ∃=0y.

(
θ(y)∧ψ3,�(y)

)
where

Z is the set of vectors � ∈ {0, . . . , 3}A such that �(a) = 2 �= �(d) or �(d) = 2 �=
�(a). The formula indeed says that there is no class with =2 occurrences of a
and �=2 occurrences of d or vice versa, which is equivalent to ϕ4. �

Thanks to the normal form, it is sufficient to test finitely many structures to
determine whether a given formula is satisfiable:

Corollary 8. The satisfiability problem for FO[∼] over data words is decidable.
Moreover, every satisfiable FOA[∼] formula has a finite model.

Note that the satisfiability problem for FO2[∼] is already NEXPTIME-hard,
due to NEXPTIME-hardness for two-variable logic with unary relations only [14,
20,22]. In fact, it is NEXPTIME-complete due to the upper bound for FO2[∼, <]
[5]. It is worth mentioning that two-variable logic with one equivalence relation
on arbitrary structures also has the finite-model property [32].

4.2 From Synthesis to Parameterized Vector Games

Exploiting the normal form for FOA[∼], we now present a reduction of the syn-
thesis problem to a strictly turn-based two-player game. This game is conceptu-
ally simpler and easier to reason about. The reduction works in both directions,
which will allow us to derive both decidability and undecidability results.

Note that, given a formula ϕ ∈ FOA[∼] (which we suppose to be in normal
form with threshold B), the order of letters in an execution does not matter.
Thus, given some P, a reasonable strategy for Environment would be to just “wait
and see”. More precisely, it does not put Environment into a worse position if,
given the current execution w ∈ Σ∗, it lets the System execute as many actions
as it wants in terms of a word u ∈ Σ∗

s . Due to the fairness assumption, System
would be able to execute all the letters from u anyway. Environment can even
require System to play a word u such that (P, wu) |= ϕ. If System is not able to
produce such a word, Environment can just sit back and do nothing. Conversely,
upon wu satisfying ϕ, Environment has to be able to come up with a word
v ∈ Σ∗

e such that (P, wuv) �|= ϕ. This leads to a turn-based game in which
System and Environment play in strictly alternate order and have to provide a
satisfying and, respectively, falsifying execution.

104 B. Bérard et al.



In a second step, we can get rid of process identifiers: According to our
normal form, all we are interested in is the number of processes that agree
on their letters counted up to threshold B. That is, a finite execution can be
abstracted as a configuration C : L → NT where L = {0, . . . , B}A. For � ∈ L and
C(�) = (ns, ne, nse), nθ is the number of processes of type θ whose letter count
up to threshold B corresponds to �. We can also say that � contains nθ tokens
of type θ. If it is System’s turn, it will pick some pairs (�, �′) and move some
tokens of type θ ∈ {s, se} from � to �′, provided �(a) ≤ �′(a) for all a ∈ As and
�(a) = �′(a) for all a ∈ Ae. This actually corresponds to adding more system
letters in the corresponding processes. The Environment proceeds analogously.

Finally, the formula ϕ naturally translates to an acceptance condition F ⊆ CL

over configurations, where C is the set of local acceptance conditions, which are of
the form (
�sns , 
�ene , 
�sense) where 
�s, 
�e, 
�se ∈ {=,≥} and ns, ne, nse ∈ N.

We end up with a turn-based game in which, similarly to a VASS game [1,6,
10,27,38], System and Environment move tokens along vectors from L. Note that,
however, our games have a very particular structure so that undecidability for
VASS games does not carry over to our setting. Moreover, existing decidability
results do not allow us to infer our cutoff results below.

In the following, we will formalize parameterized vector games.

Definition 9. A parameterized vector game (or simply game) is given by a
triple G = (A,B,F) where A = As �Ae is the finite alphabet, B ∈ N is a bound,
and, letting L = {0, . . . , B}A, F ⊆ CL is a finite set called acceptance condition.

Locations. Let �0 be the location such that �0(a) = 0 for all a ∈ A. For � ∈ L
and a ∈ A, we define � + a by (� + a)(b) = �(b) for b �= a and (� + a)(b) =
max{�(a) + 1, B} otherwise. This is extended for all u ∈ A∗ and a ∈ A by
�+ ε = � and �+ ua = (�+ u) + a. By ⟪w⟫, we denote the location �0 + w.

Configurations. As explained above, a configuration of G is a mapping C : L →
NT. Suppose that, for � ∈ L and θ ∈ T, we have C(�) = (ns, ne, nse). Then, we
let C(�, θ) refer to nθ. By Conf , we denote the set of all configurations.

Transitions. A system transition (respectively environment transition) is a map-
ping τ : L×L → (N×{0}×N) (respectively τ : L×L → ({0}×N×N)) such that,
for all (�, �′) ∈ L×L with τ(�, �′) �= (0, 0, 0), there is a word w ∈ A∗

s (respectively
w ∈ A∗

e ) such that �′ = �+w. Let Ts denote the set of system transitions, Te the
set of environment transitions, and T = Ts ∪ Te the set of all transitions.

For τ ∈ T , let the mappings outτ , inτ : L → NT be defined by outτ (�) =∑
�′∈L τ(�, �′) and inτ (�) =

∑
�′∈L τ(�′, �) (recall that sum is component-wise).

We say that τ ∈ T is applicable at C ∈ Conf if, for all � ∈ L, we have outτ (�) ≤
C(�) (component-wise). Abusing notation, we let τ(C) denote the configuration
C ′ defined by C ′(�) = C(�) − outτ (�) + inτ (�) for all � ∈ L. Moreover, for
τ(�, �′) = (ns, ne, nse) and θ ∈ T, we let τ(�, �′, θ) refer to nθ.

Plays. Let C ∈ Conf . We write C |= F if there is κ ∈ F such that, for all
� ∈ L, we have C(�) |= κ(�) (in the expected manner). A C-play, or simply play,
is a finite sequence π = C0τ1C1τ2C2 . . . τnCn alternating between configurations

Parameterized Synthesis for First-Order Logic over Data Words 105



and transitions (with n ≥ 0) such that C0 = C and, for all i ∈ {1, . . . , n},
Ci = τi(Ci−1) and

– if i is odd, then τi ∈ Ts and Ci |= F (System’s move),

– if i is even, then τi ∈ Te and Ci �|= F (Environment’s move).

The set of all C-plays is denoted by PlaysC .

Strategies. A C-strategy for System is a partial mapping f : PlaysC → Ts

such that f(C) is defined and, for all π = C0τ1C1 . . . τiCi ∈ PlaysC with τ =
f(π) defined, we have that τ is applicable at Ci and τ(Ci) |= F . Play π =
C0τ1C1 . . . τnCn is

– f -compatible if, for all odd i ∈ {1, . . . , n}, τi = f(C0τ1C1 . . . τi−1Ci−1),

– f -maximal if it is not the strict prefix of an f -compatible play,

– winning if Cn |= F .

We say that f is winning for System (from C) if all f -compatible f -maximal C-
plays are winning. Finally, C is winning if there is a C-strategy that is winning.
Note that, given an initial configuration C, we deal with an acyclic finite reach-
ability game so that, if there is a winning C-strategy, then there is a positional
one, which only depends on the last configuration.

For k ∈ NT, let Ck denote the configuration that maps �0 to k and all other
locations to (0, 0, 0). We set Win(G) = {k ∈ NT | Ck is winning for System}.

Definition 10 (game problem). For sets Ns,Ne,Nse ⊆ N, the game problem
is given as follows:

Game(Ns,Ne,Nse)

Input: Parameterized vector game G
Question: Win(G) ∩ (Ns ×Ne ×Nse) �= ∅ ?

One can show that parameterized vector games are equivalent to the synthesis
problem in the following sense:

Lemma 11. For every sentence ϕ ∈ FOA[∼], there is a parameterized vector
game G = (A,B,F) such that Win(ϕ) = Win(G). Conversely, for every param-
eterized vector game G = (A,B,F), there is a sentence ϕ ∈ FOA[∼] such that
Win(G) = Win(ϕ). Both directions are effective.

Example 12. To illustrate parameterized vector games and the reduction from
the synthesis problem, consider the formula ϕ′

4 =
∧

θ∈T, �∈Z ∃=0y.
(
θ(y)∧ψ3,�(y)

)
in normal form from Example 7. For simplicity, we assume that As = {a} and
Ae = {d}. That is, Z is the set of vectors ⟪aidj⟫ ∈ L = {0, . . . , 3}{a,d} such
that i = 2 �= j or j = 2 �= i. Figure 2 illustrates a couple of configurations
C0, . . . , C5 : L → NT. The leftmost location in a configuration is �0, the rightmost

106 B. Bérard et al.



τ1C0 C1 C2

C3

τ2

τ3

6

a

d 4
2

C4 C5

6

System Environment

System SystemEnvironment

6

4 2

τ4 τ5

4
2

Fig. 2. A play of a parameterized vector game

location ⟪a3d3⟫, the topmost one ⟪a3⟫, and the one at the bottom ⟪d3⟫. Self-
loops have been omitted, and locations from Z have gray background and a
dashed border.

Towards an equivalent game G = (A, 3,F), it remains to determine the accep-
tance condition F . Recall that ϕ′

4 says that every class contains two occurrences
of a iff it contains two occurrences of d. This is reflected by the acceptance condi-
tion F = {κ} where κ(�) = (=0 ,=0 ,=0) for all � ∈ Z and κ(�) = (≥0 ,≥0 ,≥0)
for all � ∈ L \ Z. With this, a configuration is accepting iff no token is on a
location from Z (a gray location).

We can verify that Win(G) = Win(ϕ′
4) = N×0×N. In G, a uniform winning

strategy f for System that works for all P with Pe = ∅ proceeds as follows:
System first awaits an Environment’s move and then moves each token upwards
as many locations as Environment has moved it downwards. Figure 2 illustrates
an f -maximal C(6,0,0)-play that is winning for System. We note that f is a
“compressed” version of the winning strategy presented in Example 4, as System
makes her moves only when really needed. �

5 Results for FO[∼] via Parameterized Vector Games

In this section, we present our results for the synthesis problem for FO[∼], which
we obtain showing corresponding results for parameterized vector games. In
particular, we show that (FO[∼], 0, 0,N) and (FO[∼],N,N, 0) do not have a
cutoff, whereas (FO[∼],N, {ke}, {kse}) has a cutoff for all ke, kse ∈ N. Finally, we
prove that Synth(FO[∼], 0, 0,N) is, in fact, undecidable.

Lemma 13. There is a game G = (A,B,F) such that Win(G) does not have a
cutoff wrt. (0, 0,N).

Proof. We let As = {a} and Ae = {b}, as well as B = 2. For k ∈ {0, 1, 2}, define
the local acceptance conditions =k = (=0 ,=0 ,=k) and ≥k = (=0 ,=0 ,≥k). Set

Parameterized Synthesis for First-Order Logic over Data Words 107



a

b

≥0 ≥0

2

0

0

≥0 ≥0

01

1

≥0 ≥00

0 2

≥0 0

0

≥1

1

0

0

0

0

≥2

Fig. 3. Acceptance conditions for a game with no cutoff wrt. (0, 0,N)

�1 = ⟪a⟫, �2 = ⟪ab⟫, �3 = ⟪a2b⟫, and �4 = ⟪a2b2⟫. For k0, . . . , k4 ∈ {0, 1, 2} and

�0, . . . , 
�4 ∈ {=,≥}, let [��0k0 ,

��1k1 ,
��2k2 ,

��3k3 ,
��4k4] denote κ ∈ CL where

κ(�i) = (��iki) for all i ∈ {0, . . . , 4} and κ(�′) = (=0) for �′ /∈ {�0, . . . , �4}. Finally,

F =

{
[≥0 ,=2 ,=0 ,=0 ,≥0] [≥0 ,=0 ,=0 ,=2 ,≥0] [=0 ,=0 ,=0 ,=0 ,≥2]
[≥0 ,=1 ,=1 ,=0 ,≥0] [≥0 ,=0 ,=0 ,=1 ,≥1]

}
∪Ke

where Ke = {κ� | � ∈ L such that �(b) > �(a)} with κ�(�
′) = (≥1) if �′ = �, and

κ�(�
′) = (≥0) otherwise. This is illustrated in Figure 3.
There is a winning strategy for System from any initial configuration of size

2n: Move two tokens from �0 to �1, wait until Environment sends them both to
�2, then move them to �3, wait until they are moved to �4, then repeat with two
new tokens from �0 until all the tokens are removed from �0, and Environment
cannot escape F anymore. However, one can check that there is no winning
strategy for initial configurations of odd size. ��
Lemma 14. There is a game G = (A,B,F) such that Win(G) does not have a
cutoff wrt. (N,N, 0).

Proof. We define G such that System wins only if she has at least as many
processes as Environment. Let As = {a}, Ae = {b}, and B = 2. As there are no
shared processes, we can safely ignore locations with a letter from both System
and Environment. We set F = {κ1, κ2, κ3, κ4} where

κ1(⟪a⟫) = (=1 ,=0 ,=0) κ2(⟪a⟫) = (=1 ,=0 ,=0) κ3(⟪a⟫) = (=0 ,=0 ,=0)

κ1(⟪b⟫) = (=0 ,=0 ,=0) κ2(⟪b⟫) = (=0 ,≥2 ,=0) κ3(⟪b⟫) = (=0 ,≥1 ,=0) ,

κ4(�0) = (=0 ,=0 ,=0), and κi(�
′) = (≥0 ,≥0 ,=0) for all other �′ ∈ L and

i ∈ {1, 2, 3, 4}. ��
We now turn to the case where the number of processes that can be trig-

gered by Environment is bounded. Note that similar restrictions are imposed
in other settings to get decidability, such as limiting the environment to a fi-
nite (Boolean) domain [16] or restricting to one environment process [3,18]. We
obtain decidability of the synthesis problem via a cutoff construction:

108 B. Bérard et al.



Theorem 15. Given ke, kse ∈ N, every game G = (A,B,F) has a cutoff wrt.
(N, {ke}, {kse}). More precisely: Let K be the largest constant that occurs in F .
Moreover, let Max = (ke+kse) · |Ae| ·B and N̂ = |L|Max+1 ·K. Then, (N̂ , ke, kse)
is a cutoff of Win(G) wrt. (N, {ke}, {kse}).
Proof. We will show that, for all N ≥ N̂ ,

(N, ke, kse) ∈ Win(G) ⇐⇒ (N + 1, ke, kse) ∈ Win(G) .
The main observation is that, when C contains more than K tokens in a given

� ∈ L, adding more tokens in � will not change whether C |= F . Given C,C ′ ∈
Conf , we write C <e C if C �= C ′ and there is τ ∈ Te such that τ(C) = C ′. Note
that the length d of a chain C0 <e C1 <e . . . <e Cd is bounded by Max . In other
words, Max is the maximal number of transitions that Environment can do in a
play. For all d ∈ {0, . . . ,Max}, let Confd be the set of configurations C ∈ Conf
such that the longest chain in (Conf , <e) starting from C has length d.

Claim. Suppose that C ∈ Confd and � ∈ L such that C(�) = (N,ne, nse) with
N ≥ |L|d+1 ·K and ne, nse ∈ N. Set D = C[� �→ (N + 1, ne, nse)]. Then,

C is winning for System ⇐⇒ D is winning for System.

To show the claim, we proceed by induction on d ∈ N, which is illustrated in
Figure 4. In each implication, we distinguish the cases d = 0 and d ≥ 1. For the
latter, we assume that equivalence holds for all values strictly smaller than d.

For τ ∈ Ts and �, �′ ∈ L, we let τ [(�, �′, s)++] denote the transition η ∈ Ts

given by η(�1, �2, e) = τ(�1, �2, e) = 0, η(�1, �2, se) = τ(�1, �2, se), η(�1, �2, s) =
τ(�1, �2, s) + 1 if (�1, �2) = (�, �′), and η(�1, �2, s) = τ(�1, �2, s) if (�1, �2) �= (�, �′).
We define τ [(�, �′, s)– –] similarly (provided τ(�, �′, s) ≥ 1).

=⇒: Let f be a winning strategy for System from C ∈ Confd. Let τ ′ = f(C)
and C ′ = τ ′(C). Note that C ′ |= F . Since C(�, s) = N ≥ |L|d+1 · K, there is
�′ ∈ L such that �+ w = �′ for some w ∈ A∗

s and C ′(�′, s) = N ′ ≥ |L|d ·K.
We show that D = C[� �→ (N+1, ne, nse)] is winning for System by exhibiting

a corresponding winning strategy g fromD that will carefully control the position
of the additional token. First, set g(D) = η′ where η′ = τ ′[(�, �′, s)++]. Let D′ =
η′(D). We obtain D′(�′, s) = N ′ + 1. Note that, since N ′ ≥ K, the acceptance
condition F cannot distinguish between C ′ and D′. Thus, we have D′ |= F .

Case d = 0: As, for all transitions η′′ ∈ Te, we have η′′(D′) = D′ |= F , we
reached a maximal play that is winning for System. We deduce that D is
winning for System.

Case d ≥ 1: Take any η′′ ∈ Te and D′′ such that D′′ = η′′(D′) �|= F . Let τ ′′ = η′′

and C ′′ = τ ′′(C ′). Note that D′′ = C ′′[(�′, s) �→ N + 1], C ′′ = D′′[(�′, s) �→
N ], and C ′′, D′′ ∈ Confd− for some d− < d. As f is a winning strategy
for System from C, we have that C ′′ is winning for System. By induction
hypothesis, D′′ is winning for System, say by winning strategy g′′. We let
g(Dη′ D′ η′′ π) = g′′(π) for all D′′-plays π. For all unspecified plays, let g
return any applicable system transition. Altogether, for any choice of η′′, we
have that g′′ is winning from D′′. Thus, g is a winning strategy from D.

Parameterized Synthesis for First-Order Logic over Data Words 109



C ′C

�

�′

Conf d

�

�′

N ′ ≥ |L|d ·KN ≥ |L|d+1 ·K

�

�′

�

�′

�

�′

�

�′

τ ′ |= F

|= F

C ′′

d− < d

Conf d−

τ ′′

η′ η′′

N + 1 ne nse

N ′ + 1 n′
e n′

se

N ne nse

N ′ + 1 n′′
e n′′

se

N ′ n′′
e n′′

seN ′ n′
e n′

se

D D′ D′′

Fig. 4. Induction step in the cutoff construction

⇐=: Suppose g is a winning strategy for System from D. Thus, for η′ = g(D)
and D′ = η′(D), we have D′ |= F . Recall that D(�, s) ≥ (|L|d+1 · K) + 1. We
distinguish two cases:

1. Suppose there is �′ ∈ L such that � �= �′, D′(�′, s) = N ′ + 1 for some
N ′ ≥ |L|d ·K, and η′(�, �′, s) ≥ 1. Then, we set τ ′ = η′[(�, �′, s)– –].

2. Otherwise, we have D′(�, s) ≥ (|L|d ·K) + 1, and we set τ ′ = η′ (as well as
�′ = � and N ′ = N).

Let C ′ = τ ′(C). Since D′ |= F , one obtains C ′ |= F .

Case d = 0: For all transitions τ ′′ ∈ Te, we have τ ′′(C ′) = C ′ |= F . Thus, we
reached a maximal play that is winning for System. We deduce that C is
winning for System.

Case d ≥ 1: Take any τ ′′ ∈ Te such that C ′′ = τ ′′(C ′) �|= F . Let η′′ = τ ′′ and
D′′ = η′′(D′). We have C ′′ = D′′[(�′, s) �→ N ′], D′′ = C ′′[(�′, s) �→ N ′ + 1],
and C ′′, D′′ ∈ Confd− for some d− < d. As D′′ is winning for System, by
induction hypothesis, C ′′ is winning for System, say by winning strategy f ′′.
We let f(C τ ′ C ′ τ ′′ π) = f ′′(π) for all C ′′-plays π. For all unspecified plays,
let f return an arbitrary applicable system transition. Again, for any choice
of τ ′′, f ′′ is winning from C ′′. Thus, f is a winning strategy from C.

This concludes the proof of the claim and, therefore, of Theorem 15. ��
Corollary 16. Let ke, kse ∈ N be the number of environment and the num-
ber of mixed processes, respectively. The problems Game(N, {ke}, {kse}) and
Synth(FO[∼],N, {ke}, {kse}) are decidable.

110 B. Bérard et al.



In particular, by Theorem 15, the game problem can be reduced to an ex-
ponential number of acyclic finite-state games whose size (and hence the time
complexity for determining the winner) is exponential in the cutoff and, there-
fore, doubly exponential in the size of the alphabet, the bound B, and the fixed
number of processes that are controllable by the environment.

Theorem 17. Game(0, 0,N) and Synth(FO[∼], 0, 0,N) are undecidable.

Proof. We provide a reduction from the halting problem for 2-counter machines
(2CM) to Game(0, 0,N). A 2CM M = (Q,Δ, c1, c2, q0, qh) has two counters,
c1 and c2, a finite set of states Q, and a set of transitions Δ ⊆ Q × Op × Q
where Op = {ci++ , ci– – , ci==0 | i ∈ {1, 2}}. Moreover, we have an initial
state q0 ∈ Q and a halting state qh ∈ Q. A configuration of M is a triple
γ = (q, ν1, ν2) ∈ Q × N × N giving the current state and the current respective
counter values. The initial configuration is γ0 = (q0, 0, 0) and the set of halting
configurations is F = {qh} × N × N. For t ∈ Δ, configuration (q′, ν′1, ν

′
2) is a

(t-)successor of (q, ν1, ν2), written (q, ν1, ν2) �t (q
′, ν′1, ν

′
2), if there is i ∈ {1, 2}

such that ν′3−i = ν3−i and one of the following holds: (i) t = (q, ci++, q′) and
ν′i = νi + 1, or (ii) t = (q, ci– –, q

′) and ν′i = νi − 1, or (iii) t = (q, ci==0, q′) and
νi = ν′i = 0. A run of M is a (finite or infinite) sequence γ0 �t1 γ1 �t2 . . . . The
2CM halting problem asks whether there is a run reaching a configuration in F .
It is known to be undecidable [34].

We fix a 2CM M = (Q,Δ, c1, c2, q0, qh). Let As = Q∪Δ∪{a1, a2} and Ae =
{b} with a1, a2, and b three fresh symbols. We consider the game G = (A,B,F)
with A = As�Ae, B = 4, and F defined below. Let L = {0, . . . , B}A. Since there
are only processes shared by System and Environment, we alleviate notation and
consider that a configuration is simply a mapping C : L → N. From now on, to
avoid confusion, we refer to configurations of the 2CM M as M -configurations,
and to configurations of G as G-configurations.

Intuitively, every valid run of M will be encoded as a play in G, and the
acceptance condition will enforce that, if a player in G deviates from a valid
play, then she will lose immediately. At any point in the play, there will be at
most one process with only a letter from Q played, which will represent the
current state in the simulated 2CM run. Similarly, there will be at most one
process with only a letter from Δ to represent what transition will be taken
next. Finally, the value of counter ci will be encoded by the number of processes
with exactly two occurrences of ai and two occurrences of b (i.e., C(⟪a2i b

2⟫)).
To increase counter ci, the players will move a new token to ⟪a2i b

2⟫, and to
decrease it, they will move, together, a token from ⟪a2i b

2⟫ to ⟪a4i b
4⟫. Observe

that, if ci has value 0, then C(⟪a2i b
2⟫) = 0 in the corresponding configuration

of the game. As expected, it is then impossible to simulate the decrement of
ci. Environment’s only role is to acknowledge System’s actions by playing its
(only) letter when System simulates a valid run. If System tries to cheat, she
loses immediately.

Encoding an M -configuration. Let us be more formal. Suppose γ = (q, ν1, ν2) is
an M -configuration and C a G-configuration. We say that C encodes γ if

Parameterized Synthesis for First-Order Logic over Data Words 111



– C(⟪q⟫) = 1, C(⟪a21b
2⟫) = ν1, C(⟪a22b

2⟫) = ν2,

– C(�) ≥ 0 for all � ∈ {�0} ∪ {⟪q̂2b2⟫, ⟪t2b2⟫, ⟪a4i b4⟫ | q̂ ∈ Q, t ∈ Δ, i ∈ {1, 2}},
– C(�) = 0 for all other � ∈ L.

We then write γ = m(C). Let C(γ) be the set of G-configurations C that en-
code γ. We say that a G-configuration C is valid if C ∈ C(γ) for some γ.

Simulating a transition of M . Let us explain how we go from a G-configuration
encoding γ to a G-configuration encoding a successor M -configuration γ′. Ob-
serve that System cannot change by herself the M -configuration encoded. If, for
instance, she tries to change the current state q, she might move one process from
�0 to ⟪q′⟫, but then the G-configuration is not valid anymore. We need to move
the process in ⟪q⟫ into ⟪q2b2⟫ and this requires the cooperation of Environment.

Assume that the game is in configuration C encoding γ = (q, ν1, ν2). System
will pick a transition t starting in state q, say, t = (q, c1++, q′). From con-
figuration C, System will go to the configuration C1 defined by C1(⟪t⟫) = 1,
C1(⟪a1⟫) = 1, and C1(�) = C(�) for all other � ∈ L.

If the transition t is correctly chosen, Environment will go to a configura-
tion C2 defined by C2(⟪q⟫) = 0, C2(⟪qb⟫) = 1, C2(⟪t⟫) = 0, C2(⟪tb⟫) = 1,
C2(⟪a1⟫) = 0, C2(⟪a1b⟫) = 1 and, for all other � ∈ L, C2(�) = C1(�). This
means that Environment moves processes in locations ⟪t⟫, ⟪q⟫, ⟪a1⟫ to loca-
tions ⟪tb⟫, ⟪qb⟫, ⟪a1b⟫, respectively.

To finish the transition, System will now move a process to the destination
state q′ of t, and go to configuration C3 defined by C3(⟪q

′⟫) = 1, C3(⟪tb⟫) = 0,
C3(⟪t

2b⟫) = 1, C3(⟪qb⟫) = 0, C3(⟪q
2b⟫) = 1, C3(⟪a1b⟫) = 0, C3(⟪a

2
1b⟫) = 1,

and C3(�) = C2(�) for all other � ∈ L.
Finally, Environment moves to configuration C4 given by C4(⟪t

2b⟫) = 0,
C4(⟪t

2b2⟫) = C3(⟪t
2b2⟫) + 1, C4(⟪q

2b⟫) = 0, C4(⟪q
2b2⟫) = C3(⟪q

2b2⟫) + 1,
C4(⟪a

2
1b⟫) = 0, C4(⟪a

2
1b

2⟫) = C3(⟪a
2
1b

2⟫) + 1, and C4(�) = C3(�) for all other
� ∈ L. Observe that C4 ∈ C((q′, ν1 + 1, ν2)).

Other types of transitions will be simulated similarly. To force System to
start the simulation in γ0, and not in any M -configuration, the configurations
C such that C(⟪q20b

2⟫) = 0 and C(⟪q⟫) = 1 for q �= q0 are not valid, and will be
losing for System.

Acceptance condition. It remains to define F in a way that enforces the above
sequence of G-configurations. Let L� = {�0} ∪ {⟪a2i b2⟫, ⟪a4i b4⟫ | i ∈ {1, 2}} ∪
{⟪q2b2⟫ | q ∈ Q} ∪ {⟪t2b2⟫ | t ∈ Δ} be the set of elements in L whose values do
not affect the acceptance of the configuration. By [�1 
�1 n1, . . . , �k 
�k nk], we
denote κ ∈ CL such that κ(�i)= (
�ini) for i ∈ {1, . . . , k} and κ(�)= (=0) for all
� ∈ L \ {�1, . . . , �k}. Moreover, for a set of locations L̂ ⊆ L, we let L̂ ≥ 0 stand
for “(� ≥ 0) for all � ∈ L̂”.

First, we force Environment to play only in response to System by making
System win as soon as there is a process where Environment has played more
letters than System (see Condition (d) in Table 2).

If γ is not halting, the configurations in C(γ) will not be winning for System.
Hence, System will have to move to win (Condition (a)).

112 B. Bérard et al.



Table 2. Acceptance conditions for the game simulating a 2CM

Requirements for System

(a) For all t = (q, op, q′) ∈ Q:

F(q,t) =
⋃

q̂∈Q

{
[⟪q⟫ = 1, ⟪t⟫ = 1, ⟪ai⟫ = 1, ⟪q̂2b2⟫ ≥ 1,

(
L� \ {⟪q̂2b2⟫}) ≥ 0]

}
if op = ci++

F(q,t) =
⋃

q̂∈Q

{
[⟪q⟫ = 1, ⟪t⟫ = 1, ⟪a3

i b
2⟫ = 1, ⟪q̂2b2⟫ ≥ 1,

(
L� \ {⟪q̂2b2⟫}) ≥ 0]

}
if op = ci– –

F(q,t) =
⋃

q̂∈Q

{
[⟪q⟫ = 1, ⟪t⟫ = 1, ⟪a2

i b
2⟫ = 0, ⟪q̂2b2⟫ ≥ 1,

(
L� \ {⟪q̂2b2⟫, ⟪a2

i b
2⟫}) ≥ 0]

}
if op = ci==0

(b) For all t = (q0, op, q
′) ∈ Q such that op ∈ {ci++, ci==0}:

Ft =
{
[⟪q0⟫ = 1, ⟪t⟫ = 1, ⟪ai⟫ = 1, �0 ≥ 0]

}
if op = ci++

Ft =
{
[⟪q0⟫ = 1, ⟪t⟫ = 1, �0 ≥ 0]

}
if op = ci==0

(c) For all t = (q, op, q′) ∈ Q:

F(q,t,q′) =
{
[⟪q2b⟫ = 1, ⟪t2b⟫ = 1, ⟪a2

i b⟫ = 1, ⟪q′⟫ = 1, L� ≥ 0]
}

if op = ci++

F(q,t,q′) =
{
[⟪q2b⟫ = 1, ⟪t2b⟫ = 1, ⟪a4

i b
3⟫ = 1, ⟪q′⟫ = 1, L� ≥ 0]

}
if op = ci– –

F(q,t,q′) =
{
[⟪q2b⟫ = 1, ⟪t2b⟫ = 1, L� ≥ 0]

}
if op = ci==0

Requirements for Environment

(d) Let Ls<e =
{
� ∈ L | (∑α∈As

�(α)
)
< �(b)

}
. For all � ∈ Ls<e: F� = [� ≥ 1, (L \ {�}) ≥ 0]

(e) For all t = (q, op, q′) ∈ Q:

F e
(q,t) =

⎧⎪⎪⎨
⎪⎪⎩

[⟪qb⟫ = 1, ⟪t⟫ = 1, ⟪ai⟫ = 1, L� ≥ 0], [⟪q⟫ = 1, ⟪tb⟫ = 1, ⟪ai⟫ = 1, L� ≥ 0],

[⟪q⟫ = 1, ⟪t⟫ = 1, ⟪aib⟫ = 1, L� ≥ 0], [⟪qb⟫ = 1, ⟪tb⟫ = 1, ⟪ai⟫ = 1, L� ≥ 0],

[⟪qb⟫ = 1, ⟪t⟫ = 1, ⟪aib⟫ = 1, L� ≥ 0], [⟪q⟫ = 1, ⟪tb⟫ = 1, ⟪aib⟫ = 1, L� ≥ 0]

⎫⎪⎪⎬
⎪⎪⎭

if op = ci++

F e
(q,t) =

⎧⎪⎪⎨
⎪⎪⎩

[⟪qb⟫ = 1, ⟪t⟫ = 1, ⟪a3
i b

2⟫ = 1, L� ≥ 0], [⟪q⟫ = 1, ⟪tb⟫ = 1, ⟪a3
i b

2⟫ = 1, L� ≥ 0],

[⟪q⟫ = 1, ⟪t⟫ = 1, ⟪a3
i b

3⟫ = 1, L� ≥ 0], [⟪qb⟫ = 1, ⟪tb⟫ = 1, ⟪a3
i b

2⟫ = 1, L� ≥ 0],

[⟪qb⟫ = 1, ⟪t⟫ = 1, ⟪a3
i b

3⟫ = 1, L� ≥ 0], [⟪q⟫ = 1, ⟪tb⟫ = 1, ⟪a3
i b

3⟫ = 1, L� ≥ 0]

⎫⎪⎪⎬
⎪⎪⎭

if op = ci– –

F e
(q,t) =

{
[⟪qb⟫ = 1, ⟪t⟫ = 1, L� ≥ 0], [⟪q⟫ = 1, ⟪tb⟫ = 1, L� ≥ 0]

}
if op = ci==0

(f) For all t = (q, op, q′) ∈ Q:

F e
(q,t,q′) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[⟪q′⟫ = 1, ⟪q2b⟫ = 1, ⟪t2b⟫ ≥ 0, ⟪a2
i b⟫ ≥ 0, L� ≥ 0],

[⟪q′⟫ = 1, ⟪q2b⟫ ≥ 0, ⟪t2b⟫ = 1, ⟪a2
i b⟫ ≥ 0, L� ≥ 0],

[⟪q′⟫ = 1, ⟪q2b⟫ ≥ 0, ⟪t2b⟫ ≥ 0, ⟪a2
i b⟫ = 1, L� ≥ 0],

[⟪q′b⟫ = 1, ⟪q2b⟫ ≥ 0, ⟪t2b⟫ ≥ 0, ⟪a2
i b⟫ ≥ 0, L� ≥ 0]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

if op = ci++

F e
(q,t,q′) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[⟪q′⟫ = 1, ⟪q2b⟫ = 1, ⟪t2b⟫ ≥ 0, ⟪a4
i b

3⟫ ≥ 0, L� ≥ 0],

[⟪q′⟫ = 1, ⟪q2b⟫ ≥ 0, ⟪t2b⟫ = 1, ⟪a4
i b

3⟫ ≥ 0, L� ≥ 0],

[⟪q′⟫ = 1, ⟪q2b⟫ ≥ 0, ⟪t2b⟫ ≥ 0, ⟪a4
i b

3⟫ = 1, L� ≥ 0],

[⟪q′b⟫ = 1, ⟪q2b⟫ ≥ 0, ⟪t2b⟫ ≥ 0, ⟪a4
i b

3⟫ ≥ 0, L� ≥ 0]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

if op = ci– –

F e
(q,t,q′) =

⎧⎪⎪⎨
⎪⎪⎩

[⟪q′⟫ = 1, ⟪q2b⟫ = 1, ⟪t2b⟫ ≥ 0, L� ≥ 0],

[⟪q′⟫ = 1, ⟪q2b⟫ ≥ 0, ⟪t2b⟫ = 1, L� ≥ 0],

[⟪q′b⟫ = 1, ⟪q2b⟫ ≥ 0, ⟪t2b⟫ ≥ 0, ⟪a4
i b

3⟫ ≥ 0, L� ≥ 0]

⎫⎪⎪⎬
⎪⎪⎭

if op = ci==0

Parameterized Synthesis for First-Order Logic over Data Words 113



The first transition chosen by System must start from the initial state of M .
This is enforced by Condition (b).

Once System has moved, Environment will move other processes to leave
accepting configurations. The only possible move for her is to add b on a pro-
cess in locations ⟪q⟫, ⟪t⟫, and ⟪ai⟫, if t is a transition incrementing counter
ci (respectively ⟪a3i b

2⟫ if t is a transition decrementing counter ci). All other
G-configurations accessible by Environment from already defined accepting con-
figurations are winning for System, as established in Condition (e).

System can now encode the successor configuration of M , according to the
chosen transition, by moving a process to the destination state of the transition
(see Condition (c)).

Finally, Environment makes the necessary transitions for the configuration
to be a valid G-configuration. If she deviates, System wins (see Condition (f)).

If Environment reaches a configuration in C(γ) for γ ∈ F , System can win by
moving the process in ⟪qh⟫ to ⟪q

2
h⟫. From there, all the configurations reachable

by Environment are also winning for System:

FF =
{
[⟪q2h⟫ = 1, L� ≥ 0] , [⟪q2hb⟫ = 1, L� ≥ 0] , [⟪q2hb

2⟫ = 1, L� ≥ 0]
}
.

Finally, the acceptance condition is given by

F =
⋃

�∈Ls<e

F� ∪
⋃

t=(q0,op,q′)∈Δ

Ft ∪
⋃

t=(q,op,q′)∈Δ

(F(q,t) ∪ F e
(q,t) ∪ F(q,t,q′)∪F e

(q,t,q′))∪FF .

Note that a correct play can end in three different ways: either there is a
process in ⟪qh⟫ and System moves it to ⟪q2h⟫, or System has no transition to
pick, or there are not enough processes in �0 for System to simulate a new
transition. Only the first kind is winning for System.

We can show that there is an accepting run in M iff there is some k such
that System has a winning C(0,0,k)-strategy for G. ��

6 Conclusion

There are several questions that we left open and that are interesting in their own
right due to their fundamental character. Moreover, in the decidable cases, it will
be worthwhile to provide tight bounds on cutoffs and the algorithmic complexity
of the decision problem. Like in [7,15,16,30,31], our strategies allow the system
to have a global view of the whole program run executed so far. However, it is
also perfectly natural to consider uniform local strategies where each process only
sees its own actions and possibly those that are revealed according to some causal
dependencies. This is, e.g., the setting considered in [3,18] for a fixed number of
processes and in [25] for parameterized systems over ring architectures.

Moreover, we would like to study a parameterized version of the control
problem [35] where, in addition to a specification, a program in terms of an arena
is already given but has to be controlled in a way such that the specification is
satisfied. Finally, our synthesis results crucially rely on the fact that the number
of processes in each execution is finite. It would be interesting to consider the
case with potentially infinitely many processes.

114 B. Bérard et al.



References

1. P. A. Abdulla, R. Mayr, A. Sangnier, and J. Sproston. Solving parity games on
integer vectors. In P. R. D’Argenio and H. C. Melgratti, editors, CONCUR 2013
- Concurrency Theory - 24th International Conference, CONCUR 2013, Buenos
Aires, Argentina, August 27-30, 2013. Proceedings, volume 8052 of Lecture Notes
in Computer Science, pages 106–120. Springer, 2013.

2. B. Bérard, B. Bollig, M. Lehaut, and N. Sznajder. Parameterized synthesis for
fragments of first-order logic over data words. CoRR, abs/1910.14294, 2019.

3. R. Beutner, B. Finkbeiner, and J. Hecking-Harbusch. Translating Asynchronous
Games for Distributed Synthesis. In W. Fokkink and R. van Glabbeek, editors,
30th International Conference on Concurrency Theory (CONCUR 2019), volume
140 of Leibniz International Proceedings in Informatics (LIPIcs), pages 26:1–26:16,
Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

4. R. Bloem, S. Jacobs, A. Khalimov, I. Konnov, S. Rubin, H. Veith, and J. Widder.
Decidability of Parameterized Verification. Morgan & Claypool Publishers, 2015.

5. M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-
variable logic on data words. ACM Trans. Comput. Log., 12(4):27, 2011.

6. T. Brázdil, P. Jancar, and A. Kucera. Reachability games on extended vector
addition systems with states. In ICALP’10, Part II, volume 6199 of LNCS, pages
478–489. Springer, 2010.

7. B. Brütsch and W. Thomas. Playing games in the Baire space. In Proc. Cassting
Workshop on Games for the Synthesis of Complex Systems and 3rd Int. Workshop
on Synthesis of Complex Parameters, volume 220 of EPTCS, pages 13–25, 2016.

8. J. R. Büchi and L. H. Landweber. Solving sequential conditions by finite-state
strategies. Transactions of the American Mathematical Society, 138:295–311, Apr.
1969.

9. A. Church. Applications of recursive arithmetic to the problem of circuit synthesis.
In Summaries of the Summer Institute of Symbolic Logic – Volume 1, pages 3–50.
Institute for Defense Analyses, 1957.

10. J. Courtois and S. Schmitz. Alternating vector addition systems with states. In
E. Csuhaj-Varjú, M. Dietzfelbinger, and Z. Ésik, editors, Mathematical Founda-
tions of Computer Science 2014 - 39th International Symposium, MFCS 2014,
Budapest, Hungary, August 25-29, 2014. Proceedings, Part I, volume 8634 of Lec-
ture Notes in Computer Science, pages 220–231. Springer, 2014.

11. S. Demri, D. D’Souza, and R. Gascon. Temporal logics of repeating values. J. Log.
Comput., 22(5):1059–1096, 2012.

12. S. Demri and R. Lazić. LTL with the freeze quantifier and register automata. ACM
Transactions on Computational Logic, 10(3), 2009.

13. J. Esparza. Keeping a crowd safe: On the complexity of parameterized verification.
In STACS’14, volume 25 of Leibniz International Proceedings in Informatics, pages
1–10. Leibniz-Zentrum für Informatik, 2014.

14. K. Etessami, M. Y. Vardi, and T. Wilke. First-order logic with two variables and
unary temporal logic. Inf. Comput., 179(2):279–295, 2002.

15. L. Exibard, E. Filiot, and P.-A. Reynier. Synthesis of Data Word Transducers. In
W. Fokkink and R. van Glabbeek, editors, 30th International Conference on Con-
currency Theory (CONCUR 2019), volume 140 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 24:1–24:15, Dagstuhl, Germany, 2019. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

Parameterized Synthesis for First-Order Logic over Data Words 115



16. D. Figueira and M. Praveen. Playing with repetitions in data words using en-
ergy games. In A. Dawar and E. Grädel, editors, Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK,
July 09-12, 2018, pages 404–413. ACM, 2018.

17. D. Figueira and M. Praveen. Playing with repetitions in data words using energy
games. arXiv preprint arXiv:1802.07435, 2018.

18. B. Finkbeiner and E. Olderog. Petri games: Synthesis of distributed systems with
causal memory. Inf. Comput., 253:181–203, 2017.

19. H. Frenkel, O. Grumberg, and S. Sheinvald. An automata-theoretic approach to
model-checking systems and specifications over infinite data domains. J. Autom.
Reasoning, 63(4):1077–1101, 2019.

20. M. Fürer. The computational complexity of the unconstrained limited domino
problem (with implications for logical decision problems). In E. Börger, G. Hasen-
jaeger, and D. Rödding, editors, Logic and Machines: Decision Problems and Com-
plexity, Proceedings of the Symposium ”Rekursive Kombinatorik” held from May
23-28, 1983 at the Institut für Mathematische Logik und Grundlagenforschung der
Universität Münster/Westfalen, volume 171 of Lecture Notes in Computer Science,
pages 312–319. Springer, 1983.

21. P. Gastin and N. Sznajder. Fair synthesis for asynchronous distributed systems.
ACM Transactions on Computational Logic, 14(2:9), 2013.

22. E. Grädel, P. G. Kolaitis, and M. Y. Vardi. On the decision problem for two-
variable first-order logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997.

23. W. Hanf. Model-theoretic methods in the study of elementary logic. In J. W.
Addison, L. Henkin, and A. Tarski, editors, The Theory of Models. North-Holland,
Amsterdam, 1965.

24. F. Horn, W. Thomas, N. Wallmeier, and M. Zimmermann. Optimal strategy syn-
thesis for request-response games. RAIRO - Theor. Inf. and Applic., 49(3):179–203,
2015.

25. S. Jacobs and R. Bloem. Parameterized synthesis. Logical Methods in Computer
Science, 10(1), 2014.

26. S. Jacobs, L. Tentrup, and M. Zimmermann. Distributed synthesis for parameter-
ized temporal logics. Inf. Comput., 262(Part):311–328, 2018.

27. P. Jancar. On reachability-related games on vector addition systems with states.
In RP’15, volume 9328 of LNCS, pages 50–62. Springer, 2015.

28. M. Jenkins, J. Ouaknine, A. Rabinovich, and J. Worrell. The church synthesis
problem with metric. In M. Bezem, editor, Computer Science Logic, 25th Interna-
tional Workshop / 20th Annual Conference of the EACSL, CSL 2011, September
12-15, 2011, Bergen, Norway, Proceedings, volume 12 of LIPIcs, pages 307–321.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

29. M. Kaminski and N. Francez. Finite-memory automata. Theoretical Computer
Science, 134(2):329–363, 1994.

30. A. Khalimov and O. Kupferman. Register-Bounded Synthesis. In W. Fokkink and
R. van Glabbeek, editors, 30th International Conference on Concurrency Theory
(CONCUR 2019), volume 140 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 25:1–25:16, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

31. A. Khalimov, B. Maderbacher, and R. Bloem. Bounded synthesis of register trans-
ducers. In S. K. Lahiri and C. Wang, editors, Automated Technology for Verifica-
tion and Analysis - 16th International Symposium, ATVA 2018, Los Angeles, CA,
USA, October 7-10, 2018, Proceedings, volume 11138 of Lecture Notes in Computer
Science, pages 494–510. Springer, 2018.

116 B. Bérard et al.



32. E. Kieronski and M. Otto. Small substructures and decidability issues for first-
order logic with two variables. J. Symb. Log., 77(3):729–765, 2012.

33. L. Libkin, T. Tan, and D. Vrgoc. Regular expressions for data words. J. Comput.
Syst. Sci., 81(7):1278–1297, 2015.

34. M. L. Minsky. Computation: Finite and Infinite Machines. Prentice Hall, Upper
Saddle River, NJ, USA, 1967.

35. A. Muscholl. Automated synthesis of distributed controllers. In M. M. Halldórsson,
K. Iwama, N. Kobayashi, and B. Speckmann, editors, Automata, Languages, and
Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-
10, 2015, Proceedings, Part II, volume 9135 of Lecture Notes in Computer Science,
pages 11–27. Springer, 2015.

36. A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthesize. In
31st Annual Symposium on Foundations of Computer Science, St. Louis, Missouri,
USA, October 22-24, 1990, Volume II, pages 746–757. IEEE Computer Society,
1990.

37. M. O. Rabin. Automata on infinite objects and Church’s problem. Number 13 in
Regional Conference Series in Mathematics. American Mathematical Soc., 1972.

38. J. Raskin, M. Samuelides, and L. V. Begin. Games for counting abstractions.
Electr. Notes Theor. Comput. Sci., 128(6):69–85, 2005.

39. A. Sangnier and O. Stietel. Private communication, 2020.
40. L. Schröder, D. Kozen, S. Milius, and T. Wißmann. Nominal automata with name

binding. In J. Esparza and A. S. Murawski, editors, Foundations of Software
Science and Computation Structures - 20th International Conference, FOSSACS
2017, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, volume
10203 of Lecture Notes in Computer Science, pages 124–142, 2017.

41. T. Schwentick and K. Barthelmann. Local normal forms for first-order logic with
applications to games and automata. In Annual Symposium on Theoretical Aspects
of Computer Science, pages 444–454. Springer, 1998.

42. W. Thomas. Church’s problem and a tour through automata theory. In Pillars of
Computer Science, Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion
of His 85th Birthday, volume 4800 of Lecture Notes in Computer Science, pages
635–655. Springer, 2008.

43. Y. Velner and A. Rabinovich. Church synthesis problem for noisy input. In M. Hof-
mann, editor, Foundations of Software Science and Computational Structures -
14th International Conference, FOSSACS 2011, Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS 2011, Saarbrücken,
Germany, March 26-April 3, 2011. Proceedings, volume 6604 of Lecture Notes in
Computer Science, pages 275–289. Springer, 2011.

Parameterized Synthesis for First-Order Logic over Data Words 117

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

118 B. Bérard et al.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/

4.0/), which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Controlling a random population�

Thomas Colcombet1, Nathanaël Fijalkow2,3(�), and Pierre Ohlmann1

1 Université de Paris, IRIF, CNRS, Paris, France
{thomas.colcombet,pierre.ohlmann}@irif.fr

2 CNRS, LaBRI, Bordeaux, France
nathanael.fijalkow@labri.fr

3 The Alan Turing Institute of data science, London, United Kingdom

Abstract. Bertrand et al. introduced a model of parameterised systems,
where each agent is represented by a finite state system, and studied the
following control problem: for any number of agents, does there exist a
controller able to bring all agents to a target state? They showed that
the problem is decidable and EXPTIME-complete in the adversarial
setting, and posed as an open problem the stochastic setting, where the
agent is represented by a Markov decision process. In this paper, we show
that the stochastic control problem is decidable. Our solution makes
significant uses of well quasi orders, of the max-flow min-cut theorem,
and of the theory of regular cost functions.

1 Introduction

The control problem for populations of identical agents. The model we study
was introduced in [3] (see also the journal version [4]): a population of agents
are controlled uniformly, meaning that the controller applies the same action
to every agent. The agents are represented by a finite state system, the same
for every agent. The key difficulty is that there is an arbitrary large number of
agents: the control problem is whether for every n ∈ N, there exists a controller
able to bring all n agents synchronously to a target state.

The technical contribution of [3,4] is to prove that in the adversarial setting
where an opponent chooses the evolution of the agents, the (adversarial) control
problem is EXPTIME-complete.

In this paper, we study the stochastic setting, where each agent evolves in-
dependently according to a probabilistic distribution, i.e. the finite state system
modelling an agent is a Markov decision process. The control problem becomes
whether for every n ∈ N, there exists a controller able to bring all n agents
synchronously to a target state with probability one.

� The authors are committed to making professional choices acknowledging the cli-
mate emergency. We submitted this work to FoSSaCS for its excellence and because
its location induces for us a low carbon footprint. This work was supported by the
European Research Council (ERC) under the European Union’s Horizon 2020 re-
search and innovation programme (grant agreement No.670624), and by the DeLTA
ANR project (ANR-16-CE40-0007).

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 119–135, 2020.
https://doi.org/10.1007/978-3-030-45231-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_7&domain=pdf


Our main technical result is that the stochastic control problem is decidable.
In the next paragraphs we discuss four motivations for studying this problem:
control of biological systems, parameterised verification and control, distributed
computing, and automata theory.

Modelling biological systems. The original motivation for studying this model
was for controlling population of yeasts ([21]). In this application, the concen-
tration of some molecule is monitored through fluorescence level. Controlling the
frequency and duration of injections of a sorbitol solution influences the concen-
tration of the target molecule, triggering different chemical reactions which can
be modelled by a finite state system. The objective is to control the popula-
tion to reach a predetermined fluorescence state. As discussed in the conclusions
of [3,4], the stochastic semantics is more satisfactory than the adversarial one for
representing the behaviours of the chemical reactions, so our decidability result
is a step towards a better understanding of the modelling of biological systems
as populations of arbitrarily many agents represented by finite state systems.

From parameterised verification to parameterised control. Parameterised verifi-
cation was introduced in [12]: it is the verification of a system composed of an
arbitrary number of identical components. The control problem we study here
and introduced in [3,4] is the first step towards parameterised control : the goal
is control a system composed of many identical components in order to ensure a
given property. To the best of our knowledge, the contributions of [3,4] are the
first results on parameterised control; by extension, we present the first results
on parameterised control in a stochastic setting.

Distributed computing. Our model resembles two models introduced for the
study of distributed computing. The first and most widely studied is popula-
tion protocols, introduced in [2]: the agents are modelled by finite state systems
and interact by pairs drawn at random. The mode of interaction is the key
difference with the model we study here: in a time step, all of our agents per-
form simultaneously and independently the same action. This brings us closer
to broadcast protocols as studied for instance in [8], in which one action involves
an arbitrary number of agents. As explained in [3,4], our model can be seen as
a subclass of (stochastic) broadcast protocols, but key differences exist in the
semantics, making the two bodies of work technically independent.

The focus of the distributed computing community when studying population
or broadcast protocols is to construct the most efficient protocols for a given
task, such as (prominently) electing a leader. A growing literature from the
verification community focusses on checking the correctness of a given protocol
against a given specification; we refer to the recent survey [7] for an overview.
We concentrate on the control problem, which can then be seen as a first result
in the control of distributed systems in a stochastic setting.

Alternative semantics for probabilistic automata. It is very tempting to con-
sider the limit case of infinitely many agents: the parameterised control question

120 T. Colcombet et al.



becomes the value 1 problem for probabilistic automata, which was proved un-
decidable in [13], and even in very restricted cases ([10]). Hence abstracting
continuous distributions by a discrete population of arbitrary size can be seen
as an approximation technique for probabilistic automata. Using n agents cor-
reponds to using numerical approximation up to 2−n with random rounding;
in this sense the control problem considers arbitrarily fine approximations. The
plague of undecidability results on probabilistic automata (see e.g. [9]) is nicely
contrasted by our positive result, which is one of the few decidability results
on probabilistic automata not making structural assumptions on the underlying
graph.

Our results. We prove decidability of the stochastic control problem. The first
insight is given by the theory of well quasi orders, which motivates the introduc-
tion of a new problem called the sequential flow problem. The first step of our
solution is to reduce the stochastic control problem to (many instances of) the
sequential flow problem. The second insight comes from the theory of regular
cost functions, providing us with a set of tools for addressing the key difficulty
of the problem, namely the fact that there are arbitarily many agents. Our key
technical contribution is to show the computability of the sequential flow prob-
lem by reducing it to a boundedness question expressed in the cost monadic
second order logic using the max-flow min-cut theorem.

Related work. The notion of decisive Markov chains was introduced in [1] as
a unifying property for studying infinite-state Markov chains with finite-like
properties. A typical example of decisive Markov chains is lossy channel sys-
tems where tokens can be lost anytime inducing monotonicity properties. Our
situation is the exact opposite as we are considering (using the Petri nets ter-
minology) safe Petri nets where the number of tokens along a run is constant.
So it is not clear whether the underlying argument in both cases can be unified
using decisiveness.

Organisation of the paper. We define the stochastic control problem in Section 2,
and the sequential flow problem in Section 3. We construct a reduction from the
former to (many instances of) the latter in Section 4, and show the decidability
of the sequential flow problem in Section 5.

2 The stochastic control problem

Definition 1. A Markov decision process (MDP for short) consists of

– a finite set of states Q,
– a finite set of actions A,
– a stochastic transition table ρ : Q×A → D (Q).

The interpretation of the transition table is that from the state p under action
a, the probability to transition to q is ρ(p, a)(q). The transition relation Δ is

Controlling a random population 121



defined by

Δ = {(p, a, q) ∈ Q×A×Q : ρ(p, a)(q) > 0} .
We also use Δa given by {(p, q) ∈ Q×Q : (p, a, q) ∈ Δ}.

We refer to [17] for the usual notions related to MDPs; it turns out that very
little probability theory will be needed in this paper, so we restrict ourselves to
mentioning only the relevant objects. In an MDP M, a strategy is a function
σ : Q → A; note that we consider only pure and positional strategies, as they
will be sufficient for our purposes.

Given a source s ∈ Q and a target t ∈ Q, we say that the strategy σ almost
surely reaches t if the probability that a path starting from s and consistent
with σ eventually leads to t is 1. As we shall recall in Section 4, whether there
exists a strategy ensuring to reach t almost surely from s, called the almost
sure reachability problem for MDP can be reduced to solving a two player Büchi
game, and in particular does not depend upon the exact probabilities. In other
words, the only relevant information for each (p, a, q) ∈ Q × A × Q is whether
ρ(p, a)(q) > 0 or not. Since the same will be true for the stochastic control
problem we study in this paper, in our examples we do not specify the exact
probabilities, and an edge from p to q labelled a means that ρ(p, a)(q) > 0.

Let us now fix an MDP M and consider a population of n tokens (we use
tokens to represent the agents). Each token evolves in an independent copy of
the MDP M. The controller acts through a strategy σ : Qn → A, meaning
that given the state each of the n tokens is in, the controller chooses one action
to be performed by all tokens independently. Formally, we are considering the
product MDP Mn whose set of states is Qn, set of actions is A, and transition
table is ρn(u, a)(v) =

∏n
i=1 ρ(ui, a)(vi), where u, v ∈ Qn and ui, vi are the ith

components of u and v.
Let s, t ∈ Q be the source and target states, we write sn and tn for the

constant n-tuples where all components are s and t. For a fixed value of n,
whether there exists a strategy ensuring to reach tn almost surely from sn can
be reduced to solving a two player Büchi game in the same way as above for a
single MDP, replacing M by Mn. The stochastic control problem asks whether
this is true for arbitrary values of n:

Problem 1 (Stochastic control problem). The inputs are an MDP M, a source
state s ∈ Q and a target state t ∈ Q. The question is whether for all n ∈ N,
there exists a strategy ensuring to reach tn almost surely from sn.

Our main result is the following.

Theorem 1. The stochastic control problem is decidable.

The fact that the problem is co-recursively enumerable is easy to see: if the
answer is “no”, there exists n ∈ N such that there exist no strategy ensuring
to reach tn almost surely from sn. Enumerating the values of n and solving the
almost sure reachability problem for Mn eventually finds this out. However, it
is not clear whether one can place an upper bound on such a witness n, which

122 T. Colcombet et al.



would yield a simple (yet inefficient!) algorithm. As a corollary of our analysis
we can indeed derive such an upper bound, but it is non elementary in the size
of the MDP.

In the remainder of this section we present a few interesting examples.

Example 1 Let us consider the MDP represented in Figure 1. We show that
for this MDP, for any n ∈ N, the controller has an almost sure strategy to reach
tn from sn. Starting with n tokens on s, we iterate the following strategy:

– Repeatedly play action a until all tokens are in q;
– Play action b.

The first step is eventually successful with probability one, since at each iteration
there is a positive probability that the number of tokens in state q increases. In
the second step, with non zero probability at least one token goes to t, while the
rest go back to s. It follows that each iteration of this strategy increases with
non zero probability the number of tokens in t. Hence, all tokens are eventually
transferred to tn almost surely.

Fig. 1. The controller can almost surely reach tn from sn, for any n ∈ N.

Example 2 We now consider the MDP represented in Figure 2. By convention,
if from a state some action does not have any outgoing transition (for instance
the action u from s), then it goes to the sink state ⊥.

We show that there exists a controller ensuring to transfer seven tokens from
s to t, but that the same does not hold for eight tokens. For the first assertion,
we present the following strategy:

– Play a. One of the states qi11 for i1 ∈ {u, d} receives at least 4 tokens.
– Play i1 ∈ {u, d}. At least 4 tokens go to t while at most 3 go to q1.
– Play a. One of the states qi22 for i2 ∈ {u, d} receives at least 2 tokens.
– Play i2 ∈ {u, d}. At least 2 tokens go to t while at most 1 token goes to q2.
– Play a. The token (if any) goes to qi3 for i3 ∈ {u, d}.

Controlling a random population 123



– Play i3 ∈ {u, d}. The remaining token (if any) goes to t.

Now assume that there are 8 tokens or more on s. The only choices for a strategy
are to play u or d on the second, fourth, and sixth move. First, with non zero
probability at least 4 tokens are in each of qi1 for i ∈ {u, d}. Then, whatever the
choice of action i ∈ {u, d}, there are at least 4 tokens in q1 after the next step.
Proceeding likewise, there are at least 2 tokens in q2 with non zero probability
two steps later. Then again two steps later, at least 1 token falls in the sink with
non zero probability.

Fig. 2. The controller can synchronise up to 7 tokens on the target state t almost
surely, but not more.

Generalising this example shows that if the answer to the stochastic control
problem is “no”, the smallest number of tokens n for which there exist no almost
surely strategy for reaching tn from sn may be exponential in |Q|. This can
further extended to show a doubly exponential in Q lower bound, as done in [3,4];
the example produced there holds for both the adversarial and the stochastic
setting. Interestingly, for the adversarial setting this doubly exponential lower
bound is tight. Our proof for the stochastic setting yields a non-elementary
bound, leaving a very large gap.

Example 3 We consider the MDP represented in Figure 3. For any n ∈ N,
there exists a strategy almost surely reaching tn from sn. However, this strategy
has to pass tokens one by one through q1. We iterate the following strategy:

– Repeatedly play action a until exactly 1 token is in q1.
– Play action b. The token goes to qi for some i ∈ {l, r}.
– Play action i ∈ {l, r}, which moves the token to t.

Note that the first step may take a very long time (the expectation of the number
of as to be played until this happens is exponential in the number of tokens),

124 T. Colcombet et al.



but it is eventually successful with probability one. This very slow strategy is
necessary: if q1 contains at least two tokens, then action b should not be played:
with non zero probability, at least one token ends up in each of ql, qr, so at the
next step some token ends up in ⊥. It follows that any strategy almost surely
reaching tn has to be able to detect the presence of at most 1 token in q1. This is
a key example for understanding the difficulty of the stochastic control problem.

Fig. 3. The controller can synchronise any number of tokens almost surely on the target
state t, but they have to go one by one.

3 The sequential flow problem

We let Q be a finite set of states. We call configuration an element of NQ and

flow an element of f ∈ NQ×Q. A flow f induces two configurations pre(f) and
post(f) defined by

pre(f)(p) =
∑
q∈Q

f(p, q) and post(f)(q) =
∑
p∈Q

f(p, q).

Given c, c′ two configurations and f a flow, we say that c goes to c′ using f and
write c→f c′, if c = pre(f) and c′ = post(f).

A flow word is f = f1 . . . f� where each fi is a flow. We write c�f c′ if there
exists a sequence of configurations c = c0, c1, . . . , c� = c′ such that ci−1 → fi ci
for all i ∈ {1, . . . , �}. In this case, we say that c goes to c′ using the flow word f .

We now recall some classical definitions related to well quasi orders ([15,16],
see [19] for an exposition of recent results). Let (E,�) be a quasi ordered set
(i.e. � is reflexive and transitive), it is a well quasi ordered set (WQO) if any
infinite sequence contains an increasing pair. We say that S ⊆ E is downward
closed if for any x ∈ S, if y � x then y ∈ S. An ideal is a non-empty downward

Controlling a random population 125



closed set I ⊆ E such that for all x, y ∈ I, there exists some z ∈ I satisfying
both x � z and y � z.

Lemma 1.

– Any infinite sequence of decreasing downward closed sets in a WQO is even-
tually constant.

– A subset is downward closed if and only if it is a finite union of incomparable
ideals. We call it its decomposition into ideals (or simply, its decomposi-
tion), which is unique (up to permutation).

– An ideal is included in a downward closed set if and only if it is included in
one of the ideals of its decomposition.

We equip the set of configurations NQ and the set of flows NQ×Q with the
quasi order � defined component wise, yielding thanks to Dickson’s Lemma [6]
two WQOs.

Lemma 2. Let X be a finite set. A subset of NX is an ideal if and only if it is
of the form

a↓= {c ∈ NX | c � a},
for some a ∈ (N ∪ {ω})X (in which ω is larger than all integers).

We represent downward closed sets of configurations and flows using their

decomposition into finitely many ideals of the form a ↓ for a ∈ (N ∪ {ω})Q or
a ∈ (N ∪ {ω})Q×Q.

Problem 2 (Sequential flow problem). Let Q be a finite set of states. Given a
downward closed set of flows Flows ⊆ NQ×Q and a downward closed set of final
configurations F ⊆ NQ, compute the downward closed set

Pre∗(Flows , F ) = {c ∈ NQ | c� f c′ ∈ F, f ∈ Flows∗} ,

i.e. the configurations from which one may reach F using only flows from Flows .

4 Reduction of the stochastic control problem to the
sequential flow problem

Let us consider an MDP M and a target t ∈ Q. We first recall a folklore result
reducing the almost sure reachability question for MDPs to solving a two player
Büchi game (we refer to [14] for the definitions and notations of Büchi games).
The Büchi game is played between Eve and Adam as follows. From a state p:

1. Eve chooses an action a and a transition (p, q) ∈ Δa;
2. Adam can either choose to

agree and the game continues from q, or
interrupt and choose another transition (p, q′) ∈ Δa, the game continues

from q′.

126 T. Colcombet et al.



The Büchi objective is satisfied (meaning Eve wins) if either the target state t
is reached or Adam interrupts infinitely many times.

Lemma 3. There exists a strategy ensuring almost surely to reach t from s if
and only if Eve has a winning strategy from s in the above Büchi game.

We now explain how this reduction can be extended to the stochastic control
problem. Let us consider an MDP M and a target t ∈ Q. We now define an
infinite Büchi game GM. The set of vertices is the set of configurations NQ. For
a flow f , we write supp(f) =

{
(p, q) ∈ Q2 : f(p, q) > 0

}
. The game is played as

follows from a configuration c:

1. Eve chooses an action a and a flow f such that pre(f) = c and supp(f) ⊆ Δa.

2. Adam can either choose to

agree and the game continues from c′ = post(f)

interrupt and choose a flow f ′ such that pre(f ′) = c and supp(f ′) ⊆ Δa,
and the game continues from c′′ = post(f ′).

Note that Eve choosing a flow f is equivalent to choosing for each token a
transition (p, q) ∈ Δa, inducing the configuration c′, and simiarly for Adam
should he decide to interrupt.

Eve wins if either all tokens are in the target state, or if Adam interrupts
infinitely many times.

Note that although the game is infinite, it is actually a disjoint union of
finite games. Indeed, along a play the number of tokens is fixed, so each play is
included in Qn for some n ∈ N.

Lemma 4. Let c be a configuration with n tokens in total, the following are
equivalent:

– There exists a strategy almost surely reaching tn from c,

– Eve has a winning strategy in the Büchi game GM starting from c.

Lemma 4 follows from applying Lemma 3 on the product MDP Mn.

We also consider the game G(i)
M for i ∈ N, which is defined just as GM except

for the winning objective: Eve wins in G(i)
M if either all tokens are in the target

state, or if Adam interrupts more than i times. It is clear that if Eve has a

winning strategy in GM then she has a winning strategy in G(i)
M . Conversely, the

following result states that G(i)
M is equivalent to GM for some i.

Lemma 5. There exists i ∈ N such that from any configuration c ∈ NQ, Eve
has a winning strategy in GM if and only if Eve has a winning strategy in G(i)

M .

Controlling a random population 127



Proof: Let X(i) ⊆ NQ be the winning region for Eve in G(i)
M . We first argue that

X =
⋂

i X
(i) is the winning region in GM. It is clear that X is contained in the

winning region: if Eve has a strategy to ensure that either all tokens are in the
target state, or that Adam interrupts infinitely many times, then it particular
this is true for Adam interrupting more than i times for any i. The converse
inclusion holds because GM is a disjoint union of finite Büchi games. Indeed, in
a finite Büchi game, since Adam can restrict himself to playing a memoryless
winning strategy, if Eve can ensure that he interrupts a certain number of times
(larger than the size of the game), then by a simple pumping argument this
implies that Adam will interrupt infinitely many times.

To conclude, we note that each X(i) is downward closed: indeed, a winning
strategy from a configuration c can be used from a configuration c′ where there
are fewer tokens in each state. It follows that (X(i))i≥0 is a decreasing sequence
of downward closed sets in NQ, hence it stabilises thanks to Lemma 1, i.e. there
exists i0 ∈ N such that X(i0) =

⋂
i X

(i), which concludes. �

Note that Lemma 4 and Lemma 5 substantiate the claims made in Section 2:
pure positional strategies are enough and the answer to the stochastic control
problem does not depend upon the exact probabilities in the MDP. Indeed, the
construction of the Büchi games do not depend on them, and the answer to the
former is equivalent to determining whether Eve has a winning strategy in each
of them.

We are now fully equipped to show that a solution to the sequential flow
problem yields the decidability of the stochastic control problem.

Let F be the set of configurations for which all tokens are in state t. we let

X(i) ⊆ NQ denote the winning region for Eve in the game G(i)
M . Note first that

X(0) = Pre∗(Flows0, F ) where

Flows0 = {f ∈ NQ×Q : ∃a ∈ A, supp(f) ⊆ Δa}.

Indeed, in the game G(0)
M Adam cannot interrupt as this would make him lose

immediately. Hence, the winning region for Eve in G(0)
M is Pre∗(Flows0, F ).

We generalise this by setting Flows i for all i > 0 to be the set of flows f ∈
NQ×Q such that for some action a ∈ A,

– supp(f) ⊆ Δa, and
– for f ′ with pre(f ′) = pre(f) and supp(f ′) ⊆ Δa, we have post(f ′) ∈ X(i−1).

Equivalently, this is the set of flows for which, when played in the game GM
by Eve, Adam cannot use an interrupt move and force the configuration outside
of X(i−1).

We now claim that
X(i) = Pre∗(Flowsi, F )

for all i ≥ 0.
We note that this means that for each i computingX(i) reduces to solving one

instance of the sequential flow problem. This induces an algorithm for solving

128 T. Colcombet et al.



the stochastic control problem: compute the sequence (X(i))i≥0 until it stabilises,
which is ensured by Lemma 5 and yields the winning region of GM. The answer
to the stochastic control problem is then whether the initial configuration where
all tokens are in s belongs to the winning region of GM.

Let us prove the claim by induction on i.

Let c be a configuration in Pre∗(Flowsi, F ). This means that there exists
a flow word f = f1 · · · f� such that fk ∈ Flows i for all k, and c � f c′ ∈ F .
Expanding the definition, there exist c0 = c, . . . , c� = c′ such that ck−1 → fk ck
for all k.

Let us now describe a strategy for Eve in G(i)
M starting from c. As long as

Adam agrees, Eve successively chooses the sequence of flows f1, f2, . . . and the
corresponding configurations c1, c2, . . . . If Adam never interrupts, then the game
reaches the configuration c′ ∈ F , and Eve wins. Otherwise, as soon as Adam
interrupts, by definition of Flows i, we reach a configuration d ∈ X(i−1). By
induction hypothesis, Eve has a strategy which ensures from d to either reach F
or that Adam interrupts at least i − 1 times. In the latter case, adding the
interrupt move leading to d yields i interrupts, so this is a winning strategy for

Eve in G(i)
M , witnessing that c ∈ X(i).

Conversely, assume that there is a winning strategy σ of Eve in G(i)
M from

a configuration c. Consider a play consistent with σ, it either reaches F or
Adam interrupts. Let us denote by f = f1, f2, . . . , f� the sequence of flows until
then. We argue that fk ∈ Flows i for k ∈ {1, . . . , �}. Let f = fk for some k, by
definition of the game supp(f) ⊆ Δa for some action a. Let f ′ such that pre(f ′) =
pre(f) and supp(f ′) ⊆ Δa. In the game GM after Eve played fk, Adam has
the possibility to interrupt and choose f ′. From this configuration onward the

strategy σ is winning in G(i−1)
M , implying that f ∈ Flows i. Thus f = f1f2 . . . f�

is a witness that c ∈ X(i).

5 Computability of the sequential flow problem

Let Q be a finite set of states, Flows ⊆ NQ×Q a downward closed set of flows and
F ⊆ NQ a downward closed set of configurations, the sequential flow problem is
to compute the downward closed set Pre∗ defined by

Pre∗(Flows , F ) = {c ∈ NQ | c� f c′ ∈ F, f ∈ Flows∗} ,

i.e. the configurations from which one may reach F using only flows from Flows .

The following classical result of [22] allows us to further reduce our problem.

Lemma 6. The task of computing a downward closed set can be reduced to the
task of deciding whether a given ideal is included in a downward closed set.

Thanks to Lemma 6, it is sufficient for solving the sequential flow problem
to establish the following result.

Controlling a random population 129



Lemma 7. Let I be an ideal of the form a↓ for a ∈ (N ∪ {ω})Q, and Flows ⊆
NQ×Q be a downward closed set of flows. It is decidable whether F can be reached
from all configurations of I using only flows from Flows.

We call a vector a ∈ (N ∪ {ω})Q×Q a capacity. A capacity word is a finite
sequence of capacities. For two capacity words w,w′ of the same length, we
write w ≤ w′ to mean that wi ≤ w′

i for each i. Since flows are particular cases
of capacities, we can compare flows with capacities in the same way.

Before proving Lemma 7 let us give an example and some notations.
Given a state q, we write q ∈ NQ for the vector which has value 1 on the q

component and 0 elsewhere. More generally we let αq for α ∈ N ∪ {ω} denote
the vector with value α on the q component and 0 elsewhere. We use similar
notations for flows. For instance, ωq1 + q2 has value ω in the q1 component, 1 in
the q2 component, and 0 elsewhere.

In the instance of the sequential flow problem represented in Figure 4, we ask
the following question: can F be reached from any configuration of I = (ωq2)↓?
The answer is yes: the capacity word w = (acn−1b)n is such that nq2� f nq4 ∈ F
for a flow word f � w, the begining of which is described in Figure 5.

Fig. 4. An instance of the sequential flow problem. We let Flows = a ↓ ∪ b ↓ ∪ c ↓
where a = ω(q2, q2) + (q2, q3) + ω(q4, q4), b = ω(q1, q2) + (q3, q4) + ω(q4, q4), and c =
ω(q1, q1) + (q2, q1) + ω(q2, q2) + ω(q3, q3) + ω(q4, q4). Set also F = (ωq4)↓.

Fig. 5. A flow word f = f1f2 . . . fn+1 � acn−1b such that nq2 goes to (n − 1)q1 + q4
using f . This construction can be extended to f � w such that nq2 goes to nq4 using f .

We write a[ω ← n] for the configuration obtained from a by replacing all ωs
by n.

130 T. Colcombet et al.



The key idea for solving the sequential flow problem is to rephrase it using
regular cost functions (a set of tools for solving boundedness questions). Indeed,
whether F can be reached from all configurations of I = a ↓ using only flows
from Flows can be equivalently phrased as a boundedness question, as follows:

does there exist a bound on the values of n ∈ N such that a[ω ← n]� f c
for some c ∈ F and f ∈ Flows∗?

We show that this boundedness question can be formulated as a boundedness
question for a formula of cost monadic logic, a formalism that we introduce now.
We assume that the reader is familiar with monadic second order logic (MSO)
over finite words, and refer to [20] for the definitions. The syntax of cost monadic
logic (cost MSO for short) extends MSO with the construct |X| ≤ N , where X is
a second order variable and N is a bounding variable. The semantics is defined
as usual: w, n |= ϕ for a word w ∈ A∗, with n ∈ N specifying the bound N .
We assume that there is at most one bounding variable, and that the construct
|X| ≤ N appears positively, i.e. under an even number of negations. This ensures
that the larger N , the more true the formula is: if w, n |= ϕ, then w, n′ |= ϕ
for all n′ ≥ n. The semantics of a formula ϕ of cost MSO induces a function
A∗ → N ∪ {∞} defined by ϕ(w) = inf {n ∈ N | w, n |= ϕ}.

The boundedness problem for cost monadic logic is the following problem:
given a cost MSO formula ϕ over A∗, is it true that the function A∗ → N∪{∞}
is bounded, i.e.:

∃n ∈ N, ∀w ∈ A∗, w, n |= ϕ?

The decidability of the boundedness problem is a central result in the theory of
regular cost functions ([5]). Since in the theory of regular cost functions, when
considering functions we are only interested in whether they are bounded or
not, we will consider functions “up to boundedness properties”. Concretely, this
means that a cost function is an equivalence class of functions A∗ → N ∪ {∞},
with the equivalence being f ≈ g if there exists α : N → N such that f(w) is finite
if and only if g(w) is finite, and in this case, f(w) � α(g(w)) and g(w) � α(f(w)).
This is equivalent to stating that for all X ⊆ A∗, if f is bounded over X if and
only if g is bounded over X.

Let us now establish Lemma 7.

Proof: Let T = {q ∈ Q | a(q) = ω}. Note that for n sufficiently large, we have
a[ω ← n]↓= I ∩ {0, 1, . . . , n}. We let C ⊆ (N ∪ {ω})Q×Q be the decomposition
of Flows into ideals, that is, C is the minimal finite set such that

Flows =
⋃
b∈C

b↓ .

We let k denote the largest finite value that appears in the definition of C , that
is, k = max{b(q, q′) : b ∈ C , q, q′ ∈ Q, b(q, q′) �= ω}.

Let us define the function

Φ : C ∗ −→ N ∪ {ω}
w �−→ sup{n ∈ N : ∃f � w, a[ω ← n]� f F}.

Controlling a random population 131



By definition Φ is unbounded if and only if F can be reached from all configura-
tions of I. Since boundedness of cost MSO is decidable, it suffices to construct
a formula in cost monadic logic for Φ to obtain the decidability of our problem.
Our approach will be to additively decompose the capacity word w into a finitary
part w(fin) (which is handled using a regular language), and several unbounded
parts w(s) for each s ∈ T . The unbounded parts require a more careful analysis
which notably goes through the use of the max-flow min-cut theorem.

Note that a[ω ← n] decomposes as the sum of its finite part afin = a[ω ← 0]
and

∑
s∈T ns. Since flows are additive, it holds that f � w = w1 . . . wl is a

flow from cn to F if and only if the capacity word w may be decomposed into

(w(s))s∈T = (w
(s)
1 . . . w

(s)
l )s∈T and w(fin) = w

(fin)
1 . . . w

(fin)
l such that

– all the numbers appearing in the w
(s)
i capacities are bounded by k,

– for all i ∈ {1, . . . , l}, wi =
∑

s∈T∪{fin} w
(s)
i ,

– for all s ∈ T , ns� f F for some flow word f � w(s),
– and afin � f F for some flow word f � w(fin).

In order to encode such capacity words in cost MSO we use monadic variables

W
(s)
q,q′,p where q, q′ ∈ Q, p ∈ {0, . . . , k, ω} and s ∈ T ∪ {fin}. They are meant to

satisfy that i ∈ W
(s)
q,q′,p,s if and only if w

(s)
i (q, q′) = p. We use bold W to denote

the tuple (W
(s)
q,q′,p)q,q′,p,s, and W (s) for (W

(s)
q,q′,p)q,q′,p when s ∈ T ∪ {ω} is fixed.

The MSO formula IsDecomp(W , w) states that a decomposition (w(s))s∈T∪{ω}
is semantically valid and sums to w:

∀i,
[∧

q,q′,s
∨

p∈{0,...,k,ω}
(
i ∈ W

(s)
q,q′,p ∧

∧
p′ �=p i /∈ W

(s)
q,q′,p

)]
∧
[(∧

q,q′p wi(q, q
′) = p

)
=⇒ ∨

(ps)s∈T∪{fin}∑
ps=p

∧
s∈T∪{fin} i ∈ W

(s)
q,q′,ps

]

For s ∈ T , we now consider the function

Ψ (s) :
({0, 1, . . . , k, ω}Q×Q)∗ −→ N ∪ {ω}

w(s) �−→ sup{n ∈ N | ∃f � w(s), ns
f

F}.

We also define Ψ (fin) ⊆ ({0, . . . , k, ω})Q×Q
to be the language of capacity words

w(fin) such that there exists a flow f � w(fin) with afin � f F . Note that
Ψ (fin) is a regular language since it is recognized by a finite automaton over
{0, 1, . . . , k|Q|}Q that may update the current bounded configuration only with
flows smaller than the current letter of w(fin).

We have

Φ(w) = sup
n

[
∃W , IsDecomp(W , w) ∧

( ∧
s∈T

Ψ (s)(W (s)) ≥ n
)
∧W (fin) ∈ Ψ (fin)

]
.

Hence, it is sufficient to prove that for each s ∈ T , Ψ (s) is definable in cost MSO.

132 T. Colcombet et al.



Let us fix s and a capacity word w ∈ {0, . . . , k, ω}Q×Q of length |w| = �.
Consider the finite graph G with vertex set Q×{0, 1, . . . , �} and for all i ≥ 1, an
edge from (q, i− 1) to (q′, i) labelled by wi(q, q

′). Then Ψ (s)(w) is the maximal
flow from (s, 0) to (t, �) in G. We recall that a cut in a graph with distinguished
source s and target t is a set of edges such that removing them disconnects s and
t. The cost of a cut is the sum of the weight of its edges. The max-flow min-cut
theorem states that the maximal flow in a graph is exactly the minimal cost of
a cut ([11]).

We now define a cost MSO formula Ψ̃ (s) which is equivalent (in terms of cost
functions) to the minimal cost of cut in the previous graph G and thus to Ψ (s). In
the following formula, X = (Xq,q′)q,q′∈Q represents a cut in the graph: i ∈ Xq,q′

means that edge ((q, i−1), (q′, i)) belongs to the cut. Likewise, P = (Pq,q′)q,q′∈Q
represents paths in the graph. Let Ψ̃ (s)(w) be defined by

inf
n

{
∃X

[ ∧
q,q′

n ≥ |Xq,q′ |
]
∧
(
∀i, i ∈ Xq,q′ =⇒ wi(q, q

′) < ω
)

∧ Discs,t(X, w)

}
,

where Discs,t(X, w) expresses that X disconnects (s, 0) and (t, �) in G. For
instance Discs,t(X, w) is defined by

∀P ,

[(
∀i,

∧
q,q′

i ∈ Pq,q′ =⇒ wi(q, q
′) > 0

)
∧
(∨

q′
0 ∈ Ps,q′

)
∧
(∨

q

� ∈ Pq,t

)
∧

∀i ≥ 1,
∧
q,q′

i ∈ Pq,q′ =⇒
(∨

q′′
i− 1 ∈ Pq′′,q

)]
=⇒ ∃i,

∨
q,q′

(
i ∈ Xq,q′ ∧ i ∈ Pq,q′

)
.

Now Ψ̃ (s)(w) does not exactly define the minimal total weight Φ(s)(w) of a cut,
but rather the minimal value over all cuts of the minimum over (q, q′) ∈ Q2 of
how many edges are of the form ((q, i − 1), (q′, i)). This is good enough for our
purposes since these two values are related by

Ψ̃ (s)(w) � Φ(s)(w) � k|Q|2Ψ̃ (s)(w),

implying that the functions Ψ̃ (s) and Φ(s) define the same cost function. In par-
ticular, Φ(s) is definable in cost MSO. �

6 Conclusions

We showed the decidability of the stochastic control problem. Our approach uses
well quasi orders and the sequential flow problem, which is then solved using the
theory of regular cost functions.

Together with the original result of [3,4] in the adversarial setting, our result
contributes to the theoretical foundations of parameterised control. We return to
the first application of this model, control of biological systems. As we discussed

Controlling a random population 133



the stochastic setting is perhaps more satisfactory than the adversarial one,
although as we saw very complicated behaviours emerge in the stochastic setting
involving single agents, which are arguably not pertinent for modelling biological
systems.

We thus pose two open questions. The first is to settle the complexity status
of the stochastic control problem. Very recently [18] proved the EXPTIME-
hardness of the problem, which is interesting because the underlying phenomena
involved in this hardness result are specific to the stochastic setting (and do not
apply to the adversarial setting). Our algorithm does not even yield elementary
upper bounds, leaving a very large complexity gap. The second question is to-
wards more accurately modelling biological systems: can we refine the stochastic
control problem by taking into account the synchronising time of the controller,
and restrict it to reasonable bounds?

Acknowledgements

We thank Nathalie Bertrand and Blaise Genest for introducing us to this fasci-
nating problem, and the preliminary discussions at the Simons Institute for the
Theory of Computing in Fall 2015.

References

1. Abdulla, P.A., Henda, N.B., Mayr, R.: Decisive Markov chains. Logical Methods
in Computer Science 3(4) (2007). https://doi.org/10.2168/LMCS-3(4:7)2007

2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distributed Computing 18(4),
235–253 (2006). https://doi.org/10.1007/s00446-005-0138-3

3. Bertrand, N., Dewaskar, M., Genest, B., Gimbert, H.: Con-
trolling a population. In: CONCUR. pp. 12:1–12:16 (2017).
https://doi.org/10.4230/LIPIcs.CONCUR.2017.12

4. Bertrand, N., Dewaskar, M., Genest, B., Gimbert, H., Godbole, A.A.: Controlling
a population. Logical Methods in Computer Science 15(3) (2019), https://lmcs.
episciences.org/5647

5. Colcombet, T.: Regular cost functions, part I: logic and algebra over words. Log-
ical Methods in Computer Science 9(3) (2013). https://doi.org/10.2168/LMCS-
9(3:3)2013

6. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with
n distinct prime factors. American Journal of Mathematics 35(4), 413–422 (1913),
http://www.jstor.org/stable/2370405

7. Esparza, J.: Parameterized verification of crowds of anonymous processes.
In: Dependable Software Systems Engineering, pp. 59–71. IOS Press (2016).
https://doi.org/10.3233/978-1-61499-627-9-59

8. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In:
LICS. pp. 352–359 (1999). https://doi.org/10.1109/LICS.1999.782630

9. Fijalkow, N.: Undecidability results for probabilistic automata. SIGLOG News
4(4), 10–17 (2017), https://dl.acm.org/citation.cfm?id=3157833

134 T. Colcombet et al.

https://doi.org/10.2168/LMCS-3(4:7)2007
https://doi.org/10.1007/s00446-005-0138-3
https://doi.org/10.4230/LIPIcs.CONCUR.2017.12
https://lmcs.episciences.org/5647
https://lmcs.episciences.org/5647
https://doi.org/10.2168/LMCS-9(3:3)2013
https://doi.org/10.2168/LMCS-9(3:3)2013
http://www.jstor.org/stable/2370405
https://doi.org/10.3233/978-1-61499-627-9-59
https://doi.org/10.1109/LICS.1999.782630
https://dl.acm.org/citation.cfm?id=3157833


10. Fijalkow, N., Gimbert, H., Horn, F., Oualhadj, Y.: Two recursively insep-
arable problems for probabilistic automata. In: MFCS. pp. 267–278 (2014).
https://doi.org/10.1007/978-3-662-44522-8 23

11. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Canadian Journal
of Mathematics 8, 399–404 (1956). https://doi.org/10.4153/CJM-1956-045-5

12. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. Journal
of the ACM 39(3), 675–735 (1992)

13. Gimbert, H., Oualhadj, Y.: Probabilistic automata on finite words: De-
cidable and undecidable problems. In: ICALP. pp. 527–538 (2010).
https://doi.org/10.1007/978-3-642-14162-1 44

14. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games,
LNCS, vol. 2500. Springer (2002)

15. Higman, G.: Ordering by divisibility in abstract algebras. Proceed-
ings of the London Mathematical Society s3-2(1), 326–336 (1952).
https://doi.org/10.1112/plms/s3-2.1.326

16. Kruskal, J.B.: The theory of well-quasi-ordering: A frequently discovered concept.
J. Comb. Theory, Ser. A 13(3), 297–305 (1972). https://doi.org/10.1016/0097-
3165(72)90063-5

17. Kuc̆era, A.: Turn-Based Stochastic Games. Lectures in Game Theory for Computer
Scientists, Cambridge University Press (2011)

18. Mascle, C., Shirmohammadi, M., Totzke, P.: Controlling a random population is
EXPTIME-hard. CoRR (2019), http://arxiv.org/abs/1909.06420

19. Schmitz, S.: Algorithmic Complexity of Well-Quasi-Orders. Habilitation à diriger
des recherches, École normale supérieure Paris-Saclay (Nov 2017), https://tel.
archives-ouvertes.fr/tel-01663266

20. Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Language
Theory, vol. III, pp. 389–455. Springer (1997)

21. Uhlendorf, J., Miermont, A., Delaveau, T., Charvin, G., Fages, F., Bottani, S.,
Hersen, P., Batt, G.: In silico control of biomolecular processes. Computational
Methods in Synthetic Biology 13, 277–285 (2015)

22. Valk, R., Jantzen, M.: The residue of vector sets with applications to de-
cidability problems in Petri nets. Acta Informatica 21, 643–674 (03 1985).
https://doi.org/10.1007/BF00289715

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Controlling a random population 135

https://doi.org/10.1007/978-3-662-44522-8_23
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.1007/978-3-642-14162-1_44
https://doi.org/10.1112/plms/s3-2.1.326
https://doi.org/10.1016/0097-3165(72)90063-5
https://doi.org/10.1016/0097-3165(72)90063-5
http://arxiv.org/abs/1909.06420
https://tel.archives-ouvertes.fr/tel-01663266
https://tel.archives-ouvertes.fr/tel-01663266
https://doi.org/10.1007/BF00289715
http://creativecommons.org/licenses/by/4.0/


Decomposing Probabilistic Lambda-Calculi

Ugo Dal Lago1 , Giulio Guerrieri2(�) , and Willem Heijltjes2

1 Dipartimento di Informatica - Scienza e Ingegneria
Università di Bologna, Bologna, Italy

ugo.dallago@unibo.it

2 Department of Computer Science
University of Bath, Bath, UK

{w.b.heijltjes,g.guerrieri}@bath.ac.uk

Abstract. A notion of probabilistic lambda-calculus usually comes with
a prescribed reduction strategy, typically call-by-name or call-by-value,
as the calculus is non-confluent and these strategies yield different results.

1 Introduction

Probabilistic lambda-calculi [24,22,17,11,18,9,15] extend the standard lambda-
calculus with a probabilistic choice operator N ⊕pM , which chooses N with
probability p and M with probability 1− p (throughout this paper, we let p be
1/2 and will omit it). Duplication of N ⊕M , as is wont to happen in lambda-
calculus, raises a fundamental question about its semantics: do the duplicate
occurrences represent the same probabilistic event, or different ones with the

these represent a single coin flip that determines the outcome for both copies?
Put differently again, when we duplicate �⊕⊥, do we duplicate the event, or
only its outcome?

In probabilistic lambda-calculus, these two interpretations are captured by
the evaluation strategies of call-by-name ( cbn), which duplicates events, and

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 136–156, 2020.
https://doi.org/10.1007/978-3-030-45231-5_8

This is a break with one of the main advantages of lambda-calculus:
confluence, which means that results are independent from the choice

of strategy. We present a probabilistic lambda-calculus where the proba-
bilistic operator is decomposed into two syntactic constructs: a generator,

which represents a probabilistic event; and a consumer, which acts on

the term depending on a given event. The resulting calculus, the Prob-

abilistic Event Lambda-Calculus, is confluent, and interprets the call-
by-name and call-by-value strategies through different interpretations of

the probabilistic operator into our generator and consumer constructs.

We present two notions of reduction, one via fine-grained local rewrite
steps, and one by generation and consumption of probabilistic events.

Simple types for the calculus are essentially standard, and they convey

strong normalization. We demonstrate how we can encode call-by-name

and call-by-value probabilistic evaluation.

same probability? For example, take the term �⊕ ⊥ that represents a coin flip
between boolean values true � and false ⊥. If we duplicate this term, do the
copies represent two distinct coin flips with possibly distinct outcomes, or do

http://orcid.org/0000-0001-9200-070X
http://orcid.org/0000-0002-0469-4279
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_8&domain=pdf


call-by-value ( cbv), which evaluates any probabilistic choice before it is du-
plicated, and thus only duplicates outcomes. Consider the following example,
where = tests equality of boolean values.

� cbv (λx. x = x)(�⊕⊥) cbn �⊕⊥
This situation is not ideal, for several, related reasons. Firstly, it demonstrates
how probabilistic lambda-calculus is non-confluent, negating one of the central
properties of the lambda-calculus, and one of the main reasons why it is the
prominent model of computation that it is. Secondly, it means that a probabilis-
tic lambda-calculus must derive its semantics from a prescribed reduction strat-
egy, and its terms only have meaning in the context of that strategy. Thirdly,
combining different kinds of probabilities becomes highly involved [15], as it
would require specialized reduction strategies. These issues present themselves
even in a more general setting, namely that of commutative (algebraic) effects,
which in general do not commute with copying.

We address these issues by a decomposition of the probabilistic operator into
a generator a and a choice

a⊕ , as follows.

N ⊕M
Δ
= a . N

a⊕M

Semantically, a represents a probabilistic event, that generates a boolean value
recorded as a. The choice N

a⊕M is simply a conditional on a, choosing N if a is
false and M if a is true. Syntactically, a is a boolean variable with an occurrence
in

a⊕ , and a acts as a probabilistic quantifier, binding all occurrences in its
scope. (To capture a non-equal chance, one would attach a probability p to a
generator, as a p, though we will not do so in this paper.)

The resulting probabilistic event lambda-calculus ΛPE, which we present in
this paper, is confluent. Our decomposition allows us to separate duplicating
an event, represented by the generator a , from duplicating only its outcome
a, through having multiple choice operators

a⊕ . In this way our calculus may
interpret both original strategies, call-by-name and call-by-value, by different
translations of standard probabilistic terms into ΛPE: call-by-name by the above
decomposition (see also Section 2), and call-by-value by a different one (see Sec-
tion 7). For our initial example, we get the following translations and reductions.

cbn : (λx. x=x)( a .� a⊕⊥) β ( a .� a⊕⊥)=( b .� b⊕⊥) �⊕⊥ (1)

cbv : a . (λx. x=x)(� a⊕⊥) β a . (� a⊕⊥)=(� a⊕⊥) � (2)

We present two reduction relations for our probabilistic constructs, both in-
dependent of beta-reduction. Our main focus will be on permutative reduction
(Sections 2, 3), a small-step local rewrite relation which is computationally ineffi-
cient but gives a natural and very fine-grained operational semantics. Projective
reduction (Section 6) is a more standard reduction, following the intuition that
a generates a coin flip to evaluate

a⊕
We further prove confluence (Section 4), and we give a system of simple

types and prove strong normalization for typed terms by reducibility (Section 5).
Omitted proofs can be found in [7], the long version of this paper.

Decomposing Probabilistic Lambda-Calculi 137

, and is coarser but more efficient.



1.1 Related Work

Probabilistic λ-calculi are a topic of study since the pioneering work by Saheb-
Djaromi [24], the first to give the syntax and operational semantics of a λ-calculus
with binary probabilistic choice. Giving well-behaved denotational models for
probabilistic λ-calculi has proved to be challenging, as witnessed by the many
contributions spanning the last thirty years: from Jones and Plotkin’s early study
of the probabilistic powerdomain [17], to Jung and Tix’s remarkable (and mostly
negative) observations [18], to the very recent encouraging results by Goubault-
Larrecq [16]. A particularly well-behaved model for probabilistic λ-calculus can
be obtained by taking a probabilistic variation of Girard’s coherent spaces [10],
this way getting full abstraction [13].

On the operational side, one could mention a study about the various ways
the operational semantics of a calculus with binary probabilistic choice can be
specified, namely by small-step or big-step semantics, or by inductively or coin-
ductively defined sets of rules [9]. Termination and complexity analysis of higher-
order probabilistic programs seen as λ-terms have been studied by way of type
systems in a series of recent results about size [6], intersection [4], and refinement
type disciplines [1]. Contextual equivalence on probabilistic λ-calculi has been
studied, and compared with equational theories induced by Böhm Trees [19],
applicative bisimilarity [8], or environmental bisimilarity [25].

In all the aforementioned works, probabilistic λ-calculi have been taken as
implicitly endowed with either call-by-name or call-by-value strategies, for the
reasons outlined above. There are only a few exceptions, namely some works on
Geometry of Interaction [5], Probabilistic Coherent Spaces [14], and Standard-

Our permutative reduction is a refinement of that for the call-by-name prob-
abilistic λ-calculus [20], and is an implementation of the equational theory of
(ordered) binary decision trees via rewriting [27]. Probabilistic decision trees

138 U. Dal Lago et al.

ization [15], which achieve, in different contexts, a certain degree of indepen-
dence from the underlying strategy, thus accommodating both call-by-name and
call-by-value evaluation. The way this is achieved, however, invariably relies on
Linear Logic or related concepts. This is deeply different from what we do here.

Some words of comparison with Faggian and Ronchi Della Rocca’s work
on confluence and standardization [15] are also in order. The main difference
between their approach and the one we pursue here is that the operator ! in
their calculus Λ!⊕ plays both the roles of a marker for duplicability and of a
checkpoint for any probabilistic choice ”flowing out” of the term (i.e. being
fired). In our calculus, we do not control duplication, but we definitely make use
of checkpoints. Saying it another way, Faggian and Ronchi Della Rocca’s work
is inspired by linear logic, while our approach is inspired by deep inference, even
though this is, on purpose, not evident in the design of our calculus.

Probabilistic λ-calculi can also be seen as vehicles for expressing probabilistic
models in the sense of bayesian programming [23,3]. This, however, requires an
operator for modeling conditioning, which complicates the metatheory consid-
erably, and that we do not consider here.



have been proposed with a primitive binary probabilistic operator [22], but not

2 The Probabilistic Event λ-Calculus ΛPE

Definition 1. The probabilistic event λ-calculus (ΛPE) is given by the follow-
ing grammar, with from left to right: a variable (denoted by x, y, z, . . . ), an
abstraction, an application, a (labeled) choice, and a (probabilistic) generator.

M,N ····= x | λx.N | NM | N
a⊕M | a . N

In a term λx.M the abstraction λx binds the free occurrences of the variable
x in its scope M , and in a . N the generator a binds the label a in N . The
calculus features a decomposition of the usual probabilistic sum ⊕ , as follows.

N ⊕M
Δ
= a . N

a⊕M (3)

The generator a represents a probabilistic event, whose outcome, a binary value
{0, 1} represented by the label a, is used by the choice operator

a⊕ . That is, a

flips a coin setting a to 0 (resp. 1), and depending on this N
a⊕M reduces to N

(resp. M). We will use the unlabeled choice ⊕ as in (3). This convention also
gives the translation from a call-by-name probabilistic λ-calculus into ΛPE (the
interpretation of a call-by-value probabilistic λ-calculus is in Section 7).

Reduction. Reduction in ΛPE will consist of standard β-reduction β plus an
evaluation mechanism for generators and choice operators, which implements
probabilistic choice. We will present two such mechanisms: projective reduc-
tion π and permutative reduction p. While projective reduction implements
the given intuition for the generator and choice operator, we relegate it to Sec-
tion 6 and make permutative reduction our main evaluation mechanism, for the
reason that it is more fine-grained, and thus more general.

Permutative reduction is based on the idea that any operator distributes
over the labeled choice operator (see the reduction steps in Figure 1), even other
choice operators, as below.

(N
a⊕M)

b⊕P ∼ (N
b⊕P )

a⊕(M
b⊕P )

To orient this as a rewrite rule, we need to give priority to one label over another.
Fortunately, the relative position of the associated generators a and b provides
just that. Then to define p, we will want every choice to belong to some
generator, and make the order of generators explicit.

Definition 2. The set fl(N) of free labels of a term N is defined inductively by:

fl(x) = ∅ fl(MN) = fl(M) ∪ fl(N) fl(λx.M) = fl(M)

fl( a .M) = fl(M)� {a} fl(M
a⊕N) = fl(M) ∪ fl(N) ∪ {a}

A term M is label-closed if fl(M) = ∅.

Decomposing Probabilistic Lambda-Calculi 139

with a decomposition as we explore here.



(λx.N)M β N [M/x] (β)

N
a⊕N p N (i)

(N
a⊕M)

a⊕P p N
a⊕P (c1)

N
a⊕(M

a⊕P ) p N
a⊕P (c2)

λx. (N
a⊕M) p (λx.N)

a⊕(λx.M) (⊕λ)

(N
a⊕M)P p (NP )

a⊕(MP ) (⊕f)

N(M
a⊕P ) p (NM)

a⊕(NP ) (⊕a)

(N
a⊕M)

b⊕P p (N
b⊕P )

a⊕(M
b⊕P ) (if a < b) (⊕⊕1)

N
b⊕(M

a⊕P ) p (N
b⊕M)

a⊕(N
b⊕P ) (if a < b) (⊕⊕2)

b . (N
a⊕M) p ( b . N)

a⊕( b .M) (if a �= b) (⊕�)

a . N p N (if a /∈ fl(N)) ( ��)

λx. a . N p a . λx.N (�λ)

( a . N)M p a . (NM) (if a /∈ fl(M)) (�f)

Fig. 1. Reduction Rules for β-reduction and p-reduction.

From here on, we consider only label-closed terms (we implicitly assume this,
unless otherwise stated). All terms are identified up to renaming of their bound
variables and labels. Given some terms M and N and a variable x, M [N/x] is
the capture-avoiding (for both variables and labels) substitution of N for the free
occurrences of x in M . We speak of a representative M of a term when M is not
considered up to such a renaming. A representative M of a term is well-labeled
if for every occurrence of a in M there is no a occurring in its scope.

Definition 3 (Order for labels). Let M be a well-labeled representative of a
term. We define an order <M for the labels occurring in M as follows: a <M b

if and only if b occurs in the scope of a .

For a well-labeled and label-closed representative M , <M is a finite tree order.

Definition 4. Reduction = β ∪ p in ΛPE consists of β-reduction β

and permutative or p-reduction p, both defined as the contextual closure of
the rules given in Figure 1. We write for the reflexive–transitive closure of

, and for reduction to normal form; similarly for β and p. We write =p

for the symmetric and reflexive–transitive closure of p.

140 U. Dal Lago et al.



a . (λx. x=x)(� a⊕⊥) p a . (λx. x=x)� a⊕ (λx. x=x)⊥ (⊕a)

β a . (�=�)
a⊕ (⊥=⊥)

= a .� a⊕� p a .� p � (i,��)

Fig. 2. Example Reduction of the cbv-translation of the Term on p. .

Two example reductions are (1)-(2) on p. ; a third, complete reduction is in
Figure 2. The crucial feature of p-reduction is that a choice

a⊕ does permute out
of the argument position of an application, but a generator a does not, as below.
Since the argument of a redex may be duplicated, this is how we characterize the
difference between the outcome of a probabilistic event, whose duplicates may be
identified, and the event itself, whose duplicates may yield different outcomes.

N (M
a⊕P ) p (NM)

a⊕(NP ) N ( a .M) � p a . N M

By inspection of the rewrite rules in Figure 1, we can then characterize the
normal forms of p and as follows.

Proposition 5 (Normal forms). The normal forms P0 of p, respectively
N0 of , are characterized by the following grammars.

P0 ····= P1 | P0⊕P ′
0

P1 ····= x | λx.P1 | P1 P0

N0 ····= N1 | N0⊕N ′
0

N1 ····= N2 | λx.N1

N2 ····= x | N2 N0

3 Properties of Permutative Reduction

We will prove strong normalization and confluence of p. For strong normal-
ization, the obstacle is the interaction between different choice operators, which
may duplicate each other, creating super-exponential growth.3 Fortunately, Der-
showitz’s recursive path orders [12] seem tailor-made for our situation.

Observe that the set ΛPE endowed with p is a first-order term rewriting sys-
tem over a countably infinite set of variables and the signature Σ given by:

• the binary function symbol
a⊕ , for any label a;

• the unary function symbol a , for any label a;
• the unary function symbol λx, for any variable x;
• the binary function symbol @, letting @(M,N) stand for MN .

3 This was inferred only from a simple simulation; we would be interested to know a
rigorous complexity result.

137

137

Decomposing Probabilistic Lambda-Calculi 141



Definition 6. Let M be a well-labeled representative of a label-closed term,
and let ΣM be the set of signature symbols occurring in M . We define ≺M as
the (strict) partial order on ΣM generated by the following rules.

a⊕ ≺M
b⊕ if a <M b

a⊕ ≺M b for any labels a, b

b ≺M @, λx for any label b

Lemma 7. The reduction p is strongly normalizing.

Proof. For the first-order term rewriting system (ΛPE, p) we derive a well-
founded recursive path ordering < from ≺M following [12, p. 289]. Let f and g
range over function symbols, let [N1, . . . , Nn] denote a multiset and extend <
to multisets by the standard multiset ordering, and let N = f(N1, . . . , Nn) and
M = g(M1, . . . ,Mm); then

N < M ⇐⇒

⎧⎪⎨⎪⎩
[N1, . . . , Nn] < [M1, . . . ,Mm] if f = g

[N1, . . . , Nn] < [M ] if f ≺M g

[N ] ≤ [M1, . . . ,Mm] if f �M g .

While ≺M is defined only relative to ΣM , reduction may only reduce the signa-
ture. Inspection of Figure 1 then shows that M p N implies N < M .

Confluence of Permutative Reduction. With strong normalization, conflu-
ence of p requires only local confluence. We reduce the number of cases to
consider, by casting the permutations of

a⊕ as instances of a common shape.

Definition 8. We define a context C[ ] (with exactly one hole [ ]) as follows, and
let C[N ] represent C[ ] with the hole [ ] replaced by N .

C[ ] ····= [ ] | λx.C[ ] | C[ ]M | NC[ ] | C[ ]
a⊕M | N

a⊕C[ ] | a . C[ ]

Observe that the six reduction rules ⊕λ through ⊕� in Figure 1 are all of the
following form. We refer to these collectively as ⊕�.

C[N
a⊕M ] p C[N ]

a⊕C[M ] (⊕�)

Lemma 9 (Confluence of p). Reduction p is confluent.

Proof. By Newman’s lemma and strong normalization of p (Lemma 7), con-
fluence follows from local confluence. The proof of local confluence consists of
joining all critical pairs given by p. Details are in the Appendix of [7].

Definition 10. We denote the unique p-normal form of a term N by Np.

142 U. Dal Lago et al.



4 Confluence

We aim to prove that = β ∪ p is confluent. We will use the standard
technique of parallel β-reduction [26], a simultaneous reduction step on a number
of β-redexes, which we define via a labeling of the redexes to be reduced. The
central point is to find a notion of reduction that is diamond, i.e. every critical
pair can be closed in one (or zero) steps. This will be our complete reduction,
which consists of parallel β-reduction followed by p-reduction to normal form.

Definition 11. A labeled term P • is a term P with chosen β-redexes annotated
as (λx.N)•M . The unique labeled β-step P •

β P• from P • to the labeled reduct
P• reduces every labeled redex, and is defined inductively as follows.

(λx.N•)•M•
β N•[M•/x] N•M•

β N•M•

x β x N• a⊕M•
β N•

a⊕M•
λx.N•

β λx.N• a . N•
β a . N•

A parallel β-step P β P• is a labeled step P •
β P• for some labeling P •.

Note that P• is an unlabeled term, since all labels are removed in the reduction.
For the empty labeling, P • = P• = P , so parallel reduction is reflexive: P β P .

Lemma 12. A parallel β-step P β P• is a β-reduction P β P•.

Proof. By induction on the labeled term P • generating P β P•.

Lemma 13. Parallel β-reduction is diamond.

Proof. Let P •
β P• and P ◦

β P◦ be two labeled reduction steps on a term
P . We annotate each step with the label of the other, preserved by reduction,
to give the span from the doubly labeled term P •◦ = P ◦• below left. Reducing
the remaining labels will close the diagram, as below right.

P ◦
• β P •◦ = P ◦•

β P •
◦ P ◦

• β P•◦ = P◦• β P •
◦

This is proved by induction on P •◦, where only two cases are not immediate:
those where a redex carries one but not the other label. One case follows by
the below diagram; the other case is symmetric. Below, for the step top right,
induction on N• shows that N•[M•/x] β N•[M•/x].

(λx.N◦•)◦M◦•
β N•

◦ [M
•
◦ /x] β N◦•[M◦•/x]

= =
(λx.N•◦)◦M•◦

β (λx.N◦
• )

◦M◦
• β N•◦[M•◦/x]

Decomposing Probabilistic Lambda-Calculi 143



4.1 Parallel Reduction and Permutative Reduction

For the commutation of (parallel) β-reduction with p-reduction, we run into the
minor issue that a permuting generator or choice operator may block a redex: in
both cases below, before p the term has a redex, but after p it is blocked.

(λx.N
a⊕M)P p ((λx.N)

a⊕(λx.M))P (λx. a . N)M p ( a . λx.N)M

We address this by an adaptation p of p-reduction on labeled terms, which is
a strategy in p that permutes past a labeled redex in one step.

Definition 14. A labeled p-reduction N•
p M• on labeled terms is a p-

reduction of one of the forms

(λx.N• a⊕M•)•P •
p (λx.N•)•P • a⊕(λx.M•)•P •

(λx. a . N•)•M•
p a . (λx.N•)•M•

or a single p-step p on unlabeled constructors in N•.

Lemma 15. Reduction to normal form in p is equal to p (on labeled terms).

Proof. Observe that p and p have the same normal forms. Then in one
direction, since p ⊆ p we have p ⊆ p. Conversely, let N p M . On this
reduction, let P p Q be the first step such that P � p Q. Then there is an R
such that P p R and Q p R. Note that we have N p R. By confluence,
R p M , and by induction on the sum length of paths in p from R (smaller
than from N) we have R p M , and hence N p M .

The following lemmata then give the required commutation properties of the
relations p, p, and β . Figure 3 illustrates these by commuting diagrams.

Lemma 16. If N•
p M

• then N• =p M•.

Proof. By induction on the rewrite step p. The two interesting cases are:

(λx.M•)•(N• a⊕P •) ((λx.M•)•N•) a⊕((λx.M•)•P •)

M•[(N•
a⊕P•)/x] M•[N•/x]

a⊕M•[P•/x]

p

β β

p

(x ∈ fv(M))

(λx.M•)•(N• a⊕P •) ((λx.M•)•N•) a⊕((λx.M•)•P •)

M• M•
a⊕M•

p

β β

p

(x /∈ fv(M))

144 U. Dal Lago et al.



How the critical pairs in the above diagrams are joined shows that we cannot
use the Hindley-Rosen Lemma [2, Prop. 3.3.5] to prove confluence of β ∪ p.

Lemma 17. N• =p Np•.

Proof. Using Lemma 15 we decompose N•
p N

•
p as

N• = N•
1 p N

•
2 p · · · p N

•
n = N•

p

where (Ni)• =p (Ni+1)• by Lemma 16.

4.2 Complete Reduction

To obtain a reduction strategy with the diamond property for , we combine
parallel reduction β with permutative reduction to normal form p into a no-
tion of complete reduction . We will show that it is diamond (Lemma 19), and
that any step in maps onto a complete step of p-normal forms (Lemma 20).
Confluence of (Theorem 21) then follows: any two paths map onto complete
paths on p-normal forms, which then converge by the diamond property.

Definition 18. A complete reduction step N N•p is a parallel β-step fol-
lowed by p-reduction to normal form:

N N•p ··= N β N• p N•p .

Lemma 19 (Complete reduction is diamond). If P N M then for
some Q, P Q M .

Proof. By the following diagram, where M = N◦p and P = N•p, and Q = N◦•p.
The square top left is by Lemma 13, top right and bottom left are by Lemma 17,
and bottom right is by confluence and strong normalization of p-reduction.

N◦• N•
◦ N•

◦p

N◦
• N◦• N◦p•

N◦
•p N•p◦ N◦•p

β

β β

β

p

p

β

β

=p

=p

p

p

Lemma 20 (p-Normalization maps reduction to complete reduction).
If N M then Np Mp.

Proof. For a p-step N p M we have Np = Mp while β is reflexive. For a
β-step N β M we label the reduced redex in N to get N•

β N• = M . Then
Lemma 17 gives Np• =p M , and hence Np β Np• p Mp.

Decomposing Probabilistic Lambda-Calculi 145



N M

P =p Q

p

β β

N M

P =p Q

p

β β

N M

P Q

N M

P Q

p p

Lemma 16 Lemma 17 Lemma 19 Lemma 20

Fig. 3. Diagrams for the Lemmata Leading up to Confluence

Theorem 21. Reduction is confluent.

Proof. By the following diagram. For the top and left areas, by Lemma 20 any
reduction path N M maps onto one Np Mp. The main square follows by
the diamond property of complete reduction, Lemma 19.

N M

Np Mp

P

Pp Q

p
p

p

5 Strong Normalization for Simply-Typed Terms

In this section, we prove that the relation enjoys strong normalization in
simply typed terms. Our proof of strong normalization is based on the classic
reducibility technique, and inherently has to deal with label-open terms. It thus
make great sense to turn the order <M from Definition 3 into something more
formal, at the same time allowing terms to be label-open. This is in Figure 4.
It is easy to realize that, of course modulo label α-equivalence, for every term
M there is at least one θ such that θ �L M . An easy fact to check is that if
θ �L M and M N , then θ �L N . It thus makes sense to parametrize on
a sequence of labels θ, i.e., one can define a family of reduction relations θ on
pairs in the form (M, θ). The set of strongly normalizable terms, and the number
of steps to normal forms become themselves parametric:

• The set SN θ of those terms M such that θ �L M and (M, θ) is strongly
normalizing modulo θ;

• The function snθ assigning to any term in SN θ the maximal number of θ

steps to normal form.

146 U. Dal Lago et al.



Label Sequences: θ ····= ε | a · θ
Label Judgments: ξ ····= θ �L M

Label Rules:
θ �L x

θ �L M

θ �L λx.M

a · θ �L M

θ �L a .M

θ �L M θ �L N

θ �L MN

θ �L M θ �L N a ∈ θ

θ �L M
a⊕N

Fig. 4. Labeling Terms

Types: τ ····= α | τ ⇒ ρ

Environments: Γ ····= x1 : τ1, . . . , xn : τn

Judgments: π ····= Γ � M : τ

Typing Rules:
Γ, x : τ � x : τ

Γ, x : τ � M : ρ

Γ � λx.M : τ ⇒ ρ
Γ � M : τ

Γ � a .M : τ

Γ � M : τ ⇒ ρ Γ � N : τ

Γ � MN : ρ
Γ � M : τ Γ � N : τ

Γ � M
a⊕N : τ

Fig. 5. Types, Environments, Judgments, and Rules

L1 ∈ SN θ · · · Lm ∈ SN θ

xL1 . . . Lm ∈ SN θ

ML1 . . . Lm ∈ SN θ NL1 . . . Lm ∈ SN θ a ∈ θ

M
a⊕NL1 . . . Lm ∈ SN θ

M [L0/x]L1 . . . Lm ∈ SN θ L0 ∈ SN θ

(λx.M)L0 . . . Lm ∈ SN θ

ML1 . . . Lm ∈ SN a·θ ∀i.a �∈ Li

( a .M)L1 . . . Lm ∈ SN θ

Fig. 6. Closure Rules for Sets SN θ

We can now define types, environments, judgments, and typing rules in Figure 5.

Please notice that the type structure is precisely the one of the usual, vanilla,
simply-typed λ-calculus (although terms are of course different), and we can thus
reuse most of the usual proof of strong normalization, for example in the version
given by Ralph Loader’s notes [21], page 17.

Lemma 22. The closure rules in Figure 6 are all sound.

Decomposing Probabilistic Lambda-Calculi 147



Since the structure of the type system is the one of plain, simple types, the
definition of reducibility sets is the classic one:

Redα = {(Γ, θ,M) | M ∈ SN θ ∧ Γ � M : α};
Redτ⇒ρ = {(Γ, θ,M) | (Γ � M : τ ⇒ ρ) ∧ (θ �L M) ∧

∀(ΓΔ, θ,N) ∈ Redτ .(ΓΔ, θ,MN) ∈ Redρ}.

Before proving that all terms are reducible, we need some auxiliary results.

Lemma 23. 1. If (Γ, θ,M) ∈ Redτ , then M ∈ SN θ.
2. If Γ � xL1 . . . Lm : τ and L1, . . . , Lm ∈ SN θ, then (Γ, θ, xL1 . . . Lm) ∈ Redτ .
3. If (Γ, θ,M [L0/x]L1 . . . Lm) ∈ Redτ with Γ � L0 : ρ and L0 ∈ SN θ, then

(Γ, θ, (λx.M)L0 . . . Lm) ∈ Redτ .
4. If (Γ, θ,ML1 . . . Lm) ∈ Redτ with (Γ, θ,NL1 . . . Lm) ∈ Redτ and a ∈ θ, then

(Γ, θ, (M
a⊕N)L1 . . . Lm) ∈ Redτ .

5. If (Γ, a · θ,ML1 . . . Lm) ∈ Redτ and a �∈ Li for all i,
then (Γ, θ, ( a .M)L1 . . . Lm) ∈ Redτ .

Proof. The proof is an induction on τ : If τ is an atom α, then Point 1 follows
by definition, while points 2 to 5 come from Lemma 22. If τ is ρ ⇒ μ, Points 2
to 5 come directly from the induction hypothesis, while Point 1 can be proved
by observing that M is in SN θ if Mx is itself SN θ, where x is a fresh variable.
By induction hypothesis (on Point 2), we can say that (Γ (x : ρ), θ, x) ∈ Redρ,
and conclude that (Γ (x : ρ), θ,Mx) ∈ Redμ.

The following is the so-called Main Lemma:

Proposition 24. Suppose y1 : τ1, . . . , yn : τn � M : ρ and θ �L M , with
(Γ, θ,Nj) ∈ Redτj for all 1 ≤ j ≤ n. Then (Γ, θ,M [N1/y1, . . . , Nn/yn]) ∈ Redρ.

Proof. This is an induction on the structure of the term M :
• If M is a variable, necessarily one among y1, . . . , yn, then the result is trivial.
• IfM is an application LP , then there exists a type ξ such that y1 : τ1, . . . , yn :
τn � L : ξ ⇒ ρ and y1 : τ1, . . . , yn : τn � P : ξ. Moreover, θ �L L and θ �L P
we can then safely apply the induction hypothesis and conclude that

(Γ, θ, L[N/y]) ∈ Redξ⇒ρ (Γ, θ, P [N/y]) ∈ Redξ .

By definition, we get

(Γ, θ, (LP )[N/y]) ∈ Redρ .

• If M is an abstraction λx. L, then ρ is an arrow type ξ ⇒ μ and y1 :
τ1, . . . , yn : τn, x : ξ � L : μ. Now, consider any (ΓΔ, θ, P ) ∈ Redξ. Our
objective is to prove with this hypothesis that (ΓΔ, θ, (λx.L[N/y])P ) ∈
Redμ. By induction hypothesis, since (ΓΔ,Ni) ∈ Redτi , we get that
(ΓΔ, θ, L[N/y, P/x]) ∈ Redμ. The thesis follows from Lemma 23.

148 U. Dal Lago et al.



• If M is a sum L
a⊕P , we can make use of Lemma 23 and the induction

hypothesis, and conclude.
• If M is a generator a . P , we can make use of Lemma 23 and the induction

hypothesis. We should however observe that a · θ �L P , since θ �L M .

We now have all the ingredients for our proof of strong normalization:

Theorem 25. If Γ � M : τ and θ �L M , then M ∈ SN θ.

Proof. Suppose that x1 : ρ1, . . . , xn : ρn � M : τ . Since x1 : ρ1, . . . , xn : ρn � xi :
ρi for all i, and clearly θ �L xi for every i, we can apply Lemma 24 and obtain
that (Γ, θ,M [x/x]) ∈ Redτ from which, via Lemma 23, one gets the thesis.

6 Projective Reduction

Permutative reduction p evaluates probabilistic sums purely by rewriting. Here
we look at a more standard projective notion of reduction, which conforms more
closely to the intuition that a generates a probabilistic event to determine the

Definition 26. The a-projections πa
0 (N) and πa

1 (N) are defined as follows:

πa
0 (N

a⊕M) = πa
0 (N) πa

i (λx.N) = λx.πa
i (N)

πa
1 (N

a⊕M) = πa
1 (M) πa

i (NM) = πa
i (N)πa

i (M)

πa
i ( a . N) = a . N πa

i (N
b⊕M) = πa

i (N)
b⊕ πa

i (M) if a �= b

πa
i (x) = x πa

i ( b . N) = b . πa
i (N) if a �= b.

Definition 27. A head context H[ ] is given by the following grammar.

H[ ] ····= [ ] | λx.H[ ] | H[ ]N

Definition 28. Projective head reduction πh is given by

H[ a . N ] πh H[πa
0 (N)] +H[πa

1 (N)] .

We can simulate πh by permutative reduction if we interpret the external
sum + by an outermost ⊕ (taking special care if the label does not occur).

Proposition 29. Permutative reduction simulates projective head reduction:

H[ a . N ] p

{
H[N ] if a /∈ fl(N)

H[πa
0 (N)]⊕H[πa

1 (N)] otherwise.

Decomposing Probabilistic Lambda-Calculi 149

choice a⊕ . Using + for an external probabilistic sum, we expect to reduce a . N to
N0+N1 where each Ni is obtained from N by projecting every subterm M0

a⊕M1
to Mi. The question is, in what context should we admit this reduction? We first
limit ourselves to reducing in head position.



Proof. The case a /∈ fl(N) is immediate by a �� step. For the other case, observe
that H[ a . N ] p a . H[N ] by �λ and �f steps, and since a does not occur in

H[ ], that H[πa
i (N)] = πa

i (H[N ]). By induction on N , if a is minimal in N (i.e.

a ∈ fl(N) and a ≤ b for all b ∈ fl(N)) then N p π
a
0 (N)

a⊕πa
1 (N). As required,

H[ a . N ] p a . H[πa
0 (N)]

a⊕ H[πa
1 (N)] if a ∈ fl(N) .

A gap remains between which generators will not be duplicated, which we
should be able to reduce, and which generators projective head reduction does
reduce. In particular, to interpret call-by-value probabilistic reduction in Sec-
tion 7, we would like to reduce under other generators. However, permutative
reduction does not permit exchanging generators, and so only simulates reducing
in head position. While (independent) probabilistic events are generally consid-
ered interchangeable, it is a question whether the below equivalence is desirable.

a . b . N
?∼ b . a . N (4)

We elide the issue by externalizing probabilistic events, and reducing with refer-
ence to a predetermined binary stream s ∈ {0, 1}N representing their outcomes.
In this way, we will preserve the intuitions of both permutative and projective
reduction: we obtain a qualified version of the equivalence (4) (see (5) below),
and will be able to reduce any generator on the spine of a term: under (other)
generators and choices as well as under abstractions and in function position.

Definition 30. The set of streams is S = {0, 1}N, ranged over by r, s, t, and i · s
denotes a stream with i ∈ {0, 1} as first element and s as the remainder.

Definition 31. The stream labeling Ns of a term N with a stream s ∈ S, which
annotates generators as a

i with i ∈ {0, 1} and variables as xs with a stream

s, is given inductively below. We lift β-reduction to stream-labeled terms by
introducing a substitution case for stream-labeled variables: xs[M/x] = Ms.

(λx.N)s = λx.Ns ( a . N)i·s = a
i. Ns

(N M)s = Ns M (N
a⊕M)s = Ns a⊕Ms

Definition 32. Projective reduction π on stream-labeled terms is the rewrite
relation given by

a
i. N π πa

i (N) .

Observe that in Ns a generator that occurs under n other generators on the
spine of N , is labeled with the element of s at position n + 1. Generators in
argument position remain unlabeled, until a β-step places them on the spine,
in which case they become labeled by the new substitution case. We allow to
annotate a term with a finite prefix of a stream, e.g. N i with a singleton i, so that
only part of the spine is labeled. Subsequent labeling of a partly labeled term is
then by (Nr)s = Nr·s (abusing notation). To introduce streams via the external

150 U. Dal Lago et al.



probabilistic sum, and to ignore an unused remaining stream after completing a
probabilistic computation, we adopt the following equation.

N = N0 +N1

Proposition 33. Projective reduction generalizes projective head reduction:

H[ a . N ] = H[ a
0. N ] +H[ a

1. N ] π H[πa
0 (N)] +H[πa

1 (N)] .

Returning to the interchangeability of probabilistic events, we refine (4) by
exchanging the corresponding elements of the annotating streams:

( a . b . N)i·j·s

( b . a . N)j·i·s

a
i. b

j . Ns

b
j . a

i. Ns

πa
i (π

b
j(N

s))

πb
j(π

a
i (N

s))

π

π

∼
=

=

= (5)

Stream-labeling externalizes all probabilities, making reduction determinis-
tic. This is expressed by the following proposition, that stream-labeling com-
mutes with reduction: if a generator remains unlabeled in M and becomes la-
beled after a reduction step M N , what label it receives is predetermined.
The deep reason is that stream labeling assigns an outcome to each generator in
a way that corresponds to a call-by-name strategy for probabilistic reduction.

Proposition 34. If M N by a step other than �� then Ms Ns.

Remark 35. The statement is false for the �� rule a . N p N (a /∈ fl(N)), as

it removes a generator but not an element from the stream. Arguably, for this
reason the rule should be excluded from the calculus. On the other hand, the
rule is necessary to implement idempotence of ⊕ , rather than just

a⊕ , as follows.

N ⊕N = a . N
a⊕N p a . N p N where a /∈ fl(N)

The below proposition then expresses that projective reduction is an invari-
ant for permutative reduction. If N p M by a step (that is not ��) on a labeled
generator a

i or a corresponding choice
a⊕ , then N and M reduce to a common

term, N π P π M , by the projective steps evaluating a
i.

Proposition 36. Projective reduction is an invariant for permutative reduction,
as follows (with a case for c2 symmetric to c1, and where D[ ] is a context).

a
i. C[N

a⊕N ] a
i. C[N ]

πa
i (C[N ])

p

π π
i

a
i. C[(N0

a⊕M)
a⊕N1] a

i. C[N0
a⊕N1]

πa
i (C[Ni])

p

π π
c1

a
i. C[D[N0

a⊕N1]] a
i. C[D[N0]

a⊕D[N1]]

πa
i (C[D[Ni]])

p

π π
⊕�

Decomposing Probabilistic Lambda-Calculi 151



λx. a
i. N a

i. λx.N

λx. πa
i (N) πa

i (λx.N)

p

π π

=

�λ

( a
i. N)M a

i. NM

πa
i (N)M πa

i (N M)

p

π π

=

�f

7 Call-by-value Interpretation

We consider the interpretation of a call-by-value probabilistic λ-calculus. For
simplicity we will allow duplicating (or deleting) β-redexes, and only restrict
duplicating probabilities; our values V are then just deterministic—i.e. without
choices—terms, possibly applications and not necessarily β-normal (so that our

βv is actually β-reduction on deterministic terms, unlike [9]). We evaluate the
internal probabilistic choice ⊕v to an external probabilistic choice +.

N ····= x | λx.N | MN | M ⊕v N (λx.N)V βv N [V/x]

V,W ····= x | λx.V | VW M ⊕v N v M +N

The interpretation �N�v of a call-by-value term N into ΛPE is given as follows.
First, we translate N to a label-open term �N�open = θ �L P by replacing each
choice ⊕v with one

a⊕ with a unique label, where the label-context θ collects the
labels used. Then �N�v is the label closure �N�v = �θ �L P �, which prefixes P
with a generator a for every a in θ.

Definition 37. (Call-by-value interpretation) The open interpretation �N�open
of a call-by-value term N is as follows, where all labels are fresh, and inductively
�Ni�open = θi �L Pi for i ∈ {1, 2}.

�x�open = �L x �N1N2�open = θ2 · θ1 �L P1P2

�λx.N1�open = θ1 �L λx.P1 �N1 ⊕v N2�open = θ2 · θ1 · a �L P1
a⊕P2

The label closure �θ �L P � is given inductively as follows.

��L P � = P �a · θ �L P � = �θ �L a . P �

The call-by-value interpretation of N is �N�v = ��N�open�.
Our call-by-value reduction may choose an arbitrary order in which to evalu-

ate the choices ⊕v in a term N , but the order of generators in the interpretation
�N�v is necessarily fixed. Then to simulate a call-by-value reduction, we cannot
choose a fixed context stream a priori; all we can say is that for every reduction,
there is some stream that allows us to simulate it. Specifically, a reduction step
C[N0 ⊕v N1] v C[Nj ] where C[ ] is a call-by-value term context is simulated by
the following projective step.

. . . a
i. b

j . c
k . . . D[P0

b⊕P1] π . . . a
i. c

k . . . D[Pj ]

152 U. Dal Lago et al.



Here, �C[N0 ⊕v N1]�open = θ �L D[P0
b⊕P1] with D[ ] a ΛPE-context, and θ giving

rise to the sequence of generators . . . a . b . c . . . in the call-by-value transla-
tion. To simulate the reduction step, if b occupies the n-th position in θ, then the
n-th position in the context stream s must be the element j. Since β-reduction
survives the translation and labeling process intact, we may simulate call-by-
value probabilistic reduction by projective and β-reduction.

Theorem 38. If N v,βv V then �N�sv π,β �V �v for some stream s ∈ S.

8 Conclusions and Future Work

We believe our decomposition of probabilistic choice in λ-calculus to be an ele-
gant and compelling way of restoring confluence, one of the core properties of the
λ-calculus. Our probabilistic event λ-calculus captures traditional call-by-name
and call-by-value probabilistic reduction, and offers finer control beyond those
strategies. Permutative reduction implements a natural and fine-grained equiv-
alence on probabilistic terms as internal rewriting, while projective reduction
provides a complementary and more traditional external perspective.

There are a few immediate areas for future work. Firstly, within probabilistic
λ-calculus, it is worth exploring if our decomposition opens up new avenues in
semantics. Secondly, our approach might apply to probabilistic reasoning more
widely, outside the λ-calculus. Most importantly, we will explore if our approach
can be extended to other computational effects. Our use of streams interprets
probabilistic choice as a read operation from an external source, which means
other read operations can be treated similarly. A complementary treatment of
write operations would allow us to express a considerable range of effects, in-
cluding input/output and state.

Acknowledgments

This work was supported by EPSRC Project EP/R029121/1 Typed Lambda-
Calculi with Sharing and Unsharing. The first author is partially supported by
the ANR project 19CE480014 PPS, the ERC Consolidator Grant 818616 DI-
APASoN, and the MIUR PRIN 201784YSZ5 ASPRA. We thank the referees
for their diligence and their helpful comments. We are grateful to Chris Bar-
rett and—indirectly—Anupam Das for pointing us to Zantema and Van de Pol’s
work [27].

References

1. Avanzini, M., Dal Lago, U., Ghyselen, A.: Type-based complexity analysis of
probabilistic functional programs. In: 34th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2019. pp. 1–13. IEEE Computer Society (2019).
https://doi.org/10.1109/LICS.2019.8785725

2. Barendregt, H.P.: The Lambda Calculus – Its Syntax and Semantics, Studies in
logic and the foundations of mathematics, vol. 103. North-Holland (1984)

Decomposing Probabilistic Lambda-Calculi 153

https://doi.org/10.1109/LICS.2019.8785725


3. Borgström, J., Dal Lago, U., Gordon, A.D., Szymczak, M.: A lambda-calculus
foundation for universal probabilistic programming. In: 21st ACM SIGPLAN In-
ternational Conference on Functional Programming, ICFP 2016. pp. 33–46. ACM
(2016). https://doi.org/10.1145/2951913.2951942

4. Breuvart, F., Dal Lago, U.: On intersection types and probabilistic lambda
calculi. In: roceedings of the 20th International Symposium on Principles and
Practice of Declarative Programming, PPDP 2018. pp. 8:1–8:13. ACM (2018).
https://doi.org/10.1145/3236950.3236968

5. Dal Lago, U., Faggian, C., Valiron, B., Yoshimizu, A.: The geometry of parallelism:
classical, probabilistic, and quantum effects. In: Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL 2017. pp.
833–845. ACM (2017). https://doi.org/10.1145/3009837

6. Dal Lago, U., Grellois, C.: Probabilistic termination by monadic affine sized typing.
ACM Transactions on Programming Languages and Systems 41(2), 10:1–10:65
(2019). https://doi.org/10.1145/3293605

7. Dal Lago, U., Guerrieri, G., Heijltjes, W.: Decomposing probabilistic lambda-
calculi (long version) (2020), https://arxiv.org/abs/2002.08392

8. Dal Lago, U., Sangiorgi, D., Alberti, M.: On coinductive equivalences for higher-
order probabilistic functional programs. In: The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14. pp.
297–308. ACM (2014). https://doi.org/10.1145/2535838.2535872

9. Dal Lago, U., Zorzi, M.: Probabilistic operational semantics for the lambda cal-
culus. RAIRO - Theoretical Informatics and Applications 46(3), 413–450 (2012).
https://doi.org/10.1051/ita/2012012

10. Danos, V., Ehrhard, T.: Probabilistic coherence spaces as a model of higher-
order probabilistic computation. Information and Compututation 209(6), 966–991
(2011). https://doi.org/10.1016/j.ic.2011.02.001

11. de’Liguoro, U., Piperno, A.: Non deterministic extensions of untyped
lambda-calculus. Information and Computation 122(2), 149–177 (1995).
https://doi.org/10.1006/inco.1995.1145

12. Dershowitz, N.: Orderings for term-rewriting systems. Theoretical Computer Sci-
ence 17, 279–301 (1982). https://doi.org/10.1016/0304-3975(82)90026-3

13. Ehrhard, T., Pagani, M., Tasson, C.: Full abstraction for probabilistic PCF. Journal
of the ACM 65(4), 23:1–23:44 (2018). https://doi.org/10.1145/3164540

14. Ehrhard, T., Tasson, C.: Probabilistic call by push value. Logical Methods in Com-
puter Science 15(1) (2019). https://doi.org/10.23638/LMCS-15(1:3)2019

15. Faggian, C., Ronchi Della Rocca, S.: Lambda calculus and probabilis-
tic computation. In: 34th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2019. pp. 1–13. IEEE Computer Society (2019).
https://doi.org/10.1109/LICS.2019.8785699

16. Goubault-Larrecq, J.: A probabilistic and non-deterministic call-by-push-
value language. In: 34th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2019. pp. 1–13. IEEE Computer Society (2019).
https://doi.org/10.1109/LICS.2019.8785809

17. Jones, C., Plotkin, G.D.: A probabilistic powerdomain of evaluations.
In: Proceedings of the Fourth Annual Symposium on Logic in Com-
puter Science (LICS ’89). pp. 186–195. IEEE Computer Society (1989).
https://doi.org/10.1109/LICS.1989.39173

18. Jung, A., Tix, R.: The troublesome probabilistic powerdomain. Electronic Notes
in Theoretical Computer Science 13, 70–91 (1998). https://doi.org/10.1016/S1571-
0661(05)80216-6

154 U. Dal Lago et al.

https://doi.org/10.1145/2951913.2951942
https://doi.org/10.1145/3236950.3236968
https://doi.org/10.1145/3009837
https://doi.org/10.1145/3293605
https://arxiv.org/abs/2002.08392
https://doi.org/10.1145/2535838.2535872
https://doi.org/10.1051/ita/2012012
https://doi.org/10.1016/j.ic.2011.02.001
https://doi.org/10.1006/inco.1995.1145
https://doi.org/10.1016/0304-3975(82)90026-3
https://doi.org/10.1145/3164540
https://doi.org/10.23638/LMCS-15(1:3)2019
https://doi.org/10.1109/LICS.2019.8785699
https://doi.org/10.1109/LICS.2019.8785809
https://doi.org/10.1109/LICS.1989.39173
https://doi.org/10.1016/S1571-0661(05)80216-6
https://doi.org/10.1016/S1571-0661(05)80216-6


19. Leventis, T.: Probabilistic Böhm trees and probabilistic separation. In: Pro-
ceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS 2018. pp. 649–658. IEEE Computer Society (2018).
https://doi.org/10.1145/3209108.3209126

20. Leventis, T.: A deterministic rewrite system for the probabilistic λ-calculus.
Mathematical Structures in Computer Science 29(10), 1479–1512 (2019).
https://doi.org/10.1017/S0960129519000045

21. Loader, R.: Notes on simply typed lambda calculus. Reports of the laboratory
for foundations of computer science ECS-LFCS-98-381, University of Edinburgh,
Edinburgh (1998), http://www.lfcs.inf.ed.ac.uk/reports/98/ECS-LFCS-98-381/

22. Manber, U., Tompa, M.: Probabilistic, nondeterministic, and alternating decision
trees. In: 14th Annual ACM Symposium on Theory of Computing. pp. 234–244
(1982). https://doi.org/10.1145/800070.802197

23. Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of probability
distributions. In: Conference Record of POPL 2002: The 29th SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. pp. 154–165. POPL ’02
(2002). https://doi.org/10.1145/503272.503288

24. Saheb-Djahromi, N.: Probabilistic LCF. In: Mathematical Foundations of Com-
puter Science 1978, Proceedings, 7th Symposium. Lecture Notes in Computer Sci-
ence, vol. 64, pp. 442–451. Springer (1978). https://doi.org/10.1007/3-540-08921-
7 92

25. Sangiorgi, D., Vignudelli, V.: Environmental bisimulations for probabilistic higher-
order languages. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2016. pp. 595–607
(2016). https://doi.org/10.1145/2837614.2837651

26. Takahashi, M.: Parallel reductions in lambda-calculus. Information and Computa-
tion 118(1), 120–127 (1995). https://doi.org/10.1006/inco.1995.1057

27. Zantema, H., van de Pol, J.: A rewriting approach to binary decision dia-
grams. The Journal of Logic and Algebraic Programming 49(1-2), 61–86 (2001).
https://doi.org/10.1016/S1567-8326(01)00013-3

Decomposing Probabilistic Lambda-Calculi 155

https://doi.org/10.1145/3209108.3209126
https://doi.org/10.1017/S0960129519000045
http://www.lfcs.inf.ed.ac.uk/reports/98/ECS-LFCS-98-381/
https://doi.org/10.1145/800070.802197
https://doi.org/10.1145/503272.503288
https://doi.org/10.1007/3-540-08921-7_92
https://doi.org/10.1007/3-540-08921-7_92
https://doi.org/10.1145/2837614.2837651
https://doi.org/10.1006/inco.1995.1057
https://doi.org/10.1016/S1567-8326(01)00013-3


Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

156 U. Dal Lago et al.

http://creativecommons.org/licenses/by/4.0/


On the k-synchronizability of Systems

Cinzia Di Giusto (�) , Laetitia Laversa , and Etienne Lozes

Université Côte d’Azur, CNRS, I3S, Sophia Antipolis, France
{cinzia.di-giusto,laetitia.laversa,etienne.lozes}@univ-cotedazur.fr

Abstract. We study k-synchronizability: a system is k-synchronizable
if any of its executions, up to reordering causally independent actions,
can be divided into a succession of k-bounded interaction phases. We
show two results (both for mailbox and peer-to-peer automata): first, the
reachability problem is decidable for k-synchronizable systems; second,
the membership problem (whether a given system is k-synchronizable)
is decidable as well. Our proofs fix several important issues in previous
attempts to prove these two results for mailbox automata.

Keywords: Verification · Communicating Automata · A/Synchronous
communication.

1 Introduction

Asynchronous message-passing is ubiquitous in communication-centric systems;
these include high-performance computing, distributed memory management,
event-driven programming, or web services orchestration. One of the parameters
that play an important role in these systems is whether the number of pending
sent messages can be bounded in a predictable fashion, or whether the buffering
capacity offered by the communication layer should be unlimited. Clearly, when
considering implementation, testing, or verification, bounded asynchrony is pre-
ferred over unbounded asynchrony. Indeed, for bounded systems, reachability
analysis and invariants inference can be solved by regular model-checking [5].
Unfortunately and even if designing a new system in this setting is easier, this is
not the case when considering that the buffering capacity is unbounded, or that
the bound is not known a priori . Thus, a question that arises naturally is how
can we bound the “behaviour” of a system so that it operates as one with un-
bounded buffers? In a recent work [4], Bouajjani et al. introduced the notion of
k-synchronizable system of finite state machines communicating through mail-
boxes and showed that the reachability problem is decidable for such systems.
Intuitively, a system is k-synchronizable if any of its executions, up to reordering
causally independent actions, can be chopped into a succession of k-bounded in-
teraction phases. Each of these phases starts with at most k send actions that are
followed by at most k receptions. Notice that, a system may be k-synchronizable
even if some of its executions require buffers of unbounded capacity.

As explained in the present paper, this result, although valid, is surprisingly
non-trivial, mostly due to complications introduced by the mailbox semantics of

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 157–176, 2020.
https://doi.org/10.1007/978-3-030-45231-5_9

http://orcid.org/0000-0003-1563-6581
http://orcid.org/0000-0003-3775-6496
http://orcid.org/0000-0001-8505-585X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_9&domain=pdf


communications. Some of these complications were missed by Bouajjani et al.
and the algorithm for the reachability problem in [4] suffers from false positives.
Another problem is the membership problem for the subclass of k-synchronizable
systems: for a given k and a given system of communicating finite state machines,
is this system k-synchronizable? The main result in [4] is that this problem is
decidable. However, again, the proof of this result contains an important flaw at
the very first step that breaks all subsequent developments; as a consequence,
the algorithm given in [4] produces both false positives and false negatives.

In this work, we present a new proof of the decidability of the reachability
problem together with a new proof of the decidability of the membership pro-
blem. Quite surprisingly, the reachability problem is more demanding in terms of
causality analysis, whereas the membership problem, although rather intricate,
builds on a simpler dependency analysis. We also extend both decidability results
to the case of peer-to-peer communication.

Outline. Next section recalls the definition of communicating systems and re-
lated notions. In Section 3 we introduce k-synchronizability and we give a graphi-
cal characterisation of this property. This characterisation corrects Theorem 1
in [4] and highlights the flaw in the proof of the membership problem. Next,
in Section 4, we establish the decidability of the reachability problem, which is
the core of our contribution and departs considerably from [4]. In Section 5, we
show the decidability of the membership problem. Section 6 extends previous
results to the peer-to-peer setting. Finally Section 7 concludes the paper dis-
cussing other related works. Proofs and some additional material are available
at https://hal.archives-ouvertes.fr/hal-02272347.

2 Preliminaries

A communicating system is a set of finite state machines that exchange messages:
automata have transitions labelled with either send or receive actions. The paper
mainly considers as communication architecture, mailboxes: i.e., messages await
to be received in FIFO buffers that store all messages sent to a same automaton,
regardless of their senders. Section 6, instead, treats peer-to-peer systems, their
introduction is therefore delayed to that point.

Let V be a finite set of messages and P a finite set of processes. A send
action, denoted send(p, q,v), designates the sending of message v from process
p to process q. Similarly a receive action rec(p, q,v) expresses that process q
is receiving message v from p. We write a to denote a send or receive action.
Let S = {send(p, q,v) | p, q ∈ P,v ∈ V} be the set of send actions and
R = {rec(p, q,v) | p, q ∈ P,v ∈ V} the set of receive actions. Sp and Rp stand
for the set of sends and receives of process p respectively. Each process is encoded
by an automaton and by abuse of notation we say that a system is the parallel
composition of processes.

Definition 1 (System). A system is a tuple S =
(
(Lp, δp, l

0
p) | p ∈ P

)
where,

for each process p, Lp is a finite set of local control states, δp ⊆ (Lp×(Sp∪Rp)×
Lp) is the transition relation (also denoted l

a−→p l′) and l0p is the initial state.

158 C. Di Giusto et al.

https://hal.archives-ouvertes.fr/hal-02272347


Definition 2 (Configuration). Let S =
(
(Lp, δp, l

0
p) | p ∈ P

)
, a configuration

is a pair (�l, Buf) where �l = (lp)p∈P ∈ Πp∈PLp is a global control state of S (a
local control state for each automaton), and Buf = (bp)p∈P ∈ (V∗)P is a vector
of buffers, each bp being a word over V.

We write �l0 to denote the vector of initial states of all processes p ∈ P, and Buf0
stands for the vector of empty buffers. The semantics of a system is defined by
the two rules below.

[SEND]

lp
send(p,q,v)−−−−−−−→p l′p b′q = bq · v

(�l, Buf)
send(p,q,v)−−−−−−−→ (�l[l′p/lp], Buf[b

′
q/bq])

[RECEIVE]

lq
rec(p,q,v)−−−−−−→q l′q bq = v · b′q

(�l, Buf)
rec(p,q,v)−−−−−−→ (�l[l′q/lq], Buf[b

′
q/bq])

A send action adds a message in the buffer b of the receiver, and a receive action
pops the message from this buffer. An execution e = a1 · · · an is a sequence of
actions in S ∪ R such that (�l0, Buf0)

a1−→ · · · an−−→ (�l, Buf) for some �l and Buf.

As usual
e
=⇒ stands for

a1−→ · · · an−−→. We write asEx(S) to denote the set of
asynchronous executions of a system S. In a sequence of actions e = a1 · · · an,
a send action ai = send(p, q,v) is matched by a reception aj = rec(p′, q′,v′)
(denoted by ai �� aj) if i < j, p = p′, q = q′, v = v′, and there is � ≥ 1 such
that ai and aj are the �th actions of e with these properties respectively. A send
action ai is unmatched if there is no matching reception in e. Amessage exchange
of a sequence of actions e is a set either of the form v = {ai, aj} with ai �� aj or
of the form v = {ai} with ai unmatched. For a message vi, we will note vi the
corresponding message exchange. When v is either an unmatched send(p, q,v)
or a pair of matched actions {send(p, q,v), rec(p, q,v)}, we write procS(v) for p
and procR(v) for q. Note that procR(v) is defined even if v is unmatched. Finally,
we write procs(v) for {p} in the case of an unmatched send and {p, q} in the case
of a matched send.

An execution imposes a total order on the actions. We are interested in
stressing the causal dependencies between messages. We thus make use of mes-
sage sequence charts (MSCs) that only impose an order between matched pairs
of actions and between the actions of a same process. Informally, an MSC will be
depicted with vertical timelines (one for each process) where time goes from top
to bottom, that carry some events (points) representing send and receive actions
of this process (see Fig. 1). An arc is drawn between two matched events. We
will also draw a dashed arc to depict an unmatched send event. An MSC is, thus,
a partially ordered set of events, each corresponding to a send or receive action.

Definition 3 (MSC). A message sequence chart is a tuple (Ev, λ,≺), where

– Ev is a finite set of events,
– λ : Ev → S ∪R tags each event with an action,
– ≺= (≺po ∪ ≺src)

+ is the transitive closure of ≺po and ≺src where:
• ≺po is a partial order on Ev such that, for all process p, ≺po induces a

total order on the set of events of process p, i.e., on λ−1(Sp ∪Rp)

On the k-synchronizability of Systems 159



p q r

v1

�
v2

(a)

p q r

v1

v2

�
v3

(b)

p q r

v1

v2

v3

(c)

v1 v2

v3

RS

SR

SS
SR

(d)

Fig. 1: (a) and (b): two MSCs that violate causal delivery. (c) and (d): an MSC
and its conflict graph

• ≺src is a binary relation that relates each receive event to its preceding
send event :
∗ for all events r ∈ λ−1(R), there is exactly one events s such that

s ≺src r
∗ for all events s ∈ λ−1(S), there is at most one event r such that

s ≺src r
∗ for any two events s, r such that s ≺src r, there are p, q,v such that

λ(s) = send(p, q,v) and λ(r) = rec(p, q,v).

We identify MSCs up to graph isomorphism (i.e., we view an MSC as a labeled
graph). For a given well-formed (i.e., each reception is matched) sequence of
actions e = a1 . . . an, we let msc(e) be the MSC where Ev = [1..n], ≺po is the
set of pairs of indices (i, j) such that i < j and {ai, aj} ⊆ Sp ∪ Rp for some
p ∈ P (i.e., ai and aj are actions of a same process), and ≺src is the set of pairs
of indices (i, j) such that ai �� aj . We say that e = a1 . . . an is a linearisation
of msc(e), and we write asTr(S) to denote {msc(e) | e ∈ asEx(S)} the set of
MSCs of system S.

Mailbox communication imposes a number of constraints on what and when
messages can be read. The precise definition is given below, we now discuss some
of the possible scenarios. For instance: if two messages are sent to a same process,
they will be received in the same order as they have been sent. As another
example, unmatched messages also impose some constraints: if a process p sends
an unmatched message to r, it will not be able to send matched messages to r
afterwards (Fig. 1a); or similarly, if a process p sends an unmatched message to
r, any process q that receives subsequent messages from p will not be able to
send matched messages to r afterwards (Fig. 1b). When an MSC satisfies the
constraint imposed by mailbox communication, we say that it satisfies causal
delivery. Notice that, by construction, all executions satisfy causal delivery.

Definition 4 (Causal Delivery). Let (Ev, λ,≺) be an MSC. We say that it
satisfies causal delivery if the MSC has a linearisation e = a1 . . . an such that for
any two events i ≺ j such that ai = send(p, q,v) and aj = send(p′, q,v′), either
aj is unmatched, or there are i′, j′ such that ai �� ai′ , aj �� aj′ , and i′ ≺ j′.

Our definition enforces the following intuitive property.

160 C. Di Giusto et al.



Proposition 1. An MSC msc satisfies causal delivery if and only if there is a
system S and an execution e ∈ asEx(S) such that msc = msc(e).

We now recall from [4] the definition of conflict graph depicting the causal
dependencies between message exchanges. Intuitively, we have a dependency

whenever two messages have a process in common. For instance an
SS−→ depen-

dency between message exchanges v and v′ expresses the fact that v′ has been
sent after v, by the same process.

Definition 5 (Conflict Graph). The conflict graph CG(e) of a sequence of

actions e = a1 · · · an is the labeled graph (V, {XY−→}X,Y ∈{R,S}) where V is the set
of message exchanges of e, and for all X,Y ∈ {S,R}, for all v, v′ ∈ V , there is

a XY dependency edge v
XY−→ v′ between v and v′ if there are i < j such that

{ai} = v ∩X, {aj} = v′ ∩ Y , and procX(v) = procY (v
′).

Notice that each linearisation e of an MSC will have the same conflict graph.
We can thus talk about an MSC and the associated conflict graph. (As an exam-
ple see Figs. 1c and 1d.)

We write v → v′ if v XY−→ v′ for some X,Y ∈ {R,S}, and v →∗ v′ if there is
a (possibly empty) path from v to v′.

3 k-synchronizable Systems

In this section, we define k-synchronizable systems. The main contribution of
this part is a new characterisation of k-synchronizable executions that corrects
the one given in [4].

In the rest of the paper, k denotes a given integer k ≥ 1. A k-exchange
denotes a sequence of actions starting with at most k sends and followed by at
most k receives matching some of the sends. An MSC is k-synchronous if there
exists a linearisation that is breakable into a sequence of k-exchanges, such that
a message sent during a k-exchange cannot be received during a subsequent one:
either it is received during the same k-exchange, or it remains orphan forever.

Definition 6 (k-synchronous). An MSC msc is k-synchronous if:

1. there exists a linearisation of msc e = e1 · e2 · · · en where for all i ∈ [1..n],
ei ∈ S≤k ·R≤k,

2. msc satisfies causal delivery,
3. for all j, j′ such that aj �� aj′ holds in e, aj �� aj′ holds in some ei.

An execution e is k-synchronizable if msc(e) is k-synchronous.

We write sTrk(S) to denote the set {msc(e) | e ∈ asEx(S) and msc(e) is
k-synchronous}.
Example 1 (k-synchronous MSCs and k-synchronizable Executions).

On the k-synchronizability of Systems 161



p q r

v
0

v1v2

v3

v4

(a)

p q r

v1

v2

v3

(b)

p q r s

v
1v2

v3

v4

v5

(c) (d)

v1v2 v3

v4 v5

SR SR

S
S

RR

R
R

R
R

S
S

RR

Fig. 2: (a) the MSC of Example 1.1. (b) the MSC of Example 1.2. (c) the MSC
of Example 2 and (d) its conflict graph.

1. There is no k such that the MSC in Fig. 2a is k-synchronous. All messages
must be grouped in the same k-exchange, but it is not possible to schedule
all the sends first, because the reception of v1 happens before the sending of
v3. Still, this MSC satisfies causal delivery.

2. Let e1 = send(r, q,v3)·send(q, p,v2)·send(p, q,v1)·rec(q, p,v2)·rec(r, q,v3)
be an execution. Its MSC, msc(e1) depicted in Fig. 2b satisfies causal deliv-
ery. Notice that e1 can not be divided in 1-exchanges. However, if we consider
the alternative linearisation of msc(e1): e2 = send(p, q,v1) · send(q, p,v2) ·
rec(q, p,v2) · send(r, q,v3) · rec(r, q,v3), we have that e2 is breakable into 1-
exchanges in which each matched send is in a 1-exchange with its reception.
Therefore, msc(e1) is 1-synchronous and e1 is 1-synchronizable. Remark that
e2 is not an execution and there exists no execution that can be divided into
1-exchanges. A k-synchronous MSC highlights dependencies between mes-
sages but does not impose an order for the execution.

Comparison with [4]. In [4], the authors define set sExk(S) as the set of k-
synchronous executions of system S in the k-synchronous semantics. Nonetheless
as remarked in Example 1.2 not all executions of a system can be divided into
k-exchanges even if they are k-synchronizable. Thus, in order not to lose any
executions, we have decided to reason only on MSCs (called traces in [4]).

Following standard terminology, we say that a set U ⊆ V of vertices is a
strongly connected component (SCC) of a given graph (V,→) if between any two
vertices v, v′ ∈ U , there exist two oriented paths v →∗ v′ and v′ →∗ v. The
statement below fixes some issues with Theorem 1 in [4].

Theorem 1 (Graph Characterisation of k-synchronous MSCs). Let msc
be a causal delivery MSC. msc is k-synchronous iff every SCC in its conflict
graph is of size at most k and if no RS edge occurs on any cyclic path.

Example 2 (A 5-synchronous MSC). Fig. 2c depicts a 5-synchronous MSC, that
is not 4-synchronous. Indeed, its conflict graph (Fig. 2d) contains a SCC of size
5 (all vertices are on the same SCC).

162 C. Di Giusto et al.



Comparison with [4]. Bouajjani et al. give a characterisation of k-synchronous
executions similar to ours, but they use the word cycle instead of SCC, and
the subsequent developments of the paper suggest that they intended to say
Hamiltonian cycle (i.e., a cyclic path that does not go twice through the same
vertex). It is not the case that a MSC is k-synchronous if and only if every
Hamiltonian cycle in its conflict graph is of size at most k and if no RS edge
occurs on any cyclic path. Indeed, consider again Example 2. This graph is not
Hamiltonian, and the largest Hamiltonian cycle indeed is of size 4 only. But as we
already discussed in Example 2, the corresponding MSC is not 4-synchronous.

As a consequence, the algorithm that is presented in [4] for deciding whether
a system is k-synchronizable is not correct as well: the MSC of Fig. 2c would be
considered 4-synchronous according to this algorithm, but it is not.

4 Decidability of Reachability for k-synchronizable
Systems

We show that the reachability problem is decidable for k-synchronizable systems.
While proving this result, we have to face several non-trivial aspects of causal
delivery that were missed in [4] and that require a completely new approach.

Definition 7 (k-synchronizable System). A system S is k-synchronizable
if all its executions are k-synchronizable, i.e., sTrk(S) = asTr(S).

In other words, a system S is k-synchronizable if for every execution e of S,
msc(e) may be divided into k-exchanges.

Remark 1. In particular, a system may be k-synchronizable even if some of its
executions fill the buffers with more than k messages. For instance, the only
linearisation of the 1-synchronous MSC Fig. 2b that is an execution of the system
needs buffers of size 2.

For a k-synchronizable system, the reachability problem reduces to the rea-
chability through a k-synchronizable execution. To show that k-synchronous
reachability is decidable, we establish that the set of k-synchronous MSCs is
regular. More precisely, we want to define a finite state automaton that accepts
a sequence e1 · e2 · · · en of k-exchanges if and only if they satisfy causal delivery.

We start by giving a graph-theoretic characterisation of causal delivery. For

this, we define the extended edges v
XY
��� v′ of a given conflict graph. The relation

XY
��� is defined in Fig. 3 with X,Y ∈ {S,R}. Intuitively, v XY

��� v′ expresses that
event X of v must happen before event Y of v′ due to either their order on
the same machine (Rule 1), or the fact that a send happens before its matching
receive (Rule 2), or due to the mailbox semantics (Rules 3 and 4), or because
of a chain of such dependencies (Rule 5). We observe that in the extended con-
flict graph, obtained applying such rules, a cyclic dependency appears whenever
causal delivery is not satisfied.

On the k-synchronizability of Systems 163



v1
XY−→ v2(Rule 1)

v1
XY
��� v2

v ∩R �= ∅
(Rule 2)

v
SR
��� v

v1
RR−→ v2(Rule 3)

v1
SS
��� v2

v1 ∩R �= ∅ v2 ∩R = ∅
procR(v1) = procR(v2)

(Rule 4)
v1

SS
��� v2

v1
XY
���

Y Z
��� v2(Rule 5)

v1
XZ
��� v2

Fig. 3: Deduction rules for extended dependency edges of the conflict graph

Example 3. Fig. 5a and 5b depict an MSC and its associated conflict graph with
some extended edges. This MSC violates causal delivery and there is a cyclic

dependency v1
SS
��� v1.

Theorem 2 (Graph-theoretic Characterisation of Causal Delivery). An
MSC satisfies causal delivery iff there is no cyclic causal dependency of the form

v
SS
��� v for some vertex v of its extended conflict graph.

Let us now come back to our initial problem: we want to recognise with finite
memory the sequences e1, e2 . . . en of k-exchanges that composed give an MSC
that satisfies causal delivery. We proceed by reading each k-exchange one by one
in sequence. This entails that, at each step, we have only a partial view of the
global conflict graph. Still, we want to determine whether the acyclicity condition
of Theorem 2 is satisfied in the global conflict graph. The crucial observation
is that only the edges generated by Rule 4 may “go back in time”. This means
that we have to remember enough information from the previously examined k-
exchanges to determine whether the current k-exchange contains a vertex v that
shares an edge with some unmatched vertex v′ seen in a previous k-exchange
and whether this could participate in a cycle. This is achieved by computing two
sets of processes CS,p and CR,p that collect the following information: a process
q is in CS,p if it performs a send action causally after an unmatched send to
p, or it is the sender of the unmatched send; a process q belongs to CR,p if it
receives a message that was sent after some unmatched message directed to p.
More precisely, we have:

CS,p = {procS(v) | v′
SS
��� v & v′ is unmatched & procR(v

′) = p}
CR,p = {procR(v) | v′

SS
��� v & v′ is unmatched & procR(v

′) = p & v ∩R = ∅}
These sets abstract and carry from one k-exchange to another the necessary

information to detect violations of causal delivery. We compute them in any local
conflict graph of a k-exchange incrementally, i.e., knowing what they were at the
end of the previous k-exchange, we compute them at the end of the current one.
More precisely, let e = s1 · · · sm · r1 · · · rm′ be a k-exchange, CG(e) = (V,E) its
conflict graph and B : P → (2P × 2P) the function that associates to each p ∈ P
the two sets B(p) = (CS,p, CR,p). Then, the conflict graph CG(e,B) is the graph
(V ′, E′) with V ′ = V ∪ {ψp | p ∈ P} and E′ ⊇ E as defined below. For each
process p ∈ P, the “summary node” ψp shall account for all past unmatched

164 C. Di Giusto et al.



e = s1 · · · sm · r1 · · · rm′ s1 · · · sm ∈ S∗ r1 · · · rm′ ∈ R∗ 0 ≤ m′ ≤ m ≤ k

(�l, Buf0)
e
=⇒ (�l′, Buf) for some Buf

for all p ∈ P B(p) = (CS,p, CR,p) and B′(p) = (C′
S,p, C

′
R,p),

Unmp = {ψp} ∪ {v | v is unmatched, procR(v) = p}
C′

X,p = CX,p ∪ {p | p ∈ CX,q, v
SS
��� ψq, (procR(v) = p or v = ψp)} ∪

{procX(v) | v ∈ Unmp ∩ V,X = S} ∪ {procX(v′) | v SS
��� v′, v ∈ Unmp, v ∩X �= ∅}

for all p ∈ P, p �∈ C′
R,p

(�l, B)
e,k
==⇒
cd

(�l′, B′)

Fig. 4: Definition of the relation
e,k
==⇒
cd

messages sent to p that occurred in some k-exchange before e. E′ is the set E

of edges
XY−→ among message exchanges of e, as in Definition 5, augmented with

the following set of extra edges that takes into account summary nodes.

{ψp
SX−→ v | procX(v) ∈ CS,p & v ∩X = ∅ for some X ∈ {S,R}} (1)

∪ {ψp
SS−→ v | procX(v) ∈ CR,p & v ∩R = ∅ for some X ∈ {S,R}} (2)

∪ {ψp
SS−→ v | procR(v) ∈ CR,p & v is unmatched} (3)

∪ {v SS−→ ψp | procR(v) = p & v ∩R = ∅} ∪ {ψq
SS−→ ψp | p ∈ CR,q} (4)

These extra edges summarise/abstract the connections to and from previous

k-exchanges. Equation (1) considers connections
SS−→ and

SR−→ that are due to
two sends messages or, respectively, a send and a receive on the same process.

Equations (2) and (3) considers connections
RR−→ and

RS−→ that are due to two
received messages or, respectively, a receive and a subsequent send on the same
process. Notice how the rules in Fig. 3 would then imply the existence of a

connection
SS
���, in particular Equation (3) abstract the existence of an edge

SS
���

built because of Rule 4. Equations in (4) abstract edges that would connect the
current k-exchange to previous ones. As before those edges in the global conflict
graph would correspond to extended edges added because of Rule 4 in Fig. 3.
Once we have this enriched local view of the conflict graph, we take its extended

version. Let
XY
��� denote the edges of the extended conflict graph as defined from

rules in Fig. 3 taking into account the new vertices ψp and their edges.

Finally, let S be a system and
e,k
==⇒
cd

be the transition relation given in Fig. 4

among abstract configurations of the form (�l, B). �l is a global control state of
S and B : P → (

2P × 2P
)
is the function defined above that associates to each

process p a pair of sets of processes B(p) = (CS,p, CR,p). Transition
e,k
==⇒
cd

updates

these sets with respect to the current k-exchange e. Causal delivery is verified by
checking that for all p ∈ P, p ∈ C ′

R,p meaning that there is no cyclic dependency

On the k-synchronizability of Systems 165



v1

v2

v3

v4

SS

RR

SS

SS

SS

SS

SS

(b)

p q r s

v1

v2

v3

v4

e1

e2

(a)

v1

v2

SS SS

CS,r = ∅
CR,r = ∅
C′

S,r = {q}
C′

R,r = {s}

(c)

v3

v4

ψr

SS

RR

SS

SS

SS

CS,r = {q}
CR,r = {s}
C′

S,r = {p, q}
C′

R,r = {s, r}

Fig. 5: (a) an MSC (b) its associated global conflict graph, (c) the conflict graphs
of its k-exchanges

as stated in Theorem 2. The initial state is (�l0, B0), where B0 : P → (2P × 2P)
denotes the function such that B0(p) = (∅, ∅) for all p ∈ P.

Example 4 (An Invalid Execution). Let e = e1 · e2 with e1 and e2 the two
2-exchanges of this execution. such that e1 = send(q, r,v1) · send(q, s,v2) ·
rec(q, s,v2) and e2 = send(p, s,v3) · rec(p, s,v3) · send(p, r,v4) · rec(p, r,v4).
Fig. 5a and 5c show the MSC and corresponding conflict graph of each of the
2-exchanges. Note that two edges of the global graph (in blue) “go across” k-
exchanges. These edges do not belong to the local conflict graphs and are mim-
icked by the incoming and outgoing edges of summary nodes. The values of
sets CS,r and CR,r at the beginning and at the end of the k-exchange are given
on the right. All other sets CS,p and CR,p for p = r are empty, since there is
only one unmatched message to process r. Notice how at the end of the second
k-exchange, r ∈ C ′

R,r signalling that message v4 violates causal delivery.

Comparison with [4]. In [4] the authors define
e,k
==⇒
cd

in a rather different way:

they do not explicitly give a graph-theoretic characterisation of causal delivery;
instead they compute, for every process p, the set B(p) of processes that either
sent an unmatched message to p or received a message from a process in B(p).
They then make sure that any message sent to p by a process q ∈ B(p) is
unmatched. According to that definition, the MSC of Fig. 5b would satisfy causal
delivery and would be 1-synchronous. However, this is not the case (this MSC
does not satisfy causal delivery) as we have shown in Example 3. Due to to the
above errors, we had to propose a considerably different approach. The extended
edges of the conflict graph, and the graph-theoretic characterisation of causal
delivery as well as summary nodes, have no equivalent in [4].

Next lemma proves that Fig. 4 properly characterises causal delivery.

166 C. Di Giusto et al.



Lemma 1. An MSC msc is k-synchronous iff there is e = e1 · · · en a lineari-

sation such that (�l0, B0)
e1,k
==⇒
cd

· · · en,k
==⇒
cd

(�l′, B′) for some global state �l′ and some

B′ : P → (2P × 2P).

Note that there are only finitely many abstract configurations of the form
(�l, B) with �l a tuple of control states and B : P → (2P × 2P). Moreover, since V
is finite, the alphabet over the possible k-exchange for a given k is also finite.

Therefore
e,k
==⇒
cd

is a relation on a finite set, and the set sTrk(S) of k-synchronous

MSCs of a system S forms a regular language. It follows that it is decidable
whether a given abstract configuration of the form (�l, B) is reachable from the
initial configuration following a k-synchronizable execution.

Theorem 3. Let S be a k-synchronizable system and �l a global control state of
S. The problem whether there exists e ∈ asEx(S) and Buf such that (�l0, Buf0)

e
=⇒

(�l, Buf) is decidable.

Remark 2. Deadlock-freedom, unspecified receptions, and absence of orphan mes-
sages are other properties that become decidable for a k-synchronizable system
because of the regularity of the set of k-synchronous MSCs.

5 Decidability of k-synchronizability for Mailbox Systems

We establish the decidability of k-synchronizability; our approach is similar to
the one of [4] based on the notion of borderline violation, but we adjust it to
adapt to the new characterisation of k-synchronizable executions (Theorem 1).

Definition 8 (Borderline Violation). A non k-synchronizable execution e is
a borderline violation if e = e′ · r, r is a reception and e′ is k-synchronizable.

Note that a system S that is not k-synchronizable always admits at least one
borderline violation e′ · r ∈ asEx(S) with r ∈ R: indeed, there is at least one
execution e ∈ asEx(S) which contains a unique minimal prefix of the form e′ · r
that is not k-synchronizable; moreover since e′ is k-synchronizable, r cannot be a
k-exchange of just one send action, therefore it must be a receive action. In order
to find such a borderline violation, Bouajjani et al. introduced an instrumented
system S′ that behaves like S, except that it contains an extra process π, and
such that a non-deterministically chosen message that should have been sent
from a process p to a process q may now be sent from p to π, and later forwarded
by π to q. In S′, each process p has the possibility, instead of sending a message
v to q, to deviate this message to π; if it does so, p continues its execution as if it
really had sent it to q. Note also that the message sent to π get tagged with the
original destination process q. Similarly, for each possible reception, a process
has the possibility to receive a given message not from the initial sender but from
π. The process π has an initial state from which it can receive any messages from
the system. Each reception makes it go into a different state. From this state,

On the k-synchronizability of Systems 167



it is able to send the message back to the original recipient. Once a message
is forwarded, π reaches its final state and remains idle. The following example
illustrates how the instrumented system works.

Example 5 (A Deviated Message).
Let e1, e2 be two executions of a system S with
MSCs respectively msc(e1) and msc(e2). e1 is not 1-
synchronizable. It is borderline in S. If we delete the last
reception, it becomes indeed 1-synchronizable. msc(e2)
is the MSC obtained from the instrumented system S′

where the message v1 is first deviated to π and then
sent back to q from π.
Note that msc(e2) is 1-synchronous. In this case, the
instrumented system S′ in the 1-synchronous semantics
“reveals” the existence of a borderline violation of S.

msc(e1)

p q
v
1

v2

msc(e2)

p q π
(q,v1)

v2

v1

For each execution e · r ∈ asEx(S) that ends with a reception, there exists
an execution deviate(e · r) ∈ asEx(S′) where the message exchange associated
with the reception r has been deviated to π; formally, if e · r = e1 · s · e2 · r with
r = rec(p, q,v) and s �� r, then

deviate(e·r) = e1·send(p, π, (q,v))·rec(p, π, (q,v))·e2·send(π, q, (v))·rec(π, q,v).

Definition 9 (Feasible Execution, Bad Execution). A k-synchronizable
execution e′ of S′ is feasible if there is an execution e · r ∈ asEx(S) such that
deviate(e ·r) = e′. A feasible execution e′ = deviate(e ·r) of S′ is bad if execution
e · r is not k-synchronizable in S.

Example 6 (A Non-feasible Execution).
Let e′ be an execution such that msc(e′) is as depicted
on the right. Clearly, this MSC satisfies causal delivery
and could be the execution of some instrumented system
S′. However, the sequence e·r such that deviate(e·r) = e′

does not satisfy causal delivery, therefore it cannot be
an execution of the original system S. In other words,
the execution e′ is not feasible.

msc(e′)

p q π
(q,v1)

v2

v1

msc(e · r)

p q

v
1

v2

Lemma 2. A system S is not k-synchronizable iff there is a k-synchronizable
execution e′ of S′ that is feasible and bad.

As we have already noted, the set of k-synchronous MSCs of S′ is regular.
The decision procedure for k-synchronizability follows from the fact that the
set of MSCs that have as linearisation a feasible bad execution as we will see,
is regular as well, and that it can be recognised by an (effectively computable)
non-deterministic finite state automaton. The decidability of k-synchronizability
follows then from Lemma 2 and the decidability of the emptiness problem for
non-deterministic finite state automata.

168 C. Di Giusto et al.



Recognition of Feasible Executions. We start with the automaton that
recognises feasible executions; for this, we revisit the construction we just used
for recognising sequences of k-exchanges that satisfy causal delivery.

In the remainder, we assume an execution e′ ∈ asEx(S′) that contains
exactly one send of the form send(p, π, (q,v)) and one reception of the form

rec(π, q,v), this reception being the last action of e′. Let (V, {XY−→}X,Y ∈{R,S}) be
the conflict graph of e′. There are two uniquely determined vertices υstart, υstop ∈
V such that procR(υstart) = π and procS(υstop) = π that correspond, respectively,
to the first and last message exchanges of the deviation. The conflict graph of
e · r is then obtained by merging these two nodes.

Lemma 3. The execution e′ is not feasible iff there is a vertex v in the conflict

graph of e′ such that υstart
SS
��� v

RR−→ υstop.

In order to decide whether an execution e′ is feasible, we want to forbid that
a send action send(p′, q,v′) that happens causally after υstart is matched by a
receive rec(p′, q,v′) that happens causally before the reception υstop. As a matter
of fact, this boils down to deal with the deviated send action as an unmatched
send. So we will consider sets of processes Cπ

S and Cπ
R similar to the ones used

for
e,k
==⇒
cd

, but with the goal of computing which actions happen causally after the

send to π. We also introduce a summary node ψstart and the extra edges following
the same principles as in the previous section. Formally, let B : P → (2P × 2P),
Cπ

S , C
π
R ⊆ P and e ∈ S≤kR≤k be fixed, and let CG(e,B) = (V ′, E′) be the

constraint graph with summary nodes for unmatched sent messages as defined
in the previous section. The local constraint graph CG(e,B,Cπ

S , C
π
R) is defined

as the graph (V ′′, E′′) where V ′′ = V ′ ∪ {ψstart} and E′′ is E′ augmented with

{ψstart
SX−→ v | procX(v) ∈ Cπ

S & v ∩X = ∅ for some X ∈ {S,R}}
∪ {ψstart

SS−→ v | procX(v) ∈ Cπ
R & v ∩R = ∅ for some X ∈ {S,R}}

∪ {ψstart
SS−→ v | procR(v) ∈ Cπ

R & v is unmatched} ∪ {ψstart
SS−→ ψp | p ∈ Cπ

R}

As before, we consider the “closure”
XY
��� of these edges by the rules of Fig. 3.

The transition relation
e,k

===⇒
feas

is defined in Fig. 6. It relates abstract configurations

of the form (�l, B, �C, destπ) with �C = (CS,π, CR,π) and destπ ∈ P∪{⊥} storing to
whom the message deviated to π was supposed to be delivered. Thus, the initial
abstract configuration is (l0, B0, (∅, ∅),⊥), where ⊥ means that the processus
destπ has not been determined yet. It will be set as soon as the send to process
π is encountered.

Lemma 4. Let e′ be an execution of S′. Then e′ is a k-synchronizable feasible
execution iff there are e′′ = e1 · · · en · send(π, q,v) · rec(π, q,v) with e1, . . . , en ∈
S≤kR≤k, B′ : P → 2P, �C ′ ∈ (2P)2, and a tuple of control states �l′ such that
msc(e′) = msc(e′′), π ∈ CR,q (with B′(q) = (CS,q, CR,q)), and

(�l0, B0, (∅, ∅),⊥)
e1,k
===⇒
feas

. . .
en,k
===⇒
feas

(�l′, B′, �C ′, q).

On the k-synchronizability of Systems 169



(�l, B)
e,k
==⇒
cd

(�l′, B′) e = a1 · · · an (∀v) procS(v) �= π

(∀v, v′) procR(v) = procR(v
′) = π =⇒ v = v′ ∧ destπ = ⊥

(∀v) v  send(p, π, (q,v)) =⇒ dest′π = q destπ �= ⊥ =⇒ dest′π = destπ

Cπ
X

′ = Cπ
X ∪ {procX(v′) | v SS

��� v′ & v′ ∩X �= ∅ & (procR(v) = π or v = ψstart)}
∪ {procS(v) | procR(v) = π & X = S}

∪ {p | p ∈ CX,q & v
SS
��� ψq & (procR(v) = π or v = ψstart)}

dest′π �∈ Cπ
R

′

(�l, B,Cπ
S , C

π
R, destπ)

e,k
===⇒
feas

(�l′, B′, Cπ
S
′, Cπ

R
′, dest′π)

Fig. 6: Definition of the relation
e,k

===⇒
feas

Comparison with [4]. In [4] the authors verify that an execution is feasible with
a monitor which reviews the actions of the execution and adds processes that
no longer are allowed to send a message to the receiver of π. Unfortunately, we
have here a similar problem that the one mentioned in the previous comparison
paragraph. According to their monitor, the following execution e′ = deviate(e ·r)
is feasible, i.e., is runnable in S′ and e · r is runnable in S.

e′ = send(q, π, (r,v1)) · rec(q, π, (r,v1)) · send(q, s,v2) · rec(q, s,v2)·
send(p, s,v3) · rec(p, s,v3) · send(p, r,v4) · rec(p, r,v4)·
send(π, r,v1) · rec(π, r,v4)

However, this execution is not feasible because there is a causal dependency
between v1 and v3. In [4] this execution would then be considered as feasible
and therefore would belong to set sTrk(S

′). Yet there is no corresponding exe-
cution in asTr(S), the comparison and therefore the k-synchronizability, could
be distorted and appear as a false negative.

Recognition of Bad Executions. Finally, we define a non-deterministic finite
state automaton that recognizes MSCs of bad executions, i.e., feasible executions
e′ = deviate(e · r) such that e · r is not k-synchronizable. We come back to the

“non-extended” conflict graph, without edges of the form
XY
���. Let Post∗(v) =

{v′ ∈ V | v →∗ v′} be the set of vertices reachable from v, and let Pre∗(v) =
{v′ ∈ V | v′ →∗ v} be the set of vertices co-reachable from v. For a set of vertices
U ⊆ V , let Post∗(U) =

⋃{Post∗(v) | v ∈ U}, and Pre∗(U) =
⋃{Pre∗(v) | v ∈ U}.

Lemma 5. The feasible execution e′ is bad iff one of the two holds

1. υstart −→∗ RS−→−→∗ υstop, or
2. the size of the set Post∗(υstart) ∩ Pre∗(υstop) is greater or equal to k + 2.

In order to determine whether a given message exchange v of CG(e′) should
be counted as reachable (resp. co-reachable), we will compute at the entry and
exit of every k-exchange of e′ which processes are “reachable” or “co-reachable”.

170 C. Di Giusto et al.



Example 7. (Reachable and Co-reachable Processes)

Consider the MSC on the right made of five 1-exchanges.
While sending message (s,v0) that corresponds to υstart,
process r becomes “reachable”: any subsequent message
exchange that involves r corresponds to a vertex of the
conflict graph that is reachable from υstart. While send-
ing v2, process s becomes “reachable”, because process
r will be reachable when it will receive message v2. Sim-
ilary, q becomes reachable after receiving v3 because r
was reachable when it sent v3, and p becomes reachable
after receiving v4 because q was reachable when it sent

msc(e)

p q r s π
(s,v0)

v1

v2

v3

v4

v0

v4. Co-reachability works similarly, but reasoning backwards on the timelines.
For instance, process s stops being “co-reachable” while it receives v0, process
r stops being co-reachable after it receives v2, and process p stops being co-
reachable by sending v1. The only message that is sent by a process being both
reachable and co-reachable at the instant of the sending is v2, therefore it is the
only message that will be counted as contributing to the SCC.

More formally, let e be sequence of actions, CG(e) its conflict graph and

P,Q two sets of processes, Poste(P ) = Post∗
(
{v | procs(v) ∩ P = ∅}

)
and

Pree(Q) = Pre∗
(
{v | procs(v) ∩ Q = ∅}

)
are introduced to represent the local

view through k-exchanges of Post∗(υstart) and Pre∗(υstop). For instance, for e
as in Example 7, we get Poste({π}) = {(s,v0),v2,v3,v4,v0} and Pree({π}) =
{v0,v2,v1, (s,v0)}. In each k-exchange ei the size of the intersection between
Postei(P ) and Preei(Q) will give the local contribution of the current k-exchange

to the calculation of the size of the global SCC. In the transition relation
e,k

===⇒
bad

this value is stored in variable cnt. The last ingredient to consider is to recognise
if an edge RS belongs to the SCC. To this aim, we use a function lastisRec :
P → {True,False} that for each process stores the information whether the last
action in the previous k-exchange was a reception or not. Then depending on
the value of this variable and if a node is in the current SCC or not the value of
sawRS is set accordingly.

The transition relation
e,k

===⇒
bad

defined in Fig. 7 deals with abstract confi-

gurations of the form (P,Q, cnt, sawRS, lastisRec′) where P,Q ⊆ P, sawRS is a
boolean value, and cnt is a counter bounded by k+2. We denote by lastisRec0
the function where all lastisRec(p) = False for all p ∈ P.

Lemma 6. Let e′ be a feasible k-synchronizable execution of S′. Then e′ is a bad
execution iff there are e′′ = e1 · · · en · send(π, q,v) · rec(π, q,v) with e1, . . . , en ∈
S≤kR≤k and msc(e′) = msc(e′′), P ′, Q ⊆ P, sawRS ∈ {True,False}, cnt ∈
{0, . . . , k + 2}, such that

({π}, Q, 0,False, lastisRec0)
e1,k
===⇒
bad

. . .
en,k
===⇒
bad

(P ′, {π}, cnt, sawRS, lastisRec)

On the k-synchronizability of Systems 171



P ′ = procs(Poste(P )) Q = procs(Pree(Q
′))

SCCe = Poste(P ) ∩ Pree(Q
′)

cnt′ = min(k + 2, cnt+ n) where n = |SCCe|
lastisRec′(q) ⇔ (∃v ∈ SCCe.procR(v) = q ∧ v ∩R �= ∅)∨

(lastisRec(q)∧ � ∃v ∈ V.procS(v) = q)

sawRS′ = sawRS∨
(∃v ∈ SCCe)(∃p ∈ P \ {π}) procS(v) = p ∧ lastisRec(p) ∧ p ∈ P ∩Q

(P,Q, cnt, sawRS, lastisRec)
e,k

===⇒
bad

(P ′, Q′, cnt′, sawRS′, lastisRec′)

Fig. 7: Definition of the relation
e,k

===⇒
bad

and at least one of the two holds: either sawRS = True, or cnt = k + 2.

Comparison with [4]. As for the notion of feasibility, to determine if an execution
is bad, in [4] the authors use a monitor that builds a path between the send to
process π and the send from π. In addition to the problems related to the wrong
characterisation of k-synchronizability, this monitor not only can detect an RS
edge when there should be none, but also it can miss them when they exist. In
general, the problem arises because the path is constructed by considering only
an endpoint at the time.

We can finally conclude that:

Theorem 4. The k-synchronizability of a system S is decidable for k ≥ 1.

6 k-synchronizability for Peer-to-Peer Systems

In this section, we will apply k-synchronizability to peer-to-peer systems. A peer-
to-peer system is a composition of communicating automata where each pair of
machines exchange messages via two private FIFO buffers, one per direction of
communication. Here we only give an insight on what changes with respect to
the mailbox setting.

Causal delivery reveals the order imposed by FIFO buffers. Definition 4 must
then be adapted to account for peer-to-peer communication. For instance, two
messages that are sent to a same process p by two different processes can be
received by p in any order, regardless of any causal dependency between the two
sends. Thus, checking causal delivery in peer-to-peer systems is easier than in the
mailbox setting, as we do not have to carry information on causal dependencies.

Within a peer-to-peer architecture, MSCs and conflict graphs are defined
as within a mailbox communication. Indeed, they represents dependencies over
machines, i.e., the order in which the actions can be done on a given machine, and
over the send and the reception of a same message, and they do not depend on
the type of communication. The notion of k-exchange remains also unchanged.

172 C. Di Giusto et al.



Decidability of Reachability for k-synchronizable Peer-to-Peer Sys-
tems. To establish the decidability of reachability for k-synchronizable peer-to-

peer systems, we define a transition relation
e,k
==⇒
cd

p2p

for a sequence of action e

describing a k-exchange. As for mailbox systems, if a send action is unmatched
in the current k-exchange, it will stay orphan forever. Moreover, after a process
p sent an orphan message to a process q, p is forbidden to send any matched
message to q. Nonetheless, as a consequence of the simpler definition of causal
delivery, , we no longer need to work on the conflict graph. Summary nodes and
extended edges are not needed and all the necessary information is in function
B that solely contains all the forbidden senders for process p.

The characterisation of a k-synchronizable execution is the same as for mail-
box systems as the type of communication is not relevant. We can thus conclude,
as within mailbox communication, that reachability is decidable.

Theorem 5. Let S be a k-synchronizable system and �l a global control state of
S. The problem whether there exists e ∈ asEx(S) and Buf such that (�l0, Buf0)

e
=⇒

(�l, Buf) is decidable.

Decidability of k-synchronizability for Peer-to-Peer Systems. As in
mailbox system, the detection of a borderline execution determines whether a
system is k-synchronizable.

The relation transition
e,k

===⇒
feas

p2p

allows to obtain feasible executions. Differ-

ently from the mailbox setting, we need to save not only the recipient destπ but
also the sender of the delayed message (information stored in variable expπ).
The transition rule then checks that there is no message that is violating causal
delivery, i.e., there is no message sent by expπ to destπ after the deviation.
Finally the recognition of bad execution, works in the same way as for mailbox

systems. The characterisation of a bad execution and the definition of
e,k

===⇒
bad

p2p

are, therefore, the same.
As for mailbox systems, we can, thus, conclude that for a given k, k-synchro-

nizability is decidable.

Theorem 6. The k-synchronizability of a system S is decidable for k ≥ 1.

7 Concluding Remarks and Related works

In this paper we have studied k-synchronizability for mailbox and peer-to-peer
systems. We have corrected the reachability and decidability proofs given in [4].
The flaws in [4] concern fundamental points and we had to propose a consid-
erably different approach. The extended edges of the conflict graph, and the
graph-theoretic characterisation of causal delivery as well as summary nodes,

have no equivalent in [4]. Transition relations
e,k

===⇒
feas

and
e,k

===⇒
bad

building on the

On the k-synchronizability of Systems 173



graph-theoretic characterisations of causal delivery and k-synchronizability, de-
part considerably from the proposal in [4].

We conclude by commenting on some other related works. The idea of “com-
munication layers” is present in the early works of Elrad and Francez [8] or Chou
and Gafni [7]. More recently, Chaouch-Saad et al. [6] verified some consensus al-
gorithms using the Heard-Of Model that proceeds by “communication-closed
rounds”. The concept that an asynchronous system may have an “equivalent”
synchronous counterpart has also been widely studied. Lipton’s reduction [14]
reschedules an execution so as to move the receive actions as close as possible
from their corresponding send. Reduction recently received an increasing interest
for verification purpose, e.g. by Kragl et al. [12], or Gleissenthal et al. [11].

Existentially bounded communication systems have been studied by Ge-
nest et al. [10,15]: a system is existentially k-bounded if any execution can be
rescheduled in order to become k-bounded. This approach targets a broader class
of systems than k-synchronizability, because it does not require that the execu-
tion can be chopped in communication-closed rounds. In the perspective of the
current work, an interesting result is the decidability of existential k-boundedness
for deadlock-free systems of communicating machines with peer-to-peer channels.
Despite the more general definition, these older results are incomparable with
the present ones, that deal with systems communicating with mailboxes, and
not peer-to-peer channels.

Basu and Bultan studied a notion they also called synchronizability, but it
differs from the notion studied in the present work; synchronizability and k-
synchronizability define incomparable classes of communicating systems. The
proofs of the decidability of synchronizability [3,2] were shown to have flaws by
Finkel and Lozes [9]. A question left open in their paper is whether synchroni-
zability is decidable for mailbox communications, as originally claimed by Basu
and Bultan. Akroun and Salaün defined also a property they called stability [1]
and that shares many similarities with the synchronizability notion in [2].

Context-bounded model-checking is yet another approach for the automatic
verification of concurrent systems. La Torre et al. studied systems of commu-
nicating machines extended with a calling stack, and showed that under some
conditions on the interplay between stack actions and communications, context-
bounded reachability was decidable [13]. A context-switch is found in an exe-
cution each time two consecutive actions are performed by a different partici-
pant. Thus, while k-synchronizability limits the number of consecutive sendings,
bounded context-switch analysis limits the number of times two consecutive ac-
tions are performed by two different processes.

As for future work, it would be interesting to explore how both context-
boundedness and communication-closed rounds could be composed. Moreover
refinements of the definition of k-synchronizability can also be considered. For
instance, we conjecture that the current development can be greatly simplified
if we forbid linearisation that do not correspond to actual executions.

174 C. Di Giusto et al.



References

1. Akroun, L., Salaün, G.: Automated verification of automata communicating via
FIFO and bag buffers. Formal Methods in System Design 52(3), 260–276 (2018).
https://doi.org/10.1007/s10703-017-0285-8

2. Basu, S., Bultan, T.: On deciding synchronizability for asynchronously
communicating systems. Theor. Comput. Sci. 656, 60–75 (2016).
https://doi.org/10.1016/j.tcs.2016.09.023

3. Basu, S., Bultan, T., Ouederni, M.: Synchronizability for verification of asyn-
chronously communicating systems. In: Kuncak, V., Rybalchenko, A. (eds.) Verifi-
cation, Model Checking, and Abstract Interpretation - 13th International Con-
ference, VMCAI 2012, Philadelphia, PA, USA, January 22-24, 2012. Proceed-
ings. Lecture Notes in Computer Science, vol. 7148, pp. 56–71. Springer (2012).
https://doi.org/10.1007/978-3-642-27940-9 5

4. Bouajjani, A., Enea, C., Ji, K., Qadeer, S.: On the completeness of verifying mes-
sage passing programs under bounded asynchrony. In: Chockler, H., Weissenbacher,
G. (eds.) Computer Aided Verification - 30th International Conference, CAV 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July
14-17, 2018, Proceedings, Part II. Lecture Notes in Computer Science, vol. 10982,
pp. 372–391. Springer (2018). https://doi.org/10.1007/978-3-319-96142-2 23

5. Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract regular model checking.
In: Alur, R., Peled, D.A. (eds.) Computer Aided Verification, 16th Interna-
tional Conference, CAV 2004, Boston, MA, USA, July 13-17, 2004, Proceed-
ings. Lecture Notes in Computer Science, vol. 3114, pp. 372–386. Springer (2004).
https://doi.org/10.1007/978-3-540-27813-9 29

6. Chaouch-Saad, M., Charron-Bost, B., Merz, S.: A reduction theorem for the veri-
fication of round-based distributed algorithms. In: Bournez, O., Potapov, I. (eds.)
Reachability Problems, 3rd International Workshop, RP 2009, Palaiseau, France,
September 23-25, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5797,
pp. 93–106. Springer (2009). https://doi.org/10.1007/978-3-642-04420-5 10

7. Chou, C., Gafni, E.: Understanding and verifying distributed algorithms us-
ing stratified decomposition. In: Dolev, D. (ed.) Proceedings of the Sev-
enth Annual ACM Symposium on Principles of Distributed Computing,
Toronto, Ontario, Canada, August 15-17, 1988. pp. 44–65. ACM (1988).
https://doi.org/10.1145/62546.62556

8. Elrad, T., Francez, N.: Decomposition of distributed programs into
communication-closed layers. Sci. Comput. Program. 2(3), 155–173 (1982).
https://doi.org/10.1016/0167-6423(83)90013-8

9. Finkel, A., Lozes, É.: Synchronizability of communicating finite state ma-
chines is not decidable. In: Chatzigiannakis, I., Indyk, P., Kuhn, F.,
Muscholl, A. (eds.) 44th International Colloquium on Automata, Languages,
and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland. LIPIcs,
vol. 80, pp. 122:1–122:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2017). https://doi.org/10.4230/LIPIcs.ICALP.2017.122, http://www.dagstuhl.
de/dagpub/978-3-95977-041-5

10. Genest, B., Kuske, D., Muscholl, A.: On communicating automata with bounded
channels. Fundam. Inform. 80(1-3), 147–167 (2007), http://content.iospress.com/
articles/fundamenta-informaticae/fi80-1-3-09

11. von Gleissenthall, K., Kici, R.G., Bakst, A., Stefan, D., Jhala, R.: Pretend syn-
chrony: synchronous verification of asynchronous distributed programs. PACMPL
3(POPL), 59:1–59:30 (2019). https://doi.org/10.1145/3290372

On the k-synchronizability of Systems 175

https://doi.org/10.1007/s10703-017-0285-8
https://doi.org/10.1016/j.tcs.2016.09.023
https://doi.org/10.1007/978-3-642-27940-9_5
https://doi.org/10.1007/978-3-319-96142-2_23
https://doi.org/10.1007/978-3-540-27813-9_29
https://doi.org/10.1007/978-3-642-04420-5_10
https://doi.org/10.1145/62546.62556
https://doi.org/10.1016/0167-6423(83)90013-8
https://doi.org/10.4230/LIPIcs.ICALP.2017.122
http://www.dagstuhl.de/dagpub/978-3-95977-041-5
http://www.dagstuhl.de/dagpub/978-3-95977-041-5
http://content.iospress.com/articles/fundamenta-informaticae/fi80-1-3-09
http://content.iospress.com/articles/fundamenta-informaticae/fi80-1-3-09
https://doi.org/10.1145/3290372


12. Kragl, B., Qadeer, S., Henzinger, T.A.: Synchronizing the asynchronous. In:
Schewe, S., Zhang, L. (eds.) 29th International Conference on Concurrency The-
ory, CONCUR 2018, September 4-7, 2018, Beijing, China. LIPIcs, vol. 118,
pp. 21:1–21:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018).
https://doi.org/10.4230/LIPIcs.CONCUR.2018.21

13. La Torre, S., Madhusudan, P., Parlato, G.: Context-bounded analysis of concurrent
queue systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems, 14th International Conference, TACAS
2008, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceed-
ings. Lecture Notes in Computer Science, vol. 4963, pp. 299–314. Springer (2008).
https://doi.org/10.1007/978-3-540-78800-3 21

14. Lipton, R.J.: Reduction: A method of proving properties of parallel programs.
Commun. ACM 18(12), 717–721 (1975). https://doi.org/10.1145/361227.361234

15. Muscholl, A.: Analysis of communicating automata. In: Dediu, A., Fernau, H.,
Mart́ın-Vide, C. (eds.) Language and Automata Theory and Applications, 4th
International Conference, LATA 2010, Trier, Germany, May 24-28, 2010. Proceed-
ings. Lecture Notes in Computer Science, vol. 6031, pp. 50–57. Springer (2010).
https://doi.org/10.1007/978-3-642-13089-2 4

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

176 C. Di Giusto et al.

https://doi.org/10.4230/LIPIcs.CONCUR.2018.21
https://doi.org/10.1007/978-3-540-78800-3_21
https://doi.org/10.1145/361227.361234
https://doi.org/10.1007/978-3-642-13089-2_4
http://creativecommons.org/licenses/by/4.0/


General Supervised Learning as Change
Propagation with Delta Lenses

Zinovy Diskin(�)

McMaster University, Hamilton, Canada
diskinz@mcmaster.ca

Abstract. Delta lenses are an established mathematical framework for
modelling and designing bidirectional model transformations (Bx). Fol-
lowing the recent observations by Fong et al, the paper extends the delta
lens framework with a a new ingredient: learning over a parameterized
space of model transformations seen as functors. We will define a notion
of an asymmetric learning delta lens with amendment (ala-lens), and
show how ala-lenses can be organized into a symmetric monoidal (sm)
category. We also show that sequential and parallel composition of well-
behaved (wb) ala-lenses are also wb so that wb ala-lenses constitute a
full sm-subcategory of ala-lenses.

1 Introduction

The goal of the paper is to develop a formal model of supervised learning in a
very general context of bidirectional model transformation or Bx, i.e., synchro-
nization of two arbitrary complex structures (called models) related by a trans-
formation.1 Rather than learning parameterized functions between Euclidean
spaces as is typical for machine learning (ML), we will consider learning map-
pings between model spaces and formalize them as parameterized functors be-
tween categories, f : P×A → B, with P being a parameter space. The basic
ML-notion of a training pair (A,B′) ∈ A0 ×B0 will be considered as an incon-
sistency between models caused by a change (delta) v: B → B′ of the target
model B = f(p,A), p ∈ P , that was first consistent with A w.r.t. the transfor-
mation (functor) f(p,_). An inconsistency is repaired by an appropriate change
of the source structure, u: A → A′, changing the parameter p to p′, and an
amendment of the target structure v@: B′ → B@ so that f(p′, A′) = B@ is a
consistent state of the parameterized two-model system.

The setting above without parameterization and learning (i.e., p′ = p always
holds), and without amendment (v@ = idB′ always holds), is well known in
the Bx literature under the name of delta lenses— mathematical structures, in

1Term Bx refers to a wide area including file synchronization, data exchange in
databases, and model synchronization in Model-Driven software Engineering (MDE),
see [7] for a survey. In the present paper, Bx will mainly refer to Bx in the MDE
context.

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 177–197, 2020.
https://doi.org/10.1007/978-3-030-45231-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_10&domain=pdf


which consistency restoration via change propagation is modelled by functorial-
like algebraic operations over categories [12,6]. There are several types of delta
lenses tailored for modelling different synchronization tasks and scenarios, partic-
ularly, symmetric and asymmetric. In the paper, we only consider asymmetric
delta lenses and will often omit explicit mentioning these attributes. Despite
their extra-generality, (delta) lenses have been proved useful in the design and
implementation of practical model synchronization systems with triple graph
grammars (TGG) [5,2]; enriching lenses with amendment is a recent extension
of the framework motivated and formalized in [11]. A major advantage of the
lens framework for synchronization is its compositionality: a lens satisfying sev-
eral equational laws specifying basic synchronization requirements is called well-
behaved (wb), and basic lens theorems state that sequential and parallel compo-
sition of wb lenses is again wb. In practical applications, it allows the designer of
a complex synchronizer to avoid integration testing: if elementary synchronizers
are tested and proved to be wb, their composition is automatically wb too.

The present paper makes the following contributions to the delta lens frame-
work for Bx. a) We motivate model synchronization enriched with learning and,
moreover, with categorical learning, in which the parameter space is a cate-
gory, and introduce the notion of a wb asymmetric learning (delta) lens with
amendment (a wb ala-lens) (this is the content of Sect. 3). b) We prove compo-
sitionality of wb ala-lenses and show how their universe can be organized into a
symmetric monoidal (sm) category (Theorems 1-3 in Sect. 4). All proofs (rather
straightforward but notationally laborious) can be found in the long version of
the paper [9]. One more compositional result is c) a definition of a compositional
bidirectional transformation language (Def. 6) that formalizes an important re-
quirement to model synchronization tools, which (surprisingly) is missing from
the Bx literature. Background Sect. 2 provides a simple example demonstrat-
ing main concepts of Bx and delta lenses in the MDE context. Section 5 briefly
surveys related work, and Sect. 6 concludes.
Notation. Given a category A, its objects are denoted by capital letters A, A′,
etc. to recall that in MDE applications, objects are complex structures, which
themselves have elements a, a′, ....; the collection of all objects of category A
is denoted by A0. An arrow with domain A ∈ A0 is written as u: A → _ or
u ∈ A(A,_); we also write dom(u) = A (and sometimes udom = A to shorten
formulas). Similarly, formula u: _ → A′ denotes an arrow with codomain u.cod =
A′. Given a functor f : A → B, its object function is denoted by f0: A0 → B0.

A subcategory B ⊂ A is called wide if it has the same objects. All categories
we consider in the paper are small.

2 Background: Update propagation and delta lenses

Although Bx ideas work well only in domains conforming to the slogan any im-
plementation satisfying the specification is good enough such as code generation
(see [10] for discussion), and have limited applications in databases (only so
called updatable views can be treated in the Bx-way), we will employ a simple

178 Z. Diskin



database example: it allows demonstrating the core ideas without any special
domain knowledge required by typical Bx-amenable areas. The presentation will
be semi-formal as our goal is to motivate the delta lens formalism that abstracts
the details away rather than formalize the example as such.

2.1 Why deltas.

Bx-lenses first appeared in the work on file synchronization, and if we have two
sets of strings, say, B = {John,Mary} and B′ = {Jon,Mary}, we can readily
see the difference: John �= Jon but Mary = Mary. We thus have a structure
in-between B and B′ (which maybe rather complex if B and B′ are big files),
but this structure can be recovered by string matching and thus updates can be
identified with pairs. The situation dramatically changes if B and B′ are object
structures, e.g., B = {o1, o2} with Name(o1) = John, Name(o2) = Mary and
similarly B′ = {o′1, o′2} with Name(o′1) = Jon, Name(o′2) = Mary. Now string
matching does not say too much: it may happen that o1 and o′1 are the same
object (think of a typo in the dataset), while o2 and o′2 are different (although
equally named) objects. Of course, for better matching we could use full names
or ID numbers or something similar (called, in the database parlance, primary
keys), but absolutely reliable keys are rare, and typos and bugs can compromise
them anyway. Thus, for object structures that Bx needs to keep in sync, deltas
between models need to be independently specified, e.g., by specifying a same-
ness relation u ⊂ B×B′ between models. For example, u = {o1, o′1} says that
John@B and Jon@B′ are the same person while Mary@B and Mary@B′ are
not. Hence, model spaces in Bx are categories (objects are models and arrows
are update/delta specifications) rather than sets (codiscrete categories).

2.2 Consistency restoration via update propagation: An Example

Figure 1 presents a simple example of delta propagation for consistency restora-
tion. Models consist of objects (in the sense of OO programming) with attributes
(a.k.a. labelled records), e.g., the source model A consists of three objects iden-
tified by their oids (object identifiers) #A, #J, #M (think about employees of
some company) with attribute values as shown in the table: attribute Expr. refers
to Experience measured by a number of years, and Depart. is the column of de-
partment names. The schema of the table, i.e., the triple SA of attributes (Name,
Expr., Depart.) with their domains of values StringStringString, IntegerIntegerInteger, StringStringString resp., de-
termines a model space A. A model X ∈ A is given by its set of objects OIDX

together with three functions NameX , Expr.X , Depart.X from the same domain
OIDX to targets StringStringString, IntegerIntegerInteger, StringStringString resp., which are compactly specified
by tables as shown for model A. The target model space B is given by a similar
schema SB consisting of two attributes. The B-view get(X) of an A-model X
is computed by selecting those oids #O ∈ OIDX for which Depart.X(#O) is an
IT-department, i.e., an element of the set IT

def
= {ML,DB}. For example, the

upper part of the figure shows the IT-view B of model A.

General Supervised Learning 179



We assume that all column names in schemas SA, and SB are qualified by
schema names, e.g., OID@SA, OID@SB etc, so that schemas are disjoint except
elementary domains like StringStringString etc. Also disjoint are OID-values, e.g., #J@A and
#J@B are different elements, but constants like John and Mary are elements of
set StringStringString shared by both schemas. To shorten long expressions in the diagrams,
we will often omit qualifiers and write #J = #J meaning #J@A = #J@B or
#J@B = #J@B′ depending on the context given by the diagram; often we will
also write #J and #J ′ for such OIDs. Also, when we write #J = #J inside
block arrows denoting updates, we actually mean a pair, e.g., (#J@B,#J@B′).

Given two models over the same schema, say, B and B′ over SB, an update
v: B → B′ is a relation v ⊂ OIDB×OIDB′

; if a schema contains several nodes,
an update should provide a relation vN for each node N in the schema.

Note an essential difference between the two parallel updates v1, v2: B → B′

specified in the figure. Update v1 says that John’s name was changed to Jon
(think of fixing a typo), and the experience data for Mary were also corrected
(either because of a typo or, e.g., because the department started to use a new
ML method for which Mary has a longer experience). Update v2 specifies the
same story for John but a new story for Mary: it says that Mary #M left the
IT-view and Mary #M ′ is a new employee in one of IT-departments.

Source model A

OIDs Name Expr. Depart.

#A Ann 10 Sales
#J John 10 DB
#M Mary 5 ML

Updated source AÊ2
qt

OIDs Name Expr. Depart.
#A Ann 10 Sales
#J Jon 10 DB

#M’ Mary 7 ? (in IT)

Target (view) model B 
(IT-departments)

OIDs Name Expr.

#J John 10
#M Mary 5

:get

Updated view BÊ

OIDs Name Expr.

#J’ Jon 10
#M’ Mary 7

upd.v2:
#J = #J’

upd. u2
qt :

#A = #A

#J = #J

upd. v1:
#J = #J’

#M = #M’

Updated source AÊ1

OIDs Name Expr. Depart.
#A Ann 10 Sales
#J Jon 10 DB
#M Mary 7 ML

Updated source model AÊ2
tr

OIDs Name Expr. Depart.
#A Ann 10 Sales
#J Jon 10 DB
#M Mary ?(not IT) ? (not IT)
#M’ Mary 7 ? (in IT)

upd.u2
tr:

#A = #A
#J = #J

#M = #M

1:put

2:putqt
2:puttrupdate u1:#A = #A#J = #J#M = #M

Updated source model AÊ3
par

OIDs Name Expr. Depart.
#A Ann 10 Sales
#J Jon 10 DB
#M Mary 5 ML
#M’ Mary 7 ? (in IT)

2:putpar

Fig. 1: Example of update propagation

180 Z. Diskin



2.3 Update propagation and update policies

The updated view B′ is inconsistent with the source A and the latter is to be
updated accordingly — we say that update v is to be propagated back to A. Prop-
agation of v1 is easy: we just update accordingly the values of the attributes as
shown in the figure in the block arrow u1: A → A′

1 (of black colour). Importantly,
propagation needs two pieces of data: the view update v1 and the original state
A of the source as shown in the figure by two data-flow lines into the chevron
1:put; the latter denotes invocation of the backward propagation operation put
(read “put view update back to the source”). The quadruple 1 = (v1, A, u1, A

′)
can be seen as an instance of operation put, hence the notation 1:put (borrowed
from the UML).

Propagation of update v2 is more challenging: Mary can disappear from the
IT-view because a) she quit the company, b) she transitioned to a non-IT de-
partment, and c) the view definition has changed, e.g., the new view must only
show employees with experience more than 5 years. Choosing between these pos-
sibilities is often called choosing an (update) policy. We will consider the case of
changing the view in Sect. 3, and in the current section discuss policies a) and
b) (ignore for a while the propagation scenario shown in blue in the right lower
corner of the figure that shows policy c)).

For policy a), further referred to as quiting and briefly denoted by qt, the
result of update propagation is shown in the figure with green colour: notice
the update (block) arrow uqt

2 and its result, model A
′qt
2 , produced by invoking

operation putqt. Note that while we know the new employee Mary works in one
of IT departments, we do not know in which one. This is specified with a special
value ’?’ (a.k.a. labelled null in the database parlance).

For policy b), further referred to as transition and denoted tr, the result of
update propagation is shown in the figure with orange colour: notice update
arrow utr

2 and its result, model A
′tr
2 produced by puttr. Mary #M is the old

employee who transitioned to a new non-IT department, for which her expertize
is unknown. Mary #M’ is a new employee in one of IT-departments (we assume
that the set of departments is not exhausted by those appearing in a particular
state A ∈ A). There are also updates whose backward propagation is uniquely
defined and does not need a policy, e.g., update v1 is such.

An important property of update propagations we have considered is that
they restore consistency: the view of the updated source equals to the updated
view initiated the update: get(A′) = B′; moreover, this equality extends for
update arrows: get(ui) = vi, i = 1, 2. Such extensions can be derived from view
definitions if the latter are determined by so called monotonic queries (which
encompass a wide class of practically useful queries including the Select-Project-
Join class). For views defined by non-monotonic queries, in order to obtain get’s
action on source updates u: A → A′, a suitable policy is to be added to the
view definition (see [1,14,12] for details and discussion). Moreover, normally get
preserves identity updates, get(idA) = idget(A), and update composition: for any
u: A → A′ and u′: A′ → A′′, equality get(u;u′) = get(u); get(u′) holds.

General Supervised Learning 181



2.4 Delta lenses

Our discussion of the example can be summarized in the following algebraic
terms. We have two categories of models and updates, A and B, and a functor
get: A → B incrementally computing B-views of A-models (we will often write
A.get for get(A)). We also suppose that for a chosen update policy, we have
worked out precise procedures for how to propagate any view update backwards.
This gives us a family of operations putA : A(A,_) ← B(A.get,_) indexed by
A-objects, A ∈ A0, for which we write putA.v or putA(v) interchangeably.
Definition 1 (Delta Lenses ([12])) Let A, B be two categories. An (asym-
metric delta) lens from A (the source of the lens) to B (the target) is a pair
� = (get, put), where get: A → B is a functor and put is a family of operations
putA : A(A,_) ← B(A.get,_) indexed by objects of A, A ∈ A0. Given A, op-
eration putA maps any arrow v: A.get → B′ to an arrow u: A → A′ such that
A′.get = B′. The last condition is called (co)discrete Putget law:

(Putget)0 (putA.v).cod.get0 = v.cod for all A ∈ A0 and v ∈ B(A.get,_)

where get0 denotes the object function of functor get. We will write a lens as an
arrow �: A → B going in the direction of get.

Note that family put corresponds to a chosen update policy, e.g., in terms
of the example above, for the same view functor get, we have two families
of put-operations, putqt and puttr, corresponding to the two updated policies
we discussed. These two policies determine two lenses �qt = (get, putqt) and
�tr = (get, puttr) sharing the same get.
Definition 2 (Well-behavedness) A (lens) equational law is an equation to
hold for all values of two variables: A ∈ A0 and v: A.get → T ′. A lens is called
well-behaved (wb) if the following two laws hold:

(Stability) idA = putA.idA.get for all A ∈ A0

(Putget) (putA.v).get = v for all A ∈ A0 and all v ∈ B(A.get,_)

Remark 1. Stability law says that a wb lens does nothing if nothing happens on
the target side (no actions without triggers). Putget requires consistency after
the backward propagation is finished. Note the distinction between the Putget0
condition included into the very definition of a lens, and the full Putget law
required for the wb lenses. The former is needed to ensure smooth tiling of
put-squares (i.e., arrow squares describing application of put to a view update
and its result) both horizontally (for sequential composition) and vertically (not
considered in the paper). The full Putget assures true consistency as considering
a state B′ alone does not say much about the real update and elements of B′

cannot be properly interpreted. The real story is specified by delta v: B → B′,
and consistency restoration needs the full (PutGet) law as above. 2

A more detailed trailer of lenses can be found in the long version [9].
2As shown in [6], the Putget0 condition is needed if we want to define operations

put separately from the functor get: then we still need a function get0: A0 → B0 and
the codiscrete Putget law to ensure a reasonable behaviour of put.

182 Z. Diskin



3 Asymmetric Learning Lenses with Amendments

We will begin with a brief motivating discussion, and then proceed with formal
definitions

3.1 Does Bx need categorical learning?

Enriching delta lenses with learning capabilities has a clear practical sense for
Bx. Having a lens (get, put): A → B and inconsistency A.get �= B′, the idea
of learning extends the notion of the search space and allows us to update the
transformation itself so that the final consistency is achieved for a new transfor-
mation get′: A.get′ = B′. For example, in the case shown in Fig. 1, disappearance
of Mary #M in the updated view B′ can be caused by changing the view def-
inition, which now requires to show only those employees whose experience is
more than 5 years and hence Mary #M is to be removed from the view, while
Mary #M’ is a new IT-employee whose experience satisfies the new definition.
Then the update v2 can be propagated as shown in the bottom right corner of
Fig. 1, where index par indicates a new update policy allowing for view definition
(parameter) change.

To manage the extended search possibilities, we parameterize the space of
transformations as a family of mappings getp: A → B indexed over some param-
eter space p ∈ P. For example, we may define the IT-view to be parameterized
by the experience of employees shown in the view (including any experience as a
special parameter value). Then we have two interrelated propagation operations
that map an update B�B′ to a parameter update p�p′ and a source update
A�A′. Thus, the extended search space allows for new update policies that look
for updating the parameter as an update propagation possibility. The possibility
to update the transformation appears to be very natural in at least two impor-
tant Bx scenarios: a) model transformation design and b) model transformation
evolution (cf. [21]), which necessitates the enrichment of the delta lens frame-
work with parameterization and learning. Note that all transformations getp,
p ∈ P are to be elements of the same lens, and operations put are not indexed
by p, hence, formalization of learning by considering a family of ordinary lenses
would not do the job.

Categorical vs. codiscrete learning Suppose that the parameter p is itself
a set, e.g., the set of departments forming a view can vary depending on some
context. Then an update from p to p′ has a relational structure as discussed
above, i.e., e: p → p′ is a relation e ⊂ p×p′ specifying which departments disap-
peared from the view and which are freshly added. This is a general phenomenon:
as soon as parameters are structures (sets of objects or graphs of objects and
attributes), a parameter change becomes a structured delta and the space of pa-
rameters gives rise to a category P. The search/propagation procedure returns
an arrow e: p → p′ in this category, which updates the parameter value from
p to p′. Hence, a general model of supervised learning should assume P to be
a category (and we say that learning is categorical). The case of the parameter

General Supervised Learning 183



space being a set is captured by considering a codiscrete category P whose only
arrows are pairs of its objects; we call such learning codiscrete.

3.2 Ala-lenses

The notion of a parameterized functor (p-functor) is fundamental for ala-lenses,
but is not a lens notion per se and is thus placed into Appendix Sect. A.1. We will
work with its exponential (rather than equivalent product-based) formulation
but will do uncurrying and currying back if necessary, and often using the same
symbol for an arrow f and its uncurried version f̌ .

Definition 3 (ala-lenses) Let A and B be categories. An ala-lens from A
(the source of the lens) to B (the target) is a pair � = (get, put) whose first
component is a p-functor get: A

P� B and the second component is a triple of
(families of) operations put = (putupdp,A, put

req
p,A, put

self
p,A) indexed by pairs p ∈ P0,

A ∈ A0; arities of the operations are specified below after we introduce some
notation. Names req (for ’request’) and upd (for ’update’) are chosen to match
the terminology in [17].

Categories A, B are called model spaces, their objects are models and their
arrows are (model) updates or deltas. Objects of P are called parameters and are
denoted by small letters p, p′, .. rather than capital ones to avoid confusion with
[17], in which capital P is used for the entire parameter set. Arrows of P are
called parameter deltas. For a parameter p ∈ P0, we write getp for the functor
get(p): A → B (read “get B-views of A”), and if A ∈ A0 is a source model,
its getp-view is denoted by getp(A) or A.getp or even Ap (so that _p becomes
yet another notation for functor getp). Given a parameter delta e: p → p′ and
a source model A ∈ A0, the model delta get(e): getp(A) → getp′(A) will be
denoted by gete(A) or eS (rather than Ae as we would like to keep capital letters
for objects only). In the uncurried version, gete(A) is nothing but ǧet(e, idS)

Since gete is a natural transformation, for any delta u: A → A′ we have
a commutative square eS ;up′ = up; eA′ (whose diagonal is ǧet(e, u)). We will
denote the diagonal of this square by u.gete or ue: Ap → A′

p′ . Thus, we use
notation

(1)
Ap

def
= A.getp

def
= getp(A)

def
= get(p)(A)

ue
def
= u.gete

def
= gete(u)

def
= get(e)(u)

def
= eS ;up′

nat
= up; eA′ : Ap → A′

p′

Now we describe operations put. They all have the same indexing set P0×A0,
and the same domain: for any index p,A and any model delta v: Ap → B′ in B,
the value putxp,A(p,A), x ∈ {req, upd, self} is defined and unique:

(2)

putupdp,A: p → p′ is a parameter delta from p,

putreqp,A: A → A′ is a model delta from A,

putselfp,A: B
′ → A′

p′ is a model delta from B′

called the amendment and denoted by v@.

184 Z. Diskin



Note that the definition of putself involves an equational dependency between
all three operations: for all A ∈ A0, v ∈ B(A.get,_), we require

(Putget)0 (putreqA .v).cod.getp′ = (v; putselfA ).cod where p′ = (putupdA .v).cod

We will write an ala-lens as an arrow � = (get, put): A
P� B.

A lens is called (twice) codiscrete if categories A, B, P are codiscrete and
thus get: A

P� B is a parameterized function. If only P is codiscrete, we call
� a codiscretely learning delta lens, while if only model spaces are codiscrete, we
call � a categorically learning codiscrete lens.

AÊp

getp

getpÊ

eS

A ApÊ 

Ap

:getpÊ

:getp

AÊ
:getpÊ

eSÊ
:getp

AÊpÊ

up

upÊ

v
BÊ

A

p 

pÊP

Bgete

kkk
e  =  putp,A (v)upd

 kkk

u =  putp, A (v)req

v @ =  putp, A (v)self 

Fig. 2: Ala-lens operations

Diagram in Fig. 2 shows how a lens’
operations are interrelated. The up-
per part shows an arrow e: p → p′

in category P and two correspond-
ing functors from A to B. The lower
part is to be seen as a 3D-prism
with visible front face AAp′A′

p′A′ and
visible upper face AApAp′ , the bot-
tom and two back faces are invisi-
ble, and the corresponding arrows are
dashed. The prism denotes an alge-
braic term: given elements are shown
with black fill and white font while de-
rived elements are blue (recalls being
mechanically computed) and blank
(double-body arrows are considered
as “blank”). The two pairs of arrows
originating from A and A′ are not
blank because they denote pairs of
nodes (the UML says links) rather
than mappings/deltas between nodes.
Equational definitions of deltas e, u, v@ are written up in the three callouts near
them. The right back face of the prism is formed by the two vertical derived deltas
up = u.getp and up′ = u.getp′ , and the two matching them horizontal derived
deltas eS = gete(A) and eA′ = gete(A

′); together they form a commutative
square due to the naturality of get(e) as explained earlier.
Definition 4 (Well-behavedness) An ala-lens is called well-behaved (wb) if
the following two laws hold for all p ∈ P0, A ∈ A0 and v: Ap → B′:

(Stability) if v = idAp
then all three propagated updates e, u, v@ are identities:

putupdp,A(idAp
) = idp, putreqp,A(idAp

) = idS , putselfp,A(idAp
) = idAp

(Putget) (putreqp,A.v).gete = v; v@ where e = putupdp,A(v) and v@ = putselfp,A(v)

Remark 2. Note that Remark 1 about the Putget law is again applicable.

Example 1 (Identity lenses). Any category A gives rise to an ala-lens id A with
the following components. The source and target spaces are equal to A, and

General Supervised Learning 185



the parameter space is 1. Functor get is the identity functor and all puts are
identities. Obviously, this lens is wb.

Example 2 (Iso-lenses). Let ι: A → B be an isomorphism between model spaces.
It gives rise to a wb ala-lens �(ι): A → B with P�(ι) = 1 = {∗} as follows. Given
any A in A and v: ι(A) → B′ in B, we define put

�(ι).req
∗,A (v) = ι−1(v) while the

two other put operations map v to identities.

Example 3 (Bx lenses). Examples of wb aa-lenses modelling a Bx can be found
in [11]: they all can be considered as ala-lenses with a trivial parameter space 1.

Example 4 (Learners). Learners defined in [17] are codiscretely learning codis-
crete lenses with amendment, and as such satisfy (the amended) Putget (Remark
1). Looking at the opposite direction, ala-lenses are a categorification of learners
as detailed in Fig. 8 on p. 194.

4 Compositionality of ala-lenses

This section explores the compositional structure of the universe of ala-lenses;
especially interesting is their sequential composition. We will begin with a small
example demonstrating sequential composition of ordinary lenses and showing
that the notion of update policy transcends individual lenses. Then we define
sequential and parallel composition of ala-lenses (the former is much more in-
volved than for ordinary lenses) and show that wb ala-lenses can be organized
into an sm-category. Finally, we formalize the notion of a compositional update
policy via the notion of a compositional bidirectional language.

4.1 Compositionality of update policies: An example

Fig. 3 extends the example in Fig. 1 with a new model space C whose schema
consists of the only attribute Name, and a view of the IT-view, in which only
employees of the ML department are to be shown. Thus, we now have two
functors, get1: A → B and get2: B → C, and their composition Get: A → C
(referred to as the long get). The top part of Fig. 3 shows how it works for model
A considered above.

Each of the two policies, policy qt (green) and policy tr (orange), in which
person’s disappearance from the view are interpreted, resp., as quiting the com-
pany and transitioning to a department not included into the view, is applicable
to the new view mappings get2 and Get, thus giving us six lenses shown in Fig. 4
with solid arrows; amongst them, lenses, Lqt and Ltr are obtained by applying
policy pol to the (long) functor Get;, and we will refer to them long lenses. In
addition, we can compose lenses of the same colour as shown in Fig. 4 by dashed
arrows (and we can also compose lenses of different colours (�qt1 with �tr2 and �tr1
with �qt2 ) but we do not need them). Now an important question is how long and
composed lenses are related: whether Lpol and �pol1 ; �pol2 for pol ∈ {qt, tr}, are
equal (perhaps up to some equivalence) or different?

186 Z. Diskin



upd. u
#A = #

#J = #J

#M = #M

ttr

Updated source A
OIDs Name Expr. Depart.
#A Ann 10 Sales
#J John 10 DB

#M’ Mary ? ML
#M Mary 5 ? notML

Source model A

OIDs Name Expr. Depart.

#A Ann 10 Sales
#J John 10 DB
#M Mary 5 ML

View B(IT departments)
OIDs Name Dep.
#J John DB
#M Mary ML

Updated BÂquit

OIDs Name Dep.
#J John DB

#M’ Mary ML

upd.v :
#J = #Jupd.u12    = u :

#A = #A
#J = #J

View  C (ML dep.)

OIDs Name

#M Mary

upd. w:
∅

Updated CÊ

OIDs Name

#M’ Mary

Updated BÊ
OIDs Name Dep.

#J John DB
#M Mary ? in IT/notML
#M’ Mary ML

upd.v
:

#J = #J

#M = #M

Upd. source model A12

OIDs Name Expr. Depart.
#A Ann 10 Sales
#J John 10 DB

#M’ Mary ? ML
#M Mary 5 ? in IT/notML

Upd. source A12 = A
OIDs Name Expr. Dep.
#A Ann 10 Sales
#J John 10 DB

#M’ Mary ? ML

:Get

:PutA
tr

:put1A
tr

:put2B
tr

:put1A
qt

:PutA
qt

:put2B
qt

‘tr
‘tr

upd. u12 :
#A = #A
#J = #J

#M = #M

tr
‘qt

qt  
qt qt

‘qt

uuqt=id
tr

tr

:get1 :get2

upd.𝛿A,w :
tr

#A = #A
#J = #J
#M’= #M’
#M = #M

Fig. 3: Example cont’d: functoriality of update policies

A B
l1qqt

l1
tr

l2qt

l2
tr

C

l1 ;l2
tr tr

trL

l1 ;l2
qt qt

qtL

Fig. 4: Lens combination
schemas for Fig. 3

Fig. 3 demonstrates how the mechanisms work
with a simple example. We begin with an update w
of the view C that says that Mary #M left the ML
department, and a new Mary #M ′ was hired for
ML. Policy qt interprets Mary’s disappearance as
quiting the company, and hence this Mary doesn’t
appear in view B′qt produced by put2qt nor in view
A′qt

12 produced from B′qt by put1qt, and updates vqt

and uqt
12 are written accordingly. Obviously, Mary

also does not appear in view A
′qt produced by

the long lens’s Putqt. Thus, put1qtA(put2
qt
A(w)) =

PutqtA(w), and it is easy to understand that such equality will hold for any source
model A and any update w: C → C ′ due to the nature of our two views get1
and get2. Hence, Lqt = �qt1 ; �

qt
2 where Lqt = (Get,Putqt) and �qti = (geti, putiqt).

The situation with policy tr is more interesting. Model A
′tr
12 produced by the

composed lens �tr1 ; �tr2 , and model A
′tr produced by the long lens Ltr = (Get,Puttr)

are different as shown in the figure (notice the two different values for Mary’s
department framed with red ovals in the models). Indeed, the composed lens
has more information about the old employee Mary—it knows that Mary was
in the IT view, and hence can propagate the update more accurately. The com-
parison update δtrA,w: A

′tr → A′tr
12 adds this missing information so that equality

utr; δtrA,w = utr
12 holds. This is a general phenomenon: functor composition looses

information and, in general, functor Get = get1; get2 knows less than the pair
(get1, get2). Hence, operation Put back-propagating updates over Get (we will

General Supervised Learning 187



also say inverting Get) will, in general, result in less certain models than com-
position put1 ◦ put2 that inverts the composition get1; get2 (a discussion and
examples of this phenomenon in the context of vertical composition of updates
can be found in [8]). Hence, comparison updates such as δtrA,w should exist for any
A and any w: A.Get → C ′, and together they should give rise to something like
a natural transformation between lenses, δtrA,B,C : Ltr ⇒ �tr1 ; �

tr
2 . To make this no-

tion precise, we need a notion of natural transformation between “functors” put,
which we leave for future work. In the present paper, we will consider policies
like qt, for which strict equality holds.

4.2 Sequential composition of ala-lenses

Let k : A → B and �: B → C be two ala-lenses with parameterized functors
getk : P → [A,B] and get�: Q → [B,C] resp. Their composition is the following
ala-lens k ; �. Its parameter space is the product P × Q, and the get-family is
defined as follows. For any pair of parameters (p, q) (we will write pq), getk ;�

pq =

getk
p; get

�
q: A → C. Given a pair of parameter deltas, e: p → p′ in P and h: q → q′

in Q, their getk ;�-image is the Godement product ∗ of natural transformations,
getk ;�(eh) = getk (e) ∗ get�(h) ( we will also write getk

e || get�h)

A

p B

pÊ

e

h
q C

qÊ
P

Q

1:q
Apq

v

0:p

AÊ

A

Ap

BÊ

u

e
A

e
AÊ

hAp

3Ê:qÊ

CÊ

AÊp

ApqÊ
vq

BÊqÊ

w@

AÊpÊ
5Ê: qÊ

ApÊ

v@

ApÊqÊ

4Ê:pÊ

4:p

vqÊ

4Ê:pÊ

3Ê: qÊ

up

h
BÊ

upÊ B@

AÊpq BÊq

(e*h)A

(e*h)AÊ

upq

upÊqÊ

(e
A) qÊ

(e
AÊ) q

Bq

AÊpÊqÊ

3:q5:q

5:q

5:qÊ

w
v

h
B@ qÊ

v@

vqv@ 

Fig. 5: Sequential composition of apa-lenses

Now we define k ; �’s propagation operations puts. Let (A, pq,Apq) with A ∈
A0, pq ∈ (P×Q)0, A.getk

p.get
�
q = Apq ∈ C0 be a state of lens k ; �, and w: Apq →

C ′ is a target update as shown in Fig. 3. For the first propagation step, we run
lens � as shown in Fig. 3 with the blue colour for derived elements: this is just an

188 Z. Diskin



instantiation of the pattern of Fig. 2 with the source object being Ap = A.getp
and parameter q. The results are deltas
(3)
h = put�.updq,Ap

(w): q → q′, v = put�.reqq,Ap
(w): Ap → B′, w@ = put�.selfq,Ap

(w): C ′ → B′
q′ .

Next we run lens k at state (p,A) and the target update v produced by lens �; it
is yet another instantiation of pattern in Fig. 2 (this time with the green colour
for derived elements), which produces three deltas
(4)
e = putk .upd

p,A (v): p → p′, u = putk .req
p,A (v): A → A′, v@ = putk .self

p,A (v): B′ → A′
p′ .

These data specify the green prism adjoint to the blue prism: the edge v of the
latter is the “first half” of the right back face diagonal ApA

′
p′ of the former. In

order to make an instance of the pattern in Fig. 2 for lens k ; �, we need to extend
the blue-green diagram to a triangle prism by filling-in the corresponding “empty
space”. These filling-in arrows are provided by functors get� and getk and shown
in orange (where we have chosen one of the two equivalent ways of forming the
Godement product – note two curve brown arrows). In this way we obtain yet
another instantiation of the pattern in Fig. 2 denoted by k ; �:

(5) put
(k ;�)upd
A,pq (w) = (e, h), put

(k ;�)req
A,pq (w) = u, put

(k ;�)self
A,pq (w) = w@; v@q′

where v@q′ denotes v@.getq′ . Thus, we built an ala-lens k ; �, which satisfies equa-
tion Putget0 by construction.
Theorem 1 (Sequential composition and lens laws). Given ala-lenses
k : A → B and �: B → C, let lens k ; �: A → C be their sequential composi-
tion as defined above. Then the lens k ; � is wb as soon as lenses k and � are
such.

See [9, Appendix A.3] for a proof.

4.3 Parallel composition of ala-lenses

Let �i: Ai → Bi, i = 1, 2 be two ala-lenses with parameter spaces Pi. The lens
�1||�2: A1×A2 → B1×B2 is defined as follows. Parameter space �1||�2.P = P1 ×
P2. For any pair p1||p2 ∈ (P1×P2)0, define get

�1||�2
p1||p2

= get�1p1
× get�2p2

(we denote
pairs of parameters by p1||p2 rather than p1 ⊗ p2 to shorten long formulas going
beyond the page width). Further, for any pair of models A1||A2 ∈ (A1 ×A2)0
and deltas v1||v2: (A1||A2).get

�1||�2
p1||p2

→ B′
1||B′

2, we define componentwise

e = put
(�1||�2)upd
p1||p2,A1||A2

(v1||v2): p1||p2 → p′1||p′2
by setting e = e1||e2 where ei = put�ipi,Si

(vi), i = 1, 2 and similarly for put(�1||�2)reqp1||p2,A1||A2

and put
(�1||�2)self
p1||p2,A1||A2

The following result is obvious.

Theorem 2 (Parallel composition and lens laws). Lens �1||�2 is wb as soon
as lenses �1 and �2 are such.

General Supervised Learning 189



4.4 Symmetric monoidal structure over ala-lenses

Our goal is to organize ala-lenses into an sm-category. To make sequential compo-
sition of ala-lenses associative, we need to consider them up to some equivalence
(indeed, Cartesian product is not strictly associative).

Definition 5 (Ala-lens Equivalence) Two parallel ala-lenses �, �̂: A → B
are called equivalent if their parameter spaces are isomorphic via a functor ι: P →
P̂ such that for any A ∈ A0, e: p → p′ ∈ P and v: (A.getp) → T ′ the following
holds (for x∈{req, self}):

A.gete = A.ĝetι(e), ι(put
upd
p,A(v)) = p̂utι(p),A(v), and putxp,A(v) = p̂ut

x

ι(p),A(v)

Remark 3. It would be more categorical to require delta isomorphisms (i.e., com-
mutative squares whose horizontal edges are isomorphisms) rather than equali-
ties as above. However, model spaces appearing in Bx-practice are skeletal cat-
egories (and even stronger than skeletal in the sense that all isos, including iso
loops, are identities), for which isos become equalities so that the generality
would degenerate into equality anyway.

It is easy to see that operations of lens’ sequential and parallel composition
are compatible with lens’ equivalence and hence are well-defined for equivalence
classes. Below we identify lenses with their equivalence classes by default.

Theorem 3 (Ala-lenses form an sm-category). Operations of sequential
and parallel composition of ala-lenses defined above give rise to an sm-category
aLaLensaLaLensaLaLens, whose objects are model spaces (= categories) and arrows are (equiv-
alence classes of) ala-lenses. See [9, p.17 and Appendix A.4] for a proof.

4.5 Functoriality of learning in the delta lens setting

As example in Sect. 4.1 shows, the notion of update policy transcends individual
lenses. Hence, its proper formalization needs considering the entire category of
ala-lenses and functoriality of a suitable mapping.
Definition 6 (Bx-transformation language)
A compositional bidirectional model transforma-
tion language Lbx is given by (i) an sm-category
pGetpGetpGet(Lbx) whose objects are (Lbx-)model spaces
and arrows are (Lbx-)transformations which is
supplied with forgetful functor into pCatpCatpCat, and
(ii) an sm-functor LLbx

: pGetpGetpGet(Lbx) → aLaLensaLaLensaLaLens
such that the lower triangle in the inset diagram
commutes. (Forgetful functors in this diagram
are named “−X” with X referring to the
structure to be forgotten.)

aLaLensaLaLensaLaLenswb

pGetpGetpGet(Lbx)
LLbx �

�

aLaLensaLaLensaLaLens

−wb
�

�

pCatpCatpCat
� −pu

t−
L
bx

�

An Lbx-language is well-behaved (wb) if functor LLbx
factorizes as shown by

the upper triangle of the diagram.

190 Z. Diskin



Example. A major compositionality result of Fong et al [17] states the existence
of an sm-functor from the category of Euclidean spaces and parameterized dif-
ferentiable functions (pd-functions) ParaParaPara into the category LearnLearnLearn of learning
algorithms (learners) as shown by the inset commutative diagram. (The functor

ParaParaPara
Lε,err� LearnLearnLearn

pSetpSetpSet
� −p

ut−R �

is itself parameterized by a step size 0 < ε ∈ R and
an error function err: R×R → R needed to specify
the gradient descent procedure.) However, learners are
nothing but codiscrete ala-lenses (see Sect. A.2), and
thus the inset diagram is a codiscrete specialization of
the diagram in Def. 6 above. That is, the category of
Euclidean spaces and pd-functions, and the gradient
descent method for back propagation, give rise to a (codiscrete) compositional
bx-transformation language (over pSetpSetpSet rather than pCatpCatpCat).

Finding a specifically Bx instance of Def. 6 (e.g., checking whether it holds
for concrete languages and tools such as eMoflon [23] or groundTram [22])
is laborious and left for future work.

5 Related work

Model
Spacescodiscr.

lenses 
delta

lenses 

Parameter Space

learners
learning 

delta
lenses 

1 

0 1 

Fig. 6

Figure 6 on the right is a simplified version of Fig. 8
on p. 194 convenient for our discussion here: imme-
diate related work should be found in areas located
at points (0,1) (codiscrete learning lenses) and (1,0)
(delta lenses) of the plane. For the point (0,1), the pa-
per [17] by Fong, Spivak and Tuyéras is fundamental:
they defined the notion of a codiscrete learning lens
(called a learner), proved a fundamental results about
sm-functoriality of the gradient descent approach to
ML, and thus laid a foundation for the compositional approach to change prop-
agation with learning. One follow-up of that work is paper [16] by Fong and
Johnson, in which they build an sm-functor LearnLearnLearn → sLenssLenssLens which maps learn-
ers to so called symmetric lenses. That paper is probably the first one where
the terms ’lens’ and ’learner’ are met, but the initial observation that a learner
whose parameter set is a singleton is actually a lens is due to Jules Hedges, see
[16].

There are conceptual and technical distinctions between [16] and the present
paper. On the conceptual level, by encoding learners as symmetric lenses, they
“hide” learning inside the lens framework and make it a technical rather than
conceptual idea. In contrast, we consider parameterization and supervised learn-
ing as a fundamental idea and a first-class citizen for the lens framework, which
grants creation of a new species of lenses. Moreover, while an ordinary lens is a
way to invert a functor, a learning lens is a way to invert a parameterized func-
tor so that learning lenses appear as an extension of the parameterization idea
from functors to lenses. (This approach can probably be specified formally by
treating parameterization as a suitably defined functorial construction.) Besides

General Supervised Learning 191



technical advantages (working with asymmetric lenses is simpler), our asymmet-
ric model seems more adequate to the problem of learning functions rather than
relations. On the technical level, the lens framework we develop in the paper
is much more general than in [16]: we categorificated both the parameter space
and model spaces, and we work with lenses with amendment (which allows us
to relax the Putget law if needed).

As for the delta lens roots (the point (1,0) in the figure), delta lenses were
motivated and formally defined in [12] (the asymmetric case) and [13] (the sym-
metric one). Categorical foundations for the delta lens theory were developed
by Johnson and Rosebrugh in a series of papers (see [20] for references); this
line is continued in Clarke’s work [6]. The notion of a delta lens with amend-
ments (in both asymmetric and symmetric variants) was defined in [11], and
several composition results were proved. Another extensive body of work within
the delta-based area is modelling and implementing model transformations with
triple-graph grammars (TGG) [4,23]. TGG provide an implementation frame-
work for delta lenses as is shown and discussed in [5,19,2], and thus inevitably
consider change propagation on a much more concrete level than lenses. The
author is not aware of any work considering functoriality of update policies
developed within the TGG framework.

The present paper is probably the first one at the intersection (1,1) of the
plane. The preliminary results have recently been reported at ACT’19 in Oxford
to a representative lens community, and no references besides [17], [16] mentioned
above were provided.

6 Conclusion

The perspective on Bx presented in the paper is an example of a fruitful in-
teraction between two domains—ML and Bx. In order to be ported to Bx, the
compositional approach to ML developed in [17] is to be categorificated as shown
in Fig. 8 on p. 194. This opens a whole new program for Bx: checking that cur-
rently existing Bx languages and tools are compositional (and well-behaved) in
the sense of Def. 6 p. 190. The wb compositionality is an important practical
requirement as it allows for modular design and testing of bidirectional trans-
formations. Surprisingly, but this important requirement has been missing from
the agenda of the Bx community, e.g., the recent endeavour of developing an
effective benchmark for Bx-tools [3] does not discuss it.

In a wider context, the main message of the paper is that the learning idea
transcends its applications in ML: it is applicable and usable in many domains in
which lenses are applicable such as model transformations, data migration, and
open games [18]. Moreover, the categorificated learning may perhaps find useful
applications in ML itself. In the current ML setting, the object to be learnt is
a function f : Rm → Rn that, in the OO class modelling perspective, is a very
simple structure: it can be seen as one object with a (huge) amount of attributes,
or, perhaps, a predefined set of objects, which is not allowed to be changed during
the search — only attribute values may be changed. In the delta lens view,

192 Z. Diskin



such changes constitute a rather narrow class of updates and thus unjustifiably
narrow the search space. Learning with the possibility to change dimensions
m,n may be an appropriate option in several contexts. On the other hand, while
categorification of model spaces extends the search space, categorification of the
parameter space would narrow the search space as we are allowed to replace
a parameter p by parameter p′ only if there is a suitable arrow e: p → p′ in
category P. This narrowing may, perhaps, improve performance. All in all, the
interaction between ML and Bx could be bidirectional!

A Appendices

A.1 Category of parameterized functors pCatpCatpCat

Category pCatpCatpCat has all small categories as objects. pCatpCatpCat-arrows A → B are
parameterized functors (p-functors) i.e., functors f : P → [A,B] with P a small
category of parameters and [A,B] the category of functors from A to B and
their natural transformations. For an object p and an arrow e: p → p′ in P,
we write fp for the functor f(p): A → B and fe for the natural transformation
f(e) : fp ⇒ fp′ . We will write p-functors as labelled arrows f : A

P� B. As CatCatCat
is Cartesian closed, we have a natural isomorphism between CatCatCat(P, [A,B]) and
CatCatCat(P×A,B) and can reformulate the above definition in an equivalent way
with functors P×A → B. We prefer the former formulation as it corresponds to
the notation f : A

P� B visualizing P as a hidden state of the transformation,
which seems adequate to the intuition of parameterized in our context. (If some
technicalities may perhaps be easier to see with the product formulation, we will
switch to the product view thus doing currying and uncurrying without special
mentioning.) Sequential composition of of f : A

P� B and g: B
Q� C is

f.g: A
P×Q� C given by (f.g)pq

def
= fp.gq for objects, i.e., pairs p∈P, q∈Q, and

by the Godement product of natural transformations for arrows in P×Q. That
is, given a pair e: p → p′ in P and h: q → q′ in Q, we define the transformation
(f.g)eh : fp.gq ⇒ fp′ .gq′ to be the Godement product fe ∗ gh.

Any category A gives rise to a p-functor IdA: A
1� A, whose param-

eter space is a singleton category 1 with the only object ∗, IdA(∗) = idA
and IdA(id∗) : idA ⇒ idA is the identity transformation. It’s easy to see that
p-functors Id_ are units of the sequential composition. To ensure associativ-
ity we need to consider p-functors up to an equivalence of their parameter

spaces. Two parallel p-functors f : A
P� B and f̂ : A

P̂� B, are equiv-
alent if there is an isomorphism α: P → P̂ such that two parallel functors
f : P → [A,B] and α; f̂ : P → [A,B] are naturally isomorphic; then we write
f ≈α f̂ . It’s easy to see that if f ≈α f̂ : A → B and g ≈β ĝ: B → C, then
f ; g ≈α×β f̂ ; ĝ: A → C, i.e., sequential composition is stable under equivalence.
Below we will identify p-functors and their equivalence classes. Using a natu-
ral isomorphism (P×Q)×R ∼= P×(Q×R), strict associativity of the functor
composition and strict associativity of the Godement product, we conclude that

General Supervised Learning 193



sequential composition of (equivalence classes of) p-functors is strictly associa-
tive. Hence, pCatpCatpCat is a category.

pCatpCatpCat � �pSetpSetpSet

(CatCatCat,×)
�

�

��(SetSetSet,×)
�

�

Fig. 7

Our next goal is to supply it with a monoidal
structure. We borrow the latter from the sm-
category (CatCatCat,×), whose tensor is given by the prod-
uct. There is an identical on objects embedding
(CatCatCat,×)� � pCatpCatpCat that maps a functor f : A → B

to a p-functor f̄ : A
1� B whose parameter space

is the singleton category 1. Moreover, as this embedding is a functor, the co-
herence equations for the associators and unitors that hold in (CatCatCat,×) hold in
pCatpCatpCat as well (this proof idea is borrowed from [17]). In this way, pCatpCatpCat becomes
an sm-category. In a similar way, we define the sm-category pSetpSetpSet of small sets
and parametrized functions between them — the codiscrete version of pCatpCatpCat. The
diagram in Fig. 7 shows how these categories are related.

A.2 Ala-lenses as categorification of ML-learners

Figure 8 shows a discrete two-dimensional plane with each axis having three
points: a space is a singleton, a set, a category encoded by coordinates 0,1,2
resp. Each of the points xij is then the location of a corresponding sm-category of

Fig. 8: The universe of categories of learning delta lenses

(asymmetric) learning (delta) lenses. Category {111111111} is a terminal category whose
only arrow is the identity lens 111111111 = (id1, id1): 1 → 1 propagating from a terminal
category 1 to itself. Label ∗∗∗ refers to the codiscrete specialization of the construct
being labelled: LLL∗∗∗ means codiscrete learning (i.e., the parameter space P is a
set considered as a codiscrete category) and aLensaLensaLens∗∗∗ refers to codiscrete model
spaces. The category of learners defined in [17] is located at point (1,1), and the
category of learning delta lenses with amendments defined in the present paper
is located at (2,2). There are also two semi-categorificated species of learning
lenses: categorical learners at point (1,2) and codiscretely learning delta lenses
at (2,1), which are special cases of ala-lenses.

194 Z. Diskin

Model spaces

Parameter space

A, B = 1

1

P = 1

P∈ Cat☀

P∈ Cat 2

0

{1} 

{1} 

{1} {1} 

0

A, B ∈ Cat☀

aL☀Lens☀

aLLens☀

aLens☀

1

codiscr.
lenses 

A, B ∈ Cat

aaLens

aLaLens

aL☀aLens

learning delta 
lenses with amend.

2

delta lenses 
with amend. 

codiscr. learning delta 
lenses with amend. 

L

learners of 
Fong et al

categorical 
learners



References

1. Abiteboul, S., McHugh, J., Rys, M., Vassalos, V., J.Wiener: Incremental Mainte-
nance for Materialized Views over Semistructured Data. In: Gupta, A., Shmueli,
O., Widom, J. (eds.) VLDB. Morgan Kaufmann (1998)

2. Anjorin, A.: An introduction to triple graph grammars as an implementation of
the delta-lens framework. In: Gibbons, J., Stevens, P. (eds.) Bidirectional Trans-
formations - International Summer School, Oxford, UK, July 25-29, 2016, Tutorial
Lectures. Lecture Notes in Computer Science, vol. 9715, pp. 29–72. Springer (2016).
https://doi.org/10.1007/978-3-319-79108-1

3. Anjorin, A., Diskin, Z., Jouault, F., Ko, H., Leblebici, E., Westfechtel, B.: Bench-
marx reloaded: A practical benchmark framework for bidirectional transformations.
In: Eramo and Johnson [15], pp. 15–30, http://ceur-ws.org/Vol-1827/paper6.
pdf

4. Anjorin, A., Leblebici, E., Schürr, A.: 20 years of triple graph grammars: A
roadmap for future research. ECEASST 73 (2015). https://doi.org/10.14279/
tuj.eceasst.73.1031

5. Anjorin, A., Rose, S., Deckwerth, F., Schürr, A.: Efficient model synchronization
with view triple graph grammars. In: Modelling Foundations and Applications -
10th European Conference, ECMFA 2014, York, UK, July 21-25, 2014. Proceed-
ings. Lecture Notes in Computer Science, vol. 8569, pp. 1–17. Springer (2014).
https://doi.org/10.1007/978-3-319-09195-2_1

6. Clarke, B.: Internal lenses as functors and cofunctors. In: Pre-proceedings
of ACT’19, Oxford, 2019. http://www.cs.ox.ac.uk/ACT2019/preproceedings/
BryceClarke.pdf

7. Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.F.: Bidi-
rectional transformations: A cross-discipline perspective. In: Theory and Practice
of Model Transformations, pp. 260–283. Springer (2009)

8. Diskin, Z.: Compositionality of update propagation: Lax putput. In: Eramo and
Johnson [15], pp. 74–89, http://ceur-ws.org/Vol-1827/paper12.pdf

9. Diskin, Z.: General supervised learning as change propagation with delta lenses.
CoRR abs/1911.12904 (2019), http://arxiv.org/abs/1911.12904

10. Diskin, Z., Gholizadeh, H., Wider, A., Czarnecki, K.: A three-dimensional taxon-
omy for bidirectional model synchronization. Journal of System and Software 111,
298–322 (2016). https://doi.org/10.1016/j.jss.2015.06.003

11. Diskin, Z., König, H., Lawford, M.: Multiple model synchronization with multiary
delta lenses with amendment and K-Putput. Formal Asp. Comput. 31(5), 611–640
(2019). https://doi.org/10.1007/s00165-019-00493-0, (Sect.7.1 of the paper is
unreadable and can be found in http://arxiv.org/abs/1911.11302)

12. Diskin, Z., Xiong, Y., Czarnecki, K.: From State- to Delta-Based Bidirectional
Model Transformations: the Asymmetric Case. Journal of Object Technology 10,
6: 1–25 (2011)

13. Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., Orejas, F.: From
state-to delta-based bidirectional model transformations: the symmetric case. In:
MODELS, pp. 304–318. Springer (2011)

14. El-Sayed, M., Rundensteiner, E.A., Mani, M.: Incremental Maintenance of Materi-
alized XQuery Views. In: Liu, L., Reuter, A., Whang, K.Y., Zhang, J. (eds.) ICDE.
p. 129. IEEE Computer Society (2006). https://doi.org/10.1109/ICDE.2006.80

15. Eramo, R., Johnson, M. (eds.): Proceedings of the 6th International Workshop
on Bidirectional Transformations co-located with The European Joint Conferences

General Supervised Learning 195

https://doi.org/10.1007/978-3-319-79108-1
http://ceur-ws.org/Vol-1827/paper6.pdf
http://ceur-ws.org/Vol-1827/paper6.pdf
https://doi.org/10.14279/tuj.eceasst.73.1031
https://doi.org/10.14279/tuj.eceasst.73.1031
https://doi.org/10.1007/978-3-319-09195-2_1
http://www.cs.ox.ac.uk/ACT2019/preproceedings/BryceClarke.pdf
http://www.cs.ox.ac.uk/ACT2019/preproceedings/BryceClarke.pdf
http://ceur-ws.org/Vol-1827/paper12.pdf
http://arxiv.org/abs/1911.12904
https://doi.org/10.1016/j.jss.2015.06.003
https://doi.org/10.1007/s00165-019-00493-0
https://doi.org/10.1109/ICDE.2006.80


on Theory and Practice of Software, Bx@ETAPS 2017, Uppsala, Sweden, April
29, 2017, CEUR Workshop Proceedings, vol. 1827. CEUR-WS.org (2017), http:
//ceur-ws.org/Vol-1827

16. Fong, B., Johnson, M.: Lenses and learners. In: Cheney, J., Ko, H. (eds.) Proceed-
ings of the 8th International Workshop on Bidirectional Transformations co-located
with the Philadelphia Logic Week, Bx@PLW 2019, Philadelphia, PA, USA, June 4,
2019. CEUR Workshop Proceedings, vol. 2355, pp. 16–29. CEUR-WS.org (2019),
http://ceur-ws.org/Vol-2355/paper2.pdf

17. Fong, B., Spivak, D.I., Tuyéras, R.: Backprop as functor: A compositional perspec-
tive on supervised learning. In: The 34th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019. pp.
1–13. IEEE (2019). https://doi.org/10.1109/LICS.2019.8785665

18. Hedges, J.: From open learners to open games. CoRR abs/1902.08666 (2019),
http://arxiv.org/abs/1902.08666

19. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y., Gottmann,
S., Engel, T.: Model synchronization based on triple graph grammars: correct-
ness, completeness and invertibility. Software and System Modeling 14(1), 241–269
(2015). https://doi.org/10.1007/s10270-012-0309-1

20. Johnson, M., Rosebrugh, R.D.: Unifying set-based, delta-based and edit-based
lenses. In: The 5th International Workshop on Bidirectional Transformations, Bx
2016. pp. 1–13 (2016), http://ceur-ws.org/Vol-1571/paper_13.pdf

21. Kappel, G., Langer, P., Retschitzegger, W., Schwinger, W., Wimmer, M.: Model
transformation by-example: A survey of the first wave. In: Conceptual Modelling
and Its Theoretical Foundations - Essays Dedicated to Bernhard Thalheim on the
Occasion of His 60th Birthday. pp. 197–215 (2012). https://doi.org/10.1007/
978-3-642-28279-9_15

22. Sasano, I., Hu, Z., Hidaka, S., Inaba, K., Kato, H., Nakano, K.: Toward bidi-
rectionalization of ATL with GRoundTram. In: Theory and Practice of Model
Transformations - 4th International Conference, ICMT 2011, Zurich, Switzerland,
June 27-28, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6707, pp.
138–151. Springer (2011). https://doi.org/10.1007/978-3-642-21732-6_10

23. Weidmann, N., Anjorin, A., Fritsche, L., Varró, G., Schürr, A., Leblebici, E.:
Incremental bidirectional model transformation with emoflon: Ibex. In: The 8th
International Workshop on Bidirectional Transformations co-located with the
Philadelphia Logic Week, Bx@PLW 2019, Philadelphia, PA, USA, June 4, 2019.
CEUR Workshop Proceedings, vol. 2355, pp. 45–55. CEUR-WS.org (2019), http:
//ceur-ws.org/Vol-2355/paper4.pdf

196 Z. Diskin

http://ceur-ws.org/Vol-1827
http://ceur-ws.org/Vol-1827
http://ceur-ws.org/Vol-2355/paper2.pdf
https://doi.org/10.1109/LICS.2019.8785665
http://arxiv.org/abs/1902.08666
https://doi.org/10.1007/s10270-012-0309-1
http://ceur-ws.org/Vol-1571/paper_13.pdf
https://doi.org/10.1007/978-3-642-28279-9_15
https://doi.org/10.1007/978-3-642-28279-9_15
https://doi.org/10.1007/978-3-642-21732-6_10
http://ceur-ws.org/Vol-2355/paper4.pdf
http://ceur-ws.org/Vol-2355/paper4.pdf


use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

General Supervised Learning 197

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Non-idempotent intersection types in logical
form�

Thomas Ehrhard [�]

Université de Paris, IRIF, CNRS, F-75013 Paris, France
ehrhard@irif.fr

https://www.irif.fr/ ehrhard/

Abstract. Intersection types are an essential tool in the analysis of oper-
ational and denotational properties of lambda-terms and functional pro-
grams. Among them, non-idempotent intersection types provide precise
quantitative information about the evaluation of terms and programs.
However, unlike simple or second-order types, intersection types cannot
be considered as a logical system because the application rule (or the
intersection rule, depending on the presentation of the system) involves
a condition stipulating that the proofs of premises must have the same
structure. Using earlier work introducing an indexed version of Linear
Logic, we show that non-idempotent typing can be given a logical form
in a system where formulas represent hereditarily indexed families of
intersection types.

Keywords: Lambda Calculus · Denotational Semantics · Intersection
Types · Linear Logic

Introduction

Intersection types, introduced in the work of Coppo and Dezani [4,5] and de-
veloped since then by many authors, are still a very active research topic. As
quite clearly explained in [13], the Coppo and Dezani intersection type system
DΩ can be understood as a syntactic presentation of the denotational interpre-
tation of λ-terms in the Engeler’s model, which is a model of the pure λ-calculus
in the cartesian closed category of prime-algebraic complete lattices and Scott
continuous functions.

Intersection types can be considered as formulas of the propositional calculus
with implication ⇒ and conjunction ∧ as connectives. However, as pointed out
by Hindley [12], intersection types deduction rules depart drastically from the
standard logical rules of intuitionistic logic (and of any standard logical system)
by the fact that, in the ∧-introduction rule, it is assumed that the proofs of the
two premises are typings of the same λ-term, which means that, in some sense
made precise by the typing system itself, they have the same structure. Such
requirements on proofs premises, and not only on formulas proven in premises,
� Partially supported by the project ANR-19-CE48-0014 PPS.

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 198–216, 2020.
https://doi.org/10.1007/978-3-030-45231-5_11

http://orcid.org/0000-0001-5231-5504
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_11&domain=pdf


are absent from standard (intuitionistic or classical) logical systems where the
proofs of premises are completely independent from each other. Many authors
have addressed this issue, we refer to [14] for a discussion on several solutions
which mainly focus on the design of à la Church presentations of intersection typ-
ing systems, thus enriching λ-terms with additional structures. Among the most
recent and convincing contributions to this line of research we should certainly
mention [15].

In our “new” approach to this problem — not so new actually since it dates
back to [3] —, we change formulas instead of changing terms. It is based on a
specific model of Linear Logic (and thus of the λ-calculus): the relational model.
It is fair to credit Girard for the introduction of this model since it appears at
least implicitly in [11]. It was probably known by many people in the Linear
Logic community as a piece of folklore since the early 1990’s and is presented
formally in [3]. In this quite simple and canonical denotational model, types
are interpreted as sets (without any additional structure) and a closed term
of type σ is interpreted as a subset of the interpretation of σ. It is quite easy
to define, in this semantic framework, analogues of the usual models of the
pure λ-calculus such as Scott’s D∞ or Engeler’s model, which in some sense
are simpler than the original ones since the sets interpreting types need not to
be pre-ordered. As explained in the work of De Carvalho [6,7], the intersection
type counterpart of this semantics is a typing system where “intersection” is non-
idempotent (in sharp contrast with the original systems introduced by Coppo
and Dezani), sometimes called system R. Notice that the precise connection
between the idempotent and non-idempotent approaches is analyzed in [8], in a
quite general Linear Logic setting by means of an extensional collapse.

In order to explain our approach, we restrict first to simple types, interpreted
as follows in the relational model: a basic type α is interpreted as a given set �α�
and the type σ ⇒ τ is interpreted as the set Mfin(�σ�)× �τ� (where Mfin(E) is
the set of finite multisets of elements of E). Remember indeed that intersection
types can be considered as a syntactic presentation of denotational semantics, so
it makes sense to define intersection types relative to simple types (in the spirit
of [10]) as we do in Section 3: an intersection type relative to the base type α is an
element of �α� and an intersection type relative to σ ⇒ τ is a pair ([ a1, . . . , an ], b)
where the ais are intersection types relative to σ and b is an intersection type
relative to τ ; with more usual notations1 ([ a1, . . . , an ], b) would be written (a1∧
· · · ∧ an) → b. Then, given a type σ, the main idea consists in representing
an indexed family of elements of �σ� as a formula of a new logical system. If
σ = (ϕ ⇒ ψ) then the family can be written2 ([ ak | k ∈ K and u(k) = j ], bj)j∈J

where J and K are indexing sets, u : K → J is a function such that f−1({j}) is
finite for all j ∈ J , (bj)j∈J is a family of elements of �ψ� (represented by a formula
B) and (ak)k∈K is a family of elements of �ϕ� (represented by a formula A): in
that case we introduce the implicative formula (A ⇒u B) to represent the family

1 That we prefer not to use for avoiding confusions between these two levels of typing.
2 We use [ · · · ] for denoting multisets much as one uses {· · · } for denoting sets, the

only difference is that multiplicities are taken into account.

Non-idempotent intersection types in logical form 199



([ ak | k ∈ K and u(k) = j ], bj)j∈J . It is clear that a family of simple types has
generally infinitely many representations as such formulas; this huge redundancy
makes it possible to establish a tight link between inhabitation of intersection
types with provability of formulas representing them (in an indexed version LJ(I)
of intuitionistic logic). Such a correspondence is exhibited in Section 3 in the
simply typed setting and the idea is quite simple:

given a type σ, a family (aj)j∈J of elements of �σ�, and a closed λ-term
of type σ, it is equivalent to say that � M : aj holds for all j and to
say that some (and actually any) formula A representing (aj)j∈J has an
LJ(I) proof3 whose underlying λ-term is M .

In Section 4 we extend this approach to the untyped λ-calculus taking as
underlying model of the pure λ-calculus our relational version R∞ of Scott’s D∞.
We define an adapted version of LJ(I) and establish a similar correspondence,
with some slight modifications due to the specificities of R∞.

1 Notations and preliminary definitions

If E is a set, a finite multiset of elements of E is a function m : E → N such
that the set {a ∈ E | m(a) �= 0} (called the domain of m) is finite. The cardinal
of such a multiset m is #m =

∑
a∈E m(a). We use + for the obvious addition

operation on multisets, and if a1, . . . , an are elements of E, we use [ a1, . . . , an ]
for the corresponding multiset (taking multiplicities into account); for instance
[ 0, 1, 0, 2, 1 ] is the multiset m of elements of N such that m(0) = 2, m(1) = 2,
m(2) = 1 and m(i) = 0 for i > 2. If (ai)i∈I is a family of elements of E and if J
is a finite subset of I, we use [ ai | i ∈ J ] for the multiset of elements of E which
maps a ∈ E to the number of elements i ∈ J such that ai = a (which is finite
since J is). We use Mfin(E) for the set of finite multisets of elements of E.

We use + to denote set union when we we want to stress the fact that the
involved sets are disjoint. A function u : J → K is almost injective if #u−1{k}
is finite for each k ∈ K (equivalently, the inverse image of any finite subset of
K under u is finite). If s = (a1, . . . , an) is a sequence of elements of E and
i ∈ {1, . . . , n}, we use (s) \ i for the sequence (a1, . . . , ai−1, ai+1, . . . , an). Given
sets E and F , we use FE for the set of function from E to F . The elements of
FE are sometimes considered as functions u (with a functional notation u(e) for
application) and sometimes as indexed families a (with index notations ae for
application) especially when E is countable.

If i ∈ {1, . . . , n} and j ∈ {1, . . . , n − 1}, we define s(j, i) ∈ {1, . . . , n} as
follows: s(j, i) = j if j < i and s(j, i) = j + 1 if j ≥ i.

3 Any such proof can be stripped from its indexing data giving rise to a proof of σ in
intuitionistic logic.

200 T. Ehrhard



2 The relational model of the λ-calculus

Let Rel! the category whose objects are sets4 and Rel!(X,Y ) = P(Mfin(X)× Y )
with IdX = {([ a ], a) | a ∈ X} and composition of s ∈ Rel!(X,Y ) and t ∈
Rel!(Y,Z) given by

t ◦ s = {(m1 + · · ·+mk, c) |
∃b1, . . . , bk ∈ Y ([ b1, . . . , bk ], c) ∈ t and ∀j (mj , bj) ∈ s} .

It is easily checked that this composition law is associative and that Id is neutral
for composition5. This category has all countable products: let (Xj)j∈J be a
countable family of sets, their product is X = &j∈J Xj =

⋃
j∈J{j} × Xj and

projections (prj)j∈J given by prj = {([ (j, a) ], a) | a ∈ Xj} ∈ Rel!(X,Xj) and if
(sj)j∈J is a family of morphisms sj ∈ Rel!(Y,Xj) then their tupling is 〈sj〉j∈J =
{([ a ], (j, b))) | j ∈ J and ([ a ], b) ∈ sj} ∈ Rel!(Y,X).

The category Rel! is cartesian closed with object of morphisms from X to Y
the set (X ⇒ Y ) = Mfin(X)×Y and evaluation morphism Ev ∈ Rel!((X ⇒ Y ) &
X,Y ) is given by Ev = {([ (1, [ a1, . . . , ak ], b), (2, a1), . . . , (2, ak) ], b) | a1, . . . , ak ∈
X and b ∈ Y }. The transpose (or curryfication) of s ∈ Rel!(Z & X,Y ) is
Cur(s) ∈ Rel!(Z,X ⇒ Y ) given by Cur(s) = {([ c1, . . . , cn ], ([ a1, . . . , ak ], b)) |
([ (1, c1), . . . , (1, cn), (2, a1), . . . , (2, ak) ], c) ∈ s}.

Relational D∞. Let R∞ be the least set such that (m0,m1, . . . ) ∈ R∞ as soon
as m0,m1 . . . are finite multisets of elements of R∞ which are almost all equal
to [ ]. Notice in particular that e = ([ ], [ ], . . . ) ∈ R∞ and satisfies e = ([ ], e).
By construction we have R∞ = Mfin(R∞) × R∞, that is R∞ = (R∞ ⇒ R∞)
and hence R∞ is a model of the pure λ-calculus in Rel! which also satisfies the
η-rule. See [1] for general facts on this kind of model.

3 The simply typed case

We assume to be given a set of type atoms α, β, . . . and of variables x, y, . . . ;
types and terms are given as usual by σ, τ, . . . := α | σ ⇒ τ and M,N, . . . := x |
(M)N | λxσ N .

With any type atom we associate a set �α�. This interpretation is extended to
all types by �σ ⇒ τ� = �σ� ⇒ �τ� = Mfin(�σ�)×�τ�. The relational semantics of
this λ-calculus can be described as a non-idempotent intersection type system,
with judgments of shape x1 : m1 : σ1, . . . , xn : mn : σn � M : a : σ where the xi’s
are pairwise distinct variables, M is a term, a ∈ �σ� and mi ∈ Mfin(�σi�) for
each i. Here are the typing rules:

j �= i ⇒ mj = [ ] and mi = [ a ]

(xi : mi : σi)
n
i=1 � xi : a : σ

Φ, x : m : σ � M : b : τ

Φ � λxσ M : (m, b) : σ ⇒ τ
4 We can restrict to countable sets.
5 This results from the fact that Rel! arises as the Kleisli category of the LL model of

sets and relations, see [3] for instance.

Non-idempotent intersection types in logical form 201



Φ � M : ([ a1, . . . , ak ], b) : σ ⇒ τ (Φl � N : al : σ)
k
l=1

Ψ � (M)N : b : τ

where Φ = (xi : mi : σi)
n
i=1, Φl = (xi : ml

i : σi)
n
i=1 for l = 1, . . . , k and

Ψ = (xi : mi +
∑k

l=1 m
l
i : σi)

n
i=1.

3.1 Why do we need another system?

The trouble with this deduction system is that it cannot be considered as the
term decorated version of an underlying “logical system for intersection types”
allowing to prove sequents of shape m1 : σ1, . . . ,mn : σn � a : σ (where non-
idempotent intersection types mi and a are considered as logical formulas, the
ordinary types σi playing the role of “kinds”) because, in the application rule
above, it is required that all the proofs of the k right hand side premises have the
same shape given by the λ-term N . We propose now a “logical system” derived
from [3] which, in some sense, solves this issue. The main idea is quite simple and
relies on three principles: (1) replace hereditarily multisets with indexed families
in intersection types, (2) instead of proving single types, prove indexed families
of hereditarily indexed types and (3) represent syntactically such families (of
hereditarily indexed types) as formulas of a new system of indexed logic.

3.2 Minimal LJ(I)

We define now the syntax of indexed formulas. Assume to be given an infinite
countable set I of indices. Then we define indexed types A; with each such type
we associate an underlying type A, a set d(A) and a family 〈A〉 ∈ �A�d(A). These
formulas are given by the following inductive definition:

– if J ⊆ I and f : J → �α� is a function then α[f ] is a formula with α[f ] = α,
d(α[f ]) = J and 〈α[f ]〉 = f

– and if A and B are formulas and u : d(A) → d(B) is almost injective then
A ⇒u B is a formula with A ⇒u B = A ⇒ B, d(A ⇒u B) = d(B) and, for
k ∈ d(B), 〈A ⇒u B〉k = ([ 〈A〉j | j ∈ d(A) and u(j) = k ], 〈B〉k).

Proposition 1. Let σ be a type, J be a subset of I and f ∈ �σ�J . There is a
formula A such that A = σ, d(A) = J and 〈A〉 = f (actually, there are infinitely
many such A’s as soon as σ is not an atom and J �= ∅).

Proof. The proof is by induction on σ. If σ is an atom α then we take A = α[f ].
Assume that σ = (ρ ⇒ τ) so that f(j) = (mj , bj) with mj ∈ Mfin(�ρ�) and
bj ∈ �τ�. Since each mj is finite and I is infinite, we can find a family (Kj)j∈J of
pairwise disjoint finite subsets of I such that #Kj = #mj . Let K =

⋃
j∈J Kj ,

there is a function g : K → �ρ� such that mj = [ g(k) | k ∈ Kj ] for each j ∈ J
(choose first an enumeration gj : Kj → �ρ� of mj for each j and then define
g(k) = gj(k) where j is the unique element of J such that k ∈ Kj). Let u : K → J
be the unique function such that k ∈ Ku(k) for all k ∈ K; since each Kj is finite,

202 T. Ehrhard



this function u is almost injective. By inductive hypothesis there is a formula A
such that A = ρ, d(A) = K and 〈A〉 = g, and there is a formula B such that
B = τ , d(B) = J and 〈B〉 = (bj)j∈J . Then the formula A ⇒u B is well formed
(since u is an almost injective function d(A) = K → d(B) = J) and satisfies
A ⇒u B = σ, d(A ⇒u B) = J and 〈A ⇒u B〉 = f as contended. �

As a consequence, for any type σ and any element a of �σ� (so a is a non-
idempotent intersection type of kind σ), one can find a formula A such that
A = σ, d(A) = {j} (where j is an arbitrary element of I) and 〈A〉j = a. In other
word, any intersection type can be represented as a formula (in infinitely many
different ways in general of course, but up to renaming of indices, that is, up to
“hereditary α-equivalence”, this representation is unique).

For any formula A and J ⊆ I, we define a formula A�J such that A�J = A,
d(A�J) = d(A) ∩ J and 〈A�J〉 = 〈A〉 �J . The definition is by induction on A.

– α[f ]�J = α[f �J ]
– (A ⇒u B)�J = (A�K ⇒v B�J) where K = u−1(d(B) ∩ J) and v = u �K .

Let u : d(A) → J be a bijection (so that u(d(A)) = J), we define a formula
u∗(A) such that u∗(A) = A, d(u∗(A)) = u(d(A)) and 〈u∗(A)〉j = 〈A〉u−1(j). The
definition is by induction on A:

– u∗(α[f ]) = α[f ◦ u−1]
– u∗(A ⇒v B) = (A ⇒u◦v u∗(B)).

Using these two auxiliary notions, we can give a set of three deduction rules
for a minimal natural deduction allowing to prove formulas in this indexed intu-
itionistic logic. This logical system allows to derive sequents which are of shape

Au1
1 , . . . , Aun

n � B (1)

where for each i = 1, . . . , n, the function ui : d(Ai) → d(B) is almost injective (it
is not required that d(B) =

⋃n
i=1 ui(d(Ai))). Notice that the expressions Aui

i are
not formulas; this construction Au is part of the syntax of sequents, just as the “ ,”
separating these pseudo-formulas. Given a formula A and u : d(A) → J almost
injective, it is nevertheless convenient to define 〈Au〉 ∈ Mfin(�A�)J by 〈Au〉j =
[ 〈A〉k | u(k) = j ]. In particular, when u is a bijection, 〈Au〉j = [ 〈A〉u−1(j) ].

The crucial point here is that such a sequent (1) involves no λ-term.
The main difference between the original system LL(I) of [3] and the present

system is the way axioms are dealt with. In LL(I) there is no explicit identity
axiom and only “atomic axioms” restricted to the basic constants of LL; indeed
it is well-known that in LL all identity axioms can be η-expanded, leading to
proofs using only such atomic axioms. In the λ-calculus, and especially in the
untyped λ-calculus we want to deal with in next sections, such η-expansions are
hard to handle so we prefer to use explicit identity axioms.

The axiom is
j �= i ⇒ d(Aj) = ∅ and ui is a bijection

Au1
1 , . . . , Aun

n � ui∗(Ai)

Non-idempotent intersection types in logical form 203



so that for j �= i, the function uj is empty. A special case is

j �= i ⇒ d(Aj) = ∅ and ui is the identity function
Au1

1 , . . . , Aun
n � Ai

which may look more familiar, but the general axiom rule, allowing to “delocalize”
the proven formula Ai by an arbitrary bijection ui, is required as we shall see.
The ⇒ introduction rule is quite simple

Au1
1 , . . . , Aun

n , Au � B

Au1
1 , . . . , Aun

n � A ⇒u B

Last the ⇒ elimination rule is more complicated (from a Linear Logic point
of view, this is due to the fact that it combines 3 LL logical rules: � elimination,
contraction and promotion). We have the deduction

Cu1
1 , . . . , Cun

n � A ⇒u B Dv1
1 , . . . , Dvn

n � A

Ew1
1 , . . . , Ewn

n � B

under the following conditions, to be satisfied by the involved formulas and
functions: for each i = 1, . . . , n one has d(Ci)∩d(Di) = ∅, d(Ei) = d(Ci)+d(Di),
Ci = Ei�d(Ci), Di = Ei�d(Di), wi �d(Ci)= ui, and wi �d(Di)= u ◦ vi.

Let π be a deduction tree of the sequent Au1
1 , . . . , Aun

n � B in this system.
By dropping all index information we obtain a derivation tree π of A1, . . . , An �
B, and, upon choosing a sequence −→x of n pairwise distinct variables, we can
associate with this derivation tree a simply typed λ-term π−→x which satisfies
x1 : A1, . . . , xn : An � π−→x : B.

3.3 Basic properties of LJ(I)

We prove some basic properties of this logical system. This is also the opportunity
to get some acquaintance with it. Notice that in many places we drop the type
annotations of variables in λ-terms, first because they are easy to recover, and
second because the very same results and proofs are also valid in the untyped
setting of Section 4.

Lemma 1 (Weakening). Assume that Φ � A is provable by a proof π and let
B be a formula such that d(B) = ∅. Then Φ′ � A is provable by a proof π′, where
Φ′ is obtained by inserting B0d(A) at any place in Φ. Moreover π−→x = π′−→

x′ (where
−→
x′ is obtained from −→x by inserting a dummy variable at the same place).

The proof is an easy induction on the proof of Φ � A.

Lemma 2 (Relocation). Let π be a proof of (Aui
i )ni=1 � A let u : d(A) → J be

a bijection, there is a proof π′ of (Au◦ui
i )ni=1 � u∗(A) such that π′−→x = π−→x .

The proof is a straightforward induction on π.

Lemma 3 (Restriction). Let π be a proof of (Aui
i )ni=1 � A and let J ⊆ d(A).

For i = 1, . . . , n, let Ki = ui
−1(J) ⊆ d(Ai) and u′

i = ui�Ki : Ki → J . Then the
sequent ((Ai�Ki

)u
′
i)ni=1 � A�J has a proof π′ such that π′−→x = π−→x .

204 T. Ehrhard



Proof. By induction on π. Assume that π consists of an axiom (A
uj

j )nj=1 � ui∗(Ai)
with d(Aj) = ∅ if j �= i, and ui a bijection. With the notations of the lemma,
Kj = ∅ for j �= i and u′

i is a bijection Ki → J . Moreover u′
i∗(Ai�Ki) = ui∗(Ai)�J

so that ((Ai�Ki)
u′
i)ni=1 � A�J is obtained by an axiom π′ with π′−→x = xi = π−→x .

Assume that π ends with a ⇒-introduction rule:
ρ

(Aui
i )n+1

i=1 � B

(Aui
i )ni=1 � An+1 ⇒un+1 B

with A = (An+1 ⇒un+1
B), and we have π−→x = λxn+1 ρ−→x ,xn+1

. With the no-
tations of the lemma we have A�J = (An+1�Kn+1

⇒u′
n+1

B�J). By inductive

hypothesis there is a proof ρ′ of (Ai�
u′
i

Ki
)n+1
i=1 � B�J such that ρ′−→x ,xn+1

= ρ−→x ,xn+1

and hence we have a proof π′ of (Ai�
u′
i

Ki
)ni=1 � A�J with π′−→x = λxn+1 ρ

′−→x ,xn+1
=

π−→x as contended.
Assume last that π ends with a ⇒-elimination rule:

μ

(Bvi
i )ni=1 � B ⇒v A

ρ

(Cwi
i )ni=1 � B

(Aui
i )ni=1 � A

with d(Ai) = d(Bi) + d(Ci), Bi = Ai�d(Bi) and Ci = Ai�d(Ci), ui�d(Bi) = vi

and ui�d(Ci) = v ◦ wi for i = 1, . . . , n, and of course π−→x =
(
μ−→x

)
ρ−→x . Let

L = v−1(J) ⊆ d(B). Let Li = vi
−1(J) and Ri = wi

−1(L) for i = 1, . . . , n (we
also set v′i = vi�Li , w′

i = wi�Ri and v′ = v�L). By inductive hypothesis, we have
a proof μ′ of (Bi�

v′
i

Li
)ni=1 � B�L ⇒v′ A�J such that μ′−→x = μ−→x and a proof ρ′

of (Ci�
w′

i

Ri
)ni=1 � B�L such that ρ′−→x = ρ−→x . Now, setting Ki = ui

−1(K), observe
that

– d(Bi) ∩Ki = Li = d(Bi�Li
) and ui�Li

= v′i since ui�d(Bi) = vi
– d(Ci) ∩Ki = Ri = d(Ci) ∩ wi

−1(L) since ui�d(Ci) = v ◦ wi and L = v−1(J),
hence d(Ci) ∩Ki = d(Ci�Ri

), and also ui�Li
= v′ ◦ w′

i.

It follows that d(Ai�Ki) = Li + Ri, and, setting u′
i = ui�Ki , we have u′

i�Li = v′i
and u′

i�Ri
= v′ ◦ w′

i. Hence we have a proof π′ of (Ai�
u′
i

Ki
)ni=1 � A�J such that

π′−→x =
(
μ′−→x

)
ρ′−→x =

(
μ−→x

)
ρ−→x = π−→x as contended. �

Though substitution lemmas are usually trivial, the LJ(I) substitution lemma
requires some care in its statement and proof6.

Lemma 4 (Substitution). Assume that (A
uj

j )nj=1 � A with a proof μ and
that, for some i ∈ {1, . . . , n}, (B

vj
j )n−1

j=1 � Ai with a proof ρ. Then there is a

proof π of (Cwj

j )n−1
j=1 � A such that π(−→x )\i = μ−→x

[
ρ
(−→x )\i/xi

]
as soon as for each

j = 1, . . . , n− 1, d(Cj) = d(As(j,i)) + d(Bj) for each j = 1, . . . , n− 1 (remember
that this requires also that d(As(j,i)) ∩ d(Bj) = ∅) with:
6 We use notations introduced in Section 1, especially for s(j, i).

Non-idempotent intersection types in logical form 205



– Cj�d(As(j,i)) = As(j,i) and wj�d(As(j,i)) = us(j,i)

– Cj�d(Bj) = Bj and wj�d(Bj) = ui ◦ vj.

Proof. By induction on the proof μ. Assume that μ is an axiom, so that there is
a k ∈ {1, . . . , n} such that A = uk∗(Ak), uk is a bijection and d(Aj) = ∅ for all
j �= k. In that case we have μ−→x = xk. There are two subcases to consider. Assume
first that k = i. By Lemma 2 there is a proof ρ′ of (Bui◦vj

j )n−1
j=1 � ui∗(Ai) such

that ρ′
(−→x )\i = ρ

(−→x )\i. We have Cj = Bj and wj = ui ◦ vj for j = 1, . . . , n − 1,

so that ρ′ is a proof of (Cwj

j )n−1
j=1 � A, so we take π = ρ′ and equation π(−→x )\i =

μ−→x

[
ρ
(−→x )\i/xi

]
holds since μ−→x = xi. Assume next that k �= i, then d(Ai) = ∅

and hence d(Bj) = ∅ (and vj = 0∅) for j = 1, . . . , n − 1. Therefore Cj = As(j,i)

and wj = vs(j,i) for j = 1, . . . , n − 1. So our target sequent (C
wj

j )n−1
j=1 � A can

also be written (A
us(j,i)

s(j,i) )
n−1
j=1 � uk∗(Ak) and is provable by a proof π such that

π(−→x )\i = xk as contended.
Assume now that μ is a ⇒-intro, that is A = (An+1 ⇒un+1

A′) and μ is

θ

(A
uj

j )n+1
j=1 � A′

(A
uj

j )nj=1 � A

We set Bn = An+1�∅ and of course vn+1 = 0d(A). Then we have a proof ρ′ of
(B

vj
j )nj=1 � Ai such that ρ′

(−→x )\i,xn+1
= ρ

(−→x )\i by Lemma 1. We set Cn = An+1

and wn = un+1. Then by inductive hypothesis applied to θ we have a proof
π0 of (C

wj

j )nj=1 � A′ which satisfies π0
(−→x )\i,xn+1

= θ−→x ,xn+1

[
ρ
(−→x )\i/xi

]
and

applying a ⇒-introduction rule we get a proof π of (C
wj

j )n−1
j=1 � A such that

π(−→x )\i = λxn+1 (θ−→x ,xn+1

[
ρ
(−→x )\i/xi

]
) = μ−→x

[
ρ
(−→x )\i/xi

]
as expected.

Assume last that the proof μ ends with

ϕ

(E
sj
j )nj=1 � E ⇒s A

ψ

(F
tj
j )nj=1 � E

(A
uj

j )nj=1 � A

with d(Aj) = d(Ej) + d(Fj), Aj�d(Ej) = Ej , Aj�d(Fj) = Fj , uj�d(Ej) = sj

and uj�d(Fj) = s ◦ tj , for j = 1, . . . , n. And we have μ−→x =
(
ϕ−→x

)
ψ−→x . The

idea is to “share” the substituting proof ρ of (B
vj
j )nj=1 � Ai among ϕ and ψ

according to what they need, as specified by the formulas Ei and Fi. So we write
d(Bj) = Lj+Rj where Lj = vj

−1(d(Ei)) and Rj = vj
−1(d(Fi)) and by Lemma 3

we have two proofs ρL of (Bj�
vL
j

Lj
)n−1
j=1 � Ei and (Bj�

vR
j

Rj
)n−1
j=1 � Fi where we set

vLj = vj�Lj
and vRj = vj�Rj

, obtained from ρ by restriction. These proofs satisfy
ρL

(−→x )\i = ρR
(−→x )\i = ρ

(−→x )\i.

206 T. Ehrhard



Now we want to apply the inductive hypothesis to ϕ and ρL, in order to get

a proof of the sequent (G
wL

j

j )n−1
j=1 � E ⇒s A where Gj = Cj�d(Es(j,i))+Lj

(observe
indeed that d(Es(j,i)) ⊆ d(As(j,i)) and Lj ⊆ d(Bj) and hence are disjoint by our
assumption that d(Cj) = d(As(j,i)) + d(Bj)) and wL

j = wj�d(Es(j,i))+Lj
. With

these definitions, and by our assumptions about Cj and wj , we have for all
j = 1, . . . , n− 1

Gj�d(Es(j,i)) = Cj�d(As(j,i))�d(Es(j,i)) = As(j,i)�d(Es(j,i)) = Es(j,i)

wL
j �d(Es(j,i)) = wj�d(As(j,i))�d(Es(j,i)) = us(j,i)�d(Es(j,i)) = ss(j,i)

Gj�Lj
= Cj�d(Bj)�Lj

= Bj�Lj

wL
j �Lj = wj�d(Bj)�Lj = (ui ◦ vj)�Lj = ui�d(Ei) ◦ vLj = si ◦ vLj .

Therefore the inductive hypothesis applies yielding a proof ϕ′ of (G
wL

j

j )n−1
j=1 �

E ⇒s A such that ϕ′
(−→x )\i = ϕ−→x

[
ρL

(−→x )\i/xi

]
= ϕ−→x

[
ρ
(−→x )\i/xi

]
.

Next we want to apply the inductive hypothesis to ψ and ρR, in order to
get a proof of the sequent (H

rj
j )n−1

j=1 � E where, for j = 1, . . . , n − 1, Hj =
Cj�d(Fs(j,i))+Rj

(again d(Fs(j,i)) ⊆ d(As(j,i)) and Rj ⊆ d(Bj) are disjoint by our
assumption that d(Cj) = d(As(j,i)) + d(Bj)) and rj is defined by rj�d(Fs(j,i)) =

ts(j,i) and rj�Rj
= ti ◦ vRj . Remember indeed that vRj : Rj → d(Fi) and ti :

d(Fi) → d(E). We have

Hj�d(Fs(j,i)) = Cj�d(As(j,i))�d(Fs(j,i)) = As(j,i)�d(Fs(j,i)) = Fs(j,i)

Hj�Rj
= Cj�d(Bj)�Rj

= Bj�Rj

and hence by inductive hypothesis there is a proof ψ′ of (Hrj
j )n−1

j=1 � E such that

ψ′
(−→x )\i = ψ−→x

[
ρR

(−→x )\i/xi

]
= ψ−→x

[
ρ
(−→x )\i/xi

]
.

To end the proof of the lemma, it will be sufficient to prove that we can apply

a ⇒-elimination rule to the sequents (G
wL

j

j )n−1
j=1 � E ⇒s A and (H

rj
j )n−1

j=1 � E

in order to get a proof π of the sequent (C
wj

j )n−1
j=1 � A. Indeed, the proof π

obtained in that way will satisfy π(−→x )\i =
(
ϕ′

(−→x )\i

)
ψ′

(−→x )\i = μ−→x

[
ρ
(−→x )\i/xi

]
.

Let j ∈ {1, . . . , n−1}. We have Cj�d(Gj) = Gj and Cj�d(Hj) = Hj simply because
Gj and Hj are defined by restricting Cj . Moreover d(Gj) = d(Es(j,i)) + Lj and
d(Hj) = d(Fs(j,i)) +Rj . Therefore d(Gj) ∩ d(Hj) = ∅ and

d(Cj) = d(As(j,i)) + d(Bj) = d(Es(j,i)) + d(Fs(j,i)) + Lj +Rj = d(Gj) + d(Hj) .

We have wj�d(Gj) = wL
j by definition of wL

j as wj�d(Es(j,i))+Lj
. We have

wj�d(Hj)�d(Fs(j,i)) = wj�d(As(j,i))�d(Fs(j,i)) = us(j,i)�d(Fs(j,i))

= s ◦ ts(j,i) = (s ◦ rj)�d(Fs(j,i))

wj�d(Hj)�Rj = wj�d(Bj)�Rj = (ui ◦ vj)�Rj

= ui�d(Fi) ◦ vRj = s ◦ ti ◦ vRj = s ◦ rj�Rj
= (s ◦ rj)�Rj

Non-idempotent intersection types in logical form 207



and therefore wj�d(Hj) = s ◦ rj as required. �

We shall often use the two following consequences of the Substitution Lemma.

Lemma 5. Given a proof μ of (A
uj

j )nj=1 � A and a proof ρ of Bv � Ai (for
some i ∈ {1, . . . , n}), there is a proof π of (Auj

j )i−1
j=1, B

ui◦v, (Auj

j )nj=i+1 � A such

that π−→x = μ−→x

[
ρ
xi
/xi

]

Proof. By weakening we have a proof μ′ of (A
uj

j )ij=1, B�
0d(A)

∅ , (A
uj

j )nj=i+1 � A

such that μ′−→x = μ
(−→x )\i+1

(where −→x is a list of pairwise distinct variables of

length n+1), as well as a proof ρ′ of (Aj�
0d(Ai)

∅ )ij=1, B
v, (Aj�

0d(Ai)

∅ )nj=i+1 � Ai such
that ρ′−→x = ρ

xi+1
. By Lemma 4, we have a proof π′ of (Auj

j )i−1
j=1, B

ui◦v, (Auj

j )nj=i+1 �
A which satisfies π′

(−→x )\i = μ′−→x

[
ρ′

(−→x )\i/xi

]
= μ−→x

[
ρ
xi
/xi

]
. �

Lemma 6. Given a proof μ of Av � B and a proof ρ of (Auj

j )nj=1 � A, there is

a proof π of (Av◦uj

j )nj=1 � B such that π−→x = μ
x

[
ρ−→x /x

]
.

The proof is similar to the previous one.
If A and B are formulas such that A = B, d(A) = d(B) and 〈A〉 = 〈B〉, we

say that A and B are similar and we write A ∼ B. One fundamental property
of our deduction system is that two formulas which represent the same family
of intersection types are logically equivalent.

Theorem 1. If A ∼ B then AId � B with a proof π such that πx ∼η x.

Proof. Assume that A = α[f ], then we have B = A and AId � B is an axiom.
Assume that A = (C ⇒u D) and B = (E ⇒v F ). We have D ∼ F and

hence DId � F with a proof ρ such that ρ
x

∼η x. And there is a bijection
w : d(E) → d(C) such that w∗(E) ∼ C and u ◦ w = v. By inductive hypothesis
we have a proof μ of w∗(E)Id � C such that μ

y
∼η y, and hence using the axiom

Ew � w∗(E) and Lemma 5 we have a proof μ′ of Ew � C such that μ′
x
= μ

x
.

There is a proof π1 of (C ⇒u D)Id, Cu � D such that π1
x,y = (x) y (consider

the two axioms (C ⇒u D)Id, C�
0d(D)

∅ � C ⇒u D and (C ⇒u D)�
0d(C)

∅ , C Id � C
and use a ⇒-elimination rule). So by Lemma 5 there is a proof π2 of (C ⇒u

D)Id, Eu◦w � D, that is of (C ⇒u D)Id, Ev � D, such that π2
x,y = (x)μ

y
.

Applying Lemma 6 we get a proof π3 of (C ⇒u D)Id, Ev � F such that π3
x,y =

ρ
z

[
(x)μ

y
/z

]
. We get the expected proof π by a ⇒-introduction rule so that

πx = λy ρ
z

[
(x)μ

y
/z

]
. By inductive hypothesis πx ∼η x. �

208 T. Ehrhard



3.4 Relation between intersection types and LJ(I)

Now we explain the precise connection between non-idempotent intersection
types and our logical system LJ(I). This connection consists of two statements:

– the first one means that any proof of LJ(I) can be seen as a typing derivation
in non-idempotent intersection types (soundness)

– and the second one means that any non-idempotent intersection typing can
be seen as a derivation in LJ(I) (completeness).

Theorem 2 (Soundness). Let π be a deduction tree of the sequent (Aui
i )ni=1 �

B and −→x a sequence of n pairwise distinct variables. Then the λ-term π−→x sat-
isfies (xi : 〈Aui

i 〉j : Ai)
n
i=1 � π−→x : 〈B〉j : B in the intersection type system, for

each j ∈ d(B).

Proof. We prove the first part by induction on π (in the course of this induction,
we recall the precise definition of π−→x ). If π is the proof

q �= i ⇒ d(Aq) = ∅ and ui is a bijection
(A

uq
q )nq=1 � ui∗(Ai)

(so that B = ui∗(Ai)) then π−→x = xi. We have 〈Auq
q 〉j = [ ] if q �= i, 〈Aui

i 〉j =
[ 〈Ai〉ui

−1(j) ] and 〈ui∗(Ai)〉j = 〈Ai〉ui
−1(j). It follows that (xq : 〈Auq

q 〉j : Aq)
n
q=1 �

xi : 〈B〉j : B is a valid axiom in the intersection type system.
Assume that π is the proof

π0

Au1
1 , . . . , Aun

n , Au � B

Au1
1 , . . . , Aun

n � A ⇒u B

where π0 is the proof of the premise of the last rule of π. By inductive hypothesis
the λ-term π0−→x ,x satisfies (xi : 〈Aui

i 〉j : Ai)
n
i=1, x : 〈Au〉j : A � π0−→x ,x : 〈B〉j : B

from which we deduce (xi : 〈Aui
i 〉j : Ai)

n
i=1 � λxA π0−→x ,x : (〈Au〉j , 〈B〉j) : A ⇒ B

which is the required judgment since π−→x = λxA π0−→x ,x and (〈Aui
i 〉j , 〈B〉j) =

〈A ⇒u B〉j as easily checked.
Assume last that π ends with

π1

Cu1
1 , . . . , Cun

n � A ⇒u B
π2

Dv1
1 , . . . , Dvn

n � A

Ew1
1 , . . . , Ewn

n � B

with: for each i = 1, . . . , n there are two disjoint sets Li and Ri such that
d(Ei) = Li +Ri, Ci = Ei�Li

, Di = Ei�Ri
, wi �Li

= ui, and wi �Ri
= u ◦ vi.

Let j ∈ d(B). By inductive hypothesis, the judgment (xi : 〈Cui
i 〉j : Ci)

n
i=1 �

π1−→x : 〈A ⇒u B〉j : A ⇒ B is derivable in the intersection type system. Let Kj =
u−1({j}), which is a finite subset of d(A). By inductive hypothesis again, for

Non-idempotent intersection types in logical form 209



each k ∈ Kj we have (xi : 〈Dui
i 〉k : Di)

n
i=1 � π2−→x : 〈A〉k : A . Now observe that

〈A ⇒u B〉j = ([ 〈A〉k | k ∈ Kj ], 〈B〉j) so that

(xi : 〈Cui
i 〉j +

∑
k∈Kj

〈Dui
i 〉k : Ei)

n
i=1 � (

π1−→x
)
π2−→x : 〈B〉j : B

is derivable in intersection types (remember that Ci = Di = Ei). Since π−→x =(
π1−→x

)
π2−→x it will be sufficient to prove that

〈Ewi
i 〉j = 〈Cui

i 〉j +
∑
k∈Kj

〈Dvi
i 〉k . (2)

For this, since 〈Ewi
i 〉j = [ 〈Ei〉l | wi(l) = j ], consider an element l of d(Ei) such

that wi(l) = j. There are two possibilities: (1) either l ∈ Li and in that case we
know that 〈Ei〉l = 〈Ci〉l since Ei�Li = Ci and moreover we have ui(l) = wi(l) = j
(2) or l ∈ Ri. In that case we have 〈Ei〉l = 〈Di〉l since Ei�Ri

= Di. Moreover
u(vi(l)) = wi(l) = j and hence vi(l) ∈ Kj . Therefore

[ 〈Ei〉l | l ∈ Li and wi(l) = j ] = [ 〈Ci〉l | ui(l) = j ] = 〈Cui
i 〉j

[ 〈Ei〉l | l ∈ Ri and wi(l) = j ] = [ 〈Di〉l | vi(l) ∈ Kj ] =
∑
k∈Kj

〈Dvi
i 〉k

and (2) follows. �

Theorem 3 (Completeness). Let J ⊆ I. Let M be a λ-term and x1, . . . , xn

be pairwise distinct variables, such that (xi : m
j
i : σi)

n
i=1 � M : bj : τ in the

intersection type system for all j ∈ J . Let A1, . . . , An and B be formulas and
let u1, . . . , un be almost injective functions such that ui : d(Ai) → J = d(B).
Assume also that Ai = σi for each i = 1, . . . , n and that B = τ . Last assume
that, for all j ∈ J , one has 〈B〉j = bj and 〈Aui

i 〉j = mj
i for i = 1, . . . , n. Then

the judgment (Aui
i )ni=1 � B has a proof π such that π−→x ∼η M .

Proof. By induction on M . Assume first that M = xi for some i ∈ {1, . . . , n}.
Then we must have τ = σi, mj

q = [ ] for q �= i and mj
i = [ bj ] for all j ∈ J .

Therefore d(Aq) = ∅ and uq is the empty function for q �= i, ui is a bijection
d(Ai) → J and ∀k ∈ d(Ai) 〈Ai〉k = bui(k), in other words ui∗(Ai) ∼ B. By
Theorem 1 we know that the judgment (ui∗(Ai))

Id � B is provable in LJ(I) with
a proof ρ such that ρ

x
∼η x. We have a proof θ of (Aui

i )ni=1 � ui∗(Ai) which
consists of an axiom so that θ−→x = xi and hence by Lemma 6 we have a proof π
of (Aui

i )ni=1 � B such that π−→x = ρ
x
[θ−→x /x] ∼η xi.

Assume that M = λxσ N , that τ = (σ ⇒ ϕ) and that we have a fam-
ily of deductions (for j ∈ J) of (xi : m

j
i : σi)

n
i=1 � M : (mj , cj) : σ ⇒ ϕ with

bj = (mj , cj) and the premise of this conclusion in each of these deductions is
(xi : m

j
i : σi)

n
i=1, x : mj : σ � N : cj : ϕ. We must have B = (C ⇒u D) with

D = ϕ, C = σ, d(D) = J , u : d(C) → d(D) almost injective, 〈D〉j = cj and

210 T. Ehrhard



[ 〈C〉k | k ∈ d(C) and u(k) = j ] = mj , that is 〈Cu〉j = mj , for each j ∈ J .
By inductive hypothesis we have a proof ρ of (Aui

i )ni=1, C
u � D such that

ρ−→x ,x
∼η N from which we obtain a proof π of (Aui

i )ni=1 � C ⇒u D such that
π−→x = λxσ ρ−→x ,x

∼η M as expected.
Assume last that M = (N)P and that we have a J-indexed family of deduc-

tions (xi : m
j
i : σi)

n
i=1 � M : bj : τ . Let A1, . . . , An, u1, . . . , un and B be LJ(I)

formulas and almost injective functions as in the statement of the theorem.
Let j ∈ J . There is a finite set Lj ⊆ I and multisets mj,0

i , (mj,l
i )l∈Lj such

that we have deductions7 of (xi : m
j,0
i : σi)

n
i=1 � N : ([ ajl | l ∈ Lj ], bj) : σ ⇒ τ

and, for each l ∈ Lj , of (xi : m
j,l
i : σi)

n
i=1 � P : ajl : σ with

mj
i = mj,0

i +
∑
l∈Lj

mj,l
i . (3)

We assume the finite sets Lj to be pairwise disjoint (this is possible because I
is infinite) and we use L for their union. Let u : L → J be the function which
maps l ∈ L to the unique j such that l ∈ Lj , this function is almost injective.
Let A be an LL(J) formula such that A = σ, d(A) = L and 〈A〉l = a

u(l)
l ; such a

formula exists by Proposition 1.
Let i ∈ {1, . . . , n}. For each j ∈ J we know that

[ 〈Ai〉r | r ∈ d(Ai) and ui(r) = j ] = mj
i = mj,0

i +
∑
l∈Lj

mj,l
i

and hence we can split the set d(Ai) ∩ ui
−1({j}) into disjoint subsets Rj,0

i and
(Rj,l

i )l∈Lj
in such a way that

[ 〈Ai〉r | r ∈ Rj,0
i ] = mj,0

i and ∀l ∈ Lj [ 〈Ai〉r | r ∈ Rj,l
i ] = mj,l

i .

We set R0
i =

⋃
j∈J Rj,0

i ; observe that this is a disjoint union because Rj,0
i ⊆

ui
−1({j}). Similarly we define R1

i =
⋃

l∈L R
u(l),l
i which is a disjoint union for

the following reason: if l, l′ ∈ L satisfy u(l) = u(l′) = j then Rj,l
i and Rj,l′

i

have been chosen disjoint and if u(l) = j and u(l′) = j′ with j �= j′ we have
Rj,l

i ⊆ ui
−1{j} and Rj′,l′

i ⊆ ui
−1({j′}). Let vi : R

1
i → L be defined by: vi(r) is

the unique l ∈ L such that r ∈ R
u(l),l
i . Since each Rj,l

i is finite the function vi is
almost injective. Moreover u ◦ vi = ui�R1

i
.

We use u′
i for the restriction of ui to R0

i so that u′
i : R0

i → J . By induc-
tive hypothesis we have ((Ai�R0

i
)u

′
i)ni=1 � A ⇒u B with a proof μ such that

μ−→x ∼η N . Indeed [ 〈Ai�R0
i
〉r | r ∈ R0

i and u′
i(r) = j ] = mj,0

i and 〈A ⇒u B〉j =

([ ajl | u(l) = j ], bj) for each j ∈ J . For the same reason we have ((Ai�R1
i
)vi)ni=1 �

A with a proof ρ such that ρ−→x ∼η P . Indeed for each l ∈ L = d(A) we have

7 Notice that our λ-calculus is in Church style and hence the type σ is uniquely
determined by the sub-term N of M .

Non-idempotent intersection types in logical form 211



[ 〈Ai�R1
i
〉r | vi(r) = l ] = mj,l

i and 〈A〉l = ajl where j = u(l). By an application

rule we get a proof π of (Aui
i )ni=1 � B such that π−→x =

(
μ−→x

)
ρ−→x ∼η (N)P = M

as contended. �

4 The untyped Scott case

Since intersection types usually apply to the pure λ-calculus, we move now to
this setting by choosing in Rel! the set R∞ as model of the pure λ-calculus. The
R∞ intersection typing system has the elements of R∞ as types, and the typing
rules involve sequents of shape (xi : mi)

n
i=1 � M : a where mi ∈ Mfin(R∞) and

a ∈ R∞.
We use Λ for the set of terms of the pure λ-calculus, and ΛΩ as the pure λ-

calculus extended with a constant Ω subject to the two following �ω reduction
rules: λxΩ �ω Ω and (Ω)M �ω Ω. We use ∼ηω for the least congruence on ΛΩ

which contains �η and �ω and similarly for ∼βηω. We define a family (H(x))x∈V
of subsets of ΛΩ minimal such that, for any sequence −→x = (x1, . . . , xn) and −→y =
(y1, . . . , yk) such that −→x ,−→y is repetition-free, and for any terms Mi ∈ H(xi) (for
i = 1, . . . , n), one has λ−→x λ−→y (x)M1 · · ·Mn O1 · · ·Ol ∈ H(x) where Oj ∼ω Ω
for j = 1, . . . , l. Notice that x ∈ H(x).

The typing rules of R∞ are

x1 : [ ], . . . , xi : [ a ], . . . , xn : [ ] � xi : a
Φ, x : m � M : a

Φ � λxM : (m, a)

Φ � M : ([ a1, . . . , ak ], b) (Φj � N : aj)
k
j=1

Φ+
∑k

j=1 Φj � (M)N : b

where we use the following convention: when we write Φ+ Ψ it is assumed that
Φ is of shape (xi : mi)

n
i=1 and Ψ is of shape (xi : pi)

n
i=1, and then Φ + Ψ is

(xi : mi+pi)
n
i=1. This typing system is just a “proof-theoretic” rephrasing of the

denotational semantics of the terms of ΛΩ in R∞.

Proposition 2. Let M,M ′ ∈ ΛΩ and −→x = (x1, . . . , xn) be a list of pairwise dis-
tinct variables containing all the free variables of M and M ′. Let mi ∈ Mfin(R∞)
for i = 1, . . . , n and b ∈ R∞. If M ∼βηω M ′ then (xi : mi)

n
i=1 � M : b iff

(xi : mi)
n
i=1 � M ′ : b.

4.1 Formulas

We define the associated formulas as follows, each formula A being given together
with d(A) ⊆ I and 〈A〉 ∈ R

d(A)
∞ .

– If J ⊆ I then εJ is a formula with d(εJ) = J and 〈εJ〉j = e for j ∈ J
– and if A and B are formulas and u : d(A) → d(B) is almost injective

then A ⇒u B is a formula with d(A ⇒u B) = d(B) and 〈A ⇒u B〉j =
([ 〈A〉k | u(k) = j ], 〈B〉j) ∈ R∞.

212 T. Ehrhard



We can consider that there is a type o of pure λ-terms interpreted as R∞ in
Rel!, such that (o ⇒ o) = o, and then for any formula A we have A = o.

Operations of restriction and relocation of formulas are the same as in Sec-
tion 3 (setting εJ�K = εJ∩K) and satisfy the same properties, for instance
〈A�K〉 = 〈A〉�K and one sets u∗(εJ) = εK if u : J → K is a bijection.

The deduction rules are exactly the same as those of Section 3, plus the axiom
� ε∅. With any deduction π of (Aui

i )ni=1 � B and sequence −→x = (x1, . . . , xn) of
pairwise distinct variables, we can associate a pure π−→x ∈ ΛΩ defined exactly as
in Section 3 (just drop the types associated with variables in abstractions). If π
consists of an instance of the additional axiom, we set π−→x = Ω.

Lemma 7. Let A,A1, . . . , An be a formula such that d(A) = d(Ai) = ∅. Then
(A

0∅
i )ni=1 � A is provable by a proof π which satisfies πx1,...,xk

∼ω Ω.

The proof is a straightforward induction on A using the additional axiom,
Lemma 1 and the observations that if d(B ⇒u C) = ∅ then u = 0∅.

One can easily define a size function sz : R∞ → N such that sz(e) = 0 and
sz([ a1, . . . , ak ], a) = sz(a)+

∑k
i=1(1+ sz(ai)). First we have to prove an adapted

version of Proposition 1; here it will be restricted to finite sets.

Proposition 3. Let J be a finite subset of I and f ∈ RJ
∞. There is a formula

A such that d(A) = J and 〈A〉 = f .

Proof. Observe that, since J is finite, there is an N ∈ N such that ∀j ∈ J ∀q ∈
N q ≥ N ⇒ f(j)q = [ ] (remember that f(j) ∈ Mfin(R∞)N). Let N(f) be the
least such N . We set sz(f) =

∑
j∈J sz(f(j)) and the proof is by induction on

(sz(f), N(f)) lexicographically.
If sz(f) = 0 this means that f(j) = e for all j ∈ J and hence we can

take A = εJ . Assume that sz(f) > 0, one can write8 f(j) = (mj , aj) with
mj ∈ Mfin(R∞) and aj ∈ R∞ for each j ∈ J . Just as in the proof of Proposition 1
we choose a set K, a function g : K → R∞ and an almost injective function
u : K → J such that mj = [ g(k) | u(k) = j ]. The set K is finite since J is
and we have sz(g) < sz(f) because sz(f) > 0. Therefore by inductive hypothesis
there is a formula B such that d(B) = K and 〈B〉 = g. Let f ′ : J → R∞ defined
by f ′(j) = aj , we have sz(f ′) ≤ sz(f) and N(f ′) < N(f) and hence by inductive
hypothesis there is a formula C such that 〈C〉 = f . We set A = (B ⇒u C) which
satisfies 〈A〉 = f as required. �

Theorem 1 still holds up to some mild adaptation. First notice that A ∼ B
simply means now that d(A) = d(B) and 〈A〉 = 〈B〉.

Theorem 4. If A and B are such that A ∼ B then AId � B with a proof π
which satisfies πx ∈ H(x).

8 This is also possible if sz(f) = 0 actually.

Non-idempotent intersection types in logical form 213



Proof. By induction on the sum of the sizes of A and B. Assume that A = εJ
so that d(B) = J and ∀j ∈ J 〈B〉j = e. There are two cases as to B. In the
first case B is of shape εK but then we must have K = J and we can take for
π an axiom so that πx = x ∈ H(x). Otherwise we have B = (C ⇒u D) with
d(D) = J , ∀j ∈ J 〈D〉j = e and d(C) = ∅, so that u = 0J . We have A ∼ D and
hence by inductive hypothesis we have a proof ρ of AId � D such that ρ

x
∈ H(x).

By weakening and ⇒-introduction we get a proof π of AId � B which satisfies
πx = λy ρ

x
∈ H(x).

Assume that A = (C ⇒u D). If B = εJ then we must have d(C) = ∅, u = 0J
and D ∼ B and hence by inductive hypothesis we have a proof ρ of DId � B
such that ρ

x
∈ H(x). By Lemma 7 there is a proof θ of � C such that θ ∼ω Ω.

Hence there is a proof π of AId � B such that πx = ρ
y
[(x) θ/y] ∈ H(x).

Assume last that B = (E ⇒v F ), then we must have D ∼ F and there must
be a bijection w : d(E) → d(C) such that u ◦ w = v and w∗(E) ∼ C. We reason
as in the proof of Lemma 1: by inductive hypothesis we have a proof ρ of DId � F
and a proof μ of w∗(E)Id � C from which we build a proof π of AId � B such
that πx = λy ρ

z

[
(x)μ

y
/z

]
∈ H(x) by inductive hypothesis. �

Theorem 5 (Soundness). Let π be a deduction tree of Au1
1 , . . . , Aun

n � B and−→x a sequence of n pairwise distinct variables. Then the λ-term π−→x ∈ ΛΩ satisfies
(xi : 〈Aui

i 〉j)ni=1 � π−→x : 〈B〉j in the R∞ intersection type system, for each j ∈
d(B).

The proof is exactly the same as that of Theorem 2, dropping all simple types.
For all λ-term M ∈ Λ, we define HΩ(M) as the least subset of element of

ΛΩ such that:

– if O ∈ ΛΩ and O ∼ω Ω then O ∈ HΩ(M) for all M ∈ Λ
– if M = x then H(x) ⊆ HΩ(M)
– if M = λy N and N ′ ∈ HΩ(N) then λy N ′ ∈ HΩ(M)
– if M = (N)P , N ′ ∈ HΩ(N) and P ′ ∈ HΩ(P ) then (N ′)P ′ ∈ HΩ(M).

The elements of HΩ(M) can probably be seen as approximates of M .

Theorem 6 (Completeness). Let J ⊆ I be finite. Let M ∈ ΛΩ and x1, . . . , xn

be pairwise distinct variables, such that (xi : m
j
i )

n
i=1 � M : bj in the R∞ inter-

section type system for all j ∈ J . Let A1, . . . , An and B be formulas and let
u1, . . . , un be almost injective functions such that ui : d(Ai) → J = d(B). As-
sume also that, for all j ∈ J , one has 〈B〉j = bj and 〈Aui

i 〉j = mj
i for i = 1, . . . , n.

Then the judgment Au1
1 , . . . , Aun

n � B has a proof π such that π−→x ∈ HΩ(M).

The proof is very similar to that of Theorem 3.

5 Concluding remarks and acknowledgments

The results presented in this paper show that, at least in non-idempotent inter-
section types, the problem of knowing whether all elements of a given family of

214 T. Ehrhard



intersection types (aj)j∈J are inhabited by a common λ-term can be reformu-
lated logically: is it true that one (or equivalently, any) of the indexed formulas A
such that d(A) = J and ∀j ∈ 〈A〉j = aj is provable in LJ(I)? Such a strong con-
nection between intersection and Indexed Linear Logic was already mentioned
in the introduction of [2], but we never made it more explicit until now.

To conclude we propose a typed λ-calculus à la Church to denote proofs of
the LJ(I) system of Section 4. The syntax of pre-terms is given by s, t . . . :=
x[J ] | λx : Au s | (s) t where in x[J ], x is a variable and J ⊆ I and, in λx : Au s,
u is an almost injective function from d(A) to a set J ⊆ I. Given a pre-term
s and a variable x, the domain of x in s is the subset dom(x, s) of I given by
dom(x, x[J ]) = J , dom(x, y[J ]) = ∅ if y �= x, dom(x, λy : Au s) = dom(x, s)
(assuming of course y �= x) and dom(x, (s) t) = dom(x, s) ∪ dom(x, t). Then
a pre-term s is a term if any subterm of t which is of shape (s1) s2 satisfies
dom(x, s1)∩dom(x, s2) = ∅ for all variable x. A typing judgment is an expression
(xi : A

ui
i )ni=1 � s : B where the xi’s are pairwise distinct variables, s is a term

and each ui is an almost injective function d(Ai) → d(B). The following typing
rules exactly mimic the logical rules of LJ(I):

d(A) = ∅
((xi : A

0∅
i )ni=1) � Ω : A

q �= i ⇒ d(Ai) = ∅ and ui bijection
(xq : A

uq
q )nq=1 � xi[d(Ai)] : ui∗(Ai)

(xi : A
ui
i )ni=1, x : Au � s : B

(xi : A
ui
i )ni=1 � λx : Au s : A ⇒u B

(xi : Ai�
vi
dom(xi,s)

)ni=1 � s : A ⇒u B (xi : Ai�
wi

dom(xi,t)
)ni=1 � t : A

(xi : A
vi+(u◦wi)
i )ni=1 � (s) t : B

The properties of this calculus, and more specifically of its β-reduction, and its
connections with the resource calculus of [9] will be explored in further work.

Another major objective will be to better understand the meaning of LJ(I)
formulas, using ideas developed in [3] where a phase semantics is introduced and
related to (non-uniform) coherence space semantics. In the intuitionistic present
setting, it is tempting to look for Kripke-like interpretations with the hope of
generalizing indexed logic beyond the (perhaps too) specific relational setting
we started from.

Last, we would like to thank Luigi Liquori and Claude Stolze for many helpful
discussions on intersection types and the referees for their careful reading and
insightful comments and suggestions.

References

1. F. Breuvart, G. Manzonetto, and D. Ruoppolo. Relational graph models at work.
Logical Methods in Computer Science, 14(3), 2018.

2. A. Bucciarelli and T. Ehrhard. On phase semantics and denotational semantics in
multiplicative-additive linear logic. Annals of Pure and Applied Logic, 102(3):247–
282, 2000.

Non-idempotent intersection types in logical form 215



3. A. Bucciarelli and T. Ehrhard. On phase semantics and denotational semantics:
the exponentials. Annals of Pure and Applied Logic, 109(3):205–241, 2001.

4. M. Coppo and M. Dezani-Ciancaglini. An extension of the basic functionality
theory for the λ-calculus. Notre Dame Journal of Formal Logic, 21(4):685–693,
1980.

5. M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional characters of solv-
able terms. Mathematical Logic Quarterly, 27(2-6):45–58, 1981.

6. D. de Carvalho. Execution time of lambda-terms via denotational semantics and
intersection types. CoRR, abs/0905.4251, 2009.

7. D. de Carvalho. Execution time of λ-terms via denotational semantics and inter-
section types. MSCS, 28(7):1169–1203, 2018.

8. T. Ehrhard. The Scott model of linear logic is the extensional collapse of its
relational model. Theoretical Computer Science, 424:20–45, 2012.

9. T. Ehrhard and L. Regnier. Uniformity and the Taylor expansion of ordinary
lambda-terms. Theoretical Computer Science, 403(2-3):347–372, 2008.

10. T. S. Freeman and F. Pfenning. Refinement Types for ML. In D. S. Wise, editor,
Proceedings of the ACM SIGPLAN’91 Conference on Programming Language De-
sign and Implementation (PLDI), Toronto, Ontario, Canada, June 26-28, 1991,
pages 268–277. ACM, 1991.

11. J.-Y. Girard. Normal functors, power series and the λ-calculus. Annals of Pure
and Applied Logic, 37:129–177, 1988.

12. J. R. Hindley. Coppo-dezani types do not correspond to propositional logic. The-
oretical Computer Science, 28:235–236, 1984.

13. J.-L. Krivine. Lambda-Calculus, Types and Models. Ellis Horwood Series in Com-
puters and Their Applications. Ellis Horwood, 1993. Translation by René Cori
from French 1990 edition (Masson).

14. L. Liquori and S. R. D. Rocca. Intersection-types à la Church. Information and
Computation, 205(9):1371–1386, 2007.

15. L. Liquori and C. Stolze. The Delta-calculus: Syntax and Types. In H. Geu-
vers, editor, 4th International Conference on Formal Structures for Computation
and Deduction, FSCD 2019, June 24-30, 2019, Dortmund, Germany., volume 131
of LIPIcs, pages 28:1–28:20. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2019.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

216 T. Ehrhard

http://creativecommons.org/licenses/by/4.0/


On Computability of Data Word Functions
Defined by Transducers�

Léo Exibard1,2��(�) , Emmanuel Filiot1� � �, and Pierre-Alain Reynier2†

1 Université Libre de Bruxelles, Brussels, Belgium
leo.exibard@ulb.ac.be

Abstract. In this paper, we investigate the problem of synthesizing
computable functions of infinite words over an infinite alphabet (data
ω-words). The notion of computability is defined through Turing machines
with infinite inputs which can produce the corresponding infinite outputs
in the limit. We use non-deterministic transducers equipped with registers,
an extension of register automata with outputs, to specify functions. Such
transducers may not define functions but more generally relations of data
ω-words, and we show that it is PSpace-complete to test whether a given
transducer defines a function. Then, given a function defined by some
register transducer, we show that it is decidable (and again, PSpace-c)
whether such function is computable. As for the known finite alphabet
case, we show that computability and continuity coincide for functions
defined by register transducers, and show how to decide continuity. We
also define a subclass for which those problems are PTime.

Keywords: Data Words · Register Automata · Register Transducers ·
Functionality · Continuity · Computability.

1 Introduction

Context Program synthesis aims at deriving, in an automatic way, a program
that fulfils a given specification. Such setting is very appealing when for instance
the specification describes, in some abstract formalism (an automaton or ideally
a logic), important properties that the program must satisfy. The synthesised
program is then correct-by-construction with regards to those properties. It is
particularly important and desirable for the design of safety-critical systems with
hard dependability constraints, which are notoriously hard to design correctly.

Program synthesis is hard to realise for general-purpose programming lan-
guages but important progress has been made recently in the automatic synthesis

� A version with full proofs can be found at https://arxiv.org/abs/2002.08203.
�� Funded by a FRIA fellowship from the F.R.S.-FNRS.

� � � Research associate of F.R.S.-FNRS. Supported by the ARC Project Transform
Fédération Wallonie-Bruxelles and the FNRS CDR J013116F; MIS F451019F projects.

† Partly funded by the ANR projects DeLTA (ANR-16-CE40-0007) and Ticktac (ANR-
18-CE40-0015).

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 217–236, 2020.
https://doi.org/10.1007/978-3-030-45231-5_12

2 Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

http://orcid.org/0000-0003-0318-1217
https://arxiv.org/abs/2002.08203
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_12&domain=pdf


of reactive systems. In this context, the system continuously receives input signals
to which it must react by producing output signals. Such systems are not assumed
to terminate and their executions are usually modelled as infinite words over
the alphabets of input and output signals. A specification is thus a set of pairs
(in,out), where in and out are infinite words, such that out is a legitimate output
for in. Most methods for reactive system synthesis only work for synchronous
systems over finite sets of input and output signals Σ and Γ . In this synchronous
setting, input and output signals alternate, and thus implementations of such a
specification are defined by means of synchronous transducers, which are Büchi
automata with transitions of the form (q, σ, γ, q′), expressing that in state q,
when getting input σ ∈ Σ, output γ ∈ Γ is produced and the machine moves
to state q′. We aim at building deterministic implementations, in the sense
that the output γ and state q′ uniquely depend on q and σ. The realisability
problem of specifications given as synchronous non-deterministic transducers, by
implementations defined by synchronous deterministic transducers is known to
be decidable [14,20]. In this paper, we are interested in the asynchronous setting,
in which transducers can produce none or several outputs at once every time
some input is read, i.e., transitions are of the form (q, σ, w, q′) where w ∈ Γ ∗.
However, such generalisation makes the realisability problem undecidable [2,9].

Synthesis of Transducers with Registers In the setting we just described, the set
of signals is considered to be finite. This assumption is not realistic in general,
as signals may come with unbounded information (e.g. process ids) that we call
here data. To address this limitation, recent works have considered the synthesis
of reactive systems processing data words [17,6,16,7]. Data words are infinite
words over an alphabet Σ×D, where Σ is a finite set and D is a possibly infinite
countable set. To handle data words, just as automata have been extended to
register automata, transducers have been extended to register transducers. Such
transducers are equipped with a finite set of registers in which they can store
data and with which they can compare data for equality or inequality. While
the realisability problem of specifications given as synchronous non-deterministic
register transducers (NRTsyn) by implementation defined by synchronous deter-
ministic register transducers (DRTsyn) is undecidable, decidability is recovered
for specifications defined by universal register transducers and by giving as input
the number of registers the implementation must have [7,17].

Computable Implementations In the previously mentioned works, both for finite or
infinite alphabets, implementations are considered to be deterministic transducers.
Such an implementation is guaranteed to use only a constant amount of memory
(assuming data have size O(1)). While it makes sense with regards to memory-
efficiency, some problems turn out to be undecidable, as already mentioned:
realisability of NRTsyn specifications by DRTsyn, or, in the finite alphabet setting,
when both the specification and implementation are asynchronous. In this paper,
we propose to study computable implementations, in the sense of (partial)
functions f of data ω-words computable by some Turing machine M that has an
infinite input x ∈ dom(f), and produces longer and longer prefixes of the output

218 L. Exibard et al.



f(x) as it reads longer and longer prefixes of the input x. Therefore, such a machine
produces the output f(x) in the limit. We denote by TM the class of Turing
machines computing functions in this sense. As an example, consider the function
f that takes as input any data ω-word u = (σ1, d1)(σ2, d2) . . . and outputs
(σ1, d1)

ω if d1 occurs at least twice in u, and otherwise outputs u. This function is
not computable, as an hypothetic machine could not output anything as long as
d1 is not met a second time. However, the following function g is computable. It
is defined only on words (σ1, d1)(σ2, d2) . . . such that σ1σ2 · · · ∈ ((a+ b)c∗)ω, and
transforms any (σi, di) by (σi, d1) if the next symbol in {a, b} is an a, otherwise it
keeps (σi, di) unchanged. To compute it, a TM would need to store d1, and then
wait until the next symbol in {a, b} is met before outputting something. Since
the finite input labels are necessarily in ((a+ b)c∗)ω, this machine will produce
the whole output in the limit. Note that g cannot be defined by any deterministic
register transducer, as it needs unbounded memory to be implemented.

However, already in the finite alphabet setting, the problem of deciding if a
specification given as some non-deterministic synchronous transducer is realisable
by some computable function is open. The particular case of realisability by
computable functions of universal domain (the set of all ω-words) is known to be
decidable [12]. In the asynchronous setting, the undecidability proof of [2] can be
easily adapted to show the undecidability of realisability of specifications given
by non-deterministic (asynchronous) transducers by computable functions.

Functional Specifications As said before, a specification is in general a relation
from inputs to outputs. If this relation is a function, we call it functional. Due to
the negative results just mentioned about the synthesis of computable functions
from non-functional specifications, we instead here focus on the case of functional
specifications and address the following general question: given the specification
of a function of data ω-words, is this function “implementable”, where we define
“implementable” as “being computable by some Turing machine”. Moreover, if it is
implementable, then we want a procedure to automatically generate an algorithm
that computes it. This raises another important question: how to decide whether
a specification is functional ? We investigate these questions for asynchronous
register transducers, here called register transducers. This asynchrony allows for
much more expressive power, but is a source of technical challenge.

Contributions In this paper, we solve the questions mentioned before for the
class of (asynchronous) non-deterministic register transducers (NRT). We also
give fundamental results on this class. In particular, we prove that:

1. deciding whether an NRT defines a function is PSpace-complete,
2. deciding whether two functions defined by NRT are equal on the intersection

of their domains is PSpace-complete,
3. the class of functions defined by NRT is effectively closed under composition,
4. computability and continuity are equivalent notions for functions defined by

NRT, where continuity is defined using the classical Cantor distance,
5. deciding whether a function given as an NRT is computable is PSpace-c,

On Computability of Data Word Functions Defined by Transducers 219



6. those problems are in PTime for a subclass of NRT, called test-free NRT.

Finally, we also mention that considering the class of deterministic register
transducers (DRT for short) instead of computable functions as a yardstick for
the notion of being “implementable” for a function would yield undecidability.
Indeed, given a function defined by some NRT, it is in general undecidable to
check whether this function is realisable by some DRT, by a simple reduction
from the universality problem of non-deterministic register automata [19].

Related Work The notion of continuity with regards to Cantor distance is not
new, and for rational functions over finite alphabets, it was already known to be
decidable [21]. Its connection with computability for functions of ω-words over
a finite alphabet has recently been investigated in [3] for one-way and two-way
transducers. Our results lift some of theirs to the setting of data words. The
model of test-free NRT can be seen as a one-way non-deterministic version of a
model of two-way transducers considered in [5].

2 Data Words and Register Transducers

For a (possibly infinite) set S, we denote by S∗ (resp. Sω) the set of finite
(resp. infinite) words over this alphabet, and we let S∞ = S∗ ∪ Sω. For a
word u = u1 . . . un, we denote ‖u‖ = n its length, and, by convention, for
u ∈ Sω, ‖u‖ = ∞. The empty word is denoted ε. For 1 ≤ i ≤ j ≤ ‖u‖, we let
u[i:j] = uiui+1 . . . uj and u[i] = u[i:i] the ith letter of u. For u, v ∈ S∞, we say
that u is a prefix of v, written u � v, if there exists w ∈ S∞ such that v = uw.
In this case, we define u−1v = w. For u, v ∈ S∞, we say that u and v mismatch,
written mismatch(u, v), when there exists a position i such that 1 ≤ i ≤ ‖u‖,
1 ≤ i ≤ ‖v‖ and u[i] �= v[i]. Finally, for u, v ∈ S∞, we denote by u ∧ v their
longest common prefix, i.e. the longest word w ∈ S∞ such that w � u and w � v.

Data Words In this paper, Σ and Γ are two finite alphabets and D is a countably
infinite set of data. We use letter σ (resp. γ, d) to denote elements of Σ (resp.
Γ , D). We also distinguish an arbitrary data value d0 ∈ D. Given a set R, let
τR0 be the constant function defined by τR0 (r) = d0 for all r ∈ R. Given a finite
alphabet A, a labelled data is a pair x = (a, d) ∈ A×D, where a is the label and
d the data. We define the projections lab(x) = a and dt(x) = d. A data word over
A and D is an infinite sequence of labelled data, i.e. a word w ∈ (A×D)ω. We
extend the projections lab and dt to data words naturally, i.e. lab(w) ∈ Aω and
dt(w) ∈ Dω. A data word language is a subset L ⊆ (A × D)ω. Note that here,
data words are infinite, otherwise they are called finite data words.

2.1 Register Transducers

Register transducers are transducers recognising data word relations. They are
an extension of finite transducers to data word relations, in the same way register

220 L. Exibard et al.



automata [15] are an extension of finite automata to data word languages. Here,
we define them over infinite data words with a Büchi acceptance condition, and
allow multiple registers to contain the same data, with a syntax close to [18].
The current data can be compared for equality with the register contents via
tests, which are symbolic and defined via Boolean formulas of the following form.
Given R a set of registers, a test is a formula φ satisfying the following syntax:

φ ::= � | ⊥ | r= | r �= | φ ∧ φ | φ ∨ φ | ¬φ
where r ∈ R. Given a valuation τ : R → D, a test φ and a data d, we denote
by τ, d |= φ the satisfiability of φ by d in valuation τ , defined as τ, d |= r= if
τ(r) = d and τ, d |= r �= if τ(r) �= d. The Boolean combinators behave as usual.
We denote by TstR the set of (symbolic) tests over R.

Definition 1. A non-deterministic register transducer (NRT) is a tuple T =
(Q,R, i0, F,Δ), where Q is a finite set of states, i0 ∈ Q is the initial state,
F ⊆ Q is the set of accepting states, R is a finite set of registers and Δ ⊆
Q × Σ × TstR × 2R × (Γ × R)∗ × Q is a finite set of transitions. We write

q
σ,φ|asgn,o−−−−−−→

T
q′ for (q, σ, φ, asgn, o, q′) ∈ Δ (T is sometimes omitted).

The semantics of a register transducer is given by a labelled transition system:
we define LT = (C,Λ,→), where C = Q× (R → D) is the set of configurations,
Λ = (Σ×D)× (Γ ×D)∗ is the set of labels, and we have, for all (q, τ ), (q′, τ ′) ∈ C

and for all (l, w) ∈ Λ, that (q, τ)
(l,w)−−−→ (q′, τ ′) whenever there exists a transition

q
σ,φ|asgn,o−−−−−−→

T
q′ such that, by writing l = (σ′, d) and w = (γ′

1, d1) . . . (γ
′
n, dn):

– (Matching labels) σ = σ′

– (Compatibility) d satisfies the test φ ∈ TstR, i.e. τ, d |= φ.
– (Update) τ ′ is the successor register configuration of τ with regards to d and

asgn: τ ′(r) = d if r ∈ asgn, and τ ′(r) = τ(r) otherwise
– (Output) By writing o = (γ1, r1) . . . (γm, rm), we have that m = n and for

all 1 ≤ i ≤ n, γi = γ′
i and di = τ ′(ri).

Then, a run of T is an infinite sequence of configurations and transitions

ρ = (q0, τ0)
(u1,v1)−−−−→

LT

(q1, τ1)
(u2,v2)−−−−→

LT

· · · . Its input is in(ρ) = u1u2 . . . , its output is

out(ρ) = v1 · v2 . . . . We also define its sequence of states st(ρ) = q0q1 . . . , and its
trace tr(ρ) = u1 ·v1 ·u2 ·v2 . . . . Such run is initial if (q0, τ0) = (i0, τ

R
0 ). It is final if it

satisfies the Büchi condition, i.e. inf(st)∩ F �= ∅, where inf(st) = {q ∈ Q | q = qi
for infinitely many i}. Finally, it is accepting if it is both initial and final. We

then write (q0, τ0)
u|v−−→
T

to express that there is a final run ρ of T starting from

(q0, τ0) such that in(ρ) = u and out(ρ) = v. In the whole paper, and unless stated
otherwise, we always assume that the output of an accepting run is infinite
(v ∈ (Γ ×D)ω), which can be ensured by a Büchi condition.

A partial run is a finite prefix of a run. The notions of input, output and states

are extended by taking the corresponding prefixes. We then write (q0, τ0)
u|v−−→
T

On Computability of Data Word Functions Defined by Transducers 221



(qn, τn) to express that there is a partial run ρ of T starting from configuration
(q0, τ0) and ending in configuration (qn, τn) such that in(ρ) = u and out(ρ) = v.

Finally, the relation represented by a transducer T is:

�T � =
{
(u, v) ∈ (Σ ×D)ω × (Γ ×D)ω | there exists an accepting run ρ of T

such that in(ρ) = u and out(ρ) = v
}

Example 2. As an example, consider the register transducer Trename depicted in
Figure 1. It realises the following transformation: consider a setting in which we
deal with logs of communications between a set of clients. Such a log is an infinite
sequence of pairs consisting of a tag, chosen in some finite alphabet Σ, and the
identifier of the client delivering this tag, chosen in some infinite set of data values.
The transformation should modify the log as follows: for a given client that needs
to be modified, each of its messages should now be associated with some new
identifier. The transformation has to verify that this new identifier is indeed free,
i.e. never used in the log. Before treating the log, the transformation receives as
input the id of the client that needs to be modified (associated with the tag del),
and then a sequence of identifiers (associated with the tag ch), ending with #.
The transducer is non-deterministic as it has to guess which of these identifiers
it can choose to replace the one of the client. In particular, observe that it may
associate multiple output words to a same input if two such free identifiers exist.

1 2 3 4
del,� | r1, ε

ch,� | ∅, ε

ch, r �=1 | r2, ε

ch,� | ∅, ε

#,� | ∅, ε

σ, r=1 | ∅, (σ, r2)

σ, r �=1 ∧ r �=2 | r0, (σ, r0)

Fig. 1. A register transducer Trename. It has three registers r1, r2 and r0 and four states.
σ denotes any letter in Σ, r1 stores the id of del and r2 the chosen id of ch, while r0
is used to output the last data value read as input. As we only assign data to single
registers, we write ri for the singleton assignment set {ri}.

Finite Transducers Since we reduce the decision of continuity and functionality
of NRT to the one of finite transducers, let us introduce them: a finite transducer
(NFT for short) is an NRT with 0 registers (i.e. R = ∅). Thus, its transition
relation can be represented as Δ ⊆ Q×Σ × Γ ∗ ×Q. A direct extension of the
construction of [15, Proposition 1] allows to show that:

Proposition 3. Let T be an NRT with k registers, and let X ⊂f D be a finite
subset of data. Then, �T � ∩ (Σ ×X)ω × (Γ ×X)ω is recognised by an NFT of
exponential size, more precisely with O(|Q| × |X||R|) states.

2.2 Technical Properties of Register Automata

Although automata are simpler machines than transducers, we only use them as
tools in our proofs, which is why we define them from transducers, and not the

222 L. Exibard et al.



other way around. A non-deterministic register automaton, denoted NRA, is a
transducer without outputs: its transition relation is Δ ⊆ Q×Σ × TstR × 2R ×
{ε}×Q (simply represented as Δ ⊆ Q×Σ ×TstR × 2R ×Q). The semantics are
the same, except that now we lift the condition that the output v is infinite since
there is no output. For A an NRA, we denote L(A) = {u ∈ (Σ × D)ω | there
exists an accepting run ρ of A over u}. Necessarily the output of an accepting
run is ε. In this section, we establish technical properties about NRA.

Proposition 4, the so-called “indistinguishability property”, was shown in the
seminal paper by Kaminski and Francez [15, Proposition 1]. Their model differs
in that they do not allow distinct registers to contain the same data, and in the
corresponding test syntax, but their result easily carries to our setting. It states
that if an NRA accepts a data word, then such data word can be relabelled with
data from any set containing d0 and with at least k + 1 elements. Indeed, at any
point of time, the automaton can only store at most k data in its registers, so
its notion of “freshness” is a local one, and forgotten data can thus be reused as
fresh ones. Moreover, as the automaton only tests data for equality, their actual
value does not matter, except for d0 which is initially contained in the registers.

Such “small-witness” property is fundamental to NRA, and will be paramount
in establishing decidability of functionality (Section 3) and computability (Sec-
tion 4). We use it jointly with Lemma 5, which states that the interleaving of the
traces of runs of an NRT can be recognised with an NRA, and Lemma 6, which
expresses that an NRA can check whether interleaved words coincide on some
bounded prefix, and/or mismatch before some given position.

Proposition 4 ([15]). Let A be an NRA with k registers. If L(A) �= ∅, then,
for any X ⊆ D of size |X| ≥ k + 1 such that d0 ∈ X, L(A) ∩ (Σ ×X)ω �= ∅.

The runs of a register transducer T can be flattened to their traces, so as to
be recognised by an NRA. Those traces can then be interleaved, in order to be
compared. The proofs of the following properties are straightforward.

Let ρ1 = (q0, τ0)
(u1,u

′
1)−−−−−→

LT

(q1, τ1) . . . and ρ2 = (p0, μ0)
(v1,v

′
1)−−−−→

LT

(p1, μ1) . . . be

two runs of a transducer T . Then, we define their interleaving ρ1⊗ρ2 = u1 ·u′
1 ·v1 ·

v′1 ·u2 ·u′
2 · v2 · v′2 . . . and L⊗(T ) = {ρ1⊗ ρ2 | ρ1 and ρ2 are accepting runs of T}.

Lemma 5. If T has k registers, then L⊗(T ) is recognised by an NRA with 2k
registers.

Lemma 6. Let i, j ∈ N∪{∞}. We define M i
j = {u1u

′
1v1v

′
1 · · · | ∀k ≥ 1, uk, vk ∈

(Σ×D), u′
k, v

′
k ∈ (Γ ×D)∗, ∀1 ≤ k ≤ j, vk = uk and ‖u′

1 ·u′
2 · · · ∧ v′1 · v′2 . . .‖ ≤ i}.

Then, M i
j is recognisable by an NRA with 2 registers and with 1 register if i = ∞.

3 Functionality, Equivalence and Composition of NRT

In general, since they are non-deterministic, NRT may not define functions but
relations, as illustrated by Example 2. In this section, we first show that deciding

On Computability of Data Word Functions Defined by Transducers 223



whether a given NRT defines a function is PSpace-complete, in which case we call
it functional. We show, as a consequence, that testing whether two functional NRT
define two functions which coincide on their common domain is PSpace-complete.
Finally, we show that functions defined by NRT are closed under composition.
This is an appealing property in transducer theory, as it allows to define complex
functions by composing simple ones.

Example 7. As explained before, the transducer Trename described in Example 2
is not functional. To gain functionality, one can reinforce the specification by
considering that one gets at the beginning a list of k possible identifiers, and that
one has to select the first one which is free, for some fixed k. This transformation
is realised by the register transducer Trename2 depicted in Figure 2 (for k = 2).

1 2 3 4

67 5

del,� | r1, ε ch, r �=1 | r2, ε ch, r �=1 ∧ r �=2 | r3, ε

#,� | ∅, ε

#,� | ∅, ε

σ, r=2 | ∅, (σ, r2)

σ, r=1 | ∅, (σ, r2)

σ, r �=1 ∧ r �=2 | r0, (σ, r0)

σ, r=1 | ∅, (σ, r3)

σ, r �=1 ∧ r �=2 ∧ r �=3 | r0, (σ, r0)

σ, r=1 | ∅, (σ, r3)

σ, r �=1 ∧ r �=3 | r0, (σ, r0)

Fig. 2. A NRT Trename2, with four registers r1, r2, r3 and r0 (the latter being used, as in
Figure 1, to output the last read data). After reading the # symbol, it guesses whether
the value of register r2 appears in the suffix of the input word. If not, it goes to state
5, and replaces occurrences of r1 by r2. Otherwise, it moves to state 6, waiting for an
occurrence of r2, and replaces occurrences of r1 by r3.

Let us start with the functionality problem in the data-free case. It is al-
ready known that checking whether an NFT over ω-words is functional is decid-
able [13,11]. By relying on the pattern logic of [10] designed for transducers of
finite words, it can be shown that it is decidable in NLogSpace.

Proposition 8. Deciding whether an NFT is functional is in NLogSpace.

The following theorem shows that a relation between data-words defined by an
NRT with k registers is a function iff its restriction to a set of data with at
most 2k + 3 data is a function. As a consequence, functionality is decidable as it
reduces to the functionality problem of transducers over a finite alphabet.

Theorem 9. Let T be an NRT with k registers. Then, for all X ⊆ D of size
|X| ≥ 2k + 3 such that d0 ∈ X, we have that T is functional if and only if
�T � ∩ ((Σ ×X)ω × (Γ ×X)ω) is functional.

Proof. The left-to-right direction is trivial. Now, assume T is not functional. Let
x ∈ (Σ × D)ω be such that there exists y, z ∈ (Γ × D)ω such that y �= z and
(x, y), (x, z) ∈ �T �. Let i = ‖y∧ z‖. Then, consider the language L = {ρ1⊗ρ2 | ρ1
and ρ2 are accepting runs of T, in(ρ1) = in(ρ2) and ‖out(ρ1)∧out(ρ2)‖ ≤ i}. Since,

224 L. Exibard et al.



by Lemma 5, L⊗(T ) is recognised by an NRA with 2k registers and, by Lemma 6,
M i

∞ is recognised by an NRA with 2 registers, we get that L = L⊗(T ) ∩M i
∞ is

recognised by an NRA with 2k + 2 registers.
Now, L �= ∅, since, by letting ρ1 and ρ2 be the runs of T both with input x and

with respective outputs y and z, we have that w = ρ1 ⊗ ρ2 ∈ L. Let X ⊆ D such
that |X| ≥ 2k+ 3 and d0 ∈ X. By Proposition 4, we get that L∩ (Σ ×X)ω �= ∅.
By letting w′ = ρ′1 ⊗ ρ′2 ∈ L ∩ (Σ ×X)ω, and x′ = in(ρ′1) = in(ρ′2), y

′ = out(ρ′1)
and z′ = out(ρ′2), we have that (x′, y′), (x′, z′) ∈ �T � ∩ ((Σ ×X)ω × (Γ ×X)ω)
and ‖y′ ∧ z′‖ ≤ i, so, in particular, y′ �= z′ (since both are infinite words). Thus,
�T � ∩ ((Σ ×X)ω × (Γ ×X)ω) is not functional. ��

As a consequence of Proposition 8 and Theorem 9, we obtain the follow-
ing result. The lower bound is obtained by encoding non-emptiness of register
automata, which is PSpace-complete [4].

Corollary 10. Deciding whether an NRT T is functional is PSpace-complete.

Hence, the following problem on the equivalence of NRT is decidable:

Theorem 11. The problem of deciding, given two functions f, g defined by NRT,
whether for all x ∈ dom(f) ∩ dom(g), f(x) = g(x), is PSpace-complete.

Proof. The formula ∀x ∈ dom(f) ∩ dom(g) · f(x) = g(x) is true iff the relation
f ∪ g = {(x, y) | y = f(x) ∨ y = g(x)} is a function. The latter can be decided by
testing whether the disjoint union of the transducers defining f and g defines a
function, which is in PSpace by Corollary 10. To show the hardness, we similarly
reduce the emptiness problem of NRA A over finite words, just as in the proof of
Corollary 10. In particular, the functions f1 and f2 defined in this proof (which
have the same domain) are equal iff L(A) = ∅. ��

Note that under the promise that f and g have the same domain, the latter
theorem implies that it is decidable to check whether the two functions are
equal. However, checking dom(f) = dom(g) is undecidable, as the language-
equivalence problem for non-deterministic register automata is undecidable, since,
in particular, universality is undecidable [19].

Closure under composition is a desirable property for transducers, which
holds in the data-free setting [1]. We show that it also holds for functional NRT.

Theorem 12. Let f, g be two functions defined by NRT. Then, their composition
f ◦ g is (effectively) definable by some NRT.

Proof (Sketch). By f ◦ g we mean f ◦ g : x �→ f(g(x)). Assume f and g are
defined by Tf = (Qf , Rf , q0, Ff , Δf ) and Tg = (Qg, Rg, p0, Fg, Δg) respectively.
Wlog we assume that the input and output finite alphabets of Tf and Tg are
all equal to Σ, and that Rf and Rg are disjoint. We construct T such that
�T � = f ◦ g. The proof is similar to the data-free case where the composition is
shown via a product construction which simulates both transducers in parallel,
executing the second on the output of the first. Assume Tg has some transition

On Computability of Data Word Functions Defined by Transducers 225



p
σ,φ|{r},o−−−−−−→ q where o ∈ (Σ ×Rg)

∗. Then T has to be able to execute transitions
of Tf while processing o, even though o does not contain any concrete data values
(it is here the main important difference with the data-free setting). However,
if T knows the equality types between Rf and Rg, then it is able to trigger the
transitions of Tf . For example, assume that o = (a, rg) and assume that the
content of rg is equal to the content of rf , rf being a register of Tf , then if Tf has

some transition of the form p′
a,r=f |{r′f},o′−−−−−−−−→ q′ then T can trigger the transition

(p, q)
σ,φ|{r}∪{r′f :=rg},o′−−−−−−−−−−−−−→ (p′, q′) where the operation r′f := rg is a syntactic sugar

on top of NRT that intuitively means “put the content of rg into r′f”. ��
Remark 13. The proof of Theorem 12 does not use the hypothesis that f and g
are functions, and actually shows a stronger result, namely that relations defined
by NRT are closed under composition.

4 Computability and Continuity

We equip the set of (finite or infinite) data words with the usual distance: for
u, v ∈ (Σ×D)ω, d(u, v) = 0 if u = v and d(u, v) = 2−‖u∧v‖ otherwise. A sequence
of (finite or infinite) data words (xn)n∈N converges to some infinite data word x
if for all ε > 0, there exists N ≥ 0 such that for all n ≥ N , d(xn, x) ≤ ε.

In order to reason with computability, we assume in the sequel that the
infinite set of data values D we are dealing with has an effective representation.
For instance, this is the case when D = N.

We now define how a Turing machine can compute a function of data words.
We consider deterministic Turing machines, which three tapes: a read-only one-
way input tape (containing the infinite input data word), a two-way working tape,
and a write-only one-way output tape (on which it writes the infinite output data
word). Consider some input data word x ∈ (Σ ×D)ω. For any integer k ∈ N, we
let M(x, k) denote the output written by M on its output tape after having read
the k first cells of the input tape. Observe that as the output tape is write-only,
the sequence of data words (M(x, k))k≥0 is non-decreasing.

Definition 14 (Computability). A function f : (Σ × D)ω → (Γ × D)ω is
computable if there exists a deterministic multi-tape machine M such that for all
x ∈ dom(f), the sequence (M(x, k))k≥0 converges to f(x).

Definition 15 (Continuity). A function f : (Σ ×D)ω → (Γ ×D)ω is contin-
uous at x ∈ dom(f) if (equivalently):

(a) for all sequences of data words (xn)n∈N converging towards x, where for all
i ∈ N, xi ∈ dom(f), we have that (f(xn))n∈N converges to f(x).

(b) ∀i ≥ 0, ∃j ≥ 0, ∀y ∈ dom(f), ‖x ∧ y‖ ≥ j ⇒ ‖f(x) ∧ f(y)‖ ≥ i.

Then, f is continuous if and only if it is continuous at each x ∈ dom(f). Finally,
a functional NRT T is continuous when �T � is continuous.

226 L. Exibard et al.



Example 16. We give an example of a non-continuous function f . The finite input
and output alphabets are unary, and are therefore ignored in the description
of f . Such function associates with every sequence s = d1d2 · · · ∈ Dω the word
f(s) = dω1 if d1 occurs infinitely many times in s, otherwise f(s) = s itself.

The function f is not continuous. Indeed, by taking d �= d′, the sequence of
data words d(d′)ndω converges to d(d′)ω, while f(d(d′)ndω) = dω converges to
dω �= f(d(d′)ω) = d(d′)ω.

Moreover, f is realisable by some NRT which non-deterministically guesses
whether d1 repeats infinitely many times or not. It needs only one register r in
which to store d1. In the first case, it checks whether the current data d is equal
the content r infinitely often, and in the second case, it checks that this test
succeeds finitely many times, using Büchi conditions.

One can show that the register transducer Trename2 considered in Example 7
also realises a function which is not continuous, as the value stored in register r2
may appear arbitrarily far in the input word. One could modify the specification
to obtain a continuous function as follows. Instead of considering an infinite log,
one considers now an infinite sequence of finite logs, separated by $ symbols. The
register transducer Trename3, depicted in Figure 3, defines such a function.

1 2 3 4

7 6 5

del,� | r1, ε ch, r �=1 | r2, ε ch, r �=1 ∧ r �=2 | r3, ε

#,� | ∅, ε

#,� | ∅, ε

σ, r=2 | ∅, (σ, r2)
σ, r=1 | ∅, (σ, r2)

σ, r �=1 ∧ r �=2 | r0, (σ, r0)

σ, r=1 | ∅, (σ, r3)

σ, r �=1 ∧ r �=2 ∧ r �=3 | r0, (σ, r0)

σ, r=1 | ∅, (σ, r3)

σ, r �=1 ∧ r �=3 | r0, (σ, r0)

$,� | ∅, ε
$,� | ∅, ε

Fig. 3. A register transducer Trename3. This transducer is non-deterministic, yet it defines
a continuous function.

We now prove the equivalence between continuity and computability for
functions defined by NRT. One direction, namely the fact that computability
implies continuity, is easy, almost by definition. For the other direction, we rely
on the following lemma which states that it is decidable whether a word v can be
safely output, only knowing a prefix u of the input. In particular, given a function
f , we let f̂ be the function defined over all finite prefixes u of words in dom(f)

by f̂(u) =
∧
(f(uy) | uy ∈ dom(f)), the longest common prefix of all outputs of

continuations of u by f . Then, we have the following decidability result:

Lemma 17. The following problem is decidable. Given an NRT T defining a
function f , two finite data words u ∈ (Σ×D)∗ and v ∈ (Γ ×D)∗, decide whether

v � f̂(u).

On Computability of Data Word Functions Defined by Transducers 227



Theorem 18. Let f be a function defined by some NRT T . Then f is continuous
iff f is computable.

Proof. ⇐ Assuming f = �T � is computable by some Turing machine M , we show
that f is continuous. Indeed, consider some x ∈ dom(f), and some i ≥ 0. As the
sequence of finite words (M(x, k))k∈N converges to f(x) and these words have
non-decreasing lengths, there exists j ≥ 0 such that |M(x, j)| ≥ i. Hence, for
any data word y ∈ dom(f) such that |x ∧ y| ≥ j, the behaviour of M on y is the
same during the first j steps, as M is deterministic, and thus |f(x) ∧ f(y)| ≥ i,
showing that f is continuous at x.

⇒ Assume that f is continuous. We describe a Turing machine computing f ;
the corresponding algorithm is formalised as Algorithm 1. When reading a finite
prefix x[:j] of its input x ∈ dom(f), it computes the set Pj of all configurations
(q, τ) reached by T on x[:j]. This set is updated along taking increasing values
of j. It also keeps in memory the finite output word oj that has been output so
far. For any j, if dt(x[:j]) denotes the data that appear in x, the algorithm then
decides, for each input (σ, d) ∈ Σ × (dt(x[:j]) ∪ {d0}) whether (σ, d) can safely
be output, i.e., whether all accepting runs on words of the form x[:j]y, for an
infinite word y, outputs at least oj(σ, d). The latter can be decided, given T , oj
and x[:j], by Lemma 17. Note that it suffices to look at data in dt(x[:j]) ∪ {d0}
only since, by definition of NRT, any data that is output is necessarily stored in
some register, and therefore appears in x[:j] or is equal to d0. Let us show that

Algorithm 1: Algorithm describing the machine Mf computing f .

Data: x ∈ dom(f)
1 o := ε ;
2 for j = 0 to ∞ do
3 for (σ, d) ∈ Σ × (dt(x[:j]) ∪ {d0}) do
4 if o.(σ, d) � f̂(x[:j]) then // such test is decidable by Lemma 17

5 o := o.(σ, d);
6 output (σ, d);

7 end

8 end

9 end

Mf actually computes f . Let x ∈ dom(f). We have to show that the sequence
(Mf (x, j))j converges to f(x). Let oj be the content of variable o of Mf when
exiting the inner loop at line 8, when the outer loop (line 2) has been executed
j times (hence j input symbols have been read). Note that oj = Mf (x, j). We

have o1 � o2 � . . . and oj � f̂(x[:j]) for all j ≥ 0. Hence, oj � f(x) for all
j ≥ 0. To show that (oj)j converges to f(x), it remains to show that (oj)j is
non-stabilising, i.e. oi1 ≺ oi2 ≺ . . . for some infinite subsequence i1 < i2 < . . . .

First, note that f being continuous is equivalent to the sequence (f̂(x[:k]))k
converging to f(x). Therefore we have that f(x)∧ f̂(x[:k]) can be arbitrarily long,

228 L. Exibard et al.



for sufficiently large k. Let j ≥ 0 and (σ, d) = f(x)[|oj |+1]. By the latter property
and the fact that oj .(σ, d) � f(x), necessarily, there exists some k > j such that

oj .(σ, d) � f̂(x[:k]). Moreover, by definition of NRT, d is necessarily a data that
appears in some prefix of x, therefore there exists k′ ≥ k such that d appears in
x[:k′] and oj .(σ, d) � f̂(x[:k] � f̂(x[:k′]. This entails that oj .(σ, d) � ok′ . So, we
have shown that for all for all j, there exists k′ > j such that oj ≺ ok′ , which
concludes the proof. ��

Now that we have shown that computability is equivalent with continuity for
functions defined by NRT, we exhibit a pattern which allows to decide continuity.
Such pattern generalises the one of [3] to the setting of data words, the difficulty
lying in showing that our pattern can be restricted to a finite number of data.

Theorem 19. Let T be a functional NRT with k registers. Then, for all X ⊆ D
such that |X| ≥ 2k + 3 and d0 ∈ X, T is not continuous at some x ∈ (Σ ×D)ω

if and only if T is not continuous at some z ∈ (Σ ×X)ω.

Proof. The right-to-left direction is trivial. Now, let T be a functional NRT with
k registers which is not continuous at some x ∈ (Σ ×D)ω. Let f : dom(�T �) →
(Γ ×D)ω be the function defined by T , as: for all u ∈ dom(�T �), f(u) = v where
v ∈ (Γ ×D)ω is the unique data word such that (u, v) ∈ �T �.

Now, let X ⊆ D be such that |X| ≥ 2k+3 and d0 ∈ X. We need to build two
words u and v labelled over X which coincide on a sufficiently long prefix to allow
for pumping, hence yielding a converging sequence of input data words whose
images do not converge, witnessing non-continuity. To that end, we use a similar
proof technique as for Theorem 9: we show that the language of interleaved runs
whose inputs coincide on a sufficiently long prefix while their respective outputs
mismatch before a given position is recognisable by an NRA, allowing us to use
the indistinguishability property. We also ask that one run presents sufficiently
many occurrences of a final state qf , so that we can ensure that there exists a
pair of configurations containing qf which repeats in both runs.

On reading such u and v, the automaton behaves as a finite automaton, since
the number of data is finite ([15, Proposition 1]). By analysing the respective runs,
we can, using pumping arguments, bound the position on which the mismatch
appears in u, then show the existence of a synchronised loop over u and v after
such position, allowing us to build the sought witness for non-continuity.

Relabel over X Thus, assume T is not continuous at some point x ∈ (Σ ×D)ω.
Let ρ be an accepting run of T over x, and let qf ∈ inf(st(ρ))∩F be an accepting
state repeating infinitely often in ρ. Then, let i ≥ 0 be such that for all j ≥ 0,
there exists y ∈ dom(f) such that ‖x∧ y‖ ≥ j but ‖f(x)∧ f(y)‖ ≤ i. Now, define
K = |Q| × (2k + 3)2k and let m = (2i+ 3)× (K + 1). Finally, pick j such that
ρ[1:j] contains at least m occurrences of qf . Consider the language:

L =
{
ρ1 ⊗ ρ2

∣∣‖in(ρ1) ∧ in(ρ2)‖ ≥ j, ‖out(ρ1) ∧ out(ρ2)‖ ≤ i and

there are at least m occurrences of qf in ρ1[1:j]
}

On Computability of Data Word Functions Defined by Transducers 229



By Lemma 5, L⊗(T ) is recognised by an NRA with 2k registers. Additionnally, by
Lemma 6, M i

j is recognised by an NRA with 2 registers. Thus, L = L⊗(T )∩Oqf
m,j∩

M i
j , where O

qf
m,j checks there are at least m occurrences of qf in ρ1[1:j] (this is

easily doable from the automaton recognising L⊗(T ) by adding an m-bounded
counter), is recognisable by an NRA with 2k + 2 registers.

Choose y ∈ dom(f) such that ‖x ∧ y‖ ≥ j but ‖f(x) ∧ f(y)‖ ≤ i. By letting
ρ1 (resp. ρ2) be an accepting run of T over x (resp. y) we have ρ1 ⊗ ρ2 ∈ L, so
L �= ∅. By Proposition 4, L ∩ ((Σ ×X)ω × (Γ ×X)ω) �= ∅. Let w = ρ′1 ⊗ ρ′2 ∈
L ∩ ((Σ × X)ω × (Γ × X)ω), u = in(ρ′1) and v = in(ρ′2). Then, ‖u ∧ v‖ ≥ j,
‖f(u) ∧ f(v)‖ ≤ i and there are at least m occurrences of qf in ρ1[1:j].

Now, we depict ρ′1 and ρ′2 in Figure 4, where we decompose u as u =
u1 . . . um ·s and v as v = u1 . . . um ·t; their corresponding images being respectively
u′ = u′

1 . . . u
′
m · s′ and u′′ = u′′

1 . . . u
′′
mt′′. We also let l = (i + 1)(K + 1) and

l′ = 2(i + 1)(K + 1). Since the data of u, v and w belong to X, we know that
τi, μi : R → X.

i0, d
R
0

. . . qf , μl

(i+ 1)(K + 1) occurrences of qf

. . . qf , μl′

(i+ 1)(K + 1) occurrences of qf

. . . qf , μm

(K + 1) occurrences of qf

i0, d
R
0

. . . ql, τl . . . ql′ , τl′ . . . qm, τm

u1 | u′
1 ul | u′

l ul+1 | u′
l+1 ul′ | u′

l′ ul′+1 | u′
l′+1 um | u′

m s|s′

u1 | u′′
1 ul | u′′

l ul+1 | u′′
l+1 u′ | u′′

l′ ul′+1 | u′′
l′+1 um | u′′

m t|t′′

Fig. 4. Runs of f over u = u1 . . . um · s and v = u1 . . . um · t.

Repeating configurations First, let us observe that in a partial run of ρ′1 containing
more than |Q|×|X|k occurrences of qf , there is at least one productive transition,
i.e. a transition whose output is o �= ε. Otherwise, by the pigeonhole principle,
there exists a configuration μ : R → X such that (qf , μ) occurs at least twice
in the partial run. Since all transitions are improductive, it would mean that,

by writing w the corresponding part of input, we have (qf , μ)
w|ε−−→
T

(qf , μ). This

partial run is part of ρ′1, so, in particular, (qf , μ) is accessible, hence by taking

w0 such that (i0, τ0)
w0|w′

0−−−−→
T

(qf , μ), we have that f(w0w
ω) = w′

0, which is a

finite word, contradicting our assumption that all accepting runs produce an
infinite output. This implies that, for any n ≥ |Q|× |X|k (in particular for n = l),
‖u′

1 . . . u
′
n‖ ≥ i+ 1.

Locate the mismatch Again, upon reading ul+1 . . . ul′ , there are (i+ 1)(K + 1)
occurrences of qf . There are two cases:

(a) There are at least i+ 1 productive transitions in ρ′2. Then, we obtain that
‖u′′

1 . . . u
′′
l′‖ > i, so mismatch(u′

1 . . . u
′
l′ , u

′′
1 . . . u

′′
l′), since we know ‖f(u) ∧

f(v)‖ ≤ i and they are respectively prefixes of f(u) and f(v), both of length at

230 L. Exibard et al.



least i+1. Afterwards, upon reading ul′+1 . . . um, there areK+1 > |Q|×|X|2k
occurrences of qf , so, by the pigeonhole principle, there is a repeating pair:
there exist indices p and p′ such that l′ ≤ p < p′ ≤ m and (qf , μp) = (qf , μp′),
(qp, τp) = (qp′ , τp′). Thus, let zP = u1 . . . up, zR = up+1 . . . up′ and zC =
up′+1 . . . um · t (P stands for prefix, R for repeat and C for continuation; we
use capital letters to avoid confusion with indices). By denoting z′P = u′

1 . . . u
′
p,

z′R = u′
p+1 . . . u

′
p′ , z′′P = u′′

1 . . . u
′′
p , z

′′
R = u′′

p+1 . . . u
′′
p′ and z′′C = u′′

p′+1 . . . u
′′
m · t′′

the corresponding images, z = zP · zRω is a point of discontinuity. Indeed,
define (zn)n∈N as, for all n ∈ N, zn = zP · znR · zC . Then, (zn)n∈N converges
towards z, but, since for all n ∈ N, f(zn) = z′′P · z′′Ln · z′′C , we have that
f(zn) �−−→

n∞ f(z) = z′P · z′Lω
, since mismatch(z′P , z

′′
P ).

(b) Otherwise, by the same reasoning as above, it means there exists a repeating
pair with only improductive transitions in between: there exist indices p
and p′ such that l ≤ p < p′ ≤ l′, (qf , μp) = (qf , μp′), (qp, τp) = (qp′ , τp′),

and (qf , μp)
up+1...up′ |ε−−−−−−−→ (qf , μp′), (qp, τp)

up+1...up′ |ε−−−−−−−→ (qp′ , τp′). Then, by

taking zP = u1 . . . up, zR = up+1 . . . up′ and zC = up′+1 . . . um · t, we have,
by letting z′P = u′

1 . . . u
′
p, z

′
R = u′

p+1 . . . u
′
p′ , z′′P = u′′

1 . . . u
′′
p , z

′′
R = ε and

z′′C = u′′
n′+1 . . . u

′′
m · t′′, that z = zP · zRω is a point of discontinuity. Indeed,

define (zn)n∈N as, for all n ∈ N, zn = zP · znR · zC . Then, (zn)n∈N indeed
converges towards z, but, since for all n ∈ N, f(zn) = z′′P · z′′C , we have
that f(zn) �−−→

n∞ f(z) = z′P · z′Rω
, since mismatch(z′P , z

′′
P · z′′C) (the mismatch

necessarily lies in z′P , since ‖z′P ‖ ≥ i+ 1). ��
Corollary 20. Deciding whether an NRT defines a continuous function is
PSpace-complete.

Proof. Let X ⊆ D be a set of size 2k+3 containing d0. By Theorem 19, T is not
continuous iff it is not continuous at some z ∈ (Σ ×X)ω, iff �T � ∩ (

(Σ ×X)ω ×
(Γ ×X)ω

)
is not continuous. By Proposition 3, such relation is recognisable by a

finite transducer TX with O(|Q| × |X||R|) states, which can be built on-the-fly.
By [3], the continuity of functions defined by NFT is decidable in NLogSpace,
which yields a PSpace procedure.

For the hardness, we reduce again from the emptiness problem of register
automata, which is PSpace-complete [4]. Let A be a register automaton over
some alphabet Σ ×D. We construct a transducer T which defines a continuous
function iff L(A) = ∅ iff the domain of T is empty. Let f be a non-continous
function realised by some NRT H (it exists by Example 16). Then, let # �∈ Σ be
a fresh symbol, and define the function g as the function mapping any data word
of the form w(#, d)w′ to w(#, d)f(w′) if w ∈ L(A). The function g is realised by
an NRT which simulates A and copies its inputs on the output to implement the
identity, until it sees #. If it was in some accepting state of A before seeing #, it
branches to some initial state of H and proceeds executing H. If there is some
w0 ∈ L(A), then the subfunction gw0

mapping words of the form w0(#, d)w′

to w0(#, d)f(w′) is not continuous, since f is not. Hence g is not continuous.
Conversely, if L(A) = ∅, then dom(g) = ∅, so g is continuous. ��

On Computability of Data Word Functions Defined by Transducers 231



In [3], non-continuity is characterised by a specific pattern (Lemma 21, Figure 1),
i.e. the existence of some particular sequence of transitions. By applying this
characterisation to the finite transducer recognising �T �∩ ((Σ×X)ω× (Γ ×X)ω),
as constructed in Proposition 3, we can characterise non-continuity by a similar
pattern, which will prove useful to decide (non-)continuity of test-free NRT in
NLogSpace (cf Section 5):

Corollary 21 ([3]). Let T be an NRT with k registers. Then, for all X ⊆ D
such that |X| ≥ 2k + 3 and d0 ∈ X, T is not continuous at some x ∈ (Σ ×D)ω

if and only if it has the pattern of Figure 5.

i0, τ0 qf , μ i0, τ0 q, τ
u | u′ u | u′′

v | v′ v | v′′

w | w′′

Fig. 5. A pattern characterising non-continuity of functions definable by an NRT: we
ask that there exist configurations (qf , μ) and (q, τ), where qf is accepting, as well as
finite input data words u, v, finite output data words u′, v′, u′′, v′′, and an infinite input
data word w admitting an accepting run from configuration (q, τ) producing output
w′′, such that mismatch(u′, u′′) ∨ (v′′ = ε ∧mismatch(u′, u′′w′′)).

5 Test-free Register Transducers

In [7], we introduced a restriction which allows to recover decidability of the
bounded synthesis problem for specifications expressed as non-deterministic
register automata. Applied to transducers, such restriction also yields polynomial
complexities when considering the functionality and computability problems.

An NRT T is test-free when its transition function does not depend on the
tests conducted over the input data. Formally, we say that T is test-free if for all

transitions q
σ,φ|asgn,o−−−−−−→

T
q′ we have φ = �. Thus, we can omit the tests altogether

and its transition relation can be represented as Δ′ ⊆ Q×Σ×2R× (Γ ×R)∗×Q.

Example 22. Consider the function f : (Σ × D)ω → (Γ × D)ω associating, to
x = (σ1, d1)(σ2, d2) . . . , the value (σ1, d1)(σ2, d1)(σ3, d1) . . . if there are infinitely
many a in x, and (σ1, d2)(σ2, d2)(σ3, d2) . . . otherwise.

f can be implemented using a test-free NRT with one register: it initially
guesses whether there are infinitely many a in x, if it is the case, it stores d1 in
the single register r, otherwise it waits for the next input to get d2 and stores it
in r. Then, it outputs the content of r along with each σi. f is not continuous, as
even outputting the first data requires reading an infinite prefix when d1 �= d2.

232 L. Exibard et al.



Note that when a transducer is test-free, the existence of an accepting run over
a given input x only depends on its finite labels. Hence, the existence of two
outputs y and z which mismatch over data can be characterised by a simple
pattern (Figure 6), which allows to decide functionality in polynomial time:

Theorem 23. Deciding whether a test-free NRT is functional is in PTime.

Proof. Let T be a test-free NRT such that T is not functional. Then, there exists
x ∈ (Σ ×D)ω, y, z ∈ (Γ ×D)ω such that (x, y), (x, z) ∈ �T � and y �= z. Then, let
i be such that y[i] �= z[i]. There are two cases. Either lab(y[i]) �= lab(z[i]), which
means that the finite transducer T ′ obtained by ignoring the registers of T is not
functional. By Proposition 8, such property can be decided in NLogSpace, so
let us focus on the second case: dt(y[i]) �= dt(z[i]).

x

y

z

jj’

r′ ∈ asgn′
j′ r ∈ asgnj

l

r ∈ ol

l’

r′ ∈ o′
l′

i

i

r is not reassigned

y[i]
= x[j

]

z[i] = x[j ′
]

output
y[i]

outp
ut z[i]

Fig. 6. A situation characterising the existence of a mismatch over data. Since acceptance
does not depend on data, we can always choose x such that dt(x[j]) 	= dt(x[j′]). Here,
we assume that the labels of x, y and z range over a unary alphabet; in particular
y[i] = x[j] iff dt(y[i]) = dt(x[j]). Finally, for readability, we did not write that r′ should
not be reassigned between j′ and l′. Note that the position of i with regards to j, j′, l
and l′ does not matter; nor does the position of l w.r.t. l′.

We here give a sketch of the proof: observe that an input x admits two outputs
which mismatch over data if and only if it admits two runs which respectively
store x[j] and x[j′] such that x[j] �= x[j′] and output them later at the same
output position i; the outputs y and z are then such that dt(y[i]) �= dt(z[i]). Since
T is test-free, the existence of two runs over the same input x only depends on
its finite labels. Then, the registers containing respectively x[j] and x[j′] should
not be reassigned before being output, and should indeed output their content
at the same position i (cf Figure 6). Besides, again because of test-freeness, we
can always assume that x is such that x[j] �= x[j′]. Overall, such pattern can
be checked by a 2-counter Parikh automaton, whose emptiness is decidable in
PTime [8] (under conditions that are satisfied here). ��

Now, let us move to the case of continuity. Here again, the fact that test-free
NRT conduct no test over the input data allows to focus on the only two registers
that are responsible for the mismatch, the existence of an accepting run being
only determined by finite labels.

On Computability of Data Word Functions Defined by Transducers 233



Theorem 24. Deciding whether a test-free NRT defines a continuous function
is in PTime.

Proof. Let T be a test-free NRT. First, it can be shown that T is continuous if
and only if T has the pattern of Figure 7, where r is coaccessible (since acceptance
only depends on finite labels, T can be trimmed3 in polynomial time).

i0 qf qf i0 q q r
u | u′ u | u′′v | v′ v | v′′ z | z′′

Fig. 7. A pattern characterising non-continuity of functions defined by NRT, where
we ask that there exist some states qf , q and r, where qf is accepting, as well as
finite input data words u, v, z and finite output data words u′, v′, u′′, v′′, z′′ such that
mismatch(u′, u′′)∨(v′′ = ε ∧mismatch(u′, u′′z′′)). Register assignments are not depicted,
as there are no conditions on them. We unrolled the loops to highlight the fact that
they do not necessarily loop back to the same configuration.

Now, it remains to show that such simpler pattern can be checked in PTime.
We treat each part of the disjunction separately:

(a) there exists u, u′, u′′, v, v′, v′′ s.t. i0
u|u′
−−→ qf

v|v′
−−→ qf and i0

u|u′′
−−−→ q

v|v′′
−−−→

q, where qf ∈ F and mismatch(u′, u′′). Then, as shown in the proof of
Theorem 23, there exists a mismatch between some u′ and u′′ produced by
the same input u if and only if there exists two runs and two registers r and
r′ assigned at two distinct positions, and later on output at the same position.
Such pattern can similarly be checked by a 2-counter Parikh automaton; the
only difference is that here, instead of checking that the two end states are
coaccessible with a common ω-word, we only need to check that qf ∈ F and
that there is a synchronised loop over qf and q, which are regular properties
that can be checked by the Parikh automaton with only a polynomial increase.

(b) there exists u, u′, u′′, v, v′, z, z′′ s.t. i0
u|u′
−−→ qf

v|v′
−−→ qf and i0

u|u′′
−−−→ q

v|ε−−→
q

z|z′′
−−−→ r, where qf ∈ F and mismatch(u′, u′′z′′). By examining again the

proof of Theorem 23, it can be shown that to obtain a mismatch, it suffices
that the input is the same for both runs only up to position max(j, j′). More
precisely, there is a mismatch between u′ and u′′z′′ if and only if there exists
two registers r and r′ and two positions j, j′ ∈ {1, . . . , ‖u‖} such that j �= j′,
r is stored at position j, r′ is stored at position j′, r and r′ are respectively
output at input positions l ∈ {1, . . . , ‖u‖} and l′ ∈ {1, . . . , ‖uz‖} and they
are not reassigned in the meantime. Again, such property, along with the
fact that qf ∈ F and the existence of a synchronised loop can be checked by
a 2-counter Parikh automaton of polynomial size.

Overall, deciding whether a test-free NRT is continuous is in PTime. ��
3 We say that T is trim when all its states are both accessible and coaccessible.

234 L. Exibard et al.



References

1. Berstel, J.: Transductions and Context-free Languages. Teubner Verlag (1979), http:
//www-igm.univ-mlv.fr/∼berstel/LivreTransductions/LivreTransductions.html

2. Carayol, A., Löding, C.: Uniformization in Automata Theory. In: Proceedings
of the 14th Congress of Logic, Methodology and Philosophy of Science, Nancy,
July 19-26, 2011. pp. 153–178. London: College Publications (2014), https://hal.
archives-ouvertes.fr/hal-01806575

3. Dave, V., Filiot, E., Krishna, S.N., Lhote, N.: Deciding the computability of regular
functions over infinite words. CoRR abs/1906.04199 (2019), http://arxiv.org/
abs/1906.04199

4. Demri, S., Lazic, R.: LTL with the freeze quantifier and regis-
ter automata. ACM Trans. Comput. Log. 10(3), 16:1–16:30 (2009).
https://doi.org/10.1145/1507244.1507246

6. Ehlers, R., Seshia, S.A., Kress-Gazit, H.: Synthesis with identifiers. In: Pro-
ceedings of the 15th International Conference on Verification, Model Checking,
and Abstract Interpretation - Volume 8318. pp. 415–433. VMCAI 2014 (2014).
https://doi.org/10.1007/978-3-642-54013-4 23

9. Filiot, E., Jecker, I., Löding, C., Winter, S.: On equivalence and uniformisation
problems for finite transducers. In: 43rd International Colloquium on Automata,
Languages, and Programming, ICALP 2016, July 11-15, Rome, Italy. pp. 125:1–
125:14 (2016). https://doi.org/10.4230/LIPIcs.ICALP.2016.125

11. Gire, F.: Two decidability problems for infinite words. Inf. Process. Lett. 22(3),
135–140 (1986). https://doi.org/10.1016/0020-0190(86)90058-X

12. Holtmann, M., Kaiser, L., Thomas, W.: Degrees of lookahead in reg-
ular infinite games. Logical Methods in Computer Science 8(3) (2012).
https://doi.org/10.2168/LMCS-8(3:24)2012

14. J.R. Büchi, L.H. Landweber: Solving sequential conditions finite-state strate-
gies. Transactions of the American Mathematical Society 138, 295–311 (1969).
https://doi.org/10.2307/1994916

On Computability of Data Word Functions Defined by Transducers 235

5. Durand-Gasselin, A., Habermehl, P.: Regular transformations of data words

through origin information. In: Foundations of Software Science and Computa-

tion Structures - 19th International Conference, FOSSACS 2016, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS

2016, Eindhoven, The Netherlands, April 2-8, Proceedings. pp. 285–300 (2016).

https://doi.org/10.1007/978-3-662-49630-5 17

7. Exibard, L., Filiot, E., Reynier, P.: Synthesis of data word transduc-

ers. In: 30th International Conference on Concurrency Theory, CONCUR

2019, August 27-30, Amsterdam, the Netherlands. pp. 24:1–24:15 (2019).

https://doi.org/10.4230/LIPIcs.CONCUR.2019.24
8. Figueira, D., Libkin, L.: Path logics for querying graphs: Combining expres-

siveness and efficiency. In: 30th Annual ACM/IEEE Symposium on Logic in

Computer Science, LICS 2015, Kyoto, Japan, July 6-10. pp. 329–340 (2015).

https://doi.org/10.1109/LICS.2015.39

10. Filiot, E., Mazzocchi, N., Raskin, J.: A pattern logic for automata with out-

puts. In: Developments in Language Theory - 22nd International Conference,
DLT 2018, Tokyo, Japan, September 10-14, Proceedings. pp. 304–317 (2018).

https://doi.org/10.1007/978-3-319-98654-8 25

13. II, K.C., Pachl, J.K.: Equivalence problems for mappings on

infinite strings. Information and Control 49(1), 52–63 (1981).

https://doi.org/10.1016/S0019-9958(81)90444-7

http://www-igm.univ-mlv.fr/~berstel/LivreTransductions/LivreTransductions.html
http://www-igm.univ-mlv.fr/~berstel/LivreTransductions/LivreTransductions.html
https://hal.archives-ouvertes.fr/hal-01806575
https://hal.archives-ouvertes.fr/hal-01806575
http://arxiv.org/abs/1906.04199
http://arxiv.org/abs/1906.04199
https://doi.org/10.1145/1507244.1507246
https://doi.org/10.1007/978-3-662-49630-5_17
https://doi.org/10.1007/978-3-642-54013-4_23
https://doi.org/10.4230/LIPIcs.CONCUR.2019.24
https://doi.org/10.1109/LICS.2015.39
https://doi.org/10.4230/LIPIcs.ICALP.2016.125
https://doi.org/10.1007/978-3-319-98654-8_25
https://doi.org/10.1016/0020-0190(86)90058-X
https://doi.org/10.2168/LMCS-8(3:24)2012
https://doi.org/10.1016/S0019-9958(81)90444-7
https://doi.org/10.2307/1994916


15. Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134(2),
329–363 (Nov 1994). https://doi.org/10.1016/0304-3975(94)90242-9

18. Libkin, L., Tan, T., Vrgoc, D.: Regular expressions for data words. J. Comput. Syst.
Sci. 81(7), 1278–1297 (2015). https://doi.org/10.1016/j.jcss.2015.03.005

19. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over
infinite alphabets. ACM Trans. Comput. Logic 5(3), 403–435 (Jul 2004).
https://doi.org/10.1145/1013560.1013562

20. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: ACM
Symposium on Principles of Programming Languages, POPL. ACM (1989).
https://doi.org/10.1145/75277.75293

21. Prieur, C.: How to decide continuity of rational functions on infinite words.
Theor. Comput. Sci. 276(1-2), 445–447 (2002). https://doi.org/10.1016/S0304-
3975(01)00307-3

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

236 L. Exibard et al.

16. Khalimov, A., Kupferman, O.: Register-bounded synthesis. In: 30th

International Conference on Concurrency Theory, CONCUR 2019,

August 27-30, Amsterdam, the Netherlands. pp. 25:1–25:16 (2019).
https://doi.org/10.4230/LIPIcs.CONCUR.2019.25

17. Khalimov, A., Maderbacher, B., Bloem, R.: Bounded synthesis of register trans-

ducers. In: Automated Technology for Verification and Analysis, 16th Interna-

tional Symposium, ATVA 2018, Los Angeles, October 7-10. Proceedings (2018).

29https://doi.org/10.1007/978-3-030-01090-4

https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.4230/LIPIcs.CONCUR.2019.25
https://doi.org/10.1007/978-3-030-01090-4_29
https://doi.org/10.1016/j.jcss.2015.03.005
https://doi.org/10.1145/1013560.1013562
https://doi.org/10.1145/75277.75293
https://doi.org/10.1016/S0304-3975(01)00307-3
https://doi.org/10.1016/S0304-3975(01)00307-3
http://creativecommons.org/licenses/by/4.0/


Minimal Coverability Tree Construction
Made Complete and Efficient �

Abstract. Downward closures of Petri net reachability sets can be finitely
represented by their set of maximal elements called the minimal cover-
ability set or Clover. Many properties (coverability, boundedness, ...) can
be decided using Clover, in a time proportional to the size of Clover. So
it is crucial to design algorithms that compute it efficiently. We present a
simple modification of the original but incomplete Minimal Coverability
Tree algorithm (MCT), computing Clover, which makes it complete: it
memorizes accelerations and fires them as ordinary transitions. Contrary
to the other alternative algorithms for which no bound on the size of the
required additional memory is known, we establish that the additional
space of our algorithm is at most doubly exponential. Furthermore we
have implemented a prototype MinCov which is already very competi-
tive: on benchmarks it uses less space than all the other tools and its
execution time is close to the one of the fastest tool.

Keywords: Petri nets · Karp-Miller tree algorithm · Coverability · Min-
imal coverability set · Clover · Minimal coverability tree.

1 Introduction

Coverability and coverability set in Petri nets. Petri nets are iconic as
an infinite-state model used for verifying concurrent systems. Coverability, in
Petri nets, is the most studied property for several reasons: (1) many properties
like mutual exclusion, safety, control-state reachability reduce to coverability, (2)
the coverability problem is EXPSPACE-complete (while reachability is non ele-
mentary), and (3) there exist efficient prototypes and numerous case studies. To
solve the coverability problem, there are backward and forward algorithms. But
these algorithms do not address relevant problems like the repeated coverability
problem, the LTL model-checking, the boundedness problem and regularity of
the traces.

However these problems are EXPSPACE-complete [4, 1] and are also decid-
able using the Karp-Miller tree algorithm (KMT) [11] that computes a finite tree

� The work was carried out in the framework of ReLaX, UMI2000 and also supported
by ANR-17-CE40-0028 project BRAVAS.

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 237–256, 2020.
https://doi.org/10.1007/978-3-030-45231-5_13

Alain Finkel1,3, Serge Haddad1,2, and Igor Khmelnitsky1,2(B)

1 LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay, Cachan, France

{finkel,haddad,khmelnitsky}@lsv.fr
2 Inria, France

3 Institut Universitaire de France, France

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_13&domain=pdf


labeled by a set of ω-markings C ⊆ NP
ω (where Nω is the set of naturals enlarged

with an upper bound ω and P is the set of places) such that the reachability set
and the finite set C have the same downward closure in NP . Thus a marking m is
coverable if there exists some m′ ≥ m with m′ ∈ C. Hence, C can be seen as one
among all the possible finite representations of the infinite downward closure of
the reachability set. This set C allows, for instance, to solve multiple instances
of coverability in linear time linear w.r.t. the size of C avoiding to call many
times a costly algorithm. Informally the KMT algorithm builds a reachability
tree but, in order to ensure termination, substitutes ω to some finite components
of a marking of a vertex when some marking of an ancestor is smaller.

Unfortunately C may contain comparable markings while only the maximal
elements are important. The set of maximal elements of C can be defined in-
dependently of the KMT algorithm and was called the minimal coverability set
(MCS) in [6] and abbreviated as the Clover in the more general framework of
Well Structured Transition Systems (WSTS) [7].

The minimal coverability tree algorithm. So in [5, 6] the author computes
the minimal coverability set by modifying the KMT algorithm in such a way
that at each step of the algorithm, the set of ω-markings labelling vertices is an
antichain. But this aggressive strategy, implemented by the so-called Minimal
Coverability Tree algorithm (MCT), contains a subtle bug and it may compute
a strict under-approximation of Clover as shown in [8, 10].

Alternative minimal coverability set algorithms. Since the discovery of
this bug, three algorithms (with variants) [10, 14, 13] have been designed for
computing the minimal coverability set without building the full Karp-Miller
tree. In [10] the authors proposed a minimal coverability set algorithm (called
CovProc) that is not based on the Karp-Miller tree algorithm but uses a similar
but restricted introduction of ω’s. In [14], Reynier and Servais proposed a mod-
ification of the MCT, called the Monotone-Pruning algorithm (called MP), that
keeps but “deactivates” vertices labeled with smaller ω-markings while MCT
would have deleted them. Recently in [15], the authors simplified their original
proof of correctness. In [16], Valmari and Hansen proposed another algorithm
(denoted below as VH) for constructing the minimal coverability set without
deleting vertices. Their algorithm builds a graph and not a tree as usual. In [13],
Piipponen and Valmari improved this algorithm by designing appropriate data
structures and heuristics for exploration strategy that may significantly decrease
the size of the graph.

Our contributions.

1. We introduce the concept of abstraction as an ω-transition that mimics the
effect of an infinite family of firing sequences of markings w.r.t. coverabil-
ity. As a consequence adding abstractions to the net does not modify its
coverability set. Moreover, the classical Karp-Miller acceleration can be for-
malized as an abstraction whose incidence on places is either ω or null. The
set of accelerations of a net is upward closed and well-ordered. Hence there
exists a finite subset of minimal accelerations and we show that the size of
all minimal acceleration is bounded by a double exponential.

238 A. Finkel et al.



2. Despite the current opinion that ”The flaw is intricate and we do not see
an easy way to get rid of it....Thus, from our point of view, fixing the bug
of the MCT algorithm seems to be a difficult task” [10], we have found a
simple modification of MCT which makes it correct. It mainly consists in
memorizing discovered accelerations and using them as ordinary transitions.

3. Contrary to all existing minimal coverability set algorithms that use an un-
known additional memory that could be non primitive recursive, we show, by
applying a recent result of Leroux [12], that the additional memory required
for accelerations, is at most doubly exponential.

4. We have developed a prototype in order to also empirically evaluate the
efficiency of our algorithm and the benchmarks (either from the literature or
random ones) have confirmed that our algorithm requires significantly less
memory than the other algorithms and is close to the fastest tool w.r.t. the
execution time.

Organization. Section 2 introduces abstractions and accelerations and studies
their properties. Section 3 presents our algorithm and establishes its correctness.
Section 4 describes our tool and discusses the results of the benchmarks. We
conclude and give some perspectives to this work in Section 5. One can find all
the missing proofs and an illustration of the behavior of the algorithm in [9].

2 Covering abstractions

2.1 Petri nets: reachability and covering

Here we define Petri nets differently from the usual way but in an equivalent
manner. i.e. based on the backward incidence matrix Pre and the incidence
matrix C. The forward incidence matrix is implicitly defined by C+Pre. Such
a choice is motivated by the introduction of abstractions in section 2.2.

Definition 1. A Petri net (PN) is a tuple N = 〈P, T,Pre,C〉 where:
– P is a finite set of places;
– T is a finite set of transitions, with P ∩ T = ∅;
– Pre ∈ NP×T is the backward incidence matrix;
– C ∈ ZP×T is the incidence matrix which fulfills:

for all p ∈ P and t ∈ T , C(p, t) +Pre(p, t) ≥ 0.

A marked Petri net (N ,m0) is a Petri net N equipped with an initial marking
m0 ∈ NP .

The column vector of matrix Pre (resp. C) indexed by t ∈ T is denoted
Pre(t) (resp. C(t)). A transition t ∈ T is fireable from a marking m ∈ NP if m ≥
Pre(t). When t is fireable from m, its firing leads to marking m′ def

= m+C(t),

denoted by m t−→ m′. One extends fireability and firing to a sequence σ ∈ T ∗

by recurrence on its length. The empty sequence ε is always fireable and let the
marking unchanged. Let σ = tσ′ be a sequence with t ∈ T and σ′ ∈ T ∗. Then σ

Minimal Coverability Tree Construction Made Complete and Efficient 239



is fireable from m if m t−→ m′ and σ′ is fireable from m′. The firing of σ from
m leads to the marking m′′ reached by σ′ from m′. One also denotes this firing
by m σ−→ m′′.

Definition 2. Let (N ,m0) be a marked net. The reachability set Reach(N ,m0)
is defined by:

Reach(N ,m0) = {m | ∃σ ∈ T ∗ m0
σ−→ m}

In order to introduce the coverability set of a Petri net, let us recall some
definitions and results related to ordered sets. Let (X,≤) be an ordered set. The
downward (resp. upward) closure of a subset E ⊆ X is denoted by ↓E (resp.
↑E) and defined by:

↓E = {x ∈ X | ∃y ∈ E y ≥ x} (resp. ↑E = {x ∈ X | ∃y ∈ E y ≤ x})
A subset E ⊆ X is downward (resp. upward) closed if E =↓E (resp. E =↑E).

An antichain E is a set which fulfills: ∀x �= y ∈ E ¬(x ≤ y ∨ y ≤ x). X is
said FAC (for Finite AntiChains) if all its antichains are finite. A non empty
set E ⊆ X is directed if for all x, y ∈ E there exists z ∈ E such that x ≤ z and
y ≤ z. An ideal is a set which is downward closed and directed. There exists
an equivalent characterization of FAC sets which provides a finite description of
any downward closed set: a set is FAC if and only if every downward closed set
admits a finite decomposition in ideals (a proof of this well-known result can be
found in [3]).

X is well founded if all its (strictly) decreasing sequences are finite. X is well
ordered if it is FAC and well founded. There are many equivalent characteriza-
tions of well order. For instance, a set X is well ordered if and only if for all
sequence (xn)n∈N in X, there exists a non decreasing infinite subsequence. This
characterization allows to design algorithms that computes trees whose finiteness
is ensured by well order. Let us recall that (N,≤) and (NP ,≤) are well ordered
sets.

We are now ready to introduce the cover (also called the coverability set) of
a net and to state some of its properties.

Definition 3. Let (N ,m0) be a marked Petri net. Cover(N ,m0), its coverabil-
ity set, is defined by:

Cover(N ,m0) =↓Reach(N ,m0)

Since the coverability set is downward closed and NP is FAC, it admits a
finite decomposition in ideals. The ideals of NP can be defined in an elegant way
as follows. One first extends the sets of naturals and integers: Nω = N ∪ {ω}
et Zω = Z ∪ {ω}. Then one extends the order relation and the addition to Zω:
for all n ∈ Z, ω > n and for all n ∈ Zω, n + ω = ω + n = ω. NP

ω is also a
well ordered set and its members are called ω-markings. There is a one-to-one
mapping between ideals of NP and ω-markings. Let m ∈ NP

ω . Define �m� by:

�m� = {m′ ∈ NP | m′ ≤ m}

240 A. Finkel et al.



�m� is an ideal of NP (and all ideal can be defined in such a way). Let Ω be a
set of ω-markings, �Ω� denotes the set

⋃
m∈Ω�m�. Due to the above properties,

there exists a unique finite set with minimal size Clover(N ,m0) ⊆ Np
ω such that:

Cover(N ,m0) = �Clover(N ,m0)�

A more general result can be found in [3] for well structured transition systems.

Example 1. The marked net of Figure 1 is unbounded. Its Clover is the following
set:

{pi, pbk + pm, pl + pm + ωpba, pl + pbk + ωpba + ωpc}
For instance, the marking pl+pbk+αpba+βpc is reached thus covered by sequence
t1t

α+β
5 tβ6 .

pi

pl

pbk

pm

pba

pc

t1

t2

t3 t4

t5

t6

Fig. 1. An unbounded Petri net

2.2 Abstraction and acceleration

In order to introduce abstractions and accelerations, we generalize the transitions
to allow the capability to mark a place with ω tokens.

Definition 4. Let P be a set of places. An ω-transition a is defined by:

– Pre(a) ∈ NP
ω its backward incidence;

– C(a) ∈ ZP
ω its incidence with Pre(a) +C(a) ≥ 0.

For sake of homogeneity, one denotes Pre(a)(p) (resp. C(a)(p)) by Pre(p, a)
(resp. C(p, a)). An ω-transition a is fireable from an ω-marking m ∈ NP

ω if

m ≥ Pre(a). When a is fireable from m, its firing leads to the ω-marking m′ def
=

m+C(a), denoted as previously m a−→ m′. One observes that if Pre(p, a) = ω
then for all values of C(p, a), m′(a) = ω. So without loss of generality, one
assumes that for all ω-transition a, Pre(p, a) = ω implies C(p, a) = ω.

In order to define abstractions, we first define the incidences of a sequence σ of

ω-transitions by recurrence on its length. As previously, we denote Pre(p, σ)
def
=

Minimal Coverability Tree Construction Made Complete and Efficient 241



Pre(σ)(p) and C(p, σ)
def
= C(σ)(p). The base case corresponds to the definition

of an ω-transition. Let σ = tσ′, with t an ω-transition and σ′ a sequence of
ω-transitions, then:

– C(σ) = C(t) +C(σ′);
– for all p ∈ P

• if C(p, t) = ω then Pre(p, σ) = Pre(p, t);
• else Pre(p, σ) = max(Pre(p, t),Pre(p, σ′)−C(p, t)).

One checks by recurrence that σ is firable from m if and only if m ≥ Pre(σ)
and in this case, m σ−→ m+C(σ).

An abstraction of a net is an ω-transition which concisely expresses the be-
haviour of the net w.r.t. covering (see Proposition 1). One will observe that a
transition t of a net is by construction (with σn = t for all n) an abstraction.

Definition 5. Let N = 〈P, T,Pre,C〉 be a Petri net and a be an ω-transition.
a is an abstraction if for all n ≥ 0, there exists σn ∈ T ∗ such that for all p ∈ P
with Pre(p, a) ∈ N:

1. Pre(p, σn) ≤ Pre(p, a);
2. If C(p, a) ∈ Z then C(p, σn) ≥ C(p, a);
3. If C(p, a) = ω then C(p, σn) ≥ n.

The following proposition justifies the interest of abstractions.

Proposition 1. Let (N ,m0) be a marked Petri net, a be an abstraction and m
be an ω-marking such that: �m� ⊆ Cover(N ,m0) and m a−→ m′. Then �m′� ⊆
Cover(N ,m0).

Proof. Pick some m∗ ∈ �m′�. Denote n = max(m∗(p) | m′(p) = ω)
and � = max(Pre(p, σn), n−C(p, σn) | m(p) = ω). Let us define m� ∈ �m� by:

– If m(p) < ω then m�(p) = m(p);
– Else m�(p) = �.

Let us check that σn is fireable from m�. Let p ∈ P ,

– If m(p) < ω then m�(p) = m(p) ≥ Pre(p, a) ≥ Pre(p, σn);
– Else m�(p) = � ≥ Pre(p, σn).

Let us show that m� +C(σn) ≥ m∗. Let p ∈ P ,

– If m(p) < ω and C(p, a) < ω then m�(p) + C(p, σn) ≥ m(p) + C(p, a) =
m′(p) ≥ m∗(p);

– If m(p) < ω and C(p, a) = ω then m�(p) + C(p, σn) ≥ C(p, σn) ≥ n ≥
m∗(p) ;

– If m(p) = ω then m�(p) +C(p, σn) ≥ n−C(p, σn) +C(p, σn) = n ≥ m∗(p).

An easy way to build new abstractions consists in concatenating them.

242 A. Finkel et al.



Proposition 2. Let N = 〈P, T,Pre,C〉 be a Petri net and σ be a sequence of
abstractions. Then the ω-transition a defined by Pre(a) = Pre(σ) and C(a) =
C(σ) is an abstraction.

We now introduce the underlying concept of the Karp and Miller construc-
tion.

Definition 6. Let N = 〈P, T,Pre,C〉 be a Petri net. One says that a is an
acceleration if a is an abstraction such that C(a) ∈ {0, ω}P .

The following proposition provides a way to get an acceleration from an
arbitrary abstraction.

Proposition 3. Let N = 〈P, T,Pre,C〉 be a Petri net and a be an abstraction.
Define a′ an ω-transition as follows. For all p ∈ P :

– If C(p, a) < 0 then Pre(p, a′) = C(p, a′) = ω;
– If C(p, a) = 0 then Pre(p, a′) = Pre(p, a) and C(p, a′) = 0;
– If C(p, a) > 0 then Pre(p, a′) = Pre(p, a) and C(p, a′) = ω.

Then a′ is an acceleration.

Let us study more deeply the set of accelerations. First we equip the set of
ω-transitions with a“natural” order w.r.t. covering.

Definition 7. Let P be a set of places and two ω-transitions a and a′.

a ≤ a′ if and only if Pre(a) ≤ Pre(a′) ∧C(a) ≥ C(a′)

In other words, a ≤ a′ if given any ω-marking m, if a′ is fireable from m
then a is also fireable and its firing leads to a marking greater or equal that the
one reached by the firing of a′.

Proposition 4. Let N be a Petri net. Then the set of abstractions of N is
upward closed. Similarly, the set of accelerations is upward closed in the set of
ω-transitions whose incidence belongs to {0, ω}P .
Proposition 5. The set of accelerations of a Petri net is well ordered.

Proof. The set of accelerations is a subset of NP × {0, ω}P (where P is the set
of places) with the order obtained by iterating cartesian products of sets (N,≤)
and ({0, ω},≥). These sets are well ordered and the cartesian product preserves
this property. So we are done.

Since the set of accelerations is well ordered and it is upward closed, it is equal
to the upward closure of the finite set of minimal accelerations. Let us study the
size of a minimal acceleration. Given some Petri net, one denotes d = |P | and
e = maxp,t(max(Pre(p, t),Pre(p, t) +C(p, t)).

We are going to use the following result of Jérôme Leroux (published on
HAL in June 2019) which provides a bound for the lengths of shortest sequences
between two markings m1 and m2 mutually reachable.

Minimal Coverability Tree Construction Made Complete and Efficient 243



Theorem 1. (Theorem 2, [12]) Let N be a Petri net, m1,m2 be markings,

σ1, σ2 be sequences of transitions such that m1
σ1−→ m2

σ2−→ m1. Then there exist

σ′
1, σ

′
2 such that m1

σ′
1−→ m2

σ′
2−→ m1 fulfilling:

|σ′
1σ

′
2| ≤ ||m1 −m2||∞(3de)(d+1)2d+4

One deduces an upper bound on the size of minimal accelerations.
Let v ∈ NP

ω . One denotes ||v||∞ = max(v(p) | v(p) ∈ N).

Proposition 6. Let N be a Petri net and a be a minimal acceleration.

Then ||Pre(a)||∞ ≤ e(3de)(d+1)2d+4

.

Proof. Let us consider the net N ′ = 〈P ′, T ′,Pre′,C′〉 obtained from N by
deleting the set of places {p | Pre(p, a) = ω} and adding the set of transitions
T1 = {tp | p ∈ P ′} with Pre(tp) = p et C(tp) = −p. Observe that d′ ≤ d and
e′ = e.
One denotes P1 = {p | Pre(p, a) < ω = C(p, a)}. One introduces m1 the
marking obtained by restricting Pre(a) to P ′ and m2 = m1 +

∑
p∈P1

p.
Let {σn}n∈N be a family of sequences associated with a. Let n∗ = ||Pre(a)||∞+1.
Then σn∗ is fireable in N ′ from m1 and its firing leads to a marking that covers
m2. By concatenating some occurrences of transitions of T1, one gets a firing
sequence in N ′ m1

σ1−→ m2. Using the same process, one gets a firing sequence
m2

σ2−→ m1.

Let us apply Theorem 1. There exists a sequence σ′
1 with m1

σ′
1−→ m2 and |σ′

1| ≤
(3de)(d+1)2d+4

since ||m1−m2||∞ = 1. By deleting the transitions of T1 occurring

in σ′
1, one gets a sequence σ′′

1 ∈ T ∗ such that m1
σ′′
1−→ m′

2 ≥ m2 with |σ′′
1 | ≤

(3de)(d+1)2d+4

.
The ω-transition a′, defined byPre(p, a′) = Pre(p, σ′′

1 ) for all p ∈ P ′,Pre(p, a′) =
ω for all p ∈ P \ P ′ and C(a′) = C(a), is an acceleration whose associated
family is {σ′′

1
n}n∈N. By definition of m1, a

′ ≤ a. Since a is minimal, a′ = a.

Observing that |σ′′
1 | ≤ (3de)(d+1)2d+4

, one gets ||Pre(a)||∞ = ||Pre(a′)||∞ ≤
e(3de)(d+1)2d+4

.

Thus given any acceleration, one can easily obtain a smaller acceleration
whose (representation) size is exponential.

Proposition 7. Let N be a Petri net and a be an acceleration.
Then the ω-transition trunc(a) defined by:

– C(trunc(a)) = C(a);
– for all p such that Pre(p, a) �= ω,

Pre(p, trunc(a)) = min(Pre(p, a), e(3de)(d+1)2d+4

) ;
– for all p such that Pre(p, a) = ω, Pre(p, trunc(a)) = ω.

is an acceleration.

Proof. Let a′ ≤ a, be a minimal acceleration. For all p such that Pre(p, a) �= ω,

Pre(p, a′) ≤ e(3de)(d+1)2d+4

. So a′ ≤ trunc(a). Since the set of accelerations is
upward closed, one gets that trunc(a) is an acceleration.

244 A. Finkel et al.



3 A coverability tree algorithm

3.1 Specification and illustration

As discussed in the introduction, to compute the clover of a Petri net, most
algorithms build coverability trees (or graphs), which are variants of the Karp
and Miller tree with the aim of reducing the peak memory during the execution.
The seminal algorithm [6] is characterized by a main difference with the KMT
construction: when finding that the marking associated with the current vertex
strictly covers the marking of another vertex, it deletes the subtree issued from
this vertex, and when the current vertex belonged to the removed subtree it sub-
stitutes it to the root of the deleted subtree. This operation drastically reduces
the peak memory but as shown in [8] entails incompleteness of the algorithm.

Like the previous algorithms that ensure completeness with deletions, our
algorithm also needs additional memory. However unlike the other algorithms,
it memorizes accelerations instead of ω-markings. This approach has two advan-
tages. First, we are able to exhibit a theoretical upper bound on the additional
memory which is doubly exponential, while the other algorithms do not have
such a bound. Furthermore, accelerations are reused in the construction and
thus may even shorten the execution time and peak space w.r.t. the algorithm
in [6].

Before we delve into a high level description of this algorithm, let us present
some of the variables, functions, and definitions used by the algorithm. Algorithm
1, denoted from now on as MinCov takes as an input a marked net (N ,m0)
and constructs a directed labeled tree CT = (V,E, λ, δ), and a set Acc of ω-
transitions (which by Lemma 2 are accelerations). Each v ∈ V is labeled by an
ω-marking, λ(v) ∈ NP

ω . Since CT is a directed tree, every vertex v ∈ V , has
a predecessor (except the root r) denoted by prd(v) and a set of descendants
denoted by Des(v). By convention, prd(r) = r. Each edge e ∈ E is labeled by a
firing sequence δ(e) ∈ To ·Acc∗, consisting of an ordinary transition followed by a

sequence of accelerations (which by Lemma 1 fulfills λ(prd(v))
δ(prd(v),v)−−−−−−−→ λ(v)).

In addition, again by Lemma 1, m0
δ(r,r)−−−→ λ(r). Let γ = e1e2 . . . ek ∈ E∗ be

a path in the tree, we denote by δ(γ) := δ(e1)δ(e2) . . . δ(ek) ∈ (T ∪ Acc)∗. The
subset Front ⊂ V is the set of vertices ‘to be processed’.

MinCov may call function Delete(v) that removes from V a leaf v of CT and
function Prune(v) that removes from V all descendants of v ∈ V except v itself
as illustrated in the following figure:

uv v vDelete(u) Prune(v)

First MinCov does some initializations, and sets the tree CT to be a single
vertex r with marking λ(r) = m0 and Front = {r}. Afterwards the main loop

Minimal Coverability Tree Construction Made Complete and Efficient 245



builds the tree, where each iteration consists in processing some vertex in Front
as follows.

MinCov picks a vertex u ∈ Front (line 3). From λ(u), MinCov fires a sequence
σ ∈ Acc∗ reaching some mu that maximizes the number of ω produced, i.e.
|{p ∈ P | λ(u)(p) �= ω ∧ mu(p) = ω}|. Thus in σ, no acceleration occurs twice
and its length is bounded by |P |. Then MinCov updates λ(u) withmu (line 5) and
the label of the edge incoming to u by concatenating σ. Afterwards it performs
one of the following actions according to the marking λ(u):

– Cleaning (line 7): If there exists u′ ∈ V \ Front with λ(u′) ≥ λ(u). The
vertex u is redundant and MinCov calls Delete(u)

– Accelerating (lines 8-16): If there exists u′, an ancestor of u with λ(u′) <
λ(u) then an acceleration can be computed. The acceleration a is deduced
from the firing sequence labeling the path from u′ to u. MinCov inserts a into
Acc, calls Prune(u′) and pushes back u′ in Front.

– Exploring (lines 18 - 25): Otherwise MinCov calls Prune(u′) followed by
Delete(u′) for all u′ ∈ V with λ(u′) < λ(u) since they are redundant.
Afterwards, it removes u from Front and for all fireable transition t ∈ T
from λ(u), it creates a new child for u in CT and inserts it into Front.

For a detailed example of a run of the algorithm see Example 2 in [9].

3.2 Correctness Proof

We now establish the correctness of Algorithm 1 by proving the following prop-
erties (where for all W ⊆ V , λ(W ) denotes

⋃
v∈W λ(v)):

– its termination;
– the incomparability of ω-markings associated with vertices in V :

λ(V ) is an antichain;
– its consistency: �λ(V )� ⊆ Cover(N ,m0);
– its completeness: Cover(N ,m0) ⊆ �λ(V )�.

We get termination by using the well order of NP
ω and Koenig Lemma.

Proposition 8. MinCov terminates.

Proof. Consider the following variation of the algorithm.

Instead of deleting the current vertex when its marking is smaller or equal than
the marking of a vertex, one marks it as ‘cut’ and extract it from Front.

Instead of cutting a subtree when the marking of the current vertex v is greater
than the marking of a vertex which is not an ancestor of v, one marks them as
‘cut’ and extract from Front those who are inside.

Instead of cutting a subtree when the marking of the current vertex v is greater
than the marking of a vertex which is an ancestor of v, say v∗, one marks those
on the path from v∗ to v (except v) as ‘accelerated’, one marks the other vertices

246 A. Finkel et al.



Algorithm 1: Computing the minimal coverability set

MinCov(N ,m0)
Input: A marked Petri net (N ,m0)
Data: V set of vertices; E ⊆ V × V ; Front ⊆ V ; λ : V → Np

ω; δ : E → ToAcc
∗;

CT = (V,E, λ, δ) a labeled tree;Acc a set of ω-transitions;
Output: A labeled tree CT = (V,E, λ, δ)

1 V ← {r}; E ← ∅; Front ← {r}; λ(r) ← m0; Acc ← ∅; δ(r, r) ← ε
2 while Front �= ∅ do
3 Select u ∈ Front
4 Let σ ∈ Acc∗ a maximal fireable sequence of accelerations from λ(u)

// Maximal w.r.t. the number of ω’s produced

5 λ(u) ← λ(u) +C(σ)
6 δ((prd(u), u)) ← δ((prd(u), u)) · σ
7 if ∃u′ ∈ V \Front s.t. λ(u′) ≥ λ(u) then Delete(u) // λ(u) is covered

8 else if ∃u′ ∈ Anc(V ) s.t. λ(u) > λ(u′) then
// An acceleration was found between u and one of u’s

ancestors

9 Let γ ∈ E∗ the path from u′ to u in CT
10 a ← NewAcceleration()
11 foreach p ∈ P do
12 if C(p, δ(γ)) < 0 then Pre(p, a) ← ω; C(p, a) ← ω
13 if C(p, δ(γ)) = 0 then Pre(p, a) ← Pre(p, δ(γ)); C(p, a) ← 0
14 if C(p, δ(γ)) > 0 then Pre(p, a) ← Pre(p, δ(γ)); C(p, a) ← ω

15 end
16 a ← trunc(a); Acc ← Acc ∪ {a}; Prune(u′); Front = Front ∪ {u′} ;

17 else
18 for u′ ∈ V do

// Remove vertices labeled by markings covered by λ(u)
19 if λ(u′) < λ(u) then Prune(u′); Delete(u′)
20 end
21 Front ← Front \ {u}
22 foreach t ∈ T ∧ λ(u) ≥ Pre(t) do

// Add the children of u
23 u′ ← NewNode(); V ← V ∪ {u′}; Front ← Front ∪ {u′});

E ← E ∪ {(u, u′)}
24 λ(u′) ← λ(u) +C(t); δ((u, u′)) ← t

25 end

26 end

27 end
28 return CT

Minimal Coverability Tree Construction Made Complete and Efficient 247



of the subtree as ‘cut’ and inserts v again in Front with the marking of v∗. All
the markings of the subtree in Front are extracted from it.

All the vertices marked as ‘cut’ or ‘accelerated’ are ignored for comparisons and
discovering accelerations. This alternative algorithm behaves as the original one
except that the size of the tree never decreases and so if the algorithm does
not terminate the tree is infinite. Since this tree is finitely branching, due to
Koenig Lemma it contains an infinite path. On this infinite path, no vertex can
be marked as ‘cut’ since it would belong to a finite subtree. Observe that the
marking labelling the vertex following an accelerated subpath has at least one
more ω than the marking of the first vertex of this subpath. So there is an infinite
subpath with unmarked vertices in V . But NP

ω is well-ordered, so there should
be two vertices v and v′, where v′ is a descendant of v with λ(v′) ≥ λ(v), which
contradicts the behaviour of the algorithm.

Since we are going to use recurrence on the number of iterations of the main
loop of Algorithm 1, we introduce the following notations: CTn = (Vn, En, λn, δn),
Frontn, and Accn are the the values of variables CT, Front, and Acc at line 2
when n iterations have been executed.

Proposition 9. For all n ∈ N, λ(Vn \ Frontn) is an antichain. Thus on termi-
nation, λ(V ) is an antichain.

Proof. Let us introduce V ′ := V \ Front and V ′
n := Vn \ Frontn. We are going

to prove by induction on the number n of iterations of the while-loop that V ′
n is

an antichain. MinCov initializes variables V and Front at line 1. So V0 = {r} and
Front0 = {r}, therefore V ′

0 = V0 \ Front0 = ∅ is an antichain.
Assume that V ′

n = Vn \ Frontn is an antichain. Modifying V ′
n can be done by

adding or removing vertices from Vn and removing vertices from Frontn while
keeping them in Vn. The actions that MinCov may perform in order to modify the
sets V and Front are: Delete (lines 7 and 19), Prune (lines 16 and 19), adding
vertices to V (line 23), adding vertices to Front (lines 16 and 23), and removing
vertices from Front (line 21).
• Both Delete and Prune do not add new vertices to V ′. Thus the antichain
feature is preserved.
• MinCov may add vertices to V only at line 23 where it simultaneously adds
them to Front and therefore does not add new vertices to V ′. Thus the antichain
feature is preserved.
• Adding vertices to Front may only remove vertices from V ′

n. Thus the antichain
feature is preserved.
• MinCov can only add a vertex to V ′ when it removes it from Front while keeping
it in V . This is done only at line 21. There the only vertex MinCov may remove
(line 21) is the working vertex u. However if (in the iteration) MinCov reaches
line 21 then it did not reach line 7 hence, (1) all markings of λ(V ′

n) ⊆ λ(Vn) are
either smaller or incomparable to λn+1(u). Moreover, MinCov has also reached
line 18-20, where (2) it performs Delete on all vertices u′ ∈ V ′

n ⊆ Vn with
λn(u

′) < λn+1(u). Let us denote by V ′′
n ⊆ V ′

n the set V ′ at the end of line

248 A. Finkel et al.



20. Due to (1) and (2), marking λn+1(u) is incomparable to any marking in
λn+1(V

′′
n ). Since V ′′

n ⊆ V ′
n, λn+1(V

′′
n ) is an antichain. Combining this fact with

the incomparability between λn+1(u) and any marking in λn+1(V
′′
n ), we conclude

that the set λn+1(V
′
n+1) = λn+1(V

′′
n ) ∪ {λn+1(u)} is an antichain.

In order to establish consistency, we prove that the labelling of vertices and
edges is compatible with the firing rule and that Acc is a set of accelerations.

Lemma 1. For all n ∈ N, for all u ∈ Vn \ {r}, λn(prd(u))
δ(prd(u),u)−−−−−−−→ λn(u)

and m0
δ(r,r)−−−→ λn(r).

Proof. Let us prove by induction on the number n of iterations of the main loop
that for all v ∈ Vn, the assertions of the lemma hold. Initially, V0 = {r} and
λ0(r) = m0. Since m0

ε−→ m0 = λ0(r) the base case is established.
Assume that the assertions hold for CTn. Observe that MinCov may change the
labeling function λ and/or add new vertices in exactly two places: at lines 4-6
and at lines 22-25. Therefore in order to prove the assertion, we show that after
each group of lines it still holds.
• After lines 4-6: MinCov computes (1) a maximal fireable sequence σ ∈ Acc∗n
from λn(u) (line 4), and updates u’s marking to mu = λn(u) + C(σ) (line 5).

Since the assertions hold for CTn, (2) if u �= r, λn(prd(u))
δ(prd(u),u)−−−−−−−→ λn(u) else

m0
δ(r,r)−−−→ λn(r). By concatenation, we get λn(prd(u))

δ(prd(u),u)σ−−−−−−−−→ mu if u �= r

and otherwise m0
δ(r,r)σ−−−−→ mu which establishes that the assertions hold after

line 6.
• After lines 22-25: The vertices for which λ is updated at these lines are the
children of u that are added to the tree. For every fireable transition t ∈ T from
λ(u), MinCov creates a child vt for u (lines 22-23). The marking of any child

vt is set to mn+1(v) := mn+1(u) + C(t) (line 24). Therefore since λn+1(u)
t−→

λn+1(vt), the assertions hold.

Lemma 2. At any execution point of MinCov, Acc is a set of accelerations.

Proof. At most one acceleration is added per iteration. Let us prove by induction
on the number n of iterations of the main loop that Accn is a set of accelerations.
Since Acc0 = ∅, the base case is straightforward.
Assume that Accn is a set of accelerations and consider Accn+1. In an itera-
tion, MinCov may add an ω-transition a to Acc. Due to the inductive hypothe-
sis, δ(γ) is a sequence of abstractions where γ is defined at line 9. Consider b,
the ω-transition defined by Pre(b) = Pre(δ(γ)) and C(b) = C(δ(γ)). Due to
Proposition 2, b is an abstraction. Due to Proposition 3, the loop of lines 11-15
transforms b into an acceleration a. Due to Proposition 7, after truncation at
line 16, a is still an acceleration.

Proposition 10. �λ(V )� ⊆ Cover(N ,m0).

Minimal Coverability Tree Construction Made Complete and Efficient 249



Proof. Let v ∈ V . Consider the path u0, . . . , uk of CT from the root r = u0

to uk = v. Let σ ∈ (T ∪ Acc)∗ denote δ(prd(u0), u0) · · · δ(prd(uk), uk). Due to
Lemma 1, m0

σ−→ λ(v). Due to Lemma 2, σ is a sequence of abstractions. Due to
Proposition 2, the ω-transition a defined by Pre(a) = Pre(σ) and C(a) = C(σ)
is an abstraction. Due to Proposition 1, �λ(v)� ⊆ Cover(N ,m0).

The following definitions are related to an arbitrary execution point of MinCov
and are introduced to establish its completeness.

Definition 8. Let σ = σ0t1σ1 . . . tkσk with for all i, ti ∈ T and σi ∈ Acc∗. Then
the firing sequence m σ−→ m′ is an exploring sequence if:

– There exists v ∈ Front with λ(v) = m
– For all 0 ≤ i ≤ k, there does not exist v′ ∈ V \ Front

with m+C(σ0t1σ1 . . . tiσi) ≤ λ(v′).

Definition 9. Let m̂ be a marking. Then m̂ is quasi-covered if:

– either there exists v ∈ V \ Front with λ(v) ≥ m̂;
– or there exists an exploring sequence m σ−→ m′ ≥ m̂.

In order to prove completeness of the algorithm, we want to prove that at
the beginning of every iteration, any m ∈ Cover(N ,m0) is quasi-covered. To
establish this assertion, we introduce several lemmas showing that this assertion
is preserved by some actions of the algorithm with some prerequisites. More pre-
cisely, Lemma 3 corresponds to the deletion of the current vertex, Lemma 4 to the
discovery of an acceleration, Lemma 5 to the deletion of a subtree whose mark-
ing of the root is smaller than the marking of the current vertex and Lemma 6
to the creation of the children of the current vertex.

Lemma 3. Let CT , Front and Acc be the values of corresponding variables at
some execution point of MinCov and u ∈ V be a leaf in CT such that the following
items hold:

1. All m ∈ Cover(N ,m0) are quasi-covered;
2. λ(V \ Front) is an antichain;
3. For all a ∈ Acc fireable from λ(u), λ(u) = λ(u) +C(a);
4. There exists v ∈ V \ {u} such that λ(v) ≥ λ(u).

Then all m ∈ Cover(N ,m0) are quasi-covered after performing Delete(u).

Lemma 4. Let CT , Front and Acc be the values of corresponding variables at
some execution point of MinCov. and u ∈ V such that the following items hold:

1. All m ∈ Cover(N ,m0) are quasi-covered;
2. λ(V \ Front) is an antichain;

3. For all v ∈ V \ {r}, λ(prd(v)) δ(prd(v),v)−−−−−−−→ λ(v).

Then all m ∈ Cover(N ,m0) are quasi-covered after performing Prune(u) and
then adding u to Front.

250 A. Finkel et al.



Lemma 5. Let CT , Front and Acc be the values of corresponding variables at
some execution point of MinCov, u ∈ Front and u′ ∈ V such that the following
items hold:

1. All m ∈ Cover(N ,m0) are quasi-covered;
2. λ(V \ Front) is an antichain;

3. For all v ∈ V \ {r}, λ(prd(v)) δ(prd(v),v)−−−−−−−→ λ(v);
4. λ(u′) < λ(u) and u is not a descendant of u′.

Then after performing Prune(u′); Delete(u′),

1. All m ∈ Cover(N ,m0) are quasi-covered;
2. λ(V \ Front) is an antichain;

3. For all v ∈ V \ {r}, λ(prd(v)) δ(prd(v),v)−−−−−−−→ λ(v).

Lemma 6. Let CT , Front and Acc be the values of corresponding variables at
some execution point of MinCov. and u ∈ Front such that the following items
hold:

1. All m ∈ Cover(N ,m0) are quasi-covered;
2. λ(V \ Front) ∪ {λ(u)} is an antichain;
3. For all a ∈ Acc fireable from λ(u), λ(u) = λ(u) +C(a).

Then after removing u from Front and for all t ∈ T fireable from λ(u), adding
a child vt to u in Front with marking of vt defined by λu(vt) = λ(u) +C(t), all
m ∈ Cover(N ,m0) are quasi-covered.

Proposition 11. At the beginning of every iteration, all m ∈ Cover(N ,m0)
are quasi-covered.

Proof. Let us prove by induction on the number of iterations that all m ∈
Cover(N ,m0) are quasi-covered.
Let us consider the base case. MinCov initializes V and Front to {r} and λ(r) to
m0. By definition, for all m ∈ Cov(N ,m0) there exists σ = t1t2 · · · tk ∈ T ∗ such

that m0
σ−→ m′ ≥ m. Since V \ Front = ∅, this firing sequence is an exploring

sequence.
Assume that all m ∈ Cover(N ,m0) are quasi-covered at the beginning of some
iteration. Let us examine what may happen during the iteration. In lines 4-6,
MinCov computes the maximal fireable sequence σ ∈ Acc∗n from λn(u) (line 4)
and sets u’s marking to mu := λn(u) + C(σ) (line 5). Afterwards, there are
three possible cases: (1) either mu is covered by some marking associated with a
vertex out of Front, (2) either an acceleration is found, (3) or MinCov computes
the successors of u and removes u from Front.

Line 7. MinCov calls Delete(u). So CTn+1 is obtained by deleting u. More-
over, λ(u′) ≥ mu. Let us check the hypotheses of Lemma 3. Assertion 1
follows from induction since (1) the only change in the data is the increas-
ing of λ(u) by firing some accelerations and (2) u belongs to Front so cannot

Minimal Coverability Tree Construction Made Complete and Efficient 251



cover intermediate markings of exploring sequences. Assertion 2 follows from
Proposition 9 since V \ Front is unchanged. Assertion 3 follows immediately
from lines 4-6. Assertion 4 follows with v = u′. Thus using this lemma the
induction is proved in this case.

Lines 8-16. Let us check the hypotheses of Lemma 4. Assertions 1 and 2 are
established as in the previous case. Assertion 3 holds due to Lemma 1, and
the fact that no edge has been added since the beginning of iteration. Thus
using this lemma the induction is proved in this case.

Lines 18-25. We first show that the hypotheses of Lemma 6 hold before line 21.

Let us denote the values of CT and Front after line 20 by ĈTn and F̂rontn.
Observe that for all iteration of Line 19 in the inner loop, the hypotheses
of Lemma 5 are satisfied. Therefore, in order to apply Lemma 6 it remains
only to check assertions 2 and 3 of this lemma. Assertion 2 holds since (1)
λ(V \Front) is an antichain, (2) due to Line 7 there is no w ∈ V \Front such
that λ(w) ≥ λ(u), and (3) by iteration of Line 19 all w ∈ V \Front such that
λ(w) < λ(u) have been deleted. Assertion 3 holds due to Line 5 (all useful
enabled accelerations have been fired) and Line 8 (no acceleration has been
added).

Lines 21-25 correspond to the operations related to Lemma 6. Thus using
this lemma, the induction is proved in this case.

The completeness of MinCov is an immediate consequence of the previous
proposition.

Corollary 1. When MinCov terminates, Cover(N ,m0) ⊆ �λ(V )�.

Proof. By Proposition 11 all m ∈ Cover(N ,m0) are quasi-covered. Since on
termination, Front is empty for all m ∈ Cover(N ,m0), there exists v ∈ V such
that m ≤ λ(v).

4 Tool and benchmarks

In order to empirically evaluate our algorithm, we have implemented a prototype
tool which computes the clover and solves the coverability problem. This tool is
developed in the programming language Python, using the Numpy library. It can
be found on GitHub3. All benchmarks were performed on a computer equipped
by Intel i5-8250U CPU with 4 cores, 16GB of memory and Ubuntu Linux 18.03.

Minimal coverability set. We compare MinCov with the tool MP [14], the tool
VH [16], and the tool CovProc [10]. We have also implemented the (incomplete)
minimal coverability tree algorithm denoted by AF in order to measure the ad-
ditional memory needed for the (complete) tools. Both MP and VH tools were
sent to us by the courtesy of the authors. The tool MP has an implementation

3 https://github.com/IgorKhm/MinCov

252 A. Finkel et al.



in Python and another in C++. For comparison we selected the Python one to
avoid biases due to programming language.

We ran two kinds of benchmarks: (1) 123 standard benchmarks from the
literature in Table 1, (which were taken from [2]), (2) 100 randomly generated
Petri nets also in Table 1, since the benchmarks from the literature do not
present all the features that lead to infinite state systems. These random Petri
nets have the following properties: (1) 50 < |P |, |T | < 100, (2) the number
of places connected of each transition is bounded by 10, and (3) they are not
structurally bounded. The execution time of the tools was limited to 900 seconds.

Table 1 contains a summary of all the instances of the benchmarks. The first
column shows the number of instances on which the tool timed out. The time
column consists of the total time on instances that did not time out plus 900
seconds for any instance that led to a time out. The #Nodes column consists of
the peak number of nodes in instances that did not time out on any of the tools
(except CovProc which does not provide this number). For MinCov we take the
peak number of nodes plus accelerations. In the benchmarks from the literature

Table 1. Benchmarks for clover

123 benchmarks from the literature 100 random benchmarks

T/O Time #Nodes

MinCov 16 18127 48218
VH 15 14873 75225
MP 24 23904 478681
CovProc 49 47081 N/A

AF 19 19223 45660

T/O Time #Nodes

MinCov 14 13989 61164
VH 15 13692 208134
MP 21 21726 755129
CovProc 80 74767 N/A

AF 16 15888 63275

we observed that the instances that timed out from MinCov are included in
those of AF and MP. However there were instances the timed out on VH but did
not time out on MinCov and vice versa. MinCov is the second fastest tool, and
compared to VH it is 1.2 times slower. A possible explanation would be that VH is
implemented in C++. As could be expected, w.r.t. memory requirements MinCov
has the least number of nodes. In the benchmarks from the literature MinCov

has approximately 10 times less nodes then MP and 1.6 times less then VH. In the
random benchmarks these ratio are significantly higher.
Coverability. We compare MinCov to the tool qCover [2] on the set of bench-
marks from the literature in Table 2. In [2], qCover is compared to the most
competitive tools for coverability and achieves a score of 142 solved instances
while the second best tool achieves a score of 122. We split the results into

counted the number of instances on which the tools failed (columns T/O) and
the total time (columns Time) as in Table 1.

We observed that the tools are complementary, i.e. qCover is faster at proving
that an instance is safe and MinCov is faster at proving that an instance is unsafe.

Minimal Coverability Tree Construction Made Complete and Efficient 253

safe instances (not coverable) and unsafe ones (coverable). In both categories we



Table 2. Benchmarks for the coverability problem (60 unsafe and 115 safe)

Time Unsafe T/O Unsafe Time safe T/O safe T/O Time

MinCov 1754 1 51323 53 54 53077
qCover 26467 26 11865 11 37 38332
MinCov ‖ qCover 1841 2 13493 11 13 15334

Therefore, by splitting the processing time between them we get better results.
The third row of Table 2 represents a parallel execution of the tools, where the
time for each instance is computed as follows:

Time(MinCov ‖ qCover) = 2min (Time(MinCov),Time(qCover)) .

Combining both tools is 2.5 times faster than qCover and 3.5 times faster than
MinCov. This confirms the above statement. We could still get better results by
dynamically deciding which ratio of CPU to share between the tools depending
on some predicted status of the instance.

5 Conclusion

We have proposed a simple and efficient modification of the incomplete mini-
mal coverability tree algorithm for building the clover of a net. Our algorithm
is based on the introduction of the concepts of covering abstractions and accel-
erations. Compared to the alternative algorithms previously designed, we have
theoretically bounded the size of the additional space. Furthermore we have
implemented a prototype which is already very competitive.

From a theoretical point of view, we plan to study how abstractions and
accelerations, could be defined in the more general context of well structured
transition systems. From an experimental point of view, we will follow three
directions in order to increase the performance of our tool. First as in [13], we
have to select appropriate data structures to minimize the number of compar-
isons between ω-markings. Then we want to precompute a set of accelerations
using linear programming as the correctness of the algorithm is preserved and
the efficiency could be significantly improved. Last we want to take advantage
of parallelism in a more general way than simultaneously running several tools.

254 A. Finkel et al.



References

1. Blockelet, M., Schmitz, S.: Model checking coverability graphs of vector addition
systems. In: Proceedings of MFCS 2011. LNCS, vol. 6907, pp. 108–119 (2011)

2. Blondin, M., Finkel, A., Haase, C., Haddad, S.: Approaching the coverability prob-
lem continuously. In: Proceedings of TACAS 2016. LNCS, vol. 9636, pp. 480–496.
Springer (2016)

3. Blondin, M., Finkel, A., McKenzie, P.: Well behaved transition systems. Logical
Methods in Computer Science 13(3), 1–19 (2017)

4. Demri, S.: On selective unboundedness of VASS. J. Comput. Syst. Sci. 79(5), 689–
713 (2013)

5. Finkel, A.: Reduction and covering of infinite reachability trees. Information and
Computation 89(2), 144–179 (1990)

6. Finkel, A.: The minimal coverability graph for Petri nets. In: Advances in Petri
Nets. LNCS, vol. 674, pp. 210–243 (1993)

7. Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, part II: Complete
WSTS. Logical Methods in Computer Science 8(4), 1–35 (2012)

8. Finkel, A., Geeraerts, G., Raskin, J.F., Van Begin, L.: A counter-example to the
minimal coverability tree algorithm. Tech. rep., Université Libre de Bruxelles, Bel-
gium (2005), http://www.lsv.fr/Publis/PAPERS/PDF/FGRV-ulb05.pdf

9. Finkel, A., Haddad, S., Khmelnitsky, I.: Minimal coverability tree construction
made complete and efficient (2020), https://hal.inria.fr/hal-02479879

10. Geeraerts, G., Raskin, J.F., Van Begin, L.: On the efficient computation of the min-
imal coverability set of Petri nets. International Journal of Fundamental Computer
Science 21(2), 135–165 (2010)

11. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2),
147–195 (1969)

12. Leroux, J.: Distance between mutually reachable Petri net configurations (Jun
2019), https://hal.archives-ouvertes.fr/hal-02156549, preprint

13. Piipponen, A., Valmari, A.: Constructing minimal coverability sets. Fundamenta
Informaticae 143(3–4), 393–414 (2016)

14. Reynier, P.A., Servais, F.: Minimal coverability set for Petri nets: Karp and Miller
algorithm with pruning. Fundamenta Informaticae 122(1–2), 1–30 (2013)

15. Reynier, P.A., Servais, F.: On the computation of the minimal coverability set of
Petri nets. In: Proceedings of Reachability Problems 2019. LNCS, vol. 11674, pp.
164–177 (2019)

16. Valmari, A., Hansen, H.: Old and new algorithms for minimal coverability sets.
Fundamenta Informaticae 131(1), 1–25 (2014)

Minimal Coverability Tree Construction Made Complete and Efficient 255



use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

256 A. Finkel et al.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended



Constructing Infinitary Quotient-Inductive Types

Marcelo P. Fiore , Andrew M. Pitts , and S. C. Steenkamp(�)

Department of Computer Science and Technology
University of Cambridge, Cambridge CB3 0FD, UK

s.c.steenkamp@cl.cam.ac.uk

Abstract This paper introduces an expressive class of quotient-induct-
ive types, called QW-types. We show that in dependent type theory
with uniqueness of identity proofs, even the infinitary case of QW-types
can be encoded using the combination of inductive-inductive definitions
involving strictly positive occurrences of Hofmann-style quotient types,
and Abel’s size types. The latter, which provide a convenient constructive
abstraction of what classically would be accomplished with transfinite
ordinals, are used to prove termination of the recursive definitions of the
elimination and computation properties of our encoding of QW-types.
The development is formalized using the Agda theorem prover.

Keywords: dependent type theory · higher inductive types · induct-
ive-inductive definitions · quotient types · sized types · category theory

1 Introduction

One of the key features of proof assistants based on dependent type theory such
as Agda, Coq and Lean is their support for inductive definitions of families of
types. Homotopy Type Theory [29] introduces a potentially very useful extension
of the notion of inductive definition, the higher inductive types (HITs). To define
an ordinary inductive type one declares how its elements are constructed. To
define a HIT one not only declares element constructors, but also declares
equality constructors in identity types (possibly iterated ones), specifying how
the constructed elements and identities are to be equated. In this paper we work
in a dependent type theory satisfying uniqueness of identity proofs (UIP), so
that identity types are trivial in dimensions higher than one. Nevertheless, as
Altenkirch and Kaposi [5] point out, HITs are still useful in such a one-dimensional
setting. They introduce the term quotient inductive type (QIT) for this truncated
form of HIT.

Figure 1 gives two examples of QITs, using Agda-style notation for dependent
type theory; in particular, Set denotes a universe of types and ≡ denotes the
identity type. The first example specifies the element and equality constructors
for the type BagX of finite multisets of elements from a type X. The second
example, adapted from [5], specifies the element and equality constructors for the
type ωTreeX of trees whose nodes are labelled with elements of X and that have
unordered countably infinite branching. Both examples illustrate the nice feature

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 257–276, 2020.
https://doi.org/10.1007/978-3-030-45231-5_14

http://orcid.org/0000-0001-8558-3492
http://orcid.org/0000-0001-7775-3471
http://orcid.org/0000-0003-3105-4098
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_14&domain=pdf


Finite multisets:
data Bag(X : Set) : Set where

[] : BagX

_::_ : X → BagX → BagX

swap : (x y : X)(ys : BagX) → x :: y :: ys ≡ y :: x :: ys

Unordered countably branching trees (elements of isIso f witness that f is a bijection):
data ωTree(X : Set) : Set where

leaf : ωTreeX

node : X → (N → ωTreeX) → ωTreeX

perm : (x : X)(f : N → N)(_ : isIso f)(g : N → ωTreeX) →
node x g ≡ node x (g ◦ f)

Figure 1. Two examples of QITs

of QITs that users only have to specify the particular identifications between
data needed for their applications. Thus the standard property of equality that it
is an equivalence relation respecting the constructors is inherited by construction
from the usual properties of identity types, without the need to say so in the
declaration of the QIT.

The second example also illustrates a more technical aspect of QITs, that they
enable constructive versions of structures that classically use non-constructive
choice principles. The first example in Figure 1 only involves element constructors
of finite arity ([] is nullary and x :: _ is unary) and consequently BagX is
isomorphic to the type obtained from the ordinary inductive type of finite lists
over X by quotienting by the congruence generated by swap. Of course this
assumes, as we do in this paper, that the type theory comes with Hofmann-style
quotient types [18, Section 3.2.6.1]. By contrast, the second example in the figure
involves an element constructor with countably infinite arity. So if one first forms
the ordinary inductive type of ordered countably branching trees (by dropping
the equality constructor perm from the declaration) and then quotients by a
suitable relation to get the equalities specified by perm, one needs the axiom of
countable choice to be able to lift the node element constructor to the quotient;
see [5, Section 2.2] for a detailed discussion. The construction of the Cauchy
reals as a higher inductive-inductive type [29, Section 11.3] provides a similar,
but more complicated example where use of countable choice is avoided. Such
examples have led to the folklore that as far as constructive type theories go,
infinitary QITs are more expressive than the combination of ordinary inductive (or
inductive-recursive, or inductive-inductive) types with quotient types. In this
paper we use Abel’s sized types [2] to show that, for a wide class of QITs, this
view is not justified. Thus we make two main contributions:

First we define a family of QITs called QW-types and give elimination and
computation rules for them (Section 2). The usual W-types of Martin-Löf [22]
are inductive types giving the algebraic terms over a possibly infinitary signature.

258 M. P. Fiore et al.



One specifies a QW-type by giving a family of equations between such terms.
So such QITs give initial algebras for possibly infinitary algebraic theories. As
we indicate in Section 3, they can encode a very wide range of examples of
possibly infinitary quotient-inductive types, namely those that do not involve
constructors taking previously constructed equalities as arguments (so do not
cover the infinitary extension of the very general scheme considered by Dybjer
and Moeneclaey [12]). In set theory with the Axiom of Choice (AC), QW-types
can be constructed simply as Quotients of the underlying W-type—hence the
name.

Secondly, we prove that contrary to expectation, without AC it is still possible
to construct QW-types using quotients, but not simply by quotienting a W-type.
Instead, the type to be quotiented and the relation by which to quotient are given
simultaneously by definitions that refer to each other. Thus our construction (in
Section 4) involves inductive-inductive definitions [15]. The elimination and
computation functions which witness that the quotiented type correctly represents
the required QW-type are defined recursively. In order to prove that our recursive
definitions terminate we combine the use of inductive definitions involving strictly
positive occurrences of quotient types with sized types (currently, we do not know
whether it is possible to avoid sizing in favour of, say, a suitable well-founded
termination ordering). Sized types provide a convenient constructive abstraction
of what classically would be accomplished with sequences of transfinite ordinal
length.

The type theory in which we work

To present our results we need a version of Martin-Löf Type Theory with
(1) uniqueness of identity proofs, (2) quotient types and hence also function ex-
tensionality, (3) inductive-inductive datatypes (with strictly positive occurrences
of quotient types) and (4) sized types. Lean 3 provides (1) and (2) out of the
box, but also the Axiom of Choice, unfortunately. Neither it, nor Coq provide (3)
and (4). Agda provides (1) via unrestricted dependent pattern-matching, (2) via
a combination of postulates and the rewriting mechanism of Cockx and Abel
[8], (3) via its very liberal mechanism for mutual definitions and (4) thanks to
the work of Abel [2]. Therefore we make use of the type theory implemented by
Agda (version 2.6.0.1) to give formal proofs of our results. The Agda code can
be found at doi: 10.17863/CAM.48187. In this paper we describe the results
informally, using Agda-style notation for dependent type theory. In particular
we use Set to denote the universe at the lowest level of a countable hierarchy of
(Russell-style) universes. We also use Agda’s convention that an implicit argument
of an operation can be made explicit by enclosing it in {braces}.

Acknowledgement We would like to acknowledge the contribution Ian Orton made
to the initial development of the work described here. He and the first author
supervised the third author’s Master’s dissertation Quotient Inductive Types: A
Schema, Encoding and Interpretation, in which the notion of QW-type (there
called a W+-type) was introduced.

Constructing Infinitary Quotient-Inductive Types 259

https://doi.org/10.17863/CAM.48187


2 QW-types

We begin by recalling some facts about types of well-founded trees, the W-types
of Martin-Löf [22]. We take signatures to be elements of the dependent product

Sig =
∑

A : Set, (A → Set) (1)

So a signature is given by a pair Σ = (A,B) consisting of a type A : Set and
a family of types B : A → Set. Each such signature determines a polynomial
endofunctor [1, 16] S{Σ} : Set → Set whose value at X : Set is the following
dependent product

S{Σ}X =
∑

a : A, (B a → X) (2)

An S-algebra is by definition an element of the dependent product

Alg{Σ} =
∑

X : Set, (SX → X) (3)

S-algebra morphisms (X, s) → (X ′, s′) are given by functions h : X → X ′

together with an element of the type

isHomh = (a : A)(b : B a → X) → s′(a, h ◦ b) ≡ h(s(a, b)) (4)

Then the W-type W{Σ} determined by Σ is the underlying type of an initial
S-algebra. More generally, Dybjer [11] shows that the initial algebra of any non-
nested, strictly positive endofunctor on Set is given by a W-type; and Abbott,
Altenkirch, and Ghani [1] extend this to the case with nested uses of W-types as
part of their work on containers. (These proofs take place in extensional type
theory [22], but work just as well in the intensional type theory with uniqueness
of identity proofs and function extensionality that we are using here.)

More concretely, given a signature Σ = (A,B), if one thinks of elements a : A
as names of operation symbols whose (not necessarily finite) arity is given by
the type B a : Set, then the elements of W{Σ} represent the closed algebraic
terms (i.e. well-founded trees) over the signature. From this point of view it is
natural to consider not only closed terms solely built up from operations, but
also open terms additionally built up with variables drawn from some type X. As
well as allowing operators of possibly infinite arity, we also allow terms involving
possibly infinitely many variables (the second example in Figure 1 involves such
terms). Categorically, the type T{Σ}X of such open terms is the free S-algebra
on X and is another W-type, for the signature obtained from Σ by adding the
elements of X as nullary operations. Nevertheless, it is convenient to give a direct
inductive definition:

data : T{Σ : Sig}(X : Set) : Set where
η : X → TX

σ : S(TX) → TX

(5)

Given an S-algebra (Y, s) : Alg{Σ} and a function f : X → Y , the unique
morphism of S-algebras from the free S-algebra (TX,σ) on X to (Y, s) has

260 M. P. Fiore et al.



underlying function TX → Y mapping each t : TX to the element t�= f in Y
defined1 by recursion on the structure of t:

η x�= f = f x
σ(a, b)�= f = s(a, λx → b x�= f)

(6)

As the notation suggests, �= is the Kleisli lifting operation (“bind”) for a monad
structure on T; indeed, it is the free monad on the endofunctor S.

The notion of “QW-type” that we introduce in this section is obtained from
that of W-type by considering not only the algebraic terms over a given signature,
but also equations between terms. To code equations we use a type-theoretic
rendering of a categorical notion of equational system introduced by Fiore and Hur,
referred to as term equational system [14, Section 2] and as monadic equational
system [13, Section 5], here instantiated to free monads on signatures.

Definition 1. A system of equations over a signature Σ : Sig is specified by

– a type E : Set (whose elements e : E name the equations)
– a family of types V : E → Set (V e : Set contains the variables used in the

equation named e : E)
– for each e : E, elements l e and r e of type T(V e), the free S-algebra on V e

(the terms with variables from V e that are equated by the equation named e).

Thus a system of equations over Σ is an element of the dependent product

Syseq{Σ} =
∑

E : Set,
∑

V : (E → Set),
((e : E) → T(V e))× ((e : E) → T(V e))

(7)

An S{Σ}-algebra SX → X satisfies the system of equations ε = (E, V, l, r) :
Syseq{Σ} if there is an element of type

Sat{ε}X = (e : E)(ρ : V e → X) → ((l e)�= ρ) ≡ ((r e)�= ρ) (8)

The category-theoretic view of QW-types is that they are simply S-algebras that
are initial among those satisfying a given system of equations:

Definition 2. A QW-type for a signature Σ = (A,B) : Sig and system of
equations ε = (E, V, l, r) : Syseq{Σ} is given by a type QW{Σ}{ε} : Set equipped
with an S-algebra structure and a proof that it satisfies the equations

qwintro : S(QW) → QW (9)
qwequ : Sat{ε}(QW) (10)

together with functions that witness that it is the initial such algebra:

qwrec : (X : Set)(s : SX → X) → SatX → QW → X (11)
qwrechom : (X : Set)(s : SX → X)(p : SatX) → isHom(qwrecX sp) (12)

qwuniq : (X : Set)(s : SX → X)(p : SatX)(f : QW → X) →
isHom f → qwrecX sp ≡ f

(13)

1 Note that the definition of �= depends on the S-algebra structure s; in Agda we use
instance arguments to hide this dependence.

Constructing Infinitary Quotient-Inductive Types 261



Given the definitions of S{Σ} in (2) and Sat{ε} in (8), properties (9) and (10)
suggest that a QW-type is an instance of the notion of quotient-inductive type [5]
with element constructor qwintro and equality constructor qwequ. For this to
be so, QW{Σ}{ε} needs to have the requisite dependently-typed elimination
and computation2 properties for these element and equality constructors. As
Proposition 1 below shows, these follow from (11)–(13), because we are working
in a type theory with function extensionality (by virtue of assuming quotient
types). To state the proposition we need a dependent version of (6). For each

P : QW → Set
p : (a : A)(b : B a → QW) → ((x : B a) → P (b x)) → P (qwintro(a, b))

(14)

type X : Set, function f : X → ∑
x : QW, P x and term t : T(X), we get an

element liftP p f t : P (t�= fst ◦ f) defined by recursion on the structure of t:

liftP p f (η x) = snd(f x)
liftP p f (σ(a, b)) = p a (λx → b x�= (fst ◦ f))(liftP p f ◦ b) (15)

Proposition 1. For a QW-type as in the above definition, given P and p as in
(14) and a term of type

(e : E)(f : V e → ∑
x : QW, P x) → liftP p f (l e) ≡≡ liftP p f (r e) (16)

there are elimination and computation terms:

qwelim : (x : QW) → P x

qwcomp : (a : A)(b : B a → QW) → qwelim(qwintro(a, b)) ≡ p a b (qwelim ◦ b)

(Note that (16) uses McBride’s heterogeneous equality type [23], which we denote
by ≡≡, because liftP p f (l e) and liftP p f (r e) inhabit different types, namely
P (l e�= fst ◦ f) and P (r e�= fst ◦ f) respectively.) ��

The proof of the proposition can be found in the accompanying Agda code
(doi: 10.17863/CAM.48187).

So QW-types are in particular quotient-inductive types (QITs). Conversely, in
the next section we show that a wide range of QITs can be encoded as QW-types.
Then in Section 4 we prove:

Theorem 1. In constructive dependent type theory with uniqueness of identity
proofs (or equivalently the Axiom K of Streicher [27]) and universes with induct-
ive-inductive datatypes [15] permitting strictly positive occurrences of quotient
types [18] and sized types [2], for every signature and system of equations (Defin-
ition 1) there is a QW-type as in Definition 2.
2 We only establish the computation property up to propositional rather than defini-

tional equality; so, using the terminology of Shulman [25], these are typal quotient-in-
ductive types.

262 M. P. Fiore et al.

https://doi.org/10.17863/CAM.48187


Remark 1 (Free algebras). Definition 2 defines QW-types as initial algebras. A
corollary of Theorem 1 is that free-algebras also exist. In other words, given a
signature Σ and a type X : Set, there is an S-algebra

(F{Σ}{ε}X , S{Σ}(F{Σ}{ε}X) → F{Σ}{ε}X)

satisfying a system of equations ε and equipped with a function X → F{Σ}{ε}X,
and which is universal among such S-algebras. Thus QW{Σ}{ε} is isomorphic to
F{Σ}{ε}∅, where ∅ is the empty datatype.

To see that such free algebras can be constructed as QW-types, given a
signature Σ = (A,B), let ΣX be the signature (X �A,B′), where X �A is the
coproduct datatype (with constructors inl : X → X � A and inr : A → X � A)
and where B′ : X �A → Set maps each inlx to ∅ and each inr a to B a. Given
a system of equations ε = (E, V, l, r), let εX be the system (E, V, lX , rX) where
for each e : E, lX e = l e�= η and rX e = r e�= η (using η : V e → T{ΣX}(V e)
as in (5) and the S{Σ}-algebra structure s on T{ΣX}(V e) given by s(a, b) =
σ(inr a, b)). Then one can show that the QW-type QW{ΣX}{εX} is the free
algebra F{Σ}{ε}X, with the function X → F{Σ}{ε}X sending each x : X to
qwintro(inlx,_) : QW{ΣX}{εX}, and the S{Σ}-algebra structure on F{Σ}{ε}X
being given by the function sending (a, b) : S(QW{ΣX}{εX}) to qwintro(inr a, b).

Remark 2 (Strictly positive equational systems). A very general, categorical
notion of equational system was introduced by Fiore and Hur [14, Section 3].
They regard any endofunctor S : Set → Set as a functorial signature. A functorial
term over such a signature, S�G 	 L, is specified by another functorial signature
G : Set → Set (the term’s context) together with a functor L from S-algebras to
G-algebras that commutes with the forgetful functors to Set. Then an equational
system is given by a pair of such terms in the same context, S � G 	 L and
S � G 	 R say. An S-algebra s : S X → X satisfies the equational system if
L(X, s) and R(X, s) are equal G-algebras.

Taking the strictly positive endofunctors Set → Set to be the smallest collec-
tion containing the identity and constant endofunctors and closed under forming
dependent products and dependent functions over fixed types then, as in [11]
(and also in the type theory in which we work), up to isomorphism every such
endofunctor is of the form S{Σ} for some signature Σ : Sig. If we restrict atten-
tion to equational systems S � G 	 L,R with S and G strictly positive, then
it turns out that such equational systems are in bijection with the systems of
equations from Definition 1, and the two notions of satisfaction for an algebra
coincide in that case. (See our Agda development for a proof of this.) So Dybjer’s
characterisation of W-types as initial algebras for strictly positive endofunctors
generalises to the fact that QW-types are initial among the algebras satisfying
strictly positive equational systems in the sense of Fiore and Hur.

3 Quotient-inductive types

Higher inductive types (HITs) are originally motivated by their use in homotopy
type theory to construct homotopical cell complexes, such as spheres, tori, and

Constructing Infinitary Quotient-Inductive Types 263



so on [29]. Intuitively, a higher inductive type is an inductive type with point
constructors also allowing for path constructors, surface constructors, etc., which
are represented as elements of (iterated) identity types. For example, the sphere
is given by the HIT3:

data S2 : Set where

base : S2

surf : refl ≡base≡S2base refl

(17)

In the presence of the UIP axiom we will refer to HITs as quotient inductive
types (QITs) [5], since all paths beyond the first level are trivial and any HIT
is truncated to an h-set. We use the terms element constructor and equality
constructor to refer to the point constructors and the only non-trivial level of
path constructors.

We believe that QW-types can be used to encode a wide range of QITs: see
Conjecture 1 below. As evidence, we give several examples of QITs encoded
as QW-types, beginning with the two examples of QITs in Figure 1, giving
the corresponding signature (A,B) and system of equations (E, V, l, r) as in
Definition 2.

Example 1 (Finite multisets). The element constructors for finite multisets are
encoded exactly as with a W-type: the constructors are [] and x :: _ for each
x : X. So we take A to be 1 �X, the coproduct of the unit type 1 (whose single
constructor is denoted tt) with X. The arity of [] is zero, and the arity of each
x ::_ is one, represented by the empty type ∅ and unit type 1 respectively; so we
take B : A → Set to be the function [λ_→ 0 | λ_→ 1] : 1 �X → Set mapping
inl tt to ∅ and each inrx to 1.

The swap equality constructor is parameterised by elements of E = X ×X.
For each (x, y) : E, swapx y yields an equation involving a single free vari-
able (called ys : BagX in Figure 1); so we take V : E → Set to be λ_→ 1.
Each side of the equation named by swapx y is coded by an element of
T{Σ}(V (x, y)) = T{Σ}(1). Recalling the definition of T from (5), the single
free variable corresponds to η tt : T{Σ}(1) and then the left-hand side of
the equation is σ(inrx, (λ_→σ(inr y, (λ_→ η tt)))) and the right-hand side is
σ(inr y, (λ_→σ(inrx, (λ_→ η tt)))).

So, altogether, the signature and system of equations for the QW-type corres-
ponding to the first example in Figure 1 is:

A = 1 �X E = X ×X

B = [λ_→∅ | λ_→ 1] V = λ_→ 1

l = λ (x, y) → σ(inrx, (λ_→σ(inr y, (λ_→ η tt))))
r = λ (x, y) → σ(inr y, (λ_→σ(inrx, (λ_→ η tt))))

3 The subscript on ≡ will be treated as an implicit argument and omitted when clear.

264 M. P. Fiore et al.



Example 2 (Unordered countably-branching trees). Here the element constructors
are leaf of arity zero and, for each x : X, nodex of arity N. So we use the signature
with A = 1 �X and B = [λ_→∅ | λ_→N].

The perm equality constructor is parameterised by elements of

E = X ×
∑

f : (N → N), isIso f

For each element (x, f, i) of that type, permx f i yields an equation involving
an N-indexed family of variables (called g : N → ωTreeX in Figure 1); so we
take V : E → Set to be λ_→N. Each side of the equation named by permx f i
is coded by an element of T{Σ}(V (x, f, i)) = T{Σ}(N). The N-indexed family
of variables is represented by the function η : N → T{Σ}(N) and its permuted
version by η ◦ f . Thus the left- and right-hand sides of the equation named by
permx f i are coded respectively by the elements σ(inrx, η) and σ(inrx, η ◦ f) of
T{Σ}(N).

So, altogether, the signature and system of equations for the QW-type corres-
ponding to the second example in Figure 1 is:

A = 1 �X E = X ×∑
f : (N → N), isIso f

B = [λ_→∅ | λ_→N] V = λ_→N

l = λ (x,_,_) → σ(inrx, η)
r = λ (x, f,_) → σ(inrx, η ◦ f)

That unordered countably-branching trees are a QW-type is significant since no
previous work on various subclasses of QITs (or indeed QIITs [19, 10]) supports
infinitary QITs [6, 26, 28, 12, 19, 10]. See Example 5 for another, more substantial
infinitary QW-type. So this extension represents one of our main contributions.
QW-types generalise prior developments; the internal encodings for particular
subclasses of 1-HITs given by Sojakova [26] and Swan [28] are direct instances of
QW-types, as the next two examples show.

Example 3. W-suspensions [26] are an instance of QW-types. The data for
a W-suspension is: A′, C ′ : Set, a type family B′ : A′ → Set and functions
l′, r′ : C ′ → A′. The equivalent QW-type is:

A = A′ E = C ′ l = λ c → σ((l′ c), η)
B = B′ V = λ c → (B′ (l′ c))× (B′ (r′ c)) r = λ c → σ((r′ c), η)

Example 4. The non-indexed case of W-types with reductions [28] are QW-types.
The data of such a type is: Y : Set, X : Y → Set and a reindexing map
R : (y : Y ) → Xy. The reindexing map identifies a term σ (y, α) with some
α (R y) used to construct it. The equivalent QW-type is given by:

A = Y E = Y l = λy → σ (y, η)

B = X V = X r = λy → η (R i)

Constructing Infinitary Quotient-Inductive Types 265



Example 5. Lumsdaine and Shulman [21, Section 9] give an example of a HIT
not constructible in type theory from only pushouts and N. Their HIT F can
be thought of as a set of notations for countable ordinals. It consists of three
point constructors: 0 : F , S : F → F , and sup : (N → F ) → F , and five path
constructors which are omitted here for brevity. It is inspired by the infinitary
algebraic theory of Blass [7, Section 9] and hence it is not surprising that it can
be encoded by a QW-type; the details can be found in our Agda code.

3.1 General QIT schemas

Basold, Geuvers, and van der Weide [6] present a schema (though not a model)
for infinitary QITs that do not support conditional path equations. Constructors
are defined by arbitrary polynomial endofunctors built up using (non-dependent)
products and sums, which means in particular that parameters and arguments
can occur in any order. They require constructors to be in uncurried form.

Dybjer and Moeneclaey [12, Sections 3.1 and 3.2] present a schema for finitary
QITs that supports conditional path equations, where constructors are allowed
to take inductive arguments not just of the datatype being declared, but also
of its identity type. This schema can be generalised to infinitary QITs with
conditional path equations. We believe this extension of their schema to be the
most general schema for QITs. The schema requires all parameters to appear
before all arguments, whereas the schema for regular inductive types in Agda is
more flexible, allowing parameters and arguments in any order.

We wish to combine the schema for infinitary QITs of Basold, Geuvers, and
van der Weide [6] with the schema for QITs with conditional path equations of
Dybjer and Moeneclaey [12] to provide a general schema. Moreover, we would
like to combine the arbitrarily ordered parameters and arguments of the former
with the curried constructors of the latter in order to support flexible pattern
matching.

For consistency with the definition of inductive types in Agda [9, equation (25)
and figure 1] we will define strictly positive (i.e. polynomial) endofunctors in
terms of strictly positive telescopes.

A telescope is given by the grammar:

Δ ::= ε empty telescope
| (x : A)Δ (x /∈ dom(Δ)) non-empty telescope (18)

A telescope extension (x : A)Δ binds (free) occurrences of x inside the tail Δ.
The type A may contain free variables that are later bound by further telescope
extensions on the left. A telescope can also exist in a context which binds any
free variables not already bound in the telescope. Such a context is implicit in
the following definitions. A function type Δ → C from a telescope Δ to a type C
is defined as an iterated dependent function type by:

ε → C
def
= C

(x : A)Δ → C
def
= (x : A) → (Δ → C)

(19)

266 M. P. Fiore et al.



A strictly positive endofunctor on a variable Y is presented by a strictly positive
telescope

Δ = (x1 : Φ1(Y ))(x2 : Φ2(Y )) · · · (xn : Φn(Y ))ε (20)

where each type scheme Φi is described by a expression on Y made up of Π-types,
Σ-types, and any (previously defined “constant”) types A not containing Y ,
according to the grammar:

Φ(Y ),Ψ(Y ) ::= (y : A) → Φ(Y ) | Σ p : Φ(Y ),Ψ(Y ) | A | Y (21)

For example, Δ def
= (x : X)(f : N → Y )ε is the strictly positive telescope for the

node constructor in Figure 1. In this instance, reordering x and f is permitted by
exchange. Note that the variable Y can never appear in the argument position of
a Π-type.

Now it is possible to define the form of the endpoints of an equality (within
the context of a strictly positive telescope), corresponding to the notion of an
abstract syntax tree with free variables. With this intuition in mind, we can take
the definition in Dybjer and Moeneclaey’s presentation [12] of endpoints given
by point constructor patterns :

l, r, p ::= ci k | y (22)

Where y : Y is in the context of the telescope for the equality constructor, and k
is a term built without any rule for Y , but which may use other point constructor
patterns p : Y . (That is, any sub-term of type Y must either be a variable y : Y
found in the telescope, or a constructor for Y applied to further point constructor
patterns and earlier defined constants. It could not, for instance, use the function
application rule for Y with some function g : M → Y , not least since such
functions cannot be defined before defining Y .) Note that this exactly matches
the type T in (5).

Basold, Geuvers, and van der Weide’s presentation has a sightly more general
notion of constructor term [6, Definition 6] (Dybjer and Moeneclaey’s presentation
[12] has more restricted telescopes). It is defined by rules which operate in the
context of a strictly positive (polynomial) telescope and permit use of its bound
variables, and the use of constructors ci, but not any other rules for Y . We take
the dependent form of their rules for products and functions. Note that these
rules do not allow the use of terms of type ≡Y in the endpoints.

As with inductive types, the element constructors of QITs are specified by
strictly positive telescopes. The equality constructors also permit conditions
to appear in strictly positive positions, where l and r are constructor terms
according to grammar (22):

Φ(Y ),Ψ(Y ) ::= (same grammar as in (21)) | l ≡Y r (23)

Constructing Infinitary Quotient-Inductive Types 267



Definition 3. A QIT is defined by a list of named element constructors and
equality constructors:

data Y : Set where
c1 : Δ1 → Y
...
cn : Δn → Y
p1 : Θ1 → l1 ≡Y r1
...
pm : Θm → lm ≡Y rm

where Δi are strictly positive telescopes on Y according to (21), and Θj are
strictly positive telescopes on Y and ≡Y in which conditions may also occur in
strictly positive positions according to (23).

QITs without equality constructors are inductive types. If none of the equality
constructors contain Y in an argument position then it is called non-recursive,
otherwise it is called recursive [6]. If none of the equality constructors contain an
equality in Y then we call it a non-conditional, or equational, QIT, otherwise it is
called a conditional [12], or quasi-equational, QIT. If all of the constant types A in
any of the constructors are finite (isomorphic to Fin n for n : N) then it is called
a finitary QIT [12]. Otherwise, it is called a generalised [12], or infinitary, QIT.
We are not aware of any existing examples in the literature of HITs which allow
the point constructors to be conditional (though it is not difficult to imagine),
nor any schemes for HITs that allow such definitions. However, we do believe
this is worth investigating further.

Conjecture 1. Any equational QIT can be encoded as a QW-type.

We believe this can be proved analogously to the approach of Dybjer [11] for
inductive types, though the endpoints still need to be considered and we have
not yet translated the schema in definition 3 into Agda.

Remark 3. Assuming Conjecture 1, Basold, Geuvers, and van der Weide’s schema
[6], being an equational (non-conditional) instance of Definition 3, can be encoded
as a QW-type.

4 Construction of QW-types

In Section 2 we defined a QW-type to be initial among algebras over a given
(possibly infinitary) signature satisfying a given systems of equations (Definition 2).
If one interprets these notions in classical Zermelo-Fraenkel set theory with the
axiom of Choice (ZFC), one regains the usual notion from universal algebra
of initial algebras for infinitary equational theories. Since in the set-theoretic
interpretation there is an upper bound on the cardinality of arities of operators
in a given signature Σ, the ordinal-indexed sequence Sα(∅) of iterations of the
functor in (2) starting from the empty set eventually becomes stationary; and

268 M. P. Fiore et al.



so the sequence has a small colimit, namely the set W{Σ} of well-founded trees
over Σ. A system of equations ε (Definition 1) over Σ generates a Σ-congruence
relation ∼ on W{Σ}. The quotient set W{Σ}/∼ yields the desired initial algebra
for (Σ, ε) provided the S-algebra structure on W{Σ} induces one on the quotient
set. It does so, because for each operator, using AC one can pick representatives
of the (possibly infinitely many) equivalence classes that are the arguments of
the operator, apply the interpretation of the operator in W{Σ} and then take
the equivalence class of that. So the set-theoretic model of type theory in ZFC
models QW-types.

Is this use of choice really necessary? Blass [7, Section 9] shows that if one
drops AC and just works in ZF, then provided a certain large cardinal axiom is
consistent with ZFC, it is consistent with ZF that there is an infinitary equational
theory with no initial algebra. He shows this by first exhibiting a countably
presented equational theory whose initial algebra has to be an uncountable
regular cardinal; and secondly appealing to the construction of Gitik [17] of a
model of ZF with no uncountable regular cardinals (assuming a certain large
cardinal axiom). Lumsdaine and Shulman [21] turn the infinitary equational
theory of Blass into a higher-inductive type that cannot be proved to exist in
ZF (and hence cannot be constructed in type theory just using pushouts and the
natural numbers). We noted in Example 5 that this higher inductive type can be
presented as a QW-type.

So one cannot hope to construct QW-types using a type theory which is
interpretable in just ZF. However, the type theory in which we work, with its
universes closed under inductive-inductive definitions, already requires going
beyond ZF to be able to give it a naive, classical set-theoretic interpretation (by
assuming the existence of enough strongly inaccessible cardinals, for example). So
the above considerations about initial algebras for infinitary equational theories
in classical set theory do not rule out the construction of QW-types in the type
theory in which we work. However, something more than just quotienting a
W-type is needed in order to prove Theorem 1.

Figure 2 gives a first attempt to do this (which later we will modify using sized
types to get around a termination problem). The definition is relative to a given
signature Σ : Sig and system of equations ε = (E, V, l, r) : SyseqΣ. It makes use
of quotient types, which we add to Agda via postulates, as shown in Figure 3.4
The REWRITE pragma makes elimRB f e (mkRx) definitionally equal to f x
and is not merely a computational convenience—this is what allows function
extensionality to be proved from these postulated quotient types. The POLARITY
pragmas enable the postulated quotients to be used in datatype declarations
at positions that Adga deems to be strictly positive; a case in point being the
definitions of Q0 and Q1 in Figure 2. Agda’s test for strict positivity is sound
with respect to a set-theoretic semantics of inductively defined datatypes that
are built up using strictly positive uses of dependent functions; the semantics of
such datatypes uses initial algebras for endofunctors possessing a rank. Here we

4 The actual implementation is polymorphic in universe levels, but for simplicity here
we just give the level-zero version.

Constructing Infinitary Quotient-Inductive Types 269



mutual
data Q0 : Set where

sq : T Q → Q0

data Q1 : Q0 → Q0 → Set where
sqeq : (e : E)(ρ : V e → Q) → Q1 (sq(T'ρ (l e))) (sq(T'ρ (r e)))
sqη : (x : Q0) → Q1 (sq(η(qux))) x
sqσ : (s : S(T Q)) → Q1 (sq(σ s)) (sq(ι(S'(qu ◦ sq) s)))

Q : Set
Q = Q0/Q1

qu : Q0 → Q
qu = quot.mk Q1

QW{Σ}{ε} = Q

Figure 2. First attempt at constructing QW-types

are allowing the inductively defined datatypes to be built up using quotients as
well, but this is semantically unproblematic, since quotienting does not increase
rank. (Later we need to combine the use of POLARITY with sized types; the
semantics of this has been studied for System Fω [3], but needs to be explored
further for Agda.)

We build up the underlying inductive type Q0 to be quotiented using a
constructor sq that takes well-founded trees T(Q0/Q1) of whole equivalence
classes with respect to a relation Q1 that is mutually inductively defined with
Q0—an instance of an inductive-inductive definition [15]. The definition of Q1

makes use of the actions on functions of the signature endofunctor S and its
associated free monad T (Section 2); those actions are defined as follows:

S' : {X Y : Set} → (X → Y ) → SX → SY
S' f (a, b) = (a, f ◦ b) (24)

T' : {X Y : Set} → (X → Y ) → TX → TY
T' f t = t�= (η ◦ f) (25)

The definition of Q1 also uses the natural transformation ι : {X : Set} → SX →
TX defined by ι = σ ◦ S' η.

Turning to the proof of Theorem 1 using the definitions in Figure 2, the
S-algebra structure (9) is easy to define without using any form of choice, because
of the type of Q0’s constructor sq. Indeed, we can just take qwintro to be
qu◦ sq◦ ι : S(QW) → QW.5 The first constructor sqeq of the data type Q1 ensures
that the quotient Q0/Q1 satisfies the equations in ε, so that we get qwequ as
in (10); and the other two constructors, sqη and sqσ make identifications that

5 The use of the free monad T{Σ} in the domain of sq, rather than just S{Σ}, seems
necessary in order to define Q1 with the properties needed for (10)–(13).

270 M. P. Fiore et al.



module quot where
postulate

ty : {A : Set}(R : A → A → Set) → Set
mk : {A : Set}(R : A → A → Set) → A → tyR
eq : {A : Set}(R : A → A → Set){x y : A} → Rxy → mkRx≡ mkRy
elim : {A : Set}(R : A → A → Set)(B : tyR → Set)(f : (x : A) → B(mkRx))

(e : {x y : A} → Rxy → f x≡≡ f y)(z : tyR) → B z
comp : {A : Set}(R : A → A → Set)(B : tyR → Set)(f : (x : A) → B(mkRx))

(e : {x y : A} → Rxy → f x≡≡ f y)(x : A) → elimRB f e (mkRx)≡ f x
{-# REWRITE comp -#}
{-# POLARITY ty ++ ++ -#}
{-# POLARITY mk _ _ * -#}

_/_ : (A : Set)(R : A → A → Set) → Set
A/R = quot.tyR

Figure 3. Quotient types

enable the construction of functions qwrec, qwrechom and qwuniq as in (11)–(13).
However, there is a problem. Given X : Set, s : SX → X and e : SatX, for
qwrecX s e we have to construct a function r : Q → X. Since Q = Q0/Q1 is a
quotient, we will have to use the eliminator quot.elim from Figure 3 to define r.
The following is an obvious candidate definition

mutual
r : Q → X
r = quot.elim Q1 (λ_ → X) r0 r1

r0 : Q0 → X
r0(sq t) = t�= r

r1 : {x y : Q0} → Q1 x y → r0 x≡ r0 y
r1 = · · ·

(26)

(where we have elided the details of the invariance proof r1). The problem with
this mutually recursive definition is that it is not clear to us (and certainly not
to Agda) whether it gives totally defined functions: although the value of r0 at a
typical element sq t is explained in terms of the structurally smaller element t, the
explanation involves r, whose definition uses the whole function r0 rather than
some application of it at a structurally smaller argument. Agda’s termination
checker rejects the definition.

We get around this problem by using a type-based termination method,
namely Agda’s implementation of sized types [2]. Intuitively, this provides a type
Size of “sizes” which give a constructive abstraction of features of ordinals in ZF
when they are used to index sequences of sets that eventually become stationary,
such as in various transfinite constructions of free algebras [20, 14]. In Agda,
the type Size comes equipped with various relations and functions: given sizes

Constructing Infinitary Quotient-Inductive Types 271



mutual
data Q0(i : Size) : Set where

sq : {j : Size< i} → T(Q j) → Q0 i

data Q1(i : Size) : Q0 i → Q0 i → Set where
sqeq : {j : Size< i}(e : E)(ρ : V e → Q j) → Q1 i (sq(T'ρ (l e))) (sq(T'ρ (r e)))
sqη : {j : Size< i}(x : Q0 j) → Q1 i (sq(η(qu j x))) (φ0 i x)
sqσ : {j : Size< i}{k : Size< j}(s : S(T(Q k))) →

Q1 i (sq(σ s)) (sq(ι(S'(qu j ◦ sq) s)))
Q : Size → Set
Q i = (Q0 i)/Q1 i

qu : (i : Size) → Q0 i → Q i
qu i = quot.mk (Q1 i)

φ0 : (i : Size){j : Size< i} → Q0 j → Q0 i
φ0 i (sq z) = sq z

QW{Σ}{ε} = Q∞

Figure 4. Construction of QW-types using sized types

i, j : Size, there is a relation i : Size< j to indicate strictly increasing size (so
the type Size< j is treated as a subtype of Size); there is a successor operation
↑ : Size → Size (and also a join operation _�s_ : Size → Size → Size, but we
do not need it here); and a size ∞ : Size to indicate where a sequence becomes
stationary. Thus we construct the QW-type QW{Σ}{ε} as Q∞ for a suitable
size-indexed sequence of types Q : Size → Set, shown in Figure 4.

For each size i : Size, the type Q i is a quotient Q0 i/Q1 i, where the construct-
ors of the data types Q0 i and Q1 i take arguments of smaller sizes j : Size< i.
Consequently in the following sized version of (26)

mutual
r : {i : Size} → Q i → X
r{i} = quot.elim (Q1 i) (λ_ → X) (r0 {i}) (r1 {i})
r0 : {i : Size} → Q0 i → X
r0{i}(sq {j} t) = t�= r {j}
r1 : {i : Size}{x y : Q0 i} → Q1 i x y → r0 x≡ r0 y
r1 = · · ·

(27)

the definition of r0{i} involves a recursive call via r to the whole function r0, but
at a size j which is smaller than i. So now Agda accepts that the definition of
qwrecX s e as r∞, with r as in (27), is terminating.

Thus we get a function qwrec for (11). We still have (9), but now with
qwintro = qu∞◦ sq {∞}◦ ι; and as before, the constructor sqeq of Q1 in Figure 4
ensures that QW = (Q0 ∞)/Q1 ∞ satisfies the equations ε. With these definitions
it turns out that each qwrecX s e is an S-algebra morphism up to definitional

272 M. P. Fiore et al.



equality, so that the function qwrechom needed for (12) is straightforward to
define. Finally, the function qwuniq needed for (13) can be constructed via a
sequence of lemmas making use of the other two constructors of the data type
Q1, namely sqη, which makes use of an auxiliary function for coercing between
different size instances of Q0, and sqσ. We refer the reader to the accompanying
Agda code (doi: 10.17863/CAM.48187) for the details of the construction of
qwuniq. Altogether, the sized definitions in Figure 4 allow us to complete a proof
of Theorem 1.

5 Conclusion

QW-types are a general form of QIT that capture many examples, including simple
1-cell complexes and non-recursive QITs [6], non-structural QITs [26], W-types
with reductions [28], and also infinitary QITs (e.g. unordered infinitely branching
trees [5], and ordinals [21]). They also capture the notion of initial (and free)
algebras for strictly positive equational systems [14], analogously to how W-types
capture the notion of initial (and free) algebras for strictly positive endofunctors
(see Remark 2). Using Agda to formalise our results, we have shown that it
is possible to construct any QW-type, even infinitary ones, in intensional type
theory satisfying UIP, using inductive-inductive definitions permitting strictly
positive occurrences of quotients and sized types (see Theorem 1 and Section 4).
We conclude by mentioning related work and some possible directions for future
work.

Quotients of monads. In view of Remark 2, Section 4 gives a construction of
initial algebras for equational systems [14] on the free monad T{Σ} generated by
a signature Σ. By a suitable change of signature (see Remark 1) this extends to
a construction of free algebras, rather than just initial ones. We can show that
the construction works for an arbitrary strictly positive monad and not just for
free ones. Given such a construction one gets a quotient monad morphism from
the base monad to the quotient monad. This contravariantly induces a forgetful
functor from the algebras of the latter to that of the former. Using the adjoint
triangle theorem, one should be able to construct a left adjoint. This would then
cover examples such as the free group over a monoid, free ring over a group, etc.

Quotient inductive-inductive types. The notion of QW-type generalises to indexed
QW-types, analogously to the generalisation of W-types to Petersson-Synek trees
for inductively defined indexed families of types [24, Chapter 16], and we will
consider it in subsequent work. More generally, we wonder whether our analysis
of QITs using quotients, inductive-inductive and sized types can be extended to
cover the notion of quotient inductive-inductive type (QIIT) [4, 19]. Dijkstra [10]
studies such types in depth and in Chapter 6 of his thesis gives a construction
for finitary ones in terms of countable colimits, and hence in terms of countable
coproducts and quotients. One could hope to pass to the infinitary case by using
sized types as we have done, provided an analogue for QIITs can be found of

Constructing Infinitary Quotient-Inductive Types 273

https://doi.org/10.17863/CAM.48187


the monadic construction in Section 4 for our class of QITs, the QW-types.
Kaposi, Kovács, and Altenkirch [19] give a specification of finitary QIITs using a
domain-specific type theory called the theory of signatures and prove existence of
QIITs matching this specification. It might be possible to encode their theory of
signatures using QW-types (it can already be encoded as a QIIT), or to extend
QW-types making this possible. This would allow infinitary QIITs.

Schemas for QITs. We have shown by example that QW-types can encode a wide
range of QITs. However, we have yet to extend this to a proof of Conjecture 1
that every instance of the schema for QITs considered in Section 3 can be so
encoded.

Conditional path equations. In Section 3 we mentioned the fact that Dybjer and
Moeneclaey [12] give a model for finitary 1-HITs and 2-HITs in which constructors
are allowed to take arguments involving the identity type of the datatype being
declared. On the face of it, QW-types are not able to encode such conditional
QITs. We plan to consider whether it is possible to extend the notion of QW-type
to allow encoding of infinitary QITs with such conditional equations.

Homotopy Type Theory (HoTT). Our development makes use of UIP (and het-
erogeneous equality), which is well-known to be incompatible with the Univalence
Axiom [29, Example 3.1.9]. Given the interest in HoTT, it is certainly worth
investigating whether a result like Theorem 1 holds in univalent foundations for a
suitably coherent version of QW-types. We are currently investigating this using
set-truncation.

Pattern matching for QITs and HITs. Our reduction of QITs to induction-
induction, strictly positive quotients and sized types is of theoretical interest, but
in practice one could wish for more direct support in systems like Agda, Lean and
Coq for the very useful notion of quotient inductive types (or more generally, for
higher inductive types). Even having better support for the special case of quotient
types would be welcome. It is not hard to envisage the addition of a general schema
for declaring QITs; but when it comes to defining functions on them, having
to do that with eliminator forms rapidly becomes cumbersome (for example,
for functions of several QIT arguments). Some extension of dependently typed
pattern matching to cover equality constructors as well as element constructors
is needed and the third author has begun work on that based on the approach of
Cockx and Abel [9].6

6 In this context it is worth mentioning that the cubical features of recent versions
of Agda give access to cubical type theory [30]. This allows for easy declaration of
HITs and hence in particular QITs (and quotients avoiding the need for POLARITY
pragmas) and a certain amount of pattern matching when it comes to defining
functions on them: the value of a function on a path constructor can be specified by
using generic elements of the interval type in point-level patterns; but currently the
user is given little mechanised assistance to solve the definitional equality constraints
on end-points of paths that are generated by this method.

274 M. P. Fiore et al.



References

1. Abbott, M., Altenkirch, T., Ghani, N.: Containers: Constructing strictly positive
types. Theoretical Computer Science vol. 342 (1), 3–27 (2005). doi: 10.1016/j.tcs.
2005.06.002.

2. Abel, A.: Type-Based Termination, Inflationary Fixed-Points, and Mixed Induct-
ive-Coinductive Types. Electronic Proceedings in Theoretical Computer Science
vol. 77, 1–11 (2012). doi: 10.4204/EPTCS.77.1.

3. Abel, A., Pientka, B.: Well-Founded Recursion with Copatterns and Sized Types.
J. Funct. Prog. vol. 26, e2 (2016). doi: 10.1017/S0956796816000022.

4. Altenkirch, T., Capriotti, P., Dijkstra, G., Kraus, N., Nordvall Forsberg, F.: Quotient
Inductive-Inductive Types. In: Baier, C., Dal Lago, U. (eds.) Foundations of Software
Science and Computation Structures, FoSSaCS 2018, LNCS, vol. 10803, pp. 293–310.
Springer, Heidelberg (2018).

5. Altenkirch, T., Kaposi, A.: Type Theory in Type Theory Using Quotient Inductive
Types. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages - POPL 2016, pp. 18–29. ACM Press, St.
Petersburg, FL, USA (2016). doi: 10.1145/2837614.2837638.

6. Basold, H., Geuvers, H., van der Weide, N.: Higher Inductive Types in Programming.
Journal of Universal Computer Science vol. 23 (1), 27 (2017). doi: 10.3217/jucs-
023-01-0063.

7. Blass, A.: Words, Free Algebras, and Coequalizers. Fundamenta Mathematicae vol.
117 (2), 117–160 (1983).

8. Cockx, J., Abel, A.: “Sprinkles of Extensionality for Your Vanilla Type Theory”.
Abstract for the 22nd International Conference on Types for Proofs and Programs
(TYPES 2016), Novi Sad, Serbia.

9. Cockx, J., Abel, A.: Elaborating Dependent (Co)Pattern Matching. Proceedings of
the ACM on Programming Languages vol. 2, 1–30 (2018). doi: 10.1145/3236770.

10. Dijkstra, G.: Quotient Inductive-Inductive Definitions. PhD thesis, University of
Nottingham (2017), url: http://eprints.nottingham.ac.uk/42317/1/thesis.pdf.

11. Dybjer, P.: Representing Inductively Defined Sets by Wellorderings in Martin-Löf’s
Type Theory. Theoretical Computer Science vol. 176 (1-2), 329–335 (1997). doi:
10.1016/S0304-3975(96)00145-4.

12. Dybjer, P., Moeneclaey, H.: Finitary Higher Inductive Types in the Groupoid Model.
Electronic Notes in Theoretical Computer Science vol. 336, 119–134 (2018). doi:
10.1016/j.entcs.2018.03.019.

13. Fiore, M.: An Equational Metalogic for Monadic Equational Systems. Theory and
Applications of Categories vol. 27 (18), 464–492 (2013). url: https://emis.de/
journals/TAC/volumes/27/18/27-18.pdf.

14. Fiore, M., Hur, C.-K.: On the Construction of Free Algebras for Equational Systems.
Theoretical Computer Science vol. 410 (18), 1704–1729 (2009). doi: 10.1016/j.tcs.
2008.12.052.

15. Forsberg, F.N., Setzer, A.: A Finite Axiomatisation of Inductive-Inductive Defin-
itions. In: Berger, U., Diener, H., Schuster, P., Seisenberger, M. (eds.) Logic,
Construction, Computation, Ontos mathematical logic, pp. 259–287. De Gruyter
(2012). doi: 10.1515/9783110324921.259.

16. Gambino, N., Kock, J.: Polynomial Functors and Polynomial Monads. Math. Proc.
Camb. Phil. Soc. vol. 154 (1), 153–192 (2013). doi: 10.1017/S0305004112000394.

17. Gitik, M.: All Uncountable Cardinals Can Be Singular. Israel J. Math. vol. 35 (1–2),
61–88 (1980).

Constructing Infinitary Quotient-Inductive Types 275

https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.4204/EPTCS.77.1
https://doi.org/10.1017/S0956796816000022
https://doi.org/10.1145/2837614.2837638
https://doi.org/10.3217/jucs-023-01-0063
https://doi.org/10.3217/jucs-023-01-0063
https://doi.org/10.1145/3236770
http://eprints.nottingham.ac.uk/42317/1/thesis.pdf
https://doi.org/10.1016/S0304-3975(96)00145-4
https://doi.org/10.1016/j.entcs.2018.03.019
https://emis.de/journals/TAC/volumes/27/18/27-18.pdf
https://emis.de/journals/TAC/volumes/27/18/27-18.pdf
https://doi.org/10.1016/j.tcs.2008.12.052
https://doi.org/10.1016/j.tcs.2008.12.052
https://doi.org/10.1515/9783110324921.259
https://doi.org/10.1017/S0305004112000394


18. Hofmann, M.: Extensional Concepts in Intensional Type Theory. PhD thesis,
University of Edinburgh (1995).

19. Kaposi, A., Kovács, A., Altenkirch, T.: Constructing Quotient Inductive-Inductive
Types. Proc. ACM Program. Lang. vol. 3, 1–24 (2019). doi: 10.1145/3290315.

20. Kelly, M.: A Unified Treatment of Transfinite Constructions for Free Algebras, Free
Monoids, Colimits, Associated Sheaves, and so on. Bull. Austral. Math. Soc. vol.
22, 1–83 (1980).

21. Lumsdaine, P.L., Shulman, M.: Semantics of Higher Inductive Types. Math. Proc.
Camb. Phil. Soc. (2019). doi: 10.1017/S030500411900015X.

22. Martin-Löf, P.: Constructive Mathematics and Computer Programming. In: Cohen,
L.J., Łoś, J., Pfeiffer, H., Podewski, K.-P. (eds.) Studies in Logic and the Foundations
of Mathematics, pp. 153–175. Elsevier (1982). doi: 10.1016/S0049-237X(09)70189-2.

23. McBride, C.: Dependently Typed Functional Programs and their Proofs. PhD thesis,
University of Edinburgh (1999).

24. Nordström, B., Petersson, K., Smith, J.M.: Programming in Martin-Löf’s Type
Theory. Oxford University Press (1990).

25. Shulman, M.: Brouwer’s Fixed-Point Theorem in Real-Cohesive Homotopy Type
Theory. Mathematical Structures in Computer Science vol. 28, 856–941 (2018).

26. Sojakova, K.: Higher Inductive Types as Homotopy-Initial Algebras. In: Proceed-
ings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages - POPL ’15, pp. 31–42. ACM Press, Mumbai, India (2015).
doi: 10.1145/2676726.2676983.

27. Streicher, T.: Investigations into Intensional Type Theory. Habilitation Thesis,
Ludwig Maximilian University (1993).

28. Swan, A.: W-Types with Reductions and the Small Object Argument. (2018).
arXiv:1802.07588 [math].

29. The Univalent Foundations Program, Homotopy Type Theory: Univalent Founda-
tions for Mathematics. http://homotopytypetheory.org/book, Institute for Advanced
Study (2013).

30. Vezzosi, A., Mörtberg, A., Abel, A.: Cubical Agda: A Dependently Typed Program-
ming Language with Univalence and Higher Inductive Types. Proc. ACM Program.
Lang. vol. 3 (ICFP), 87:1–87:29 (2019). doi: 10.1145/3341691.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

276 M. P. Fiore et al.

https://doi.org/10.1145/3290315
https://doi.org/10.1017/S030500411900015X
https://doi.org/10.1016/S0049-237X(09)70189-2
https://doi.org/10.1145/2676726.2676983
https://arxiv.org/abs/1802.07588
http://homotopytypetheory.org/book
https://doi.org/10.1145/3341691
http://creativecommons.org/licenses/by/4.0/


Relative full completeness
for bicategorical cartesian closed structure

Marcelo Fiore1 and Philip Saville(�)2

1 Department of Computer Science and Technology, University of Cambridge, UK
marcelo.fiore@cl.cam.ac.uk

2 School of Informatics, University of Edinburgh, UK
philip.saville@ed.ac.uk

Abstract. The glueing construction, defined as a certain comma cate-
gory, is an important tool for reasoning about type theories, logics, and
programming languages. Here we extend the construction to accommo-
date ‘2-dimensional theories’ of types, terms between types, and rewrites
between terms. Taking bicategories as the semantic framework for such
systems, we define the glueing bicategory and establish a bicategorical
version of the well-known construction of cartesian closed structure on
a glueing category. As an application, we show that free finite-product
bicategories are fully complete relative to free cartesian closed bicate-
gories, thereby establishing that the higher-order equational theory of
rewriting in the simply-typed lambda calculus is a conservative extension
of the algebraic equational theory of rewriting in the fragment with finite
products only.

Keywords: glueing, bicategories, cartesian closure, relative full com-
pleteness, rewriting, type theory, conservative extension

1 Introduction

Relative full completeness for cartesian closed structure. Every small
category C can be viewed as an algebraic theory. This has sorts the objects of
C with unary operators for each morphism of C and equations determined by
the equalities in C. Suppose one freely extends C with finite products. Categori-
cally, one obtains the free cartesian category F×[C] on C. From the well-known
construction of F×[C] (see e.g. [12] and [46, §8]) it is direct that the universal
functor C → F×[C] is fully-faithful, a property we will refer to as the relative full
completeness (c.f. [2,16]) of C in F×[C]. Type theoretically, F×[C] corresponds
to the Simply-Typed Product Calculus (STPC) over the algebraic theory of C,
given by taking the fragment of the Simply-Typed Lambda Calculus (STLC)
consisting of just the types, rules, and equational theory for products. Relative
full completeness corresponds to the STPC being a conservative extension.

Consider now the free cartesian closed category F×,→[C] on C, type-theoretically
corresponding to the STLC over the algebraic theory of C. Does the relative full
completeness property, and hence conservativity, still hold for either C in F×,→[C]

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 277–298, 2020.
https://doi.org/10.1007/978-3-030-45231-5_15

http://orcid.org/0000-0001-8558-3492
http://orcid.org/0000-0002-8320-0280
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_15&domain=pdf


or for F×[C] in F×,→[C]? Precisely, is either the universal functor C → F×,→[C]
or its universal cartesian extension F×[C] → F×,→[C] full and faithful? The
answer is affirmative, but the proof is non-trivial. One must either reason proof-
theoretically (e.g. in the style of [63, Chapter 8]) or employ semantic techniques
such as glueing [39, Annexe C].

In this paper we consider the question of relative full completeness in the
bicategorical setting. This corresponds to the question of conservativity for
2-dimensional theories of types, terms between types, and rewrites between
terms (see [32,20]). We focus on the particular case of the STLC with invertible
rewrites given by β-reductions and η-expansions, and its STPC fragment. By
identifying these two systems with cartesian closed, resp. finite product, structure
‘up to isomorphism’ one recovers a conservative extension result for rewrites akin
to that for terms.

2-dimensional categories and rewriting. It has been known since the
1980s that one may consider 2-dimensional categories as abstract reduction sys-
tems (e.g. [54,51]): if sorts are 0-cells (objects) and terms are 1-cells (morphisms),
then rewrites between terms ought to be 2-cells. Indeed, every sesquicategory
(of which 2-categories are a special class) generates a rewriting relation � on its
1-cells defined by f � g if and only if there exists a 2-cell f ⇒ g (e.g. [60,58]).
Invertible 2-cells may be then thought of as equality witnesses.

The rewriting rules of the STLC arise naturally in this framework: Seely [56]
observed that β-reduction and η-expansion may be respectively interpreted as
the counit and unit of the adjunctions corresponding to lax (directed) products
and exponentials in a 2-category (c.f. also [34,27]). This approach was taken up by
Hilken [32], who developed a ‘2-dimensional λ-calculus’ with strict products and
lax exponentials to study the proof theory of rewriting in the STLC (c.f. also [33]).

Our concern here is with equational theories of rewriting, and we follow Seely
in viewing weak categorical structure as a semantic model of rewriting modulo an
equational theory. We are not aware of non-syntactic examples of 2-dimensional
cartesian closed structure that are lax but not pseudo (i.e. up to isomorphism)
and so adopt cartesian closed bicategories as our semantic framework.

From the perspective of rewriting, a sesquicategory embodies the rewriting of
terms modulo the monoid laws for identities and composition, while a bicategory
embodies the rewriting of terms modulo the equational theory on rewrites given
by the triangle and pentagon laws of a monoidal category. Cartesian closed
bicategories further embody the usual β-reductions and η-expansions of STLC
modulo an equational theory on rewrites; for instance, this identifies the composite
rewrite 〈t1, t2〉 ⇒ 〈π1(〈t1, t2〉), π2(〈t1, t2〉)〉 ⇒ 〈t1, t2〉 with the identity rewrite.
Indeed, in the free cartesian closed bicategory over a signature of base types
and constant terms, the quotient of 1-cells by the isomorphism relation provided
by 2-cells is in bijection with αβη-equivalence classes of STLC-terms (c.f. [55,
Chapter 5]).

Bicategorical relative full completeness. The bicategorical notion of relative
full completeness arises by generalising from functors that are fully-faithful to

278 M. Fiore and P. Saville



pseudofunctors F : B → C that are locally an equivalence, that is, for which
every hom-functor FX,Y : B(X,Y ) → C(FX,FY ) is an equivalence of categories.
Interpreted in the context of rewriting, this amounts to the conservativity of
rewriting theories. First, the equational theory of rewriting in C is conservative
over that in B: the hom-functors do not identify distinct rewrites. Second, the
reduction relation in C(FX,FY ) is conservative over that in B(X,Y ): whenever
Ff � Fg in C then already f � g in B. Third, the term structure in B gets
copied by F in C: modulo the equational theory of rewrites, there are no new
terms between types in the image of F .

Contributions. This paper makes two main contributions.
Our first contribution, in Section 3, is to introduce the bicategorical glueing

construction and, in Section 4, to initiate the development of its theory. As well
as providing an assurance that our notion is the right one, this establishes the
basic framework for applications. Importantly, we bicategorify the fundamental
folklore result (e.g. [40,12,62]) establishing mild conditions under which a glued
bicategory is cartesian closed.

Our second contribution, in Section 5, is to employ bicategorical glueing to
show that for a bicategory B with finite-product completion F×[B] and cartesian-
closed completion F×,→[B], the universal pseudofunctor B → F×,→[B] and its
universal finite-product-preserving extension F×[B] → F×,→[B] are both locally
an equivalence. Since one may directly observe that the universal pseudofunc-
tor B → F×[B] is locally an equivalence, we obtain relative full completeness
results for bicategorical cartesian closed structure mirroring those of the categori-
cal setting. Establishing this proof-theoretically would require the development
of a 2-dimensional proof theory. Given the complexities already present at the
categorical level this seems a serious and interesting undertaking. Here, once the
basic bicategorical theory has been established, the proof is relatively compact.
This highlights the effectiveness of our approach for the application.

The result may also be expressed type-theoretically. For instance, in terms of
the type theories of [20], the type theory Λ×,→

ps for cartesian closed bicategories
is a conservative extension of the type theory Λ×

ps for finite-product bicategories.
It follows that, modulo the equational theory of bicategorical products and
exponentials, any rewrite between STPC-terms constructed using the βη-rewrites
for both products and exponentials may be equally presented as constructed
from just the βη-rewrites for products (see [21,55]).

Further work. We view the foundational theory presented here as the start-
ing point for future work. For instance, we plan to incorporate further type
structure into the development, such as coproducts (c.f. [22,16,4]) and monoidal
structure (c.f. [31]).

On the other hand, the importance of glueing in the categorical setting
suggests that its bicategorical counterpart will find a range of applications. A
case in point, which has already been developed, is the proof of a 2-dimensional
normalisation property for the type theory Λ×,→

ps for cartesian closed bicategories
of [20] that entails a corresponding bicategorical coherence theorem [21,55]. There

Relative full completeness for bicategorical cartesian closed structure 279



are also a variety of syntactic constructions in programming languages and type
theory that naturally come with a 2-dimensional semantics (see e.g. the use of
2-categorical constructions in [23,14,6,61,35]). In such scenarios, bicategorical
glueing may prove useful for establishing properties corresponding to the notions
of adequacy and/or canonicity, or for proving further conservativity properties.

2 Cartesian closed bicategories

We begin by briefly recapitulating the basic theory of bicategories, including the
definition of cartesian closure. A summary of the key definitions is in [41]; for a
more extensive introduction see e.g. [5,7].

2.1 Bicategories

Bicategories axiomatise structures in which the associativity and unit laws of
composition only hold up to coherent isomorphism, for instance when composition
is defined by a universal property. They are rife in mathematics and theoretical
computer science, appearing in the semantics of computation [29,11,49], datatype
models [1,13], categorical logic [26], and categorical algebra [19,25,18].

Definition 1 ([5]). A bicategory B consists of

1. A class of objects ob(B),
2. For every X,Y ∈ ob(B) a hom-category

(B(X,Y ), •, id) with objects 1-cells
f : X → Y and morphisms 2-cells α : f ⇒ f ′ : X → Y ; composition of 2-cells
is called vertical composition,

3. For every X,Y, Z ∈ ob(B) an identity functor IdX : 1 → B(X,X) (for
1 the terminal category) and a horizontal composition functor ◦X,Y,Z :
B(Y,Z)× B(X,Y ) → B(X,Z),

4. Invertible 2-cells

ah,g,f : (h ◦ g) ◦ f ⇒ h ◦ (g ◦ f) : W → Z

lf : IdX ◦ f ⇒ f : W → X

rg : g ◦ IdX ⇒ g : X → Y

for every f : W → X, g : X → Y and h : Y → Z, natural in each of their
parameters and satisfying a triangle law and a pentagon law analogous to
those for monoidal categories.

A bicategory is said to be locally small if every hom-category is small.

Example 1. 1. Every 2-category is a bicategory in which the structural isomor-
phisms are all the identity.

2. For any category C with pullbacks there exists a bicategory of spans over C [5].
The objects are those of C, 1-cells A � B are spans (A ← X → B), and
2-cells (A ← X → B) → (A ← X ′ → B) are morphisms X → X ′ making the
expected diagram commute. Composition is defined using chosen pullbacks.

280 M. Fiore and P. Saville



A bicategory has three notions of ‘opposite’, depending on whether one
reverses 1-cells, 2-cells, or both (see e.g. [37, §1.6]). We shall only require the
following.

Definition 2. The opposite of a bicategory B, denoted Bop, is obtained by setting
Bop(X,Y ) := B(Y,X) for all X,Y ∈ B.

A morphism of bicategories is called a pseudofunctor (or homomorphism) [5].
It is a mapping on objects, 1-cells and 2-cells that preserves horizontal composition
up to isomorphism. Vertical composition is preserved strictly.

Definition 3. A pseudofunctor (F, φ, ψ) : B → C between bicategories B and C
consists of

1. A mapping F : ob(B) → ob(C),
2. A functor FX,Y : B(X,Y ) → C(FX,FY ) for every X,Y ∈ ob(B),
3. An invertible 2-cell ψX : IdFX ⇒ F (IdX) for every X ∈ ob(B),
4. An invertible 2-cell φf,g : F (f) ◦ F (g) ⇒ F (f ◦ g) for every g : X → Y and

f : Y → Z, natural in f and g,

subject to two unit laws and an associativity law. A pseudofunctor for which φ
and ψ are both the identity is called strict. A pseudofunctor is called locally P if
every functor FX,Y satisfies the property P .

Example 2. A monoidal category is equivalently a one-object bicategory; a
monoidal functor is equivalently a pseudofunctor between one-object bicate-
gories.

Pseudofunctors F,G : B → C are related by pseudonatural transformations.
A pseudonatural transformation (k, k) : F ⇒ G consists of a family of 1-cells
(kX : FX → GX)X∈B and, for every f : X → Y , an invertible 2-cell kf :
kY ◦ Ff ⇒ Gf ◦ kX witnessing naturality. The 2-cells kf are required to be
natural in f and satisfy two coherence axioms. A morphism of pseudonatural
transformations is called a modification, and may be thought of as a coherent
family of 2-cells.

Notation 1. For bicategories B and C we write Bicat(B, C) for the (possibly
large) bicategory of pseudofunctors, pseudonatural transformations, and modifi-
cations (see e.g. [41]). If C is a 2-category, then so is Bicat(B, C). We write Cat for
the 2-category of small categories and think of the 2-category Bicat(Bop,Cat) as

a bicategorical version of the presheaf category SetC
op

. As for presheaf categories,
one must take care to avoid size issues. We therefore adopt the convention that
when considering Bicat(Bop,Cat) the bicategory B is small or locally small as
appropriate.

Example 3. For every bicategory B and X ∈ B there exists the representable
pseudofunctor YX : Bop → Cat, defined by YX := B(−, X). The 2-cells φ and
ψ are structural isomorphisms.

Relative full completeness for bicategorical cartesian closed structure 281



The notion of equivalence between bicategories is called biequivalence. A
biequivalence B 	 C consists of a pair of pseudofunctors F : B � G : C together
with equivalences FG 	 idC and GF 	 idB in Bicat(C, C) and Bicat(B,B)
respectively. Equivalences in an arbitrary bicategory are defined by analogy with
equivalences of categories, see e.g. [42, pp. 28].

Remark 1. The coherence theorem for monoidal categories [44, Chapter VII] gen-
eralises to bicategories: any bicategory is biequivalent to a 2-category [45] (see [42]
for a readable summary of the argument). We are therefore justified in writing
simply ∼= for composites of a, l and r.

As a rule of thumb, a category-theoretic proposition lifts to a bicategorical
proposition so long as one takes care to weaken isomorphisms to equivalences
and sprinkle the prefixes ‘pseudo’ and ‘bi’ in appropriate places. For instance,
bicategorical adjoints are called biadjoints and bicategorical limits are called
bilimits [59]. The latter may be thought of as limits in which every cone is filled by
a coherent choice of invertible 2-cell. Bilimits are preserved by representable pseud-
ofunctors and by right biadjoints. The bicategorical Yoneda lemma [59, §1.9] says
that for any pseudofunctor P : Bop → Cat, evaluation at the identity determines
a pseudonatural family of equivalences Bicat(Bop,Cat)(YX,P ) 	 PX. One may
then deduce that the Yoneda pseudofunctor Y : B → Bicat(Bop,Cat) : X �→ YX
is locally an equivalence. Another ‘bicategorified’ lemma is the following, which
we shall employ in Section 5.

Lemma 1. 1. For pseudofunctors F,G : B → C, if F 	 G and G is locally an
equivalence, then so is F .

2. For pseudofunctors F : A → B, G : B → C, H : C → D, if G ◦ F and H ◦G
are local equivalences, then so is F .

2.2 fp-Bicategories

It is convenient to directly consider all finite products, as this reduces the need
to deal with the equivalent objects given by re-bracketing binary products. To
avoid confusion with the ‘cartesian bicategories’ of Carboni and Walters [10,8],
we call a bicategory with all finite products an fp-bicategory.

Definition 4. An fp-bicategory (B,Πn(−)) is a bicategory B equipped with the
following data for every A1, . . . , An ∈ B (n ∈ N):

1. A chosen object
∏

n(A1, . . . , An),
2. Chosen arrows πk :

∏
n(A1, . . . , An) → Ak (k = 1, . . . , n), called projections,

3. For every X ∈ B an adjoint equivalence

B (X,
∏

n(A1, . . . , An))
∏n

i=1 B(X,Ai)

(π1◦−,...,πn◦−)

� 	
〈−,...,=〉

(1)

specified by choosing a family of universal arrows (see e.g. [44, Theorem IV.2])

with components 	
(i)
f1,...,fn

: πi ◦ 〈f1, . . . , fn〉 ⇒ fi for i = 1, . . . , n.

282 M. Fiore and P. Saville



We call the right adjoint 〈−, . . . ,=〉 the n-ary tupling.

Explicitly, the universal property of 	 = (	(1), . . . , 	(n)) is the following.
For any finite family of 2-cells (αi : πi ◦ g ⇒ fi : X → Ai)i=1,...,n, there exists a
2-cell p†(α1, . . . , αn) : g ⇒ 〈f1, . . . , fn〉 : X → ∏

n(A1, . . . , An), unique such that

	
(k)
f1,...,fn

• (πk ◦ p†(α1, . . . , αn)
)
= αk : πk ◦ g ⇒ fk

for k = 1, . . . , n. One thereby obtains a functor 〈−, . . . ,=〉 and an adjunction
as in (1) with counit 	 = (	(1), . . . , 	(n)) and unit ςg := p†(idπ1◦g, . . . , idπn◦g) :
g ⇒ 〈π1 ◦ g, . . . , πn ◦ g〉. This defines a lax n-ary product structure: one merely
obtains an adjunction in (1). One turns it into a bicategorical (pseudo) product by
further requiring the unit and counit to be invertible. The terminal object 1 arises
as

∏
0(). We adopt the same notation as for categorical products, for example by

writing
∏n

i=1Ai for
∏

n(A1, . . . , An) and
∏n

i=1fi for 〈f1 ◦ π1, . . . , fn ◦ πn〉.
Example 4. The bicategory of spans over a lextensive category [9] has finite
products; such a bicategory is biequivalent to its opposite, so these are in fact
biproducts [38, Theorem 6.2]. Biproduct structure arises using the coproduct
structure of the underlying category (c.f. the biproduct structure of the category
of relations).

Remark 2 ( c.f. Remark 1). fp-Bicategories satisfy the following coherence the-
orem: every fp-bicategory is biequivalent to a 2-category with 2-categorical
products [52, Theorem 4.1]. Thus, we shall sometimes simply write ∼= in diagrams
for composites of 2-cells arising from either the bicategorical or product structure.
In pasting diagrams we shall omit such 2-cells completely (c.f. [30, Remark 3.1.16];
for a detailed exposition, see [64, Appendix A]).

One may think of bicategorical product structure as an intensional version
of the familiar categorical structure, except the usual equations (e.g. [28]) are
now witnessed by natural families of invertible 2-cells. It is useful to introduce
explicit names for these 2-cells.

Notation 2. In the following, and throughout, we write A• for a finite sequence
〈A1, . . . , An〉.
Lemma 2. For any fp-bicategory (B,Πn(−)) there exist canonical choices for
the following natural families of invertible 2-cells:

1. For every (hi : Y → Ai)i=1,...,n and g : X → Y , a 2-cell post(h•; g) :
〈h1, . . . , hn〉 ◦ g ⇒ 〈h1 ◦ g, . . . , hn ◦ g〉,

2. For every (hi : Ai → Bi)i=1,...,n and (gi : X → Ai)i=1,...,n, a 2-cell
fuse(h•; g•) : (

∏n
i=1hi) ◦ 〈g1, . . . , gn〉 ⇒ 〈h1 ◦ g1, . . . , hn ◦ gn〉.

In particular, it follows from Lemma 2(2) that there exists a canonical natural
family of invertible 2-cells Φh•,g• : (

∏n
i=1hi) ◦ (

∏n
i=1gi) ⇒

∏n
i=1(hi ◦ gi) for any

(hi : Ai → Bi)i=1,...,n and (gj : Xj → Aj)j=1,...,n.
In the categorical setting, a cartesian functor preserves products up to isomor-

phism. An fp-pseudofunctor preserves bicategorical products up to equivalence.

Relative full completeness for bicategorical cartesian closed structure 283



Definition 5. An fp-pseudofunctor (F, q×) between fp-bicategories (B,Πn(−))
and (C,Πn(−)) is a pseudofunctor F : B → C equipped with specified equivalences

〈Fπ1, . . . , Fπn〉 : F (
∏n

i=1Ai) �
∏n

i=1(FAi) : q
×
A•

for every A1, . . . , An ∈ B (n ∈ N). We denote the 2-cells witnessing these
equivalences by u×A• : Id(

∏
i FAi) ⇒ 〈Fπ1, . . . , Fπn〉 ◦ q×A• and c×A• : q×A• ◦

〈Fπ1, . . . , Fπn〉 ⇒ Id(FΠiAi). We call (F, q×) strict if F is strict and satis-
fies

F (
∏

n(A1, . . . , An)) =
∏

n(FA1, . . . , FAn)

F (πA1,...,An

i ) = πFA1,...,FAn

i

F 〈t1, . . . , tn〉 = 〈Ft1, . . . , F tn〉
F	

(i)
t1,...,tn = 	

(i)
Ft1,...,F tn

q×A1,...,An
= IdΠn(FA1,...,FAn)

with equivalences given by the 2-cells p†(rπ1 , . . . , rπn) : Id
∼=
=⇒ 〈π1, . . . , πn〉.

Notation 3. For fp-bicategories B and C we write fp-Bicat(B, C) for the bicate-
gory of fp-pseudofunctors, pseudonatural transformations and modifications.3

We define two further families of 2-cells to witness standard properties of
cartesian functors. The first witnesses the fact that any fp-pseudofunctor com-
mutes with the

∏
n(−, . . . ,=) operation. The second witnesses the equality

〈Fπ1, . . . , Fπn〉 ◦ F 〈f1, . . . , fn〉 = 〈Ff1, . . . , Ffn〉 ‘unpacking’ an n-ary tupling
from inside F .

Lemma 3. Let (F, q×) : (B,Πn(−)) → (C,Πn(−)) be an fp-pseudofunctor.

1. For any finite family of 1-cells (fi : Ai → A′
i)i=1,...,n in B, there exists an

invertible 2-cell natf• : q×A′•
◦∏n

i=1Ffi ⇒ F (
∏n

i=1fi) ◦ q×A• such that the pair

(q×, nat) forms a a pseudonatural transformation∏n
i=1 (F (−), . . . , F (=)) ⇒ (F ◦∏n

i=1)(−, . . . ,=)

2. For any finite family of 1-cells (fi : X → Bi)i=1,...,n in B, there exists a
canonical choice of naturally invertible 2-cell unpackf• : 〈Fπ1, . . . , Fπn〉 ◦
F 〈f1, . . . , fn〉 ⇒ 〈Ff1, . . . , Ffn〉 : FX → ∏n

i=1 FBi.

2.3 Cartesian closed bicategories

A cartesian closed bicategory is an fp-bicategory (B,Πn(−)) equipped with a
biadjunction (−)×A � (A=�−) for every A ∈ B. Examples include the bicategory
of generalised species [17], bicategories of concurrent games [49], and bicategories
of operads [26].

3 In the categorical setting, every natural transformation between cartesian functors
is monoidal with respect to the cartesian structure and a similar fact is true bicat-
egorically: every pseudonatural transformation is canonically compatible with the
product structure, see [55, § 4.1.1].

284 M. Fiore and P. Saville



Definition 6. A cartesian closed bicategory or cc-bicategory is an fp-bicategory
(B,Πn(−)) equipped with the following data for every A,B ∈ B:
1. A chosen object (A=�B),
2. A specified 1-cell evalA,B : (A=�B)×A → B,
3. For every X ∈ B, an adjoint equivalence

B(X,A=�B) B(X ×A,B)

evalA,B◦(−×A)

� 	
λ

specified by a choice of universal arrow εf : evalA,B ◦ (λf ×A)
∼=
=⇒ f .

We call the functor λ(−) currying and refer to λf as the currying of f .

Explicitly, the counit ε satisfies the following universal property. For every
1-cell g : X → (A=�B) and 2-cell α : evalA,B ◦ (g×A) ⇒ f there exists a unique
2-cell e†(α) : g ⇒ λf such that εf •

(
evalA,B ◦ (e†(α)×A)

)
= α. This defines a lax

exponential structure. One obtains a pseudo (bicategorical) exponential structure
by further requiring that ε and the unit ηt := e†(idevalA,B◦(t×A)) are invertible.

Example 5. Every ‘presheaf’ 2-categoryBicat(Bop,Cat) has all bicategorical lim-
its [52, Proposition 3.6], given pointwise, and is cartesian closed with (P =�Q)X :=
Bicat(Bop,Cat)(YX × P ,Q) [55, Chapter 6].

As for products, we adopt the notational conventions that are standard in
the categorical setting, for example by writing (f =� g) : (A=�B) → (A′ =�B′)
for the currying of (g ◦ evalA,B) ◦ (IdA=�B × f).

Just as fp-pseudofunctors preserve products up to equivalence, cartesian
closed pseudofunctors preserve products and exponentials up to equivalence.

Definition 7. A cartesian closed pseudofunctor or cc-pseudofunctor between
cc-bicategories (B,Πn(−),=�) and (C,Πn(−),=�) is an fp-pseudofunctor (F, q×)
equipped with specified equivalences mA,B : F (A=�B) � (FA=�FB) : q=�

A,B

for every A,B ∈ B, where mA,B : F (A=�B) → (FA=�FB) is the currying of
F (evalA,B) ◦ q×A=�B,A. A cc-pseudofunctor (F, q×, q=�) is strict if (F, q×) is a
strict fp-pseudofunctor such that

F (A=�B) = (FA=�FB)

F (evalA,B) = evalFA,FB

F (λt) = λ(Ft)

F (εt) = εFt

q=�

A,B = IdFA=�FB

with equivalences given by the 2-cells

e†(evalFA,FB ◦ κ) : Id(FA=�FB)

∼=
=⇒ λ(evalFA,FB ◦ Id(FA=�FB)×FA)

where κ is the canonical isomorphism IdFA=�FB × FA ∼= Id(FA=�FB)×FA.

Relative full completeness for bicategorical cartesian closed structure 285



Remark 3. As is well-known in the case of Cat (e.g. [44, IV.2]), every equivalence
X 	 Y in a bicategory gives rise to an adjoint equivalence between X and Y
with the same 1-cells (see e.g. [42, pp. 28–29]). Thus, one may assume without
loss of generality that all the equivalences in the preceding definition are adjoint
equivalences. The same observation applies to the definition of fp-pseudofunctors.

Notation 4. For cc-bicategories B and C we write cc-Bicat(B, C) for the bi-
category of cc-pseudofunctors, pseudonatural transformations and modifica-
tions (c.f. Notation 3).

3 Bicategorical glueing

The glueing construction has been discovered in various forms, with correspond-
ingly various names: the notions of logical relation [50,57], sconing [24], Freyd
covers, and glueing (e.g. [40]) are all closely related (see e.g. [47] for an overview
of the connections). Originally presented set-theoretically, the technique was
quickly given categorical expression [43,47] and is now a standard component of
the armoury for studying type theories (e.g. [40,12]).

The glueing gl(F ) of categories C and D along a functor F : C → D may
be defined as the comma category (idD ↓ F ). We define bicategorical glueing
analogously.

Definition 8.

1. Let F : A → C and G : B → C be pseudofunctors of bicategories. The comma
bicategory (F ↓ G) has objects triples (A ∈ A, f : FA → GB,B ∈ B). The
1-cells (A, f,B) → (A′, f ′, B′) are triples (p, α, q), where p : A → A′ and
q : B → B′ are 1-cells and α is an invertible 2-cell α : f ′ ◦ Fp ⇒ Gq ◦ f .
The 2-cells (p, α, q) ⇒ (p′, α′, q′) are pairs of 2-cells (σ : p ⇒ p′, τ : q ⇒ q′)
such that the following diagram commutes:

f ′ ◦ F (p) f ′ ◦ F (p′)

G(q) ◦ f G(q′) ◦ f
α

f ′◦F (σ)

α′

G(τ)◦f

(2)

Identities and horizontal composition are given by the following pasting dia-
grams.

FA FA

GB GB

f

F IdA

f
∼=

f∼=

GIdB

FA FA′ FA′′

GB GB′ GB′′

F (r◦p)

α⇐

Fp

f

φF

∼=

β⇐

Fr

f ′ f ′′

G(s◦q)

Gq
φG

∼=
Gs

286 M. Fiore and P. Saville



Vertical composition, the identity 2-cell, and the structural isomorphisms are
given component-wise.

2. The glueing bicategory gl(J) of bicategories B and C along a pseudofunctor
J : B → C is the comma bicategory (idC ↓ J).

We call axiom (2) the cylinder condition due to its shape when viewed as
a (3-dimensional) pasting diagram. Note that one directly obtains projection

pseudofunctors B πdom←−−− gl(J)
πcod−−−→ C.

We develop some basic theory of glueing bicategories, which we shall put to
use in Section 5. We follow the terminology of [15].

Definition 9. Let J : B → X be a pseudofunctor. The relative hom-pseudofunctor
〈J〉 : X → Bicat(Bop,Cat) is defined by 〈J〉X := X (J(−), X).

Following [15], one might call the glueing bicategory gl(〈J〉) associated to a
relative hom-pseudofunctor the bicategory of B-intensional Kripke relations of
arity J, and view it as an intensional, bicategorical, version of the category of
Kripke relations.

The relative hom-pseudofunctor preserves all bilimits that exist in its domain.
For products, this may be described explicitly.

Lemma 4. For any fp-bicategory (X ,Πn(−)) and pseudofunctor J : B → X , the
relative hom-pseudofunctor 〈J〉 extends canonically to an fp-pseudofunctor.

Proof. Take q×X• to be the n-ary tupling
∏n

i=1X (J(−), Xi)
	−→ X (J(−),

∏n
i=1Xi).

This forms a pseudonatural transformation with naturality witnessed by post.

For any pseudofunctor J : B → X there exists a pseudonatural transformation
(l, l) : Y ⇒ 〈J〉 ◦ J : B → Bicat(Bop,Cat) given by the functorial action of J on
hom-categories. One may therefore define the following.

Definition 10. For any pseudofunctor J : B → X , define the extended Yoneda
pseudofunctor Y : B → gl(〈J〉) by setting YB :=

(
YB, (l, l)(−,B), JB

)
, Yf :=

(Yf, (φJ
−,f )

−1, Jf), and Y(τ : f ⇒ f ′ : B → B′) := (Yτ, Jτ). The cylinder

condition holds by the naturality of φJ, and the 2-cells φY and ψY are (φY, φJ)
and (ψY, ψJ), respectively.

The extended Yoneda pseudofunctor satisfies a corresponding ‘extended
Yoneda lemma’ (c.f. [15, pp. 33]).

Lemma 5. For any pseudofunctor J : B → X and P = (P, (k, k), X) ∈ gl(〈J〉)
there exists an equivalence of pseudofunctors gl(〈J〉)(Y(−), P ) 	 P and an
invertible modification as in the diagram below. Hence Y is locally an equivalence.

gl(〈J〉)(Y(−), P ) P

X (J(−), X)

	

πdom

∼=⇐ (k,k)

Relative full completeness for bicategorical cartesian closed structure 287



Proof. The arrow marked 	 is the composite of a projection and the equivalence
arising from the Yoneda lemma. Its pseudo-inverse is the composite

P
	−→ Bicat(Bop,Cat)(Y(−), P ) → gl(〈J〉)(Y(−), P ) (3)

in which the equivalence arises from the Yoneda lemma and the unlabelled pseud-
ofunctor takes a pseudonatural transformation (j, j) : YB ⇒ P to the triple
with first component (j, j), third component jB(kB(IdB)) : JB → X and second
component defined using k and j. Chasing the definitions through and evaluating
at A,B ∈ B, one sees that when P := YB the composite (3) is equivalent to
YA,B. Since (3) is locally an equivalence, Lemma 1(1) completes the proof.

4 Cartesian closed structure on the glueing bicategory

It is well-known that, if C and D are cartesian closed categories, D has pullbacks,
and F : C → D is cartesian, then gl(F ) is cartesian closed (e.g. [40,12]). In this
section we prove a corresponding result for the glueing bicategory. We shall be
guided by the categorical proof, for which see e.g. [43, Proposition 2].

4.1 Finite products in gl(J)

Proposition 1. Let (B,Πn(−)) and (C,Πn(−)) be fp-bicategories and (J, q×) :
B → C be an fp-pseudofunctor. Then gl(J) is an fp-bicategory with both projection
pseudofunctors πdom and πcod strictly preserving products.

For a family of objects (Ci, ci, Bi)i=1,...,n, the n-ary product
∏n

i=1(Ci, ci, Bi)
is defined to be the tuple

(∏n
i=1 Ci, q

×
B• ◦∏n

i=1 ci,
∏n

i=1 Bi

)
. The kth projection

πk is (πk, μk, πk), where μk is defined by commutativity of the following diagram:

ck ◦ πk J(πk) ◦
(
q×B• ◦∏i ci

)
πk ◦∏i ci (Jπk ◦ q×B•) ◦

∏
i ci

(πk ◦ Id(∏i JBi)) ◦
∏

i ci
(
(πk ◦ 〈Jπ1, . . . , Jπn〉) ◦ q×B•

) ◦∏i ci

(
πk ◦ (〈Jπ1, . . . , Jπn〉 ◦ q×B•)

) ◦∏i ci

(
(k))−1

μk

∼=

∼=

(πk◦u×B• )◦Πici

(
(k)◦q×
B• )◦Πici

∼=

For an n-ary family of 1-cells (gi, αi, fi) : (Y, y,X) → (Ci, ci, Bi)(i = 1, . . . , n),
the n-ary tupling is (〈g1, . . . , gn〉, {α1, . . . , αn}, 〈f1, . . . , fn〉), where {α1, . . . , αn}

288 M. Fiore and P. Saville



is the composite(
q×B• ◦∏i ci

) ◦ 〈g1, . . . , gn〉 J(〈f1, . . . , fn〉) ◦ y

q×B• ◦ (∏i ci ◦ 〈g1, . . . , gn〉) IdJ(
∏

Bi) ◦ (J〈f1, . . . , fn〉 ◦ y)

q×B• ◦ 〈c1 ◦ g1, . . . , cn ◦ gn〉
(
q×B• ◦ 〈Jπ1, . . . , Jπn〉

) ◦ (J〈f1, . . . , fn〉 ◦ y)
q×B• ◦ 〈Jf1 ◦ y, . . . , Jfn ◦ y〉 q×B• ◦ ((〈Jπ1, . . . , Jπn〉 ◦ J〈f1, . . . , fn〉) ◦ y)

q×B• ◦ (〈Jf1, . . . , Jfn〉 ◦ y)

∼=

{α1,...,αn}

q×
B•◦fuse

∼=

q×
B•◦〈α1,...,αn〉

(c×B•◦J〈f1,...,fn〉)◦y

q×
B•◦post

−1

∼=

q×
B•◦(unpack

−1
f• ◦y)

Finally, for every family of 1-cells (gi, αi, fi) : (Y, y,X) → (Ci, ci, Bi) (i =
1, . . . , n) we require a glued 2-cell πk ◦ (〈g1, . . . , gn〉, {α1, . . . , αn}, 〈f1, . . . , fn〉) ⇒
(gk, αk, fk) to act as the counit. We take simply (	

(k)
g• , 	

(k)
f• ). This pair forms a

2-cell in gl(J), and the required universal property holds pointwise.

Remark 4. If (J, q×) : B → X is an fp-pseudofunctor, then Y : B → gl(〈J〉) canon-
ically extends to an fp-pseudofunctor. The pseudoinverse to 〈Yπ1, . . . ,Yπn〉 is
(〈−, . . . ,=〉,∼=, q×), where the component of the isomorphism at (fi : X → Bi)i=1,...,n

is F 〈f•〉
∼=
=⇒ IdF (ΠiBi)◦F 〈f•〉

(c×B• )
−1◦F 〈f•〉

=========⇒ q×B•◦〈Fπ•〉◦F 〈f•〉
q×
B•◦unpack=======⇒ q×B• ◦ 〈Ff•〉.

4.2 Exponentials in gl(J)

As in the 1-categorical case, the definition of currying in gl(J) employs pullbacks.
A pullback of the cospan (X1 −→ X0 ←− X2) in a bicategory B is a bilimit for the
strict pseudofunctor X : (1 −→ 0 ←− 2) → B determined by the cospan. We state
the universal property in the form that will be most useful for our applications.

Lemma 6. The pullback of a cospan (X1
f1−→ X0

f2←− X2) in a bicategory B
is determined, up to equivalence, by the following data and properties: a span

(X1
γ1←− P

γ2−→ X2) in B and an invertible 2-cell filling the diagram on the left
below

P

X1 X2

X0

γ⇐∼=

γ1 γ2

f1 f2

Q

X1 X2

X0

μ⇐∼=

μ1 μ2

f1 f2

such that

Relative full completeness for bicategorical cartesian closed structure 289



1. for any other diagram as on the right above there exists a fill-in (u,Ξ1, Ξ2),
namely a 1-cell u : Q → P and invertible 2-cells Ξi : γi ◦ u ⇒ μi (i = 1, 2)
satisfying

(f2 ◦ γ2) ◦ u f2 ◦ (γ2 ◦ u) f2 ◦ μ2

(f1 ◦ γ1) ◦ u f1 ◦ (γ1 ◦ u) f1 ◦ μ1

∼=

γ◦u

f2◦Ξ2

μ

∼= f1◦Ξ1

2. for any 1-cells v, w : Q → P and 2-cells Ψi : γi ◦ v ⇒ γi ◦ w (i = 1, 2)
satisfying

(f2 ◦ γ2) ◦ v f2 ◦ (γ2 ◦ v) f2 ◦ (γ2 ◦ w) (f2 ◦ γ2) ◦ w

(f1 ◦ γ1) ◦ v f1 ◦ (γ1 ◦ v) f1 ◦ (γ1 ◦ w) (f1 ◦ γ1) ◦ w

∼=

γ◦v

f2◦Ψ2 ∼=

γ◦w

∼= f1◦Ψ1

∼=

there exists a unique 2-cell Ψ : v ⇒ w such that Ψi = γi ◦ Ψ (i = 1, 2).

Example 6. 1. In Cat, the pullback of a cospan (B F−→ X
G←− C) is the full

subcategory of the comma category (F ↓ G) consisting of objects of the form
(B, f, C) for which f : FB → GC is an isomorphism. Note that this differs
from the strict (2-)categorical pullback in Cat, in which every f is required
to be an identity (c.f. [65, Example 2.1]).

2. Like any bilimit, pullbacks in the bicategory Bicat(Bop,Cat) are computed
pointwise (see [53, Proposition 3.6]).

We now define exponentials in the glueing bicategory. Precisely, we extend
Proposition 1 to the following.

Theorem 5. Let (B,Πn(−),=�) and (C,Πn(−),=�) be cc-bicategories such that
C has pullbacks. For any fp-pseudofunctor (J, q×) : (B,Πn(−)) → (C,Πn(−)),
the glueing bicategory gl(J) has a cartesian closed structure with forgetful pseudo-
functor πdom : gl(J) → B strictly preserving products and exponentials.

The evaluation map. We begin by defining the mapping (−)=�(=) and the
evaluation 1-cell eval. For C := (C, c,B), C ′ := (C ′, c′, B′) ∈ gl(J) we set C =�C ′

to be the left-hand vertical leg of the following pullback diagram, in which we
write mB,B′ := λ(J(evalB,B′) ◦ q×B=�B′,B).

C ⊃ C ′ (C =�C ′)

J(B=�B′) (JB=� JB′) (C =� JB′)

ωc,c′⇐

�

pc,c′

qc,c′

λ(c′◦evalC,C′ )

λ(evalJB,JB′ ◦ ((JB=�JB′) × c)) ◦ mB,B′

mB,B′
λ(evalJB,JB′◦((JB=�JB′)×c))

(4)

290 M. Fiore and P. Saville



Example 7. The pullback (4) generalises the well-known definition of a logical rela-
tion of varying arity [36]. Indeed, where J := 〈K〉 is the relative hom-pseudofunctor
for an fp-pseudofunctor (K, q×) : B → X between cc-bicategories, A ∈ B and
X,X ′ ∈ X , the functor mX,X′(A) takes a 1-cell f : KA → (X =�X ′) in X
to the pseudonatural transformation YA × X (K(−), X) ⇒ X (K(−), X ′) with
components λB . λ(ρ : B → A, u : KB → X) . evalX,X′ ◦ 〈f ◦ K(ρ), u〉. Intuitively,
therefore, the pullback enforces the usual closure condition defining a logical
relation at exponential type, while also tracking the isomorphism witnessing that
this condition holds (c.f. [36,3,15]).

Notation 6. For reasons of space—particularly in pasting diagrams—we will
sometimes write c̃ := evalJB,JB′ ◦ ((JB=� JB′) × c) : (JB=� JB′) × C → JB′

when c : C → JB in C.

The evaluation map evalC,C′ is defined to be (evalC,C′◦(qc,c′ × C),EC,C′ , evalB,B′),
where the witnessing 2-cell EC,C′ is given by the pasting diagram below, in which
the unlabelled arrow is q×(B=�B′,B) ◦ (pc,c′ × c).

(C ⊃ C′)× C (C =�C′)× C C′

J(B=�B′)× C (JB=� JB′)× C (C =� JB′)× C

J(B=�B′)× JB (JB=� JB′)× JB

J ((B=�B′)×B) JB′

qc,c′×C

pc,c′×C

pc,c′×c

evalC,C′◦(qc,c′×C)

∼= λ(c′◦evalC,C′ )×C

c′

Φ∼=
mB,B′×C

J(B =�B′)×c ∼=

λ(c̃)×C

(JB =�JB′)×c

ε∼= evalC,JB′

ε∼=

mB,B′×JB

q×
(B =�B′,B)

ε∼= evalJB,JB′

JevalB,B′

Here the bottom ∼= denotes a composite of Φ, structural isomorphisms and
Φ−1, and the top ∼= denotes a composite of ωc,c′ × C with instances of Φ, Φ−1,
and the structural isomorphisms.

The currying operation. Let R := (R, r,Q), C := (C, c,B) and C ′ := (C ′, c′, B′)
and suppose given a 1-cell (t, α, s) : R×C → C ′. We construct λ(t, α, s) using the
universal property (4) of the pullback. To this end, we define invertible composites
Uα and Tα as in the following two diagrams and set Lα := η−1 • e†(U−1

α ◦ α ◦ Tα) :
λ(c′ ◦ evalC,C′) ◦ λt ⇒ (λ(c̃) ◦mB,B′) ◦ (J(λs) ◦ r).

Relative full completeness for bicategorical cartesian closed structure 291



evalC,JB ◦ ((λ(c̃) ◦mB,B′) ◦ (J(λs) ◦ r))× C Js ◦ (q×
Q,B ◦ (r × c)

)

(evalC,JB ◦ (λ(c̃)× C)) ◦ (mB,B′ ◦ (J(λs) ◦ r))× C

c̃ ◦ (mB,B′ ◦ (J(λs) ◦ r))× C J(evalB,B′ ◦ (λs×B)) ◦ (q×
Q,B ◦ (r × c)

)

(evalJB,JB′ ◦ (mB,B′ × JB)) ◦ ((J(λs)× JB) ◦ (r × c))

(

J(evalB,B′) ◦ q×
(B =�B′,B)

) ◦ ((J(λs)× JIdB) ◦ (r × c))

∼=

Uα

εc̃◦(mB,B′◦(J(λs)◦r))×C

∼=

Jεs◦(q×Q,B
◦(r×c))

ε
(Jeval◦q×)

◦(J(λs)×JB)◦(r×c)

The unlabelled arrow is the canonical composite of natλs,idB
with φJ

eval,λ(s)×B

and structural isomorphisms. Tα is then defined using Uα:

evalC,JB′ ◦ (λ(c′ ◦ evalC,C′) ◦ λt)× C c′ ◦ t

(evalC,JB′ ◦ (λ(c′ ◦ evalC,C′)× C)) ◦ (λ(t)× C) c′ ◦ (evalC,C′ ◦ (λ(t)× C))

(c′ ◦ evalC,C′) ◦ (λ(t)× C)

Tα

∼=

ε(c′◦eval)◦(λ(t)×C)

c′◦εt

∼=

Applying the universal property of the pullback (4) to Lα, one obtains a 1-cell
lam(t) and a pair of invertible 2-cells Γc,c′ and Δc,c′ filling the diagram

R

C ⊃ C ′ (C =�C ′)

J(B=�B′) (C =� JB′)

J(λs)◦r

λ(t)

Δc,c′⇒
Γc,c′⇐

lam(t)

ωc,c′⇐

�

pc,c′

qc,c′

λ(c′◦evalC,C′ )

λ(c̃)◦mB,B′

We define λ(t, α, s) :=
(
lam(t), Γc,c′ , λs

)
.

The counit 2-cell. Finally we come to the counit. For a 1-cell t := (t, α, s) :
(R, r,Q)× (C, c,B) → (C ′, c′, B′) the 1-cell eval ◦ (λ(t, α, s)× (C, c,B)

)
unwinds

to the pasting diagram below, in which the unlabelled arrow is q×Q,B ◦ (r × c):

292 M. Fiore and P. Saville



R× C (C ⊃ C ′)× C C ′

JQ× JB J(B=�B′)× JB

J(Q×B) J
(
(B=�B′)×B

)
JB′

(
evalC,C′ ◦ (qc,c′ × C)

) ◦ (lam(t) × C)

Γc,c′×c⇐
r×c

lam(t)×C

EC,C′∼=

qc,c′×c

evalC,C′◦(qc,c′×C)

c′

nat∼=

J(λs)×ψJ
B∼=

J(λs)×JIdB

J(λs)×JB

q×
Q,B

q×
(B =�B′,B)

J(evalB,B′ ◦ (λs × B))

φJ

∼=
J(λs×B) JevalB,B′

For the counit εt we take the 2-cell with first component et defined by

(evalC,C′ ◦ (qc,c′ × C)) ◦ (lam(t)× C) t

evalC,C′ ◦ ((qc,c′ ◦ lam(t))× C) evalC,C′ ◦ (λ(t)× C)

et

∼=

evalC,C′◦(Δc,c′×C)

εt

and second component simply εs : evalB,B′ ◦ (λ(s)×B) ⇒ s. This pair forms an
invertible 2-cell in gl(J). One checks this satisfies the required universal property
in a manner analogous to the 1-categorical case (see [55] for the full details). This
completes the proof of Theorem 5.

5 Relative full completeness

We apply the theory developed in the preceding two sections to prove the relative
full completeness result. As outlined in the introduction, this corresponds to a
proof of conservativity of the theory of rewriting for the higher-order equational
theory of rewriting in STLC over the algebraic equational theory of rewriting in
STPC. We adapt ‘Lafont’s argument’ [39, Annexe C] from the form presented
in [16], for which we require bicategorical versions of the free cartesian category
F×[C] and free cartesian closed category F×,→[C] over a category C. In line with
the strategy for the STLC (c.f. [12, pp. 173–4]), we deal with the contravariance
of the pseudofunctor (−=� =) by restricting to a bicategory of cc-pseudofunctors,
pseudonatural equivalences (that is, pseudonatural transformations for which
each component is a given equivalence), and invertible modifications. We denote
this with the subscript 	,∼=.

Relative full completeness for bicategorical cartesian closed structure 293



Lemma 7. For any bicategory B, fp-bicategory (C,Πn(−)) and cc-bicategory
(D,Πn(−),=�):

1. There exists an fp-bicategory F×[B] and a pseudofunctor η× : B → F×[B]
such that composition with η× induces a biequivalence

fp-Bicat(F×[B], C) 	−→ Bicat(B, C)
2. There exists a cc-bicategory F×,→[B] and a pseudofunctor η=� : B → F×,→[B]

such that composition with η=� induces a biequivalence

cc-Bicat	,∼=(F×,→[B],D)
	−→ Bicat(B,D)

Proof (sketch). A syntactic construction suffices: one defines formal products
and exponentials and then quotients by the axioms (see [48, p. 79] or [55]).

Thus, for any bicategory B, fp-bicategory (C,Πn(−)), and pseudofunctor
F : B → C there exists an fp-pseudofunctor F# : F×[B] → C and an equivalence
F# ◦ η× 	 F . Moreover, for any fp-pseudofunctor G : F×[B] → C such that
G ◦ η× 	 F one has G 	 F#. A corresponding result holds for cc-bicategories
and cc-pseudofunctors.

Theorem 7. For any bicategory B the universal fp-pseudofunctor ι : F×[B] →
F×,→[B] extending η=� is locally an equivalence. Hence η=� : B → F×,→[B] is
locally an equivalence.

Proof. Since ι preserves finite products, the bicategory gl(〈ι〉) is cartesian closed
(Theorem 5). The composite K := Y ◦ η× : B → gl(〈ι〉) therefore induces a
cc-pseudofunctor K# : F×,→[B] → gl(〈ι〉).

First observe that (K# ◦ ι) ◦ η× 	 K# ◦ η=� 	 K = Y ◦ η×. Since Y is
canonically an fp-pseudofunctor (Remark 4), it follows that K# ◦ ι 	 Y. Since Y
is locally an equivalence (Lemma 5), Lemma 1(1) entails that K# ◦ ι is locally an
equivalence.

Next, examining the definition of Y one sees that πdom ◦Y = ι, and so

(πdom ◦K#) ◦ η=� 	 (πdom ◦Y) ◦ η× 	 ι ◦ η× 	 η=�

It follows that πdom ◦K# 	 idF×,→[B], and hence that πdom ◦K# is also locally
an equivalence.

Now consider the composite F×[B] ι−→ F×,→[B] K#

−−→ gl(〈ι〉) πdom−−−→ F×,→[B].
By Lemma 1(2) and the preceding, ι is locally an equivalence. Finally, it is direct
from the construction of F×[B] that η× is locally an equivalence; thus, so are
ι ◦ η× 	 η=�.

Acknowledgements. We thank all the anonymous reviewers for their comments:
these improved the paper substantially. We are especially grateful to the reviewer
who pointed out an oversight in the original formulation of Lemma 1(2), which
consequently affected the argument in Theorem 7, and provided the elegant fix
therein.

The second author was supported by a Royal Society University Research
Fellow Enhancement Award.

294 M. Fiore and P. Saville



References

1. Abbott, M.G.: Categories of containers. Ph.D. thesis, University of Leicester (2003)

2. Abramsky, S., Jagadeesan, R.: Games and full completeness for multi-
plicative linear logic. Journal of Symbolic Logic 59(2), 543–574 (1994).
https://doi.org/10.2307/2275407

3. Alimohamed, M.: A characterization of lambda definability in categorical models
of implicit polymorphism. Theoretical Computer Science 146(1-2), 5–23 (1995).
https://doi.org/10.1016/0304-3975(94)00283-O

4. Balat, V., Di Cosmo, R., Fiore, M.: Extensional normalisation and typed-directed
partial evaluation for typed lambda calculus with sums. In: Proceedings of the
31st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. pp. 64–76 (2004)

5. Bénabou, J.: Introduction to bicategories. In: Reports of the Midwest Category
Seminar. pp. 1–77. Springer Berlin Heidelberg, Berlin, Heidelberg (1967)

6. Bloom, S.L., Ésik, Z., Labella, A., Manes, E.G.: Iteration 2-theories. Applied Cate-
gorical Structures 9(2), 173–216 (2001). https://doi.org/10.1023/a:1008708924144

7. Borceux, F.: Bicategories and distributors, Encyclopedia of Mathematics and
its Applications, vol. 1, pp. 281–324. Cambridge University Press (1994).
https://doi.org/10.1017/CBO9780511525858.009

8. Carboni, A., Kelly, G.M., Walters, R.F.C., Wood, R.J.: Cartesian bicategories II.
Theory and Applications of Categories 19(6), 93–124 (2008), http://www.tac.mta.
ca/tac/volumes/19/6/19-06abs.html

9. Carboni, A., Lack, S., Walters, R.F.C.: Introduction to extensive and distribu-
tive categories. Journal of Pure and Applied Algebra 84(2), 145–158 (1993).
https://doi.org/10.1016/0022-4049(93)90035-r

10. Carboni, A., Walters, R.F.C.: Cartesian bicategories I. Journal of Pure and Applied
Algebra 49(1), 11–32 (1987). https://doi.org/10.1016/0022-4049(87)90121-6

11. Castellan, S., Clairambault, P., Rideau, S., Winskel, G.: Games and strategies as
event structures. Logical Methods in Computer Science 13 (2017)

12. Crole, R.L.: Categories for Types. Cambridge University Press (1994).
https://doi.org/10.1017/CBO9781139172707

13. Dagand, P.E., McBride, C.: A categorical treatment of ornaments. In: Pro-
ceedings of the 28th Annual ACM/IEEE Symposium on Logic in Computer
Science. pp. 530–539. IEEE Computer Society, Washington, DC, USA (2013).
https://doi.org/10.1109/LICS.2013.60

14. Fiore, M.: Axiomatic Domain Theory in Categories of Partial Maps. Distinguished
Dissertations in Computer Science, Cambridge University Press (1996)

15. Fiore, M.: Semantic analysis of normalisation by evaluation for typed lambda
calculus. In: Proceedings of the 4th ACM SIGPLAN International Conference on
Principles and Practice of Declarative Programming. pp. 26–37. ACM, New York,
NY, USA (2002). https://doi.org/10.1145/571157.571161

16. Fiore, M., Di Cosmo, R., Balat, V.: Remarks on isomorphisms in typed lambda
calculi with empty and sum types. In: Proceedings of the 28th Annual IEEE
Symposium on Logic in Computer Science. pp. 147–156. IEEE Computer Society
Press (2002). https://doi.org/10.1109/LICS.2002.1029824

17. Fiore, M., Gambino, N., Hyland, M., Winskel, G.: The cartesian closed bicategory
of generalised species of structures. Journal of the London Mathematical Society
77(1), 203–220 (2007). https://doi.org/10.1112/jlms/jdm096

Relative full completeness for bicategorical cartesian closed structure 295

https://doi.org/10.2307/2275407
https://doi.org/10.1016/0304-3975(94)00283-O
https://doi.org/10.1023/a:1008708924144
https://doi.org/10.1017/CBO9780511525858.009
http://www.tac.mta.ca/tac/volumes/19/6/19-06abs.html
http://www.tac.mta.ca/tac/volumes/19/6/19-06abs.html
https://doi.org/10.1016/0022-4049(93)90035-r
https://doi.org/10.1016/0022-4049(87)90121-6
https://doi.org/10.1017/CBO9781139172707
https://doi.org/10.1109/LICS.2013.60
https://doi.org/10.1145/571157.571161
https://doi.org/10.1109/LICS.2002.1029824
https://doi.org/10.1112/jlms/jdm096


18. Fiore, M., Gambino, N., Hyland, M., Winskel, G.: Relative pseudomonads, Kleisli
bicategories, and substitution monoidal structures. Selecta Mathematica New Series
(2017)

19. Fiore, M., Joyal, A.: Theory of para-toposes. Talk at the Category Theory 2015
Conference. Departamento de Matematica, Universidade de Aveiro (Portugal)

20. Fiore, M., Saville, P.: A type theory for cartesian closed bicategories. In: Proceedings
of the 34th Annual ACM/IEEE Symposium on Logic in Computer Science (2019).
https://doi.org/10.1109/LICS.2019.8785708

21. Fiore, M., Saville, P.: Coherence and normalisation-by-evaluation for bicategorical
cartesian closed structure. Preprint (2020)

22. Fiore, M., Simpson, A.: Lambda definability with sums via Grothendieck logical
relations. In: Girard, J.Y. (ed.) Typed lambda calculi and applications: 4th inter-
national conference. pp. 147–161. Springer Berlin Heidelberg, Berlin, Heidelberg
(1999)

23. Freyd, P.: Algebraically complete categories. In: Lecture Notes in Mathematics, pp.
95–104. Springer Berlin Heidelberg (1991). https://doi.org/10.1007/bfb0084215

24. Freyd, P.J., Scedrov, A.: Categories, Allegories. Elsevier North Holland (1990)
25. Gambino, N., Joyal, A.: On operads, bimodules and analytic functors. Memoirs of

the American Mathematical Society 249(1184), 153–192 (2017)
26. Gambino, N., Kock, J.: Polynomial functors and polynomial monads. Mathemati-

cal Proceedings of the Cambridge Philosophical Society 154(1), 153–192 (2013).
https://doi.org/10.1017/S0305004112000394

27. Ghani, N.: Adjoint rewriting. Ph.D. thesis, University of Edinburgh (1995)
28. Gibbons, J.: Conditionals in distributive categories. Tech. rep., University of Oxford

(1997)
29. G.L. Cattani, Fiore, M., Winskel, G.: A theory of recursive domains with applications

to concurrency. In: Proceedings of the 13th Annual IEEE Symposium on Logic in
Computer Science. pp. 214–225. IEEE Computer Society (1998)

30. Gurski, N.: An Algebraic Theory of Tricategories. University of Chicago, Department
of Mathematics (2006)

31. Hasegawa, M.: Logical predicates for intuitionistic linear type theories. In: Girard,
J.Y. (ed.) Typed lambda calculi and applications: 4th international conference. pp.
198–213. Springer Berlin Heidelberg, Berlin, Heidelberg (1999)

32. Hilken, B.: Towards a proof theory of rewriting: the simply typed 2λ-calculus. The-
oretical Computer Science 170(1), 407–444 (1996). https://doi.org/10.1016/S0304-
3975(96)80713-4

33. Hirschowitz, T.: Cartesian closed 2-categories and permutation equivalence in
higher-order rewriting. Logical Methods in Computer Science 9, 1–22 (2013)

34. Jay, C.B., Ghani, N.: The virtues of eta-expansion. Journal of Functional Program-
ming 5(2), 135–154 (1995). https://doi.org/10.1017/S0956796800001301

35. Johann, P., Polonsky, P.: Higher-kinded data types: Syntax and semantics. In:
34th Annual ACM/IEEE Symposium on Logic in Computer Science. IEEE (2019).
https://doi.org/10.1109/lics.2019.8785657

36. Jung, A., Tiuryn, J.: A new characterization of lambda definability. In: Bezem, M.,
Groote, J.F. (eds.) Typed Lambda Calculi and Applications. pp. 245–257. Springer
Berlin Heidelberg, Berlin, Heidelberg (1993)

37. Lack, S.: A 2-Categories Companion, pp. 105–191. Springer New York, New York,
NY (2010)

38. Lack, S., Walters, R.F.C., Wood, R.J.: Bicategories of spans as cartesian bicategories.
Theory and Applications of Categories 24(1), 1–24 (2010)

296 M. Fiore and P. Saville

https://doi.org/10.1109/LICS.2019.8785708
https://doi.org/10.1007/bfb0084215
https://doi.org/10.1017/S0305004112000394
https://doi.org/10.1016/S0304-3975(96)80713-4
https://doi.org/10.1016/S0304-3975(96)80713-4
https://doi.org/10.1017/S0956796800001301
https://doi.org/10.1109/lics.2019.8785657


39. Lafont, Y.: Logiques, catégories et machines. Ph.D. thesis, Université Paris VII
(1987)

40. Lambek, J., Scott, P.J.: Introduction to Higher Order Categorical Logic. Cambridge
University Press, New York, NY, USA (1986)

41. Leinster, T.: Basic bicategories (May 1998), https://arxiv.org/pdf/math/9810017.
pdf

42. Leinster, T.: Higher operads, higher categories. No. 298 in London Mathematical
Society Lecture Note Series, Cambridge University Press (2004)

43. Ma, Q.M., Reynolds, J.C.: Types, abstraction, and parametric polymorphism,
part 2. In: Brookes, S., Main, M., Melton, A., Mislove, M., Schmidt, D. (eds.)
Mathematical Foundations of Programming Semantics. pp. 1–40. Springer Berlin
Heidelberg, Berlin, Heidelberg (1992)

44. Mac Lane, S.: Categories for the Working Mathematician, Graduate Texts
in Mathematics, vol. 5. Springer-Verlag New York, second edn. (1998).
https://doi.org/10.1007/978-1-4757-4721-8

45. Mac Lane, S., Paré, R.: Coherence for bicategories and indexed categories. Journal
of Pure and Applied Algebra 37, 59–80 (1985). https://doi.org/10.1016/0022-
4049(85)90087-8

46. Marmolejo, F., Wood, R.J.: Kan extensions and lax idempotent pseudomonads.
Theory and Applications of Categories 26(1), 1–29 (2012)

47. Mitchell, J.C., Scedrov, A.: Notes on sconing and relators. In: Börger, E., J., G.,
Kleine Büning, H., Martini, S., Richter, M.M. (eds.) Computer Science Logic. pp.
352–378. Springer Berlin Heidelberg, Berlin, Heidelberg (1993)

48. Ouaknine, J.: A two-dimensional extension of Lambek’s categorical proof theory.
Master’s thesis, McGill University (1997)

49. Paquet, H.: Probabilistic concurrent game semantics. Ph.D. thesis, University of
Cambridge (2020)

50. Plotkin, G.D.: Lambda-definability and logical relations. Tech. rep., University of
Edinburgh School of Artificial Intelligence (1973), memorandum SAI-RM-4

51. Power, A.J.: An abstract formulation for rewrite systems. In: Pitt, D.H., Rydeheard,
D.E., Dybjer, P., Pitts, A.M., Poigné, A. (eds.) Category Theory and Computer
Science. pp. 300–312. Springer Berlin Heidelberg, Berlin, Heidelberg (1989)

52. Power, A.J.: Coherence for bicategories with finite bilimits I. In: Gray, J.W.,
Scedrov, A. (eds.) Categories in Computer Science and Logic: Proceedings of the
AMS-IMS-SIAM Joint Summer Research Conference, vol. 92, pp. 341–349. AMS
(1989)

53. Power, A.J.: A general coherence result. Journal of Pure and Applied Algebra 57(2),
165–173 (1989). https://doi.org/https://doi.org/10.1016/0022-4049(89)90113-8

54. Rydeheard, D.E., Stell, J.G.: Foundations of equational deduction: A categorical
treatment of equational proofs and unification algorithms. In: Pitt, D.H., Poigné,
A., Rydeheard, D.E. (eds.) Category Theory and Computer Science. pp. 114–139.
Springer Berlin Heidelberg, Berlin, Heidelberg (1987)

55. Saville, P.: Cartesian closed bicategories: type theory and coherence. Ph.D. thesis,
University of Cambridge (Submitted)

56. Seely, R.A.G.: Modelling computations: A 2-categorical framework. In: Gries, D.
(ed.) Proceedings of the 2nd Annual IEEE Symposium on Logic in Computer
Science. pp. 65–71. IEEE Computer Society Press (June 1987)

57. Statman, R.: Logical relations and the typed λ-calculus. Information and Control
65, 85–97 (1985)

58. Stell, J.: Modelling term rewriting systems by sesqui-categories. In: Proc. Catégories,
Algèbres, Esquisses et Néo-Esquisses (1994)

Relative full completeness for bicategorical cartesian closed structure 297

https://arxiv.org/pdf/math/9810017.pdf
https://arxiv.org/pdf/math/9810017.pdf
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1016/0022-4049(85)90087-8
https://doi.org/10.1016/0022-4049(85)90087-8
https://doi.org/https://doi.org/10.1016/0022-4049(89)90113-8


59. Street, R.: Fibrations in bicategories. Cahiers de Topologie et Géométrie
Différentielle Catégoriques 21(2), 111–160 (1980), https://eudml.org/doc/91227

60. Street, R.: Categorical structures. In: Hazewinkel, M. (ed.) Handbook of Algebra,
vol. 1, chap. 15, pp. 529–577. Elsevier (1995)

61. Tabareau, N.: Aspect oriented programming: A language for 2-categories.
In: Proceedings of the 10th International Workshop on Foundations of
Aspect-oriented Languages. pp. 13–17. ACM, New York, NY, USA (2011).
https://doi.org/10.1145/1960510.1960514

62. Taylor, P.: Practical Foundations of Mathematics, Cambridge Studies in Advanced
Mathematics, vol. 59. Cambridge University Press (1999)

63. Troelstra, A.S., Schwichtenberg, H.: Basic proof theory. No. 43 in Cambridge Tracts
in Theoretical Computer Science, Cambridge University Press, second edn. (2000)

64. Verity, D.: Enriched categories, internal categories and change of base. Ph.D. thesis,
University of Cambridge (1992), TAC reprint available at http://www.tac.mta.ca/
tac/reprints/articles/20/tr20abs.html

65. Weber, M.: Yoneda structures from 2-toposes. Applied Categorical Structures 15(3),
259–323 (2007). https://doi.org/10.1007/s10485-007-9079-2

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

298 M. Fiore and P. Saville

https://eudml.org/doc/91227
https://doi.org/10.1145/1960510.1960514
http://www.tac.mta.ca/tac/reprints/articles/20/tr20abs.html
http://www.tac.mta.ca/tac/reprints/articles/20/tr20abs.html
https://doi.org/10.1007/s10485-007-9079-2
http://creativecommons.org/licenses/by/4.0/


A duality theoretic view on limits of finite
structures�

Mai Gehrke1, Tomáš Jakl1, and Luca Reggio2(�)

1 CNRS and Université Côte d’Azur, Nice, France
{mgehrke,tomas.jakl}@unice.fr

2 Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech
Republic and Mathematical Institute, University of Bern, Switzerland

luca.reggio@math.unibe.ch

Abstract. A systematic theory of structural limits for finite models has
been developed by Nešetřil and Ossona de Mendez. It is based on the
insight that the collection of finite structures can be embedded, via a
map they call the Stone pairing, in a space of measures, where the desired
limits can be computed. We show that a closely related but finer grained
space of measures arises — via Stone-Priestley duality and the notion of
types from model theory — by enriching the expressive power of first-
order logic with certain “probabilistic operators”. We provide a sound
and complete calculus for this extended logic and expose the functorial
nature of this construction.
The consequences are two-fold. On the one hand, we identify the logical
gist of the theory of structural limits. On the other hand, our construction
shows that the duality-theoretic variant of the Stone pairing captures the
adding of a layer of quantifiers, thus making a strong link to recent work
on semiring quantifiers in logic on words. In the process, we identify the
model theoretic notion of types as the unifying concept behind this link.
These results contribute to bridging the strands of logic in computer sci-
ence which focus on semantics and on more algorithmic and complexity
related areas, respectively.

Keywords: Stone duality · finitely additive measures · structural limits
· finite model theory · formal languages · logic on words

1 Introduction

While topology plays an important role, via Stone duality, in many parts of se-
mantics, topological methods in more algorithmic and complexity oriented areas
of theoretical computer science are not so common. One of the few examples,

� This project has been supported by the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation program (grant agree-
ment No.670624). Luca Reggio has received an individual support under the grants
GA17-04630S of the Czech Science Foundation, and No.184693 of the Swiss National
Science Foundation.

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 299–318, 2020.
https://doi.org/10.1007/978-3-030-45231-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_16&domain=pdf


the one we want to consider here, is the study of limits of finite relational struc-
tures. We will focus on the structural limits introduced by Nešetřil and Ossona
de Mendez [15,17]. These provide a common generalisation of various notions of
limits of finite structures studied in probability theory, random graphs, struc-
tural graph theory, and finite model theory. The basic construction in this work
is the so-called Stone pairing. Given a relational signature σ and a first-order
formula ϕ in the signature σ with free variables v1, . . . , vn, define

〈ϕ,A〉 = |{a ∈ An | A |= ϕ(a)}|
|A|n

(the probability that a random
assignment in A satisfies ϕ).

(1)

Nešetřil and Ossona de Mendez view the map A �→ 〈- , A〉 as an embedding
of the finite σ-structures into the space of probability measures over the Stone
space dual to the Lindenbaum-Tarski algebra of all first-order formulas in the
signature σ. This space is complete and thus provides the desired limit objects
for all sequences of finite structures which embed as Cauchy sequences.

Another example of topological methods in an algorithmically oriented area
of computer science is the use of profinite monoids in automata theory. In this
setting, profinite monoids are the subject of the extensive theory, based on theo-
rems by Eilenberg and Reiterman, and used, among others, to settle decidability
questions [18]. In [4], it was shown that this theory may be understood as an
application of Stone duality, thus making a bridge between semantics and more
algorithmically oriented work. Bridging this semantics-versus-algorithmics gap
in theoretical computer science has since gained quite some momentum, notably
with the recent strand of research by Abramsky, Dawar and co-workers [2,3]. In
this spirit, a natural question is whether the structural limits of Nešetřil and Os-
sona de Mendez also can be understood semantically, and in particular whether
the topological component may be seen as an application of Stone duality.

More precisely, recent work on understanding quantifiers in the setting of
logic on finite words [5] has shown that adding a layer of certain quantifiers
(such as classical and modular quantifiers) corresponds dually to measure space
constructions. The measures involved are not classical but only finitely additive
and they take values in finite semirings rather than in the unit interval. Nev-
ertheless, this appearance of measures as duals of quantifiers begs the further
question whether the measure spaces in the theory of structural limits may be
obtained via Stone duality from a semantic addition of certain quantifiers to
classical first-order logic.

The purpose of this paper is to address this question. Our main result is that
the Stone pairing of Nešetřil and Ossona de Mendez is related by a retraction
to a Stone space of measures, which is dual to the Lindenbaum-Tarski algebra
of a logic fragment obtained from first-order logic by adding one layer of prob-
abilistic quantifiers, and which arises in exactly the same way as the spaces of
semiring-valued measures in logic on words. That is, the Stone pairing, although
originating from other considerations, may be seen as arising by duality from a
semantic construction.

300 M. Gehrke et al.



A foreseeable hurdle is that spaces of classical measures are valued in the unit
interval [0, 1] which is not zero-dimensional and hence outside the scope of Stone
duality. This is well-known to cause problems e.g. in attempts to combine non-
determinism and probability in domain theory [12]. However, in the structural
limits of Nešetřil and Ossona de Mendez, at the base, one only needs to talk
about finite models equipped with normal distributions and thus only the finite
intervals In = {0, 1

n ,
2
n , . . . , 1} are involved. A careful duality-theoretic analysis

identifies a codirected diagram (i.e. an inverse limit system) based on these
intervals compatible with the Stone pairing. The resulting inverse limit, which we
denote Γ, is a Priestley space. It comes equipped with an algebra-like structure,
which allows us to reformulate many aspects of the theory of structural limits
in terms of Γ-valued measures as opposed to [0, 1]-valued measures.

The analysis justifying the structure of Γ is based on duality theory for double
quasi-operator algebras [7,8]. In the presentation, we have tried to compromise
between giving interesting topo-relational insights into why Γ is as it is, and not
overburdening the reader with technical details. Some interesting features of Γ,
dictated by the nature of the Stone pairing and the ensuing codirected diagram,
are that

• Γ is based on a version of [0, 1] in which the rationals are doubled;

• Γ comes with section-retraction maps [0, 1] Γ [0, 1]ι γ
;

• the map ι is lower semicontinuous while the map γ is continuous.

These features are a consequence of general theory and precisely allow us to
witness continuous phenomena relative to [0, 1] in the setting of Γ.

Our contribution

We show that the ambient measure space for the structural limits of Nešetřil
and Ossona de Mendez can be obtained via “adding a layer of quantifiers” in
a suitable enrichment of first-order logic. The conceptual framework for seeing
this is that of types from classical model theory. More precisely, we will see that
a variant of the Stone pairing is a map into a space of measures with values in a
Priestley space Γ. Further, we show that this map is in fact the embedding of the
finite structures into the space of (0-)types of an extension of first-order logic,
which we axiomatise. On the other hand, Γ-valued measures and [0, 1]-valued
measures are tightly related by a retraction-section pair which allows the transfer
of properties. These results identify the logical gist of the theory of structural
limits and provide a new interesting connection between logic on words and the
theory of structural limits in finite model theory.

Outline of the paper. In section 2 we briefly recall Stone-Priestley duality, its
application in logic via spaces of types, and the particular instance of logic on
words (needed only to show the similarity of the constructions). In Section 3 we
introduce the Priestley space Γ with its additional operations, and show that
it admits [0, 1] as a retract. The spaces of Γ-valued measures are introduced in

A duality theoretic view on limits of finite structures 301



Section 4, and the retraction of Γ onto [0, 1] is lifted to the appropriate spaces
of measures. In Section 5 we introduce the Γ-valued Stone pairing and make
the link with logic on words. Further, we compare convergence in the space of
Γ-valued measures with the one considered by Nešetřil and Ossona de Mendez.
Finally, in Section 6 we show that constructing the space of Γ-valued measures
dually corresponds to enriching the logic with probabilistic operators.

2 Preliminaries

Notation. Throughout this paper, if X
f−→ Y

g−→ Z are functions, their composi-
tion is denoted g · f . For a subset S ⊆ X, f�S : S → Y is the obvious restriction.
Given any set T , ℘(T ) denotes its power-set. Further, for a poset P , P ∂ is the
poset obtained by turning the order of P upside down.

2.1 Stone-Priestley duality

In this paper, we will need Stone duality for bounded distributive lattices in the
order topological form due to Priestley [19]. It is a powerful and well established
tool in the study of propositional logic and semantics of programming languages,
see e.g. [9,1] for major landmarks. We briefly recall how this duality works.

A compact ordered space is a pair (X,≤) where X is a compact space and ≤ is
a partial order on X which is closed in the product topology of X×X. (Note that
such a space is automatically Hausdorff). A compact ordered space is a Priestley
space provided it is totally order-disconnected. That is, for all x, y ∈ X such that
x 	≤ y, there is a clopen (i.e. simultaneously closed and open) C ⊆ X which is
an up-set for ≤, and satisfies x ∈ C but y /∈ C. We recall the construction of the
Priestley space of a distributive lattice D.3

A non-empty proper subset F ⊂ D is a prime filter if it is (i) upward closed
(in the natural order of D), (ii) closed under finite meets, and (iii) if a∨ b ∈ F ,
either a ∈ F or b ∈ F . Denote by XD the set of all prime filters of D. By Stone’s
Prime Filter Theorem, the map

�-� : D → ℘(XD), a �→ �a� = {F ∈ XD | a ∈ F}
is an embedding. Priestley’s insight was that D can be recovered from XD, if
the latter is equipped with the inclusion order and the topology generated by
the sets of the form �a� and their complements. This makes XD into a Priestley
space — the dual space of D — and the map �-� is an isomorphism between
D and the lattice of clopen up-sets of XD. Conversely, any Priestley space X
is the dual space of the lattice of its clopen up-sets. We call the latter the dual
lattice ofX. This correspondence extends to morphisms. In fact, Priestley duality
states that the category of distributive lattices with homomorphisms is dually
equivalent to the category of Priestley spaces and continuous monotone maps.

3 We assume all distributive lattices are bounded, with the bottom and top denoted
by 0 and 1, respectively. The bounds need to be preserved by homomorphisms.

302 M. Gehrke et al.



When restricting to Boolean algebras, we recover the celebrated Stone duality
restricted to Boolean algebras and Boolean spaces, i.e. compact Hausdorff spaces
in which the clopen subsets form a basis.

2.2 Stone duality and logic: type spaces

The theory of types is an important tool for first-order logic. We briefly recall the
concept as it is closely related to, and provides the link between, two otherwise
unrelated occurrences of topological methods in theoretical computer science.

Consider a signature σ and a first-order theory T in this signature. For each
n ∈ N, let Fmn denote the set of first-order formulas whose free variables are
among v = {v1, . . . , vn}, and let Modn(T ) denote the class of all pairs (A,α)
where A is a model of T and α is an interpretation of v in A. Then the satis-
faction relation, (A,α) |= ϕ, is a binary relation from Modn to Fmn. It induces
the equivalence relations of elementary equivalence ≡ and logical equivalence ≈
on these sets, respectively. The quotient FOn(T ) = Fmn/≈ carries a natural
Boolean algebra structure and is known as the n-th Lindenbaum-Tarski algebra
of T . Its dual space is Typn(T ), the space of n-types of T , whose points can
be identified with elements of Modn(T )/≡. The Boolean algebra FO(T ) of all
first-order formulas modulo logical equivalence over T is the directed colimit of
the FOn(T ) for n ∈ N while its dual space, Typ(T ), is the codirected limit of
the Typn(T ) for n ∈ N and consists of models equipped with interpretations of
the full set of variables.

If we want to study finite models, there are two equivalent approaches: e.g. at
the level of sentences, we can either consider the theory Tfin of finite T -models,
or the closure of the collection of all finite T -models in the space Typ0(T ). This
closure yields a space, which should tell us about finite T -structures. Indeed, it is
equal to Typ0(Tfin), the space of pseudofinite T -structures. For an application of
this, see [10]. Below, we will see an application in finite model theory of the case
T = ∅ (in this case we write FO(σ) and Typ(σ) instead of FO(∅) and Typ(∅)).

In light of the theory of types as exposed above, the Stone pairing of Nešetřil
and Ossona de Mendez (see equation (1)) can be regarded as an embedding of
finite structures into the space of probability measures on Typ(σ), which set-
theoretically are finitely additive functions FO(σ) → [0, 1].

2.3 Duality and logic on words

As mentioned in the introduction, spaces of measures arise via duality in logic on
words [5]. Logic on words, as introduced by Büchi, see e.g. [14] for a recent survey,
is a variation and specialisation of finite model theory where only models based
on words are considered. I.e., a word w ∈ A∗ is seen as a relational structure
on {1, . . . , |w|}, where |w| is the length of w, equipped with a unary relation
Pa, for each a ∈ A, singling out the positions in the word where the letter a
appears. Each sentence ϕ in a language interpretable over these structures yields
a language Lϕ ⊆ A∗ consisting of the words satisfying ϕ. Thus, logic fragments

A duality theoretic view on limits of finite structures 303



are considered modulo the theory of finite words and the Lindenbaum-Tarski
algebras are subalgebras of ℘(A∗) consisting of the appropriate Lϕ’s, cf. [10] for
a treatment of first-order logic on words.

For lack of logical completeness, the duals of the Lindenbaum-Tarski alge-
bras have more points than those given by models. Nevertheless, the dual spaces
of types, which act as compactifications and completions of the collections of
models, provide a powerful tool for studying logic fragments by topological
means. The central notion is that of recognition, in which, a Boolean subalgebra
B ⊆ ℘(A∗) is studied by means of the dual map η : β(A∗) → XB. Here β(A∗) is
the Stone dual of℘(A∗), also known in topology as the Čech-Stone compactifica-
tion of the discrete space A∗, and XB is the Stone dual of B. The set A∗ embeds
in β(A∗), and η is uniquely determined by its restriction η0 : A

∗ → XB. Now,
Stone duality implies that L ⊆ A∗ is in B iff there is a clopen subset V ⊆ XB so
that η−1

0 (V ) = L. Anytime the latter is true for a map η and a language L as
above, one says that η recognises L.4

When studying logic fragments via recognition, the following inductive step
is central: given a notion of quantifier and a recogniser for a Boolean algebra
of formulas with a free variable, construct a recogniser for the Boolean algebra
generated by the formulas obtained by applying the quantifier. This problem was
solved in [5], using duality theory, in a general setting of semiring quantifiers. The
latter are defined as follows: let (S,+, ·, 0S , 1S) be a semiring, and k ∈ S. Given a
formula ψ(v), the formula ∃S,kv.ψ(v) is true of a word w ∈ A∗ iff k = 1S+· · ·+1S ,
m times, where m is the number of assignments of the variable v in w satisfying
ψ(v). If S = Z/qZ, we obtain the so-called modular quantifiers, and for S the
two-element lattice we recover the existential quantifier ∃.

To deal with formulas with a free variable, one considers maps of the form
f : β((A × 2)∗) → X (the extra bit in A × 2 is used to mark the interpretation
of the free variable). In [5] (see also [6]), it was shown that Lψ(v) is recognised
by f iff for every k ∈ S the language L∃S,kv.ψ(v) is recognised by the composite

ξ : A∗ R−−−−−→ Ŝ(β((A× 2)∗))
̂S(f)−−−−−→ Ŝ(X), (2)

where Ŝ(X) is the space of finitely additive S-valued measures on X, and R
maps w ∈ A∗ to the measure μw : ℘((A×2)∗) → S sending K ⊆ (A×2)∗ to the
sum 1S + · · ·+1S , nw,K times. Here, nw,K is the number of interpretations α of
the free variable v in w such that the pair (w,α), seen as an element of (A×2)∗,
belongs to K. Finally, Ŝ(f) sends a measure to its pushforward along f .

3 The space Γ

Central to our results is a Priestley space Γ closely related to [0, 1], in which our
measures will take values. Its construction comes from the insight that the range

4 Here, being beyond the scope of this paper, we are ignoring the important role of
the monoid structure available on the spaces (in the form of profinite monoids or
BiMs, cf. [10,5]).

304 M. Gehrke et al.



of the Stone pairing 〈- , A〉, for a finite structure A and formulas restricted to a
fixed number of free variables, can be confined to a chain In = {0, 1

n ,
2
n , . . . , 1}.

Moreover, the floor functions fmn,n : Imn � In are monotone surjections. The
ensuing system {fmn,n : Imn � In | m,n ∈ N} can thus be seen as a codirected
diagram of finite discrete posets and monotone maps. Let us define Γ to be the
limit of this diagram. Then, Γ is naturally equipped with a structure of Priestley
space, see e.g. [11, Corollary VI.3.3], and can be represented as based on the set

{r− | r ∈ (0, 1]} ∪ {q◦ | q ∈ Q ∩ [0, 1]}.
The order of Γ is the unique total order which has 0◦ as bottom element, satisfies
r∗ < s∗ if and only if r < s for ∗ ∈ {−, ◦}, and such that q◦ is a cover of q−

for every rational q ∈ (0, 1] (i.e. q− < q◦, and there is no element strictly in
between). In a sense, the values q− represent approximations of the values of the
form q◦. Cf. Figure 1. The topology of Γ is generated by the sets of the form

↑p◦ = {x ∈ Γ | p◦ ≤ x} and ↓q− = {x ∈ Γ | x ≤ q−}
for p, q ∈ Q ∩ [0, 1] such that q 	= 0. The distributive lattice dual to Γ, denoted
by L, is given by

L = {⊥} ∪ (Q ∩ [0, 1])∂ , with ⊥ <L q and q ≤L p for every p ≤ q in Q ∩ [0, 1].

⊥ 1

0

L =
r−

q◦
q−

1◦
1−

0◦

Γ =

Fig. 1. The Priestley space Γ and its dual lattice L

3.1 The algebraic structure on Γ

When defining measures we need an algebraic structure available on the space of
values. The space Γ fulfils this requirement as it comes equipped with a partial
operation − : dom(−) → Γ, where dom(−) = {(x, y) ∈ Γ× Γ | y ≤ x} and

r◦ − s◦ = (r − s)◦

r− − s◦ = (r − s)−
r◦ − s−

r− − s−

}
=

{
(r − s)◦ if r − s ∈ Q
(r − s)− otherwise.

In fact, this (partial) operation is dual to the truncated addition on the lattice
L. However, explaining this would require us to delve into extended Priestley
duality for lattices with operations, which is beyond the scope of this paper. See
[9] and also [7,8] for details. It also follows from the general theory that there
exists another partial operation definable from −, namely:

∼ : dom(−) → Γ, x ∼ y =
∨

{x− q◦ | y < q◦ ≤ x}.

A duality theoretic view on limits of finite structures 305



Next, we collect some basic properties of − and ∼, needed in Section 4, which
follow from the general theory of [7,8]. First, recall that a map into an ordered
topological space is lower (resp. upper) semicontinuous provided the preimage
of any open down-set (resp. open up-set) is open.

Lemma 1. If dom(−) is seen as a subspace of Γ× Γ∂ , the following hold:

1. dom(−) is a closed up-set in Γ× Γ∂ ;
2. both − : dom(−) → Γ and ∼ : dom(−) → Γ are monotone in the first coor-

dinate, and antitone in the second;
3. − : dom(−) → Γ is lower semicontinuous;
4. ∼ : dom(−) → Γ is upper semicontinuous.

3.2 The retraction Γ � [0, 1]

In this section we show that, with respect to appropriate topologies, the unit
interval [0, 1] can be obtained as a topological retract of Γ, in a way which is
compatible with the operation −. This will be important in Sections 4 and 5,
where we need to move between [0,1]-valued and Γ-valued measures. Let us
define the monotone surjection given by collapsing the doubled elements:

γ : Γ → [0, 1], r−, r◦ �→ r. (3)

The map γ has a right adjoint, given by

ι : [0, 1] → Γ, r �→
{
r◦ if r ∈ Q
r− otherwise.

(4)

Indeed, it is readily seen that γ(y) ≤ x iff y ≤ ι(x), for all y ∈ Γ and x ∈ [0, 1].
The composition γ · ι coincides with the identity on [0, 1], i.e. ι is a section of γ.
Moreover, this retraction lifts to a topological retract provided we equip Γ and
[0, 1] with the topologies consisting of the open down-sets:

Lemma 2. The map γ : Γ → [0, 1] is continuous and the map ι : [0, 1] → Γ is
lower semicontinuous.

Proof. To check continuity of γ observe that, for a rational q ∈ (0, 1), γ−1(q, 1]
and γ−1[0, q) coincide, respectively, with the open sets⋃

{↑p◦ | p ∈ Q ∩ [0, 1] and q < p} and
⋃

{↓p− | p ∈ Q ∩ (0, 1] and p < q}.
Also, ι is lower semicontinuous, for ι−1(↓q−) = [0, q) whenever q ∈ Q∩ (0, 1]. ��

It is easy to see that both γ and ι preserve the minus structure available on
Γ and [0,1] (the unit interval is equipped with the usual minus operation x− y
defined whenever y ≤ x), that is,

• γ(x− y) = γ(x ∼ y) = γ(x)− γ(y) whenever y ≤ x in Γ, and
• ι(x− y) = ι(x)− ι(y) whenever y ≤ x in [0,1].

Remark. ι : [0, 1] → Γ is not upper semicontinuous because, for every q ∈
Q ∩ [0, 1], ι−1(↑q◦) = {x ∈ [0, 1] | q◦ ≤ ι(x)} = {x ∈ [0, 1] | γ(q◦) ≤ x} = [q, 1].

306 M. Gehrke et al.



4 Spaces of measures valued in Γ and in [0, 1]

The aim of this section is to replace [0, 1]-valued measures by Γ-valued measures.
The reason for doing this is two-fold. First, the space of Γ-valued measures is
Priestley (Proposition 4), and thus amenable to a duality theoretic treatment
and a dual logic interpretation (cf. Section 6). Second, it retains more topological
information than the space of [0, 1]-valued measures. Indeed, the former retracts
onto the latter (Theorem 10).

Let D be a distributive lattice. Recall that, classically, a monotone function
m : D → [0, 1] is a (finitely additive, probability) measure provided m(0) = 0,
m(1) = 1, and m(a) +m(b) = m(a∨ b) +m(a∧ b) for every a, b ∈ D. The latter
property is equivalently expressed as

∀a, b ∈ D, m(a)−m(a ∧ b) = m(a ∨ b)−m(b). (5)

We write MI(D) for the set of all measures D → [0, 1], and regard it as an
ordered topological space, with the structure induced by the product order
and product topology of [0, 1]D. The notion of (finitely additive, probability)
Γ-valued measure is analogous to the classical one, except that the finite addi-
tivity property (5) splits into two conditions, involving − and ∼.

Definition 3. Let D be a distributive lattice. A Γ-valued measure (or simply a
measure) on D is a function μ : D → Γ such that

1. μ(0) = 0◦ and μ(1) = 1◦,
2. μ is monotone, and
3. for all a, b ∈ D,

μ(a) ∼ μ(a ∧ b) ≤ μ(a ∨ b)− μ(b) and μ(a)− μ(a ∧ b) ≥ μ(a ∨ b) ∼ μ(b).

We denote by MΓ(D) the subspace of ΓD consisting of the measures μ : D → Γ.

Since Γ is a Priestley space, so is ΓD equipped with the product order and
topology. Hence, we regard MΓ(D) as an ordered topological space, whose topol-
ogy and order are induced by those of ΓD. In fact MΓ(D) is a Priestley space:

Proposition 4. For any distributive lattice D, MΓ(D) is a Priestley space.

Proof. It suffices to show that MΓ(D) is a closed subspace of ΓD. Let

C1,2 = {f ∈ ΓD | f(0) = 0◦}∩{f ∈ ΓD | f(1) = 1◦}∩
⋂
a≤b

{f ∈ ΓD | f(a) ≤ f(b)}.

Note that the evaluation maps eva : Γ
D → Γ, f �→ f(a), are continuous for every

a ∈ D. Thus, the first set in the intersection defining C1,2 is closed because it
is the equaliser of the evaluation map ev0 and the constant map of value 0◦.
Similarly, for the set {f ∈ ΓD | f(1) = 1◦}. The last one is the intersection
of the sets of the form 〈eva, evb〉−1(≤), which are closed because ≤ is closed in
Γ× Γ. Whence, C1,2 is a closed subset of ΓD. Moreover,

MΓ(D) =
⋂

a,b∈D

{f ∈ C1,2 | f(a) ∼ f(a ∧ b) ≤ f(a ∨ b)− f(b)}

A duality theoretic view on limits of finite structures 307



∩
⋂

a,b∈D

{f ∈ C1,2 | f(a)− f(a ∧ b) ≥ f(a ∨ b) ∼ f(b)}.

From semicontinuity of − and ∼ (Lemma 1) and the following well-known fact
in order-topology we conclude that MΓ(D) is closed in ΓD.

Fact. Let X,Y be compact ordered spaces, f : X → Y a lower semicontinuous
function and g : X → Y an upper semicontinuous function. If X ′ is a closed
subset of X, then so is E = {x ∈ X ′ | g(x) ≤ f(x)}. ��

Next, we prove a property which is very useful when approximating a frag-
ment of a logic by smaller fragments (see, e.g., Section 5.1). Let us denote by
DLat the category of distributive lattices and homomorphisms, and by Pries
the category of Priestley spaces and continuous monotone maps.

Proposition 5. The assignment D �→ MΓ(D) yields a contravariant functor
MΓ : DLat → Pries which sends directed colimits to codirected limits.

Proof. If h : D → E is a lattice homomorphism and μ : E → Γ is a measure, it
is not difficult to see that MΓ(h)(μ) = μ ·h : D → Γ is a measure. The mapping
MΓ(h) : MΓ(E) → MΓ(D) is clearly monotone. For continuity, recall that the
topology of MΓ(D) is generated by the sets �a < q� = {ν : D → Γ | ν(a) < q◦}
and �a ≥ q� = {ν : D → Γ | ν(a) ≥ q◦}, with a ∈ D and q ∈ Q ∩ [0, 1]. We have

MΓ(h)
−1(�a < q�) = {μ : E → Γ | μ(h(a)) < q◦} = �h(a) < q�

which is open in MΓ(E). Similarly, MΓ(h)
−1(�a ≥ q�) = �h(a) ≥ q�, showing

that MΓ(h) is continuous. Thus, MΓ is a contravariant functor.
The rest of the proof is a routine verification. ��

Remark 6. We work with the contravariant functor MΓ : DLat → Pries be-
cause MΓ is concretely defined on the lattice side. However, by Priestley duality,
DLat is dually equivalent to Pries, so we can think of MΓ as a covariant functor
Pries → Pries (this is the perspective traditionally adopted in analysis, and also
in the works of Nešetřil and Ossona de Mendez). From this viewpoint, Section 6
provides a description of the endofunctor on DLat dual to MΓ : Pries → Pries.

Recall the maps γ : Γ → [0, 1] and ι : [0, 1] → Γ from equations (3)–(4). In
Section 3.2 we showed that this is a retraction-section pair. In Theorem 10 this
retraction is lifted to the spaces of measures. We start with an easy observation:

Lemma 7. Let D be a distributive lattice. The following statements hold:

1. for every μ ∈ MΓ(D), γ · μ ∈ MI(D),
2. for every m ∈ MI(D), ι ·m ∈ MΓ(D).

Proof. 1. The only non-trivial condition to verify is finite additivity. In view of
the discussion after Lemma 2, the map γ preserves both minus operations on Γ.
Hence, for every a, b ∈ D, the inequalities μ(a) ∼ μ(a∧ b) ≤ μ(a∨ b)− μ(b) and
μ(a)−μ(a∧b) ≥ μ(a∨b) ∼ μ(b) imply that γ·μ(a)−γ·μ(a∧b) = γ·μ(a∨b)−γ·μ(b).

308 M. Gehrke et al.



2. The first two conditions in Definition 3 are immediate. The third condition
follows from the fact that ι(r − s) = ι(r) − ι(s) whenever s ≤ r in [0,1], and
x ∼ y ≤ x− y for every (x, y) ∈ dom(−). ��

In view of the previous lemma, there are well-defined functions

γ# : MΓ(D) → MI(D), μ �→ γ · μ and ι# : MI(D) → MΓ(D), m �→ ι ·m.

Lemma 8. γ# : MΓ(D) → MI(D) is a continuous and monotone map.

Proof. The topology of MI(D) is generated by the sets of the form {m ∈
MI(D) | m(a) ∈ O}, for a ∈ D and O an open subset of [0, 1]. In turn,

(γ#)−1{m ∈ MI(D) | m(a) ∈ O} = {μ ∈ MΓ(D) | μ(a) ∈ γ−1(O)}
is open in MΓ(D) because γ : Γ → [0, 1] is continuous by Lemma 2. This shows
that γ# : MΓ(D) → MI(D) is continuous. Monotonicity is immediate. ��

Note that γ# : MΓ(D) → MI(D) is surjective, since it admits ι# as a (set-
theoretic) section. It follows that MI(D) is a compact ordered space:

Corollary 9. For each distributive lattice D, MI(D) is a compact ordered space.

Proof. The surjection γ# : MΓ(D) → MI(D) is continuous (Lemma 8). Since
MΓ(D) is compact by Proposition 4, so is MI(D). The order of MI(D) is clearly
closed in the product topology, thus MI(D) is a compact ordered space. ��
Finally, we see that the set-theoretic retraction of MΓ(D) onto MI(D) lifts to
the topological setting, provided we restrict to the down-set topologies. If (X,≤)
is a partially ordered topological space, write X↓ for the space with the same
underlying set as X and whose topology consists of the open down-sets of X.

Theorem 10. The maps γ# : MΓ(D)↓ → MI(D)↓ and ι# : MI(D)↓ → MΓ(D)↓

are a retraction-section pair of topological spaces.

Proof. It suffices to show that γ# and ι# are continuous. It is not difficult to see,
using Lemma 8, that γ# : MΓ(D)↓ → MI(D)↓ is continuous. For the continuity
of ι#, note that the topology of MΓ(D)↓ is generated by the sets of the form
{μ ∈ MΓ(D) | μ(a) ≤ q−}, for a ∈ D and q ∈ Q ∩ (0, 1]. We have

(ι#)−1{μ ∈ MΓ(D) | μ(a) ≤ q−} = {m ∈ MI(D) | m(a) ∈ ι−1(↓q−)}
= {m ∈ MI(D) | m(a) < q},

which is an open set in MI(D)↓. This concludes the proof. ��

5 The Γ-valued Stone pairing and limits of finite
structures

In the work of Nešetřil and Ossona de Mendez, the Stone pairing 〈- , A〉 is [0, 1]-
valued, i.e. an element of MI(FO(σ)). In this section, we show that basically the

A duality theoretic view on limits of finite structures 309



same construction for the recognisers arising from the application of a layer of
semiring quantifiers in logic on words (cf. Section 2.3) provides an embedding
of finite σ-structures into the space of Γ-valued measures. It turns out that
this embedding is a Γ-valued version of the Stone pairing. Hereafter we make a
notational difference, writing 〈- , -〉I for the (classical) [0,1]-valued Stone pairing.

The main ingredient of the construction are the Γ-valued finitely supported
functions. To start with, we point out that the partial operation − on Γ uniquely
determines a partial “plus” operation on Γ. Define

+: dom(+) → Γ, where dom(+) = {(x, y) | x ≤ 1◦ − y},
by the following rules (whenever the expressions make sense):

r◦+s◦ = (r+s)◦, r−+s◦ = (r+s)−, r◦+s− = (r+s)−, and r−+s− = (r+s)−.

Then, for every y ∈ Γ, the function (-) + y sending x to x+ y is left adjoint to
the function (-)− y sending x to x− y.

Definition 11. For any set X, F(X) is the set of all functions f : X → Γ s.t.

1. the set supp(f) = {x ∈ X | f(x) 	= 0◦} is finite, and
2. f(x1)+ · · ·+f(xn) is defined and equal to 1◦, where supp(f) = {x1, . . . , xn}.

To improve readability, if the sum y1 + · · · + ym exists in Γ, we denote it∑m
i=1 yi. Finitely supported functions in the above sense always determine mea-

sures over the power-set algebra (the proof is an easy verification and is omitted):

Lemma 12. Let X be any set. There is a well-defined mapping
∫
: F(X) →

MΓ(℘(X)), assigning to every f ∈ F(X) the measure∫
f : M �→ ∫

M
f =

∑{f(x) | x ∈ M ∩ supp(f)}.

5.1 The Γ-valued Stone pairing and logic on words

Fix a countably infinite set of variables {v1, v2, . . . }. Recall that FOn(σ) is the
Lindenbaum-Tarski algebra of first-order formulas with free variables among
{v1, . . . , vn}. The dual space of FOn(σ) is the space of n-types Typn(σ). Its
points are the equivalence classes of pairs (A,α), where A is a σ-structure and
α : {v1, . . . , vn} → A is an interpretation of the variables. Write Fin(σ) for the
set of all finite σ-structures and define a map Fin(σ) → F(Typn(σ)) as A �→ fA

n ,
where fA

n is the function which sends an equivalence class E ∈ Typn(σ) to

fA
n (E) =

∑
(A,α)∈E

(
1

|A|n
)◦

(Add 1
|A|n for every interpretation α of the free

variables s.t. (A,α) is in the equivalence class).

By Lemma 12, we get a measure
∫
fA
n : ℘(Typn(σ)) → Γ. Now, for each ϕ ∈

FOn(σ), let �ϕ�n ⊆ Typn(σ) be the set of (equivalence classes of) σ-structures
with interpretations satisfying ϕ. By Stone duality we obtain an embedding
�-�n : FOn(σ) ↪→ ℘(Typn(σ)). Restricting

∫
fA
n to FOn(σ), we get a measure

μA
n : FOn(σ) → Γ, ϕ �→ ∫

�ϕ�n
fA
n .

310 M. Gehrke et al.



Summing up, we have the composite map

Fin(σ) → MΓ(℘(Typn(σ))) → MΓ(FOn(σ)), A �→ ∫
fA
n �→ μA

n . (6)

Essentially the same construction is featured in logic on words, cf. equation (2):

• The set of finite σ-structures Fin(σ) corresponds to the set of finite words A∗.
• The collection Typn(σ) of (equivalence classes of) σ-structures with interpre-
tations corresponds to (A× 2)∗ or, interchangeably, β(A× 2)∗ (in the case of
one free variable).

• The fragment FOn(σ) of first-order logic corresponds to the Boolean algebra
of languages, defined by formulas with a free variable, dual to the Boolean
space X appearing in (2).

• The first map in the composite (6) sends a finite structure A to the measure∫
fA
n which, evaluated on K ⊆ Typn(σ), counts the (proportion of) interpre-

tations α : {v1, . . . , vn} → A such that (A,α) ∈ K, similarly to R from (2).
• Finally, the second map in (6) sends a measure in MΓ(℘(Typn(σ))) to its
pushforward along �-�n : FOn(σ) ↪→ ℘(Typn(σ)). This is the second map in
the composition (2).

On the other hand, the assignment A �→ μA
n defined in (6) is also closely

related to the classical Stone pairing. Indeed, for every formula ϕ in FOn(σ),

μA
n (ϕ) =

∑
E∈�ϕ�n

fA
n (E) =

∑
E∈�ϕ�n

∑
(A,α)∈E

(
1

|A|n
)◦

=

( |{a ∈ An | A |= ϕ(a)|
|A|n

)◦
= (〈ϕ,A〉I)◦. (7)

In this sense, μA
n can be regarded as a Γ-valued Stone pairing, relative to the

fragment FOn(σ). Next, we show how to extend this to the full first-order logic
FO(σ). First, we observe that the construction is invariant under extensions of
the set of free variables (the proof is the same as in the classical case).

Lemma 13. Given m,n ∈ N and A ∈ Fin(σ), if m ≥ n then (μA
m)�FOn(σ) = μA

n .

The Lindenbaum-Tarski algebra of all first-order formulas FO(σ) is the directed
colimit of the Boolean subalgebras FOn(σ), for n ∈ N. Since the functor MΓ

turns directed colimits into codirected limits (Proposition 5), the Priestley space
MΓ(FO(σ)) is the limit of the diagram{

MΓ(FOn(σ)) MΓ(FOm(σ)) | m,n ∈ N, m ≥ n
qn,m

}
where, for any μ : FOm(σ) → Γ in MΓ(FOm(σ)), the measure qn,m(μ) is the
restriction of μ to FOn(σ). In view of Lemma 13, for every A ∈ Fin(σ), the tuple
(μA

n )n∈N is compatible with the restriction maps. Thus, recalling that limits in
the category of Priestley spaces are computed as in sets, by universality of the
limit construction, this tuple yields a measure

〈- , A〉Γ : FO(σ) → Γ

A duality theoretic view on limits of finite structures 311



in the spaceMΓ(FO(σ)). This we call the Γ-valued Stone pairing associated with
A. As in the classical case, it is not difficult to see that the mapping A �→ 〈- , A〉Γ
gives an embedding 〈- , -〉Γ : Fin(σ) ↪→ MΓ(FO(σ)). The following theorem
illustrates the relation between the classical Stone pairing 〈- , -〉I : Fin(σ) ↪→
MI(FO(σ)), and the Γ-valued one.

Theorem 14. The following diagram commutes:

MΓ(FO(σ))

Fin(σ)

MI(FO(σ))

γ#

〈-,-〉Γ

〈-,-〉I

ι#

Proof. Fix an arbitrary finite structure A ∈ Fin(σ). Let ϕ be a formula in
FO(σ) with free variables among {v1, . . . , vn}, for some n ∈ N. By construction,
〈ϕ,A〉Γ = μA

n (ϕ). Therefore, by equation (7), 〈ϕ,A〉Γ = (〈ϕ,A〉I)◦. The state-
ment then follows at once. ��
Remark. The construction in this section works also for proper fragments,
i.e. for sublattices D ⊆ FO(σ). This corresponds to composing the embedding
Fin(σ) ↪→ MΓ(FO(σ)) with the restriction map MΓ(FO(σ)) → MΓ(D) send-
ing μ : FO(σ) → Γ to μ�D : D → Γ. The only difference is that the ensuing map
Fin(σ) → MΓ(D) need not be injective, in general.

5.2 Limits in the spaces of measures

By Theorem 14 the Γ-valued Stone pairing 〈- , -〉Γ and the classical Stone pair-
ing 〈- , -〉I determine each other. However, the notions of convergence asso-
ciated with the spaces MΓ(FO(σ)) and MI(FO(σ)) are different: since the
topology of MΓ(FO(σ)) is richer, there are “fewer” convergent sequences. Re-
call from Lemma 8 that γ# : MΓ(FO(σ)) → MI(FO(σ)) is continuous. Also,
γ#(〈- , A〉Γ) = 〈- , A〉I by Theorem 14. Thus, for any sequence of finite structures
(An)n∈N, if

〈- , An〉Γ converges to a measure μ in MΓ(FO(σ))

then

〈- , An〉I converges to the measure γ#(μ) in MI(FO(σ)).

The converse is not true. For example, consider the signature σ = {<} con-
sisting of a single binary relation symbol, and let (An)n∈N be the sequence of
finite posets displayed in the picture below.

A1 A2 A3 A4 A5 A6 · · ·

312 M. Gehrke et al.



Let ψ(x) ≈ ∀y ¬(x < y) ∧ ∃z ¬(z < x) ∧ ¬(z = x) be the formula stating that
x is maximal but not the maximum in the order given by <. Then, for the
sublattice D = {f , ψ, t} of FO(σ), the sequences 〈- , An〉Γ and 〈- , An〉I converge
in MΓ(D) and MI(D), respectively. However, if we consider the Boolean algebra
B = {f , ψ,¬ψ, t}, then the 〈- , An〉I’s still converge whereas the 〈- , An〉Γ’s do not.
Indeed, the following sequence does not converge in Γ:

(〈¬ψ,An〉Γ)n = (1◦, ( 13 )
◦, 1◦, ( 24 )

◦, 1◦, ( 35 )
◦, . . .),

because the odd terms converge to 1◦, while the even terms converge to 1−.
However, there is a sequence 〈- , Bn〉Γ whose image under γ# coincides with the
limit of the 〈- , An〉I’s (e.g., take the subsequence of even terms of (An)n∈N). In
the next theorem, we will see that this is a general fact.

Identify Fin(σ) with a subset of MΓ(FO(σ)) (resp. MI(FO(σ))) through
〈- , -〉Γ (resp. 〈- , -〉I). A central question in the theory of structural limits, cf. [16],
is to determine the closure of Fin(σ) in MI(FO(σ)), which consists precisely of
the limits of sequences of finite structures. The following theorem gives an answer
to this question in terms of the corresponding question for MΓ(FO(σ)).

Theorem 15. Let Fin(σ) denote the closure of Fin(σ) in MΓ(FO(σ)). Then
the set γ#(Fin(σ)) coincides with the closure of Fin(σ) in MI(FO(σ)).

Proof. Write U for the image of 〈- , -〉Γ : Fin(σ) ↪→ MΓ(FO(σ)), and V for the
image of 〈- , -〉I : Fin(σ) ↪→ MI(FO(σ)). We must prove that γ#(U) = V . By
Theorem 14, γ#(U) = V . The map γ# : MΓ(FO(σ)) → MI(FO(σ)) is con-
tinuous (Lemma 8), and the spaces MΓ(FO(σ)) and MI(FO(σ)) are compact
Hausdorff (Proposition 4 and Corollary 9). Since continuous maps between com-

pact Hausdorff spaces are closed, γ#(U) = γ#(U) = V . ��

6 The logic of measures

Let D be a distributive lattice. We know from Proposition 4 that the space
MΓ(D) of Γ-valued measures on D is a Priestley space, whence it has a dual
distributive lattice P(D). In this section we show that P(D) can be represented
as the Lindenbaum-Tarski algebra for a propositional logic PLD obtained from
D by adding probabilistic quantifiers. Since we adopt a logical perspective, we
write f and t for the bottom and top elements of D, respectively.

The set of propositional variables of PLD consists of the symbols P≥p a, for
every a ∈ D and p ∈ Q ∩ [0, 1]. For every measure μ ∈ MΓ(D), we set

μ |= P≥p a ⇔ μ(a) ≥ p◦. (8)

This satisfaction relation extends in the obvious way to the closure under finite
conjunctions and finite disjunctions of the set of propositional variables. Define

ϕ |= ψ if, ∀μ ∈ MΓ(D), μ |= ϕ implies μ |= ψ.

Also, write |= ϕ if μ |= ϕ for every μ ∈ MΓ(D), and ϕ |= if there is no μ ∈
MΓ(D) with μ |= ϕ.

A duality theoretic view on limits of finite structures 313



Consider the following conditions, for any p, q, r ∈ Q ∩ [0, 1] and a, b ∈ D.

(L1) P≥q a |= P≥p a whenever p ≤ q
(L2) P≥p f |= whenever p > 0, |= P≥0 f and |= P≥q t
(L3) P≥q a |= P≥q b whenever a ≤ b
(L4) P≥p a∧P≥q b |= P≥p+q−r (a∨b)∨P≥r (a∧b) whenever 0 ≤ p+q−r ≤ 1
(L5) P≥p+q−r (a∨b)∧P≥r (a∧b) |= P≥p a∨P≥q b whenever 0 ≤ p+q−r ≤ 1

It is not hard to see that the interpretation in (8) validates these conditions:

Lemma 16. The conditions (L1)–(L5) are satisfied in MΓ(D).

Write P(D) for the quotient of the free distributive lattice on the set

{P≥p a | p ∈ Q ∩ [0, 1], a ∈ D}
with respect to the congruence generated by the conditions (L1)–(L5).

Proposition 17. Let F ⊆ P(D) be a prime filter. The assignment

a �→
∨

{q◦ | P≥q a ∈ F} defines a measure μF : D → Γ.

Proof. Items (L2) and (L3) take care of the first two conditions defining Γ-valued
measures (cf. Definition 3). We prove the first half of the third condition, as the
other half is proved in a similar fashion. We must show that, for every a, b ∈ D,

μF (a) ∼ μF (a ∧ b) ≤ μF (a ∨ b)− μF (b). (9)

It is not hard to show that μF (a) − r◦ =
∨{p◦1 − r◦ | r◦ ≤ p◦1 ≤ μF (a)}, and

x− (-) transforms non-empty joins into meets (this follows by Scott continuity
of x− (-) seen as a map [0◦, x] → Γ∂). Hence, equation (9) is equivalent to∨

{p◦ − r◦ | μF (a ∧ b) < r◦ ≤ p◦ ≤ μF (a)} ≤
∧

{μF (a ∨ b)− q◦ | q◦ ≤ μF (b)}.
To settle this inequality it is enough to show that, provided μF (a ∧ b) < r◦ ≤
p◦ ≤ μF (a) and q◦ ≤ μF (b), we have (p − r)◦ ≤ μF (a ∨ b) − q◦. The latter
inequality is equivalent to (p + q − r)◦ ≤ μF (a ∨ b). In turn, using (L4) and
the fact that F is a prime filter, P≥p a,P≥q b ∈ F and P≥r (a ∧ b) /∈ F entail
P≥p+q−r (a ∨ b) ∈ F . Whence,

μF (a ∨ b) =
∨

{s◦ | P≥s (a ∨ b) ∈ F} ≥ (p+ q − r)◦. ��
We can now describe the dual lattice of MΓ(D) as the Lindenbaum-Tarski

algebra for the logic PLD, built from the propositional variables P≥p a by im-
posing the laws (L1)–(L5).

Theorem 18. Let D be a distributive lattice. Then the lattice P(D) is isomor-
phic to the distributive lattice dual to the Priestley space MΓ(D).

Proof. Let XP(D) be the space dual to P(D). By Proposition 17 there is a map
ϑ : XP(D) → MΓ(D), F �→ μF . We claim that ϑ is an isomorphism of Priestley
space. Clearly, ϑ is monotone. If μF1(a) 	≤ μF2(a) for some a ∈ D, we have∨

{q◦ | P≥q a ∈ F1} = μF1
(a) 	≤ μF2

(a) =
∧

{p− | P≥p a /∈ F2}. (10)

314 M. Gehrke et al.



Equation (10) implies the existence of p, q satisfying P≥q a ∈ F1, P≥p a /∈ F2 and
q ≥ p. It follows by (L1) that P≥p a ∈ F1. We conclude that P≥p a ∈ F1 \ F2,
whence F1 	⊆ F2. This shows that ϑ is an order embedding, whence injective.

We prove that ϑ is surjective, thus a bijection. Fix a measure μ ∈ MΓ(D).
It is not hard to see, using Lemma 16, that the filter Fμ ⊆ P(D) generated by

{P≥q a | a ∈ D, q ∈ Q ∩ [0, 1], μ(a) ≥ q◦}
is prime. Further, ϑ(Fμ)(a) =

∨ {q◦ | P≥q a ∈ Fμ} =
∨ {q◦ | μ(a) ≥ q◦} = μ(a)

for every a ∈ D. Hence, ϑ(Fμ) = μ and ϑ is surjective.

To settle the theorem it remains to show that ϑ is continuous. Note that for
a basic clopen of the form C = {μ ∈ MΓ(D) | μ(a) ≥ p◦} where a ∈ D and
p ∈ Q ∩ [0, 1], the preimage ϑ−1(C) = {F ⊆ P(D) | μF (a) ≥ p◦} is equal to

{F ∈ XP(D) |
∨

{q◦ | P≥q a ∈ F} ≥ p◦} = {F ∈ XP(D) | P≥p a ∈ F},
which is a clopen of XP(D). Similarly, if C = {μ ∈ MΓ(D) | μ(a) ≤ q−} for some
a ∈ D and q ∈ Q∩(0, 1], by the claim above ϑ−1(C) = {F ∈ XP(D) | P≥q a /∈ F},
which is again a clopen of XP(D). ��

By Theorem 18, for any distributive lattice D, the lattice of clopen up-sets
of MΓ(D) is isomorphic to the Lindenbaum-Tarski algebra P(D) of our positive
propositional logic PLD. Moving from the lattice of clopen up-sets to the Boolean
algebra of all clopens logically corresponds to adding negation to the logic. The
logic obtained this way can be presented as follows. Introduce a new propositional
variable P<q a, for each a ∈ D and q ∈ Q∩ [0, 1]. For a measure μ ∈ MΓ(D), set

μ |= P<q a ⇔ μ(a) < q◦.

We also add a new rule, stating that P<q a is the negation of P≥q a:

(L6) P<q a ∧ P≥q a |= and |= P<q a ∨ P≥q a

Clearly, (L6) is satisfied in MΓ(D). Moreover, the Boolean algebra of all clopens
of MΓ(D) is isomorphic to the quotient of the free distributive lattice on

{P≥p a | p ∈ Q ∩ [0, 1], a ∈ D} ∪ {P<q b | q ∈ Q ∩ [0, 1], b ∈ D}
with respect to the congruence generated by the conditions (L1)–(L6).

Specialising to FO(σ). Let us briefly discuss what happens when we instantiateD
with the full first-order logic FO(σ). For a formula ϕ ∈ FO(σ) with free variables
v1, . . . , vn and a q ∈ Q∩ [0, 1], we have two new sentences P≥q ϕ and P<q ϕ. For
a finite σ-structure A identified with its Γ-valued Stone pairing 〈- , A〉Γ,

A |= P≥q ϕ (resp. A |= P<q ϕ) iff 〈ϕ,A〉Γ ≥ q◦ (resp. 〈ϕ,A〉Γ < q◦).

That is, P≥q ϕ is true in A if a random assignment of the variables v1, . . . , vn in A
satisfies ϕ with probability at least q. Similarly for P<q ϕ. If we regard P≥q and
P<q as probabilistic quantifiers that bind all free variables of a given formula,
the Stone pairing 〈- , -〉Γ : Fin → MΓ(FO(σ)) can be seen as the embedding of
finite structures into the space of types for the logic PLFO(σ).

A duality theoretic view on limits of finite structures 315



Conclusion

Types are points of the dual space of a logic (viewed as a Boolean algebra). In
classical first-order logic, 0-types are just the models modulo elementary equiv-
alence. But when there are not ‘enough’ models, as in finite model theory, the
spaces of types provide completions of the sets of models.

In [5], it was shown that for logic on words and various quantifiers we have
that, given a Boolean algebra of formulas with a free variable, the space of types
of the Boolean algebra generated by the formulas obtained by quantification
is given by a measure space construction. Here we have shown that a suitable
enrichment of first-order logic gives rise to a space of measures MΓ(FO(σ))
closely related to the space MI(FO(σ)) used in the theory of structural limits.
Indeed, Theorem 14 tells us that the ensuing Stone pairings interdetermine each
other. Further, the Stone pairing for MΓ(FO(σ)) is just the embedding of the
finite models in the completion/compactification provided by the space of types
of the enriched logic.

These results identify the logical gist of the theory of structural limits, and
provide a new and interesting connection between logic on words and the theory
of structural limits in finite model theory. But we also expect that it may prove
a useful tool in its own right. Thus, for structural limits, it is an open problem to
characterise the closure of the image of the [0, 1]-valued Stone pairing [16]. Rea-
soning in the Γ-valued setting, native to logic and where we can use duality, one
would expect that this is the subspace MΓ(Th(Fin)) of MΓ(FO(σ)) given by the
quotient FO(σ) � Th(Fin) onto the theory of pseudofinite structures. The pur-
pose of such a characterisation would be to understand the points of the closure
as “generalised models”. Another subject that we would like to investigate is that
of zero-one laws. The zero-one law for first-order logic states that the sequence
of measures for which the nth measure, on a sentence ψ, yields the proportion of
n-element structures satisfying ψ, converges to a {0, 1}-valued measure. Over Γ
this will no longer be true as 1 is split into its ‘limiting’ and ‘achieved’ personae.
Yet, we expect the above sequence to converge also in this setting and, by The-
orem 14, it will converge to a {0◦, 1−, 1◦}-valued measure. Understanding this
more fine-grained measure may yield useful information about the zero-one law.

Further, it would be interesting to investigate whether the limits for schema
mappings introduced by Kolaitis et al. [13] may be seen also as a type-theoretic
construction. Finally, we would want to explore the connections with other se-
mantically inspired approaches to finite model theory, such as those recently put
forward by Abramsky, Dawar et al. [2,3].

316 M. Gehrke et al.



References

1. Abramsky, S.: Domain theory in logical form. Ann. Pure Appl. Logic 51, 1–77
(1991)

2. Abramsky, S., Dawar, A., Wang, P.: The pebbling comonad in finite model theory.
In: 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS.
pp. 1–12 (2017)

3. Abramsky, S., Shah, N.: Relating Structure and Power: Comonadic semantics for
computational resources. In: 27th EACSL Annual Conference on Computer Science
Logic, CSL. pp. 2:1–2:17 (2018)

4. Gehrke, M., Grigorieff, S., Pin, J.-É.: Duality and equational theory of regular
languages. In: Automata, languages and programming II, LNCS, vol. 5126, pp.
246–257. Springer, Berlin (2008)

5. Gehrke, M., Petrişan, D., Reggio, L.: Quantifiers on languages and codensity mon-
ads. In: 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS.
pp. 1–12 (2017)

6. Gehrke, M., Petrişan, D., Reggio, L.: Quantifiers on languages and codensity mon-
ads (2019), extended version. Submitted. Preprint available at https://arxiv.org/
abs/1702.08841

7. Gehrke, M., Priestley, H.A.: Canonical extensions of double quasioperator algebras:
an algebraic perspective on duality for certain algebras with binary operations. J.
Pure Appl. Algebra 209(1), 269–290 (2007)

8. Gehrke, M., Priestley, H.A.: Duality for double quasioperator algebras via their
canonical extensions. Studia Logica 86(1), 31–68 (2007)

9. Goldblatt, R.: Varieties of complex algebras. Ann. Pure Appl. Logic 44(3), 173–242
(1989)

10. van Gool, S.J., Steinberg, B.: Pro-aperiodic monoids via saturated models. In: 34th
Symposium on Theoretical Aspects of Computer Science, STACS. pp. 39:1–39:14
(2017)

11. Johnstone, P.T.: Stone spaces, Cambridge Studies in Advanced Mathematics,
vol. 3. Cambridge University Press (1986), reprint of the 1982 edition

12. Jung, A.: Continuous domain theory in logical form. In: Coecke, B., Ong, L., Panan-
gaden, P. (eds.) Computation, Logic, Games, and Quantum Foundations, Lecture
Notes in Computer Science, vol. 7860, pp. 166–177. Springer Verlag (2013)

13. Kolaitis, P.G., Pichler, R., Sallinger, E., Savenkov, V.: Limits of schema mappings.
Theory of Computing Systems 62(4), 899–940 (2018)

14. Matz, O., Schweikardt, N.: Expressive power of monadic logics on words, trees,
pictures, and graphs. In: Logic and Automata: History and Perspectives. pp. 531–
552 (2008)

15. Nešetřil, J., Ossona de Mendez, P.: A model theory approach to structural limits.
Commentationes Mathematicae Universitatis Carolinae 53(4), 581–603 (2012)

16. Nešetřil, J., Ossona de Mendez, P.: First-order limits, an analytical perspective.
European Journal of Combinatorics 52, 368–388 (2016)

17. Nešetřil, J., Ossona de Mendez, P.: A unified approach to structural limits and
limits of graphs with bounded tree-depth (2020), to appear in Memoirs of the
American Mathematical Society

18. Pin, J.-É.: Profinite methods in automata theory. In: 26th Symposium on Theo-
retical Aspects of Computer Science, STACS. pp. 31–50 (2009)

19. Priestley, H.A.: Representation of distributive lattices by means of ordered Stone
spaces. Bull. London Math. Soc. 2, 186–190 (1970)

A duality theoretic view on limits of finite structures 317

https://arxiv.org/abs/1702.08841
https://arxiv.org/abs/1702.08841


Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

318 M. Gehrke et al.

http://creativecommons.org/licenses/by/4.0/


Correctness of Automatic Differentiation via
Diffeologies and Categorical Gluing

Mathieu Huot �1∗, Sam Staton1∗, and Matthijs Vákár2∗

1 University of Oxford, UK
2 Utrecht University, The Netherlands

∗Equal contribution mathieu.huot@stx.ox.ac.uk

Abstract. We present semantic correctness proofs of Automatic Differ-
entiation (AD). We consider a forward-mode AD method on a higher
order language with algebraic data types, and we characterise it as the
unique structure preserving macro given a choice of derivatives for basic
operations. We describe a rich semantics for differentiable programming,
based on diffeological spaces. We show that it interprets our language,
and we phrase what it means for the AD method to be correct with re-
spect to this semantics. We show that our characterisation of AD gives
rise to an elegant semantic proof of its correctness based on a gluing
construction on diffeological spaces. We explain how this is, in essence,
a logical relations argument. Finally, we sketch how the analysis extends
to other AD methods by considering a continuation-based method.

1 Introduction

Automatic differentiation (AD), loosely speaking, is the process of taking a pro-
gram describing a function, and building the derivative of that function by ap-
plying the chain rule across the program code. As gradients play a central role in
many aspects of machine learning, so too do automatic differentiation systems
such as TensorFlow [1] or Stan [6].

Programs

denotational
semantics ��

automatic
differentiation �� Programs

denotational
semantics��

Differential
geometry

math
differentiation �� Differential

geometry

Fig. 1. Overview of semantics/correctness of AD.

Differentiation has a well
developed mathematical the-
ory in terms of differential ge-
ometry. The aim of this paper
is to formalize this connec-
tion between differential ge-
ometry and the syntactic op-
erations of AD. In this way we
achieve two things: (1) a com-
positional, denotational understanding of differentiable programming and AD;
(2) an explanation of the correctness of AD.

This intuitive correspondence (summarized in Fig. 1) is in fact rather com-
plicated. In this paper we focus on resolving the following problem: higher order
functions play a key role in programming, and yet they have no counterpart in
traditional differential geometry. Moreover, we resolve this problem while retain-
ing the compositionality of denotational semantics.

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 319–338, 2020.
https://doi.org/10.1007/978-3-030-45231-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_17&domain=pdf


Higher order functions and differentiation. A major application of higher
order functions is to support disciplined code reuse. Code reuse is particularly
acute in machine learning. For example, a multi-layer neural network might be
built of millions of near-identical neurons, as follows.

neuronn : (realn∗(realn∗real)) → real

neuronn
def
= λ〈x, 〈w, b〉〉. ς(w · x+ b)

layern : ((τ1∗P ) → τ2) → (τ1∗Pn) → τn2

layern
def
= λf. λ〈x, 〈p1, . . . , pn〉〉. 〈f〈x, p1〉, . . . , f〈x, pn〉〉

comp : (((τ1∗P ) → τ2)∗((τ2∗Q) → τ3)) → (τ1∗(P∗Q)) → τ3

comp
def
= λ〈f, g〉. λ〈x, (p, q)〉. g〈f〈x, p〉, q〉

−5 0 5
0

0.5

1

x

ς(
x
)

(Here ς(x)
def
= 1

1+e−x is the sigmoid function, as illustrated.) We can use these
functions to build a network as follows (see also Fig. 2):

comp〈layerm(neuronk), comp〈layern(neuronm), neuronn〉〉 : (realk∗P ) → real
(1)

· · ·

· · ·

· · ·

1 2 3 k

1 2 m

1 2 n

Fig. 2. The network in (1)
with k inputs and two hid-
den layers.

Here P ∼= realp with p = (m(k+1)+n(m+1)+n+1).
This program (1) describes a smooth (infinitely dif-
ferentiable) function. The goal of automatic differ-
entiation is to find its derivative.

If we β-reduce all the λ’s, we end up with a very
long function expression just built from the sigmoid
function and linear algebra. We can then find a pro-
gram for calculating its derivative by applying the
chain rule. However, automatic differentiation can
also be expressed without first β-reducing, in a com-
positional way, by explaining how higher order func-
tions like (layer) and (comp) propagate derivatives.
This paper is a semantic analysis of this compositional approach.

The general idea of denotational semantics is to interpret types as spaces
and programs as functions between the spaces. In this paper, we propose to use
diffeological spaces and smooth functions [32, 16] to this end. These satisfy the
following three desiderata:

– R is a space, and the smooth functions R → R are exactly the functions that
are infinitely differentiable;

– The set of smooth functions X → Y between spaces again forms a space, so
we can interpret function types.

– The disjoint union of a sequence of spaces again forms a space, so we can
interpret variant types and inductive types.

We emphasise that the most standard formulation of differential geometry, using
manifolds, does not support spaces of functions. Diffeological spaces seem to us
the simplest notion of space that satisfies these conditions, but there are other

320 M. Huot et al.



candidates [3, 33]. A diffeological space is in particular a set X equipped with a
chosen set of curves CX ⊆ XR and a smooth map f : X → Y must be such that
if γ ∈ CX then γ; f ∈ CY . This is remiscent of the method of logical relations.

From smoothness to automatic derivatives at higher types. Our denota-
tional semantics in diffeological spaces guarantees that all definable functions are
smooth. But we need more than just to know that a definable function happens
to have a mathematical derivative: we need to be able to find that derivative.

In this paper we focus on a simple, forward mode automatic differentiation
method, which is a macro translation on syntax (called

−→D in §2). We are able to
show that it is correct, using our denotational semantics.

Here there is one subtle point that is central to our development. Although
differential geometry provides established derivatives for first order functions
(such as neuron above), there is no canonical notion of derivative for higher order
functions (such as layer and comp) in the theory of diffeological spaces (e.g. [7]).
We propose a new way to resolve this, by interpreting types as triples (X,X ′, S)
where, intuitively, X is a space of inhabitants of the type, X ′ is a space serving
as a chosen bundle of tangents over X, and S ⊆ XR ×X ′R is a binary relation
between curves, informally relating curves in X with their tangent curves in X ′.
This new model gives a denotational semantics for automatic differentiation.

In §3 we boil this new approach down to a straightforward and elementary
logical relations argument for the correctness of automatic differentiation. The
approach is explained in detail in §5.
Related work and context. AD has a long history and has many implemen-
tations. AD was perhaps first phrased in a functional setting in [26], and there
are now a number of teams working on AD in the functional setting (e.g. [34,
31, 12]), some providing efficient implementations. Although that work does not
involve formal semantics, it is inspired by intuitions from differential geometry
and category theory.

This paper adds to a very recent body of work on verified automatic differen-
tiation. Much of this is concurrent with and independent from the work in this
article. In the first order setting, there are recent accounts based on denotational
semantics in manifolds [13] and based on synthetic differential geometry [9], as
well as work making a categorical abstraction [8] and work connecting oper-
ational semantics with denotational semantics [2, 28]. Recently there has also
been significant progress at higher types. The work of Brunel et al. gives formal
correctness proofs for reverse-mode derivatives on computation graphs [5]. The
work of Barthe et al. [4] provides a general discussion of some new syntactic
logical relations arguments including one very similar to our syntactic proof of
Theorem 1. We understand that the authors of [9] are working on higher types.

The differential λ-calculus [11] is related to AD, and explicit connections are
made in [22, 23]. One difference is that the differential λ-calculus allows addition
of terms at all types, and hence vector space models are suitable, but this appears
peculiar with the variant and inductive types that we consider here.

Finally we emphasise that we have chosen the neural network (1) as our
running example mainly for its simplicity. There are many other examples of AD

Correctness of AD via Diffeologies and Categorical Gluing 321



outside the neural networks literature: AD is useful whenever derivatives need to
be calculated on high dimensional spaces. This includes optimization problems
more generally, where the derivative is passed to a gradient descent method
(e.g. [30, 18, 29, 19, 10, 21]). Other applications of AD are in advanced integration
methods, since derivatives play a role in Hamiltonian Monte Carlo [25, 14] and
variational inference [20].

Summary of contributions. We have provided a semantic analysis of auto-
matic differentiation. Our syntactic starting point is a well-known forward-mode
AD macro on a typed higher order language (e.g. [31, 34]). We recall this in §2
for function types, and in §4 we extend it to inductive types and variants. The
main contributions of this paper are as follows.

– We give a denotational semantics for the language in diffeological spaces,
showing that every definable expression is smooth (§3).

– We show correctness of the AD macro by a logical relations argument (Th. 1).
– We give a categorical analysis of this correctness argument with two parts:

canonicity of the macro in terms of syntactic categories, and a new notion
of glued space that abstracts the logical relation (§5).

– We then use this analysis to state and prove a correctness argument at all
first order types (Th. 2).

– We show that our method is not specific to one particular AD macro, by
also considering a continuation-based AD method (§6).

2 A simple forward-mode AD translation

Rudiments of differentiation and dual numbers. Recall that the derivative
of a function f : R → R, if it exists, is a function ∇f : R → R such that

∇f(x0) =
df(x)
dx (x0) is the gradient of f at x0.

To find ∇f in a compositional way, two generalizations are reasonable:
– We need both f and ∇f when calculating ∇(f ; g) of a composition f ; g, using

the chain rule, so we are really interested in the pair (f,∇f) : R → R× R;
– In building f we will need to consider functions of multiple arguments, such

as + : R2 → R, and these functions should propagate derivatives.
Thus we are more generally interested in transforming a function g : Rn → R
into a function h : (R×R)n → R×R in such a way that for any f1 . . . fn : R → R,

(f1,∇f1, . . . , fn,∇fn);h = ((f1, . . . , fn); g,∇((f1, . . . , fn); g)). (2)

An intuition for h is often given in terms of dual numbers. The transformed
function operates on pairs of numbers, (x, x′), and it is common to think of such
a pair as x + x′ε for an ‘infinitesimal’ ε. But while this is a helpful intuition,
the formalization of infinitesimals can be intricate, and the development in this
paper is focussed on the elementary formulation in (2).

The reader may also notice that h encodes all the partial derivatives of g.

For example, if g : R2 → R, then with f1(x)
def
= x and f2(x)

def
= x2, by apply-

ing (2) to x1 we obtain h(x1, 1, x2, 0) = (g(x1, x2),
∂g(x,x2)

∂x (x1)) and similarly

322 M. Huot et al.



h(x1, 0, x2, 1) = (g(x1, x2),
∂g(x1,x)

∂x (x2)). And conversely, if g is differentiable in
each argument, then a unique h satisfying (2) can be found by taking linear
combinations of partial derivatives:

h(x1, x
′
1, x2, x

′
2) = (g(x1, x2), x

′
1 ·

∂g(x,x2)
∂x (x1) + x′

2 ·
∂g(x1,x)

∂x (x2)).

In summary, the idea of differentiation with dual numbers is to transform a
differentiable function g : Rn → R to a function h : R2n → R2 which captures g
and all its partial derivatives. We packaged this up in (2) as a sort-of invariant
which is useful for building derivatives of compound functions R → R in a
compositional way. The idea of forward mode automatic differentiation is to
perform this transformation at the source code level.

A simple language of smooth functions. We consider a standard higher
order typed language with a first order type real of real numbers. The types
(τ, σ) and terms (t, s) are as follows.
τ, σ, ρ ::= types

| real real numbers
| (τ1∗ . . .∗τn) finite product
| τ → σ function

t, s, r ::= terms
x variable

| c | t+ s | t ∗ s | ς(t) operations/constants
| 〈t1, . . . , tn〉 | case tof 〈x1, . . . , xn〉 → s tuples/pattern matching
| λx.t | t s function abstraction/app.

The typing rules are in Figure 3. We have included a minimal set of operations
for the sake of illustration, but it is not difficult to add further operations. We

add some simple syntactic sugar t − u
def
= t + (−1) ∗ u. We intend ς to stand

for the sigmoid function, ς(x)
def
= 1

1+e−x . We further include syntactic sugar
letx = t in s for (λx.s) t and λ〈x1, . . . , xn〉.t for λx.casexof 〈x1, . . . , xn〉 → t.

Syntactic automatic differentiation: a functorial macro. The aim of for-
ward mode AD is to find the dual numbers representation of a function by
syntactic manipulations. For our simple language, we implement this as the fol-
lowing inductively defined macro

−→D on both types and terms (see also [34, 31]):
−→D (real)

def
= (real∗real) −→D (τ → σ)

def
=

−→D (τ) → −→D (σ)
−→D ((τ1∗ · · ·∗τn)) def

= (
−→D (τ1)∗ · · ·∗−→D (τn))

Γ � c : real
(c ∈ R)

Γ � t : real Γ � s : real

Γ � t+ s : real

Γ � t : real Γ � s : real

Γ � t ∗ s : real

Γ � t : real

Γ � ς(t) : real
Γ � t1 : τ1 . . . Γ � tn : τn

Γ � 〈t1, . . . , tn〉 : (τ1∗ . . .∗τn)
Γ � t : (σ1∗ . . .∗σn) Γ, x1 : σ1, ..., xn : σn � s : τ

Γ � case tof 〈x1, . . . , xn〉 → s : τ

Γ � x : τ
((x : τ) ∈ Γ )

Γ, x : τ � t : σ

Γ � λx : τ.t : τ → σ

Γ � t : σ → τ Γ � s : σ

Γ � t s : τ

Fig. 3. Typing rules for the simple language.

Correctness of AD via Diffeologies and Categorical Gluing 323



−→D (x)
def
= x

−→D (c)
def
= 〈c, 0〉

−→D (t+ s)
def
= case

−→D (t)of 〈x, x′〉 → case
−→D (s)of 〈y, y′〉 → 〈x+ y, x′ + y′〉

−→D (t ∗ s) def
= case

−→D (t)of 〈x, x′〉 → case
−→D (s)of 〈y, y′〉 → 〈x ∗ y, x ∗ y′ + x′ ∗ y〉

−→D (ς(t))
def
= case

−→D (t)of 〈x, x′〉 → let y = ς(x) in 〈y, x′ ∗ y ∗ (1− y)〉
−→D (λx.t)

def
= λx.

−→D (t)
−→D (t s)

def
=

−→D (t)
−→D (s)

−→D (〈t1, . . . , tn〉) def
= 〈−→D (t1), . . . ,

−→D (tn)〉
−→D (case tof 〈x1, . . . , xn〉 → s)

def
= case

−→D (t)of 〈x1, . . . , xn〉 → −→D (s)

We extend
−→D to contexts:

−→D ({x1:τ1, ..., xn:τn}) def
= {x1:

−→D (τ1), ..., xn:
−→D (τn)}.

This turns
−→D into a well-typed, functorial macro in the following sense.

Lemma 1 (Functorial macro). If Γ 
 t : τ then
−→D (Γ ) 
 −→D (t) :

−→D (τ).

If Γ, x : σ 
 t : τ and Γ 
 s : σ then
−→D (Γ ) 
 −→D (t[s/x]) =

−→D (t)[
−→D (s)/x].

Example 1 (Inner products). Let us write τn for the n-fold product (τ∗ . . .∗τ).
Then, given Γ 
 t, s : realn we can define their inner product

Γ 
 t ·n s
def
= case tof 〈z1, . . . , zn〉 →

case sof 〈y1, . . . , yn〉 → z1 ∗ y1 + · · ·+ zn ∗ yn : real

To illustrate the calculation of
−→D , let us expand (and β-reduce)

−→D (t ·2 s):
case

−→D (t)of 〈z1, z2〉 → case
−→D (s)of 〈y1, y2〉 → case z1 of 〈z1,1, z1,2〉 →

case y1 of 〈y1,1, y1,2〉 → case z2 of 〈z2,1, z2,2〉 → case y2 of 〈y2,1, y2,2〉 →
〈z1,1 ∗ y1,1 + z2,1 ∗ y2,1 , z1,1 ∗ y1,2 + z1,2 ∗ y1,1 + z2,1 ∗ y2,2 + z2,2 ∗ y2,1〉

Example 2 (Neural networks). In our introduction (1), we provided a program
in our language to build a neural network out of expressions neuron, layer, comp;
this program makes use of the inner product of Ex. 1. We can similarly calculate
−→D of such deep neural nets by mechanically applying the macro.

3 Semantics of differentiation

Consider for a moment the first order fragment of the language in § 2, with only
one type, real, and no λ’s or pairs. This has a simple semantics in the category
of cartesian spaces and smooth maps. Indeed, a term x1 . . . xn : real 
 t : real
has a natural reading as a function �t� : Rn → R by interpreting our operation
symbols by the well-known operations on Rn → R with the corresponding name.
In fact, the functions that are definable in this first order fragment are smooth,
which means that they are continuous, differentiable, and their derivatives are
continuous, differentiable, and so on. Let us write CartSp for this category of
cartesian spaces (Rn for some n) and smooth functions.

The category CartSp has cartesian products, and so we can also interpret
product types, tupling and pattern matching, giving us a useful syntax for con-
structing functions into and out of products of R. For example, the interpretation
of (neuronn) in (1) becomes

Rn × Rn × R �·n�×idR−−−−−→ R× R �+�−−→ R �ς�−−→ R.
where �·n�, �+� and �ς� are the usual inner product, addition and the sigmoid
function on R, respectively.

324 M. Huot et al.



Inside this category, we can straightforwardly study the first order language
without λ’s, and automatic differentiation. In fact, we can prove the following
by plain induction on the syntax:
The interpretation of the (syntactic) forward AD

−→D (t) of a first-order term t
equals the usual (semantic) derivative of the interpretation of t as a smooth
function.

However, as is well known, the category CartSp does not support function
spaces. To see this, notice that we have polynomial terms

x1, . . . , xd : real 
 λy.
∑d

n=1 xny
n : real → real

for each d, and so if we could interpret (real → real) as a Euclidean space Rp

then, by interpreting these polynomial expressions, we would be able to find
continuous injections Rd → Rp for every d, which is topologically impossible
for any p, for example as a consequence of the Borsuk-Ulam theorem (see [15],
Appx. A).

This means that we cannot interpret the functions (layer) and (comp) from (1)
in CartSp, as they are higher order functions, even though they are very use-
ful and innocent building blocks for differential programming! Clearly, we could
define neural nets such as (1) directly as smooth functions without any higher
order subcomponents, though that would quickly become cumbersome for deep
networks. A problematic consequence of the lack of a semantics for higher order
differential programs is that we have no obvious way of establishing composi-
tional semantic correctness of

−→D for the given implementation of (1).

Diffeological spaces. This motivates us to turn to a more general notion
of differential geometry for our semantics, based on diffeological spaces [16].
The key idea will be that a higher order function is called smooth if it sends
smooth functions to smooth functions, meaning that we can never use it to
build first order functions that are not smooth. For example, (comp) in (1) has
this property.

Definition 1. A diffeological space (X,PX) consists of a set X together with,
for each n and each open subset U of Rn, a set PU

X ⊆ [U → X] of functions,
called plots, such that
– all constant functions are plots;
– if f : V → U is a smooth function and p ∈ PU

X , then f ; p ∈ PV
X ;

– if
(
pi ∈ PUi

X

)
i∈I

is a compatible family of plots (x ∈ Ui∩Uj ⇒ pi(x) = pj(x))

and (Ui)i∈I covers U , then the gluing p : U → X : x ∈ Ui → pi(x) is a plot.

We call a function f : X → Y between diffeological spaces smooth if, for all plots
p ∈ PU

X , we have that p; f ∈ PU
Y . We write Diff(X,Y ) for the set of smooth

maps from X to Y . Smooth functions compose, and so we have a category Diff
of diffeological spaces and smooth functions.

A diffeological space is thus a set equipped with structure. Many construc-
tions of sets carry over straightforwardly to diffeological spaces.

Example 3 (Cartesian diffeologies). Each open subset U of Rn can be given the
structure of a diffeological space by taking all the smooth functions V → U

Correctness of AD via Diffeologies and Categorical Gluing 325



as PV
U . It is easily seen that smooth functions from V → U in the traditional

sense coincide with smooth functions in the sense of diffeological spaces. Thus
diffeological spaces have a profound relationship with ordinary calculus.

In categorical terms, this gives a full embedding of CartSp in Diff .

Example 4 (Product diffeologies). Given a family (Xi)i∈I of diffeological spaces,
we can equip the product

∏
i∈I Xi of sets with the product diffeology in which

U -plots are precisely the functions of the form (pi)i∈I for pi ∈ PU
Xi

.

This gives us the categorical product in Diff .

Example 5 (Functional diffeology). We can equip the set Diff(X,Y ) of smooth
functions between diffeological spaces with the functional diffeology in which U -
plots consist of functions f : U → Diff(X,Y ) such that (u, x) → f(u)(x) is an
element of Diff(U ×X,Y ).

This specifies the categorical function object in Diff .

Semantics and correctness of AD. We can now give a denotational seman-
tics to our language from § 2. We interpret each type τ as a set �τ� equipped
with the relevant diffeology, by induction on the structure of types:

�real� def
= R �(τ1∗ . . .∗τn)� def

=
∏n

i=1�τi� �τ → σ� def
= Diff(�τ�, �σ�)

A context Γ = (x1 : τ1 . . . xn : τn) is interpreted as a diffeological space �Γ � def
=∏n

i=1�τi�. Now well typed terms Γ 
 t : τ are interpreted as smooth functions
�t� : �Γ � → �τ�, giving a meaning for t for every valuation of the context. This is
routinely defined by induction on the structure of typing derivations. Constants
c : real are interpreted as constant functions; and the first order operations
(+, ∗, ς) are interpreted by composing with the corresponding functions, which

are smooth. For example, �ς(t)�(ρ) def
= ς(�t�(ρ)), where ρ ∈ �Γ �. Variables are

interpreted as �xi�(ρ)
def
= ρi. The remaining constructs are interpreted as follows,

and it is straightforward to show that smoothness is preserved.

�〈t1, . . . , tn〉�(ρ) def
= (�t1�(ρ), . . . , �tn�(ρ)) �λx:τ.t�(ρ)(a) def

= �t�(ρ, a) (a ∈ �τ�)

�case tof 〈...〉 → s�(ρ) def
= �s�(ρ, �t�(ρ)) �t s�(ρ) def

= �t�(ρ)(�s�(ρ))

Notice that a term x1 : real, . . . , xn : real 
 t : real is interpreted as a smooth
function �t� : Rn → R, even if t involves higher order functions (like (1)). More-
over the macro differentiation

−→D (t) is a function �−→D (t)� : (R × R)n → (R × R).
This enables us to state a limited version of our main correctness theorem:

Theorem 1 (Semantic correctness of
−→D (limited)). For any term

x1 : real, . . . , xn : real 
 t : real, the function �−→D (t)� is the dual numbers repre-
sentation (2) of �t�. In detail: for any smooth functions f1 . . . fn : R → R,

(f1,∇f1, . . . , fn,∇fn); �
−→D (t)� =

(
(f1 . . . fn); �t�,∇((f1 . . . fn); �t�)

)
.

(For instance, if n = 2, then �−→D (t)�(x1, 1, x2, 0) = (�t�(x1, x2),
∂�t�(x,x2)

∂x (x1)).)

326 M. Huot et al.



Proof. We prove this by logical relations. Although the following proof is ele-
mentary, we found it by using the categorical methods in § 5.

For each type τ , we define a binary relation Sτ between curves in �τ� and
curves in �−→D (τ)�, i.e. Sτ ⊆ PR

�τ� × PR
�
−→D (τ)�

, by induction on τ :

– Sreal
def
= {(f, (f,∇f)) | f : R → R smooth};

– S(τ∗σ)
def
= {((f1, g1), (f2, g2)) | (f1, f2) ∈ Sτ , (g1, g2) ∈ Sσ};

– Sτ→σ
def
= {(f1, f2) | ∀(g1, g2) ∈ Sτ .(x→f1(x)(g1(x)), x →f2(x)(g2(x))) ∈ Sσ}.

Then, we establish the following ‘fundamental lemma’:

If x1:τ1, ..., xn:τn 
 t : σ and, for all 1≤i≤n, y1...ym : real 
 si : τi
is such that ((f1, . . . , fm); �si�, (f1,∇f1), ..., fm,∇fm); �−→D (si)�) ∈ Sτi for
all smooth fi : R → R, then(
(f1, ..., fm); �t[s1/x1

, ...,sn/xn
]�, (f1,∇f1, ..., fm,∇fm); �−→D (t[s1/x1

, ...,sn/xn
])�

)
is in Sσ for all smooth fi : R → R.

This is proved routinely by induction on the typing derivation of t. The case
for ∗ relies on the precise definition of

−→D (t ∗ s), and similarly for +, ς.
We conclude the theorem from the fundamental lemma by considering the

case where τi = σ = real, m = n and si = yi. ��

4 Extending the language: variant and inductive types

In this section, we show that the definition of forward AD and the semantics
generalize if we extend the language of §2 with variants and inductive types. As
an example of inductive types, we consider lists. This specific choice is only for
expository purposes and the whole development works at the level of generality
of arbitrary algebraic data types generated as initial algebras of (polynomial)
type constructors formed by finite products and variants.

Similarly, our choice of operations is for expository purposes. More generally,
assume given a family of operations (Opn)n∈N indexed by their arity n. Further
assume that each op ∈ Opn has type realn → real. We then ask for a certain
closure of these operations under differentiation, that is we define
−→D (op(t1, . . . , tn))

def
= case

−→D (t1)of 〈x1, x
′
1〉 → . . . → case

−→D (tn)of 〈xn, x
′
n〉 →

〈op(x1, . . . , xn),
∑n

i=1 x
′
i ∗ ∂iop(x1, . . . , xn)〉

where ∂iop(x1, . . . , xn) is some chosen term in the language, involving free vari-
ables from x1, . . . , xn, which we think of as implementing the partial derivative
of op with respect to its i-th argument. For constructing the semantics, every op
must be interpreted by some smooth function, and, to establish correctness, the
semantics of ∂iop(x1, . . . , xn) must be the semantic i-th partial derivative of the
semantics of op(x1, . . . , xn).

Language. We additionally consider the following types and terms:
τ, σ, ρ ::= types

| {�1 τ1
∣∣ . . . ∣∣ �n τn} variant

| list(τ) list

Correctness of AD via Diffeologies and Categorical Gluing 327



t, s, r ::= terms
| τ.� t variant constructor
| [ ] | t :: s empty list and cons
| case tof {�1 x1 → s1

∣∣ · · · ∣∣ �n xn → sn} pattern matching: variants
| fold (x1, x2).tover s from r list fold

We extend the type system according to:
Γ 
 t : τi

Γ 
 τ.�i t : τ
((�i τi) ∈ τ)

Γ 
 [ ] : list(τ)

Γ 
 t : τ Γ 
 s : list(τ)

Γ 
 t :: s : list(τ)
Γ 
 t : {�1 τ1

∣∣ . . . ∣∣ �n τn} for each 1 ≤ i ≤ n: Γ, xi : τi 
 si : τ

Γ 
 case tof {�1 x1 → s1
∣∣ · · · ∣∣ �n xn → sn} : τ

Γ 
 s : list(τ) Γ 
 r : σ Γ, x1 : τ, x2 : σ 
 t : σ

Γ 
 fold (x1, x2).tover s from r : σ

We can then extend
−→D to our new types and terms by

−→D ({�1 τ1
∣∣ . . . ∣∣ �n τn}) def

= {�1 −→D (τ1)
∣∣ . . . ∣∣ �n −→D (τn)} −→D (list(τ))

def
= list(

−→D (τ))

−→D (τ.� t)
def
=

−→D (τ).�
−→D (t)

−→D ([ ])
def
= [ ]

−→D (t :: s)
def
=

−→D (t) ::
−→D (s)

−→D (case tof {�1 x1 → s1
∣∣ · · · ∣∣ �n xn → sn}) def

=
case

−→D (t)of {�1 x1 → −→D (s1)
∣∣ · · · ∣∣ �n xn → −→D (sn)}

−→D (fold (x1, x2).tover s from r)
def
= fold (x1, x2).

−→D (t)over
−→D (s) from

−→D (r)

To demonstrate the practical use of expressive type systems for differential
programming, we consider the following two examples.

Example 6 (Lists of inputs for neural nets). Usually, we run a neural network on
a large data set, the size of which might be determined at runtime. To evaluate
a neural network on multiple inputs, in practice, one often sums the outcomes.
This can be coded in our extended language as follows. Suppose that we have
a network f : (realn∗P ) → real that operates on single input vectors. We can
construct one that operates on lists of inputs as follows:

g
def
= λ〈l, w〉.fold (x1, x2).f〈x1, w〉+ x2 over l from 0 : (list(realn)∗P ) → real

Example 7 (Missing data). In practically every application of statistics and ma-
chine learning, we face the problem of missing data: for some observations, only
partial information is available. In an expressive typed programming language
like we consider, we can model missing data conveniently using the data type
maybe(τ) = {Nothing ( )

∣∣ Just τ}. In the context of a neural network, one might
use it as follows. First, define some helper functions

fromMaybe
def
= λx.λm.casemof {Nothing → x

∣∣ Justx′ → x′}

fromMayben
def
= λ〈x1, ..., xn〉.λ〈m1, ...,mn〉.〈fromMaybex1 m1, ..., fromMaybexn mn〉

: (maybe(real))n → realn → realn

map
def
= λf.λl.fold (x1, x2).f x1 :: x2 over l from [ ] : (τ → σ) → list(τ) → list(σ)

328 M. Huot et al.



Given a neural network f : (list(realk)∗P ) → real, we can build a new one
that operates on on a data set for which some covariates (features) are missing,
by passing in default values to replace the missing covariates:

λ〈l, 〈m,w〉〉.f〈map (fromMaybek m) l, w〉
: (list((maybe(real))k)∗(realk∗P )) → real

Then, given a data set l with missing covariates, we can perform automatic
differentiation on this network to optimize, simultaneously, the ordinary network
parameters w and the default values for missing covariates m.

Semantics. In § 3 we gave a denotational semantics for the simple language in
diffeological spaces. This extends to the language in this section, as follows. As
before, each type τ is interpreted as a diffeological space, which is a set equipped
with a family of plots:
– A variant type {�1 τ1

∣∣ . . . ∣∣ �n τn} is inductively interpreted as the disjoint

union �{�1 τ1
∣∣ · · · ∣∣ �n τn}� def

=
⊎n

i=1�τi� with U -plots

PU

�{�1 τ1
∣∣...∣∣�n τn}�

def
=

{[
Uj

fj−→ �τj� →
⊎n

i=1�τi�
]n
j=1

∣∣ U =
⊎n

j=1 Uj , fj ∈ PUj

�τj�

}
.

– A list type list(τ) is interpreted as the set of lists, �list(τ)� def
=

⊎∞
i=1�τ�i

with U -plots

PU
�list(τ)�

def
=

{[
Uj

fj−→ �τ�j →
⊎∞

i=1�τ�i
]∞
j=1

∣∣ U =
⊎∞

j=1 Uj , fj ∈ PUj

�τ�j

}
.

The constructors and destructors for variants and lists are interpreted as in
the usual set theoretic semantics. It is routine to show inductively that these
interpretations are smooth. Thus every term Γ 
 t : τ in the extended language
is interpreted as a smooth function �t� : �Γ � → �τ� between diffeological spaces.

(In this section we focused on a language with lists, but other inductive types
are easily interpreted in the category of diffeological spaces in much the same
way; the categorically minded reader may regard this as a consequence of Diff
being a concrete Grothendieck quasitopos, e.g. [3].)

5 Categorical analysis of forward AD and its correctness

This section has three parts. First, we give a categorical account of the functo-
riality of AD (Ex. 8). Then we introduce our gluing construction, and relate it
to the correctness of AD (dgm. (3)). Finally, we state and prove a correctness
theorem for all first order types by considering a category of manifolds (Th. 2).

Syntactic categories. Our language induces a syntactic category as follows.

Definition 2. Let Syn be the category whose objects are types, and where a
morphism τ → σ is a term in context x : τ 
 t : σ modulo the βη-laws (Fig. 4).
Composition is by substitution.

Correctness of AD via Diffeologies and Categorical Gluing 329



For simplicity, we do not impose arithmetic identities such as x + y = y + x in
Syn. As is standard, this category has the following universal property.

Lemma 2 (e.g. [27]). For every bicartesian closed category C with list objects,
and every object F (real) ∈ C and morphisms F (c) ∈ C(1, F (real)), F (+), F (∗) ∈
C(F (real) × F (real), F (real)), F (ς) ∈ Syn(F (real), F (real)) in C, there is a
unique functor F : Syn → C respecting the interpretation and preserving the
bicartesian closed structure as well as list objects.

Proof (notes). The functor F : Syn → C is a canonical denotational semantics
for the language, interpreting types as objects of C and terms as morphisms.

For instance, F (τ → σ)
def
= (Fτ → Fσ), the function space in the category C,

and F (t s)
def
= is the composite (Ft, Fs); eval . When C = Diff , the denotational

semantics of the language in diffeological spaces (§3,4) can be understood as the
unique structure preserving functor �−� : Syn → Diff satisfying �real� = R,
�ς� = ς and so on. ��

Example 8 (Canonical definition forward AD). The forward AD macro
−→D (§2,4)

arises as a canonical cartesian closed functor on Syn. Consider the unique carte-
sian closed functor F : Syn → Syn such that F (real) = real∗real, F (c) =

−→D (c),
F (ς) =

−→D (ς(x)), and
F (+) = z : F (real)∗F (real) 
 case z of 〈x, y〉 → −→D (x+ y) : F (real)
F (∗) = z : F (real)∗F (real) 
 case z of 〈x, y〉 → −→D (x ∗ y) : F (real)

Then for any type τ , F (τ) =
−→D (τ), and for any term x : τ 
 t : σ, F (t) =

−→D (t)
as morphisms F (τ) → F (σ) in the syntactic category.

Categorical gluing and logical relations. Gluing is a method for building
new categorical models which has been used for many purposes, including logical
relations and realizability [24]. Our logical relations argument in the proof of
Th. 1 can be understood in this setting. In this subsection, for the categorically
minded, we explain this, and in doing so we quickly recover a correctness result
for the more general language in § 4 and for arbitrary first order types.

We define a category GlU whose objects are triples (X,X ′, S) where X
and X ′ are diffeological spaces and S ⊆ PU

X × PU
X′ is a relation between their

U -plots. A morphism (X,X ′, S) → (Y, Y ′, T ) is a pair of smooth functions

case 〈t1, . . . , tn〉of 〈x1, . . . , xn〉 → s = s[t1/x1 , . . . ,
tn/xn ]

s[t/y]
#x1,...,xn

= case tof 〈x1, . . . , xn〉 → s[〈x1,...,xn〉/y]

case �i tof {�1 x1 → s1
∣
∣ · · · ∣∣ �n xn → sn} = si[

t/xi ]

s[t/y]
#x1,...,xn

= case tof {�1 x1 → s[�1 x1/y]
∣
∣ · · · ∣∣ �n xn → s[�n xn/y]}

fold (x1, x2).tover [ ] from r = r

fold (x1, x2).tover s1 :: s2 from r = t[s1/x1 ,
fold (x1,x2).t over s2 from r/x2 ]

u = s[[ ]/y], r[
s/x2 ] = s[x1::y/y] ⇒ s[t/y]

#x1,x2= fold (x1, x2).r over t fromu

(λx.t) s = t[s/x]

t
#x
= λx.t x

We write
#x1,...,xn

= to indi-
cate that the variables are
free in the left hand side.

Fig. 4. Standard βη-laws (e.g. [27]) for products, functions, variants and lists.

330 M. Huot et al.



f : X → Y , f ′ : X ′ → Y ′, such that if (g, g′) ∈ S then (g; f, g′; f ′) ∈ T . The
idea is that this is a semantic domain where we can simultaneously interpret the
language and its automatic derivatives.

Proposition 1. The category GlU is bicartesian closed, has list objects, and the
projection functor proj : GlU → Diff ×Diff preserves this structure.

Proof (notes). The category GlU is a full subcategory of the comma category
idSet ↓ Diff(U,−) × Diff(U,−). The result thus follows by the general theory
of categorical gluing (e.g. [17, Lemma 15]). ��

We give a semantics �−� = (�−�0, �−�1, S−) for the language in GlR, interpreting

types τ as objects (�τ�0, �τ�1, Sτ ), and terms as morphisms. We let �real�0
def
= R

and �real�1
def
= R2, with the relation Sreal

def
= {(f, (f,∇f)) | f : R → R smooth}.

We interpret the constants c as pairs �c�0
def
= c and �c�1

def
= (c, 0), and we interpret

+,×, ς in the standard way (meaning, like �−�) in �−�0, but according to the
derivatives in �−�1, for instance, �∗�1 : R2 × R2 → R2 is

�∗�1((x, x′), (y, y′))
def
= (xy, xy′ + x′y).

At this point one checks that these interpretations are indeed morphisms in
GlR. This amounts to checking that these interpretations are dual numbers
representations in the sense of (2). The remaining constructions of the language
are interpreted using the categorical structure of GlR, following Lem. 2.

Notice that the diagram below commutes. One can check this by hand or
note that it follows from the initiality of Syn (Lem. 2): all the functors preserve
all the structure.

Syn
(id,

−→D (−)) ��

�−�

��

Syn× Syn

�−�×�−�

��
GlR

proj
�� Diff ×Diff

(3)

We thus arrive at a restatement of the correctness theorem (Th. 1), which holds
even for the extended language with variants and lists, because for any x1...xn :
real 
 t : real, the interpretations (�t�, �−→D (t)�) are in the image of the projection
GlR → Diff ×Diff , and hence �−→D (t)� is a dual numbers encoding of �t�.

Correctness at all first order types, via manifolds. We now generalize
Theorem 1 to hold at all first order types, not just the reals. To do this, we
need to define the derivative of a smooth map between the interpretations of
first order types. We do this by recalling the well known theory of manifolds and
tangent bundles.

For our purposes, a smooth manifoldM is a second-countable Hausdorff topo-
logical space together with a smooth atlas: an open cover U together with home-
omorphisms

(
φU : U → Rn(U)

)
U∈U (called charts) such that φ−1

U ;φV is smooth

Correctness of AD via Diffeologies and Categorical Gluing 331



on its domain of definition for all U, V ∈ U . A function f : M → N between
manifolds is smooth if φ−1

U ; f ;ψV is smooth for all charts φU and ψV of M and
N , respectively. Let us write Man for this category.

Our manifolds are slightly unusual because different charts in an atlas may
have different finite dimension n(U). Thus we consider manifolds with dimensions
that are potentially unbounded, albeit locally finite. This does not affect the
theory of differential geometry as far as we need it here.

Each open subset of Rn can be regarded as a manifold. This lets us regard the
category of manifolds Man as a full subcategory of the category of diffeological
spaces. We consider a manifold (X, {φU}U ) as a diffeological space with the same
carrier set X and where the plots PU

X are the smooth functions in Man(U,X).
A function X → Y is smooth in the sense of manifolds if and only if it is smooth
in the sense of diffeological spaces [16]. For the categorically minded reader, this
means that we have a full embedding of Man into Diff . Moreover, the natural
interpretation of the first order fragment of our language in Man coincides with
that in Diff . That is, the embedding of Man into Diff preserves finite products
and countable coproducts (hence initial algebras of polynomial endofunctors).

Proposition 2. Suppose that a type τ is first order, i.e. it is just built from
reals, products, variants, and lists (or, again, arbitrary inductive types), and not
function types. Then the diffeological space �τ� is a manifold.

Proof (notes). This is proved by induction on the structure of types. In fact, one
may show that every such �τ� is isomorphic to a manifold of the form

⊎n
i=1 Rdi

where the bound n is either finite or ∞, but this isomorphism is typically not
an identity function. ��

The constraint to first order types is necessary because, e.g. the space �real →
real� is not a manifold, because of a Borsuk-Ulam argument (see [15], Appx. A).

We recall that the derivative of any morphism f : M → N of manifolds is
given as follows. For each point x in a manifold M , define the tangent space
TxM to be the set {γ ∈ Man(R,M) | γ(0) = x}/ ∼ of equivalence classes [γ] of
smooth curves γ in M based at x, where we identify γ1 ∼ γ2 iff ∇(γ1; f)(0) =
∇(γ2; f)(0) for all smooth f : M → R. The tangent bundle of M is the set

T (M)
def
=

⊎
x∈M Tx(M). The charts of M equip T (M) with a canonical manifold

structure. Then for smooth f : M → N , the derivative T (f) : T (M) → T (N)

is defined as T (f)(x, [γ])
def
= (f(x), [γ; f ]). All told, the derivative is a functor

T : Man → Man.
As is standard, we can understand the tangent bundle of a composite space

in terms of that of its parts.

Lemma 3. There are canonical isomorphisms T (
⊎∞

i=1 Mi) ∼=
⊎∞

i=1 T (Mi) and
T (M1 × . . .×Mn) ∼= T (M1)× . . .× T (Mn).

We define a canonical isomorphism φ
−→D T
τ : �−→D (τ)� → T (�τ�) for every type τ ,

by induction on the structure of types. We let φ
−→D T
real : �−→D (real)� → T (�real�) be

332 M. Huot et al.



given by φ
−→D T
real(x, x

′)
def
= (x, [t → x+ x′t]). For the other types, we use Lemma 3.

We can now phrase correctness at all first order types.

Theorem 2 (Semantic correctness of
−→D (full)). For any ground τ , any first

order context Γ and any term Γ 
 t : τ , the syntactic translation
−→D coincides

with the tangent bundle functor, modulo these canonical isomorphisms:

�−→D (Γ )�
�
−→D (t)� ��

φ

−→D T
Γ

∼=
��

�−→D (τ)�

φ
−→D T
τ

∼=
��

T (�Γ �)
T (�t�)

�� T (�τ�)

Proof (notes). For any curve γ ∈ Man(R,M), let γ̄ ∈ Man(R, T (M)) be the
tangent curve, given by γ̄(x) = (γ(x), [t → γ(x + t)]). First, we note that a
smooth map h : T (M) → T (N) is of the form T (g) for some g : M → N if
for all smooth curves γ : R → M we have γ̄;h = (γ; g) : R → T (N). This

generalizes (2). Second, for any first order type τ , S�τ� = {(f, f̃) | f̃ ;φ
−→D T
τ = f̄}.

This is shown by induction on the structure of types. We conclude the theorem
from diagram (3), by putting these two observations together. ��

6 A continuation-based AD algorithm

We now illustrate the flexibility of our framework by briefly describing an alter-
native syntactic translation

←−Dρ. This alternative translation uses aspects of con-
tinuation passing style, inspired by recent developments in reverse mode AD [34,
5]. In brief,

←−Dρ works by
←−Dρ(real) = (real∗ (real → ρ)). Thus instead of using a

pair of a number and its tangent, we use a pair of a number and a continuation.
The answer type ρ = realk needs to have the structure of a vector space, and
the continuations that we consider will turn out to be linear maps. Because we
work in continuation passing style, the chain rule is applied contravariantly. If
the reader is familiar with reverse-mode AD algorithms, they may think of the
dimension k as the number of memory cells used to store the result.

Computing the whole gradient of a term x1 : real, ..., xk : real 
 t : real at
once is then achieved by running

←−Dk(t) on a k-tuple of basis vectors for realk.
We define the continuation-based AD macro

←−Dk on types and terms as the
unique structure preserving functor Syn → Syn with

←−Dk(real) = (real∗(real →
realk)) and
←−Dk(c)

def
= 〈c, λz.〈0, . . . , 0〉〉

←−Dk(t+ s)
def
= case

←−Dk(t)of 〈x, x′〉 → case
←−Dk(s)of 〈y, y′〉 → 〈x+ y, λz.x′ z + y′ z〉

←−Dk(t ∗ s) def
= case

←−Dk(t)of 〈x, x′〉 → case
←−Dk(s)of 〈y, y′〉 →

〈x ∗ y, λz.x′ (y ∗ z) + y′ (x ∗ z)〉
←−Dk(ς(t))

def
= case

←−Dk(t)of 〈x, x′〉 → let y = ς(x) in 〈y, λz.x′ (y ∗ (1− y) ∗ z)〉.
Here, we use sugar x : realk, y : realk 
 x + y

def
= casexof 〈x1, . . . , xk〉 →

Correctness of AD via Diffeologies and Categorical Gluing 333



case y of 〈y1, . . . , yk〉 → 〈x1+ y1, . . . , xk +yk〉. (We could easily expand this def-
inition by making

←−Dk preserve all other term and type formers, as we did for
−→D .)

Note that the corresponding scheme for an arbitrary n-ary operation op would
be (c.f. the scheme for forward AD in §4)
←−Dk(op(t1, . . . , tn))

def
= case

←−Dk(t1)of 〈x1, x
′
1〉 → . . . → case

←−Dk(tn)of 〈xn, x
′
n〉 →

〈op(x1, . . . , xn), λz.
∑n

i=1 x
′
i(∂iop(x1, . . . , xn) ∗ z)〉.

The idea is that
←−Dk(t) is a higher order function that simultaneously computes

t (the forward pass) and defines as a continuation the reverse pass which com-
putes the gradient. In order to actually run the algorithm, we need two auxiliary
definitions

lamRk
real

def
= λz. case z of 〈x, x′〉 → casex′ of 〈x′

1, . . . , x
′
k〉 →

〈x, λy.〈x′
1 ∗ y, . . . , x′

k ∗ y〉〉 : −→Dk(real) → ←−Dk(real)

evRk
real

def
= λz. case z of 〈x, x′〉 → 〈x, x′ 1〉 : ←−Dk(real) → −→Dk(real).

Here,
−→Dk is a macro on types (and terms) with exactly the same inductive def-

inition as
−→D except for the base case

−→Dk(real) = (real∗realk). By noting that
both

−→Dk and
←−Dk preserve all type formers, we can extend these definitions to all

first order types τ : z :
−→Dk(τ) 
 lamRk

τ (z) :
←−Dk(τ), z :

←−Dk(τ) 
 evRk
τ (z) :

−→Dk(τ).
We can think of lamRk

τ (z) as encoding k tangent vectors z :
−→Dk(τ) as a closure,

so it is suitable for running
←−Dk(t) on, and evRk

τ (z) as actually evaluating the
reverse pass defined by z :

←−Dk(τ) and returning the result as k tangent vectors.
The idea is that given some x : τ 
 t : σ between first order types τ, σ, we run

our continuation-based AD by running evRk
σ(

←−Dk(t)[
lamRk

τ (z)/x]).
The correctness proof closely follows that for forward AD. In particular,

one defines a binary logical relation �real�r,k = (R,R × (Rk)R, Sr,k
real), where

Sr,k
real =

{
(f, x → (f(x), y → (∂1f(x) ∗ y, . . . , ∂kf(x) ∗ y))) | f ∈ PRk

R

}
, on the

plots PRk

R × PRk

R×((Rk)R) and verifies that �c� × �←−Dk(c)�, �x + y� × �←−Dk(x + y)�,
�x∗y�×�←−Dk(x∗y)� and �ς(x)�×�←−Dk(ς(x))� respect this logical relation. It follows
that this relation extends to a functor �−�r,k : Syn → GlRk such that id × ←−Dk

factors over �−�r,k, implying the correctness of the continuation-based AD by
the following lemma.

Lemma 4. For all first order types τ (i.e. types not involving function types),
we have that �evRk

τ (lamRk
τ (t))� = �t�.

Proof (notes). This follows by an induction on the structure of τ . The idea is
that lamRk

τ embeds reals into function spaces as linear maps, which is undone
by evRk

τ by evaluating the linear maps at 1. ��

To phrase correctness, in this setting, however, we need a few definitions.
Keeping in mind the canonical projection T (M) → M , we define T k(M) as
the k-fold categorical pullback (fibre product) T (M) ×M . . . ×M T (M). To be
explicit, T k

x M consists of k-tuples of tangent vectors at the base point x. Again,

T k extends to a functor Man → Man by defining T k(f)(x, (v1, . . . , vk))
def
=

(f(x), (Tx(f)(v1), . . . , Tx(f)(vk))). As T k preserves countable coproducts and

334 M. Huot et al.



finite products (like T ), it follows that the isomorphisms φ
−→D T
τ generalize to

canonical isomorphisms φ
−→D T
τ,k : �−→Dk(τ)� → T k(�τ�) for first order types τ . This

leads to the following correctness statement for continuation-based AD.

Theorem 3 (Semantic correctness of
←−Dk). For any ground τ , any first order

context Γ and any term Γ 
 t : τ , syntactic translation t → evRk
τ (

←−Dk(t)[
lamRk

Γ (z)/...])
coincides with the tangent bundle functor, modulo these canonical isomorphisms:

�−→Dk(Γ )�
�lamRk

Γ ;
←−Dk(t);evR

k
τ � ��

φ

−→D T
Γ,k

∼=
��

�−→Dk(τ)�

φ

−→D T
τ,k

∼=
��

T k(�Γ �)
T k(�t�)

�� T k(�τ�)

For example, when τ = real and Γ = x, y : real, we can run our continuation-
based AD to compute the gradient of a program x, y : real 
 t : real at values
x = V, y = W by evaluating

evR2
real (

←−D2(t)[
(lamR2

x:real v)/x,
(lamR2

y:real w)/y])[
〈V,〈1,0〉〉/v,

〈W,〈0,1〉〉/w].

Indeed,

�evR2
real (

←−D2(t)[
(lamR2

x:real v)/x,
(lamR2

y:real w)/y])[
〈V,〈1,0〉〉/v,

〈W,〈0,1〉〉/w]� =(
�t�(�V �, �W �), ∂1�t�(�V �, �W �), ∂2�t�(�V �, �W �)

)
.

7 Discussion and future work

Summary. We have shown that diffeological spaces provide a denotational
semantics for a higher order language with variants and inductive types (§3,4).
We have used this to show correctness of a simple AD translation (Thm. 1,
Thm. 2). But the method is not tied to this specific translation, as we illustrated
in Section 6.

The structure of our elementary correctness argument for Theorem 1 is a
typical logical relations proof. As explained in Section 5, this can equivalently
be understood as a denotational semantics in a new kind of space obtained by
categorical gluing.

Overall, then, there are two logical relations at play. One is in diffeological
spaces, which ensures that all definable functions are smooth. The other is in the
correctness proof (equivalently in the categorical gluing), which explicitly tracks
the derivative of each function, and tracks the syntactic AD even at higher types.

Connection to the state of the art in AD implementation. As is common
in denotational semantics research, we have here focused on an idealized language
and simple translations to illustrate the main aspects of the method. There are
a number of points where our approach is simplistic compared to the advanced
current practice, as we now explain.

Correctness of AD via Diffeologies and Categorical Gluing 335



Representation of vectors. In our examples we have treated n-vectors as tuples
of length n. This style of programming does not scale to large n. A better
solution would be to use array types, following [31]. Our categorical semantics
and correctness proofs straightforwardly extend to cover them, in a similar way
to our treatment of lists.

Efficient forward-mode AD. For AD to be useful, it must be fast. The syntactic
translation

−→D that we use is the basis of an efficient AD library [31]. However,
numerous optimizations are needed, ranging from algebraic manipulations, to
partial evaluations, to the use of an optimizing C compiler. A topic for future
work would be to validate some of these manipulations using our semantics. The
resulting implementation is performant in experiments [31].

Efficient reverse-mode AD. Our sketch of continuation-based AD is primarily
intended to emphasise that our denotational approach is not tied to any specific
translation

−→D . Nonetheless, it is worth noting that this algorithm shares similari-
ties with advanced reverse-mode implementations: (1) it calculates derivatives in
a (contravariant) “reverse pass” in which derivatives of operations are evaluated
in the reverse order compared to their order in calculating the function value;
(2) it can be used to calculate the full gradient of a function Rn → R in a single
reverse pass (while n passes of fwd AD would be necessary). However, it lacks
important optimizations and the continuation scales with the size of the input n
where it should scale with the size of the output. This adds an important over-
head, as pointed out in [26]. Speed being the main attraction of reverse-mode
AD, its implementations tend to rely on mutable state, control operators and/or
staging [26, 6, 34, 5], which we have not considered here.

Other language features. The idealized languages that we considered so far do
not touch on several useful language constructs. For example: the use of functions
that are partial (such as division) or partly-smooth (such as RelU); phenomena
such as iteration, recursion; and probabilities. There are suggestions that the
denotational approach using diffeological spaces can be adapted to these features
using standard categorical methods. We leave this for future work.

Acknowledgements. We have benefited from discussing this work with many
people, including B. Pearlmutter, O. Kammar, C. Mak, L. Ong, G. Plotkin,
A. Shaikhha, J. Sigal, and others. Our work is supported by the Royal Society
and by a Facebook Research Award. In the course of this work, MV has also
been employed at Oxford (EPSRC Project EP/M023974/1) and at Columbia in
the Stan development team. This project has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme under the Marie
Sk�lodowska-Curie grant agreement No. 895827.

336 M. Huot et al.



References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., et al.: Tensorflow: A system for large-scale machine
learning. In: 12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 16). pp. 265–283 (2016)

2. Abadi, M., Plotkin, G.D.: A simple differentiable programming language. In:
Proc. POPL 2020. ACM (2020)

3. Baez, J., Hoffnung, A.: Convenient categories of smooth spaces. Transactions of
the American Mathematical Society 363(11), 5789–5825 (2011)

4. Barthe, G., Crubillé, R., Lago, U.D., Gavazzo, F.: On the versatility of open logical
relations: Continuity, automatic differentiation, and a containment theorem. In:
Proc. ESOP 2020. Springer (2020), to appear

5. Brunel, A., Mazza, D., Pagani, M.: Backpropagation in the simply typed lambda-
calculus with linear negation. In: Proc. POPL 2020 (2020)

6. Carpenter, B., Hoffman, M.D., Brubaker, M., Lee, D., Li, P., Betancourt, M.: The
Stan math library: Reverse-mode automatic differentiation in C++. arXiv preprint
arXiv:1509.07164 (2015)

7. Christensen, J.D., Wu, E.: Tangent spaces and tangent bundles for diffeological
spaces. arXiv preprint arXiv:1411.5425 (2014)

8. Cockett, J.R.B., Cruttwell, G.S.H., Gallagher, J., Lemay, J.S.P., MacAdam, B.,
Plotkin, G.D., Pronk, D.: Reverse derivative categories. In: Proc. CSL 2020 (2020)

9. Cruttwell, G., Gallagher, J., MacAdam, B.: Towards formalizing and extending
differential programming using tangent categories. In: Proc. ACT 2019 (2019)

10. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research 12(Jul), 2121–
2159 (2011)

11. Ehrhard, T., Regnier, L.: The differential lambda-calculus. Theoretical Computer
Science 309(1-3), 1–41 (2003)

12. Elliott, C.: The simple essence of automatic differentiation. Proceedings of the
ACM on Programming Languages 2(ICFP), 70 (2018)

13. Fong, B., Spivak, D., Tuyéras, R.: Backprop as functor: A compositional perspec-
tive on supervised learning. In: 2019 34th Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS). pp. 1–13. IEEE (2019)

14. Hoffman, M.D., Gelman, A.: The No-U-Turn sampler: adaptively setting path
lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research 15(1),
1593–1623 (2014)

15. Huot, M., Staton, S., Vákár, M.: Correctness of automatic differentiation via dif-
feologies and categorical gluing. Full version (2020), arxiv:2001.02209

16. Iglesias-Zemmour, P.: Diffeology. American Mathematical Soc. (2013)

17. Johnstone, P.T., Lack, S., Sobocinski, P.: Quasitoposes, quasiadhesive categories
and Artin glueing. In: Proc. CALCO 2007 (2007)

18. Kiefer, J., Wolfowitz, J., et al.: Stochastic estimation of the maximum of a regres-
sion function. The Annals of Mathematical Statistics 23(3), 462–466 (1952)

19. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

20. Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., Blei, D.M.: Automatic differ-
entiation variational inference. The Journal of Machine Learning Research 18(1),
430–474 (2017)

Correctness of AD via Diffeologies and Categorical Gluing 337



21. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale opti-
mization. Mathematical programming 45(1-3), 503–528 (1989)

22. Mak, C., Ong, L.: A differential-form pullback programming language for higher-
order reverse-mode automatic differentiation (2020), arxiv:2002.08241

23. Manzyuk, O.: A simply typed λ-calculus of forward automatic differentiation. In:
Proc. MFPS 2012 (2012)

24. Mitchell, J.C., Scedrov, A.: Notes on sconing and relators. In: International Work-
shop on Computer Science Logic. pp. 352–378. Springer (1992)

25. Neal, R.M., et al.: MCMC using Hamiltonian dynamics. Handbook of Markov
Chain Monte Carlo 2(11), 2 (2011)

26. Pearlmutter, B.A., Siskind, J.M.: Reverse-mode AD in a functional framework:
Lambda the ultimate backpropagator. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 30(2), 7 (2008)

27. Pitts, A.M.: Categorical logic. Tech. rep., University of Cambridge, Computer Lab-
oratory (1995)

28. Plotkin, G.D.: Some principles of differential programming languages (2018), in-
vited talk, POPL 2018

29. Qian, N.: On the momentum term in gradient descent learning algorithms. Neural
networks 12(1), 145–151 (1999)

30. Robbins, H., Monro, S.: A stochastic approximation method. The annals of math-
ematical statistics pp. 400–407 (1951)

31. Shaikhha, A., Fitzgibbon, A., Vytiniotis, D., Peyton Jones, S.: Efficient differen-
tiable programming in a functional array-processing language. Proceedings of the
ACM on Programming Languages 3(ICFP), 97 (2019)

32. Souriau, J.M.: Groupes différentiels. In: Differential geometrical methods in math-
ematical physics, pp. 91–128. Springer (1980)

33. Stacey, A.: Comparative smootheology. Theory Appl. Categ. 25(4), 64–117 (2011)
34. Wang, F., Wu, X., Essertel, G., Decker, J., Rompf, T.: Demystifying differen-

tiable programming: Shift/reset the penultimate backpropagator. Proceedings of
the ACM on Programming Languages 3(ICFP) (2019)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

338 M. Huot et al.



Deep Induction:
Induction Rules for (Truly) Nested Types

Patricia JohannB and Andrew Polonsky
Appalachian State University, Boone, NC, USA

johannp@appstate.edu, polonskya@appstate.edu

Abstract. This paper introduces deep induction, and shows that it is
the notion of induction most appropriate to nested types and other data
types defined over, or mutually recursively with, (other) such types. Stan-
dard induction rules induct over only the top-level structure of data,
leaving any data internal to the top-level structure untouched. By con-
trast, deep induction rules induct over all of the structured data present.
We give a grammar generating a robust class of nested types (and thus
ADTs), and develop a fundamental theory of deep induction for them
using their recently defined semantics as fixed points of accessible func-

tors on locally presentable categories. We then use our theory to derive
deep induction rules for some common ADTs and nested types, and
show how these rules specialize to give the standard structural induction

rules for these types. We also show how deep induction specializes to

solve the long-standing problem of deriving principled and practically

useful structural induction rules for bushes and other truly nested types.
Overall, deep induction opens the way to making induction principles

appropriate to richly structured data types available in programming
languages and proof assistants. Agda implementations of our develop-

ment and examples, including two extended case studies, are available.

1 Introduction
This paper is concerned with the problem of inductive reasoning about induc-
tive data types that are defined over, or are defined mutually recursively with,
(other) such data types. Examples of such deep data types include, trivially, ordi-
nary algebraic data types (ADTs), such as list and tree types; data types, such
as the forest type, whose recursive occurrences appear below other type con-
structors; simple nested types, such as the type of perfect trees, whose recursive
occurrences never appear below their own type constructors; truly1 nested types,
such as the type of bushes (also called bootstrapped heaps by Okasaki [16]), whose
recursive occurrences do appear below their own type constructors; and GADTs.
Proof assistants, including Coq and Agda, currently provide insufficient support
for performing induction over deep data types. The induction rules, if any, they
generate for such types induct over only their top-level structures, leaving any
data internal to the top-level structure untouched. This paper develops a prin-
ciple that, by contrast, inducts over all of the structured data present. We call
this principle deep induction. Deep induction not only provides general support
for solving problems that previously had only (usually quite painful and) ad
hoc solutions, but also opens the way for incorporating automatic generation of
useful induction rules for deep data types into proof assistants.

1 Nested types that are defined over themselves are known as truly nested types.

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 339–358, 2020.
https://doi.org/10.1007/978-3-030-45231-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_18&domain=pdf


To illustrate the difference between structural induction and deep induction,
note that the data inside a structure of type List a = Nil | Cons a (List a) is
treated monolithically (i.e., ignored) by the structural induction rule for lists:

∀(a : Set) (P : List a → Set) → P Nil →
(∀ (x : a) (xs : List a) → P xs → P (Cons x xs)) → ∀ (xs : List a) → P xs

By contrast, the deep induction rule for lists traverses not just the outer list
structure with a predicate P, but also each data element of that list with a
custom predicate Q:

∀ (a : Set) (P : List a → Set) (Q : a → Set) →
P Nil → (∀(x : a) (xs : List a) → Q x → P xs → P (Cons x xs)) →
∀(xs : List a) → List∧ Q xs → P xs

Here, List∧ lifts its argument predicate Q on data of type a to a predicate on
data of type List a asserting that Q holds for every element of its argument list.
The structural induction rule for lists is, like that for any ADT, recovered by
taking the custom predicate in the corresponding deep rule to be λx. True.

A particular advantage of deep induction is that it obviates the need to reflect
properties as data types. For example, although the set of primes cannot be de-
fined by an ADT, the primeness predicate Prime on the ADT of natural numbers
can be lifted to a predicate List∧ Prime characterizing lists of primes. Properties
can then be proved for lists of primes using the following deep induction rule:

∀(P : List Nat → Set) → P Nil →
(∀(x : Nat) (xs : List Nat) → Primex → P xs → P (Cons x xs)) →
∀(xs : List Nat) → List∧ Primexs → P xs

As we’ll see in Sections 3, 4, and 5, the extra flexibility afforded by lifting predi-
cates like Q and Prime on data internal to a structure makes it possible to derive
useful induction principles for more complex types, such as truly nested ones.

In each of the above examples, a predicate on the data is lifted to a predicate
on the list. This is an example of lifting a predicate on a type in a non-recursive
position of an ADT’s definition to the entire ADT. However, the predicate to
be lifted can also be on the type in a recursive position of a definition — i.e., on
the ADT being defined itself — and this ADT can appear below another type
constructor in the definition. This is exactly the situation for the ADT Forest a,
which appears below the type constructor List in the definition

Forest a = FEmpty | FNode a (List (Forest a))

The induction rule Coq generates for forests is

∀ (a : Set) (P : Forest a → Set) → P FEmpty →
(∀ (x : a) (ts : List (Forest a)) → P (FNode x ts)) → ∀ (x : Forest a) → P x

However, this is neither the induction rule we intuitively expect, nor is it expres-
sive enough to prove even basic properties of forests that ought to be amenable
to inductive proof. The approach of [11,12] does give the expected rule2

2 This is equivalent to the rule as classically stated in Coq/Isabelle/HOL.

340 P. Johann and A. Polonsky



∀ (a : Set) (P : Forest a → Set) → P FEmpty →
(∀ (x : a) (ts : List (Forest a)) → (∀ (k < length ts) → P (ts!!k))

→ P (FNode x ts)) → ∀ (x : Forest a) → P x

But to derive it, a technique based on list positions is used to propagate the
predicate to be proved over the list of forests that is the second argument to the
data constructor FNode. Unfortunately, this technique does not obviously extend
to other deep data types, including the type of “generalized forests” introduced
in Section 4.4 below, which combines smaller generalized forests into larger ones
using a type constructor f potentially different from List. Nevertheless, replac-
ing ∀ (k < length ts) → P (ts!!k) in the expected rule with List∧ P ts, which is
equivalent, reveals that it is nothing more than the special case for Q = λx. True
of the following deep induction rule for Forest a:

∀ (a : Set) (P : Forest a → Set) (Q : a → Set) → P FEmpty →
(∀ (x : a) (ts : List (Forest a)) → Q x → List∧ P ts → P (FNode x ts)) →
∀ (x : Forest a) → Forest∧ Q x → P x

When types, like Forest a and List (Forest a) above, are defined by mutual
recursion, their (deep) induction rules are defined by mutual recursion as well.
For example, the induction rules for the ADTs

data Expr = Lit Nat | Add Expr Expr | If BExpr Expr Expr
data BExpr = BLit Bool | And BExpr BExpr | Not BExpr | Equal Expr Expr

of integer and boolean expressions are defined by mutual recursion as

∀(P : Expr → Set) (Q : BExpr → Set) →
(∀(n : Nat) → P (Lit n)) →
(∀(e1 : Expr) (e2 : Expr) → P e1 → P e2 → P (Add e1 e2)) →
(∀(b : BExpr) (e1 : Expr) (e2 : Expr) → Q b → P e1 → P e2 → P (If b e1 e2)) →
(∀(b : Bool). Q (BLit b)) →
(∀(b1 : BExpr) (b2 : BExpr) → Q b1 → Q b2 → Q (And b1 b2)) →
(∀(b : BExpr) → Q b → Q (Not b)) →
(∀(e1 : Expr) (e2 : Expr) → P e1 → P e2 → Q (Equal e1 e2)) →
(∀(e : Expr) → P e) × (∀(b : BExpr) → Q b)

2 The Key Idea
As the examples of the previous section suggest, the key to deriving deep induc-
tion rules from (deep) data type declarations is to parameterize the induction
rules not just over a predicate over the top-level data type being defined, but over
predicates on the types of primitive data they contain as well. These additional
predicates are then lifted to predicates on any internal structures containing
these data, and the resulting predicates on these internal structures are lifted to
predicates on any internal structures containing structures at the previous level,
and so on, until the internal structures at all levels of the data type definition,
including the top level, have been so processed. Satisfaction of a predicate by
the data at one level of a structure is then conditioned upon satisfaction of the

Deep induction 341



appropriate predicates by all of the data at the preceding level.
The above deep induction rules were all obtained using this technique. For

example, the deep induction rule for lists is derived by first noting that struc-
tures of type List a contain only data of type a, so that only one additional
predicate parameter, which we called Q above, is needed. Then, since the only
data structure internal to the type List a is List a itself, Q need only be lifted
to lists containing data of type a. This is exactly what List∧ Q does. Finally,
the deep induction rule for lists is obtained by parameterizing the standard one
over not just P but also Q, adding the additional hypothesis Q x to its second
antecedent, and adding the additional hypothesis List∧ Q xs to its conclusion.

The deep induction rule for forests is similarly obtained from the Coq-
generated rule by first parameterizing over an additional predicate Q on the
type a of data stored in the forest, then lifting P to a predicate on lists contain-
ing data of type Forest a and Q to forests containing data of type a, and, finally,
adding the additional hypotheses Q x and List∧ P ts to its second antecedent
and the additional hypothesis Forest∧ Q x to its conclusion.

Predicate liftings such as List∧ and Forest∧ may either be supplied as prim-
itives, or be generated automatically from the definitions of the types themselves,
as described in Section 4. For container types, lifting a predicate amounts to
traversing the container and applying the argument predicate pointwise.

Our technique for deriving deep induction rules for ADTs, as well as its gen-
eralization to nested types given in Section 3, is both made precise and rigorously
justified in Section 4 using the results of [13]. This paper can thus be seen as a
concrete application, in the specific category Fam, of the very general semantics
developed in [13]; indeed, our induction rules are computed as the interpreta-
tions of the syntax for nested types in Fam. A general methodology is extracted
in Section 5. The rest of this paper can be read either as “just” describing how to
generate deep induction rules in practice, or as also proving that our technique
for doing so is provably correct and general. Our Agda code is at [14].

3 Extending to Nested Types
Appropriately generalizing the basic technique of Section 2 derives deep induc-
tion rules, and therefore structural induction rules, for nested types, including
truly nested types and other deep nested types. Nested types generalize ADTs
by allowing elements at one instance of a data type to depend on data at other
instances of the same type so that, in effect, the entire family of instances is
constructed simultaneously. That is, rather than defining standalone families of
inductive types, one for each choice of types to which type constructors like List
and Tree are applied, the type constructors for nested types define inductive
families of types. The structural induction rule for a nested type must therefore
account for its changing type parameters by parameterizing over an appropri-
ately polymorphic predicate, and appropriately instantiating that predicate’s
type argument at each application site. For example, the structural induction
rule for the nested type

PTree a = PLeaf a | PNode (PTree (a× a))

342 P. Johann and A. Polonsky



of perfect trees is

∀ (P : ∀ (a : Set) → PTree a → Set) →
(∀ (a : Set) (x : a) → P a (PLeaf x)) →
(∀ (a : Set) (x : PTree (a× a)) → P (a × a) x → P a (PNode x)) →
∀ (a : Set) (x : PTree a) → P a x

and the structural induction rule for the nested type

data Lam a where
Var :: a → Lam a
App :: Lam a → Lam a → Lam a
Abs :: Lam (Maybe a) → Lam a

of de Bruijn encoded lambda terms [9] with variables of type a is

∀(P : ∀(a : Set) → Lam a → Set) →
(∀(a : Set) (x : a) → P a (Var x)) →
(∀(a : Set) (x : Lam a) (y : Lam a) → P a x → P a y → P a (App x y)) →
(∀(a : Set) (x : Lam (Maybe a)) → P (Maybe a) x → P a (Abs x)) →
∀(a : Set) (x : Lam a) → P a x

Deep induction rules for nested types must similarly account for their type con-
structors’ changing type parameters while also parameterizing over the addi-
tional predicate on the type of data they contain. Letting Pair∧ Q be the lifting
of a predicate Q on a to pairs of type a × a, so that Pair∧ Q (x, y) = Q x × Q y,
this gives the deep induction rule

∀ (P : ∀ (a : Set) → (a → Set) → PTree a → Set) →
(∀ (a : Set) (Q : a → Set) (x : a) → Q x → P a Q (PLeaf x)) →
(∀ (a : Set) (Q : a → Set) (x : PTree (a× a)) → P (a × a) (Pair∧ Q) x →

P a Q (PNode x)) →
∀ (a : Set) (Q : a → Set) (x : PTree a) → PTree∧ Q x → P a Q x

for perfect trees, and the deep induction rule

∀(P : ∀(a : Set) → (a → Set) → Lam a → Set) →
(∀(a : Set) (Q : a → Set) (x : a) → Q x → P a Q (Var x)) →
(∀(a : Set) (Q : a → Set) (x : Lam a) (y : Lam a) → P a Q x → P a Q y →

P a Q (App x y)) →
(∀(a : Set) (Q : a → Set) (x : Lam (Maybe a)) → P (Maybe a) (Maybe∧ Q) x →

P a Q (Abs x)) →
∀(a : Set) (Q : a → Set) (x : Lam a) → Lam∧ Q x → P a Q x

for lambda terms. As usual, the structural induction rules for these types can be
recovered by setting Q = λx. True in their deep induction rules. Moreover, the
basic technique described in Section 2 can be recovered from the more general
one described in this section by noting that the type arguments to ADT data
type constructors don’t change, and that the internal predicate parameter to P
can therefore be lifted to the outermost level of ADT induction rules.

We conclude this section by giving both structural and deep induction rules

Deep induction 343



for the following truly nested type of bushes [8]:

Bush a = BNil | BCons a (Bush (Bush a))

(Note that this type is not even definable in Agda.) Correct and useful structural
induction rules for bushes and other truly nested types have long been elusive.
One recent effort to derive such rules has been recorded in [10], but the approach
taken there is more ad hoc than not, and generates induction rules for data types
related to the nested types of interest rather than for the original nested types
themselves. To treat bushes, for example, Fu and Selinger rewrite the type Bush a
as NBush (Succ Zero) a, where NBush = NTimes Bush and

NTimes :: (Set → Set) → Nat → Set → Set
NTimes p Zero s = s
NTimes p (Succ n) s = p (NTimes p n s)

Their induction rule for bushes is then given in terms of these rewritten ones as

∀ (a : Set) (P : ∀ (n : Nat) → NBush n a → Set) →
(∀ (x : a) → P Zero x) →
(∀ (n : Nat) → P (Succ n) BNil) →
(∀ (n : Nat) (x : NBush n a) (xs : NBush (Succ (Succ n)) a) →

P n x → P (Succ (Succ n)) xs → P (Succ n) (BCons x xs)) →
∀ (n : Nat) (xs : NBush n a) → P n xs

This approach appears promising, but is not yet fully mature. The core diffi-
culty is that, although Fu and Selinger “hint at how the construction ... can
be generalized to arbitrary nested types” and “give an example of nested data
type [sic] that is hopefully general enough to make it clear what one would do
in the general case” in Section 5 of [10], they do not show how to derive their
induction rules in a uniform and principled way even for the “reasonably arbi-
trary and general” nested types they consider. As a result, it is unclear what
guarantees that the induction rules they derive are correct, either for the original
nested types or for their rewritten versions, or whether the induction rules for
the rewritten nested types are sufficiently expressive to prove all results about
the original nested types that one would expect to be provable by induction.
This latter point echoes the issue with Coq-derived induction rules for forests
mentioned above, and has the unfortunate effect of forcing users to manually
write induction (and other) rules for such types for use in that system [17].

Direct application of the general technique illustrated above and explicated
in full in Section 4 below derives the following first-ever useful induction rule for
bushes, respectively — a full 20 years after bushes were first introduced!

∀(P : ∀(a : Set) → Bush a → Set) →
(∀(a : Set) → P a BNil) →
(∀(a : Set) (x : a) (y : Bush (Bush a)) → P (Bush a) y → P a (BCons x y)) →
∀(a : Set) (x : Bush a) → P a x

344 P. Johann and A. Polonsky



In the next section we will see that this rule is derivable from the following
more general one:

∀ (P : ∀ (a : Set) → (a → Set) → Bush a → Set) →
(∀ (a : Set) (Q : a → Set) → P a Q Bnil) →
(∀ (a : Set) (Q : a → Set) (x : a) (y : Bush (Bush a)) →

Q x → P (Bush a) (P a Q) y → P a Q (BCons x y)) →
∀ (a : Set) (Q : a → Set) (x : Bush a) → Bush∧ Q x → P a Q x

4 Theoretical Foundations
This section gives a grammar generating a robust class of nested types, including
ADTs and truly nested types, and recaps the semantics given in [13] for them
from which we derive their deep induction rules. This entire paper can thus be
read as a practical application of the abstract results of [13].

4.1 Categorical Preliminaries

We write a : A if A is category and a is an object of A. We write 0A and 1A

for the initial and terminal objects of A, and oA and !A for the unique maps
oA : 0A → A and !A : A → 1A, respectively. If A is the category Set of sets and
functions between them, we write 0 for 0Set, i.e., for ∅, and 1 for any 1-element
set, i.e., for 1Set. If a : A we write Ka for the constantly a-valued functor on A.
The category Fam, which we will use to interpret predicates, is given by:

Definition 1. The category Fam comprises the following:

– Objects: An object of Fam is a pair (A, P ) where A : Set and P : A → Set.
– Morphisms: A morphism f : (A, P ) → (A′, P ′) in Fam is a pair (α, β),

where α : A → A′ and β : Πa:A Pa → P ′(αa).
– Identities: The identity morphism id (A,P ) : (A, P ) → (A, P ) in Fam is

(idA, λa : A. idPa).
– Composition: If (α, β) : (A, P ) → (A′, P ′) and (α′, β′) : (A′, P ′) → (A′′, P ′′),

then the composition (α′, β′) ◦ (α, β) : (A, P ) → (A′′, P ′′) in Fam is defined
by (α′, β′) ◦ (α, β) = (α′ ◦ α, λa : A. β′(αa) ◦ βa).

4.2 Syntax and Semantics of ADTs

If V is a countable set of type variables, V ⊆ V is finite, α ∈ V , and we write
V, α for V ∪ {α}, then the following grammar generates (representations of) all
standard polynomial ADTs over V , i.e., all ADTs defined over data of primitive
types:

AV := 0 | 1 | α ∈ V | AV + AV | AV × AV | μα.AV,α

The grammar A =
⋃

V AV also generates (representations of) deep ADTs, i.e.,
ADTs defined not just over data of the primitive types, but over data of other
ADTs as well. For example, it generates the representation List α := μβ. 1+α×β
of the type List a, the representation Forest α := μβ. 1+α×μγ. 1+β×γ of the
type Forest a, and the representation μδ. 1+(μβ. 1+α×μγ. 1+β×γ)×δ of the

Deep induction 345



type List (Forest a). Using Bekič’s Lemma, it can also generate (representations
of) ADTs defined by mutual recursion such as Expr := μα. s(α, μβ. t(α, β)) and
BExpr := μβ. t(Expr , β), where s(α, β) := Nat + α × α + β × α × α and
t(α, β) := Bool + β × β + β + α × α for the ADTs of integer and boolean
expressions from Section 1. ADTs with more than one type argument can be
handled by tupling them into one or, equivalently, by noting that such ADTs
are generated by the extension N of the grammar A given in Section 4.4. We
adopt the usual conventions regarding free and bound type variables for A.

As usual, ADTs are interpreted relative to environments.

Definition 2. A set environment σ is a function from a finite subset V of V
to Set. We write EnvSet

V for the set of set environments whose domain is V . If
A ∈ Set, σ ∈ EnvSet

V , and α �∈ V , then σ[α := A] is the set environment with
domain V, α that extends σ by mapping α to A. We write σα in place of σ(α)
for the image of α under σ, and [] for the set environment with domain V = ∅.

It is well-known that the ADTs generated by the grammar A have initial
algebra semantics in the category Set. That is, each such ADT μα. E can be
interpreted as the carrier μF of the initial algebra for the polynomial endofunctor
F on Set that interprets its body E. In particular, the final clause of the next
definition is well-defined.

Definition 3. The interpretation function �·�Set : AV → EnvSet
V → Set is:

�0�Setσ = 0
�1�Setσ = 1
�α�Setσ = ασ

�E1 + E2�
Setσ = �E1�

Setσ + �E2�
Setσ

�E1 × E2�
Setσ = �E1�

Setσ × �E2�
Setσ

�μα. E�Setσ = μ(A �→ �E�Setσ[α := A])

Like Set, the category Fam has sufficient structure to interpret ADTs gener-
ated by the grammar A. In particular, it interprets bodies of polynomial ADTs.

Definition 4. The category Fam supports the following constructions:

– Initial object: The initial object 0 of Fam is (0, K0 : 0 → Set). For (A, P ) :
Fam, (oA, λx : 0. oP (oAx)) : 0 → (A, P ) is the unique map from 0 to (A, P ).

– Terminal object: The terminal object 1 of Fam is (1, K1 : 1 → Set), where
() is the unique element of the set 1 and K1() = 1. For (A, P ) : Fam,
(!A, λa : A. !Pa) : (A, P ) → 1 is the unique map from (A, P ) to 1.

– Coproducts: Given (A, P ), (A′, P ′) : Fam, the coproduct (A, P )+ (A′, P ′) :
Fam is (A + A′, P + P ′), where P + P ′ : A + A′ → Set is just the usual
coproduct of P and P ′ as functions. The associated injections inL : (A, P ) →
(A, P )+ (A′, P ′) and inR : (A′, P ′) → (A, P )+ (A′, P ′) are given by inL =
(inL, λa : A. idPa) and inR = (inR, λa′ : A′. idP ′a′). The coproduct (α, β)+
(α′, β′) : (A, P )+ (A′, P ′) → (B, Q) of morphisms (α, β) : (A, P ) → (B, Q)

346 P. Johann and A. Polonsky



and (α′, β′) : (A′, P ′) → (B, Q) is (α+α′, δ), where δ : Πx∈A+A′(P +P ′)x →
Q((α + α′)x) is defined by δ(inLa) = βa and δ(inR a′) = β′a′. As expected,
((α, β)+ (α′, β′)) ◦ inL = (α, β) and ((α, β)+ (α′, β′)) ◦ inR = (α′, β′).

– Products: Given (A, P ), (A′, P ′) : Fam, the product (A, P )× (A′, P ′) : Fam
is (A × A′, λ(a, a′) : A × A′. Pa × P ′a′). The associated projections π1 :
(A, P )× (A′, P ′) → (A, P ) and π2 : (A, P )× (A′, P ′) → (A′, P ′) are given
by π1 = (π1, λ(a, a′) : A × A′. π1) and π2 = (π2, λ(a, a′) : A × A′. π2). The
product (α, β)× (α′, β′) : (A, P ) → (B, Q)× (B′, Q′) of morphisms (α, β) :
(A, P ) → (B, Q) and (α′, β′) : (A, P ) → (B′, Q′) is (λa : A.(αa, α′a), λa :
A. λx : Pa. (βax, β′ax)). As expected, π1 ◦ ((α, β)× (α′, β′)) = (α, β) and
π2 ◦ ((α, β)× (α′, β′)) = (α′, β′).

To interpret ADTs generated by A in Fam we also need to be able to interpret
expressions of the form μα.E. This we do by computing the least fixed point in
Fam of the functor G : Fam → Fam interpreting E. It is natural to try to do
this using the same technique in Fam that gives its Set-interpretation, i.e., by
iterating G ω-many times starting from the initial object 0 of Fam. This gives
the least fixed point μG of G as the colimit Gω0 in Fam of the sequence

0 ↪→ G0 ↪→ G20 ↪→ ... ↪→ Gn0 ↪→ ... (*)

This approach is indeed viable, and is formally justified by [13]. There, it is
shown that if λ is a regular cardinal, C is a locally λ-presentable category, and
G : C → C is a λ-accessible functor drawn from a particular class of functors
that goes far beyond just first-order polynomial ones, then the least fixed point
μG of G exists in C and can be computed as the transfinite colimit Gλ0 of the

sequence 0 ↪→ G0 ↪→ G20 ↪→ ... ↪→ Gn0 ↪→ ... ↪→ Gω0 ↪→ ... ↪→ Gα0 ↪→ ... over
all α < λ. That the sequence (*) computes μG for all polynomial functors on
Fam then follows by taking λ to be ω, noting that Fam is locally
and recalling that all such functors are ω-accessible. That (*) further computes
μG for every functor G on Fam that interprets an expression generated by A
now follows easily by structural induction. We record this as:

Theorem 1. If G : Fam → Fam is a functor interpreting an expression (with
a distinguished variable) generated by the grammar A, then the least fixed point
μG of G (with respect to that variable) is Gω0. Concretely, the colimit Gω0 can
be computed as lim−→n∈N

(An, Pn) = (A, P ), where A = lim−→n∈N
An with mediating

morphisms αn : An → A, and P is defined by P x = lim−→n∈N,y∈α−1
n (x)

Pn y.

To define interpretations in Fam for ADTs generated by A we need the following
analogue of Definition 2:

Definition 5. A predicate environment ρ is a function from a finite subset V of
V to Fam. We write EnvFam

V for the set of predicate environments whose domain
is V . If (A, P ) ∈ Fam, ρ ∈ EnvFam

V , and α �∈ V , we write ρ[α := (A, P )] for the
predicate environment with domain V, α that extends ρ by mapping α to (A, P ).
We write αρ in place of ρ(α) for the image of α under ρ.

Let σ ∈ EnvSet
V . If ρ ∈ EnvFam

V is such that π1(αρ) = ασ for all α ∈ V then
we say that ρ is a lifting of σ. We write σ for the particular lifting ρ of σ such

Deep induction 347

presentable,finitely



that αρ = (ασ, K1) for all α ∈ V . In addition, if ρ ∈ EnvFam
V maps each α ∈ V

to (Aα, Pα) then we write π1ρ for the set environment with domain V mapping
each α ∈ V to Aα. We write [] for the unique environment with domain V = ∅.
We then have the following Fam-interpretations for ADTs generated by A:

Definition 6. The interpretation function �·�Fam : AV → EnvFam
V → Fam is:

�0�Famρ = 0
�1�Famρ = 1
�α�Famρ = αρ

�E1 + E2�
Famρ = �E1�

Famρ + �E2�
Famρ

�E1 × E2�
Famρ = �E1�

Famρ × �E2�
Famρ

�μα.E�Famρ = μ(Z �→ �E�Famρ[α := Z])

Before showing how to derive induction rules for the ADTs generated by A we
prove two crucial lemmas linking their Set- and Fam-interpretations.

Lemma 1. If E ∈ AV and ρ ∈ EnvFam
V , then π1(�E�Famρ) = �E�Set(π1ρ). Fur-

thermore, if π2(βρ) = K1 for all β ∈ V , then π2(�E�Famρ) = K1.

Proof. By induction on the structure of expressions. The only non-trivial case
is for μα.E ∈ AV . Let ρ ∈ EnvFam

V be given. Letting F : Set → Set be defined
by FA = �E�Set(π1ρ)[α := A] and G : Fam → Fam be defined by G(A, Q) =
�E�Famρ[α := (A, Q)], the induction hypothesis gives

π1(G(A, Q)) = π1(�E�Famρ[α := (A, Q)]) = �E�Set(π1ρ)[α := A] = FA (†)

and if π2(βρ) = K1 for all β ∈ V then, moreover, π2(G(A, K1)) = K1. We then
have π1(�μα.E�Famρ) = π1(μ((A, Q) �→ �E�Famρ[α := (A, Q)])) = π1(μG) =

π1(lim−→n∈N
Gn0) = lim−→n∈N

π1(G
n0) = lim−→n∈N

Fn0 = μF = μ(A �→ �E�Set(π1ρ)[α

:= A]) = �μα.E�Set(π1ρ). Here, the fourth equality is justified by Theorem 1,
and the fifth is justified by (†) and induction on n. If π2(βρ) = K1 for all
β ∈ V as well, then π2(�μα.E�Famρ) = π2(μ((A, Q) �→ �E�Famρ[α := (A, Q)])) =
π2(μG) = π2(lim−→n∈N

Gn0) = π2(lim−→n∈N
(Fn0, K1)) = λx. lim−→n∈N,y∈α−1

n x
K1y =

K1. Here, the morphisms αn : Fn0 → μF are the mediating morphisms for the
colimit, as in Theorem 1, and the fourth equality is justified by the fact that
π2(G(A, K1)) = K1 and induction on n.

Corollary 1. If E is closed then �E�Fam[] = (�E�Set[], K1).

Lemma 2. If σ ∈ EnvSet
V , and if F : Set → Set and G : Fam → Fam are

given by FA = �E�Setσ[α := A] and G(A, Q) = �E�Famσ[α := (A, Q)], then
μG = (μF, K1).

Proof. We have μG = μ((A, Q) �→ �E�Famσ[α := (A, Q)]) = �μα.E�Famσ =

(�μα.E�Setσ, K1) = (μF, K1), where the third equality holds by Lemma 1.

348 P. Johann and A. Polonsky



4.3 Induction Rules for ADTs

To derive induction rules for the ADTs generated by A, we first observe that,
given an ADT μα.E ∈ AV and a set environment σ ∈ EnvSet

V interpreting its free
variables, the interpretation �E�Setσ defines a functor FσA = �E�Setσ[α := A]
such that �μα.E�Setσ = μ(A �→ �E�Setσ[α := A]) = μ(A �→ FσA) = μFσ. We can
therefore think of Fσ as representing the data type constructor associated with
the ADT. Thus, as argued in [11,12], the semantic induction rule for proving
predicates over the σ-instance of the ADT μα.E has the form

∀(P : μFσ → Set). ??? → ∀(x : μFσ). Px

for some appropriate hypotheses ???. We can use the Fam-interpretation of E to
discover a semantic counterpart to the hypotheses ???. Reflecting the resulting
semantic rule for the σ-instance of μα.E back into the programming language
syntax will then derive induction rules for polynomial ADTs.

To deduce what ??? is, we first observe that the conclusion ∀(x : μFσ). Px
of the induction rule for the σ-instance of μα.E is isomorphic to the type of the
second component of a morphism in Fam from (μFσ, K1) to (μFσ, P ) whose first
component is id . Lemma 1 suggests that if we can see (μFσ, K1) as μG for some
functor G : Fam → Fam, then we can fold over a G-algebra on (μFσ, P ) in Fam
to get such a morphism, i.e., to inhabit the type that is the structural induction
rule for the σ-instance of μα.E. This will provide a proof indμα.E,σ P that the
property P holds for all elements of the σ-instance of μα.E.

To this end, let ρ ∈ EnvFam
V be any lifting of σ, and consider again the functor

F̂ρ(A, Q) = �E�Famρ[α := (A, Q)] on Fam given in Lemma 1 (there called G). An

F̂ρ-algebra structure on (μFσ, P ) is a morphism (k′, k) : F̂ρ(μFσ, P ) → (μFσ, P )

in Fam. Then π1(F̂ρ(μFσ , P )) = π1(�E�Famρ[α := (μFσ , P )]) = (π1(�E�Famρ))[α
:= μFσ] = �E�Setσ[α := μFσ] = Fσ(μFσ), with the third equality holding
by Lemma 1. If we take k′ = in, then k : ∀(x : Fσ(μFσ)). π2(�E�Famρ[α :=
(μFσ, P )])x → P (in x), so that

indμα.E, ρ : ∀(P : μFσ → Set).
(∀(x : Fσ(μFσ)). π2(�E�Famρ[α := (μFσ, P )])x → P (in x))

→ ∀(x : μFσ). Px

indμα.E, ρ P k x = π2 (foldFam
μα.E, ρ (in , k))x ()

Here, foldFam
μα. E, ρ(in, k) is the unique F̂ρ-algebra morphism from in : F̂ρ(μF̂ρ) →

μF̂ρ to (in , k) in Fam.
Taking ρ = σ in the above development derives the expected structural

induction rules for ADTs generated by A. But this development is actually
far more flexible, since the induction rule it derives is parameterized over an
arbitrary lifting ρ of the set environment σ, and later specialized to σ to obtain
structural induction rules for ADTs. The non-specialized rule can therefore be
used to prove properties of ADTs that are parameterized over non-trivial (i.e.,
non-K1) predicates on the type parameters to the type constructors induced by
those ADTs; these are precisely our deep induction rules for ADTs.

Deep induction 349



As expected, the conclusion of an ADT’s deep induction rule will have an
additional hypothesis involving the lifting of this predicate to that ADT. As we
have seen, the ability to lift a predicate Q on a set A to a predicate TQ on TA,
where T is an ADT’s type constructor, is therefore central to deep induction.
Every type constructor for every ADT generated by the grammar A has such a
lifting. Concretely, it is computed as the second component of the interpretation
in Fam of that data type. For example, the lifting ListQ : List A → Set is
π2�μβ. 1 + α × β�Fam[α := (A, Q)]. This can be coded in Agda as

List∧ : ∀ {a : Set} → (a → Set) → (List a → Set)
List∧ Q Nil = �
List∧ Q (Cons x xs) = Q x × List∧ Q xs

Example 1. The deep induction rule for lists can be computed as the type of
indList α, ρ for the ADT List α := μβ. 1 + α × β and the predicate environment
ρ = [α := (A, Q)] for (A, Q) ∈ Fam. Letting FY = �1 + α × β�Set(π1ρ)[β :=
Y ] = 1+A×Y with the obviously named injections, we have that μF = List A.
This gives the deep induction rule

indList α,ρ : ∀(P : μF → Set). ∀ (Q : A → Set).
(∀(x : F (μF )). π2 (�1 + α × β�Fam[α := (A, Q), β := (μF, P )])x →

P (in x)) → ∀(x : μF ).ListQ x → P x

Simplifying π2’s argument gives (1, K1)+ (A, Q)× (μF, P ). Its predicate part,
obtained by applying π2, is K1 + (Q × P ), so the hypotheses for indList α,ρ are

∀(x : 1 + A × List A).(K1 + (Q × P ))x → P (in x)
= (∀(x : 1). 1 → P Nil) × (∀(y : A). ∀(ys : List A). Q y → P ys → P (Cons y ys))
= P Nil × (∀(y : A). ∀(ys : List A). Q y → P ys → P (Cons y ys))

Reflecting back into syntax gives the deep induction rule from Section 1:

∀ (a : Set) (P : List a → Set) (Q : a → Set) →
P Nil → (∀(y : a) (ys : List a) → Q y → P ys → P (Cons y ys)) →
∀(xs : List a) → List∧ Q xs → P xs

Taking Q = K1 gives the usual structural induction rule for lists from Section 1.

Example 2. Since Forest a and List (Forest a) are mutually recursively de-
fined, the deep induction rule for forests is defined by mutual recursion with
the deep induction rule for lists. It can be computed as the type of indForest α, ρ

for the ADT Forest α := μβ. α × μγ. 1 + β × γ using the same technique as in
Example 1. This gives the (deep) induction rule for forests from Section 1.

Example 3. Exactly the same technique delivers the deep induction rules from
Section 1 for the mutually recursive ADTs Expr and BExpr whose representations
are given before Definition 2.

350 P. Johann and A. Polonsky



4.4 Syntax and Semantics of Nested Types

We can use the technique from Section 4.3 to derive induction rules for nested
types as well, including truly nested types and other deep nested types. To do
so we first need an extension of the grammar A that generates these types.

Since nested types generalize ADTs to allow elements of a nested type at one
instance of a type to depend on data at other instances of that nested type, they
are interpreted as least fixed points not of ordinary (first-order) functors on Fam,
as ADTs are, but rather as least fixed points of higher-order such functors. More-
over, since nested types can be parameterized over any number of type argu-
ments, the (first-order) functors interpreting them can have correspondingly ar-
bitrary arities. For each k ≥ 0 we therefore assume a countable set Fk of functor
variables of arity k, disjoint for distinct k. We use lower case Greek letters for
functor variables, write ϕk to indicate that ϕ ∈ Fk, and say that ϕ has arity k
in this case. Type variables are exactly functor variables of arity 0; we continue
to write α, β, etc., rather than α0, β0, etc., for them. We write F =

⋃

k≥0 Fk.

If V ⊆ F is finite and ϕ ∈ Fk for some k, write V, ϕ for V ∪ {ϕ}.

Definition 7. For a finite set V of F , the set of (truly) nested data types over
V is generated by the following grammar:

N V := 0 | 1 | ϕkN V | N V + N V | N V × N V | (μϕk.λα1...αk. N V,α1,...,αk,ϕ)N V

Here, ϕk ∈ V and the lengths of the vectors of terms in N V in the third and
final clauses of the above grammar are both k.

The grammar N =
⋃

V N V generalizes A by allowing recursion not just at the
level of type variables, but also at the level of functor variables. This reflects the
fact that, in programming language syntax, nested types can be parameterized
over both types and type constructors. For example, N V generates the represen-
tation PTree α :=

(

μϕ1.λβ.β + ϕ(β × β)
)

α ∈ N α of the type PTree a, the repre-

sentation Lam α :=
(

μϕ1.λβ.β + ϕβ × ϕβ + ϕ(β+1)
)

α ∈ N α of the type Lam a

and the representation Bush α :=
(

μϕ1.λβ. 1 + β × ϕ (ϕβ)
)

α ∈ N α of the type
Bush a. But it also generates the representation GForest ϕα := μβ. 1+α×ϕβ ∈
N ϕ,α of the following nested type of generalized forests with data of type a:

GForest f a = FEmpty | FNode a (f (GForest f a))

This type is higher-order in the sense that the type constructor GForest takes
not just a type, but also a (unary) type constructor, as an argument. It therefore
cannot be expressed as an element of A, and thus demonstrates the benefit of
working with the more expressive grammar N . On the other hand, it is decidedly
ADT-like, in the sense that it defines a family of inductive types rather than an
inductive family of types. In fact, if f were a type constructor induced by a
nested type generated by our grammar, then GForest f a and f (GForest f a)
would be mutually recursively defined. In this case, generalizing Example 2,
their structural induction rules would also be defined by mutual recursion.

Deep induction 351



It is not hard to see that A ⊆ N . Moreover, the grammar N allows nested
types to be parameterized over (other) nested data types, just as A allows ADTs
to be parameterized over (other) ADTs. For instance, we could have perfect trees
of lists or binary trees, bushes of perfect trees, etc.

We have the following notions of functor and application in Fam:

Definition 8. A (k-ary) lifted functor G : Famk → Fam is a pair (F, P ), where
F : Setk → Set and P : ∀(X1, P1)....(Xk, Pk). FX1...Xk → Set is a Fam-
indexed predicate. The application of a functor (F, P ) : Famk → Fam to an
object (A1, Q1), ...., (Ak, Qk) of Famk is given by

(F, P )(A1, Q1)...(Ak, Qk) = (FA1...Ak, P (A1, Q1)...(Ak, Qk))

We call a lifted functor G = (F, P ) a lifting of F from Set to Fam, and call P
a Fam-indexed predicate. A Set-indexed predicate is a Fam-indexed predicate that
does not depend on its arguments’ second components. We extend the notions of
set environment and predicate environment from Definitions 2 and 5 as follows:

Definition 9. A set environment σ is a mapping from a finite subset V =
{ϕk1

1 , ..., ϕkn
n } of F such that ϕiσ : Setki → Set for i = 1, ..., n. We write EnvSet

V

for the set of set environments whose domain is V . If F ∈ Setk → Set, σ ∈
EnvSet

V , and ϕk �∈ V , we write σ[ϕ := F ] for the set environment with domain
V, ϕ that extends σ by mapping ϕ to F . Similarly, a predicate environment ρ is
a mapping from a finite subset V = {ϕk1

1 , ..., ϕkn
n } of F such that ϕiρ : Famki →

Fam is a lifted functor for i = 1, ..., n. We write EnvFam
V for the set of predicate

environments whose domain is V . If (F, P ) ∈ Famk → Fam, ρ ∈ EnvFam
V , and

ϕk �∈ V , we write ρ[ϕ := (F, P )] for the predicate environment with domain V, ϕ
that extends ρ by mapping ϕ to (F, P ).

The notions of a predicate environment being a lifting of a set environment and
the notations σ, π1ρ, and [] are now extended in the obvious ways.

The following interpretations of nested types generated by N in the locally
finitely presentable categories Set and Fam are shown in [13] to be well-defined:

Definition 10. The interpretation functions �·�Set : N V → EnvSet
V → Set and

�·�Fam : N V → EnvFam
V → Fam are:

�0�Setσ = 0
�1�Setσ = 1

�ϕkE1...Ek�Setσ = (ϕσ)(�Ei�Setσ)
�E1 + E2�

Setσ = �E1�
Setσ + �E2�

Setσ
�E1 × E2�

Setσ = �E1�
Setσ × �E2�

Setσ
�(μϕk.λα1...αk. E)E1...Ek�Setσ = (μ(F �→ λA1...Ak.

�E�Setσ[αi := Ai][ϕ := F ]))(�Ei�Setσ)

352 P. Johann and A. Polonsky



�0�Famρ = 0
�1�Famρ = 1

�ϕkE1...Ek�Famρ = (ϕρ)(�Ei�Famρ)
�E1 + E2�

Famρ = �E1�
Famρ + �E2�

Famρ
�E1 × E2�

Famρ = �E1�
Famρ × �E2�

Famρ
�(μϕk.λα1...αk. E)E1...Ek�Famρ = (μ(F �→ λZ1...Zk.

�E�Famρ[αi := Zi][ϕ := F ]))(�Ei�Famρ)

4.5 Induction Rules for Nested Types

Straightforward generalization of the analysis in Section 4.3 to N gives induc-
tion rules for the type constructors nested types induce. Given a nested type
(μϕk.λα1...αk. E)E1...Ek ∈ N V with type constructor T = μϕk.λα1...αk. E and
a set environment σ ∈ EnvSet

V interpreting its free variables, we have that

�TEi�
Setσ = μ(F �→ λA1...Ak. �E�Setσ[αi := Ai][ϕ := F ])(�Ei�Setσ) = (μHσ)(�Ei�Setσ)

where the higher-order functor Hσ on Set is defined by

HσFA1...Ak = �E�Setσ[αi := Ai][ϕ := F ]

For any lifting ρ of σ, the predicate counterpart to Hσ is the higher-order functor
Ĥρ on Fam whose action on a k-ary lifted functor (F, P ) is the k-ary lifted functor
Ĥρ(F, P ) given by

Ĥρ (F, P ) (A1, Q1)....(Ak, Qk) = �E�Famρ[α := (Ai, Qi)][ϕ := (F, P )]

The induction rule indT, ρ for proving predicates over the σ-instance of the type
constructor T relative to the lifting ρ is thus given by

indT, ρ : ∀(P : ∀(Ai, Qi).(μHσ)Ai → Set).
(∀(Ai, Qi). π2(Ĥρ(μHσ, P ))(Ai, Qi) → P (Ai, Qi)) →
(∀(Ai, Qi). π2(μĤρ)(Ai, Qi) → P (Ai, Qi))

= ∀(P : ∀(Ai.Qi).(μHσ)Ai → Set).
(∀(Ai, Qi). ∀(x : Hσ(μHσ)Ai).

π2(Ĥρ(μHσ, P ))(Ai, Qi)x → P (Ai, Qi)(in x)) →
(∀(Ai, Qi). ∀(x : (μHσ)Ai). π2(μĤρ)(Ai, Qi)x → P (Ai, Qi)x)

indT, ρ = λ P k (Ai, Qi). π2(foldFam
T, ρ (in , k))

To get analogues for nested types of the structural induction rules for ADTs
note that, since each σ-instance of the type constructor T = μϕk.λα1...αk. E
associated with a nested type (μϕk.λα1...αk.E)E1...Ek ∈ N V gives rise to an
inductive family of types, the appropriate notion of predicate for a nested type
is actually a Set-indexed predicate. By direct analogy with structural induction

Deep induction 353



for ADTs, the structural induction rule for a nested type with type constructor
T whose σ-instance is interpreted by μHσ is then

∀(P : ∀Ai.(μHσ)Ai → Set).
(∀Ai. ∀(x : Hσ(μHσ)Ai). π2(Ĥσ(μHσ, P̂ ))(Ai, K1)x → P̂ (Ai, K1)(in x)) →
(∀Ai. ∀(x : (μHσ)Ai). π2(μĤσ)(Ai, K1)x → P̂ (Ai, K1)x)

= ∀(P : ∀Ai.(μHσ)Ai → Set).
(∀Ai.∀(x : Hσ(μHσ)Ai). π2(Ĥσ(μHσ, P̂ ))(Ai, K1)x → P̂ (Ai, K1)(in x)) →
(∀Ai. ∀(x : (μHσ)Ai). P̂Aix)

(‡)
where P̂ is defined below. To see that the structural induction rule (‡) is indeed a
specialization of indT, ρ, suppose we are given a predicate P : ∀(Ai, Qi). (μHσ)Ai

→ Set for a nested type with type constructor T whose σ-instance is interpreted
by μHσ, together with induction hypotheses

R = ∀Ai.∀(x : Hσ(μHσ)Ai). π2(Ĥσ(μHσ, P̂ ))(Ai, K1)x → P̂ (Ai, K1)(in x)

Let P̂ : ∀(Ai, Qi). (μHσ)Ai → Set be the Fam-indexed predicate P̂ = λ(Ai, Qi).
PAi, and consider the instantiation indT, σ P̂ R̂, where the induction hypothesis

R̂ : ∀(Ai, Qi). ∀(x : Hσ(μHσ)Ai). π2(Ĥσ(μHσ, P̂ ))(Ai, Qi)x → P̂ (Ai, Qi)(in x)
for indT, σ is given by R̂ (Ai, Qi)x y = R Ai x (π2(Ĥσ(μHσ, P̂ ) t)x y).

5 The General Methodology

We can distill from the foundations given in Section 4 a general methodology
that will derive correct deep induction rules for any nested type generated by
N . Concretely, this methodology comprises the following steps:

1. Given a nested data type definition D, translate its type constructor into an
expression N in the grammar N (or, more simply, A, if D defines an ADT).

2. Interpret N in Set to get a fixpoint equation defining D as μH for some
(higher-order) operator H .

3. Reinterpret N in Fam to define a corresponding (higher-order) operator Ĥ on
predicates whose fixed point μĤ is an inductive predicate on μH , i.e., on D.

4. Initiality of μĤ guarantees that there is a unique predicate morphism from
μĤ to any other predicate P admitting an Ĥ-algebra structure. This gives
D’s deep induction rule.

These are precisely the steps carried out in all of our examples, including those
below, which illustrate the derivation for nested types given in Section 4.5.

Example 4. Since the nested type Lam α :=
(

μϕ1.λβ.β + ϕβ × ϕβ + ϕ(β+1)
)

α
of lambda terms is uniform in its index α, it induces a type constructor Lam :=
μϕ1.λβ.β + ϕβ × ϕβ + ϕ(β+1). Writing H for H[] and Ĥ for Ĥ[], and letting

H F A = �β + ϕβ × ϕβ + ϕ(β + 1)�Set[β := A][ϕ := F ] = A+FA×FA+F (A+1)

354 P. Johann and A. Polonsky



we have that μH = Lam and that the predicate counterpart Ĥ to H is given by

Ĥ (F, P̂ ) (A, Q) = �β + ϕβ × ϕβ + ϕ(β + 1)�Fam[β := (A, Q)][ϕ := (F, P̂ )]

= (A, Q)+ (F, P̂ )(A, Q)× (F, P̂ )(A, Q)+ (F, P̂ )((A, Q)+ (1, K1))
= (A + FA × FA + F (A + 1),

π2((A, Q)+ (F, P̂ )(A, Q)× (F, P̂ )(A, Q)+ (F, P̂ )((A, Q)+ (1, K1)))

Reflecting μĤ back into syntax gives the inductive predicate

Lam∧ : ∀(a : Set) → (a → Set) → (Lam a → Set) where
Var∧ : ∀(a : Set) (Q : a → Set) (x : a) → Q x → Lam∧ a Q (Var x)
App∧ : ∀(a : Set) (Q : a → Set) (x : Lam a) (y : Lam a) → Lam∧ a Q x →

Lam∧ a Q y → Lam∧ a Q (App x y)
Abs∧ : ∀(a : Set) (Q : a → Set) (x : Lam a) → Lam∧ (Maybe a) (Maybe∧ a Q) x →

Lam∧ a Q (Abs x)

Now, if P is any other predicate on Lam admitting an Ĥ-algebra structure, then
there must exist a morphism k : ∀(x : A+Lam A×Lam A+Lam(A+1)). (Q+
PAQ×PAQ+P (A+1)((+1)∧ Q))x → PAQ (in x), i.e., k = (k1, k2, k3), where

k1 : ∀(x : A). Q x → P AQ (V ar x)
k2 : ∀(x : Lam A). ∀(y : Lam A). P A Q x → P AQ y → P AQ (App x y)
k3 : ∀(x : Lam (A + 1)). P (A + 1) ((+1)∧ Q)x → P AQ (Abs x)

Since Lam∧ reflects the initial Ĥ-algebra, there is a unique algebra morphism
from in : Ĥ(μĤ) → μĤ to the Ĥ-algebra k on P , i.e., from μĤ to P . Reflecting
this morphism back into syntax gives the deep induction rule for lambda terms
from Section 3.

The deep induction rule for lambda terms can be used to prove, e.g., prop-
erties of lambda terms whose variables are represented by prime numbers or
lambda terms over strings that can represent variable names. It can also be used
to prove properties of lambda terms over lambda terms, such as the associativity
laws needed to show that the functor Lam is a monad; such a proof is included
as the first case study in the accompanying Agda code. The second uses deep
induction rule we derive in Example 5 to prove some results about bushes.

Since truly nested types are a special case of deep nested types, our method-
ology can derive useful induction rules for them — including the perpetually
problematic truly nested type of bushes [8,10,15] introduced in Section 3.

Example 5. Since the truly nested type Bush α :=
(

μϕ1.λβ. 1 + β × ϕ (ϕβ)
)

α ∈
N α is uniform in its index α, it induces a type constructor Bush := μϕ1.λβ. 1 +
β × ϕ (ϕβ). Writing H for H[] and Ĥ for Ĥ[], and letting

H F A = �1 + β × ϕ (ϕβ)�Setσ[β := A][ϕ := F ] = 1 + A × F (FA)

we have that μH = Bush and the predicate counterpart Ĥ to H is given by

Ĥ (F, P ) (A, Q) = �1 + β × ϕ (ϕβ)�Famσ[β := (A, Q)][ϕ := (F, P )]
= (1, K1)+ (A, Q)× (F, P )((F, P )(A, Q))
= (1 + A × F (FA), K1 + Q × π2((F, P )((F, P )(A, Q))))

Deep induction 355



Reflecting μĤ back into syntax gives the inductive predicate

Bush∧ : ∀(a : Set) → (a → Set) → (Bush a → Set) where
BNil∧ : ∀(a : Set) (Q : a → Set) → Bush∧ a Q BNil
BCons∧ : ∀(a : Set) (Q : a → Set) (x : a) (y : Bush (Bush a)) →

Q x → Bush∧ (Bush a) (Bush∧ Q) x → Bush∧ a Q (BCons x y)

Now, if P is any other predicate on Bush admitting an Ĥ-algebra structure, then
there must exist a morphism

k : ∀(x : 1 + Bush (Bush A)).

(K1 + Q × π2((Bush, P̂ )((Bush, P̂ )(A, Q))))x → PAQ (in x)
= ∀(x : 1 + Bush (Bush A)). (K1 + Q × P (Bush A) (PAQ))x → PAQ (in x)

i.e., (k1, k2), where k1 : ∀(x : 1). 1 → P AQ BNil and k2 : ∀(x : A). ∀(y :
Bush (Bush A)). 1 → P (Bush A) (PAQ) y → PAQ(BCons x y). Since Bush∧

reflects the initial Ĥ-algebra, there is a unique predicate morphism from μĤ to
P . Reflecting this morphism back into syntax gives the deep induction rule for
bushes from Section 3.

The function BDind⇒MBDind in our Agda code shows that our methodology also
derives a mutually recursive deep induction rule for bushes, there called MBDind.

Examples 4 and 5 show that when the definition of a nested type contains an
instance of another nested type constructor C — e.g., Maybe a in the argument
Lam (Maybe a) to Abs — its inductive predicate definition, and thus its deep in-
duction rule, will involve a call to the predicate interpretation C∧ of C. When
the definition contains an instance of the constructor for the same type being
defined — e.g., Bush a in the type argument Bush (Bush a) to BCons — its induc-
tive predicate definition, and thus its deep induction rule, will involve a recursive
call to the inductive predicate being defined. The treatment of a truly nested
type is thus exactly the same as the treatment of any other nested type.

Independently of deriving induction rules, even defining some nested types in
Agda requires turning off its termination checks in a few tightly compartmental-
ized places. For example, neither Coq nor Agda currently allows the definition
of the bush data type because of the non-positive occurrence of Bush in the type
of BCons. The correctness of our development in those places is justified by [13].
This work suggests that the current notion of positivity should be generalized.

6 Related Work and Directions for Further Investigation
As far as we know, the phenomenon of deep induction has not previously even
been identified, let alone studied. This paper treats deep induction for nested
types, which extend ADTs by allowing higher-order recursion. Other general-
izations of ADTs are also well-studied in the literature, including (indexed)
containers [1,2], which extend ADTs by allowing type dependency. In partic-
ular, [3] defines a class of “nested” containers corresponding to inductive types
whose constructors can recursively depend on the data type at different instances
than the one being defined. The case of truly nested types is not treated there,

356 P. Johann and A. Polonsky



however. We hope eventually to extend the results of this paper to derive prov-
ably correct deep induction rules for (indexed) containers, GADTs, dependent
types, and other classes of more advanced data types. One interesting question
is whether or not a common generalization of indexed containers and the class
of nested types studied here has a rigorous initial algebra semantics as in [13].

A more recent line of investigation concerns sized types [5]. These are par-
ticularly well-suited to termination checking of (co)recursive definitions, and are
implemented in the latest versions of Agda [6]. Although originally defined in
the context of a type theory with higher-order functions [4], the current incar-
nation of sized types does not appear to admit definitions with true nesting.
What seems to be missing is an addition operation on sizes, which would allow
a constructor such as BCons to combine a structure with size of depth “up to α”
with one of depth “up to β” to define a data element of depth “up to α + β”.

Tassi [17] has independently implemented a tool for deriving induction princi-
ples of data type definitions in Coq using unary parametricity. Although neither
rigorous derivation nor justification is provided, his technique seems to be essen-
tially equivalent to ours, and could perhaps be justified by our general framework.
True nesting still is not permitted, however. In [7], mutually recursively defined
induction and coinduction rules are derived for mutually recursive and corecur-
sive data types. But these are still the standard structural (co)induction rules,
rather than deep ones. This suggests a need for deep coinduction rules, too.

References

1. Abbott, M. G., Altenkirch, T, Ghani, N.: Containers: Constructing strictly positive

types. Theoretical Computer Science 342(2), pp. 3-27 (2005)
2. Altenkirch, T, Ghani, N., Hancock, P., McBride, C., Morris, P.: Indexed containers.

Journal of Functional Programming 25 (2015)

3. Abbott, M. G., Altenkirch, T., Ghani, N.: Representing nested inductive types using
W-types. In: Automata, Languages and Programming, pp. 59-71 (2004)

4. Abel, A.: Type-based termination: A polymorphic lambda-calculus with sized

higher-order types. Ph.D. Dissertation, Ludwig Maximilians University Munich.
https://dblp.org/rec/bib/phd/de/Abel2007. 2007.

5. Abel, A.: Semi-continuous sized types and termination. Logical Methods in Com-

puter Science 4(2) (2008)
6. Abel, A.: MiniAgda: Integrating sized and dependent types. In: Partiality and Re-

cursion in Interactive Theorem Provers, pp. 18-32 (2010)
7. Blanchette, J. C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.:

Truly Modular (Co)datatypes for Isabelle/HOL. In: Interactive Theorem Proving,
pp. 99-110 (2014)

8. Bird, R., Meertens, L.: Nested datatypes. In: Mathematics of Program Construction,
pp. 52-67 (1998)

9. Bird, R., Paterson, R.: De Bruijn notation as a nested datatype. Journal of Func-

tional Programming 9(1), pp. 77-91 (1999)

10. Fu, P., Selinger, P.: Dependently typed folds for nested data types. ArXiv,
https://arxiv.org/abs/1806.05230 . 2018.

11. Ghani, N., Johann, P., Fumex, C.: Fibrational induction rules for initial algebras.

In: Computer Science Logic, pp. 336-350 (2010)

Deep induction 357

https://dblp.org/rec/bib/phd/de/Abel2007
https://arxiv.org/abs/1806.05230


12. Ghani, N., Johann, P., Fumex, C.: Generic fibrational induction. Logical Methods

in Computer Science 8(2) (2012)
13. Johann, P., Polonsky, A.: Higher-kinded data types: Syntax and semantics. In:

Logic in Computer Science, pp. 1-13 (2019)
14. Johann, P. and Polonsky, A.: Accompanying Agda code for this paper. Available

at https://cs.appstate.edu/∼johannp/FoSSaCS19Code.html, 2019.
15. Matthes, R.: An induction principle for nested datatypes in intensional type theory.

Journal of Functional Programming 3 & 4, pp. 439-468 (2009)

16. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press
(1999)

17. Tassi, E.: Deriving proved equality tests in Coq-elpi: Stronger induction principles

for containers in Coq. In: Interactive Theorem Proving, pp. 1-18 (2019)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

358 P. Johann and A. Polonsky

https://cs.appstate.edu/~johannp/FoSSaCS19Code.html
http://creativecommons.org/licenses/by/4.0/


Exponential Automatic Amortized Resource
Analysis�

David M. Kahn [�] and Jan Hoffmann

Carnegie Mellon University, Pittsburgh PA, USA
davidkah@cs.cmu.edu cs.cmu.edu/∼davidkah

jhoffmann@cmu.edu cs.cmu.edu/∼janh

Abstract. Automatic amortized resource analysis (AARA) is a type-
based technique for inferring concrete (non-asymptotic) bounds on a pro-
gram’s resource usage. Existing work on AARA has focused on bounds
that are polynomial in the sizes of the inputs. This paper presents and
extension of AARA to exponential bounds that preserves the benefits
of the technique, such as compositionality and efficient type inference
based on linear constraint solving. A key idea is the use of the Stirling
numbers of the second kind as the basis of potential functions, which
play the same role as the binomial coefficients in polynomial AARA. To
formalize the similarities with the existing analyses, the paper presents
a general methodology for AARA that is instantiated to the polynomial
version, the exponential version, and a combined system with potential
functions that are formed by products of Stirling numbers and binomial
coefficients. The soundness of exponential AARA is proved with respect
to an operational cost semantics and the analysis of representative ex-
ample programs demonstrates the effectiveness of the new analysis.

Keywords: Functional programming · Resource consumption · Quan-
titative analysis · Amortized analysis · Stirling numbers · Exponential

1 Introduction

“Time is money” is a phrase that also applies to executing software, most directly
in domains such as on-demand cloud computing and smart contracts where ex-
ecution comes with a explicit price tag. In such domains, there is an increasing
interest in formally analyzing and certifying the precise resource usage of pro-
grams. However, the cost of formally verifying properties by hand is an obstacle
to even getting projects off the ground. For this reason, it would be desirable if
such resource analyses could be performed mostly automatically, with reduced
burden on the programmer.

� This article is based on research supported by DARPA under AA Contract FA8750-
18-C-0092 and by the National Science Foundation under SaTC Award 1801369,
SHF Award 1812876, and CAREER Award 1845514. Any opinions, findings, and
conclusions contained in this document are those of the authors and do not neces-
sarily reflect the views of the sponsoring organizations.

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 359–380, 2020.
https://doi.org/10.1007/978-3-030-45231-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_19&domain=pdf


Techniques and tools for automatic and semi-automatic resource analysis
have been extensively studied. The applied methods range from deriving and
analyzing recurrence relations [55, 1, 16, 2, 12, 36, 10, 37], to abstract interpreta-
tion and static analysis [18, 7, 49, 39], to type systems [11, 56, 53], to proof assis-
tants and program logics [4, 9, 8, 48, 19, 45, 42], to term rewriting [6, 5, 47]. Many
techniques focus on upper bounds on the worst-case bounds, but average-case
bounds [15, 35, 43, 54] and lower-bounds have also been studied [3, 17, 44].

In this paper, we extend automatic amortized resource analysis (AARA)
to cover exponential worst-case bounds. AARA is an effective type-based tech-
nique for deriving concrete (non-asymptotic) worst-case bounds, in particular for
functional languages. It has been introduced by Hofmann and Jost [31] to derive
linear bounds on the heap-space usage of strict first-order functional programs
with lists. Subsequently, AARA has been extended to programs with recursive
types and general resource metrics [34], higher-order functions [33], lazy evalua-
tion [52], parallel evaluation [29], univariate polynomial bounds [27], multivariate
polynomial bounds [23, 25], session-typed concurrency [13], and side effects [38,
46]. However, none of the aforementioned works explores exponential bounds.

The idea of AARA is to enrich types with numeric annotations that repre-
sent coefficients in a potential function in the sense of amortized analysis [51].
Bound inference is reduced to Hindley-Milner type inference extended with lin-
ear constraints for the numeric annotations. Advantages of the technique include
compositionality, efficient bound inference via off-the-shelf LP solving, and the
ability to derive bounds on the high-water mark for non-monotone resources
like memory. A powerful innovation leveraged in polynomial AARA is the repre-
sentation of potential functions as non-negative linear combinations of binomial
coefficients. Their combinatorial identities yield simple and local typing rules and
support a natural semantic understanding of types and bounds. Moreover, these
potential functions are more expressive than non-negative linear-combinations
of the standard polynomial basis.

However, polynomial potential is not always enough. Functional languages
make it particularly easy to use exponentially many resources just by having two
or more recursive calls. The following function subsetSum : int list → int →
bool exemplifies this by naively solving the well-known NP-complete problem
subset sum. In the worst case, it performs 3∗2|nums|−2 Boolean and arithmetic
operations (where |x| gives the length of the list x).

let subsetSum nums target =

match nums with

| [] → target = 0

| hd::tl → subsetSum tl (target-hd) || subsetSum tl target

Such a function could appear in a program with polynomial resource usage if
applied to arguments of logarithmic size. In this case, polynomial AARA would
not be able to derive a bound. Section 6 contains a relevant example.

To handle such functions, we introduce an extension to AARA that allows
working with potential functions of the form f(n) = bn. This extension ex-
ploits the combinatorial properties of Stirling numbers of the second kind [50] in

360 D. M. Kahn and J. Hoffmann



much the same way that AARA currently exploits those of binomial coefficients.
Moreover, we allow both multiplicative and additive mixtures of exponential and
polynomial potential functions. The techniques used in this process could easily
be applied to other potential functions in the future.

The paper first details a generalized AARA type system fit for reuse between
polynomial, exponential, and other potential functions. We then instantiate this
system with Stirling numbers of the second kind, yielding the first AARA that
can infer exponential resource bounds. Finally, we pick out the characteristics
that allow for mixing different families of potential functions and maximizing
the space they express, and we instantiate the general system with products
of exponential and polynomial potential functions. To focus on the main con-
tribution, we develop the system for a simple first-order language with lists in
which resource usage is defined with explicit tick expressions. However, we are
confident that the results smoothly generalize to more general resource metrics,
recursive types, and higher-order functions. As in previous work, we prove the
soundness of the analysis with respect to a big-step cost semantics that models
the high-water mark of the resource usage.

2 Language and Cost Semantics

Abstract Syntax To begin, we define an abstract binding tree (ABT, see [20])
underlying a simple strict first-order functional language. Expressions are in let-
normal form to simplify the AARA typing rules. For code examples, however,
we overlay the ABT with corresponding ML-based syntax. For example, 1::[],
[1], and cons(1,nil) all represent the same list.

A program prog is a collection of functions as defined in the following gram-
mar. The symbols lit , binop, and unop refer to standard literal values, binary
operations, and unary operations respectively, of basic types (int , bool , etc.).
The symbols f , x, and r refer to function identifiers, variables, and rational
numbers, respectively.

prog ::= func{f}(x.e) prog | ε
e ::= lit | x | binop(x1;x2) | unop(x) | app{f}(x) | let(e1;x.e2)

| share(x1;x2, x3.e) | tick{r} | pair(x1;x2) | nil | cons(x1;x2)

| cond(x; e1; e2) | pairMatch(x1;x2, x3.e) | listMatch(x1; e1;x2, x3.e2)

Expressions include function applications, conditionals, and the usual introduc-
tion and elimination forms for pairs and lists. They also include two special
expressions: tick{r} and share. The former, tick{r}, is used to specify constant
resource cost r. We allow r to be negative in the case of resources becoming
available instead of being consumed. The latter, share(x1;x2, x3.e), provides two
copies of its argument x1 for use in e. This is useful because the affine features
of the AARA type system do not allow naive variable reuse. In practice, share
can be left implicit by automatically preceding every variable usage by share.

To focus on the technical novelties, we keep function identifiers and variables
disjoint, that is, the types of variables do not contain arrow types and functions
are first-order. Higher-order functions can be handled as in previous AARA liter-
ature [25]. As a further simplification, we only let functions take one argument;

Exponential AARA 361



multiple arguments can be simulated with nested pairs. Finally, the language
here only supports the inductive types of lists; future work could extend this to
more general types as in other AARA literature [38, 25, 30, 28].

Operational Cost Semantics To define resource usage, AARA literature uses
the operational big-step judgment V � e ⇓ v | (q, q′) (see e.g. [22]) defined in
Figure 1. This judgment means that, under the environment V , the expression
e evaluates to the value v under some resource constraints given by the pair
q, q′. The environment V maps variables to values. The resource constraints are
that q is the high-water mark of resource usage, and q − q′ is the net amount
of resources consumed during evaluation. In other words, if one started with
exactly as many resources needed to evaluate e, that amount would be q, and
the amount of leftover resources after evaluation would be q′. It is essential
to track both of these values to model resources that might be returned after
use, like space. Space usage usually has a positive high-water mark but no net
resource consumption, as space could be reused.

The above big-step judgment only formalizes terminating evaluations. To
deal with divergence, the additional judgment V � e ⇓ ◦ | q has been intro-
duced [26]. This merely drops the parts of the previous judgment relevant to
post-termination, focusing on partial evaluation. It means that some partial
evaluation of e uses a high-water mark of q resources. Should it exist, the largest
q such that V � e ⇓ ◦ | q holds would be the high-water mark of resource usage
across any partial evaluation of e. For a formal definition, see [26].

3 Automatic Amortized Resource Analysis

Here we lay out a generalized version of the AARA system with the poten-
tial functions abstracted. Existing AARA literature is specialized to polynomial
functions (see e.g. [27]). This existing polynomial system may be obtained as an
instantiation, as may the exponential system that we introduce in Section 4.

AARA uses the potential (or physicist’s) method to account for resource
use, as is commonly used in amortized analyses. The potential method uses the
physical analogy of converting between potential and actual energy that can be
used to perform work. Whereas a physicist might find potential in the chemical
bonds of a fuel, however, AARA places it in the constructors of lists.

To prime intuition with an example, consider paying a resource for each ::
operation performed in the following code. It performs snoc, which is like cons
but adds onto the back of the list rather than the front.

let snoc x xs =

match xs with

| [] → tick 1; x::[] (* pay 1 resource here *)

| hd::tl → tick 1; hd::(snoc x tl) (* pay 1 resource here *)

The resource consumption of snoc x xs as defined by the tick expressions
is 1 + |xs|. Using the potential method, we can justify this bound as follows.
If 1 resource is initially available, then the base case of the empty list can be
paid for. If there is 1 stored per element of the list then 1 resource is released
in the cons case of the pattern match. This suffices to pay for the additional ::

362 D. M. Kahn and J. Hoffmann



Fig. 1. Terminating operational cost semantics rules.

q = max(r, 0) q′ = max(−r, 0)

V � tick{r} ⇓ () | (q, q′) Tick
binop(V (x1), V (x2)) �→ v

V � binop(x1, x2) ⇓ v | (0, 0) Binop

V � lit ⇓ lit | (0, 0) Lit
V (x) = v

V � x ⇓ v | (0, 0) Var
V (x1) = v1 V (x2) = v2

V � pair(x1, x2) ⇓ (v1, v2) | (0, 0) Pair

unop(V (x)) �→ v

V � unop(x) ⇓ v | (0, 0) Unop
V (xp) = (v1, v2) V [x1 �→v1, x2 �→v2] � e ⇓ v | (q, q′)

V � pairMatch(xp;x1, x2.e) ⇓ v | (q, q′) PMat

V � e1 ⇓ v1 | (q, q′) V [x �→ v1] � e2 ⇓ v2 | (p, p′)
V � let(e1;x.e2) ⇓ v2 | (q +max(p− q′, 0), p′ +max(q′ − p, 0))

Let

V (xb) = true V � et ⇓ v | (q, q′)
V � cond(xb; et; ef ) ⇓ v | (q, q′) CondT

V (xb) = false V � ef ⇓ v | (q, q′)
V � cond(xb; et; ef ) ⇓ v | (q, q′) CondF

func{f}(x′.e) ∈ prog V (x) = vx V [x′ �→ vx] � e ⇓ v | (q, q′)
V � app{f}(x) ⇓ v | (q, q′) App

V (x) = nil V � e1 ⇓ v | (q, q′)
V � listMatch(x; e1;xh, xt.e2) ⇓ v | (q, q′) LMat0

V (xh) = vh V (xt) = vt

V � cons(xh;xt) ⇓ vh :: vt | (0, 0) Cons

V (x) = vh :: vt V [xh �→ vh, xt �→ vt] � e2 ⇓ v | (q, q′)
V � listMatch(x; e1;xh, xt.e2) ⇓ v | (q, q′) LMat1

V � nil ⇓ nil | (0, 0) Nil

V [x2 �→ V (x1), x3 �→ V (x1)] � e ⇓ v | (q, q′)
V � share(x1;x2, x3.e) ⇓ v | (q, q′) Share

operation. The remaining potential on xs can be assigned to tl for the recursive
call. One can sum these costs to infer that the initial potential 1 + |xs | covers
the cost of all the :: operations. The AARA type system could describe this with
the typing L1(Z) for xs (describing the linear potential in the superscript) and

Z × L1(Z) 1/0→ L0(Z) for snoc (describing the initial/remaining resources above

the arrow). Another valid type is Z×L2(Z) 1/0→ L1(Z), which could be used in a
context where the result of snoc must be used to pay for additional cost.

Types The AARA system laid out here supports the types given below. The
symbol F gives the types of functions, where q and q′ are non-negative rationals.
The symbol S gives the remaining non-function types, where basic stands for
the basic types like int or unit , and the resource annotation P is an indexed
family of rationals representing the coefficients in a linear combination of basic
potential functions.

F ::= S
q/q′→ S S ::= basic | LP (S) | S × S

The typing rules for these types are given in Figure 2 and explained in the
following sections. The values of these types are the usual values.

Exponential AARA 363



Potential To understand typing rules, it is necessary to define potential. The
following potential constructs are generalized from polynomial AARA work [27].

As mentioned, P = (pi)i∈I is in QI as an indexed family of rationals. Each
entry represents a coefficient in a linear combination of basic potential functions.
This linearity makes it natural to overload the type of P as a vector or matrix of
rationals, so it is treated as such whenever the context is appropriate. Finally, let
those basic potential functions be fixed as some family (fi)i∈I , where fi(0) = 0.

We define the potential represented with P using the function φ where

φ(n, P ) =
∑

i pi · fi(n) .
The function φ yields the total potential on a list (excluding the potential of its
elements) as a function of the list’s size n and its potential annotation P .

We can then relate resource potential between different sizes of list with the
shift operator � : QI → QI and constant difference operator δ : QI → Q. These
functions need only satisfy the following property equation.

φ(n+ 1, P ) = δ(P ) + φ(n,�P ) (1)

Though we leave open the explicit definition of these functions for generality,
we only later work with instances of them that are linear operators, such that
Equation 1 denotes a linear recurrence. Such a refinement leaves �P and δ(P )
linear functions of P .

These functions come in handy for understanding the stored potential in a
value of a given type, defined by the potential function Φ as follows.

Φ(v : basic) = 0

Φ((v1, v2) : A1 ×A2) = Φ(v1 : A1) + Φ(v2 : A2)

Φ([] : LP (A)) = 0

Φ(h :: t : LP (A)) = δ(P ) + Φ(h : A) + Φ(t : L�P (A))

We often need to measure the potential across an entire evaluation context
of typed values V : Γ given by a typing context Γ and variable bindings V . We
do so by extending the definition of potential Φ as follows.

Φ(∅) = 0 Φ(V : (Γ, v : A)) = Φ(V : Γ ) + Φ(v : A)

Finally, we can use these definitions to obtain a closed-form expression for
the potential over an entire list (including its elements) with the following:

Lemma 1. Let l = [an, ..., a1] be a list of n values. Then Φ(l : LP (A)) =
φ(n, P ) +

∑n
i=1 Φ(ai : A)

Proof. We induct over the structure of the list l.
For the empty list of length 0:

Φ([] : LP (A)) = 0 =
∑

i
pi · fi(0) = φ(0, P ) +

∑0
i=1

Φ(ai : A)

For l = h :: t of size n+ 1:

Φ(an+1 :: b : LP (A)) = δ(P ) + Φ(an+1 : A) + Φ(l′ : L�P (A))

= δ(P ) + Φ(an+1 : A) + φ(n,�P ) +
∑n

i=1
Φ(ai : A)

= φ(n+ 1, P ) +
∑n+1

i=1
Φ(ai : A)

364 D. M. Kahn and J. Hoffmann



We can apply Lemma 1 to the previously defined function snoc to see the
change in potential between input and output. This difference in potential should
bound the resources consumed. For this case, the basic potential functions (fi)
only need contain λn.n, and we can let �(p) = p = δ((p)). Letting y be the

result of snoc x xs, the type Z× L1(Z) 1/0→ L0(Z) indicates the following bound

Φ(x : Z, xs : L1(Z)) + 1− Φ(y : L0(Z)) = φ(|xs|, 1) + 1− φ(|y|, 0) = |xs|+ 1

This is exactly the amount of resources consumed, so the bound is tight.
In this work we only consider so-called univariate potential, wherein every

term in the potential sum is dependent on the length of only one input list. How-
ever, different univariate potential summands may depend on different inputs,
and thus univariate potential may still be multivariate. The term multivariate
potential refers to using more general multivariate functions for potential. There
is existent work on multivariate potential using polynomial functions [24]. We
expect that the work here extends to multivariate potential similarly.

Typing Rules The typing rules in Figure 2 use the judgment Σ;Γ
q

q′ e : A. In
this typing judgment, Γ maps variables to types, while Σ maps function labels
to sets of types. This judgment holds when, in the typing environment given by
Σ and Γ , the expression e is of type A, subject to the constraints that q and
q′ are the amount of available resources before and after some evaluation of e.
Unlike the judgment V � e ⇓ v | (q, q′), these values need not be tight.

By expressing available resources on the turnstile, and potential resources
in the types given by Σ,Γ , and A, the type system is set up to formalize the
reasoning of the potential method. Theorem 1 shows that it is sound with respect
to the operational semantics of Section 2.

Many typing rules preserve the total resource potential they are given, con-
suming none of it themselves. They therefore usually either have no explicit
interaction with potential (e.g. Lit) or pass around exactly what they are given
(e.g. Let). All basic rules in the first block of Figure 2 fit this characterization.

The typing rules concerning functions in second block of Figure 2 are the
only to make use of Σ. For each function f defined in prog via f unc{f}(x.e),
Σ(f) refers to the set of types that its body e could be given. That we allow for
sets of types is important because recursive calls to a function may not always
make use of a type with the same resource annotations; this is called resource-
polymorphic recursion. Despite these rules capturing the intuition behind typing
resource-polymorphic recursion, they are not used in existing implementation,
as they lead to infinite type derivations. Nonetheless there exists an effective way
to type resource-polymorphic recursion with a finite derivation; see [26]. In the
examples provided in this article, it usually suffices to consider only resource-
monomorphic recursion, wherein inner and outer calls use the same annotation.

All of the rules discussed so far are simply those of existing AARA literature
with their parameter for operation cost set to 0 (see e.g. [27]). This does not
change their generality, as such constant cost can (and could already in prior
work) be simulated using tick . Similarly, non-constant costs could be simulated
by running helper functions using tick the appropriate number of times.

Exponential AARA 365



Fig. 2. AARA typing rules.

Basic rules:

Σ; ∅ 0
0 lit : basic

Lit
Σ;Γ1

q
p e1 : A Σ;Γ2, x : A

p
q′ e2 : B

Σ;Γ1, Γ2

q
q′ let(e1;x.e2) : B

Let

Σ;x : basic
0
0 unop(x) : basic′

Unop

Σ;xi : basic
0
0 binop(x1, x2) : basic′

Binop

Σ;x : A
0
0 x : A

Var
Σ;x1 : A1, x2 : A2

0
0 pair(x1, x2) : A1 ×A2

Pair

Σ;Γ, x1 : A1, x2 : A2

q
q′ e : B

Σ;Γ, x : A1 ×A2

q
q′ pairMatch(x;x1, x2.e) : B

PMat

Σ;Γ, x : bool
q
q′ e1 : A Σ;Γ, x : bool

q
q′ e2 : A

Σ;Γ, x : bool
q
q′ cond(x; e1; e2) : A

Cond

Function rules:

A
q/q′→ B ∈ Σ(f)

Σ;x : A
q
q′ app{f}(x) : B

App
func{f}(x.e) ∈ prog Σ;x : A

q
q′ e : B

A
q/q′→ B ∈ Σ(f)

Fun

Potential-focused rules:

Σ;Γ
max(r, 0)
max(−r, 0) tick{r} : unit

Tick
Σ;Γ

p
p′ e : A q ≥ p q − p ≥ q′ − p′

Σ;Γ
q
q′ e : A

Relax

Σ;Γ, x : A
q
q′ e : B A′ <: A

Σ;Γ, x : A′ q
q′ e : B

SubWeakL
Σ;Γ

q
q′ e : A′ A′ <: A

Σ;Γ
q
q′ e : A

SubWeakR

Σ;Γ, x2 : A2, x3 : A3

q
q′ e : B A1 � (A2, A3)

Σ;Γ, x1 : A1

q
q′ share(x1;x2, x3.e) : B

Sharing

List rules:

Σ; ∅ 0
0 nil : LP (A)

Nil
Σ;xh : A, xt : L�P (A)

δ(P )
0 cons(xh;xt) : LP (A)

Cons

Σ;Γ
q
q′ e1 : B Σ;Γ, xh : A, xt : L�P (A)

q + δ(P )

q′ e2 : B

Σ;Γ, x : LP (A)
q
q′ listMatch(x; e1;xh, xt.e2) : B

ListMatch

366 D. M. Kahn and J. Hoffmann



Fig. 3. AARA subtyping and sharing judgments.

∀i.pi ≥ qi

LP (A) <: LQ(A)
Subtype

basic � (basic, basic)
ShareBasic

A1 � (A2, A3) B1 � (B2, B3)

A1 ×B1 � (A2 ×B2, A3 ×B3)
SharePair

A1 � (A2, A3) P = Q+R

LP (A1) � (LQ(A2), LR(A3))
ShareList

The remaining rules cover sharing, subtype-weakening, and the rules con-
cerning lists. Weakening, though not listed, is also allowed.

Sharing is a form of contraction. By sharing, the rest of the typing rules
can become affine, allowing only single usages of a given variable. Intuitively,
sharing is meant to prevent duplicating potential across multiple usages of a
variable, and instead split the potential across them. The rules for the sharing
judgment, indicating how to split potential, can be found in Figure 3. Note that
the rule ShareList adds indexed collections of rationals; this should be interpreted
pointwise, as if the addends were vectors or matrices.

Subtype-weakening is a form of subtyping based on potential. It discards
potential on a list, weakening the upper bound on resources it represents. This
rule follows all usual subtyping rules, as well as Subtype from Figure 3. Relaxing
behaves similarly, but loosens the bounds on the available resources instead.

The intuition for the rules concerning lists in the last block of Figure 2 is that
total resources should be conserved between constructions and destructions. Be-
cause δ(P ) expresses the difference in potential, it is exactly how many resource
units are released after a pattern match on a list of type LP (A). For the same
reason, it is also how many need to be stored when reversing the process and
putting an element on a list of type L�P (A). Finally, when a list is empty, it
has no room to store potential. Every potential function fi maps 0 to 0, so an
empty list can safely be assigned any scalar of zero potential.

Soundness The soundness of the type system is expressed with the following
theorem. It states that the evaluation of an expression e does not require more
resources than initially present, and (should evaluation terminate) it leaves at
least as many resource as dictated. The proof is a straightforward generalization
of the version from [27], but we nonetheless reproduce the proof below.

Theorem 1. Let Σ;Γ
q

q′ e : B and V provide the variable bindings for Γ

1. If V � e ⇓ v | (p, p′) then p ≤ Φ(V : Γ )+ q and p− p′ ≤ Φ(V : Γ )+ q−Φ(v :
B)− q′

2. If V � e ⇓ ◦ | p then p ≤ Φ(V : Γ ) + q

Proof. Assume V binds Γ ’s variables and perform nested induction on the type
derivation and operational judgment for an expression in let-normal form. We
show the induction below only for the terminating operational judgment cases,
but the partial-evaluation cases are nearly identical.

(Base Non-Cons) Suppose the last rule applied in the typing derivation is
any non-Cons base case, i.e., Lit , Var , Unop, Binop, Pair , Nil , or Tick . Then

Exponential AARA 367



assume the appropriate terminating operational judgment rule applies. In such
a case, one finds p ≤ q, p′ ≥ q′, and Φ(v : B) = Φ(V : Γ ). This and the
non-negativity of potential are sufficient to satisfy the desired inequalities.

(Base Cons) Suppose the last rule is Cons , so q = δ(P ) and q′ = 0. Assume
the Cons operational judgment applies, so that p = p′ = 0. Note Φ(vh :: vt : L

P )
is equal to δ(P )+Φ(vh : A)+Φ(vt : L

P (A)) by definition. This identity and the
non-negativity of potential satisfy the desired inequalities.

(Step Implicit Inequalities) Suppose the last rule is one of SubWeakL,
SubWeakR, Relax , or substructural weakening, and assume some operational
judgment applies. Each typing requires a similar typing judgment as a premiss.
Further, none changes any values, so the same operational judgment still applies.
Thus, the inductive hypothesis applies, and gives almost the inequalities we need.
Each case provides the inequalities needed to finish. For subtype-weakening, it
is sufficient note that C <: D entails Φ(v : C) ≥ Φ(v : D), since C is pointwise
greater-then-or-equal to D. For relax , the premisses of the relax rule directly
include the inequalities needed to complete the case. And we can complete the
substructural weakening case by noting that the non-negativity of potential en-
tails Φ(V : Γ, v : A) ≥ Φ(V : Γ ).

(Step Let) Suppose the last rule is Let , and suppose its operational judg-

ment applies. The premisses of the typing rule require that Σ;Γ1
q
r e1 : A and

Σ;Γ2, x : A
r
q′ e2 : B. The premisses of the operational judgment require that

V � e1 ⇓ v1 | (s, s′) and V [x 
→ v1] � e2 ⇓ v2 | (t, t′), where p = s+max(t−s′, 0)
and p′ = t′ +max(s′ − t, 0). Applying the inductive hypothesis to these premiss
pairs and adding the resulting inequalities cancels terms to complete the case.

(Step Sharing) Suppose the last is Sharing , so that Γ = Γ ′, x1 : A1. It re-

quires as a premiss thatΣ;Γ ′, x2 : A2, x3 : A3

q

q′ e : B, where A1�(A2, A3). As-
suming the operational judgment Share applies, V [x2 
→ V (x1), x3 
→ V (x1)] �
e ⇓ v | (p, p′) also holds. The inductive hypothesis applies, yielding the needed
inequalities, but for x2, x3 instead of x1. However, the sharing relation ensures
that Φ(v1 : A1) = Φ(v2 : A2, v3 : A3), and this identity finishes the case.

(Step ListMatch) Suppose the last is ListMatch, so Γ = Γ ′, x : LP (A).
There are two operational judgments which could apply: LMat0 and LMat1 .

Suppose the former judgment applies. It requires that V � e1 ⇓ v | (p, p′). At
the same time, the ListMatch rule requires as a premiss that Σ;Γ ′ q

q′ e1 : B.
The inductive hypothesis applies, yielding the needed inequalities, but for Γ ′

instead of Γ . However, because Φ(nil : LP (A)) = 0, we see Φ(V : Γ ′) = Φ(V : Γ ),
and the desired inequalities result.

Suppose instead the latter judgment applies. This judgment requires as a
premiss that V [xh 
→ vh, xt 
→ vt] � e2 ⇓ v | (p, p′). At the same time, the

ListMatch rule requires that Σ;Γ ′, xh : A, xt : L�P (A)
q + δ(P )

q′ e2 : B. The
inductive hypothesis applies, telling us that p − p′ ≤ Φ(V : Γ ′, vh : A, vt :
L�P (A)) + q+ δ(P )−Φ(v : B)− q′ and p ≤ Φ(V : Γ ′, vh : A, vt : L

�P (A)) + q+
δ(P ). By definition, Φ(vh :: vt : L

P ) = δ(P ) + Φ(vh : A) + Φ(vt : L
P (A)), and

applying this identity to the inequalities yields the inequalities needed.

368 D. M. Kahn and J. Hoffmann



(Step Cond) Suppose the last rule is Cond , and that either of the CondT
or CondF operational judgments apply. In either case, applying the inductive
hypothesis to its premiss and the premiss of Cond gives the needed inequalities.

(Step PMat) Suppose that the last rule applied is PMat , so that Γ = Γ ′, x :

A1×A2. This rule would require as a premiss that Σ;Γ ′, x1 : A1, x2 : A2

q

q′ e′ :
B, for e′ the body of the match statement e. Suppose the PMat operational
judgment applies. This judgment requires as a premiss that V [x1 
→ v1, x2 
→
v2] � e′ ⇓ v | (p, p′), where the value of x is (v1, v2). Applying the inductive
hypothesis to these premisses followed by the definitional identity Φ((v1, v2) :
A1 ×A2) = Φ(v1 : A1) + Φ(v2 : A2) completes the case.

(Step App) Suppose the last rule is App. Note that this rule requires Fun

as a premiss, which in turn requires Σ;x : A
q

q′ e′ : B where e′ is the body of
the function being applied. If the App operational judgment applies, its premiss
would require V [x′ 
→ V (x)] � e ⇓ v | (p, p′). Although e′ might not be a smaller
expression than e, the operational judgment derivation still shrinks. This means
the inductive hypothesis applies, and it gives the exact inequalities needed.

Type Inference Type inference for the Hindley-Milner part of the type system
is decidable [21, 41]. The only new barrier for automating inference in AARA is
obtaining witnesses for all the coefficients in each annotation P in a derivation.

Each typing rule naturally gives a set of linear constraints on the entries of P .
If the relation given by � and δ can likewise be expressed with linear constraints,
then all such constraints are linear. So long as |P | is finite, this forms a linear
program. A linear program solver can then find minimal witnesses efficiently.

Existing AARA literature (see e.g. [27]), however, uses binomial coefficients
as the basis functions for P , of which there are infinitely many. This nonetheless
works because only a particular finite prefix of their set,

(−
1

)
, . . . ,

(−
k

)
, are used

as a basis in a given analysis. Each such prefix basis also yields the same locally-
definable shift operation: the linear equality �pi = pi + pi+1, where pk is the
coefficient of

(−
k

)
and is 0 if the function is outside the prefix. As this is a linear

relation, and each prefix is finite, inference can be performed via linear program.
The prefix bases of binomial coefficients thereby form an infinite family of finite
bases, each of which allows automated inference of resource polynomials up to
a fixed degree in the AARA system.

As a caveat, not all programs use resources in a manner compatible with
the AARA system. Indeed, it is undecidable whether or not a program uses e.g.
polynomial amounts of resources, as this could solve the halting problem.

4 Exponential Potential

Stirling numbers of the second kind
{
n
k

}
= 1

k!

∑k
i=0(−1)i

(
k
i

)
(k − i)n count the

number of ways to form a k-partition of a set of n elements. These can be used
to express exponential potential functions similarly to how binomial coefficients
can express polynomial ones. In particular, we make use of Stirling numbers with
arguments n, k offset by 1,

{
n+1
k+1

}
, so that φ(n, P ) =

∑
i pi ·

{
n+1
i+1

}
. While other

bases could also express exponential potential, these offset Stirling numbers have
a few particularly desirable properties, which are described in this section.

Exponential AARA 369



Simple Shift Operation Like binomial coefficients, the prefixes of the basis of the
offset Stirling numbers of the second kind form an infinite family of finite bases,
each of which allows automated inference in the AARA system. However, these
potential functions are exponential rather than polynomial.

Stirling numbers of the second kind satisfy the recurrence
{
n+1
k+1

}
= (k +

1)
{

n
k+1

}
+

{
n
k

}
. This recurrence allows the � operation to have the same local

definition for every annotation entry in every prefix basis: �pi = (i+1)pi+pi+1,
where pk is the coefficient of

{
n+1
k+1

}
, and is 0 if the function index is outside

the chosen prefix. Given this definition for � and letting δ(P ) = p0, we find
p0 +

∑
i �pi

{
n+1
i+1

}
=

∑
i pi

{
n+2
i+1

}
, satisfying Equation 1.

This shift operation yields a linear relation, as the coefficient of a given pi is
a constant scalar. Thus, exactly like when using binomial coefficients, inference
is automatable via linear programming. Certain other exponential bases, like
Gaussian binomial coefficients, could be similarly automated.

Expressivity Because
{
n+1
k+1

}
= 1

k!

∑k
i=0(−1)k−i

(
k
i

)
(i + 1)n ∈ Θ((k + 1)n), the

offset Stirling numbers of the second kind can form a linear basis for the space of
sums of exponential functions. Each function λn.bn with b ≥ 1 can be expressed
as a linear combination of the functions λn.

{
n+1
k+1

}
.

The function λn.
{
n+1
k+1

}
is also non-negative for natural n, and non-decreasing

with respect to n. These are two natural properties to require of basic potential
functions, since amortized analysis requires non-negative resources, and larger
inputs should not usually become cheaper to process. Further, the properties
are preserved by non-negative linear (i.e. conical) combination, and by � when
defined with a non-negative linear recurrence - the combinations given by P and
�P always satisfy the two potential function properties.

Ensuring these properties for more general potential functions requires de-
termining if such a function on a natural domain is always non-negative. This is
non-trivial. In the existing literature on multivariate polynomials, we find this
is undecidable in the worst case [40]. However, restricting to non-negative lin-
ear (that is, conical) combinations of non-negative, non-decreasing functions -
as we have done here - gives simple linear constraints that ensure both desired
properties. For finite bases, this is easily handled via linear programming.

When considering expressivity in this conical combination model of potential
functions, one finds some otherwise-valid potential functions are not be express-
ible in the conical space given by the offset Stirling number functions. Nonethe-
less, Stirling number functions are a maximally expressive basis; it is not possible
to express additional potential functions using a different basis without losing
expressibility elsewhere. Notably, the standard exponential basis is not maximal
in this sense. The formal statement of such maximal expressivity is generalized
in the theorem below. Any finite, sequential subset of the offset Stirling number
functions satisfy the prerequisites of this theorem, as do the binomial coefficient
functions and other well-known functions like the Gaussian polynomials.

Theorem 2. Let {fi} be a finite set of linearly independent functions on the
naturals that are non-negative and non-decreasing. Let fi(n) be 0 until n ≥ i,

370 D. M. Kahn and J. Hoffmann



and let i ≤ j imply that O(fi) ⊆ O(fj), with asymptotic equality only when i = j.
Let L be the linear span (collection of linear combinations) of {fi}, and let C be
its conical span (collection of conical combinations).

There does not exist another linearly independent basis {gi} with linear span
L and conical span D � C such that each function in {gi} is non-negative and
non-decreasing. That is, {fi} has a maximally expressive conical span.

Proof. Suppose there is such a basis {gi}. We express each basis {fi} and {gi}
with linear combinations of the other, and derive a contradiction.

If there is any function in the conical span D of {gi} that is not in C, then
this is the case for some basis function gk. Because gk ∈ L, it can be written as
a linear combination of {fi}; let

∑
i αifi = gk. Because gk ∈ C, there is at least

one coefficient αi < 0; let it be αm. In case there are multiple candidate elements
gk, pick gk to be the basis function such that this index m is minimized.

We then see that gk(m) =
∑

i αifi(m) = (
∑

i<m αifi(m)) + αmfm(m) be-
cause fi(m) for i > m is 0. This yields two observations: First, m < k, as
otherwise the fastest-growing term of gk would be negative, but gk is never neg-
ative. Second, the term αmfm(m) is negative, yet gk ≥ 0, so it must be that∑

i<m αifi(m) > 0. Thus there exists a coefficient αp > 0 where p < m.

Now we look at representing {fi} with {gi}. Because the conical span D
contains C, it can represent each fi as a conical combination. Notably, a given
fi cannot be represented only with functions outside of Ω(fi), nor any function
outside of O(fi), due to growth rates. There is therefore at least one function
in {gi} that is Θ(fi), for each i. Since the linear span of these corresponding gi
already has the same (finite) dimension as L, any additional functions would not
be linearly independent. Due to this, we can say gi ∈ Θ(fi) uniquely for each i.

Take fk in particular as a conical combination of {gi}. We now consider
replacing each element of {gi} in that conical combination with its equivalent
linear combination of elements of {fi}. Because of the above correspondence of
growth rates, there must be a positive coefficient for gk. Because gk has positive
weight αp on fp where p < m < k, another basis function gi in the conical
combination must have negative weight on fp to cancel it out in their linear
combination. However, gk was picked such that it had the lowest index m with
negative weight across all {gi}; it is contradictory for there to be such a p < m.

Natural Semantics The values of
{
n+1
k+1

}
count the number of ways to pick k non-

empty disjoint subsets of n elements. Many programs with exponential resource
use iterate over collections of subsets, so these numbers naturally arise.

Recall the naive solution to subset sum from the introduction. The algorithm
iterates through all the subsets of numbers in the input list. When considering
Fagin’s descriptive complexity result that NP problems are precisely those ex-
pressible in existential second order logic [14], it becomes clear that naive solu-
tions to any NP-complete problem fit this characterization: naively brute-forcing
through second order terms to find an existential witness is just iterating through
tuples of subsets.

Exponential AARA 371



Example Consider the naive solution to subset sum from the introduction. One
can verify that the number of Boolean and arithmetic operations used on an
input of size n is 3 ∗ 2n − 2 by induction. We find the same bound here by
preceding each such operation with an explicit tick{1} operation. Thee AARA

type system then verifies that the type of subsetSum is L3(Z)× Z 1/0→ bool .

Here is the code again, with type annotations on each line tracking the
amount of

{
n+1
2

}
potential on lists, and comments tracking available constant

potential. For clarity, the code is re-written in a let-normal form, and sharing
locations are marked.

let subsetSum nums:L3(Z) target = (* 1 *)

match nums:L3(Z) with

| [] → (* 1 *)

tick 1; target = 0 (* 0 *)

| hd::(tl:L6(Z)) → (* 4 *)

tick 1; let newTarget = target - hd in (* 3 *)

(* share tl:L6(Z) as L3(Z), L3(Z) *)

let withNum = subsetSum tl:L3(Z) newTarget in (* 2 *)

let without = subsetSum tl:L3(Z) target in (* 1 *)

tick 1; withNum || without (* 0 *)

The indicated values yield witnesses for the AARA typing rules, so we know
via soundness that the difference between initial and ending potential gives an
upper bound on how many operations were used. That difference is 1+3∗{n+1

2

}
=

3 ∗ 2n − 2, where n is the size of nums , exactly the amount used.

Exponential terms with higher bases than 2 can come into play with more
recursive calls, like in the code below enumerating the 3n ways to put n labelled
balls into 3 labelled bins.

let helper xs:L2,2(Z) a b c = (* 1 *)

match xs with

| [] → (* 1 *)

tick 1; [(a,b,c)] (* 0 *)

| hd::(tl:L6,6(Z)) → (* 3 *)

(* share tl:L6,6(Z) as L2,2(Z), L2,2(Z), L2,2(Z) *)

let newA = hd::a in (* 3 *)

let tmp1 = helper tl:L2,2(Z) newA b c in (* 2 *)

let newB = hd::b in (* 2 *)

let tmp2 = helper tl:L2,2(Z) a newB c in (* 1 *)

let newC = hd::c in (* 1 *)

let tmp3 = helper tl:L2,2(Z) a b newC in (* 0 *)

tmp1 @ tmp2 @ tmp3 (* 0 *)

let ballBins3 xs:L2,2(Z) = (* 1 *)

helper xs:L2,2(Z) [] [] [] (* 0 *)

By paying a unit of resource for each such way using tick, we can use AARA

to bound the count. It assigns a type of L2,2(Z) 1/0→ L0,0(L0,0(Z) × L0,0(Z) ×
L0,0(Z)) to ballBins3, where the superscript tracks

{
n+1
2

}
and

{
n+1
3

}
potential,

respectively. Since 2
{
n+1
3

}
+ 2

{
n+1
2

}
+ 1 = 3n, this bound is exact.

372 D. M. Kahn and J. Hoffmann



5 Mixed Potential

It is possible to combine the existing polynomial potential functions with these
new exponential potential functions to not only conservatively extend both, but
further represent potentials functions with their products. This space represents
functions in Θ(nk(b+ 1)n) for naturals k, b, and does so with terms of the form(
n
k

){
n+1
b+1

}
so that φ(n, P ) =

∑
b,k pb,k · (nk){n+1

b+1

}
. Note that for k or b equal to

0, the potential functions here reduce to the offset Stirling numbers or binomial
coefficients, respectively.

The methods used to combine these potential functions here can easily be
generalized to combine any two suitable sets.

Simple Shift Operation It is straightforward to find a linear recurrence for these

products by distributing over their linear recurrences.

(n+1
k+1){n+2

b+2}=(( n
k+1)+(

n
k))((b+2){n+1

b+2}+{n+1
b+1})

=(b+2)( n
k+1){n+1

b+2}+(b+2)(nk){n+1
b+2}+( n

k+1){n+1
b+1}+(nk){n+1

b+1}
As before, this yields a definition for δ and � with Equation 1. Letting P now
be indexed by pairs b, k: �pb,k = (b+ 1)pb,k + (b+ 1)pb,k+1 + pb+1,k + pb+1,k+1,
and δ(P ) = p0,1+p1,0+p1,1. Noting that these definitions are linear again yields
automatability for finite (2-dimensional) prefixes of the basis.

Expressivity The product of non-negative, non-decreasing functions is still non-
negative and non-decreasing, so products of valid potential functions are still
valid. Soundness is preserved by letting p0 be shorthand for the new constant
function coefficient p0,0 wherever it is used in Theorem 1. Moreover, maximality
of expressivity is preserved, simply by giving index pairs the ordering relation
(i1, i2) ≤ (j1, j2) ⇐⇒ i1 ≤ j1 ∧ i2 ≤ j2 and applying Theorem 2.

Example Consider bounding the number of Boolean and arithmetic operations
in a variation of subset sum: single-use subset sum. Here the input may contain
duplicate numbers that should be ignored, so as to treat the input as a true set.
This is a trivial change to the mathematical problem, but one that real code
might have to deal with, depending on the implementation of sets.

The code can be changed to handle this by removing all later duplicates of
each number it reaches, so that later recursive calls will never see the number

again. It is easy to create a function remove of type Z×La+1,b,c(Z) d/d→ La,b,c(Z)
to do this for any a, b, c, d, where the superscript values represent linear,

{
n+1
2

}
,

and n
{
n+1
2

}
potential, respectively.

One can prove by induction that at most 4∗2n−n−3 Boolean or arithmetic
operations are required. Although this can be bounded with only exponential
functions, the purely exponential potential system cannot reason about the exact
(linear) cost associated with remove, and overestimates the bound to be in θ(3n).
This mixed system can provide a better (though still loose) bound of n2n + 2 ∗
2n − n − 1, giving a type of L0,2,1(Z) × Z 1/0→ bool to subSum1. After showing
this derivation, we will show how to find the exact bound with AARA.

Exponential AARA 373



The following is the single-use subset sum code, with comments on each line
tracking the amount of available resources on each line. For clarity, we indicate
sharing and subtype-weakening locations.

let subSum1 nums:L0,2,1(Z) target = (* 1 *)

match nums with

| [] → (* 1 *)

tick 1; target = 0 (* 0 *)

| hd::(tl:L1,6,2(Z)) → (* 4 *)

let otherNums:L0,6,2(Z) = remove hd tl:L1,6,2(Z) in (* 4 *)

tick 1; let newTarg = target - hd in (* 3 *)

(* weaken otherNums:L0,6,2(Z) to L0,4,2(Z) *)

(* share otherNums:L0,4,2(Z) as L0,2,1(Z), L0,2,1(Z) *)

let withNum = subSum1 otherNums:L0,2,1(Z) newTarg in (* 2 *)

let without = subSum1 otherNums:L0,2,1(Z) target in (* 1 *)

tick 1; withNum || without (* 0 *)

The difference between initial and ending potential gives the upper bound of
1+2

{
n+1
2

}
+n ∗{n+1

2

}
= n2n +2 ∗ 2n −n− 1 Boolean or arithmetic operations.

Note that we use the subtype-weakening rule, throwing away 2 units of
{
n+1
2

}
potential. This indicates why the bound is not tight. Next we show how to
improve this bound using potential demotion.

Demotion There is one special exception to the non-negativity of potential an-
notations that may be added due to the particular nature of the relation between
binomial coefficients and Stirling numbers. It represents the concept of demoting
exponential potential into polynomial potential.

The relevant relation is
{
n+1
2

}
= 2n − 1 =

∑∞
i=1

(
n
i

) ≥ ∑k
i=1

(
n
i

)
. This allows

a unit of
{
n+1
2

}
potential to account for one unit each of all non-constant bi-

nomial coefficient potentials. We can express this with the following additional
subtyping rule. In this rule we interpret the 2-dimensional indexing of the poten-
tial annotation as a matrix, and we let −→p refer to the vector of potential entries
at index coordinates 0, i for i ≥ 1.

P = R+

[
0 −→p
r 0

]
Q = R+

[
0 −→p + s ∗ −→1

r − s 0

]

LP (A) <: LQ(A)
Demote

Theorem 3. The demotion rule is sound.

Proof. We need only show that C <: D implies Φ(v : D) ≤ Φ(v : C) for un-
changed values v. The rest of soundness then follows as in Theorem 1. To do so,
it is sufficient to show for l = [a1, . . . , an] we have Φ(a : LQ(A)) ≤ Φ(a : LP (A)).

Without loss of generality, we need only consider where R = 0.

Φ(l : LQ(A)) =φ(n,Q) +
∑n

i=1
Φ(ai : A)

=(r − s){n+1
2 }+∑k

i=1
(−→p i−1 + s)(ni) +

∑n
i=1

Φ(ai : A)

374 D. M. Kahn and J. Hoffmann



=
∑∞

i=1
(r − s)(ni) +

∑k
i=1

(−→p i−1 + s)(ni) +
∑n

i=1
Φ(ai : A)

≤∑∞
i=1

r(ni) +
∑k

i=1
−→p i−1(ni) +

∑n
i=1

Φ(ai : A)

=r{n+1
2 }+∑k

i=1
−→p i−1(ni) +

∑n
i=1

Φ(ai : A)

=φ(n, P ) +
∑n

i=1
Φ(ai : A) = Φ(l : LP (A))

As a corollary, this allows us to loosen the constraint that every annotation P
contains only non-negative rationals. In particular, it is no longer required that
∀i.p0,i ≥ 0. Instead, we require that ∀i.p0,i+p1,0 ≥ 0. Each unit of

{
n+1
2

}
poten-

tial may “pay” for one unit of deficit from each polynomial potential function.
Because this is still a linear constraint, type inference remains automatable.

Using Demote, tighter bounds can be obtained. Consider the single-use subset
sum solution from the previous section. Here it is again below, but this time
allowing the linear potential to be paid for by

{
n+1
2

}
potential. AARA can now

provide a type of L−1,4,0(Z) × Z 1/0→ bool for subSum1, corresponding to the
exact upper bound of 4 ∗ 2n − n− 3 operations. This time n ∗ {n+1

2

}
is elided in

the annotated potentials, as it is not needed.

let subSum1 nums:L−1,4(Z) target = (* 1 *)

match nums with

| [] → (* 1 *)

tick 1; target = 0 (* 0 *)

| hd::(tl:L−1,8(Z)) → (* 4 *)

let otherNums:L−2,8(Z) = remove hd tl:L−1,8(Z) in (* 4 *)

tick 1; let newTarg = target - hd in (* 3 *)

(* share otherNums:L−2,8(Z) as L−1,4(Z), L−1,4(Z) *)

let withNum = subSum1 otherNums:L−1,4(Z) newTarg in (* 2 *)

let without = subSum1 otherNums:L−1,4(Z) target in (* 1 *)

tick 1; withNum || without (* 0 *)

The difference between initial and ending potential gives the upper bound of
1− n+ 4

{
n+1
2

}
= 4 ∗ 2n − n− 3, as desired.

6 Exponentials, Polynomials, and Logarithms

The addition of exponential potential also allows for the inference of previously
nonderivable polynomial-resource types for certain programs. One such way this
can happen is by compacting the potential of a list into a new list logarithmic
in size to the first. Performing exponential-cost operations, such as subsetSum,
on a list of logarithmic size only has linear cost in total.

In the code below, log takes a list x of length n and returns a list of length
roughly log2(n). If x begins with one unit of linear potential, the type system
assigns the output of log one unit of base-2 exponential (2n − 1) potential. We
show in the code below with types of the form La,b, where a is the linear potential,
and b is the base-2 exponential potential. This lets us find that half can have

type L1,0(Z) 0/0→ L2,0(Z) and log has type L1,0(Z) 0/0→ L0,1(Z). The typing of log
shows the conversion from linear to exponential potential.

Exponential AARA 375



let half x: L1,0(Z) = (* 0 *)

match x with

| [] → (* 0 *)

[]: L2,0(Z) (* 0 *)

| hd::(tl: L1,0(Z)) → (* 1 *)

match tl with

| [] → (* 1 *)

[]: L2,0(Z) (* 1 *)

| hd2::(tl2: L1,0(Z)) → (* 2 *)

let halfTail: L2,0(Z) = half tl2 in (* 2 *)

(hd::halfTail): L2,0(Z) (* 0 *)

let log x: L1,0(Z) = (* 0 *)

match x with

| [] → (* 0 *)

[]: L0,1(Z) (* 0 *)

| hd::(tl: L1,0(Z)) → (* 1 *)

let halfTail: L2,0(Z) = half tl in (* 1 *)

let subSoln: L0,2(Z) = log halfTail in (* 1 *)

(hd::subSoln): L0,1(Z) (* 0 *)

Typing log above requires resource-polymorphic recursion. However, this can
be justified by noting that the above can be thought of to show half has type

La,0(Z) 0/0→ L2a,0(Z) and log has type La,0(Z) 0/0→ L0,a(Z) for any a ≥ 0.

Coincidentally, log conversion of linear to exponential potential certifies that
the output list’s size can be bounded by a logarithm of the input’s size. Nonethe-
less, logarithmic potential is not directly compatible with the approach this work
takes. Sublinear functions have negative second derivatives, and this yields neg-
ative annotation entries under � applications. This may not be insurmountable,
as the demotion rule showed here, but new ideas are needed overall. Logarithmic
potential has been explored in [32], though the approach there departs from the
automatable AARA framework of linear constraint solving.

7 Conclusion and Future Work

Using Stirling numbers of the second kind allows for the automated inference of
exponential resource usages via Automatic Amortized Resource Analysis. This
may be combined with the existing polynomial system, allowing mixtures of
polynomial and exponential functions to be inferred. Under this system, more
kinds of programs can now be automatically analyzed, in particular those making
use of multiple recursive calls, or logarithmically-sized lists. Finally, the frame-
work put in place to accomplish this separates the concerns of the type system
and potential functions, paving the way to allow modular addition of different
potential functions. Future work could extend the work here to cover additional
language features supported in polynomial AARA literature, like trees [22].

376 D. M. Kahn and J. Hoffmann



References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost Analysis of
Java Bytecode. In: 16th Euro. Symp. on Prog. (ESOP’07) (2007)

2. Albert, E., Fernández, J.C., Román-Dı́ez, G.: Non-cumulative Resource Analysis.
In: Tools and Algorithms for the Construction and Analysis of Systems - 21st
International Conference, (TACAS’15) (2015)

3. Albert, E., Genaim, S., Masud, A.N.: On the Inference of Resource Usage Upper
and Lower Bounds. ACM Transactions on Computational Logic 14(3) (2013)

4. Atkey, R.: Amortised Resource Analysis with Separation Logic. In: 19th Euro.
Symp. on Prog. (ESOP’10) (2010)

5. Avanzini, M., Lago, U.D., Moser, G.: Analysing the Complexity of Functional
Programs: Higher-Order Meets First-Order. In: 29th Int. Conf. on Functional Pro-
gramming (ICFP’15) (2012)

6. Avanzini, M., Moser, G.: A Combination Framework for Complexity. In: 24th In-
ternational Conference on Rewriting Techniques and Applications (RTA’13) (2013)

7. Blanc, R., Henzinger, T.A., Hottelier, T., Kovács, L.: ABC: Algebraic Bound Com-
putation for Loops. In: Logic for Prog., AI., and Reasoning - 16th Int. Conf.
(LPAR’10) (2010)

8. Carbonneaux, Q., Hoffmann, J., Reps, T., Shao, Z.: Automated Resource Analysis
with Coq Proof Objects. In: 29th International Conference on Computer-Aided
Verification (CAV’17) (2017)

9. Carbonneaux, Q., Hoffmann, J., Shao, Z.: Compositional Certified Resource
Bounds. In: 36th Conference on Programming Language Design and Implemen-
tation (PLDI’15) (2015), artifact submitted and approved

10. Chatterjee, K., Fu, H., Goharshady, A.K.: Non-polynomial worst-case analysis of
recursive programs. In: Computer Aided Verification - 29th International Confer-
ence (CAV ’17). pp. 41–63 (2017)

11. Dal Lago, U., Gaboardi, M.: Linear Dependent Types and Relative Completeness.
In: 26th IEEE Symp. on Logic in Computer Science (LICS’11) (2011)

12. Danner, N., Licata, D.R., Ramyaa, R.: Denotational Cost Semantics for Functional
Languages with Inductive Types. In: 29th Int. Conf. on Functional Programming
(ICFP’15) (2012)

13. Das, A., Hoffmann, J., Pfenning, F.: Work analysis with resource-aware session
types. In: 33th ACM/IEEE Symposium on Logic in Computer Science (LICS’18)
(2018)

14. Fagin, R.: Generalized First-Order Spectra, and Polynomial-Time Recognizable
Sets. SIAM-AMS Proc. 7 (01 1974)

15. Flajolet, P., Salvy, B., Zimmermann, P.: Automatic Average-case Analysis of Al-
gorithms. Theoret. Comput. Sci. 79(1), 37–109 (1991)

16. Flores-Montoya, A., Hähnle, R.: Resource Analysis of Complex Programs with
Cost Equations. In: Programming Languages and Systems - 12th Asian Symposiu
(APLAS’14) (2014)

17. Frohn, F., Naaf, M., Hensel, J., Brockschmidt, M., Giesl, J.: Lower Runtime Bounds
for Integer Programs. In: Automated Reasoning - 8th International Joint Confer-
ence (IJCAR’16) (2016)

18. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: SPEED: Precise and Efficient Static
Estimation of Program Computational Complexity. In: 36th ACM Symp. on Prin-
ciples of Prog. Langs. (POPL’09) (2009)

Exponential AARA 377



19. Guéneau, A., Charguéraud, A., Pottier, F.: A fistful of dollars: Formalizing asymp-
totic complexity claims via deductive program verification. In: Ahmed, A. (ed.) Eu-
ropean Symposium on Programming (ESOP). Lecture Notes in Computer Science,
vol. 10801, pp. 533–560. Springer (Apr 2018)

20. Harper, R.: Practical Foundations for Programming Languages. Cambridge Uni-
versity Press (2016)

21. Hindley, R.: The Principal Type-Scheme of an Object in Combinatory
Logic. Transactions of the American Mathematical Society 146, 29–60 (1969),
http://www.jstor.org/stable/1995158

22. Hoffmann, J.: Types with Potential: Polynomial Resource Bounds via Automatic
Amortized Analysis. Ph.D. thesis, Ludwig-Maximilians-Universität München
(2011)

23. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate Amortized Resource Analysis.
In: 38th Symposium on Principles of Programming Languages (POPL’11) (2011)

24. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate Amortized Resource Analysis.
ACM Trans. Program. Lang. Syst. (2012)

25. Hoffmann, J., Das, A., Weng, S.C.: Towards Automatic Resource Bound Anal-
ysis for OCaml. In: 44th Symposium on Principles of Programming Languages
(POPL’17) (2017)

26. Hoffmann, J., Hofmann, M.: Amortized Resource Analysis with Polymorphic Re-
cursion and Partial Big-Step Operational Semantics. In: 8th Asian Symposium on
Programming Languages (APLAS’10) (2010)

27. Hoffmann, J., Hofmann, M.: Amortized Resource Analysis with Polynomial Po-
tential. In: 19th European Symposium on Programming (ESOP’10) (2010)

28. Hoffmann, J., Shao, Z.: Type-Based Amortized Resource Analysis with Integers
and Arrays. In: 12th International Symposium on Functional and Logic Program-
ming (FLOPS’14) (2014)

29. Hoffmann, J., Shao, Z.: Automatic Static Cost Analysis for Parallel Programs. In:
24th European Symposium on Programming (ESOP’15) (2015)

30. Hoffmann, J., Shao, Z.: Type-Based Amortized Resource Analysis with Integers
and Arrays. J. Funct. Program. (2015)

31. Hofmann, M., Jost, S.: Static Prediction of Heap Space Usage for First-Order Func-
tional Programs. In: 30th ACM Symp. on Principles of Prog. Langs. (POPL’03)
(2003)

32. Hofmann, M., Moser, G.: Analysis of logarithmic amortised complexity (2018)
33. Jost, S., Hammond, K., Loidl, H.W., Hofmann, M.: Static Determination of Quan-

titative Resource Usage for Higher-Order Programs. In: 37th ACM Symp. on Prin-
ciples of Prog. Langs. (POPL’10) (2010)

34. Jost, S., Loidl, H.W., Hammond, K., Scaife, N., Hofmann, M.: Carbon Credits
for Resource-Bounded Computations using Amortised Analysis. In: 16th Symp. on
Form. Meth. (FM’09) (2009)

35. Kaminski, B.L., Katoen, J.P., Matheja, C., Olmedo, F.: Weakest Precondition
Reasoning for Expected Run–Times of Probabilistic Programs. In: Proceedings of
the European Symposium on Programming Languages and Systems (ESOP’16).
Springer (2016)

36. Kincaid, Z., Breck, J., Boroujeni, A.F., Reps, T.: Compositional recurrence analysis
revisited. In: Conference on Programming Language Design and Implementation
(PLDI’17) (2017)

37. Kincaid, Z., Cyphert, J., Breck, J., Reps, T.: Non-linear reasoning for invariant
synthesis. Proc. ACM Program. Lang. 2(POPL), 54:1–54:33 (Dec 2017)

378 D. M. Kahn and J. Hoffmann



38. Lichtman, B., Hoffmann, J.: Arrays and References in Resource Aware ML. In: 2nd
International Conference on Formal Structures for Computation and Deduction
(FSCD’17) (2017)

39. Madhavan, R., Kulal, S., Kuncak, V.: Contract-based resource verification for
higher-order functions with memoization. In: Proceedings of the 44th Symposium
on Principles of Programming Languages (POPL’17) (2017)

40. Matiyasevich, Y.V.: The Diophantineness of Enumerable Sets. In: Doklady
Akademii Nauk. vol. 191, pp. 279–282. Russian Academy of Sciences (1970)

41. Milner, R.: A Theory of Type Polymorphism in Programming. Journal of Com-
puter and System Sciences 17, 348–375 (1978)

42. Mével, G., Jourdan, J.H., Pottier, F.: Time credits and time receipts in Iris. In:
Caires, L. (ed.) European Symposium on Programming (ESOP). Lecture Notes in
Computer Science, vol. 11423, pp. 1–27. Springer (Apr 2019)

43. Ngo, V.C., Carbonneaux, Q., Hoffmann, J.: Bounded expectations: Resource anal-
ysis for probabilistic programs. In: 39th Conference on Programming Language
Design and Implementation (PLDI’18) (2018)

44. Ngo, V.C., Dehesa-Azuara, M., Fredrikson, M., Hoffmann, J.: Verifying and Syn-
thesizing Constant-Resource Implementations with Types. In: 38th IEEE Sympo-
sium on Security and Privacy (S&P ’17) (2017)

45. Nipkow, T., Brinkop, H.: Amortized complexity verified. J. Autom. Reasoning
62(3), 367–391 (2019)

46. Niu, Y., Hoffmann, J.: Automatic space bound analysis for functional programs
with garbage collection. In: 22nd International Conference on Logic for Program-
ming Artificial Intelligence and Reasoning (LPAR’18) (2018)

47. Noschinski, L., Emmes, F., Giesl, J.: Analyzing Innermost Runtime Complexity of
Term Rewriting by Dependency Pairs. J. Autom. Reasoning 51(1), 27–56 (2013)

48. Radiček, I., Barthe, G., Gaboardi, M., Garg, D., Zuleger, F.: Monadic Refinements
for Relational Cost Analysis. Proc. ACM Program. Lang. 2(POPL) (2017)

49. Sinn, M., Zuleger, F., Veith, H.: A Simple and Scalable Approach to Bound Anal-
ysis and Amortized Complexity Analysis. In: Computer Aided Verification - 26th
Int. Conf. (CAV’14) (2014)

50. Stirling, J.: The Differential Method: Or, A Treatise Concerning Summation and
Interpolation of Infinite Series. E. Cave (1749)

51. Tarjan, R.E.: Amortized Computational Complexity. SIAM J. Algebraic Discrete
Methods 6(2), 306–318 (1985)

52. Vasconcelos, P.B., Jost, S., Florido, M., Hammond, K.: Type-Based Allocation
Analysis for Co-recursion in Lazy Functional Languages. In: 24th European Sym-
posium on Programming (ESOP’15) (2015)

53. Wang, P., Wang, D., Chlipala, A.: TiML: A Functional Language for Practical
Complexity Analysis with Invariants. In: Object-Oriented Prog., Syst., Lang., and
Applications (OOPSLA’17) (2017)

54. Wang, P., Fu, H., Goharshady, A.K., Chatterjee, K., Qin, X., Shi, W.: Cost analysis
of nondeterministic probabilistic programs. In: 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’19). pp. 204–220
(2019)

55. Wegbreit, B.: Mechanical Program Analysis. Commun. ACM 18(9), 528–539
(1975)

56. Çiçek, E., Barthe, G., Gaboardi, M., Garg, D., Hoffmann, J.: Relational Cost
Analysis. In: 44th Symposium on Principles of Programming Languages (POPL’17)
(2017)

Exponential AARA 379



Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

380 D. M. Kahn and J. Hoffmann



Concurrent Kleene Algebra with Observations:
from Hypotheses to Completeness

Tobias Kappé (�), Paul Brunet , Alexandra Silva ,
Jana Wagemaker , and Fabio Zanasi

University College London, London, United Kingdom; tkappe@cs.ucl.ac.uk

Abstract. Concurrent Kleene Algebra (CKA) extends basic Kleene
algebra with a parallel composition operator, which enables reasoning
about concurrent programs. However, CKA fundamentally misses tests,
which are needed to model standard programming constructs such as
conditionals and while-loops. It turns out that integrating tests in CKA is
subtle, due to their interaction with parallelism. In this paper we provide
a solution in the form of Concurrent Kleene Algebra with Observations
(CKAO). Our main contribution is a completeness theorem for CKAO.
Our result resorts on a more general study of CKA “with hypotheses”, of
which CKAO turns out to be an instance: this analysis is of independent
interest, as it can be applied to extensions of CKA other than CKAO.

Acknowledgments. This work was partially supported by the ERC Starting Grant

ProFoundNet, grant code 679127. We acknowledge support from the EPSRC grants

EP/S028641/1 (A. Silva); EP/R020604/1 (F. Zanasi); EP/R006865/1 (P. Brunet).

1 Introduction

Kleene algebra with tests (KAT) is a (co)algebraic framework [17,19] that allows
one to study properties of imperative programs with conditional branching, i.e.
if-statements and while-loops. KAT is build on Kleene algebra (KA) [6,16], the
algebra of regular languages. Both KA and KAT enjoy a rich meta-theory, which
makes them a suitable foundation for reasoning about program verification.
In particular, it is well-known that the equational theories of KA and KAT
characterise rational languages [27,21,16] and guarded rational languages [17]
respectively. Efficient procedures for deciding equivalence have been studied in
recent years, also in view of recent applications to network verification [3,8,28].

Concurrency is a known source of bugs and hence challenges for verifica-
tion. Hoare, Struth, and collaborators [11], have proposed an extension of KA,
Concurrent Kleene Algebra (CKA), as an algebraic foundation for concurrent
programming. CKA enriches the basic language of KA with a parallel composition
operator · ‖ ·. Analogously to KA, CKA also has a semantic characterisation
for which the equational theory is complete, in terms of rational languages of
pomsets (words with a partial order on letters) [23,24,15].

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 381–400, 2020.
https://doi.org/10.1007/978-3-030-45231-5_20

http://orcid.org/0000-0002-6068-880X
http://orcid.org/0000-0002-9762-6872
http://orcid.org/0000-0001-5014-9784
http://orcid.org/0000-0002-8616-3905
http://orcid.org/0000-0001-6457-1345
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_20&domain=pdf


The development of CKA raises a natural question, namely how tests, which
were essential in KAT for the study of sequential programs, can be integrated into
CKA. At first glance, the obvious answer may appear to be to merge KAT with
CKA, yielding Concurrent Kleene Algebra with Tests (CKAT) — as attempted
in [12]. However, as it turns out, integrating tests into CKA is quite subtle and
this naive combination does not adequately capture the behaviour of concurrent
programs. In particular, using the CKAT framework of [12] one can prove that
for any test b and CKAT program e:

0 ≤KAT b · e · b ≤CKA e ‖ (b · b) ≡KAT e ‖ 0 ≡CKA 0

thus b · e · b ≡CKAT 0, meaning no program e can change the outcome of any test b.
Or equivalently, and undesirably, that any test is an invariant of any program!

The core issue is the identification in KAT of sequential composition · and
Boolean conjunction ∧. In the concurrent setting this is not sound as the values
of variables — and hence tests — can be changed between the two tests.

In order to fix this issue, we have presented Kleene Algebra with Observations
(KAO) in previous work [13]. Algebraically, KAO differs from KAT in that
conjunction of tests b ∧ b′ and their sequential composition b · b′ are distinct
operations. In particular, b∧b′ expresses a single test executed atomically, whereas
b ·b′ describes two distinct executions, occurring one after the other. As mentioned
above, this distinction is crucial when moving from the sequential setting of KA
to the concurrent setting of CKA, as actions from another thread that happen
to be scheduled after b but before b′ may as well change the outcome of b′.

This newly developed extension of KA enables a novel attempt to enrich CKA
with the ability to reason about programs that also have the traditional condi-
tionals: in this paper, we present Concurrent Kleene Algebra with Observations
(CKAO) and show that it overcomes the problems present in CKAT.

The traditional plan for developing a variant of (C)KA is to define a separate
syntax, semantics, and set of axioms, before establishing a formal correspondence
with the base syntax, semantics and axioms of (C)KA proper, and arguing that
this correspondence allows one to conclude soundness and completeness of the
axioms w.r.t. the semantics, as well as decidability of equivalence in the semantics.
Instead of such a tailor-made proof, however, we take a more general approach
by first proposing CKA with hypotheses (CKAH) as a formalism for studying
extensions of CKA, akin to how Kleene algebra with hypotheses [5,18,20,7] can
be used to extend Kleene algebra. We then apply CKAH to study CKAO, but
the meta-theory developed can also be applied to extensions other than CKAO.

Using the CKAH formalism, we instantiate CKAO as CKAH with a particular
set of hypotheses, and we immediately obtain a syntax and semantics; we can
then use the meta-theory of CKAH to argue completeness and decidability in a
modular proof, which composes results about CKA [15] and KAO [13].

The technical roadmap of the paper and its contributions are as follows.

– We introduce Concurrent Kleene Algebra with Hypotheses (CKAH), a for-
malism for studying extensions of CKA; this is a concurrent extension of
Kleene Algebra with Hypotheses (Section 4). We show how CKAH is sound

382 T. Kappé et al.



with respect to rational pomset languages closed under an operation arising
from the set of hypotheses. We propose techniques to argue completeness
of the extended set of axioms with respect to the sound model as well as
decidability of equivalence, capturing methods commonly used in literature
to argue completeness and decidability for extensions of (concurrent) KA.

– We prove that CKAO can be presented as an instance of CKAH, for a certain
set of hypotheses (Section 5). This gives us a sound model of CKAO ‘for free’.
We then prove that the axioms of CKAO are also complete for this model,
and that equivalence is decidable, using the techniques developed previously.

We conclude this introduction by giving an example of how hypotheses can be
added to CKA to include the meaning of primitive actions. Suppose we were
designing a DSL for recipes, specifically, the steps necessary, and their order. A
recipe to prepare cookies might contain the actions mix (mixing the ingredients),
preheat (pre-heating the oven), chill (chilling the dough) and bake (baking the
cookies). Using these actions, a recipe like “mix the ingredients until combined;
chill the dough while pre-heating the oven; bake cookies in the oven” may be
encoded as mix∗ · (chill ‖ preheat) ·bake. Now, imagine that we have only one oven,
meaning that we cannot bake two batches of cookies concurrently. We might
encode this restriction on concurrent behaviour by forcing the equation

(e ·bake ·f) ‖ (g ·bake ·h) = (e ·bake ‖ g) ·(f ‖ bake ·h)+(e ‖ g ·bake) ·(bake ·f ‖ h)

As a consequence of this hypothesis, one could then derive properties such as

bake ‖ (bake ·mix) = bake · bake ·mix+ bake ·mix · bake

In a nutshell, this paper provides an algebraic framework — CKAH— together
with techniques for soundness and completeness results. The framework is flexible
in that different instantiations of the hypotheses generate very different algebraic
systems. We provide one instantiation — CKAO — that enables analysis of
programs with both concurrency primitives and Boolean assertions. This is the
first sound and complete algebraic theory to reason about such programs.

For the sake of brevity, some proofs appear in the extended version [14].

2 Preliminaries

We recall basic definitions on pomset languages, used in the semantics of CKA,
which generalise languages to allow letters in words to be partially ordered. We
fix a (possibly infinite) alphabet Σ. When defining sets parametrised by Σ, say
S(Σ), if Σ is clear from the context we use S to refer to S(Σ).

Posets and Pomsets Pomsets [9,10] are labelled posets, up to isomorphism.

Definition 2.1 (Labellet poset). A labelled poset over Σ is a tuple u =
〈S,≤, λ〉, where S is a finite set (the carrier of u), ≤u is a partial order on S
(the order of u), and λ : S → Σ is a function (the labelling of u).

Concurrent Kleene Algebra with Observations 383



We will denote labelled posets by bold lower-case letters u, v, etc. We write
Su for the carrier of u, ≤u for the order of u, and λu for the labelling of u. We
assume that any labelled poset has a carrier that is a subset of some countably
infinite set, say N; this allows us to speak about the set of labelled posets over Σ.
The precise contents of the carrier, however, are not important — what matters
to us is the labels of the points, and the ordering between them.

Definition 2.2 (Poset isomorphism, pomset). Let u,v be labelled posets
over Σ. We say u is isomorphic to v, denoted u ∼= v, if there exists a bijection
h : Su → Sv that preserves labels, and preserves and reflects ordering. More
precisely, we require that λv ◦ h = λu, and s ≤u s′ if and only if h(s) ≤v h(s′).

A pomset over Σ is an isomorphism class of labelled posets over Σ, i.e., the
class [v] = {u : u ∼= v} for some labelled poset v.

We write Pom(Σ) for the set of pomsets over Σ, and 1 for the empty pomset.
As long as we have countably many pomsets in scope, the above allows us
to assume w.l.o.g. that those pomsets are represented by labelled posets with
pairwise disjoint carriers; we tacitly make this assumption throughout this paper.

Pomsets can be concatenated, creating a new pomset that contains all events
of the operands, with the same label, but which orders all events of the left
operand before those of the right one. We can also compose pomsets in parallel,
where events of the operands are juxtaposed without any ordering between them.

Definition 2.3 (Pomset composition). Let U = [u] and V = [v] be pomsets
over Σ. We write U ‖ V for the parallel composition of U and V , which is the
pomset over Σ represented by the labelled poset u ‖ v, where

Su‖v = Su ∪ Sv ≤u‖v= ≤u ∪ ≤v λu‖v(x) =

{
λu(x) x ∈ Su

λv(x) x ∈ Sv

Similarly, we write U · V for the sequential composition of U and V , that is,
the pomset represented by the labelled poset u · v, where

Su·v = Su‖v ≤u·v = ≤u ∪ ≤v ∪ (Su × Sv) λu·v = λu‖v

Just like words are built up from the empty word and letters using concatena-
tion, we can build a particular set of pomsets using only sequential and parallel
composition; this will be the primary type of pomset that we will use.

Definition 2.4 (Series-parallel). The set of series-parallel pomsets ( sp-
pomsets) over Σ, denoted SP(Σ), is the smallest set s.t. 1 ∈ SP(Σ), a ∈ SP(Σ)
for every a ∈ Σ, and it is closed under parallel and sequential composition.

The following characterisation of SP is very useful in proofs.

Theorem 2.5 (Gischer [9]). Let U = [u] ∈ Pom. Then U ∈ SP if and only if
U is N-free, which is to say that if there exist no distinct s0, s1, s2, s3 ∈ Su such
that s0 ≤u s1 and s2 ≤u s3 and s0 ≤u s3, with no other relation between them.

384 T. Kappé et al.



One way of comparing pomsets is to see whether they have the same events
and labels, except that one is “more sequential” in the sense that more events
are ordered. This is captured by the notion of subsumption [9], defined as follows.

Definition 2.6 (Subsumption). Let U = [u] and V = [v]. We say U is
subsumed by V , written U  V , if there exists a label- and order-preserving
bijection h : Sv → Su. That is, λu ◦ h = λv and if s ≤v s′, then h(s) ≤u h(s′).

Subsumption between sp-pomsets can be characterised as follows [9].

Lemma 2.7. Let sp be  restricted to SP. Then sp is the smallest precongru-
ence (preorder monotone w.r.t. the operators) such that for all U, V,W,X ∈ SP:

(U ‖ V ) · (W ‖ X) sp (U ·W ) ‖ (V ·X)

CKA: syntax and semantics. CKA terms are generated by the grammar

e, f ∈ T(Σ) ::= 0 | 1 | a ∈ Σ | e+ f | e · f | e ‖ f | e∗

Semantics of CKA is given in terms of pomset languages, that is subsets of SP,
which we simply denote by 2SP. Formally, the function �−� : T → 2SP assigning
languages to CKA terms is defined as follows:

�0� = ∅ �1� = {1} �e+ f� = �e� ∪ �f� �e · f� = �e� · �f�
�e∗� = �e�∗ �a� = {a} �e ‖ f� = �e� ‖ �f�

Here, we use the pointwise lifting of sequential and parallel composition from
pomsets to pomset languages, i.e., when U ,V ⊆ SP(Σ), we define

U · V = {U · V : U ∈ U , V ∈ V} U ‖ V = {U ‖ V : U ∈ U , V ∈ V}

Furthermore, the Kleene star of a pomset language U is defined as U∗ =
⋃

n∈N Un,
where U0 = {1} and Un+1 = Un · U .

Equivalence of CKA terms can be axiomatised in the style of Kleene algebra.
The relation ≡ is the smallest congruence on T (with respect to all operators)
such that for all e, f, g ∈ T:

e+ 0 ≡ e e+ e ≡ e e+ f ≡ f + e e+ (f + g) ≡ (f + g) + h

e · (f · g) ≡ (e · f) · g e · (f + g) ≡ e · f + e · h (e+ f) · g ≡ e · g + f · g

e · 1 ≡ e ≡ 1 · e e · 0 ≡ 0 ≡ 0 · e e ‖ f ≡ f ‖ e e ‖ 1 ≡ e e ‖ 0 ≡ 0

e ‖ (f ‖ g) ≡ (e ‖ f) ‖ g e ‖ (f+g) ≡ e ‖ f+e ‖ g 1+e ·e∗ ≡ e∗ ≡ 1+e∗ ·e

e+ f · g � g =⇒ f∗ · e � g e+ f · g � f =⇒ e · g∗ � f

in which e � f is the natural order e+ f ≡ f . The final (conditional) axioms are
referred to as the least fixpoint axioms.

Laurence and Struth [23] proved this axiomatisation to be sound and complete.
A decision procedure was proposed in [4].

Concurrent Kleene Algebra with Observations 385



Theorem 2.8 (Soundness, completeness, decidability). Let e, f ∈ T. We
have: e ≡ f if and only if �e� = �f�, and it is decidable whether �e� = �f�.

Readers familiar with CKA will notice that the algebra defined here is not in
fact CKA as defined in [11]. Indeed the signature axiom of CKA, the exchange law,
has been omitted. However, as we show in Section 4.2, the standard definition of
CKA, as well as its completeness proof [15], may be recovered using hypotheses.

3 Pomset contexts

The linear one-dimensional structure of words makes it straightforward to define
occurrences of subwords: if one wants to state that a word w appears in another
word v, one can simply say that v = xwy for some x and y. Due to the two-
dimensional nature of pomsets, it is not straightforward to define when a pomset
occurs inside another pomset, because the pomset could appear below a parallel,
which is nested in a sequential, which is in a parallel, etc. In what follows we
define pomset contexts, that will enable us to talk about pomset factorisations in
a similar fashion as we do for words, and prove some useful properties for these.

Definition 3.1. Let ∗ be a symbol not occurring in Σ. A pomset context is a
pomset over Σ ∪ {∗} with exactly one node labelled by ∗. More precisely, C is a
pomset context if C = [c] with exactly one s∗ ∈ Sc with λc(s∗) = ∗.

Intuitively, ∗ is a placeholder or gap where another pomset can be inserted.
We write PC(Σ) for the set of pomset contexts over Σ, and PCsp(Σ) for the
series-parallel pomset contexts over Σ.

Given a C ∈ PC and U ∈ Pom, we can “plug” U into the gap left in C to
obtain the pomset C[U ] ∈ Pom. More precisely, let U = [u] and C = [c] with
u disjoint from c. We write C[U ] for the pomset represented by c[u], where
Sc[u] = Su ∪ Sc − {∗} and λc[u](s) is given by λc(s) if s ∈ Sc − {∗}, and λu(s)
when s ∈ Su; lastly, ≤c[u] is the smallest relation on Sc[u] satisfying

s ≤u s′

s ≤c[u] s
′

s ≤c s′

s ≤c[u] s
′

s∗ ≤c s s′ ∈ Su

s′ ≤c[u] s

s′ ∈ Su s ≤c s∗
s ≤c[u] s

′

It follows easily that ≤c[u] is a partial order. We may also apply contexts to lan-
guages: if L ⊆ Pom and C ∈ PC, the language C[L] is defined as {C[U ] : U ∈ L}.

We now prove some properties of contexts that will be useful later in our
technical development. First, we note that pomset contexts respect subsumption.

Lemma 3.2. Let C,D ∈ PC, U ∈ Pom. If C  D, then C[U ]  D[U ].

Series-parallel pomset contexts can be given an inductive characterisation.

Lemma 3.3. PCsp is the smallest pomset language L satisfying

∗ ∈ L

U ∈ SP C ∈ L

U · C ∈ L

C ∈ L V ∈ SP

C · V ∈ L

U ∈ SP C ∈ L

U ‖ C ∈ L

386 T. Kappé et al.



We will identify totally ordered pomsets with words, i.e., Σ∗ ⊆ SP. If the
pomset U inserted in a context C is a non-empty word, and the resulting pomset
is a parallel pomset, then we can infer how to factorise C.

Lemma 3.4. Let C ∈ PCsp be a pomset context, let V,W ∈ Pom, and let U ∈ Σ∗

be non-empty. If C[U ] = V ‖ W , then there exists a C ′ ∈ PCsp such that either
C = C ′ ‖ W and C ′[U ] = V , or C = V ‖ C ′ and C ′[U ] = W .

Application of series-parallel contexts preserves series-parallel pomsets.

Lemma 3.5. Let C ∈ PCsp. If U ∈ SP, then C[U ] ∈ SP as well.

If we plug the empty pomset into a context, then any subsumed pomset
can be obtained by plugging the empty pomset into a subsumed context. If the
subsumed pomset is series-parallel, then so is the subsumed context.

Lemma 3.6. Let C ∈ PC and V ∈ Pom with V  C[1]. We can construct
C ′ ∈ PC such that C ′  C and C ′[1] = V . Moreover, if V ∈ SP, then C ′ ∈ PCsp.

An analogue to the previous lemma can be obtained if instead of the empty
pomset one inserts a single letter pomset a.

Lemma 3.7. Let C ∈ PC, V ∈ Pom and a ∈ Σ with V  C[a]. We can construct
C ′ ∈ PC s.t. C ′  C and C ′[a] = V . Moreover, if V ∈ SP, then C ′ ∈ PCsp.

4 Concurrent Kleene Algebra with Hypotheses

Kleene algebra has basic axioms about how program composition operators
should work in general, and hence does not make any assumptions about how
these operators work on specific programs. When reasoning about equivalence
in a programming language, however, it makes sense to embed domain-specific
truths about the operators into the axioms. For instance, if a programming
language includes assignments to variables, then subsequent assignments to the
same variable could be merged into one, giving rise to an equation such as

x ← m ≤ x ← n · x ← m, (1)

which says that the behaviour of first assigning n, then m to x (on the right)
includes the behaviour of simply assigning m to x directly (on the left).

Kleene algebra with hypotheses (KAH) [5,18,20,7] enables the addition of
extra axioms, called hypotheses, to the axioms of KA. The appeal of KAH is that
it allows a wide range of such hypotheses about programs to be added to the
equational theory, while retaining the theoretical boilerplate of KA. In particular,
it turns out that we can derive a sound model for any set of hypotheses, using the
language model that is sound for KA proper [7]. Moreover, the completeness and
decidability results that hold for KA can be leveraged to obtain completeness
and decidability results for some specific types of hypotheses [5,20,7]; in general,
equivalence under other hypotheses may turn out to be undecidable [18].

Concurrent Kleene Algebra with Observations 387



In this section, we propose a generalisation of so-called Kleene algebra with
hypotheses to a concurrent setting, showing how one can obtain a sound (pomset
language) model for any set of hypotheses. We then discuss a number of techniques
that allow one to prove completeness and decidability of the resulting system for
a large set of hypotheses, by relying on analogous results about CKA.

Definition 4.1. A hypothesis is an inequation e ≤ f where e, f ∈ T. When H
is a set of hypotheses, we write ≡H for the smallest congruence on T generated
by the hypotheses in H as well as the axioms and implications that build ≡. More
concretely, whenever e ≤ f ∈ H, also e �H f .

A hypothesis that declares two programs to be equivalent, such as in (1), can
be encoded by including both e ≤ f and f ≤ e in H.

Example 4.2. Suppose the set of primitive actions Σ includes the increments of
the form incrx, as well as a statement print, which writes the complete state
of the machine (including variables) on the standard output. Since we would like
to depict the state consistently, the state should not change while the output is
rendered; hence, print cannot be executed concurrently with any other action.
Instead, when a program containing print is scheduled to run in parallel with an
assignment, it must be interleaved such that the assignment runs either entirely
before or after print. To encode this, we can include in H the hypotheses

incrx ‖ print = incrx · print+ print · incrx

for all variables x. This allows us to prove, for instance, that

print · incrx · incrx · print �H (incrx ‖ print)∗

That is, if we run some number of increments and print statements in parallel,
it is possible that x is incremented twice between print statements.

To obtain a model of CKAH, it is not enough to use �−�, as some programs
equated by the hypotheses might have different semantics. To get around this, we
adapt the method from [7]: take �−� as a base semantics, and adapt the resulting
language using hypotheses, such that the pomsets that could be obtained by
rearranging the term using the hypotheses are also present in the language:

Definition 4.3. Let L ⊆ Pom. We define the H-closure of L, written L↓H , as
the smallest language containing L such that for all e ≤ f ∈ H and C ∈ PCsp,
if C[�f�] ⊆ L↓H , then C[�e�] ⊆ L↓H . Formally, L↓H may be described as the
smallest language satisfying the following inference rules:

L ⊆ L↓H
e ≤ f ∈ H C ∈ PCsp C[�f�] ⊆ L↓H

C[�e�] ⊆ L↓H

Example 4.4. Continuing with H and Σ as in the previous examples, note that
if L = �incrx ‖ print�, then incrx ‖ print ∈ L↓H . Choose C = ∗; we have
C[incrx · print] = incrx · print. Because incrx · print + print · incrx ≤
incrx ‖ print ∈ H and for all U ∈ �incrx ‖ print� we have C[U ] ∈ L ⊆ L↓H ,
we get C[incrx · print] ∈ L↓H and therefore incrx · print ∈ L↓H .

388 T. Kappé et al.



We observe the following useful properties about the interaction between
closure and other operators on pomset languages.

Lemma 4.5. Let L,K ⊆ Pom and C ∈ PCsp. The following hold.

1. L ⊆ K↓H iff L↓H ⊆ K↓H .
2. If L ⊆ K, then L↓H ⊆ K↓H .
3. (L ∪K) ↓H =

(
L↓H ∪K↓H

)
↓H

4. (L ·K) ↓H =
(
L↓H ·K↓H

)
↓H

5. (L ‖ K) ↓H =
(
L↓H ‖ K↓H

)
↓H

6. (L∗) ↓H = (
(
L↓H

)∗
)↓H

7. If L↓H ⊆ K↓H , then C[L]↓H ⊆ C[K]↓H .
8. If L ⊆ SP, then L↓H ⊆ SP.

Remark 4.6. Property (1) states that −↓H is a closure operator. However, it is not
in general a Kuratowski closure operator [22], since it fails to commute with union.
For instance, let a, b, c ∈ Σ and H = {a ≤ b+ c}; then {b}↓H ∪ {c}↓H = {b, c},
while a ∈ ({b} ∪ {c}) ↓H .

Using Lemma 4.5, we can show that, if we combine the semantics from �−�
with H-closure, we obtain a sound semantics for CKA with hypotheses H.

Lemma 4.7 (Soundness). If e ≡H f , then �e�↓H = �f�↓H .

The converse of the above, where semantic equivalence is sufficient to establish
axiomatic equivalence, is called completeness. Similarly, we may also be interested
in deciding whether �e�↓H and �f�↓H coincide.

Definition 4.8. Let e, f ∈ T.

(i) If �e�↓H = �f�↓H implies e ≡H f , then H is called complete.
(ii) If �e�↓H = �f�↓H is decidable, then H is said to be decidable.

Note that, in the special case where H = ∅, we know that H is complete and
decidable by Theorem 2.8. One method to find out whether H is complete or
decidable is to reduce the problem to this special case. More concretely, suppose
we know �e�↓H = �f�↓H , and want to establish that e ≡H f . If we could find a
set of hypotheses H ′ that is complete, and we could map e and f to terms r(e)
and r(f) such that �r(e)�↓H′

= �r(f)�↓H′
, then we would have r(e) ≡H′

r(f). If
we could then “lift” that equivalence to prove e ≡H f , we are done. Similarly, if
we would know that �r(e)�↓H′

= �r(f)�↓H′
is equivalent to �e�↓H = �f�↓H , we

could decide the latter. To formalise this intuition, we first need the following.

Definition 4.9. We say that H implies H ′ if we can use the hypotheses in H to
prove those of H ′, i.e., if for every hypothesis e ≤ f ∈ H ′ it holds that e �H f .

Implication relates to equivalence and closure as follows.

Lemma 4.10. Let H and H ′ be sets of hypotheses such that H implies H ′.

(i) If e, f ∈ T with e ≡H′
f , then e ≡H f .

(ii) If L ⊆ Pom, then L↓H′ ⊆ L↓H .
(iii) If L ⊆ Pom, then (L↓H′

)↓H = L↓H .

Concurrent Kleene Algebra with Observations 389



If H implies H ′ and vice versa, then H is complete (resp. decidable) precisely
when H ′ is. In general, however, this is not very helpful; we need something more
asymmetrical, in order to get from a complicated set of hypotheses H to a simpler
set of hypotheses H ′, where completeness or decidability might be easier to prove.
Ideally, we would like to reduce to H ′ = ∅, which is complete and decidable.

One idea to formalise this idea of a reduction is as follows.

Definition 4.11. Let H and H ′ be sets of hypotheses such that H implies H ′. A
map r : T → T is a reduction from H to H ′ when both of the following are true:

(i) for e ∈ T, it holds that e ≡H r(e), and
(ii) for e, f ∈ T, if �e�↓H = �f�↓H , then �r(e)�↓H′

= �r(f)�↓H′
.

We call H reducible to H ′ if there exists a reduction from H to H ′.

It is straightforward to show that reductions do indeed carry over completeness
and decidability results, in the following sense.

Lemma 4.12. Suppose H is reducible to H ′. If H ′ is complete (respectively
decidable), then so is H.

Example 4.13. Let Σ = {a, b}. Let H = {a ≤ b}. We can define for e ∈ T the
term r(e) ∈ T, which is e but with every occurrence of b replaced by a+ b. For
instance, r(a · b∗ ‖ c) = a · (a+ b)

∗ ‖ c. An inductive argument on the structure
of e shows that r reduces H to ∅, and hence H is complete and decidable.

It is not very hard to show that reductions can be chained, as follows.

Lemma 4.14. If H reduces to H ′, which reduces to H ′′, then H reduces to H ′′.

Another way of reducing H is to find two sets of hypotheses H0 and H1, and
reduce each of those to another set of hypotheses H ′ [7]. The idea is that a proof
of e ≡H f can be split up in a phase where we find e′, f ′ ∈ T such that e ≡H0 e′

and f ≡H0 f ′, after which we find e′′, f ′′ ∈ T with e′ ≡H1 e′′ and f ′ ≡H1 f ′′.
Finally, we establish that e′′ ≡H′

f ′′, before lifting those equivalences to H,
concluding

e ≡H e′ ≡H e′′ ≡H f ′′ ≡H f ′ ≡H f

One way of achieving this is as follows.

Definition 4.15. We say that H factorises into H0 and H1 if H implies both
H0 and H1, and for all L ⊆ SP we have that L↓H = (L↓H0)↓H1 .

In order to use factorisation to compose simpler reductions into more compli-
cated ones, we need a slightly stronger notion of reduction, as follows.

Definition 4.16. We say that r is a strong reduction from H to H ′ if it is a
reduction such that for e ∈ T, it holds that �e�↓H = �r(e)�↓H′

.

Note that this additional condition essentially strengthens the second condition
in Definition 4.11. Factorisation then lets us compose strong reductions.

390 T. Kappé et al.



Lemma 4.17. Suppose H factorises into H0 and H1, and both H0 and H1

strongly reduce to H ′. Then H strongly reduces to H ′.

The remainder of this section is devoted to developing techniques that can be
used to design reductions, based on the properties of the sets of hypotheses under
consideration. Using the lemmas we have established so far, these techniques may
then be leveraged to obtain completeness and decidability results.

4.1 Reification

It can happen that the hypotheses in H impose an algebraic structure on the
letters in Σ; for instance, as we will see later on, the letters in H could be
propositional terms, whose equivalence is mediated by the axioms of Boolean
algebra. In order to peel away this layer of axioms and reduce to a smaller H ′,
we can try to reduce to terms over a smaller alphabet, making the algebraic
structure on the letters irrelevant to equivalence. In a sense, performing this
kind of reduction is like showing that the equivalences between letters from the
hypotheses can already be guaranteed by replacing them with the right terms.

Example 4.18. Let Σ be the set of group terms over a (finite) alphabet Λ, that is,
Σ consists of the terms generated by the grammar g, h ::= u | a ∈ Λ | g ◦h | g.
Furthermore, let ≡G be the smallest congruence generated by the group axioms,
i.e., for all g, h, i ∈ Λ it holds that

g ◦ (h ◦ i) ≡G (g ◦ h) ◦ i g ◦ u ≡G g ≡G u ◦ g g ◦ g ≡G u ≡G g ◦ g

Lastly, let group = {g ≤ h : g ≡G h}. We can then define a reduction from group
to ∅ by replacing every letter (group term) in a term e with its reduced form,
that is, with the (unique) equivalent group term of minimum size. For instance,
if Λ = {a, b, c}, then we send the term a ◦ a ‖ b ◦ c ◦ c to the term u ‖ b.

For the remainder of this section, we fix a subalphabet Γ ⊆ Σ. When
r : Σ → T(Γ ), we extend r to a map from T(Σ) to T(Γ ), by inductively applying
r to terms. We can also apply r to a series-parallel pomset, obtaining a pomset
language. More precisely, when U is a pomset, we define r(U) as follows:

r(1) = {1} r(U · V ) = r(U) · r(V ) r(a) = �r(a)� r(U ‖ V ) = r(U) ‖ r(V )

Lastly, when L ⊆ SP, we write r(L) for the set
⋃
{r(U) : U ∈ L}.

The following then formalises the idea of reducing by replacing letters.

Definition 4.19. A map r : Σ → T(Γ ) is a reification from H to H ′ if

(i) For all a ∈ Σ, it holds that r(a) ≡H a.
(ii) r is expansive on Γ , i.e., for all a ∈ Γ , a � r(a).
(iii) H ′-closure preserves Γ , i.e., for all L ⊆ SP(Γ ), also L↓H′ ⊆ SP(Γ ).
(iv) For all e ≤ f ∈ H, it holds that r(e) �H′

r(f).

Concurrent Kleene Algebra with Observations 391



Example 4.20. Continuing with the previous example, let r be the map that
sends a group term to its reduced form; we claim that r is a reification from
group to ∅. By definition, we then know that for a group term g ∈ Σ, we have
r(g) ≡G g, and hence r(g) ≡group g. Furthermore, the reduction of a reduced term
is that term itself; hence, the second condition is satisfied. The third condition
holds trivially. Lastly, if e ≤ f ∈ group, then e, f ∈ Σ such that e ≡G f . Since
reductions are unique, we then know that r(e) = r(f), and hence r(e) �∅ r(f).

We have the following general properties of a map r, which we will use in
demonstrating how to obtain a reduction from a reification.

Lemma 4.21. Let r : Σ → T be some map.

(i) For all C ∈ PCsp, we have r (C) ⊆ PCsp.
(ii) For all L ⊆ SP and C ∈ PCsp, we have r (C[L]) =

⋃
D∈r(C) D [r(L)].

(iii) For all e ∈ T, it holds that r(�e�) = �r(e)�.

The following technical lemma is a consequence of property (iv).

Lemma 4.22. If r is a reification and L ⊆ SP(Σ), then r(L↓H) ⊆ r(L)↓H′
.

Using this, we can then show how to obtain a reduction from a reification.

Lemma 4.23. If H implies H ′ and r is a reification from H to H ′, then r is a
reduction from H to H ′.

Proof. The first condition, i.e., that for e ∈ T we have e ≡H r(e), can be checked
using the first property of reification by induction on the structure of e. It thus
remains to check the second condition; we do this by proving that for all e ∈ T(Σ)
we have r

(
�e�↓H

)
= �r(e)�↓H′

. To this end, we derive as follows:

r(�e�↓H) ⊆ r(�e�)↓H′
(Lemma 4.22)

= �r(e)�↓H′
(Lemma 4.21(iii))

⊆ r(�r(e)�↓H′
) (property (ii))

⊆ r(�r(e)�↓H) (Lemma 4.10(ii))

= r(�e�↓H) (property (i), soundness)

Specifically, in the third step, property (ii) ensures that for L ⊆ SP(Γ ) we have
L ⊆ r(L). We can use this property because H ′-closure preserves the Γ -language
by property (iii). This completes the proof.

4.2 Factoring the exchange law

In the basic axioms that generate ≡, there is no interaction between sequential
and parallel composition. One sensible way of adding that kind of interaction is,
as suggested by Hoare, Struth and collaborators [11], by adding an axiom of the
form (e ‖ f) · (g ‖ h) � (e · g) ‖ (f · h), known as the exchange law. Essentially,

392 T. Kappé et al.



this axiom encodes the possibility of (partial) interleaving: when e · g runs in
parallel with f · h, one possible behaviour is that, first e runs in parallel with f ,
and then g runs in parallel with h. The core observation of this section is that
the exchange law can be treated as another set of hypotheses, as we show below,
and this can then be used to recover the completeness result of CKA [15].

Definition 4.24. We write exch for the set

{(e ‖ f) · (g ‖ h) ≤ (e · g) ‖ (f · h) : e, f, g, h ∈ T}
The semantic effect of adding exch to our hypotheses is that, if U is a pomset

in a series-parallel language L, and V is a series-parallel pomset subsumed by
U , then V is in the exch-closure of L. Intuitively, the exch-closure adds pomsets
that are more sequential, i.e., have more ordering, than the ones already in L.
Indeed, exch-closure coincides with the downward closure w.r.t. sp.

Lemma 4.25. Let L ⊆ SP and U ∈ SP. Now U ∈ L↓exch if and only if there
exists a V ∈ L such that U sp V .

We have previously shown that exch is complete [15]; as a matter of fact, the
pivotal result from op. cit. can be presented as follows.

Theorem 4.26. The set of hypotheses exch is strongly reducible to ∅.
When exch is contained in our hypotheses, it is not immediately clear whether

those hypotheses can be reduced. What we can do is try to factorise our hypotheses
into exch and some residual set of hypotheses, and prove strong reducibility for
that residual set. To this end, we first note that, in some circumstances, the
H-closure of the exch-closure remains downward-closed w.r.t. sp.

Lemma 4.27. Suppose that for each e ≤ f ∈ H we have that e = 1 or e = a for
some a ∈ Σ, and let L ⊆ SP. If U, V ∈ SP such that U sp V and V ∈ (L↓exch)↓H ,
then U ∈ (L↓exch)↓H .

Using this fact, we can now show that, under the same precondition, exch∪H
factors into exch and H. This factorisation is what we were looking for: it tells
us that whenever H strongly reduces to ∅, so does H ∪ exch.

Lemma 4.28. Suppose that for each e ≤ f ∈ H we have that e = 1, or e = a

for some a ∈ Σ. Then H ∪ exch factorises into exch and H.

Proof. Since H, exch ⊆ H ∪ exch, it should be obvious that H ∪ exch implies both
H and exch. It remains to show that, if L ⊆ SP, then (L↓exch)↓H = L↓H∪exch.
The inclusion from left to right is a consequence of Lemma 4.10(ii)–(iii).

For the other inclusion, we show that if A ⊆ L↓H∪exch, then A ⊆ (L↓exch)↓H .
The proof proceeds by induction on the construction of A ⊆ L↓H∪exch. In the base,
we have that A ⊆ L↓H∪exch because A = L; in that case, A ⊆ L↓exch ⊆ (L↓exch)↓H .

For the inductive step, A ⊆ L↓H∪exch because there exist e ≤ f ∈ H ∪ exch
and C ∈ PCsp such that A = C[�e�], and C[�f�] ⊆ L↓H∪exch. By induction, we
then know that C[�f�] ⊆

(
L↓exch

)
↓H . On the one hand, if e ≤ f ∈ H, then

A = C[�e�] ⊆
(
L↓exch

)
↓H immediately. On the other hand, if e ≤ f ∈ exch, then

�e� sp �f�, and hence C[�e�] sp C[�f�] by Lemma 3.2. By Lemma 3.5 and
Lemma 4.27, it then follows that A = C[�e�] ⊆ (L↓exch)↓H .

Concurrent Kleene Algebra with Observations 393



4.3 Lifting

A number of reduction procedures already exist at the level of Kleene alge-
bra [20,7]; ideally, one would like to lift those procedures to CKA.

Example 4.29. The reductions in Example 4.13 and Example 4.18 worked out
for terms without ‖, and then extended inductively, by defining the reduction of
e ‖ f to be the parallel composition of the reductions of e and f respectively.

As a non-example, consider H = {a ≤ 1}. Even though this hypothesis can
be reduced to ∅ within Kleene algebra [5], it is not obvious how this would work
for pomset languages. In particular, if 1 ∈ L, then 1 ‖ · · · ‖ 1 ∈ L for any number
of 1’s, and hence a ‖ · · · ‖ a ∈ L↓H for any number of a’s. This precludes the
possibility of a strong reduction to ∅, because �1�↓H is a pomset language of
unbounded (parallel) width, which cannot be expressed by any e ∈ T [25].

We now establish a set of sufficient conditions for such a lifting to work. To
this end, we first formally define Kleene algebra syntax, axioms and semantics.

Definition 4.30. Write TKA for the set of Kleene algebra terms, i.e., the terms
in T that do not contain ‖. Furthermore, we write ≡KA for the smallest congruence
on TKA that is generated by the axioms of ≡ that do not involve ‖.

When e ∈ TKA, it is not hard to see that �e� contains totally ordered pomsets,
i.e., words, exclusively. Using these definitions, we can now specialise the notions
of hypotheses, context, and closure to the sequential setting, as follows.

Definition 4.31. The relation ≡H
KA is generated from H and ≡KA as before.

A context C ∈ PCsp is sequential if it is totally ordered, i.e., if it is a word
with one occurrence of ∗; we write PCseq for the set of sequential contexts.

Given a set of hypotheses H and a language L ⊆ Σ∗, we define the sequential
closure of L with respect to H, written L↓Hseq, as the least language containing L

such that for all e ≤ f ∈ H and C ∈ PCseq, if C[�f�] ⊆ L↓Hseq, then C[�e�] ⊆ L↓Hseq.

If ‖ does not occur in any hypothesis, then the definition of sequential closure
coincides with the closure operator from [7]. Thus, if L ⊆ Σ∗, then L↓Hseq ⊆ Σ∗.

The analogue of strong reduction for the sequential setting is as follows.

Definition 4.32. Suppose that H implies H ′. A map r : TKA → TKA is a sequen-
tial reduction from H to H ′ when the following hold:

(i) for e ∈ TKA, it holds that e ≡H
KA r(e), and

(ii) for e ∈ TKA, it holds that �e�
KA
↓Hseq = �r(e)�

KA
↓H′
seq.

H sequentially reduces to H ′ if there exists a sequential reduction from H to H ′.

To lift a sequential reduction to a proper reduction, the following class of
hypotheses will turn out to be useful.

Definition 4.33. A hypothesis e ≤ f with e, f ∈ TKA is called grounded if
�f� = {W} for some non-empty word (totally ordered pomset) W , and e ∈ TKA.
We say that a set of hypotheses H is grounded if every e ≤ f ∈ H is grounded.

394 T. Kappé et al.



Example 4.34. Any hypothesis of the form e ≤ a1 · · · an for n > 0 is grounded.
On the other hand, the hypothesis a ≤ 1 that we saw in the previous example is
not grounded, since the semantics of 1 contains the empty pomset.

The closure of a language of words can be expressed in terms of its sequential
closure, provided that the set of hypotheses is grounded.

Lemma 4.35. Let H be grounded. If L ⊆ Σ∗, then L↓H = L↓Hseq. Moreover, for

L,L′ ⊆ SP, we have that (L ‖ L′) ↓H = L↓H ‖ L′↓H .

The above then allows us to turn a sequential reduction into a reduction.

Lemma 4.36. Suppose that H sequentially reduces to H ′. If H and H ′ are
grounded, then H strongly reduces to H ′.

5 Instantiation to CKA with Observations

In this section, we will present Concurrent Kleene Algebra with Observations
(CKAO), an extension of CKA with Boolean assertions that enable the specifica-
tion of programs with the usual guarded conditionals and loops. We will obtain
CKAO as an instance of CKAH by choosing a particular set of hypotheses. First,
we define the set of propositional terms or Boolean observations.

Definition 5.1. Fix a finite set Ω of primitive observations. The set of propo-
sitional terms, written TBA, is generated by

p, q ::= ⊥ | � | o ∈ Ω | p ∨ q | p ∧ q | p

The relation ≡BA is the smallest congruence on TBA s.t. for p, q, r ∈ TBA, we have

p ∨ ⊥ ≡BA p p ∨ q ≡BA q ∨ p p ∨ p ≡BA � p ∨ (q ∨ r) ≡BA (p ∨ q) ∨ r

p ∧ � ≡BA p p ∧ q ≡BA q ∧ p p ∧ p ≡BA ⊥ p ∧ (q ∧ r) ≡BA (p ∧ q) ∧ r

p ∨ (q ∧ r) ≡BA (p ∨ q) ∧ (p ∨ r) p ∧ (q ∨ r) ≡BA (p ∧ q) ∨ (p ∧ r)

We will write p �BA q as a shorthand for p ∨ q ≡BA q.

We write At for 2Ω , the set of atoms of the Boolean algebra. It is well known
that every α ∈ At corresponds canonically to a Boolean term πα, such that every
Boolean term p ∈ TBA is equivalent to the disjunction of all πα with πα �BA p [2].
To simplify notation we identify α ∈ At with πα.

We can now use TBA in defining the terms and axioms of CKAO, which will
be given as a CKA over a specific alphabet with the following hypotheses:

Definition 5.2 (CKAO). We define the terms of CKAO, denoted TCKAO, as
T(Σ ∪ TBA), that is, as the CKA terms over TBA ∪Σ. We furthermore define the
following set of hypotheses over TCKAO:

bool = {p = q : p, q ∈ TBA s.t. p ≡BA q} contr = {p ∧ q ≤ p · q : p, q ∈ TBA}

glue = {0 = ⊥} ∪ {p+ q = p ∨ q : p, q ∈ TBA} obs = bool ∪ contr ∪ exch ∪ glue

The semantics of CKAO is then given by �−�↓obs.

Concurrent Kleene Algebra with Observations 395



The hypotheses bool contain the boolean identities, and glue identifies the
disjunction with the union (and their respective units as well). contr specifies that
if p and q hold simultaneously, then it is possible to observe them in sequence.
Note that the converse inequality is not included: observing p and q in sequence
has strictly more behaviour than observing p and q simultaneously, as some
intervening action can happen between the two observations.

The above definition gives us the semantics of CKAO as the standard pomset
language model obtained from taking the obs-closure of the semantics of CKA.
As a matter of fact, we find by Lemma 4.7 that if e, f ∈ TCKAO with e ≡obs f , then
�e�↓obs = �f�↓obs; hence, we already have a sound model of CKAO.

To prove completeness, we will use the techniques from the previous section.

First step: reification. We start by using reification to rid ourselves of the
hypotheses from bool and glue, and to simplify the hypotheses in contr. To this
end, let contr′ be the set of hypotheses given by {α ≤ α · α : α ∈ At}. Let
Γ = At ∪Σ ⊆ TBA ∪Σ. We define r : Σ ∪ TBA → T(Γ ) by setting

r(a) =

{∑
α�BAp

α a = p ∈ TBA

a a = a ∈ Σ

Lemma 5.3. The hypotheses obs reduce to exch ∪ contr′.

Proof. By Lemma 4.23, it suffices to show that r is a reification, and that obs
implies exch ∪ contr′. To see that r is a reification, we check the conditions.

(i): If a ∈ Σ, then r(a) = a ≡obs a immediately. Otherwise, if p ∈ TBA, then
we derive r(p) =

∑
α�BAp

α ≡glue
∨

α�BAp
α ≡bool p and hence r(p) ≡obs p.

(ii): If a ∈ Σ, then we already know that r(a) = a. Otherwise, if α ∈ At, then

r(α) =
∑

β�BAα

β = α

(iii): This property holds because all hypotheses in exch ∪ contr′ preserve
Γ -languages, i.e., if e ≤ f ∈ exch ∪ contr′ where �f� ⊆ SP(Γ ), then �e� ⊆ SP(Γ )
too. It follows that exch ∪ contr′-closure must preserve Γ -languages.

(iv): We should show that if e ≤ f ∈ obs, then r(e) �exch∪contr′ r(f). To this
end, we analyse the separate sets of hypotheses that make up obs.

– Let e ≤ f ∈ exch, then e = (g00 ‖ g01) · (g10 ‖ g11) and f = (g00 · g10) ‖
(g01 · g11), for some g00, g01, g10, g11 ∈ T. We then find that

r(e) = (r(g00) ‖ r(g01)) · (r(g10) ‖ r(g11))

r(f) = (r(g00) · r(g10)) ‖ (r(g01) · r(g11))

hence r(e) ≤ r(f) ∈ exch, and therefore r(e) �exch∪contr′ r(f).
– Let e ≤ f ∈ bool, then e = p and f = q such that p ≡BA q. In that case,

r(p) =
∑

α�BAp

α =
∑

α�BAq

α = r(q)

396 T. Kappé et al.



– Let e ≤ f ∈ contr; then e = p ∧ q and f = p · q for p, q ∈ TBA. Then

r(p ∧ q) =
∑

α�BAp∧q

α �contr′
∑

α�BAp∧q

α · α

�
( ∑
α�BAp

α
)
·
( ∑
α�BAq

α
)
= r(p) · r(q) = r(p · q)

– Let e ≤ f ∈ glue. On the one hand, if e = p ∨ q and f = p+ q, then

r(p ∨ q) =
∑

α�BAp∨q

α ≡
∑

α�BAp

α+
∑

α�BAq

α = r(p) + r(q) = r(p+ q)

This also establishes the case for f ≤ e ∈ glue. On the other hand, if e = 0
and p = ⊥, then r(0) = 0 =

∑
α�BA⊥ α = r(⊥).

To see that obs implies exch ∪ contr′, it suffices to show that obs implies contr′.
To this end, note that if e ≤ f ∈ contr′, then e = α and f = α ·α for some α ∈ At.
We can then derive that α ≡bool α ∧ α �contr α · α, and hence e �obs f .

Second step: factorising. Since contr′ satisfies the precondition of Lemma 4.28,
we obtain the following.

Lemma 5.4. The hypotheses exch ∪ contr′ factorise into exch and contr′.

This means that, by Lemma 4.17 all that remains to do is strongly reduce
exch and contr′ to ∅; we have already taken care of the former in Theorem 4.26.

Third step: reducing contr′. In [13], we have already shown that contr′ sequentially
reduces to ∅. Since contr′ is grounded we find the following, by Lemma 4.36.

Lemma 5.5. The hypotheses contr′ strongly reduce to ∅.

Last step: putting it all together. Using the above reductions, we can then prove
completeness of ≡obs w.r.t. �−�↓obs, and decidability of semantic equivalence, too.

Theorem 5.6 (Soundness and Completeness of CKAO). Let e, f ∈ TCKAO.

(i) We have e ≡obs f if and only if �e�↓obs = �f�↓obs.
(ii) It is decidable whether �e�↓obs = �f�↓obs.

Proof. For the first claim, we already knew the implication from left to right
from Lemma 4.7. Conversely, and for the second claim, first note that that obs
reduces to exch∪contr′ by Lemma 5.3. By Lemma 5.4 and Lemma 4.17, the latter
reduces to ∅, if we apply Theorem 4.26 and Lemma 5.5. By Lemma 4.12, we then
conclude that obs is complete and decidable, hence establishing the claim.

Concurrent Kleene Algebra with Observations 397



6 Discussion

The first contribution of this paper is to extend Kleene algebra with hypotheses [7]
with a parallel operator. The resulting framework, concurrent Kleene algebra with
hypotheses (CKAH), is interpreted over pomset languages, a standard model of
concurrency. We start from simple axioms, known to capture equality of pomset
languages [23]. CKAH allows to add custom axioms, the so-called hypotheses.
These may be used to include domain-specific information in the language. We
develop this framework by providing a systematic way of producing from the
hypotheses a sound pomset language model. We also propose techniques that
may be used to prove completeness and decidability of the resulting model.

An important instance of this framework is concurrent Kleene algebra (CKA)
as presented in [11]. The only additional axiom there, known as the exchange
law, may be added as a set of hypotheses. We prove that the resulting semantics
coincides with the (subsumption-closed) semantics of CKA and, more interestingly,
the completeness proof of [15] can be recovered as an instance of this framework.

The second contribution is a new framework to reason about programs with
concurrency: concurrent Kleene algebra with observations (CKAO). CKAO is
obtained as an instance of CKAH, where we add the exchange law to model
concurrent behaviour, and Boolean assertions to model control flow. The Boolean
assertions we consider are as in Kleene algebra with observations (KAO) [13] — in
fact, CKAO is a conservative extension of KAO. Using the techniques developed
earlier, we obtain a sound and complete semantics for this algebra. While CKAO
is similar to concurrent Kleene algebra with tests [12], it avoids the problems
of the latter by distinguishing conjunction and sequential composition. CKAO
provides the first sound and complete algebraic theory that seems sensible as a
framework to reason about concurrent programs with Boolean assertions.

Future work is to explore other meaningful instances of CKAH. Synchronous
Kleene algebra [29,26] is a natural candidate for this. We also want to try and de-
sign domain specific languages, specifically, a concurrent variant of NetKAT [1,8].

The class of hypotheses considered in this paper for which decidability and
completeness may be established systematically is somewhat restrictive; identify-
ing larger classes of tractable hypotheses is a challenging open problem.

Because of the compositional nature of our model, the CKAO semantics of a
program contains behaviours that are not possible to obtain in isolation. These
behaviours are present to allow the program to interact meaningfully with its
environment, i.e., when placed in a context. However, for practical purposes one
might want to close the system, and only consider behaviours that are possible
in isolation. Studying this semantics remains subject of future work.

In the semantics of concurrent programs with assertions, it would be natural
to see atoms as partial instead of total functions. This captures the intuition
that a thread might not have access to the complete machine state, but instead
holds a partial view of it. Pseudo-complemented distributive lattices (PCDL)
have been proposed [12] as an alternative to Boolean algebra, modelling this
partiality of information. We leave it to future work to investigate the variant of
CKAO obtained by replacing the Boolean algebra of observations with a PCDL.

398 T. Kappé et al.



References

1. Anderson, C.J., Foster, N., Guha, A., Jeannin, J.B., Kozen, D., Schlesinger, C.,
Walker, D.: NetKAT: Semantic foundations for networks. In: POPL. pp. 113–126.
ACM (2014)

2. Birkhoff, G., Bartee, T.C.: Modern applied algebra. McGraw-Hill (1970)
3. Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congruence.

In: POPL. pp. 457–468 (2013)
4. Brunet, P., Pous, D., Struth, G.: On decidability of concurrent Kleene algebra. In:

CONCUR. pp. 28:1–28:15 (2017)
5. Cohen, E.: Hypotheses in Kleene algebra. Tech. rep., Bellcore (1994)
6. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, Ltd.,

London (1971)
7. Doumane, A., Kuperberg, D., Pous, D., Pradic, P.: Kleene algebra with hypotheses.

In: FOSSACS. pp. 207–223 (2019)
8. Foster, N., Kozen, D., Milano, M., Silva, A., Thompson, L.: A coalgebraic decision

procedure for NetKAT. In: POPL. pp. 343–355 (2015)
9. Gischer, J.L.: The equational theory of pomsets. Theor. Comput. Sci. 61, 199–224

(1988)
10. Grabowski, J.: On partial languages. Fundam. Inform. 4(2), 427 (1981)
11. Hoare, T., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene algebra. In:

CONCUR. pp. 399–414 (2009)
12. Jipsen, P., Moshier, M.A.: Concurrent Kleene algebra with tests and branching

automata. J. Log. Algebr. Meth. Program. 85(4), 637–652 (2016)
13. Kappé, T., Brunet, P., Rot, J., Silva, A., Wagemaker, J., Zanasi, F.: Kleene algebra

with observations. In: CONCUR. pp. 41:1–41:16 (2019)
14. Kappé, T., Brunet, P., Silva, A., Wagemaker, J., Zanasi, F.: Concurrent Kleene al-

gebra with observations: from hypotheses to completeness (2020), arXiv:2002.09682
15. Kappé, T., Brunet, P., Silva, A., Zanasi, F.: Concurrent Kleene algebra: Free model

and completeness. In: ESOP. pp. 856–882 (2018)
16. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular

events. Inf. Comput. 110(2), 366–390 (1994)
17. Kozen, D.: Kleene algebra with tests and commutativity conditions. In: TACAS.

pp. 14–33 (1996)
18. Kozen, D.: On the complexity of reasoning in Kleene algebra. Inf. Comput. 179(2),

152–162 (2002)
19. Kozen, D.: On the coalgebraic theory of Kleene algebra with tests. In: Başkent, C.,

Moss, L.S., Ramanujam, R. (eds.) Rohit Parikh on Logic, Language and Society,
Outstanding Contributions to Logic, vol. 11, pp. 279–298. Springer (2017)

20. Kozen, D., Mamouras, K.: Kleene algebra with equations. In: ICALP. pp. 280–292
(2014)

21. Krob, D.: A complete system of B-rational identities. In: ICALP. pp. 60–73 (1990)
22. Kuratowski, C.: Sur l’opération Ā de l’Analysis Situs. Fundamenta Mathematicae

3(1), 182–199 (1922)
23. Laurence, M.R., Struth, G.: Completeness theorems for bi-Kleene algebras and

series-parallel rational pomset languages. In: RAMiCS. pp. 65–82 (2014)
24. Laurence, M.R., Struth, G.: Completeness theorems for pomset languages and

concurrent Kleene algebras (2017), arXiv:1705.05896
25. Lodaya, K., Weil, P.: Series-parallel languages and the bounded-width property.

Theoretical Computer Science 237(1), 347–380 (2000)

Concurrent Kleene Algebra with Observations 399

https://arxiv.org/abs/2002.09682
https://arxiv.org/abs/1705.05896


26. Prisacariu, C.: Synchronous Kleene algebra. The Journal of Logic and Algebraic
Programming 79(7), 608 – 635 (2010)

27. Salomaa, A.: Two complete axiom systems for the algebra of regular events. J.
ACM 13(1), 158–169 (1966)

28. Smolka, S., Foster, N., Hsu, J., Kappé, T., Kozen, D., Silva, A.: Guarded Kleene
algebra with tests: verification of uninterpreted programs in nearly linear time. In:
POPL. pp. 61:1–61:28 (2020)

29. Wagemaker, J., Bonsangue, M., Kappé, T., Rot, J., Silva, A.: Completeness and
incompleteness of synchronous Kleene algebra. In: MPC (2019)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

400 T. Kappé et al.

http://creativecommons.org/licenses/by/4.0/


Graded Algebraic Theories

Satoshi Kura1,2 �

1 National Institute of Informatics, Tokyo, Japan
2 The Graduate University for Advanced Studies (SOKENDAI), Kanagawa, Japan

kura@nii.ac.jp

Abstract. We provide graded extensions of algebraic theories and Law-
vere theories that correspond to graded monads. We prove that graded
algebraic theories, graded Lawvere theories, and finitary graded monads
are equivalent via equivalence of categories, which extends the equiv-
alence for monads. We also give sums and tensor products of graded
algebraic theories to combine computational effects as an example of
importing techniques based on algebraic theories to graded monads.

1 Introduction

In the field of denotational semantics of programming languages, monads have
been used to express computational effects since Moggi’s seminal work [18]. They
have many applications from both theoretical and practical points of view.

Monads correspond to algebraic theories [5]. This correspondence gives nat-
ural presentations of many kinds of computational effects by operations and
equations [21], which is the basis of algebraic effect [20]. The algebraic perspec-
tive of monads also provides ways of combining [9], reasoning about [22], and
handling computational effects [23].

Graded monads [27] are a refinement of monads and defined as a monad-
like structure indexed by a monoidal category (or a preordered monoid). The
unit and multiplication of graded monads are required to respect the monoidal
structure. This structure enables graded monads to express some kind of “ab-
straction” of effectful computations. For example, graded monads are used to
give denotational semantics of effect systems [12], which are type systems de-
signed to estimate scopes of computational effects caused by programs.

f ∈ Σn,m ti ∈ TΣ
m′(X) for each i ∈ {1, . . . , n}

f(t1, . . . , tn) ∈ TΣ
m⊗m′(X)

Fig. 1. A rule of term formation.

This paper provides a graded
extension of algebraic theories
that corresponds to monads
graded by small strict monoidal
categories. This generalizes N-
graded theories in [17]. The main ideas of this extension are the following. First,
we assign to each operation a grade, i.e., an object in a monoidal category that
represents effects. Second, our extension provides a mechanism (Fig 1) to keep
track of effects in the same way as graded monads. That is, if an operation f
with grade m is applied to terms with grade m′, then the grade of the whole
term is the product m ⊗ m′.

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 401–421, 2020.
https://doi.org/10.1007/978-3-030-45231-5_21

http://orcid.org/0000-0002-3954-8255
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_21&domain=pdf


For example, graded algebraic theories enable us to estimate (an overapprox-
imation of) the set of memory locations computations may access. The side-
effects theory [21] is given by operations lookupl and updatel,v for each location
l ∈ L and value v ∈ V together with several equations, and each term represents
a computation with side-effects. Since lookupl and updatel,v only read from or

write to the location l, we assign {l} ∈ 2L as the grade of the operations in
the graded version of the side-effects theory where 2L is the join-semilattice of
subsets of locations L. The grade of a term is (an overapproximation of) the set
of memory locations the computations may access thanks to the rule in Fig 1.

We also provide graded Lawvere theories that correspond to graded algebraic
theories. The intuition of a Lawvere theory is a category whose arrows are terms
of an algebraic theory. We use this intuition to define graded Lawvere theories.
In graded algebraic theories, each term has a grade, and substitution of terms
must respect the monoidal structure of grades. To characterize this structure of
“graded” terms, we consider Lawvere theories enriched in a presheaf category.

Like algebraic theories brought many concepts and techniques to the se-
mantics of computational effects, we expect that the proposed graded algebraic
theories will do the same for effect systems. We look into one example out of
such possibilities: combining graded algebraic theories.

The main contributions of this paper are summarized as follows.

– We generalize (N-)graded algebraic theories of [17] to M-graded algebraic
theories and also provide M-graded Lawvere theories where M is a small
strict monoidal category. We show that there exist translations between these
notions and finitary graded monads, which yield equivalences of categories.

– We extend sums and tensor products of algebraic theories [9] to graded
algebraic theories. We define sums in the category of M-graded algebraic
theories, and tensor products as an M ×M′-graded algebraic theory made
from an M-graded and an M′-graded algebraic theory. We also show a few
properties and examples of these constructions.

2 Preliminaries

2.1 Enriched Category Theory

We review enriched category theory and introduce notations. See [13] for details.
Let V0 = (V0,⊗, I) be a (not necessarily symmetric) monoidal category.

V0 is right closed if (−) ⊗ X : V0 → V0 has a right adjoint [X,−] for each
X ∈ obV0. Similarly, V0 is left closed if X ⊗ (−) has a right adjoint �X,−� for
each X ∈ obV0. V0 is biclosed if V0 is left and right closed.

Let V0
t denote the monoidal category (V0,⊗t, I) where ⊗t is defined by

X ⊗t Y := Y ⊗ X. Note that V0
t is right closed if and only if V0 is left closed.

We define V0-category, V0-functor and V0-natural transformation as in [13].
If V0 is right closed, then V0 itself enriches to a V0-category V with hom-

object given by V(X,Y ) := [X,Y ]. We use the subscript (−)0 to distinguish the
enriched category V from its underlying category V0.

402 S. Kura



Assume that V0 is biclosed and let A be a V0-category. The opposite cat-
egory Aop is the V0

t-category defined by Aop(X,Y ) = A(Y,X). For any X ∈
obA, A(X,−) : A → V0 is a V0-functor where A(X,−)Y,Z : A(Y,Z) →
[A(X,Y ),A(X,Z)] is defined by transposing the composition law ◦ of A. A
V0

t-functor A(−, X) is defined by Aop(X,−) : Aop → V0
t.

Let A be a V0-category. For each X ∈ V0 and C ∈ A, a tensor X ⊗ C is
an object in A together with a counit morphism ν : X → A(C,X ⊗ C) such
that a V0-natural transformation A(X ⊗ C,−) → �X,A(C,−)� obtained by
transposing (◦) ◦ (A(X ⊗ C,B) ⊗ ν) is isomorphic where ◦ is the composition
in the V0-category A. A cotensor X � C is a tensor in Aop. For example, if
V0 = Set, then tensors X ⊗ C are copowers X · C, and cotensors X � C are
powers CX .

A V0-functor F : A → B is said to preserve a tensor X ⊗ C if FC,X⊗C ◦ ν :
X → B(FC,F (X ⊗ C)) is again a counit morphism. F preserves cotensors if
F op preserves tensors.

Let Φ be a collection of objects in V0. A V0-functor F : A → B is said to
preserve Φ-(co)tensors if F preserves (co)tensors of the form X ⊗ C (X � C)
for each X ∈ Φ and C ∈ obA.

2.2 Graded Monads

We review the notion of graded monad in [7, 12], and then define the category
GMndM of finitary M-graded monads. Throughout this section, we fix a small
strict monoidal category M = (M,⊗, I).

Definition 1 (graded monads). An M-graded monad on C is a lax monoidal
functor M → [C,C] where [C,C] is a monoidal category with composition as
multiplication. That is, an M-graded monad is a tuple (∗, η, μ) of a functor
∗ : M × C → C and natural transformations ηX : X → I ∗ X and μm1,m2,X :
m1 ∗ (m2 ∗X) → (m1 ⊗ m2) ∗X such that the following diagrams commute.

m ∗X I ∗ (m ∗X)

m ∗ (I ∗X) m ∗X

η

m∗η μ

μ

m1∗(m2∗(m3∗X)) m1∗((m2⊗m3)∗X)

(m1⊗m2)∗(m3∗X) (m1⊗m2⊗m3)∗X

m1∗μ

μ μ

μ

A morphism of M-graded monad is a monoidal natural transformation α :
(∗, η, μ) → (∗′, η′, μ′), i.e. a natural transformation α : ∗ → ∗′ that is compatible
with η and μ.

An intuition of graded monads is a refinement of monads: m ∗X is a com-
putation whose scope of effect is indicated by m and whose result is in X. The
monoidal category M defines the granularity of the refinement, and a 1-graded
monad is just an ordinary monad. Note that we do not assume that M is sym-
metric because some of graded monads in [12] require M to be nonsymmetric.
We also deal with such a nonsymmetric case in Example 25.

A finitary functor is a functor that preserves filtered colimits. In this paper,
we focus on finitary graded monads on Set.

Graded Algebraic Theories 403



Definition 2. A finitary M-graded monad on Set is a lax monoidal functor
M → [Set,Set]f where [Set,Set]f denotes the full subcategory of [Set,Set]
on finitary functors. Let GMndM denote the category of finitary M-graded
monads and monoidal natural transformations between them.

A morphism in GMndM is determined by the restriction to ℵ0 ⊆ Set where
ℵ0 is the full subcategory of Set on natural numbers.

Lemma 3. Let T = (∗, η, μ) and T ′ = (∗′, η′, μ′) be finitary M-graded monads.
There exists one-to-one correspondence between the following.

1. Morphisms α : T → T ′.
2. Natural transformations β : ∗ ◦ (M× i) → ∗′ ◦ (M× i) (where i : ℵ0 → Set

is the inclusion functor) such that the following diagrams commute for each
n, n′ ∈ ℵ0, m1,m2 ∈ M and f : n → m2 ∗ n′.

n I ∗ n

I ∗′ n

ηn

η′
n

β

m1 ∗ n m1 ∗′ n

m1 ∗′ (m2 ∗ n′)

m1 ∗ (m2 ∗ n′) m1 ∗′ (m2 ∗′ n′)

(m1 ⊗ m2) ∗ n′ (m1 ⊗ m2) ∗′ n′

β

m1∗f

m1∗′f

m1∗′β

μ μ′

β

Proof. By the equivalence [Set,Set]f 	 [ℵ0,Set] induced by restriction and the
left Kan extension along the inclusion i : ℵ0 → Set. 
�

2.3 Day Convolution

We describe a monoidal biclosed structure on the (covariant) presheaf category
[M,Set]0 whereM = (M,⊗, I) is a small monoidal category [3]. Here, we use the
subscript (−)0 to indicate that [M,Set]0 is an ordinary (not enriched) category
since we also use the enriched version [M,Set] later.

The external tensor product F � G : M × M → Set is defined by (F �
G)(m1,m2) = Fm1 ×Gm2 for any F,G : M → Set.

Definition 4. Let F,G : M → Set be functors. The Day tensor product F ⊗̌
G : M → Set is the left Kan extension Lan⊗(F � G) of the external tensor
product F �G : M×M → Set along the tensor product ⊗ : M×M → M.

Note that a natural transformation θ : F ⊗̌ G → H is equivalent to a natural
transformation θm1,m2

: Fm1 ×Gm2 → H(m1 ⊗ m2) by the universal property.
The Day convolution induces a monoidal biclosed structure in [M,Set]0 [3].

Proposition 5. The Day tensor product makes ([M,Set]0, ⊗̌, y(I)) a monoidal
biclosed category where y : Mop → [M,Set]0 is the Yoneda embedding y(m) :=
M(m,−). 
�

The left and the right closed structure are given by �F,G�m = [M,Set]0(F,
G(m⊗−)) and [F,G]m = [M,Set]0(F,G(−⊗m)) for each m ∈ M, respectively.

Note that since we do not assume M to be symmetric, neither is [M,Set]0.
Note also that the twisting and the above construction commute: there is an
isomorphism [M,Set]0

t ∼= [Mt,Set]0 of monoidal categories.

404 S. Kura



2.4 Categories Enriched in a Presheaf Category

We rephrase the definitions of [M,Set]0-enriched category, functor and natural
transformation in elementary terms. An [M,Set]0-category is, so to say, an “M-
graded” category: each morphism has a grade m ∈ obM and the grade of the
composite of two morphisms with grades m and m′ is the product m ⊗ m′ of
the grades of each morphism. Likewise, [M,Set]0-functors and [M,Set]0-natural
transformations can be also understood as an “M-graded” version of ordinary
functors and natural transformations. Specifically, the following lemma holds [2].

Lemma 6. There is a one-to-one correspondence between (1) an [M,Set]0-
category C and (2) the following data satisfying the following conditions.

– A class of objects obC.
– For each X,Y ∈ obC, a hom objects C(X,Y ) ∈ [M,Set]0.
– For each X ∈ obC, an element 1X ∈ C(X,X)I.
– For each X,Y, Z ∈ obC, a family of morphisms

(
◦m1,m2

: C(Y, Z)m1 ×
C(X,Y )m2 → C(X,Z)(m1 ⊗ m2)

)
m1,m2∈M

which is natural in m1 and

m2. The subscripts m1 and m2 are often omitted.

These data must satisfy the identity law 1Y ◦ f = f = f ◦ 1X for each
f ∈ C(X,Y )m and the associativity (h ◦ g) ◦ f = h ◦ (g ◦ f) for each
f ∈ C(X,Y )m1, g ∈ C(Y,Z)m2 and h ∈ C(Z,W )m3.

Proof. The identity 1X : y(I) → C(X,X) in C corresponds to 1X ∈ C(X,X)I
by the Yoneda lemma, and the composition ◦ : C(Y,Z) ⊗̌ C(X,Y ) → C(X,Z)
inC corresponds to the natural transformation ◦m1,m2

: C(Y, Z)m1×C(X,Y )m2

→ C(X,Z)(m1 ⊗ m2) by the universal property of the Day convolution. The
rest of the proof is easy. 
�

An [M,Set]0-functor F : C → D consists of a mapping X → FX and
a natural transformation FX,Y : C(X,Y ) → D(FX,FY ) (for each X,Y ) that
preserves identities and compositions of morphisms. An [M,Set]0-natural trans-
formation α : F → G is a family of elements

(
αX ∈ D(FX,GX)I

)
X∈ob(C)

that

satisfies αY ◦ Ff = Gf ◦ αX for each f ∈ C(X,Y )m. Vertical and horizontal
compositions of [M,Set]0-natural transformations are defined as expected.

We introduce a useful construction of [M,Set]0
t
-categories. Given an M-

graded monad (in other words, a lax left M-action) on C, we can define an
[M,Set]0

t
-enriched category as follows.

Definition 7. Let T = (∗, η, μ) be an M-graded monad on C. An [M,Set]0
t
-

category C̃T is defined by obC̃T := obC and C̃T (X,Y )m := C(X,m ∗ Y ). The

identity morphisms are the unit morphisms ηX ∈ C̃T (X,X)I, and the composite

of f ∈ C̃T (Y,Z)m and g ∈ C̃T (X,Y )m′ is μ ◦ (m ∗ g) ◦ f .

The definition of C̃T is similar to the definition of the Kleisli categories for

ordinary monads. Actually, C̃T can be constructed via the Kleisli category CT

for the graded monad T presented in [7] (although CT itself is not enriched).

This can be observed by CT ((I,X), (m,Y )) ∼= C̃T (X,Y )m.

Graded Algebraic Theories 405



3 Graded Algebraic Theories

We explain a framework of universal algebra for graded monads, which is a
natural extension of [17, 27]. The key idea of this framework is that each term
is associated with not only an arity but also a “grade”, which is represented by
an object in a monoidal category M. We also add coercion construct for terms
that changes the grade of terms along a morphism of the monoidal category M.
Then, a mapping that takes m ∈ M and a set of variables X and returns the set
of terms with grade m (modulo the equational axioms) yields a graded monad.

We fix a small strict monoidal category M = (M,⊗, I) throughout this
section. We sometimes identify n ∈ N with {1, . . . , n}, or {x1, . . . , xn} if it is
used as a set of variables.

3.1 Equational Logic

A signature is a family of sets of symbols Σ = (Σn,m)n∈N,m∈M. An element
f ∈ Σn,m is called an operation with arity n and grade m. We define a sufficient
structure to interpret operations in a category C as follows.

Definition 8. M-model condition is defined by the following conditions on a
tuple (C, (�, η�, μ�)).

– C is a category with finite power.
– (�, η�, μ�) is a strong Mt-action (i.e. an Mt-graded monad whose unit and

multiplication are invertible).
– For each m ∈ M, m � (−) preserves finite powers: m � cn ∼= (m � c)n.

Example 9. If A is a category with finite powers, then the functor category
[M,A] has strong Mt-action defined by m � F := F (m ⊗ (−)) and satisfies
M-model condition. Especially, [M,Set]0 satisfies M-model condition.

A model A = (A, | · |A) of Σ in a category C satisfying M-model condition
consists of an object A ∈ C and an interpretation |f |A : An → m � A for each
f ∈ Σn,m. A homomorphism α : A → B between two models A,B is a morphism
α : A → B in C such that (m � α) ◦ |f |A = |f |B ◦ αn for each f ∈ Σn,m.

Definition 10. Let X be a set of variables. The set of (M-graded) Σ-terms
TΣ
m (X) for each m ∈ M is defined inductively as follows.

x ∈ X

x ∈ TΣ
I (X)

t ∈ TΣ
m (X) w : m → m′

cw(t) ∈ TΣ
m′(X)

f ∈ Σn,m ∀i ∈ {1, . . . , n}, ti ∈ TΣ
m′(X)

f(t1, . . . , tn) ∈ TΣ
m⊗m′(X)

That is, we build Σ-terms from variables by applying operations in Σ and coer-
cions cw while keeping track of the grade of terms. When applying operations,
we sometimes write f(λi ∈ n.ti) or f(λi.ti) instead of f(t1, . . . , tn).

Definition 11. Let A be a model of a signature Σ. For each m ∈ M and
s ∈ TΣ

m (n), the interpretation |s|A : An → m � A is defined as follows.

406 S. Kura



– For any variable xi, |xi|A = η� ◦ πi where πi : A
n → A is the i-th projection.

– For each w : m′ → m and s ∈ TΣ
m′({x1, . . . , xn}), |cw(s)|A = (w � A) ◦ |s|A.

– If f ∈ Σk,m′ and ti ∈ TΣ
m′′({x1, . . . , xn}) for each i ∈ {1, . . . , k}, then

|f(t1, . . . , tk)|A is defined by the following composite.

An (m′′�A)k m′′�Ak m′′�(m′�A) (m′⊗m′′)�A
〈|t1|,...,|tk|〉 ∼= m′′�|f | μ

When we interpret a term t ∈ TΣ
m (X), we need to pick a finite set n such that

fv(t) ⊆ n ⊆ X where fv(t) is the set of free variables in t, but the choice of the
finite set does not matter when we consider only equality of interpretations by
the following fact. If σ : n → n′ is a renaming of variables and σ : TΣ

m (n) →
TΣ
m (n′) is a mapping induced by the renaming σ, then for each t ∈ TΣ

m (n),
|σ(t)|A = |t|A ◦ Aσ, which implies that equality of the interpretations of two
terms s, t is preserved by renaming: |s| = |t| implies |σ(s)| = |σ(s)|.

An equational axiom is a family of sets E = (Em)m∈M where Em is a set of
pairs of terms in TΣ

m (X). We sometimes identify E with its union
⋃

m∈M Em. A
presentation of an M-graded algebraic theory (or an M-graded algebraic theory)
is a pair T = (Σ,E) of a signature and an equational axiom. A model A of (Σ,E)
is a model of Σ that satisfies |s|A = |t|A for each (s = t) ∈ E. Let ModT (C)
denote the category of models of T in C and homomorphisms between them.

To obtain a graded monad on Set from T , we need a strict left action of
M on ModT ([M,Set]0) and an adjunction between ModT ([M,Set]0) and Set.
The former is defined by the following, while the latter is described in §3.2.

Lemma 12. Let C be a category satisfying M1×M2-model condition. If T is an
M1-graded algebraic theory, then C satisfies M1-model condition and ModT (C)
satisfies M2-model condition.

Proof. An Mt
1-action on C is obtained by the composition of Mt

1 ×Mt
2-action

and the strong monoidal functor Mt
1 → Mt

1×Mt
2 defined by m → (m, I). Finite

powers and an Mt
2-action for ModT (C) are induced by those for C. 
�

Corollary 13. ModT ([M,Set]0) has an M-action, which is given by the pre-
composition of m ⊗ (−) like the M-action of Example 9.

Proof. [M,Set]0 has Mt ×M-action defined by (m1,m2) ∗ F = F (m1 ⊗ (−) ⊗
m2). Thus, M-action for ModT ([M,Set]0) is obtained by Lemma 12. 
�

Substitution s[t1/x1, . . . , tk/xk] for M-graded Σ-terms can be defined as
usual, but we have to take care of grades: given s ∈ TΣ

m (k) and t1, . . . , tk ∈
TΣ
m′(n), the substitution s[t1/x1, . . . , tk/xk] is defined as a term in TΣ

m⊗m′(n).
We obtain an equational logic for graded theories by adding some additional

rules to the usual equational logic.

Definition 14. The entailment relation T � s = t (where s, t ∈ Tm(X)) for
an M-graded theory T is defined by adding the following rules to the standard
rules i.e. reflexivity, symmetry, transitivity, congruence, substitution and axiom
in E (see e.g. [26] for the standard rules of equational logic).

Graded Algebraic Theories 407



s, t ∈ TΣ
m (X) T � s = t w : m → m′

T � cw(s) = cw(t)

t ∈ TΣ
m (X)

T � c1m(t) = t

t ∈ TΣ
m (X) w : m → m′ w′ : m′ → m′′

T � cw′(cw(t)) = cw′◦w(t)

f ∈ Σn,m ti ∈ TΣ
m′(X) for each i ∈ {1, . . . , n} w : m′ → m′′

T � f(cw(t1), . . . , cw(tn)) = cm⊗w(f(t1, . . . , tn))

Definition 15. Given a model A of T , we denote A � s = t if s, t ∈ TΣ
m (n) (for

some n) and |s|A = |t|A. If C is a category satisfying M-model condition, we
denote T ,C � s = t if A � s = t for any model A of T in C.

It is easy to verify that the equational logic in Definition 14 is sound.

Theorem 1 (soundness). T � s = t implies T ,C � s = t. 
�

3.2 Free Models

We describe a construction of a free model F T X ∈ ModT ([M,Set]0) of a
graded theory T generated by a set X, which induces an adjunction between
ModT ([M,Set]0) and Set. This adjunction, together with the M-action of
Corollary 13, gives a graded monad as described in [7].

Definition 16 (free model F T X). Let T = (Σ,E) be an M-graded theory.
We define a functor F T X : M → Set by F T Xm := TΣ

m (X)/∼m for each m ∈ M
and any X ∈ Set where s ∼m t is the equivalence relation defined by T � s = t
and F T Xw([t]m) := [cw(t)]m′ for any w : m → m′ where [t]m is the equivalence

class of t ∈ TΣ
m (X). For each f ∈ Σn,m′ , let |f |FT X : (F T X)n → m′ � F T X

be a mapping defined by |f |FT X
m ([t1]m, . . . , [tn]m) = [f(t1, . . . , tn)]m′⊗m for each

m ∈ M. We define a model of T by F T X = (F T X, | · |F
T X

).

The model F T X, together with the mapping ηX : X → F T XI defined by
x → [x]I , has the following universal property as a free model generated by X.

Lemma 17. For any model A in [M,Set]0 and any mapping v : X → AI, there
exists a unique homomorphism v : F T X → A satisfying vI ◦ ηX = v. 
�

Corollary 18. Let U : ModT ([M,Set]0) → Set be the forgetful functor defined
by the evaluation at I, that is, UA = AI and Uα = αI . The free model functor
F T : Set → ModT ([M,Set]0) is a left adjoint of U . 
�

By considering the interpretation in the free model, we obtain the following
completeness theorem.

Theorem 19 (completeness). T , [M,Set]0 � s = t implies T � s = t. 
�

Recall that ModT ([M,Set]0) has a left action (Corollary 13). Therefore the
above adjunction induces an M-graded monad as described in [7].

The relationship between ModT ([M,Set]0) and the Eilenberg–Moore con-
struction is as follows. In [7], the Eilenberg–Moore category CT for any graded

408 S. Kura



monad T on C is introduced together with a left action � : M×CT → CT. If
C = Set and T is the graded monad obtained from an M-graded theory T , then
the Eilenberg–Moore category SetT is essentially the same as ModT ([M,Set]0).

Theorem 20. The comparison functor K : ModT ([M,Set]0) → SetT (see [7]
for the definition) where T is an M-graded theory and T is the graded monad
induced from the graded theory T is isomorphic. Moreover, K preserves the M-
action: � ◦ (M×K) = K ◦ �. 
�

We define the category GSM of graded algebraic theories as follows.

Definition 21. Let T = (Σ,E) and T ′ = (Σ′, E′). A morphism α : T → T ′

between graded algebraic theories is a family of mappings αn,m : Σn,m → F T ′
nm

from operations in Σ to Σ′-terms such that the equations in E are preserved by

α, i.e. for each s, t ∈ TΣ
m (X), (s, t) ∈ E implies |s|(FT ′

X,α) = |t|(FT ′
X,α) where

(F T ′
X,α) is a model of T induced by α.

Definition 22. Given a morphism α : T → T ′, let Fα : F T → F T ′
be a natural

transformation defined by Fα([t]) = |t|(FT ′
X,α) for each t ∈ TΣ

m (X).

Definition 23. We write GSM for the category of graded algebraic theories
and morphisms between them. The identity morphisms are defined by 1T (f) =
[f(x1, . . . , xn)] for each f ∈ Σn,m. The composition of α : T → T ′ and β : T ′ →
T ′′ is defined by β ◦ α(f) = F β(α(f)).

3.3 Examples

Example 24 (graded modules). Let M = (N,+, 0) where N is regarded as a
discrete category. Given a graded ring A =

⊕
n∈N An, let Σ be a set of operations

which consists of the binary addition operation + (arity: 2, grade: 0), the unary
inverse operation − (arity: 1, grade: 0), the identity element (nullary operation)
0 (arity: 0, grade: 0) and the unary scalar multiplication operation a · (−) (arity:
1, grade: n) for each a ∈ An. Let E be the equational axiom for modules.

A model (F, | · |) of the M-graded theory (Σ,E) in [M,Set]0 consists of a set
Fn for each n ∈ N and functions |+|n : (Fn)

2 → Fn, |−|n : Fn → Fn, |0|n ∈ Fn

and |a · (−)|n : Fn → Fm+n for each n ∈ N and each a ∈ Am, and these
interpretations satisfy E. Therefore models of (Σ,E) in [M,Set]0 correspond
one-to-one with graded modules.

Example 25 (graded exception monad [12, Example 3.4]). We give an
algebraic presentation of the graded exception monad.

Let M and (∗, η, μ) be a preordered monoid and the graded monad defined as
follows. Let P+(X) denote the set of nonempty subsets of X. Let Ex be a set of
exceptions and M = ((P+(Ex ∪ {Ok}),⊆), I,⊗) be a preordered monoid where
I = {Ok} and the multiplication ⊗ is defined by m ⊗ m′ = (m \ {Ok}) ∪m′ if
Ok ∈ m and m ⊗ m′ = m otherwise (note that this is not commutative). The
graded exception monad (∗, η, μ) is the M-graded monad given as follows.

Graded Algebraic Theories 409



m ∗X = {Er(e) | e ∈ m \ {Ok}} ∪ {Ok(x) | x ∈ X ∧Ok ∈ m}
ηX(x) = Ok(x) μm1,m2,X(Er(e)) = Er(e) μm1,m2,X(Ok(x)) = x

The M-graded theory T ex for the graded exception monad is defined by
(Σex, ∅) where Σex is the set that consists of an operation raisee (arity: 0, grade:
{e}) for each e ∈ Ex.

The graded monad induced by T ex coincides with the graded exception
monad. Indeed, the free model functor F T ex

for T ex is given by F T ex

Xm =
m ∗ X. Here, the operations raisee are interpreted by e ∈ Ex.

|raisee|F
T ex

X
m = Er(e) ∈ F T ex

X({e} ⊗ m)

Example 26 (extending an ordinary monad to an M-graded monad).
We consider the problem of extending an M′-graded theory to an M-graded
theory along a lax monoidal functor of type M′ → M, but here we restrict
ourselves to the case of M′ = 1 and the strict monoidal functor of type 1 → M.

Let M = (M, I,⊗) be an arbitrary small strict monoidal category. Let T =
(Σ,E) be a (1-graded) theory and (T, ηT , μT ) be the corresponding ordinary
monad. Let T M = (ΣM, EM) be the M-graded theory obtained when we regard
each operation in T as an operation with grade I ∈ M, that is, ΣM

n,m := Σn if

m = I and ΣM
n,m := ∅ otherwise, and EM := E.

The free model functor for T M is F T M

X = F T (M(I,−) ×X) where F T :
Set → ModT (Set) is the free model functor for T as a 1-graded theory, and the

interpretation of an operation f ∈ Σn in F T M

X is defined by the interpretation
in the free models of T .

|f |FT M
X

m = |f |FT (M(I,m)×X) :
(
F T (M(I,m)×X)

)n → F T (M(I,m)×X)

Intuitively, this can be understood as follows. Since all the operations are of
grade I, coercions cw in a term can be moved to the innermost places where
variables occur by repeatedly applying cw(f(t1, . . . , tn)) = f(cw(t1), . . . , cw(tn))
(see Definition 14). Therefore, we can consider terms of T M as terms of T whose
variables are of the form cw(x).

An M-graded monad (∗, η, μ) obtained from T M is as follows.

m ∗X = T (M(I,m)×X) η = ηT (1I ,−) μ = T (⊗×X) ◦ μT ◦ T st

Here, ⊗ : M(I,m1)×M(I,m2) → M(I,m1 ⊗ m2) is induced by ⊗: M×M →
M and stX,Y : X × TY → T (X × Y ) is the strength for T .

4 Graded Lawvere Theories

We present a categorical formulation of graded algebraic theories of §3 in a
similar fashion to ordinary Lawvere theories.

For ordinary (single-sorted) finitary algebraic theories, a Lawvere theory is
defined as a small category L with finite products together with a strict finite-
product preserving identity-on-objects functor J : ℵop

0 → L where ℵ0 is the full

410 S. Kura



subcategory of Set on natural numbers. Intuitively, morphisms in the Lawvere
theory L are terms of the corresponding algebraic theory, and objects of L, which
are exactly the objects in obℵ0, are arities.

According to the above intuition, it is expected that a graded Lawvere theory
is also defined as a category whose objects are natural numbers and morphisms
are graded terms. However, since terms in a graded algebraic theory are stratified
by a monoidal category M, mere sets are insufficient to express hom-objects of
graded Lawvere theories. Instead, we take hom-objects from the functor category
[M,Set]0 and define graded Lawvere theories using [M,Set]0-categories where
[M,Set]0 is equipped with the Day convolution monoidal structure. Specifically,
ℵ0 (in ordinary Lawvere theories) is replaced with an [M,Set]0-category NM,
L with an [M,Set]0-category, and “finite products” with “Nop

M-cotensors”.
So, we first provide an enriched category NM that we use as arities. Since we

do not assume that M is symmetric, NM is defined to be an [M,Set]0
t
-category

so that the opposite category Nop
M is an [M,Set]0-category. Let [M,Set]

t
be an

[M,Set]0
t
-category induced by the closed structure of [M,Set]0

t
. That is, hom-

objects of [M,Set]
t
are given by [M,Set]

t
(G,H)m = [M,Set]0(G,H(− ⊗ m)).

Definition 27. An [M,Set]0
t
-categoryNM is defined by the full sub-[M,Set]0

t
-

category of [M,Set]
t
whose set of objects is given by obNM = {n · y(I) | n ∈

N} ⊆ ob[M,Set]
t
where N is the set of natural numbers and n · y(I) is the

n-fold coproduct of y(I). We sometimes identify obNM with N via the mapping
n → n := n · y(I).

Lemma 28. The [M,Set]0-category Nop
M has Nop

M-cotensors, which are given
by n � n′ = n · n′ for each n and n′. 
�

Proof. A cotensor (n · y(I)) � (n′ · y(I)) is a tensor (n · y(I)) ⊗t (n′ · y(I)) in
[M,Set]

t
. Since ⊗t is biclosed, ⊗t preserves colimits in both arguments. There-

fore, (n · y(I)) ⊗t (n′ · y(I)) ∼= (n · n′) · y(I). 
�

Nop
M-cotensors (i.e. n · y(I) � C) behave like an enriched counterpart of finite

powers (−)n. We show that Nop
M-cotensors in a general [M,Set]0-category A

are characterized by projections satisfying a universal property. Given a unit
morphism ν : n → A(n � C,C) of the cotensor n � C, an [M,Set]0-natural
transformation ν : A(B,n � C) → [n,A(B,C)] is given by f → (x → ν(x) ◦ f).
The condition that ν is isomorphic can be rephrased as follows.

Lemma 29. An [M,Set]0-category A has Nop
M-cotensors if and only if for any

n ∈ N and C ∈ obA, there exist an object n � C ∈ obA and (π1, . . . , πn) ∈
(A(n � C,C)I)n such that the following condition holds: for each m, the function
f → (π1 ◦ f, . . . , πn ◦ f) of type A(B,n � C)m → (A(B,C)m)n is bijective.

An [M,Set]0-functor F : A → B preserves Nop
M-cotensors if and only if

(Fn�C,C,I ◦ π1, . . . , Fn�C,C,I ◦ πn) ∈ (B(F (n � C), FC)I)n satisfies the same
condition for each n and C.

Proof. The essence of the proof is that the unit morphism ν : n · y(I) → A(n �
C,C) corresponds to elements π1, . . . , πn ∈ A(n � C,C)I by [M,Set]0(n ·

Graded Algebraic Theories 411



y(I),A(n � C,C)) ∼= [M,Set]0(y(I),A(n � C,C))n ∼=
(
A(n � C,C)I

)n
. The

[M,Set]0-natural transformation ν is isomorphic if and only if each component
νm : A(B,n � C)m → [n,A(B,C)]m of ν is isomorphic, which is moreover
equivalent to the condition that f → (π1 ◦ f, . . . , πn ◦ f) : A(B,n � C)m →
(A(B,C))n is isomorphic since we have [n,A(B,C)]m ∼= (A(B,C)m)n.

The latter part of the lemma follows from the former part. 
�

If (π1, . . . , πn) ∈ (A(n � C,C)I)n satisfies the condition in Lemma 29, we call
the element πi ∈ A(n � C,C)I the i-th projection of n � C. Note that the
choice of projections is not necessarily unique. However, when we say that A is
an [M,Set]0-category with Nop

M-cotensors, we implicitly assume that there are
a chosen cotensor n � C and chosen projections (π1, . . . , πn) ∈ (A(n � C,C)I)n

for each n ∈ obNop
M and C ∈ obA. We also assume that 1 � X = X without loss

of generality. Given n-tuple (f1, . . . , fn) of elements in A(B,C)m, we denote by
〈f1, . . . , fn〉 an element in A(B,n � C)m obtained by the inverse of f → (π1 ◦
f, . . . , πn ◦ f) and call this a tupling. Tuplings and projections for Nop

M-cotensors
behave like those for finite products.

The following proposition claims that Nop
M is a free [M,Set]0-category with

chosen Nop
M-cotensors generated by one object.

Proposition 30. Let A be an [M,Set]0-category with Nop
M-cotensors and C be

an object in A. Then there exists a unique Nop
M-cotensor preserving [M,Set]0-

functor F : Nop
M → A such that Fn = n � C and Fπi = πi. 
�

We define M-graded Lawvere theories in a similar fashion to enriched Law-
vere theories.

Definition 31. An M-graded Lawvere theory is a tuple (L, J) where L is an
[M,Set]0-category with Nop

M-cotensors and J : Nop
M → L is an identity-on-

objects Nop
M-cotensor preserving [M,Set]0-functor. A morphism F : (L, J) →

(L′, J ′) between two graded Lawvere theories is an [M,Set]0-functor F : L → L′

such that FJ = J ′. We denote the category of graded Lawvere theories and
morphisms between them by GLawM.

By Proposition 30, the existence of the above J : Nop
M → L is equivalent to

requiring that obL = N and projections in L are chosen in some way. So, we
sometimes leave J implicit and just write L ∈ GLawM for (L, J) ∈ GLawM.

Definition 32. A model of graded Lawvere theory L in an [M,Set]0-category
A with Nop

M-cotensor is an Nop
M-cotensor preserving [M,Set]0-functor of type

L → A. A morphism α : F → G between two models F,G of graded Lawvere
theory L is an [M,Set]0-natural transformation. Let Mod(L,A) be the category
of models of graded Lawvere theory L in the [M,Set]0-category A.

In §3, we use a category C satisfying M-model condition to define a model
of graded algebraic theory. Actually, M-model condition is sufficient to give an
[M,Set]0-category with Nop

M-cotensors.

Lemma 33. If C satisfies M-model condition, then the [M,Set]0-category C̃T

op

defined in Definition 7 has Nop
M-cotensors.

412 S. Kura



Proof. For any X ∈ C̃T

op
and n, the cotensor n � X is given by finite power

Xn, and the i-th projection is given by η� ◦ πi ∈ C̃T

op
I where πi : X

n → X is
the i-th projection of the finite power Xn. The rest of the proof is routine. 
�

If we apply Lemma 33 to [M,Set]0 equipped with the Mt-action in Exam-

ple 9 (here denoted by T ), then ˜([M,Set]0)T
op

coincides with [M,Set] (i.e. the
[M,Set]0-category obtained by the closed structure of [M,Set]0).

5 Equivalence

We have shown three graded notions: graded algebraic theories, graded Law-
vere theories and finitary graded monads, which give rise to categories GSM,
GLawM and GMndM, respectively. This section is about the equivalence of
these three notions. We give only a sketch of the proof of the equivalence, and
the details are deferred to [14, Appendix A].

5.1 Graded Algebraic Theories and Graded Lawvere Theories

We prove that the category of graded algebraic theories GSM and the category
of graded Lawvere theories GLawM are equivalent by showing the existence of
an adjoint equivalence Th � U : GLawM → GSM.

Let M be a small strict monoidal category and T = (Σ,E) be an M-graded
algebraic theory. We define ThT (the object part of Th) as an M-graded Law-
vere theory whose morphisms are terms of T modulo equational axioms.

Definition 34. An [M,Set]0-category ThT is defined by ob(ThT ) := N and
(ThT )(n, n′)m := (F T nm)n

′
with composition defined by substitution.

It is easy to show that ThT has Nop
M-cotensors (by Lemma 29). Therefore,

Th is a mapping from an object in GSM to an object in GLawM.
We define a functor U : GLawM → GSM by taking all the morphism

f ∈ L(n, 1)m in L ∈ GLawM as operations and all the equations that hold in
L as equational axioms.

Definition 35. A functor U : GLawM → GSM is defined as follows.

– For each L ∈ obGLawM , UL = (Σ,E) where Σn,m = L(n, 1)m, E =
{(s, t) | |s|L = |t|L} and | · |L : TΣ

m (n) → L(n, 1)m is an interpretation of
terms defined in the same way as Definition 11.

– Given G : L → L′, let UG : UL → UL′ be a functor defined by UG(f) =
[G(f)(x1, . . . , xn)] for each f ∈ L(n, 1)m.

Then, ThT has the following universal property as a left adjoint of U .

Lemma 36. For each T , let ηT : T → UThT be a family of functions ηT ,n,m :
Σn,m → FUThT nm defined by ηT ,n,m(f) = [[f(x1, . . . , xn)](x1, . . . , xn)]. For
any α : T → UL, there exists a unique morphism α : ThT → L such that
α = Uα ◦ ηT . 
�

Graded Algebraic Theories 413



Moreover, the unit and the counit of Th � U are isomorphic. Therefore:

Theorem 37. Two categories GSM and GLawM are equivalent. 
�
We can also prove the equivalence of the categories of models.

Lemma 38. If C is a category satisfying M-model condition, then ModT (C) is

equivalent to Mod(ThT , C̃T ) where T is the Mt-action on C. 
�

5.2 Graded Lawvere theories and Finitary Graded Monads

We prove that the category of graded Lawvere theoriesGLawM and the category
of finitary graded monads GMndM are equivalent. Given a graded Lawvere
theory, a finitary graded monad is obtained as a coend that represents the set
of terms. On the other hand, given a finitary graded monad, a graded Lawvere
theory is obtained from taking the full sub-[M,Set]0-category on arities ob(Nop

M)
of the opposite category of the Kleisli(-like) category in Definition 7. These
constructions give rise to an equivalence of categories.

An M-graded Lawvere theory yields a finitary graded monad by letting m∗X
be the set of terms of grade m whose variables range over X.

Definition 39. Let L be an M-graded Lawvere theory. We define TL = (∗, η, μ)
by a (finitary) M-graded monad whose functor part is given as follows.

m ∗X :=

∫ n∈ℵ0

L(n, 1)m×Xn

Note that L(−, 1) : ℵ0 → [M,Set]0 is a Set-functor here.
Given a graded monad, a graded Lawvere theory is obtained as follows.

Definition 40. Let T = (∗, η, μ) be an M-graded monad on Set. Let LT be

the full sub-[M,Set]0-category of (S̃etT )
op with ob(LT ) = N.

Since LT has NM -cotensors n � 1 = n whose projections are given by πi =
(∗ → η(i)) ∈ Set(1, I ∗ n), LT is a graded Lawvere theory.

Given a morphism α : T → T ′ in GMndM, we define Lα : LT → LT ′ by
(Lα)n,n′,m = Set(n′, αn,m) : LT (n, n

′)m → LT ′(n, n′)m. It is easy to prove that
Lα is a morphism in GLawM and L(−) : GMndM → GLawM is a functor.

Theorem 41. Two categories GLawM and GMndM are equivalent.

Proof. L(−) is an essentially surjective fully faithful functor. 
�

6 Combining Effects

Under the correspondence to algebraic theories, combinations of computational
effects can be understood as combinations of algebraic theories. In particular,
sums and tensor products are well-known constructions [9]. In this section, we
show that these constructions can be adapted to graded algebraic theories. By
the equivalence GMndM 	 GLawM 	 GSM in §5, constructions like sums
and tensor products in one of these categories induce those in the other two
categories. So, we choose GSM and describe sums as colimits in GSM and
tensor products as a mapping GSM1

×GSM2
→ GSM1×M2

.

414 S. Kura



6.1 Sums

We prove that GSM has small colimits.

Lemma 42. The category GSM has small coproducts.

Proof. Given a family {(Σ(i), E(i))}i∈I of objects in GSM, the coproduct is
obtained by the disjoint union of operations and equations:

∐
i∈I(Σ

(i), E(i)) =(⋃
i∈I Σ

(i),
⋃

i∈I E
(i)
)
. 
�

Lemma 43. The category GSM has coequalizers.

Proof. Let T = (Σ,E) and T ′ = (Σ′, E′) be graded algebraic theories and
α, β : T → T ′ be a morphism. The coequalizer T ′′ of α and β is given by adding
the set of equations induced by α and β to T ′, that is, T ′′ := (Σ′, E′∪E′′) where
E′′ = {(s, t) | ∃f ∈ Σ,α(f) = [s] ∧ β(f) = [t]}. 
�

Since a category has all small colimits if and only if it has all small coproducts
and coequalizers, we obtain the following corollary.

Corollary 44. Three equivalent categories GSM, GMndM and GLawM are
cocomplete. 
�

Example 45. It is known that the sum of an ordinary monad T and the excep-
tion monad (−)+Ex (where Ex is a set of exceptions) is given by T ((−)+Ex) [9,
Corollary 3]. We show that a similar result holds for the graded exception monad.

Let T ex be the theory in Example 25 and M be the preordered monoid used
there. We denote (∗ex, ηex, μex) for the graded exception monad. Let T = (Σ,E)
be a (1-graded) theory and (T, ηT , μT ) be the corresponding ordinary monad. Let
T M = (ΣM, EM) be the M-graded theory obtained from T as in Example 26.
We consider a graded monad obtained as the sum of T ex and T M.

A free model functor F for T ex + T M is given by FXm = T (m ∗ex X). For
each n-ary operation f in T , |f |FX

m : (T (m∗exX))n → T (m∗exX) is induced by
free models of T , and for each e ∈ Ex, |raisee|FX

m : 1 → T ({e}∗exX) is defined by
ηT{e}∗exX(e) ∈ T ({e} ∗ex X). It is easy to see that FX defined above is indeed a

model of T ex+T M. Therefore, we obtain a graded monad m ∗X = T (m ∗exX).

6.2 Tensor Products

The tensor product of two ordinary algebraic theories (Σ,E) and (Σ′, E′) is
constructed as (Σ ∪ Σ′, E ∪ E′ ∪ E⊗) where E⊗ consists of f(λi.g(λj.xij)) =
g(λj.f(λi.xij)) for each f ∈ Σ and g ∈ Σ′. However, when we extend tensor
products to graded algebraic theories, the grades of the both sides are not nec-
essarily equal. If the grade of f is m and the grade of g is m′, then the grades of
f(λi.g(λj.xij)) and g(λj.f(λi.xij)) are m ⊗ m′ and m′ ⊗ m, respectively. There-
fore, we have to somehow guarantee that the grade of f ∈ Σ and the grade of
g ∈ Σ′ commute. We solve this problem by taking the product of monoidal cat-
egories. That is, we define the tensor product of an M1-graded algebraic theory
and an M2-graded algebraic theory as an M1 ×M2-graded algebraic theory.

Graded Algebraic Theories 415



Before defining tensor products, we consider extending an M-graded theory
to M′-graded theory along a lax monoidal functor G = (G, ηG, μG) : M → M′.
Given an M-graded theory T = (Σ,E), we define the M′-graded theory G∗T =
(G∗Σ,G∗E) by (G∗Σ)n,m′ := {f ∈ Σn,m | Gm = m′} and G∗E := {G∗(s) =
G∗(t) | (s = t) ∈ E} where for each term t of T (with grade m), G∗(t) is the term
of G∗T (with grade Gm) defined inductively as follows: if x is a variable, then
G∗(x) := cηG(x); for each w : m → m′ and term t, G∗(cw(t)) := cGw(G∗(t));
for each f ∈ Σn,m and terms t1, . . . , tn with grade m′, G∗(f(t1, . . . , tn)) :=
cμG

m,m′
(f(G∗(t1), . . . , G∗(tn))).

The tensor product of T1 ∈GSM1
and T2 ∈GSM2

is defined by first extending
T1 and T2 to M1×M2-graded theories and then adding commutation equations.

Definition 46 (tensor product). Let T1 = (Σ,E) ∈ GSM1
and T2 = (Σ′, E′)

∈ GSM2
. The tensor product T1⊗T2 is defined by (K∗Σ ∪K ′

∗Σ
′,K∗E ∪K ′

∗E
′ ∪

ET1⊗T2) ∈ GSM1×M2 where K : M1 → M1×M2 and K ′ : M2 → M1×M2 are
lax monoidal functors defined by Km1 := (m1, I2) and K ′m2 := (I1,m2), and

ET1⊗T2
:= {f(λi.g(λj.xij)) = g(λj.f(λi.xij)) | f ∈ (K∗Σ)n,m, g ∈ (K ′

∗Σ
′)n′,m′}.

That is, if f is an operation in T1 with grade m1 ∈ M1, then T1 ⊗ T2 has the
operation f with grade (m1, I2) ∈ M1 ×M2 and similarly for operations in T2.

The tensor products satisfy the following fundamental property.

Proposition 47. Let C be a category satisfying M1×M2-model condition. Let
Ti be an Mi-graded algebraic theory for i = 1, 2. Then we have an isomorphism
ModT1

(ModT2
(C)) ∼= ModT1⊗T2

(C).

Proof. Let ((A, | · |′), | · |) ∈ ModT1
(ModT2

(C)) be a model. For each operation
f in T1, |f | : (A, | · |′)n → m � (A, | · |′) is a homomorphism. This condition is
equivalent to satisfying the equations in ET1⊗T2

. 
�

Example 48. We exemplify the tensor product by showing a graded version
of [9, Corollary 6], which claims that the L-fold tensor product of the side-effects
theory in [21] with one location is the side-effects theory with L locations.

First, we consider the situation where there is only one memory cell whose
value ranges over a finite set V . Let 2 the preordered monoid (join-semilattice)
({⊥,�},≤,∨,⊥) where ≤ is the preorder defined by ⊥ ≤ �. Intuitively, ⊥ rep-
resents pure computations, and � represents (possibly) stateful computations.
Let Tst be a 2-graded theory of two types of operations lookup (arity: V , grade:
�) and updatev (arity: 1, grade: �) for each v ∈ V and the four equations in [21]
for the interaction of lookup and update. Note that we have to insert coercion to
arrange the grade of the equation lookup(λv ∈ V.updatev(x)) = c⊥≤�(x).

The graded monad (∗, η, μ) induced by Tst is as follows.
⊥ ∗X = X � ∗X = (V ×X)V ((⊥ ≤ �) ∗X)(x) = λv.(v, x)

The middle equation can be explained as follows: any term with grade � can
be presented by a canonical form tf := lookup(λv.updatefV (v)(fX(v))) where
f = 〈fV , fX〉 : V → V × X is a function, and therefore, the mapping f → tf
gives a bijection between (V ×X)V and � ∗X = TΣ

� (X)/∼.

416 S. Kura



The L-fold tensor product of Tst, which we denote by T ⊗L
st , is a 2L-graded the-

ory where 2L = (2L,⊆,∪, ∅) is the join-semilattice of subsets of L. Specifically,
T ⊗L
st consists of operations lookupl and updatel,v with grade {l} for each l ∈ L

and v ∈ V with additional three commutation equations in [21]. The induced
graded monad is L′ ∗⊗L X = {f : V L → (V L ×X) | read(L′, f) ∧ write(L′, f)}
where L′ ⊆ L, and read(L′, f) and write(L′, f) assert that f depends only on
values at locations in L′ and does not change values at locations outside L′. That
is, L′ ∗⊗L X represents computations that touch only memory locations in L′.

read(L′, f) := ∀σ, σ′ ∈ V n, (∀l ∈ L′, σ(l) = σ′(l)) =⇒ f(σ) = f(σ′)

write(L′, f) := ∀σ, σ′ ∈ V n, x ∈ X, (σ′, x) = f(σ) =⇒ ∀l /∈ L′, σ(l) = σ′(l)

7 Related Work

Algebraic theories for graded monads. Graded monads are introduced in [27], and
notions of graded theory and graded Eilenberg–Moore algebra appear in [4, 17]
for coalgebraic treatment of trace semantics. However, these work only deal
with N-graded monads where N is regarded as a discrete monoidal category,
while we deal with general monoidal categories. The Kleisli construction and
the Eilenberg–Moore construction for graded monads are presented in [7] by
adapting the 2-categorical argument on resolutions of monads [29].

Algebraic operations for graded monads are introduced in [12] and classified
into two types, which are different in how to integrate the grades of subterms.
One is operations that take terms with the same grade, and these are what
we treated in this paper. The other is operations that take terms with different
grades: the grade of f(t1, . . . , tn) is determined by an effect function ε : Mn → M
associated to f . Although the latter type of operations is also important to give
natural presentations of computational effects, we leave it for future work.

Enriched Lawvere theories. There are many variants of Lawvere theories [1,
10, 11, 15, 16, 19, 24, 25, 28], and most of them share a common pattern: they
are defined as an identity-on-objects functor from a certain category (e.g., ℵop

0 )
which represents arities, and the functor must preserve a certain class of products
(or cotensors if enriched). Among the most relevant work to ours are enriched
Lawvere theories [24] and discrete Lawvere theories [10].

For a given monoidal category V, a Lawvere V-theory is defined as an
identity-on-objects finite cotensor (i.e. Vfp-cotensor) preserving Vt-functor J :
Vop

fp → L where Vfp is the full subcategory of V spanned by finitely presentable

objects. If V = [M,Set]0
t
, Lawvere [M,Set]0

t
-theories are analogous to our

graded Lawvere theories except that we used Nop
M instead of ([M,Set]0)fp. Since

n · y(I) ∈ Nop
M is finitely presentable, we can say that the notion of graded Law-

vere theory is obtained from enriched Lawvere theories by restricting arities to
Nop

M ⊆ ([M,Set]0)fp. However, the correspondence to finitary graded monads on
Set is an interesting point of our graded Lawvere theories compared to Lawvere
V-theories, which correspond to finitary V-monads on V.

Graded Algebraic Theories 417



Discrete Lawvere theories restrict arities of Lawvere V-theories to ℵ0, that
is, a discrete Lawvere V-theory is defined as a (Set-enriched) finite-product
preserving functor J : ℵop

0 → L0 where L is a Vt-category. Actually, discrete
Lawvere [M,Set]0

t
-theories are equivalent to graded Lawvere theories because

there is a finite-product preserving functor ι : ℵop
0 → Nop

M such that the com-
position with ι gives a bijection between graded Lawvere theories J : Nop

M → L

and discrete Lawvere [M,Set]0
t
-theories J0 ◦ ι : ℵop

0 → L0. However, we con-
sidered not only symmetric monoidal categories but also nonsymmetric ones,
which cause a nontrivial problem when we define tensor products of algebraic
theories. The problem is that adding commutation equations requires some kind
of commutativity of monoidal categories. We solved this problem by considering
product monoidal categories and defining the tensor product of an M1-graded
theory and an M2-graded theory as an M1 ×M2-graded theory, and the use of
two different monoidal categories is new to the best of our knowledge.

8 Conclusions and Future Work

To extend the correspondence between algebraic theories, Lawvere theories, and
(finitary) monads, we introduced notions of graded algebraic theory and graded
Lawvere theory and proved their correspondence with finitary graded monads.
We also provided sums and tensor products for graded algebraic theories, which
are natural extensions of those for ordinary algebraic theories. Since we do not
assume monoidal categories to be symmetric, our tensor products are a bit dif-
ferent from the ordinary ones in that this combines two theories graded by (or
enriched in) different monoidal categories. We hope that these results will lead
us to apply many kinds of techniques developed for monads to graded monads.

As future work, we are interested in “change-of-effects”, that is, changing
the monoidal category M in M-graded algebraic theory along a (lax) monoidal
functor F : M → M′. The problem already appeared in §6.2 to define tensor
products, but we want to look for more properties of this operation. We are
also interested in integrating a more general framework for notions of algebraic
theory [6] and obtaining a graded version of the framework. Another direction
is exploiting models of graded algebraic theories as modalities in the study of
coalgebraic modal logic [4, 17] or weakest precondition semantics [8].

Acknowledgement. We thank Soichiro Fujii, Shin-ya Katsumata, Yuichi Nishi-
waki, Yoshihiko Kakutani and the anonymous referees for useful comments. This
work was supported by JST ERATO HASUO Metamathematics for Systems De-
sign Project (No. JPMJER1603).

References

1. Berger, C., Melliès, P.A., Weber, M.: Monads with arities and their associated
theories. Journal of Pure and Applied Algebra 216(8), 2029 – 2048 (2012).
https://doi.org/10.1016/j.jpaa.2012.02.039, special Issue devoted to the Interna-
tional Conference in Category Theory ‘CT2010’

418 S. Kura

https://doi.org/10.1016/j.jpaa.2012.02.039


2. Curien, P., Fiore, M.P., Munch-Maccagnoni, G.: A theory of effects and resources:
adjunction models and polarised calculi. In: Bod́ık, R., Majumdar, R. (eds.) Pro-
ceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 -
22, 2016. pp. 44–56. ACM (2016). https://doi.org/10.1145/2837614.2837652

3. Day, B.: On closed categories of functors. In: Reports of the Midwest Category
Seminar IV. Lecture Notes in Mathematics, vol. 137, pp. 1–38. Springer, Berlin,
Heidelberg (1970)

4. Dorsch, U., Milius, S., Schröder, L.: Graded monads and graded logics for
the linear time - branching time spectrum. In: Fokkink, W., van Glabbeek,
R. (eds.) 30th International Conference on Concurrency Theory, CONCUR
2019, August 27-30, 2019, Amsterdam, the Netherlands. LIPIcs, vol. 140,
pp. 36:1–36:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019).
https://doi.org/10.4230/LIPIcs.CONCUR.2019.36

5. E. J. Linton, F.: Some aspects of equational categories. In: Proceedings of the Con-
ference on Categorical Algebra. pp. 84–94 (01 1966). https://doi.org/10.1007/978-
3-642-99902-4 3

6. Fujii, S.: A unified framework for notions of algebraic theory (2019), https://arxiv.
org/abs/1904.08541

7. Fujii, S., Katsumata, S., Melliès, P.: Towards a formal theory of graded monads.
In: Jacobs, B., Löding, C. (eds.) Foundations of Software Science and Computation
Structures - 19th International Conference, FOSSACS 2016, Held as Part of the Eu-
ropean Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eind-
hoven, The Netherlands, April 2-8, 2016, Proceedings. Lecture Notes in Computer
Science, vol. 9634, pp. 513–530. Springer (2016). https://doi.org/10.1007/978-3-
662-49630-5 30

8. Hasuo, I.: Generic weakest precondition semantics from mon-
ads enriched with order. Theor. Comput. Sci. 604, 2–29 (2015).
https://doi.org/10.1016/j.tcs.2015.03.047

9. Hyland, M., Plotkin, G.D., Power, J.: Combining effects: Sum and tensor. Theor.
Comput. Sci. 357(1-3), 70–99 (2006). https://doi.org/10.1016/j.tcs.2006.03.013

10. Hyland, M., Power, J.: Discrete Lawvere theories and computational
effects. Theoretical Computer Science 366(1), 144 – 162 (2006).
https://doi.org/10.1016/j.tcs.2006.07.007, algebra and Coalgebra in Computer
Science

11. Hyland, M., Power, J.: The category theoretic understanding of universal alge-
bra: Lawvere theories and monads. Electronic Notes in Theoretical Computer Sci-
ence 172, 437–458 (2007). https://doi.org/10.1016/j.entcs.2007.02.019, computa-
tion, Meaning, and Logic: Articles dedicated to Gordon Plotkin

12. Katsumata, S.: Parametric effect monads and semantics of effect systems.
In: Jagannathan, S., Sewell, P. (eds.) The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14,
San Diego, CA, USA, January 20-21, 2014. pp. 633–646. ACM (2014).
https://doi.org/10.1145/2535838.2535846

13. Kelly, M.: Basic Concepts of Enriched Category Theory. Lecture note series /
London mathematical society, Cambridge University Press (1982)

14. Kura, S.: Graded algebraic theories (2020), https://arxiv.org/abs/2002.06784
15. Lack, S., Power, J.: Gabriel-Ulmer duality and Lawvere theories enriched over

a general base. Journal of Functional Programming 19(3-4), 265–286 (2009).
https://doi.org/10.1017/S0956796809007254

Graded Algebraic Theories 419

https://doi.org/10.1145/2837614.2837652
https://doi.org/10.4230/LIPIcs.CONCUR.2019.36
https://doi.org/10.1007/978-3-642-99902-4_3
https://doi.org/10.1007/978-3-642-99902-4_3
https://arxiv.org/abs/1904.08541
https://arxiv.org/abs/1904.08541
https://doi.org/10.1007/978-3-662-49630-5_30
https://doi.org/10.1007/978-3-662-49630-5_30
https://doi.org/10.1016/j.tcs.2015.03.047
https://doi.org/10.1016/j.tcs.2006.03.013
https://doi.org/10.1016/j.tcs.2006.07.007
https://doi.org/10.1016/j.entcs.2007.02.019
https://doi.org/10.1145/2535838.2535846
https://arxiv.org/abs/2002.06784
https://doi.org/10.1017/S0956796809007254


16. Lucyshyn-Wright, R.B.B.: Enriched algebraic theories and monads for a system of
arities. Theory and Applications of Categories 31(5), 101–137 (2016)

17. Milius, S., Pattinson, D., Schröder, L.: Generic trace semantics and graded monads.
In: Moss, L.S., Sobocinski, P. (eds.) 6th Conference on Algebra and Coalgebra in
Computer Science, CALCO 2015, June 24-26, 2015, Nijmegen, The Netherlands.
LIPIcs, vol. 35, pp. 253–269. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2015). https://doi.org/10.4230/LIPIcs.CALCO.2015.253

18. Moggi, E.: Computational lambda-calculus and monads. In: Proceedings of the
Fourth Annual Symposium on Logic in Computer Science (LICS ’89), Pacific
Grove, California, USA, June 5-8, 1989. pp. 14–23. IEEE Computer Society (1989).
https://doi.org/10.1109/LICS.1989.39155

19. Nishizawa, K., Power, J.: Lawvere theories enriched over a general
base. Journal of Pure and Applied Algebra 213(3), 377 – 386 (2009).
https://doi.org/10.1016/j.jpaa.2008.07.009

20. Plotkin, G.D., Power, J.: Adequacy for algebraic effects. In: Honsell, F., Miculan,
M. (eds.) Foundations of Software Science and Computation Structures, 4th In-
ternational Conference, FOSSACS 2001 Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2001 Genova, Italy, April
2-6, 2001, Proceedings. Lecture Notes in Computer Science, vol. 2030, pp. 1–24.
Springer (2001). https://doi.org/10.1007/3-540-45315-6 1

21. Plotkin, G.D., Power, J.: Notions of computation determine monads. In: Nielsen,
M., Engberg, U. (eds.) Foundations of Software Science and Computation Struc-
tures, 5th International Conference, FOSSACS 2002. Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2002 Greno-
ble, France, April 8-12, 2002, Proceedings. Lecture Notes in Computer Science,
vol. 2303, pp. 342–356. Springer (2002). https://doi.org/10.1007/3-540-45931-6 24

22. Plotkin, G.D., Pretnar, M.: A logic for algebraic effects. In: Proceedings of the
Twenty-Third Annual IEEE Symposium on Logic in Computer Science, LICS 2008,
24-27 June 2008, Pittsburgh, PA, USA. pp. 118–129. IEEE Computer Society
(2008). https://doi.org/10.1109/LICS.2008.45

23. Plotkin, G.D., Pretnar, M.: Handling algebraic effects. Logical Methods in Com-
puter Science 9(4) (2013). https://doi.org/10.2168/LMCS-9(4:23)2013

24. Power, J.: Enriched Lawvere theories. Theory and Applications of Categories 6(7),
83–93 (1999)

25. Power, J.: Countable Lawvere theories and computational ef-
fects. Electr. Notes Theor. Comput. Sci. 161, 59–71 (2006).
https://doi.org/10.1016/j.entcs.2006.04.025

26. Sankappanavar, H.P., Burris, S.: A course in universal algebra. Springer-Verlag
(1981)

27. Smirnov, A.: Graded monads and rings of polynomials. Journal of Mathematical
Sciences 151(3), 3032–3051 (2008)

28. Staton, S.: Freyd categories are enriched Lawvere theories. Elec-
tronic Notes in Theoretical Computer Science 303, 197 – 206 (2014).
https://doi.org/https://doi.org/10.1016/j.entcs.2014.02.010, proceedings of
the Workshop on Algebra, Coalgebra and Topology (WACT 2013)

29. Street, R.: The formal theory of monads. Journal of Pure and Applied Algebra
2(2), 149 – 168 (1972). https://doi.org/10.1016/0022-4049(72)90019-9

420 S. Kura

https://doi.org/10.4230/LIPIcs.CALCO.2015.253
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1016/j.jpaa.2008.07.009
https://doi.org/10.1007/3-540-45315-6_1
https://doi.org/10.1007/3-540-45931-6_24
https://doi.org/10.1109/LICS.2008.45
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.1016/j.entcs.2006.04.025
https://doi.org/https://doi.org/10.1016/j.entcs.2014.02.010
https://doi.org/10.1016/0022-4049(72)90019-9


which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Graded Algebraic Theories 421

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

http://creativecommons.org/licenses/by/4.0/


A Curry-style Semantics of Interaction:
From untyped to second-order lazy λμ-calculus

James Laird

Department of Computer Science, University of Bath, UK

Abstract. We propose a “Curry-style” semantics of programs in which
a nominal labelled transition system of types, characterizing observable
behaviour, is overlaid on a nominal LTS of untyped computation. This
leads to a notion of program equivalence as typed bisimulation.
Our semantics reflects the role of types as hiding operators, firstly via an
axiomatic characterization of “parallel composition with hiding” which
yields a general technique for establishing congruence results for typed
bisimulation, and secondly via an example which captures the hiding
of implementations in abstract data types: a typed bisimulation for the
(Curry-style) lazy λμ-calculus with polymorphic types. This is built on
an abstract machine for CPS evaluation of λμ-terms: we first give a
basic typing system for this LTS which characterizes acyclicity of the
environment and local control flow, and then refine this to a polymorphic
typing system which uses equational constraints on instantiated type
variables, inferred from observable interaction, to capture behaviour at
polymorphic and abstract types.

1 Introduction

“Church-style” and “Curry-style” are used to distinguish programming lan-
guages in which the type of a term is intrinsic to its definition from those in
which it is an extrinsic property. The same distinction may be applied to se-
mantics of programming languages: in many models, type-objects are essential
to the interpretation of a term — e.g. as a morphism between objects (types)
in a category — but interpreting terms independently of their types (as in e.g.
realizability interpretations) may have conceptual and practical advantages, par-
ticularly for describing Curry-style type systems. The aim of this semantic in-
vestigation of higher-order programs is to develop a Curry-style semantics of
interaction by overlaying a labelled transition system of types onto a LTS of
untyped computation, so that the observable behaviour of a typed state is re-
stricted to the actions made available by its type. Our objective is to apply this
to lazy functional programs: untyped and with Curry-style polymorphic typing
systems, and to develop a theory of program equivalence — typed bisimulation
— able to describe genericity and abstract datatypes in this setting.

Game Semantics Games models for programming languages are typically (but
not invariably) given in a Church-style: terms are interpreted as strategies on

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 422–441, 2020.
https://doi.org/10.1007/978-3-030-45231-5_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_22&domain=pdf


a specified two-player game which represents their type [2,9]. This kind of se-
mantics is compositional by definition, at the cost of forgetting the internal
computational behaviour of programs, and potentially excluding system level
behaviour [6]. It uses categorical structure to describe its models and prove key
results — in particular soundness with respect to an operational semantics.

By contrast, in operational game semantics [15,12], programs are interpreted
as states in a labelled transition system based directly on their syntax and oper-
ational semantics. Internal computation is retained but can be factored out by
restricting to observable behaviour. Soundness of these models “comes for free”
— instead, the fundamental property requiring non-trivial proof is that they are
compositional — that is, the equivalence induced on programs is a congruence.
Basic structure which supports and systematizes these proofs would be useful
(techniques such as Howe’s method are not available in this intensional setting).
We aim to show that defining operational game semantics in a Curry style gives
the opportunity to formulate and apply such structure. This is complementary
to characterization of the structure of operational game semantics at a categor-
ical level [18], into which we believe our semantics can fit well. Our motivation
and general methodology bears similarities to the programme of Berger, Honda
and Yoshida [3] —- in which Curry-style types are used to characterize the π-
calculus processes corresponding to functional and polymorphic programs — and
to typing systems for process calculi such as those described in [10].

Hiding using types We will interpret (extrinsic) types as hiding operators:
windows through which terms of a given type may interact with the world, while
their internal behaviour is hidden from external observation — both passive and
active. Our goal is to show that this interpretation can be used to model infor-
mation hiding in two key areas of higher-order computation. The first, “parallel
composition with hiding” is the fundamental operation on which game semantics
is based. We axiomatize the notion of a typing system for an LTS with such an
operation, in which a type is a state which characterizes precisely the possible
interaction between a function and its argument at that type.

The second form of information hiding for which we give a Curry-style in-
terpretation is hiding of implementation details using polymorphic (existential)
types as abstract data types. Our key example of a typed labelled transition
systems is a new model of the second-order λμ-calculus: we shall now discuss
the background and significance of this contribution.

1.1 Program Equivalence and Polymorphism

Our starting point is the lazy λ-calculus — the pure, untyped λ-calculus, evalu-
ated by weak head reduction — and its extension with first-class continuations,
the corresponding version of Parigot’s λμ-calculus [21]. As argued in [1], the
lazy λ-calculus approximates well to the behaviour of lazy functional program-
ming languages such as Haskell, and is thus an appropriate setting in which to
explore properties such as program equivalence, for which there is now a rich

A Curry-style Semantics of Interaction 423



and well-studied theory. For instance, open or normal form bisimilarity [25] is a
coinductively defined equivalence which extends β-equivalence to infinitary be-
haviours. It gives a purely intensional characterization of program equivalence
(by contrast to e.g. applicative bisimilarity, which involves quantifying over all
possible arguments) and has a variety of alternative characterizations — for
instance two terms are open bisimilar if and only if they have the same Levy-
Longo trees [19], or their (call-by-name) translations in the π-calculus are weakly
bisimilar [25,5]. (Or, indeed, if they are normal-form bisimilar as λμ-terms.)

Normal form bisimilarity of simply-typed λ-terms is just β-equivalence. How-
ever, extending to polymorphic types, such as those of the second-order λ-
calculus (System F) [7,24] poses deeper questions. A primary motivation for in-
troducing polymorphic types is that they can express abstract data types which
hide implementation details [20] (cf. the module systems of Haskell and ML). A
useful notion of program equivalence should therefore reflect this. As a simple
example, the untyped λ-terms λf.f λx.λy.x and λf.f λx.λy.y are clearly not nor-
mal form bisimilar. But at the second-order type ∃X.X � ∀Y.(∀X.X → Y ) → Y
(which they both inhabit in a Curry-style presentation), they should be be-
haviourally equivalent — since any function of type : ∀X.(X → Y ) will never call
its argument. In other words, the existential type ∃X.X “hides” the difference
between λf.f λx.λy.x and λf.f λx.λy.y. This is an observational equivalence,
but of a particularly fundamental kind, since it (and other equivalences involv-
ing abstract data types) is robust in the presence or absence of side-effects. It
can be captured by extensional methods such as applicative bisimilarity, which
was extended to a polymorphic setting in [26], but this requires quantification
over instantiating terms and types, whereas our semantics is based on unification
of instantiating types.

The problem is that comparing the evaluation trees of terms (e.g. by nor-
mal form bisimulation) does not capture the capacity of their types to restrict
interaction with the environment. Game semantics does reflect this interaction
(in various manifestations), and therefore offers a potential solution. Although
several games models for polymorphism do not capture data abstraction by ex-
istential types (including Hughes’ semantics of System F [8], which is faithful
with respect to βη-equivalence, and Curry-style models [16]) a series of related
approaches does so. These include translation into the (polymorphically typed)
π-calculus [4], and an operational form [17,27] and a traditional compositional
presentation [14,13] of game semantics.

In these semantics, values of polymorphic variable type are interpreted as
pointers to data of undisclosed type — e.g. a location where it is stored, or
a channel on which it may be received. Instantiation of universally quantified
type variables replaces this pointer-passing with copycat behaviour. This gives a
natural interpretation of polymorphism in settings such as the π-calculus, or lan-
guages with general references, where pointers are first-class objects. However, it
is closely associated with a Church-style presentation of second-order type sys-
tems — e.g. by the interpretation of type abstraction as an explicit creation of a
pointer; in the case of “typed normal form bisimulation” [17] the translation of

424 J. Laird



a term is explicitly determined by its type. This is significant because it is in the
presence of polymorphism that key differences between Church-style and Curry-
style emerge — for example, in allowing intersection types. The pointer-passing
models also exhibit behaviours which go beyond untyped functional interaction,
making their relationship to it unclear — in the game semantics [14], instantia-
tion violates the fundamental innocence and visibility conditions on strategies;
the π-calculus interpretation uses free name as well as bound name passing.

Curry-style semantics give a natural interpretation of second-order Curry-
style typing, with a simple relationship to the semantics of the untyped λμ-
calculus, by overlaying a more refined LTS of second order types on the same
underlying LTS of computations.

2 Typed Labelled Transition Systems

In this section we describe a notion of typed labelled transition system and an
associated equivalence: typed bisimulation. Based on this we axiomatize a simple
typing system for parallel composition with hiding and show that it preserves
typed bisimulation. Examples of typed LTS (in the form of models of the lazy
λμ-calculus and lazy λμ2-calculus) follow in the rest of the paper.

We work in the setting of nominal sets [23], which allows the introduction of
fresh names (for store locations, communication channels, types etc). Assume a
fixed, infinite set of atoms and a group G of permutations on them. A nominal
set X is an action of G on a set |X| such that each x ∈ |X| has a finite supporting
set of atoms such that if π(a) = a for all atoms in this set then π ·x = x. We write
sup(x) for the ⊆-least of these sets (which is the intersection of all supporting
sets for x).

Definition 1. A nominal LTS is a labelled transition system (S,Act ,→) such
that S (states) and Act (actions) are nominal sets and the transition relation →
is equivariant — i.e. for any π ∈ G, C

a−→ C ′ if and only if π · C π·a−→ π · C ′.

Similarly motivated notions of nominal LTS are developed in e.g. [22]. Our key
example — an abstract machine for direct-style CPS evaluation — is given in
the next section.

The directly observable part of a labelled transition system may be charac-
terized by defining a typing system for it. (Similar notions of typing system for
a process calculus are defined in [10], for example.)

Definition 2. A typing system for a nominal LTS (S;Act ;→) is a nominal
LTS (T ;Obs ; ↪→) such that Obs ⊆ Act, with a relation, ⦂ (typing), from S to T
which satisfies the following subject reduction properties for each C ⦂ T :

– If C
a−→ C ′ and T

a
↪→ T ′ then C ′ ⦂ T ′ (we write C ⦂ T a−→ C ′ ⦂ T ′).

– If C
a−→ C ′, where a �∈ Obs and sup(C ′) ∩ sup(T ) ⊆ sup(C ) ∩ sup(T ), then

C ′ ⦂ T (we write C ⦂ T −→ C ′ ⦂ T ).

A Curry-style Semantics of Interaction 425



Subject reduction requires that actions which are observable (i.e. in Obs) change
a computation and its type in a way that respects the typing relation, and that
those which are internal to a computation (i.e. in Act\Obs) maintain its type
(provided that any names fresh for the state are also fresh for its type).

Let =⇒ be the reflexive, transitive closure of the internal reduction −→, and
define C ⦂ T a

=⇒ C ′ ⦂ T ′ if C ⦂ T =⇒ D ⦂ T a−→ D ′ ⦂ T ′ =⇒ C ′ ⦂ T ′. To define
weak bisimulation between typed states based on these relations, we need to
take account of the fact that a name may be fresh for one, but already occur
internally in the other (cf. [22]). So bisimulation is defined up to the equivalence
on the states of type T which allows permutation of internal names: C 
T C ′ if
there exists a permutation π ∈ stab(T ) (i.e. π · T = T ) such that C ′ = π · C .

Definition 3. A typed bisimulation is a binary, symmetric, equivariant relation
R between typed states (C ⦂ S), such that if (C ⦂ S)R(D ⦂ T ) then S = T and:

1. If C ⦂ T a−→ C ′ ⦂ T ′ then there exists D′ 
T D such that (D′ : T ) a
=⇒ (D′′ :

T ′), where (C ′ ⦂ T ′)R(D ′′ : T ′).
2. If C ⦂T −→ C ′⦂T then there exists D′ 
T D such that (D′ : T ) =⇒ (D′′ : T ),

where (C ′ ⦂ T )R(D ′′ : T ).

Typed bisimilarity is the largest typed bisimulation: states C and D are bisimilar
at type T (C ∼T D) if (C ⦂ T ) and (D ⦂ T ) are typed bisimilar.

2.1 Parallel Composition with Hiding

Having proposed an interpretation of types as operators which hide internal
communication, we now characterize the properties of a typing system for parallel
composition with hiding which entail that it preserves typed bisimulation (i.e.
the latter is a congruence).

Definition 4. An interaction structure is a nominal LTS (S;Act ;→) such that
Act = L∪({+,−}×L) for some set of L of (unpolarized) labels, with an equivari-
ant partial binary operation | on S (parallel composition) such that if C = C1|C2

then C
a−→ C ′ if and only if C ′ = C ′

1|C ′
2 for some C ′

1 and C ′
2 such that either:

– C1
a−→ C ′

1 and C ′
2 = C2, where (sup(C ′

1) ∪ sup(a)) ∩ sup(C2) ⊆ sup(C1) or,

– C ′
1 = C1 and C2

a−→ C ′
2, where (sup(C ′

2) ∪ sup(a)) ∩ sup(C1) ⊆ sup(C2) or,

– C1
pa−→ C ′

1 and C2
pa−→ C ′

2, where p ∈ {+,−}.

The nominal side-conditions require that any names which are fresh for the
component to which they are introduced are fresh for the whole state.

Parallel composition is typed using a ternary relation between types: T1

T2

� T3

means “T2 is an arrow type from T1 to T3” — there may be several arrow types
between two types (or none).

Definition 5. A typing system for an interaction structure (Comp,L, |) is a
typing system (T ; ({+,−} × L); ↪→) for Comp with an equivariant ternary rela-

tion, �, on T such that if T1

T2

� T3 then for any C1 ⦂ T1 and C2 ⦂ T2 such that

426 J. Laird



sup(C1) ∩ sup(C2) ⊆ sup(T1), the state C1|C2 is well-defined, has type T3 and
satisfies the following interaction conditions:

1. If C1
pl−→ C ′ and C2

pl−→ C ′
2 then T1

pl
↪→ T ′

1 and T2
pl
↪→ T ′

2 such that T ′
1

T ′
2

� T3.

2. If C2
a−→ C ′

2 and T3
a
↪→ T ′

3 (with sup(T ′
3)∩sup(T2) ⊆ sup(T3)) then T2

a
↪→ T ′

2

such that T1

T ′
2

� T ′
3.

3. If C1
a−→ C ′

1 and T3
a′
↪→ T ′

3 then a �= a′.

Informally (1) requires that if C1 and C2 may communicate, then this is permit-
ted by T1 and T2, and (2) and (3) require that the observable actions of C1|C2

permitted by T3 correspond to actions of C2 permitted by T3. Note that for any
C1⦂T1 and C2⦂T2 there exists C

′
1 
T1

C1 such that sup(C ′
1)∩sup(C2) ⊆ sup(T1)

— i.e. there are no sidechannels of communication between C ′
1 and C2 — and

thus C ′
1|C2 is well-defined, has type T3 and satisfies the interaction conditions.

Moreover, these are sufficient to establish that typed bisimulation is a congru-
ence with respect to parallel composition with hiding: a result that we will apply
to our examples in the rest of the paper.

Proposition 1. If C1 ∼T1 D1 and C2 ∼T2 D2 (and sup(C1)∩sup(C2), sup(D1)∩
sup(D2) ⊆ sup(T1)) where T1

T2

� T3 then C1|C2 ∼T3 D1|D2.

Proof. We first establish the following renaming property: if C1 ⦂T1 −→ C ′
1 ⦂T1

then there exists π ∈ stab(T1) ∩ stab(T2) ∩ stab(T3) such that C1|C2 ⦂ T3 −→
π(C ′

1)|C2⦂T3 —by renaming any fresh names introduced by internal transition so
that they are also fresh for C2. Similarly, any internal reduction of C2 corresponds
to a reduction of C1|C2, up to such a renaming.

So suppose C1|C2 ⦂ T3
pl−→ C ′ ⦂ T3 (an observable transition). By definition

of an interaction structure, and conditions (2) and (3), C2 ⦂ T2
pl−→ C ′

2 ⦂ T ′
3 such

that T1

T ′
2

� T ′
3. By assumption, there exists D ′

2 
T2
D2 such that D ′

2 ⦂ T2 =⇒
D ′′

2
a−→ D ′′′

2 ⦂ T ′
2 =⇒ D ′′′′

2 ⦂ T ′
2 and D ′′′′

2 ∼T ′
2
C ′

2 and by the renaming property
we may rename any fresh names in this reduction sequence to avoid clashes with
D1 — i.e. there exists π ∈ stab(T1) ∩ stab(T2) ∩ stab(T3) such that:

D1|D ′
2 ⦂ T3 =⇒ D1|π(D ′′

2 )
π(a)−→ D1|π(D ′′′

2 ) ⦂ T ′
3 =⇒ D1|π(D ′′′′

2 ) ⦂ T ′
3, and hence

π−1(D1)|π−1(D ′
2) ⦂ T3

pl
=⇒ π−1(D1)|D′′′′

2 as required (since bisimilarity is closed
under permutation of internal names).

If C1|C2 ⦂ T3 performs an internal action then this is either an internal
action of C1 ⦂ T1 or C2 ⦂ T2, which is similar to the observable case, or else

C1
pl−→ C ′

1 and C2
pl−→ C ′

2 — so that C1|C2 performs the internal action l. Then

by interaction condition (1), T1
pl
↪→ T ′

1 and T2
pl
↪→ T ′

2 such that T ′
1

T ′
2

� T3. So since
C1 ∼T1

D1 and C2 ∼T2
D2, there exist D′

1 ∼T1
D1 and D ′

2 ∼T2
D2 such that

D ′
1 ⦂ T1 =⇒ D ′′

1 ⦂ T1
pl−→ D ′′′

1 ⦂ T ′
1 =⇒ D ′′′′

1 ⦂ T ′
1 and D ′

2 ⦂ T2 =⇒ D ′′
2 ⦂ T2

pl−→
D ′′′

2 ⦂ T ′
2 =⇒ D ′′′′

2 ⦂ T ′
1 where C ′

1 ∼T ′
1
D′′′′

1 and C ′
2 ∼T ′

2
D ′′′′

2 . So using the

A Curry-style Semantics of Interaction 427



renaming property we may obtain π ∈ stab(T1) ∩ stab(T2) ∩ stab(T3) such that
D ′

1|D ′
2 ⦂T3 =⇒ π(D ′′

1 )|π(D ′′
2 )⦂T3 −→ π(D ′′′

1 )|π(D ′′′
2 )⦂T3 =⇒ π(D ′′′′

1 )|π(D ′′′
2 )⦂T3

as required.

3 The Lazy λμ-calculus

We now define a typed interaction system giving an interpretation of the (un-
typed) lazy λμ-calculus — i.e. a direct-style CPS interpretation of lazy functional
computation — yielding a novel, direct characterization of normal form bisim-
ulation as typed bisimulation. This acts as a non-trivial example of a typed
interaction system (as defined in the previous section) and a stepping stone to
the polymorphic typing system for the same underlying language in the next sec-
tion. First, we define an abstract machine for lazy CPS evaluation, in the form
of a nominal LTS in which actions make explicit the calls made by a program
to its environment. (Cf the analysis of λμ-calculus by π-calculus translation in
[5].)

Definition 6. The unnamed and named terms of the untyped λμ-calculus [21]
are given (respectively) by the following grammars:
t ::= x | λx.t | tt | μα.M
M ::= [α]t

We equip the set of λμ-terms with a group action by assuming a set N of
distinguished identifiers, partitioned into sorts (infinite subsets) of λ-variables
(x, y, z, . . .) and μ-variables (α, β, γ . . .) and (for later use) type variables (X,Y, Z, . . .).
The group of sort-preserving permutations on N acts pointwise on expressions
(i.e. permuting elements of N and fixing symbols not in N ). We form a nominal
set of λμ-terms consisting of the terms in which the free variables are all in N
and those which occur bound (by λ or μ) are not, so that the support of a term
is its set of free variables.

Based on this syntax, we define the sets of expressions (control terms) which
determine the next transition of our abstract machine.

Definition 7. Control terms are given by the grammar: A ::= M | V | K | •

– M ranges over the set of λμ programs (named terms) — i.e. M ::= [α]t.
– V ranges over the set of λμ values (λ-abstractions) — i.e. V ::= λx.t.
– K ranges over the set of λμ continuations (named contexts with a single hole

at head position) — i.e. K[•] ::= [α] • | K[•t].
– • is the empty context.

As above we form a nominal set of control terms in which the support of each
element is its set of free variables.

Definition 8. An environment is a sort-respecting finite partial function E from
N into the nominal sets of unnamed λμ-terms and continuations. The nominal
set of environments has the G-action: (π · E)(a) = π · (E(π−1 · a)).

428 J. Laird



Direct-style CPS evaluation of a program in an environment proceeds as follows:

– A variable inside a continuation (E ;K[x]) fetches the term bound to x and
names it with a fresh μ-variable which is bound to K.

– A β-redex inside a continuation (E ;K[λx.ts]) binds s to a fresh λ-variable y
and K to a fresh μ-variable α and evaluates [α]t[y/x].

– A μ-abstraction inside a continuation (E ;K[μα.M) binds K to β and eval-
uates M [β/α].

– A named value (E ; [α]V ) calls the continuation bound to α with V .

These transitions are labelled with actions of the form a〈−→b 〉, where a is the

variable called (if any) and
−→
b are the fresh variables created (if any). Except

for μ-abstraction reduction, each of these evaluation rules decomposes into a
complementary pair of input and output rules corresponding to the behaviour
of the active (or “positive”) part of the program and, a passive (or “negative”
part). This decomposition is made precise in Definition 10 (parallel composition
for configurations).

Definition 9. The nominal labelled transition system Compλμ is defined:

– States are pairs (E ;A), where E is an environment and A is a control term.
– The set of actions is L∪ ({+,−}×L), where L is the nominal set of labels⋃

x,α∈Nλ×Nμ

{α, x〈α〉, 〈α, x〉, 〈α〉}

– The transitions are given in Table 1. By convention, a variable name men-
tioned on the right of a rule but not the left is assumed not to occur there.

The polarity of a state is positive if the control term is a program or continuation,
and negative if it is a value or the empty context (we write V• for a passive term
of either kind). Unpolarized transitions send positive states to positive states.
Except for μ-abstraction reduction, each corresponds to complementary, positive
and negative transitions, which send positive states to negative states and vice-
versa.

(E [α �→ K]; [α]V•)
α−→ (E ;K[V•])

(E ;K[(λx.s) t])
〈y,α〉−→ (E , (y �→ t), (α �→ K); [α]s[y/x])

(E [x �→ t];K[x])
x〈α〉−→ (E , (α �→ K); [α]t)

(E ;K[μα.M ])
〈β〉−→ (E , (β �→ K);M [β/α])

(E ; [α]V•)
+α−→ (E ;V•) (E [α �→ K];V•)

−α−→ (E ;K[V•])

(E ;K[• t]) +〈y,α〉−→ (E , (y �→ t), (α �→ K); •) (E ;λx.t) −〈y,α〉−→ (E ; [α]t[y/x])
(E ;K[x])

+x〈α〉−→ (E , (α �→ K); •) (E [x �→ t]; •) −x〈α〉−→ (E ; [α]t)
Table 1: Abstract machine for CPS evaluation of lazy λμ-calculus

A Curry-style Semantics of Interaction 429



( ;λf.f λx.x) ( ; [α] • λy.y)
−〈g,β〉
↓

+〈g,β〉
↓

( ; [β]gλx.x) ((β �→ [α]•), (g �→ λy.y); •)
+g〈γ〉
↓

−g〈γ〉
↓

((γ �→ [β]• λx.x); •) ((β �→ [α]•), (g �→ λy.y); [γ]λy.y)
−γ

↓
+γ

↓
((γ �→ [β] • λx.x); [β]• λx.x) ((β �→ [α]•), (g �→ λy.y);λy.y)

+〈z,δ〉
↓

−〈z,δ〉
↓

(γ �→ [β]• λx.x), (z �→ λx.x), (δ �→ [β]•); •) ((β �→ [α]•), (g �→ λy.y); [δ]z)
−z〈ε〉
↓

+z〈ε〉
↓

(γ �→ [β]• λx.x), (z �→ λx.x), (δ �→ [β]•); [ε]λx.x) ((β �→ [α]•), (g �→ λy.y), (ε �→ [δ]•); •)
+ε

↓
−ε

↓
(γ �→ [β]• λx.x), (z �→ λx.x), (δ �→ [β]•);λx.x) ((β �→ [α]•), (g �→ λy.y), (ε �→ [δ]•); [δ]•)

−δ

↓
+δ

↓
(γ �→ [β]• λx.x), (z �→ λxy.x), (δ �→ [β]•); [β]λx.x) ((β �→ [α]•), (g �→ λy.y), (ε �→ [δ]•); •)

+β

↓
−β

↓
(γ �→ [β]• λx.x), (z �→ λx.x), (δ �→ [β]•);λx.x) ((β �→ [α]•), (g �→ λy.y), (ε �→ [δ]•); [α]•)

Fig. 1: Example traces evaluating [α](λf.f λx.x)λy.y

To define an interaction structure on Compλμ (Definition 4) we require a
parallel composition operation on configurations.

Definition 10. [Parallel Composition] On control terms, let | be the (least) par-
tial operation such that A|• = •|A = A and K|V = V |K = K[V ].
Given configurations C1 = (E1;A1) and C2 = (E2;A2) let C1|C2 � (E1 ∪
E2;A1|A2), provided dom(E)∩dom(E) = ∅ and A1|A2 is well-defined. (C1|C2 is
undefined, otherwise.)

By inspection of the transitions in Table 1, we may see that C1|C2 has precisely
the transitions of C1 or C2 (provided any fresh names are fresh for C1|C2),
together with internal transitions arising from communication between C1 and
C2. Therefore we have an interaction structure according to Definition 4. Figure
1 gives an illustrative example: the evaluation of [α](λf.f λx.x)λy.y — which is
the parallel composition (λf.f λx.x)|([α] • λy.y) — to [α]λx.x.

3.1 A Typing System

We now define a basic typing system for configurations which records minimal
information about the control term (whether it is a program, value, continuation
or empty context) but captures a more significant property of environments —
acyclicity. This has practical relevance for memory management, but its imme-
diate significance is that the second order typing in the next section relies on

430 J. Laird



the fact that an acyclic environment may be contracted into a valuation by it-
eratively replacing variables bound in the environment until none occur as free
variables.

Definition 11. Given a nominal environment E, define the binary relation on
N : a �E b if a ∈ sup(E(b)) and let �∗

E be its transitive closure. Say that E is
a pre-valuation (i.e. acyclic) if this is a strict partial order — i.e. a ��∗ a for
all a ∈ N . E is a valuation if �E=�∗

E — i.e. sup(E(a)) ∩ dom(E) = ∅ for all
a ∈ dom(E).
We assume a closure operation which takes an expression e and pre-valuation
E to an expression E(e) obtained by replacing each atom a ∈ dom(E) with
E(a) in e, having the property that sup(E(e)) ∩ dom(E) =

⋃
{sup(E(a)) | a ∈

sup(e) ∩ dom(E)}.
Lemma 1. For any pre-valuation E there is a unique valuation E∗ such that
E∗(E(e)) = E∗(e) for all expressions e.

Proof. Defining E i by E i+1(a) = E i(E(a)), the E i form a chain of pre-evaluations
such that the �E downward closure of

⋃
{sup(E i(a)) ∩ dom(E) | a ∈ dom(E)}

is empty or strictly decreasing, and thus is empty for some k — i.e. Ek is a
pre-valuation and thus Ek(E(a)) = E(Ek(a)) = Ek(a) for all a ∈ dom(E), and so
E∗(E(e)) = E∗(e) for all expressions e. If E∗(e) = E∗(E(e)) for all expressions e,
then E∗(e) = E∗(Ek(e)) = Ek(e) for all e.

Definition 12. The basic types for control terms are tuples Γ � τ ;Δ where
τ ∈ {�,⊥} and Γ,Δ are non-repeating sequences — i.e. totally ordered finite
sets — of λ and μ variables in N , respectively.

A control term A is well-typed with Γ � τ ;Δ if FV (A) ⊆ Γ ∪Δ and τ = �
if and only if A is a value or continuation. Basic types form a nominal set with
the evident pointwise G-action.

Configurations are typed with polarized versions of these types. Given a polar-
ized context (non-repeating sequence of polarized variables) Γ = p1x1, . . . , pnxn

we write |Γ | for the unpolarized context x1, . . . , xn, Γ for the polarized con-
text p1x1, . . . , pnxn, and Γ p for the (unpolarized) restriction of Γ to p-polarized
elements.

Definition 13. The nominal LTS Tyλμ of basic λμ configuration types:

– States are polarized configuration types — triples Γ � pτ ;Δ, where pτ ∈
{+,−}×{�,⊥} and Γ and Δ are polarized contexts of λ and μ variables in
N .

– Actions are the polarized actions of Compλμ — Obs = {+,−} × L
– Transitions are given by the rules in Table 2.

We now define a typing relation from configurations to types. Let Γ be a polar-
ized context. A pre-valuation for Γ is a pre-valuation E such that Γ+ ⊆ dom(E),
sup(E(a)) ⊆ dom(E)∪Γ− for every a ∈ dom(E), and if a, b ∈ Γ and a �∗

E b then
a <Γ b. Observe that if E is a pre-valuation for Γ , then E∗ is a valuation for Γ
such that for all a ∈ Γ+, FV (E∗(a)) ⊆ Γ−.

A Curry-style Semantics of Interaction 431



Γ � p�;Δ
p〈x,α〉
↪→ Γ, px � p⊥;Δ, pα

Γ [px] � p⊥;Δ
px〈α〉
↪→ Γ � p⊥;Δ, pα

Γ � p�;Δ[pα]
pα
↪→ Γ � p⊥;Δ

Γ � p⊥;Δ[pα]
pα
↪→ Γ � p�;Δ

Table 2: Transitions of basic configuration types

Definition 14 (λμ Typing Relation). (E ;A) ⦂ (Γ � pτ ;Δ) if pol(E ;A) = p
and E is a pre-valuation for Γ ∪Δ such that Γ− � E∗(A) : τ ;Δ−, and for each
x ∈ Γ+, Γ− � E∗(x) : �;Δ− and each α ∈ Δ+, Γ− � E∗(α) : �;Δ−.

It is straightforward to check that this satisfies the subject reduction properties
and thus defines a type system for Compλμ.

Remark 1. We may apply a second constraint via our type system: local control
flow — that continuations are called according to a LIFO discipline and thus
may be stored on a stack (in game semantic terms, the well-bracketing condition).
Evaluation of λ-terms by internal (and positive) transitions naturally satisfies
this property — we can use types to ensure that the environment also does so.

Definition 15. A configuration type Γ � pτ ;Δ satisfies the local control condi-
tion if the polarities of μ-variables in Δ are alternating, and the polarity of the
last element of Δ (if any) is p.

Transitions for local control types are given by refining the rules for calling a
continuation to enforce stack discipline:

Γ � p�;Δ, pα
pα−→ Γ � p⊥;Δ

Γ � p⊥;Δ, pα
pα−→ Γ � p�;Δ

Subject reduction holds with respect to λ-configurations (in which the con-
trol term, and all terms and continuations in the environment, contain no μ-
abstractions).

3.2 A Typed Interaction Structure

We now define an arrow relation, allowing a characterization of parallel composi-
tion with hiding for acyclic configurations. (Acyclicity is not preserved by union
of environments in general, so the typing rules give a useful way of identifying
pairs of configurations for which it does hold.)

Definition 16. The arrow relation on configurations Ti = Γi � pτi;Δi is de-

fined pointwise — T1

T2

� T3 if Γ1

Γ2

� Γ3, Δ1

Δ2

� Δ3, and pτ1
pτ2
� pτ3 — where

– For any polarized contexts, Σ1

Σ2

� Σ3 if Σ1 and Σ3 have disjoint underlying
sets of elements and Σ2 is an interleaving of Σ1 and Σ3.

432 J. Laird



– pτ1
pτ2
� pτ3 iff pτ1 = −⊥ and pτ2 = pτ3 or pτ3 = +⊥ and pτ2 = pτ1.

It remains to show that this satisfies Definition 5.

Proposition 2. (Tyλμ,�) is a well-defined typing system for (Compλμ, |).

Proof. Given C1 = (E1;A1) and C2 = (E2;A2), suppose C1 : T1, C2 : T2 and
sup(C1) ∩ sup(C2) ⊆ sup(T1) = |Γ1| ∪ |Δ1|:

– A1|A2 is well-defined, and has type τ3, since either A1 : −⊥ (i.e. A1 = •) and
so A1|A2 : τ2, or A1 and A2 have complementary types, and so A1|A2 : +⊥
(i.e. they are a term and context which fit together to give a program).

– E1 ∪ E2 is a pre-valuation, since the directed graph (�E1
∪ �E2

) is acyclic.
(Any cycle in this graph would have to contain vertices from both �E1

and
�E2

, since both fragments are acyclic. Any path which enters and leaves one
fragment must begin and end on points which are ordered by Γ ∪Δ and so
composing such paths cannot lead to a cycle.)

Moreover, it is straightforward to verify that the interaction conditions are sat-
isfied and that we therefore have a typed interaction structure.

Thus, by Proposition 1, typed bisimilarity is preserved by parallel composition
plus hiding.

Proposition 3. If C1 ∼T1
D1, C2 ∼T2

D2 and T1

T2

� T3 then C1|C2 ∼T3
D1|D2.

It immediately follows that (for example) bisimilarity of values is preserved by
placing them inside the same continuation — i.e. if ( ; v) and ( ; v′) are bisimilar
at type Γ � −�;Δ then ( ;K[v]) and ( ;K[v′]) are bisimilar at type Γ � +⊥;Δ.
Moreover, if typed bisimilarity is extended to an equivalence on all λμ-terms —
s ∼Γ ;Δ t if ( ; [α]s) ∼−Γ�+⊥;−Δ,−α ( ; [α]t), for α �∈ Δ—we may use Proposition
3 to show that if s ∼Γ ;Δ t then for any compatible context, C[t] ∼Γ ;Δ C[t′].

4 A Polymorphic Type System

In this section we describe a more restrictive and informative typing system for
the interaction structure of λμ configurations. This yields a model of the lazy
λμ2-calculus — i.e. lazy λμ-calculus with polymorphic (second-order) Curry-
style typing, which we now describe.

In order to fit such a type system to a semantics of lazy evaluation to weak
head-normal form, we combine λ-abstraction and application with abstraction
and instantiation of finite sequences of type variables — i.e. function types take
the form ∀(X1 . . . Xn).σ → τ , where X1 . . . Xn is a finite, non-repeating sequence
of type variables. The judgments Θ � τ (τ is a well-formed type over the context
of type-variables Θ) are derived according to the rules:

Θ,X,Θ′�X
Θ,X1,...,Xn�σ Θ,X1,...,Xn�τ

Θ�∀(X1...Xn).σ→τ

A Curry-style Semantics of Interaction 433



Typing judgments are given with respect to an equational context (finite
sequence of equations between types). These contexts play a key role in defining
states in our LTS of types — they record constraints that type-instantiations
must satisfy. For example, if a continuation K (with a hole) of type σ is called
with an argument v of type τ then the type variables in σ and τ must have been
instantiated so as to make these types equal. Formally, we define the judgment
Θ � Ξ (Ξ is a well-formed equational context over Θ) as follows:

Θ�
Θ�Ξ Θ�σ Θ�τ

Θ�Ξ,σ=τ

Type equality judgments with respect to an equational context, of the form
Θ;Ξ � σ = τ (where Θ � Ξ, σ, τ) are derived according to the rules:

Θ;Ξ[σ=τ ]�σ=τ Θ;Ξ�τ=τ
Θ;Ξ�ρ=τ Θ;Ξ�σ=τ

Θ;Ξ�ρ=σ

Θ;Ξ�∀−→X.σ→τ=∀−→X.σ′→τ ′

Θ,
−→
X ;Ξ�σ=σ′

Θ;Ξ�∀−→X.σ→τ=∀−→X.σ′→τ ′

Θ,
−→
X�τ=τ ′

Θ,
−→
X ;Ξ�σ=σ′ Θ,

−→
X�τ=τ ′

Θ;Ξ�∀−→X.σ→τ=∀−→X.σ′→τ ′

A valuation V for Θ satisfies an equational context Θ � σ1 = τ1, . . . , σn = τn if
V(σi) ≡ V(τi) for each i ≤ n.

Lemma 2. Θ;Ξ � σ = τ if and only if for all valuations V which satisfy Ξ,
V(σ) ≡ V(τ).

A λμ2 type-in-context is a tuple Θ;Ξ;Γ � τ ;Δ, where Θ is a context of type
variables and Ξ is an equational context, τ is a λμ2-type (or ⊥) and Γ and Δ
are (respectively) sequences of λ-variables and μ-variables and their types (all
over Θ). Assigning this type to a term may be understood as asserting that
“for any valuation V of the type-variables in Θ which satisfies Ξ, the judgement
V(Γ ) � t : V(τ);V(Δ) is valid”. So, for example, X,Y ;Y = X → X; � λx.x : Y ;
is derivable according to the rules in Table 3. Note that there are no rules for
introducing or discharging equational assumptions — they will be generated by
the transitions of the LTS — so the terms of type Θ; ;Γ � t : τ ;Δ are precisely
those derivable in second-order λμ-calulus without type equality judgments.

Θ;Ξ;Γ [x:τ ]�x:τ ;Δ
Θ;Ξ;Γ�t:σ;Δ Θ;Ξ�σ=τ

Θ;Ξ;Γ�t:τ ;Δ
Θ,X1:κ,...,Xn:κn;Ξ;Γ,x:σ�t:τ ;Δ
Θ;Ξ;Γ�λx.t:∀X1...Xn.(σ→τ);Δ

Θ;Ξ;Γ�t:∀X1...Xn.σ→τ ;Δ Θ�ρ1,...,ρn Θ;Ξ;Γ�s:σ[ρ1/X1...ρn/Xn];Δ
Θ;Ξ;Γ�ts:τ [ρ1/X1...ρn/Xn];Δ

Θ;Ξ;Γ�t:τ ;Δ[α:τ ]
Θ;Ξ;Γ�[α]t:⊥;Δ

Θ;Ξ;Γ�M :⊥;Δ,α:τ
Θ;Ξ;Γ�μx.M :τ ;Δ

Table 3: Typing Judgments for the lazy λμ2-Calculus

434 J. Laird



4.1 Second-Order Configuration Types

We now define a second-order typing system for the interaction structure Compλμ
of λμ configurations. Its states (second-order configuration types) capture the
totality of information about the types of the control term and environment,
and the instantiations for type variables by both a program and its environment,
which may be inferred by an external observer of their interaction.

Definition 17. A second-order configuration type is a polarized λμ2 type-in-
context — a tuple Θ;Ξ;Γ ;� pτ ;Δ, where Θ is a polarized context of type-
variables, and Ξ is a polarized equational context, Γ and Δ are polarized contexts
of typed λ and μ variables and pτ is a polarized λμ2-type (or ⊥), all over Θ .

We place a further constraint — “polarized satisfiability” — on the configuration
types which are permitted as states. This requires that their equational contexts
can actually be satisfied by a program and environment successively instanti-
ating type variables quantified positively and negatively (respectively), without
knowing the types instantiated by the counterparty.

Definition 18. A pre-valuation V for a polarized context of type variables Θ
positively satisfies the polarized equational context Θ � Ξ (written V �Θ Ξ)
if for any pre-valuation W for Θ, the first formula in Ξ not satisfied by the
valuation (V ∪W)∗ for |Θ| (if any) is negative. Θ � Ξ is (polarized) satisfiable
if Ξ � Θ and Θ � Ξ are both positively satisfiable. Note that this implies that
the underlying context |Θ| � |Ξ| is satisfiable.

Determining whether a polarized context is satisfiable is equivalent to a series
of conditional (first-order) unification problems: these can be solved using the
algorithm for first-order unification [11]. We place an equivalence relation on con-
figuration types (cf. structural congruence of processes), allowing the principal
type to be replaced by any of the (finitely many) types to which it is equivalent
under Ξ.

Definition 19. (Θ;Ξ;Γ � pτ ;Δ) � (Θ;Ξ;Γ � pτ ′;Δ) if Θ;Ξ � τ = τ ′.

The (bipartite, nominal) LTS Tyλμ2 of λμ2 is defined:

– States are �-classes of satisfiable configuration types Θ;Ξ;Γ � pτ ;Δ.
– Actions are polarized actions of Compλμ: Obs = {+,−} × L.
– Transitions are given by the rules in Table 4.

To define a typing relation between configurations and λμ2-configuration
types, we first define typing judgements Θ;Ξ;Γ � A : τ ;Δ for control terms. In
the case of programs and values, these are as derived according to the rules in
Table 3. For continuations, the rules

Θ;Ξ;Γ�[α]•:τ ;Δ[α:τ ]
Θ;Ξ;Γ�K:τ [ρ1/X1...ρn/Xn];Δ Θ;Ξ;Γ�s:σ[ρ1/X1...ρn/Xn]

Θ;Ξ;Γ�K[•s]:∀X1...Xn.σ→τ ;Δ

are equivalent to typing Θ;Ξ;Γ � K : τ ;Δ if Θ;Ξ;Γ, • : τ � K[•] : ⊥;Δ. The
empty context has type ⊥ in any well-formed context.

A Curry-style Semantics of Interaction 435



Θ;Ξ;Γ � p∀X1 . . . Xn.σ → τ ;Δ
p〈x,α〉
↪→ Θ, pX1, . . . , pXn;Ξ;Γ, px : σ � p⊥;Δ, pα : τ

Θ;Ξ;Γ [px : τ ]; p⊥ px〈α〉
↪→ Θ;Ξ;Γ � p⊥;Δ, pα : τ

Θ;Xi;Γ � p⊥;Δ[pα : τ ]
pα
↪→ Θ;Ξ;Γ � pτ ;Δ

Θ;Ξ;Γ � pσ;Δ[pα : τ ]
pα
↪→ Θ;Ξ, p(σ = τ);Γ � p⊥;Δ

Table 4: Transitions of second-order configuration types

Definition 20 (Typing Relation). Let V be a valuation for Θ which positively
satisfies Ξ, and define V � (E ;A) ⦂ Θ;Ξ;Γ � pτ ;Δ if E is a pre-valuation
for Γ,Δ, such that Θ−;V(Ξ−);V(Γ−) � E∗(A)) : V(τ);V(Δ−) and for each
x : σ ∈ Γ+, Θ−;V(Ξ−);V(Γ−) � E∗(x) : V(σ);V(Δ−) and each α : σ ∈ Δ+,
Θ−;V(Ξ−);V(Γ−) � E∗(α) : V(σ);V(Δ−).

Let C ⦂ T if there exists a valuation V for Θ such that V � C ⦂ T .

Note that if C ⦂ T and T � T ′ then C ⦂ T ′, so typing is a well-defined relation
from configurations to equivalence classes of configuration types.

Proposition 4. (Compλμ ⦂ Tyλμ2) satisfies the subject reduction property.

Proof. For the observable transitions, this is a straightforward observation that
the typing relation is preserved. For internal transitions (specifically, β reduc-
tions), we use the corresponding subject reduction property for λμ2 substitu-
tions — i.e. if Θ;Ξ;Γ � K[λx.ts] : ⊥;Δ then Θ;Ξ;Γ � K[t[s/x]] : ⊥;Δ and if
Θ;Ξ;Γ � K[μα.t] : ⊥;Δ then Θ;Ξ;Γ � t[K/α] : ⊥;Δ.

Figure 2 gives an example illustrating the role of types in constraining be-
haviour: a trace of the value λf.f v ⦂ ∃X.X, where v is an arbitrary typable
value (recall that ∃X.X � ∀Y.(∀X.X → Y ) → Y ). Observe that there are
no transitions from the the final state — a call to γ is not possible because
−Y,+X � −(Y ′ = X ′) is not negatively satisfiable. In fact, the tree of transi-
tions of ∃X.X branches only on negative transitions (i.e. Opponent moves). It
follows that any configuration of this type will have the same set of transitions,
and that therefore λf.f λxy.x ∼∃X.X λf.f λxy.y as proposed in the introduction.

4.2 A Second-Order Typed Interaction Structure

It remains to prove that Tyλμ2 is a well-defined typing system for the interaction
structure on Compλμ, and that typed bisimulation is therefore a congruence. We
need to establish that the pointwise extension of the arrow relation (Definition

16) to second-order configuration types (i.e. T1

T2

� T3 if Θ1

Θ2

� Θ3, Ξ1

Ξ2

� Ξ3,

Γ1

Γ2

� Γ3, Δ1

Δ2

� Δ3, and pτ1
pτ2
� pτ3) satisfies the conditions of Definition 5

— that if C1 = (E1;A1) ⦂ T1 and C2 = (E2;A2) ⦂ T2, where T1

T2

� T3 and

436 J. Laird



( ;λf.f v) ⦂ ( ; ; � −(∀X.X → Y ) → Y ; )

−〈g,α〉
↓

( ; [α]g v) ⦂ (−Y ′; ;−g : ∀X.X → Y ′ � +⊥;−α : Y ′)
+g〈β〉
↓

((β 
→ [α] • v); •) ⦂ (−Y ′; ;−g : ∀X.X → Y ′ � −⊥;−α : Y ′,+β : ∀X.X → Y ′

−β

↓
((β 
→ [α] • v); [α] • v) ⦂ (−Y ′; ;−g : ∀X.X → Y ′ � +∀X.X → Y ′;−α : Y ′)

+〈z,γ〉
↓

((β 
→ [α] • v), (z 
→ v), (γ 
→ [α]•); •) ⦂ (−Y ′,+X′; ;−g : ∀X.X → Y ′,+z : X′ � −⊥;−α : Y ′,+γ : Y ′)
−z〈δ〉
↓

((β 
→ [α] • v), (z 
→ v), (γ 
→ [α]•); [δ]v) ⦂ (−Y ′,+X′; ;−g : ∀X.X → Y ′,+z : X′ � +⊥;−α : Y ′,+γ : Y ′,−δ : X′)
+δ

↓
((β 
→ [α] • v), (z 
→ v), (γ 
→ [α]•); v) ⦂ (−Y ′,+X′; ;−g : ∀X.X → Y ′,+z : X′ � −X′;−α : Y ′,+γ : Y ′)

Fig. 2: Trace of λf.f v : ∃X.X

sup(C1)∩sup(C2) ⊆ sup(T1), then C1|C2 is well-defined, has type T3 and satisfies
the interaction conditions.

By Proposition 2, C1|C2 = (E1 ∪ E2;A1|A2) is a well-defined configuration,
and E � E1 ∪ E2 is a pre-valuation for Γ3 ∪Δ3. By the assumption that C1 ⦂ T1

and C2 ⦂T2, there are valuations V1 � C1 ⦂T1 and V2 � C2 ⦂T2. Then V � V1∪V2

is a pre-valuation for Θ3. To show that V∗ � C1|C2 ⦂T3, we need to verify that:

Lemma 3. V positively satisfies Ξ3.

Proof. Let W be a pre-valuation for Θ3. The first formula in Ξ2 (if any) which
is not satisfied by V ∪ W = V1 ∪ V2 ∪W cannnot be positive in Ξ1 (positively
satisfied by V1) nor in Ξ2 (positively satisfied by V2), and so must be a negative
formula in Ξ3.

Lemma 4. Θ−
3 ;V∗(Ξ3);V∗(Γ−

3 ) � E∗(A1|A2) : V(τ);V∗(Δ−
3 )

Proof. Observe that E∗ = (E∗
1 · E∗

1 )
i and V = (V2 · V1)

i for some i ≤ n. Hence,
it suffices to prove by induction on i that Θ2; (V2 · V1)

i(Ξ2); (V2 · V1)
i(Γ−

2 ) �
(E∗

2 · E∗
1 )

i(A1|A2); (V2 · V1)
i(Δ−

2 ).

Similarly, each term and continuation assigned to an output variable is well-
typed under closure by V∗ and E∗ and thus:

Proposition 5. C1|C2 ⦂ T3.

It remains to show that the interaction conditions of Definition 5 are satisfied.

The key is establishing condition 1 — that if C1
pl−→ C ′

1 and C2
pl−→ C ′

2 then

T1
pl
↪→ T ′

1 and T2
pl
↪→ T ′

2 such that T ′
1

T ′
2

� T3. This requires some further investiga-
tion of configuration types.

A Curry-style Semantics of Interaction 437



The interesting cases are those where A1 ≡ λx.t and A2 ≡ K[•s] (or vice-
versa) and so they can perform the complementary actions −〈y, α〉 and +〈y, α〉.
We need to show that |Θ1|; |Ξ1| � τ is non-atomic — that is, |Θ1|; |Ξ1| � τ =
∀X1 . . . Xm.ρ → σ — for some ρ, σ. Observe that this implies that |Θ2|; |Ξ2| � τ
is also non-atomic (since Ξ2 contains the equations in Ξ1) so that T1 and T2 can
perform the complementary actions −〈y, α〉 and +〈y, α〉.

Since any derivation of a typing judgement for λx.t or K[•s] must conclude
with →-introduction followed by applications of the type-equality rule we have:

Lemma 5. If Θ;Ξ;Γ � λx.t : τ ;Δ or Θ;Ξ;Γ � K[•s] : τ ;Δ then Θ;Ξ � τ is
non-atomic.

Hence, by the assumption that (E1;λx.t)⦂(Θ1;Ξ2;Γ1 � −τ ;Δ1) and (E2;K[•t])⦂
(Θ2;Ξ2;Γ2 � +τ ;Δ) we know that Θ1;V1(Ξ1) � V1(τ) and Θ2;V∗

2 (Ξ2) � V∗
2 (τ)

are non-atomic. From the latter we may infer that Θ1;V∗
2 (Ξ1) � V∗

2 (τ) is non-
atomic, since Θ2 and Ξ2 are interleavings of Θ1 and Ξ1 with the disjoint contexts
Θ3 and Ξ3.

So to show that |Θ1|; |Ξ1| � τ is non-atomic is it is sufficient to prove the
contrapositive.

Lemma 6. Suppose V+ �Θ Ξ and V− �Θ Ξ, where |Θ|; |Ξ| � τ is atomic. Then
either Θ−;V+(Ξ) � V+(τ) or Θ+;V−(Ξ) � V−(τ) is atomic.

Proof. We extend the grammar of types with an unbounded set of “neutral
atoms” A,B,C, . . ., which are equal only if syntactically identical, and prove the
lemma for this extended set of types by an outer induction on the size of Θ, and
an inner induction on the sum of the lengths of the types in Ξ.

At least one of V+(τ) and V−(τ) must be atomic and so if Ξ is empty then
the hypothesis holds. Otherwise, Ξ ≡ p(σ = σ′), Ξ ′ for some types σ, σ′ and
equational context Ξ ′ over Θ, and polarity p ∈ {+,−}.

If σ and σ′ are both non-atomic, then by satisfiability σ ≡ ∀X1 . . . Xn.ρ1 →
ρ2 and σ ≡ ∀X1 . . . Xn.ρ

′
1 → ρ′2 for some ρ1, ρ2, ρ

′
1, ρ

′
2. Letting A1, . . . , An be

fresh, distinct atomic types, define ρ̂ = ρ[A1/X1, . . . , An/Xn]. The equational
context Ξ ′′ = p(ρ̂1 = ρ̂1

′), p(ρ̂2 = ρ̂2
′), Ξ ′ is equivalent to (satisfied by the

same valuations as) Ξ, and so Θ;Ξ ′′ � τ is atomic, and positively and neg-
atively satisfied by V+ and V−. Hence, by inner induction hypothesis, one of
Θ−;V+(Ξ

′′) � V+(τ) or Θ
+;V−(Ξ ′′) � V−(τ) is atomic.

Otherwise at least one of σ and σ′ is atomic. If σ ≡ σ′, then we may discard
the tautology σ = σ′ and apply the (inner) inductive hypothesis to Θ;Ξ ′ � τ .
Otherwise at least one of σ, σ′ must be a type-variable with polarity p in Θ (none
of the other cases are p-satisfiable). So assume without loss of generality that
Θ ≡ Θ′, pX,Θ′′ and Ξ ≡ p(σ = X), Ξ ′. We may show that:

– Θ′, Θ′′;Ξ ′[σ/X] � τ [σ/X] is atomic.
– Θ,Θ′′ � Ξ ′[σ/X] is positively satisfied by V+ and negatively satisfied by V−.

So by the outer inductive hypothesis, either (Θ′, Θ′′)−;V+(Ξ[σ/X]) � V+(τ) or
(Θ,Θ′′)+;V−(Ξ[σ/X]) � V−(τ) is atomic, and hence either Θ−;V+(Ξ) � V+(τ)
or Θ+;V−(Ξ) � V−(τ) is atomic.

438 J. Laird



We have shown that the arrow relation satisfies the first interaction condition.
2 and 3 are straightforward to verify, establishing that (Compλμ2 ⦂ Tyλμ2) is
a well-defined typed interaction structure. Therefore, by Proposition 1, typed
bisimulation is preserved by parallel composition plus hiding, and thus:

Theorem 1. Typed bisimulation is a congruence for the λμ2-calculus.

5 Conclusions and Further Directions

We have described a “Curry-style” approach to game semantics, and used it to
give new models of polymorphism. Various existing models may also be framed as
typed interaction systems, such as the semantics of call-by-value in [12]. Nor are
instances restricted to operational game semantics: for example we can present
linear combinatory algebras of games and strategies in this way, and poten-
tially other models of concurrent interaction. Unlike basic Church-style game
semantics, these models give the opportunity to make finer distinctions between
programs based on internal behaviour, which we have not explored here.

The notion of typed interaction structure reflects only limited structure of our
models, but may be developed further. Having characterized parallel composition
plus hiding within this setting, a natural next step would be a notion of copycat
strategy, leading to structure for sharing and discarding information. One goal
for such a development would be to put the generalization of congruence from
configurations to terms on a systematic footing.

In another direction, our models of polymorphism may be developed further.
In particular combining and fully exploiting generic and abstract data types
often requires higher-order polymorphism, in which quantifiers range over type
operators (functions which take types as arguments and return them as values).
Whereas this is difficult to represent in game semantics, our model readily ex-
tends to a typing system based on System Fω, which allows quantification over
type-operators: the price to pay is that satisfiability of configuration types (and
thus effective presentation of the states of our LTS) requires the solution of
higher-order unification problems, which are undecidable, in general.

References

1. S. Abramsky. The lazy λ-calculus. In D. Turner, editor, Research Topics in Func-
tional Programming, pages 65–117. Addison Wesley, 1990.

2. S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF. Infor-
mation and Computation, 163:409–470, 2000.

3. M. Berger, K. Honda, and N. Yoshida. Sequentiality and the π-calculus. In Proceed-
ings of TLCA 2001, volume 2044 of Lecture Notes in Computer Science. Springer-
Verlag, 2001.

4. M. Berger, K. Honda, and N. Yoshida. Genericity and the π-calculus. Acta Infor-
matica, 42, 2005.

A Curry-style Semantics of Interaction 439



5. M. Berger, K. Honda, and N. Yoshida. Process types as a descriptive tool for
interaction: Control and the π-calculus. In Proceedings of the Rewriting and Typed
Lambda-calculi - joint international conference, 2014.

6. D. R. Ghica and N. Tzevelekos. System level game semantics. Proceedings of
MFPS XXVIII, ENTCS volume 286, pages 191 –211. 2012.

7. J.-Y. Girard. Linear logic. Theoretical Computer Science, 50, 1987.
8. D. Hughes. Games and definability for System F. In Proceedings of the Twelfth

International syposium on Logic in Computer Science, LICS ’97. IEEE Computer
Society Press, 1997.

9. J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I, II and III.
Information and Computation, 163:285–408, 2000.

10. A. Igurashi and N. Kobayashi. A generic type system for the π-calculus. Theoretical
Computer Science, 311:121–163, 2004.

11. Vladimir N. Krupski. The single-conclusion proof logic and inference rules speci-
fication. Annals of Pure and Applied Logic, 113:181 – 206, 2002.

12. J. Laird. A fully abstract trace semantics for general references. In 34th ICALP,
volume 4596 of LNCS, pages 667–679. Springer, 2007.

13. J. Laird. Game semantics of call-by-value polymorphism. In Proceedings of ICALP
’10, number 6198 in LNCS. Springer-Verlag, 2010.

14. J. Laird. Game semantics for a polymorphic programming language. Journal of
the ACM, 60(4), 2013.

15. S. B. Lassen and P. B. Levy. Typed normal form bisimulation. In Proceedings 16th
EACSL Conference on Computer Science and Logic, number 4646 in LNCS, pages
283–297, 2007.

16. Joachim De Lataillade. Curry-style type isomorphisms and game semantics. MSCS,
18:647–692, 2008.

17. P. B. Levy and S. Lassen. Typed normal form bisimulation for parametric poly-
morphism. In Proceedings of LICS 2008, pages 341–552. IEEE press, 2008.

18. Paul Levy and Sam Staton. Transition systems over games. In CSL-LICS ’14.
ACM Press, 2014.

19. G. Longo. Set-theoretical models of lambda calculus: Theories, expansions and
isomorphisms. Annals of Pure and Applied Logic, 24:153–188, 1983.

20. J. Mitchell and G. Plotkin. Abstract types have existential type. ACM transactions
on Programming Languages and Systems, 10(3):470–502, 1988.

21. M. Parigot. λμ calculus: an algorithmic interpretation of classical natural deduc-
tion. In Proc. International Conference on Logic Programming and Automated
Reasoning, pages 190–201. Springer, 1992.

22. Joachim Parrow, Johannes Borgström, Lars-Henrik Eriksson, Ramunas Gutkovas,
and Tjark Weber. Modal Logics for Nominal Transition Systems. In 26th Inter-
national Conference on Concurrency Theory (CONCUR 2015), volume 42, pages
198–211, 2015.

23. A. M. Pitts. Nominal Sets: Names and Symmetry in Computer Science. Cambridge
University Press, 2013.

24. J. C. Reynolds. Towards a theory of type structure. In Proceedings of the Pro-
gramming Symposium, Paris 1974, number 19 in LNCS. Springer, 1974.

25. D. Sangiorgi. The lazy λ-calculus in a concurrency scenario. Information and
Computation, 111:120 –153, 1994.

26. M. Smyth and G. Plotkin. The category-theoretic solution of recursive domain
equations. SIAM Journal on Computing, 11(4):761–783, 1982.

27. N. Tzevelekos and G. Jaber. Trace semantics for polymorphic references. In Proc.
LICS’16, pages 585–594. ACM, 2016.

440 J. Laird



Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/

4.0/), which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

A Curry-style Semantics of Interaction 441

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


An Axiomatic Approach to
Reversible Computation�

Ivan Lanese1 ( ), Iain Phillips2 , and Irek Ulidowski3

1 Focus Team, University of Bologna/INRIA, Italy ivan.lanese@gmail.com
2 Imperial College London, England i.phillips@imperial.ac.uk
3 University of Leicester, England i.ulidowski@leicester.ac.uk

Abstract. Undoing computations of a concurrent system is beneficial in

many situations, e.g., in reversible debugging of multi-threaded programs

and in recovery from errors due to optimistic execution in parallel dis-

crete event simulation. A number of approaches have been proposed for

how to reverse formal models of concurrent computation including pro-

cess calculi such as CCS, languages like Erlang, prime event structures

and occurrence nets. However it has not been settled what properties a

reversible system should enjoy, nor how the various properties that have

been suggested, such as the parabolic lemma and the causal-consistency

property, are related. We contribute to a solution to these issues by using

a generic labelled transition system equipped with a relation capturing

whether transitions are independent to explore the implications between

these properties. In particular, we show how they are derivable from a

set of axioms. Our intention is that when establishing properties of some

formalism it will be easier to verify the axioms rather than proving prop-

erties such as the parabolic lemma directly. We also introduce two new

notions related to causal consistent reversibility, namely causal safety

and causal liveness, and show that they are derivable from our axioms.

Keywords: Reversible Computation, Labelled Transition System with

Independence, Causal Safety, Causal Liveness

1 Introduction

Reversible computing studies computations which can proceed both in the stan-
dard, forward direction, and backward, going back to past states. Reversible
computation has attracted interest due to its applications in areas as different as
low-power computing [15], simulation [4], robotics [21], biological modelling [31]
and debugging [23].

� This work has been partially supported by COST Action IC1405 on Reversible Com-

putation - Extending Horizons of Computing. The first author has also been partially

supported by French ANR project DCore ANR-18-CE25-0007 and by INdAM as a

member of GNCS (Gruppo Nazionale per il Calcolo Scientifico).

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 442–461, 2020.
https://doi.org/10.1007/978-3-030-45231-5_23

http://orcid.org/0000-0003-2527-9995
http://orcid.org/0000-0001-5013-5876
http://orcid.org/0000-0002-3834-2036
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_23&domain=pdf


There is widespread agreement in the literature about what properties char-
acterise reversible computation in the sequential setting. Thus in reversible fi-
nite state automata [32], reversible cellular automata [13], reversible Turing ma-
chines [2] and reversible programming languages such as Janus [35] the main
point is that the mapping from inputs to outputs is injective, and the reverse
computation is deterministic.

Matters are less clear when it comes to reversible computation in the con-
current setting. Indeed, various reversible concurrent models have been studied,
most notably in the areas of process calculi [6,29,18], event structures [34], Petri
nets [1,25] and programming languages such as Erlang [20].

A main result of this line of research is that the notion of reversibility most
suited for concurrent systems is causal-consistent reversibility (other notions
are also used, e.g., to model biological systems [31]). According to an informal
account of causal-consistent reversibility, any action can be undone provided
that its consequences, if any, are undone beforehand. Following [6] this account
is formalised using the notion of causal equivalent traces: two traces are causal
equivalent if and only if they only differ for swapping independent actions, and
inserting or removing pairs of an action and its reverse. According to [6, Section 3]

Backtracking an event is possible when and only when a causally equiv-
alent trace would have brought this event as the last one

which is then formalised as the so called causal consistency (CC) [6, Theorem 1],
stating that coinitial computations are causal equivalent if and only if they are
cofinal. Our new proof of CC (Proposition 3.6) shows that it holds in essentially
any reversible formalism satisfying the Loop Lemma and the Parabolic Lemma,
and we believe that CC is insufficient on its own to capture the informal notion.

A formalisation closer to the informal statement above is provided in [20,
Corollary 22], stating that a forward transition t can be undone after a derivation
iff all its consequences, if any, are undone beforehand. We are not aware of other
discussions trying to formalise such a notion, except for [30], in the setting of
reversible event structures. In [30], a reversible event structure is cause-respecting
if an event cannot be reversed until all events it has caused have also been
reversed; it is causal if it is cause-respecting and a reversible event can be reversed
if all events it has caused have been reversed [30, Definition 3.34].

We provide (Section 4) a novel definition of the idea above, composed by:

Causal Safety (CS): an action cannot be reversed until any actions caused by
it have been reversed;

Causal Liveness (CL): we should allow actions to reverse in any order com-
patible with CS, not necessarily the exact inverse of the forward order.

We shall see that CC does not capture the same property as CS+CL (Exam-
ples 4.15, 4.37), and that there are slightly different versions of CS and CL,
which can all be proved under a small set of reasonable assumptions.

The main aim of this paper is to take an abstract model, namely labelled
transition systems with independence equipped with reverse transitions (Sec-
tion 2), and to show that the properties above (as well as others) can be derived

An Axiomatic Approach to Reversible Computation 443



Acronym Name Defined in Proved in using
SP Square Property Def. 3.1 Axiom -

BTI Backward Transitions are Independent Def. 3.1 Axiom -

WF Well-Founded Def. 3.1 Axiom -

CPI Coinitial Propagation of Independence Def. 4.2 Axiom -

IRE Independence Respects Events Def. 4.12 Axiom -

CIRE Coinitial Independence Respects Events Def. 4.29 Axiom implied by IRE

IEC Independence of Events is Coinitial Def. 4.16 Axiom -

PL Parabolic Lemma Def. 3.3 Prop. 3.4 BTI, SP

CC Causal Consistency Def. 3.5 Prop. 3.6 WF, PL

UT Unique Transition Def. 3.7 Cor. 3.8 CC

ID Independence of Diamonds Def. 4.6 Prop. 4.7 BTI, CPI

RPI Reversing Preserves Independence Def. 4.17 Prop. 4.18 SP, CPI, IRE, IEC

CS Causal Safety Def. 4.11 Thm. 4.13 SP, BTI, WF, CPI, IRE

CL Causal Liveness Def. 4.11 Thm. 4.14 SP, BTI, WF, CPI, IRE

CS< ordered Causal Safety Def. 4.24 Prop. 4.39 SP, BTI, WF, CPI, NRE

CL< ordered Causal Liveness Def. 4.24 Prop. 4.39 SP, BTI, WF, CPI, CIRE

CSci coinitial Causal Safety Def. 4.27 Thm. 4.28 SP, BTI, WF, CPI

CLci coinitial Causal Liveness Def. 4.27 Thm. 4.30 SP, BTI, WF, CPI, CIRE

NRE No Repeated Events Def. 4.35 Prop. 4.42 SP, BTI, WF, CPI, CIRE

RED Reverse Event Determinism Def. 4.40 Prop. 4.41 SP, BTI, WF, CPI, NRE

Table 1. Axioms and properties for causal reversibility.

from a small set of simple axioms (Sections 3, 4, 5). This is in sharp contrast
with the large part of works in the literature, which consider specific frameworks
such as CCS [6], CCS with broadcast [26], CCB [14], π-calculus [5], higher-order
π [18], Klaim [11], Petri nets [25], μOz [22] and Erlang [20], and all give similar
but formally unrelated proofs of the same main results. Such proofs will become
instances of our general results. More precisely, our axioms will:

– exclude behaviours which are not compatible with causal-consistent reversibil-
ity (as we will discuss shortly);

– allow us to derive the main properties of reversible calculi which have been
studied in the literature, such as CC (Proposition 3.6);

– hold for a number of reversible calculi which have been proposed, such as
RCCS [6] and reversible Erlang [20] (Section 6).

Thus, when defining a new reversible formalism, one just has to check whether
the axioms hold, and get for free the proofs of the most relevant properties.
Notably, the axioms are normally easier to prove than the properties, hence the
assessment of a reversible calculus gets much simpler.

As a reference, Table 1 lists the axioms and properties used in this paper.
In order to understand which kinds of behaviours are incompatible with a

causal-consistent reversible setting, consider the following LTSs in CCS:

a.0 a→ 0, b.0 b→ 0: from state 0 one does not know whether to go back to a.0 or
to b.0;

444 I. Lanese, I. Phillips and I. Ulidowski



a.0 + b.0 a→ 0, a.0 + b.0 b→ 0: as above, but starting from the same process,
hence showing that it is not enough to remember the initial configuration;

P
a→ P where P = a.P : one can go back forever, against the idea that a state
models a process reachable after a finite computation.

We remark that all such behaviours are perfectly reasonable in CCS, and they
are dealt with in the reversible setting by adding history information about past
actions. For example, in the first case one could remember the initial state, in
the second case both the initial state and the action taken, and in the last case
the number of iterations that have been performed.

Due to space constraints, some proofs and additional results can only be
found in the companion technical report [16].

2 Labelled Transition Systems with Independence

We want to study reversibility in a setting as general as possible. Thus, we
base on the core of the notion of labelled transition system with independence
(LTSI) [33, Definition 3.7]. However, while [33] requires a number of axioms on
LTSI, we take the basic definition and explore what can be done by adding or
not adding various axioms. Also, we extend LTSI with reverse transitions, since
we study reversible systems. We define first labelled transition systems (LTSs).

We consider the LTS of the entire set of processes in a calculus, rather than
the transition graph of a particular process and its derivatives, hence we do not
fix an initial state.

Definition 2.1. A labelled transition system (LTS) is a structure (Proc, Lab,⇀),
where Proc is the set of states (or processes), Lab is the set of action labels and
⇀ ⊆ Proc × Lab × Proc is a transition relation.

We let P,Q, . . . range over processes, a, b, c, . . . range over labels, and t, u, v, . . .
range over transitions. We can write t : P

a→ Q to denote that t = (P, a,Q). We
call a-transition a transition with label a.

Definition 2.2 (LTS with independence). We say that (Proc, Lab,→, ι) is
an LTS with independence (LTSI) if (Proc, Lab,→) is an LTS and ι is an ir-
reflexive symmetric binary relation on transitions.

In many cases (see Section 6), the notion of independence coincides with the
notion of concurrency. However, this is not always the case. Indeed, concur-
rency implies that transitions are independent since they happen in different
processses, but transitions taken by the same process can be independent as
well. Think, for instance, of a reactive process that may react in any order to
two events arriving at the same time, and the final result does not depend on
the order of reactions.

We shall assume that all transitions are reversible, so that the Loop Lemma [6,
Lemma 6] holds. This does not hold in models of reversibility with control mech-
anisms such as irreversible actions [6,7] or a rollback operator [17]. Nevertheless,

An Axiomatic Approach to Reversible Computation 445



when showing properties of models with controlled reversibility it has proved sen-
sible to first consider the underlying models where all transitions are reversible,
and then study how control mechanisms change the picture [11,20]. The present
work helps with the first step.

Definition 2.3. Given (Proc, Lab,⇀), let the reverse LTS be (Proc, Lab,�),
where P

a
� Q iff Q

a
⇀ P . It is convenient to combine the two LTSs (forward and

reverse): let the reverse labels be Lab = {a : a ∈ Lab}, and define the combined
LTS to be → ⊆ Proc × (Lab ∪ Lab) × Proc by P

a→ Q iff P
a
⇀ Q and P

a→ Q iff
P

a
� Q.

We stipulate that the union Lab∪Lab is disjoint. We let α, . . . range over Lab∪Lab.
For α ∈ Lab ∪ Lab, the underlying action label und(α) is defined as und(a) = a

and und(a) = a. Let a = a for a ∈ Lab. Given t : P
α→ Q, let t : Q

α→ P be the
transition which reverses t.

We let ρ, σ, . . . range over finite sequences α1 . . . αn, with εP representing the
empty sequence starting and ending at P . We shall write ε when P is understood.
Given an LTS, a path is a sequence of forward or reverse transitions of the form

P0
α1→ P1 · · · αn→ Pn. We let r, s, . . . range over paths. We may write r : P

ρ→∗ Q
where the intermediate states are understood. On occasion we may refer to a

path simply by its sequence of labels ρ. Given a path r : P
ρ→∗ Q, the inverse

path is r : Q
ρ→∗ P where ε = ε and αρ = ρ α. The length of a path r (notated

|r|) is the number of transitions in the path. Paths r : P
ρ→∗ Q and R

σ→∗ S are
coinitial if P = R and cofinal if Q = S. We say that a path is forward-only if it
contains no reverse transitions.

Let (Proc, Lab,→) be an LTS. The irreversible processes in (Proc, Lab,→) are

Irr = {P ∈ Proc : P ��}. A rooted path is a path r : P
ρ→∗ Q such that P ∈ Irr.

In the following we will consider LTSIs obtained by adding a notion of inde-
pendence to combined LTSs as above. We will call the result a combined LTSI.

3 Basic Properties

In this section we show that most of the properties in the reversibility literature
(see, e.g., [6,29,18,20]), in particular the parabolic lemma and causal consistency,
can be proved under minimal assumptions on the combined LTSI under analysis.

We formalise the minimal assumptions using three axioms, described below.

Definition 3.1 (Basic axioms). Let L = (Proc, Lab,→, ι) be a combined LTSI.
We say L satisfies:

446 I. Lanese, I. Phillips and I. Ulidowski

Square Property (SP) if whenever t : P
α→ Q, u : P

β→ R with t ι u then

there are cofinal transitions u′ : Q
β→ S and t′ : R

α→ S;
Backward Transitions are Independent (BTI) if whenever t : P

a
� Q and

t′ : P
b
� Q′ and t �= t′ then t ι t′;



Well-Foundedness (WF) if there is no infinite reverse computation, i.e. we do
not have Pi (not necessarily distinct) such that Pi+1

ai→ Pi for all i = 0, 1, . . ..

WF can alternatively be formulated using backward transitions, but the current
formulation makes sense also in non-reversible calculi (e.g., CCS), which can be
used as a comparison. Let us discuss the intuition behind these axioms. SP takes
its name from the Square Lemma, where it is proved for concrete calculi and
languages in [6,18,20], and captures the idea that independent transitions can
be executed in any order, that is they form commuting diamonds. SP can be
seen as a sanity check on the chosen notion of independence. BTI generalises
the key notion of backward determinism used in sequential reversibility (see,
e.g., [32] for finite state automata and [35] for the imperative language Janus)
to a concurrent setting. Backward determinism can be spelled as “two coinitial
backward transitions do coincide”. This can be generalised to “two coinitial
backward transitions are independent”. Finally, WF means that we consider
systems which have a finite past. That is, we consider systems starting from
some initial state and then moving forward and back.

Axioms SP and BTI are related to properties which are part of the definition
of (occurrence) transition systems with independence in [33, Definitions 3.7, 4.1].
WF was used as an axiom in [28].

Using the minimal assumptions above we can prove relevant results from the
literature. We first define causal equivalence, equating computations differing
only for swaps of independent transitions and simplification of a transition with
its reverse.

Definition 3.2 (cf. [6]). Let (Proc, Lab,→, ι) be an LTSI satisfying SP. Let
≈ be the smallest equivalence relation on paths closed under composition and
satisfying:

1. if t : P
α→ Q, u : P

β→ R are independent, and u′ : Q
β→ S, t′ : R

α→ S (which
exist by SP) then tu′ ≈ ut′;

2. tt ≈ ε and tt ≈ ε.

We first consider the Parabolic Lemma ([6, Lemma 10]), which states that
each path is causal equivalent to a backward path followed by a forward path.

Definition 3.3. Parabolic Lemma (PL): for any path r there are forward-
only paths s, s′ such that r ≈ ss′ and |s| + |s′| ≤ |r|.
Proposition 3.4. Suppose an LTSI satisfies BTI and SP. Then PL holds.

The proof of Proposition 3.4 (available in [16]) is very similar to that of [6,
Lemma 10] except that in the latter BTI is shown directly as part of the proof.

A corollary of PL is that if a process is reachable from an irreversible process,
then it is also forwards reachable from it. In other words, making a system
reversible does not introduce new reachable states but only allows one to explore
differently forwards reachable states. This is relevant in reversible debugging of
concurrent systems [10,20], where one wants to find bugs that actually occur in

An Axiomatic Approach to Reversible Computation 447



forward-only computations. See the companion technical report [16, Corollary
A.1]. We now move to causal consistency [6, Theorem 1].

Definition 3.5. Causal Consistency (CC): if r and s are coinitial and cofi-
nal then r ≈ s.

Essentially, causal consistency states that history information allows one to
distinguish computations which are not causal equivalent, indeed, if two compu-
tations are cofinal, that is they reach the same final state (which includes the
stored history information) then they need to be causal equivalent.

Causal consistency frequently includes the other direction, namely that coini-
tial causal equivalent computations are cofinal, meaning that there is no way to
distinguish causal equivalent computations. This second direction follows easily
from the definition of causal equivalence.

Notably, our proof of CC below is very much shorter than existing proofs.

Proposition 3.6. Suppose an LTSI satisfies WF and PL. Then CC holds.

Proof. Let r : P
ρ→∗ Q and r′ : P

ρ′
→∗ Q. Using WF, let I, s be such that

s : I
σ→∗ P , I ∈ Irr. Now srsr′ is a path from I to I, and so by PL there are

r1, r2 forward-only such that r1r2 ≈ srsr′. But I ∈ Irr and so r1 = ε and r2 = ε.
Thus ε ≈ srsr′, so that sr ≈ sr′ and r ≈ r′ as required. 	


Causal consistency implies the unique transition property.

Definition 3.7. An LTSI (Proc, Lab,→, ι) satisfies Unique Transition (UT)
if P

a→ Q and P
b→ Q imply a = b.

Corollary 3.8. If an LTSI satisfies CC then it satisfies UT.

UT was shown in the forward-only setting of occurrence TSIs in [33, Corol-
lary 4.4]; it was taken as an axiom in [28].

Example 3.9 (PL alone does not imply WF or CC). Consider the LTSI with

states Pi for i = 0, 1, . . . and transitions ti : Pi+1
a→ Pi, ui : Pi+1

b→ Pi with
a �= b and ti ι ui. BTI and SP hold. Hence PL holds by Proposition 3.4. However
clearly WF fails. Also ti and ui are coinitial and cofinal, and a �= b, so that UT
fails, and hence CC fails using Corollary 3.8. Note that the ab diamonds here
have the same side states so are degenerate (cf. Lemma 4.4).

4 Causal Safety and Causal Liveness

In the literature, causal consistent reversibility is frequently informally described
by saying that “a transition can be undone if and only if each of its consequences,
if any, has been undone”. In this section we study this property, where the
two implications will be referred to as causal safety and causal liveness. We
provide three different versions of such properties, based on independence of
transitions (Section 4.2), ordering of events (Section 4.3), and independence
of events (Section 4.4), and study their relationships. In order to define such
properties we need the concept of event.

448 I. Lanese, I. Phillips and I. Ulidowski



4.1 Events

Definition 4.1 (Event, general definition). Let (Proc, Lab,→, ι) be an LTSI.

Let ∼ be the smallest equivalence relation satisfying: if t : P
α→ Q, u : P

β→ R,
u′ : Q

β→ S, t′ : R
α→ S, and t ι u, u ι t′, t′ ι u′, u′ ι t, and

– Q �= R if α and β are both forwards or both backwards;
– P �= S otherwise;

then t ∼ t′. The equivalence classes of forward transitions, written [P, a,Q], are
the events. The equivalence classes of reverse transitions, written [P, a,Q], are
the reverse events. Define a labelling function 
 from → / ∼ to Lab by setting

([P, α,Q]) = α.

Events are introduced as a derived notion in an LTS with independence in [33],
in the context of forward-only computation. We have changed their definition by
using coinitial independence at all corners of the diamond, yielding rotational
symmetry. This reflects our view that forward and backward transitions have
equal status.

Our definition can be simplified if the LTSI, and independence in particular,
are well-behaved. Thus, we now add a further axiom related to independence.

Definition 4.2 (Coinitial Propagation of Independence (CPI)). If t :

P
α→ Q, u : P

β→ R, u′ : Q
β→ S and t′ : R

α→ S with t ι u, then u ι t′ .

CPI states that independence is a property of commuting diamonds more
than of their specific pairs of edges. Indeed, it allows independence to propagate
around a commuting diamond.

Definition 4.3. If a combined LTSI satisfies axioms SP, BTI, WF and CPI,
we say that it is pre-reversible.

The name ‘pre-reversible’ indicates that we expect to require further axioms,
but the present four are enough to ensure that LTSIs are well-behaved, with
events compatible with causal equivalence. Pre-reversible axioms are separated
from further axioms by a dashed line in Table 1.

The following non-degeneracy property was shown for occurrence transition
systems with independence in [33, page 312], which have forward transitions
only. We have to cope with backwards as well as forward transitions.

Lemma 4.4. Suppose that an LTSI is pre-reversible. If we have a diamond t :

P
α→ Q, u : P

β→ R with t ι u together with cofinal transitions u′ : Q
β→ S and

t′ : R
α→ S, then the diamond is non-degenerate, meaning that P,Q,R, S are

distinct states.

If an LTSI is pre-reversible then by Lemma 4.4 and the use of CPI we can
simplify the statement of Definition 4.1 to:

An Axiomatic Approach to Reversible Computation 449



Definition 4.5 (Event, simplified definition). Let (Proc, Lab,→, ι) be a pre-
reversible LTSI. Let ∼ be the smallest equivalence relation satisfying: if t : P

α→
Q, u : P

β→ R, u′ : Q
β→ S, t′ : R

α→ S, and t ι u, then t ∼ t′.

We are now able to show independence of diamonds (ID), which can be seen
as dual of SP.

Definition 4.6 (Independence of Diamonds (ID)). An LTSI satisfies the
Independence of Diamonds property (ID) if whenever we have a diamond t :

P
α→ Q, u : P

β→ R, u′ : Q
β→ S and t′ : R

α→ S, with

– Q �= R if α and β are both forwards or both backwards;
– P �= S otherwise;

then t ι u.

Proposition 4.7. If an LTSI satisfies BTI and CPI then it satisfies ID.

We now consider the interaction between events and causal equivalence. We
need some notation first.

Definition 4.8. Let r be a path in an LTSI L and let e be an event of L. Let
�(r, e) be the number of occurrences of transitions t in r such that t ∈ e, minus
the number of occurrences of transitions t in r such that t ∈ e.

We now show that �(r, e) is invariant under causal equivalent traces.

Lemma 4.9. Let L be a pre-reversible LTSI. Let r ≈ s. Then for each event e
we have that �(r, e) = �(s, e).

Lemma 4.9 generalises what was shown for the forward-only setting in [33,
Corollary 4.3].

Proposition 4.10. If an LTSI is pre-reversible, then for any rooted path r and
any forward event e we have �(r, e) ≥ 0.

4.2 CS and CL via Independence of Transitions

We first define causal safety and liveness using the independence relation.

Definition 4.11. Let L = (Proc, Lab,→, ι) be a pre-reversible LTSI.

1. We say that L is causally safe (CS) if whenever P
a→ Q, r : Q

ρ→∗ R,
�(r, [P, a,Q]) = 0 and S

a→ R with (P, a,Q) ∼ (S, a,R), then (P, a,Q) ι t for
all t in r such that �(r, [t]) > 0.

2. We say that L is causally live (CL) if whenever P
a→ Q, r : Q

ρ→∗ R and
�(r, [P, a,Q]) = 0 and (P, a,Q) ι t, for all t in r such that �(r, [t]) > 0, then
we have S

a→ R with (P, a,Q) ∼ (S, a,R).

450 I. Lanese, I. Phillips and I. Ulidowski



a

a

a

a
a

a

b
b

b

b

b

b

Fig. 1.

We may wish to close the independence relation over this axiom:

Definition 4.12 (Independence Respects Events (IRE)). Whenever t ∼
t′ ι u we have t ι u.

IRE is one of the conditions in the definition of transition systems with inde-
pendence [33, Definition 3.7]. Together with the axioms for pre-reversibility, it
is enough to show both causal safety and causal liveness.

Theorem 4.13. Let a pre-reversible LTSI satisfy IRE. Then it satisfies CS.

Theorem 4.14. Let a pre-reversible LTSI satisfy IRE. Then it satisfies CL.

CS and CL are not derivable from CC; we give an example LTSI which
satisfies CC but not CS and not CL.

Example 4.15. Consider the LTS in Figure 1. Independence is mostly coinitial
and given by closing under BTI and CPI. Additionally we make the leftmost a-
transition independent with all b-transitions. Note that all a-transitions belong
to the same event, and all b-transitions belong to the same event. Also SP and
WF hold, so that the LTSI is pre-reversible, and CC holds. However IRE does
not hold. Furthermore CS fails using Definition 4.11. Indeed, consider any path
bab→∗ from the start. CS would imply that the first b is independent with the a
but this is not the case (we do have b ι a).

Also CL fails using Definition 4.11. Indeed, consider any path
abb→∗ from the

start. Since the leftmost a-transition is independent with all b-transitions, we
should be able to reverse a at the end of the path, but this is not possible.

The next axiom states that independence is fully determined by its restriction
to coinitial transitions. This is related to axiom (E) of [33, page 325], but here
we allow reverse as well as forward transitions.

then there are t′1 ∼ t1, t′2 ∼ t2 such that t′1 and t′2 are coinitial and t′1 ι t′2.

Thanks to previous axioms, independence behaves well w.r.t. reversing.

An Axiomatic Approach to Reversible Computation 451

Definition 4.16 (Independence of Events is Coinitial (IEC)). If t1 ι t2

Definition 4.17 (Reversing Preserves Independence (RPI)). If t ι t′

then t ι t′.



Proposition 4.18. If an LTSI satisfies SP, CPI, IRE, IEC then it also satisfies
RPI.

All the axioms that we have introduced are independent, i.e. none is derivable
from the remaining axioms.

Proposition 4.19. SP, BTI, WF, CPI, IRE, IEC are independent of each other.

4.3 CS and CL via Ordering of Events

To define CS and CL via ordering of events, we define the causality relation ≤
on events.

Definition 4.20. Let L = (Proc, Lab,→, ι) be an LTSI. Let e, e′ be events of L.
Let e ≤ e′ iff for all rooted paths r, if �(r, e′) > 0 then �(r, e) > 0. As usual e < e′

means e ≤ e′ and e �= e′. If e < e′ we say that e is a cause of e′.

Lemma 4.21. If an LTSI satisfies SP, BTI, WF and CPI then ≤ is a partial
ordering on events.

Previously, orderings on events have been defined using forward-only rooted
paths; in fact, the definitions coincide for pre-reversible LTSIs.

Definition 4.22 ([12,28]). Let L = (Proc, Lab,→, ι) be an LTSI. Let e, e′ be
events of L. Let e ≤f e′ iff for all rooted forward-only paths r, if r contains a
representative of e′ then r also contains a representative of e.

Lemma 4.23. For any LTSI, e ≤ e′ implies e ≤f e′. If an LTSI satisfies SP,
BTI, WF and CPI then e ≤f e′ implies e ≤ e′.

Proof. Straightforward using PL and Lemma 4.9. 	


We now give definitions of causal safety and causal liveness using ordering
on events.

Definition 4.24. Let L = (Proc, Lab,→, ι) be an LTSI.

1. We say that L is ordered causally safe (CS<) if whenever P
a→ Q, r : Q

ρ→∗
R, �(r, [P, a,Q]) = 0 and S

a→ R with (P, a,Q) ∼ (S, a,R), then [P, a,Q] �< e′

for all e′ such that �(r, e′) > 0.
2. We say that L is ordered causally live (CL<) if whenever P

a→ Q, r : Q
ρ→∗ R

and �(r, [P, a,Q]) = 0 and [P, a,Q] �< e′ for all e′ such that �(r, e′) > 0 then
we have S

a→ R with (P, a,Q) ∼ (S, a,R).

We postpone giving proofs of CS< and CL< until we have introduced a further
definition of causal safety and liveness using independence of events.

452 I. Lanese, I. Phillips and I. Ulidowski



4.4 CS and CL via Independent Events

We now introduce a third version of causal safety and liveness, which uses inde-
pendence like CS and CL, but on events rather than on transitions. First we lift
independence from transitions to events.

Definition 4.25 (Coinitially independent events). Let events e, e′ be (coini-
tially) independent, written e ci e′, iff there are coinitial transitions t, t′ such that
[t] = e, [t′] = e′ and t ι t′.

Lemma 4.26. If an LTSI is pre-reversible, then if e ci e′ we have also e ci e′.

Thus in pre-reversible LTSIs, ci is fully determined just considering forward
events. By Lemma 4.26, if we know e ci e′ then we know und(e) ci und(e′).

We can give a third formulation of causal safety and liveness using ci:

Definition 4.27. Let L = (Proc, Lab,→, ι) be a pre-reversible LTSI.

1. We say that L is coinitially causally safe (CSci) if whenever P
a→ Q, r :

Q
ρ→∗ R, �(r, [P, a,Q]) = 0 and S

a→ R with (P, a,Q) ∼ (S, a,R), then
[P, a,Q] ci e for all forward events e such that �(r, e) > 0.

2. We say that L is coinitially causally live (CLci) if whenever P
a→ Q, r :

Q
ρ→∗ R and �(r, [P, a,Q]) = 0 and [P, a,Q] ci e, for all forward events e

such that �(r, e) > 0, then we have S
a→ R with (P, a,Q) ∼ (S, a,R).

Note that in Definition 4.27 we operate at the level of events, rather than at the
level of transitions as in Definition 4.11.

Theorem 4.28. If an LTSI is pre-reversible then it satisfies CSci.

We now introduce a weaker version of axiom IRE (Definition 4.12).

Definition 4.29 (Coinitial IRE (CIRE)). If [t] ci [u] and t, u are coinitial
then t ι u.

Theorem 4.30. If a pre-reversible LTSI satisfies CIRE then it satisfies CLci.

We next give an example where CC holds but not CSci (and not CPI).

Example 4.31. Consider the cube with transitions a, b, c on the left in Figure 2,
where the forward direction is from left to right. We add independence as given
by BTI. So SP, BTI, WF hold, but not CPI. From the start we have an a-
transition followed by a path r = bc followed by a. For CSci to hold, we want
a to be the reverse of the same event as the first a. They are connected by a
ladder with sides cb. We add independence for all corners on the two faces of
the ladder (ab and ac). Then we get bc ≈ cb (independence at a single corner is
enough). However the bs are not the same event since the bc face does not have
independence at each corner. Therefore we do not get [a] ci [b], and CSci fails.

We next give an example where CSci and CLci hold but not CC.

An Axiomatic Approach to Reversible Computation 453



a

a

a

a

b

b

b

b

c
c

c

c

. . .

. . .

aa
bb b

c c

cc P0P1P2

Q0Q1Q2

Fig. 2.

Example 4.32. Consider the LTSI with Qi
b→ Pi, Pi+1

c→ Pi, Qi+1
c→ Qi, Pi+1

a→
Qi for i = 0, 1, . . .. This is shown on the right in Figure 2. Clearly WF does not
hold. We add coinitial independence to make BTI and CPI hold. Then also

SP and CIRE hold. However, CC fails since, for example P1
a→ Q0

b→ P0 and
P1

c→ P0 are coinitial and cofinal but not causally equivalent. Note that there
are just three events a, b, c with a ci c, b ci c but not a ci b. CSci and CLci hold.
Indeed, c is independent from every other action, and it can always be undone,
while a and b are independent from c only and they can be undone after any
path composed by c and no others.

4.5 Polychotomy

In this section we relate our three versions of causal safety and liveness, with
the help of what we call polychotomy, which states that if events do not cause
each other and are not in conflict, then they must be independent. We start by
defining a conflict relation on events.

Definition 4.33. Two forward events e, e′ are in conflict, written e # e′, if
there is no rooted path r such that �(r, e) > 0 and �(r, e′) > 0.

Much as for orderings, conflict on events has been defined previously using
forward-only rooted paths [12,28]; in fact, the definitions coincide for pre-reversible
LTSIs. We omit the details.

Definition 4.34 (Polychotomy). Let L be a pre-reversible LTSI. We say that
L satisfies polychotomy if whenever e, e′ are forward events, then exactly one of
the following holds: 1. e = e′; 2. e < e′; 3. e′ < e; 4. e # e′; or 5. e ci e′.

Property NRE below is related to polychotomy.

any forward event e we have �(r, e) ≤ 1.

Lemma 4.36 (Polychotomy). Suppose that a pre-reversible LTSI satisfies
NRE. Then polychotomy holds.

454 I. Lanese, I. Phillips and I. Ulidowski

Definition 4.35 (No Repeated Events (NRE)). In any rooted path r, for



a
a

a

a

a
a

a

b
b

b

b

b

b

c

c

P Q

R

S

Fig. 3.

Example 4.37. Consider the LTSI in Figure 3. We add independence to make
BTI and CPI hold. Both SP and WF hold. Hence, CC holds as well. There are
three events, labelled with a, b, c. Clearly NRE fails for both a and b. We see that
a < c but also a ci c, so that polychotomy fails. CSci holds by Theorem 4.28.
However CS< fails: consider the transition P

a→ Q together with the path r :

Q
bc→∗ R and S

a→ R, and note that a < c.

The next lemma allows us to connect ordered safety and liveness with coinitial
safety and liveness.

Lemma 4.38. Suppose that a pre-reversible LTSI satisfies NRE. Suppose P
a→

Q, e = [P, a,Q], r : Q
ρ→∗ R and �(r, e′) > 0 where e′ is a forward event. Then

exactly one of e ci e′ and e < e′ holds.

Proposition 4.39. Suppose that a pre-reversible LTSI L satisfies NRE. Then

1. L satisfies CS<.
2. L satisfies CLci iff L satisfies CL<.

Property RED below is also related to NRE and polychotomy.

Definition 4.40. An LTSI satisfies Reverse Event Determinism (RED)
if whenever t, t′ are backward coinitial transitions and t ∼ t′ then t = t′.

Proposition 4.41. If a LTSI L is pre-reversible then the following are equiva-
lent: 1. L satisfies NRE; 2. L satisfies RED; 3. independence ci is irreflexive on
events; and 4. polychotomy holds.

Proposition 4.42. Suppose that a pre-reversible LTSI satisfies CIRE. Then it
also satisfies NRE.

NRE was shown in the forward-only setting of occurrence transition systems
with independence in [33, Corollary 4.6]. It was also shown in the reversible
setting without independence in [28, Proposition 2.10].

Example 4.43. Consider the LTSI in Figure 4. Independence is given by closing
under BTI and CPI. There are three events, labelled a, b, c, which are all inde-
pendent of each other. We see that NRE holds but not CIRE. Also CLci and

CL< fail: consider P
a→ Q

b→ R, where a cannot be reversed at R.

An Axiomatic Approach to Reversible Computation 455



a

a

a

b

b

b

c

c

c

P Q

R

Fig. 4.

Proposition 4.44. Let L be a pre-reversible LTSI.

1. If IEC holds then CLci implies CL.
2. If IEC and NRE hold then CL< implies CL.

5 Coinitial Independence

In this section we consider coinitial LTSIs, defined as follows, and their relation-
ship with LTSIs in general.

Definition 5.1. Let L = (Proc, Lab,→, ι) be a combined LTSI. Then ι is coini-
tial if for all transitions t, u, if t ι u then t and u are coinitial. We say that L is
coinitial if ι is coinitial.

We define a mapping c restricting general independence to coinitial transi-
tions and a mapping g extending independence along events.

Definition 5.2. Given an LTSI (Proc, Lab,→, ι), define t g(ι) u iff t ∼ t′ ι u′ ∼ u
for some t′, u′. Furthermore, define t c(ι) u iff t ι u and t, u are coinitial.

Proposition 5.3. Let L = (Proc, Lab,→, ι) be a pre-reversible LTSI.

1. If L is coinitial and satisfies CIRE then L′ = (Proc, Lab,→, g(ι)) is a pre-
reversible LTSI and satisfies IRE and IEC.

2. if L satisfies IRE then L′ = (Proc, Lab,→, c(ι)) is a pre-reversible coinitial
LTSI and satisfies CIRE.

Thanks to Proposition 5.3, we can extend a coinitial pre-reversible LTSI sat-
isfying CIRE in a canonical way to a pre-reversible LTSI satisfying IRE and
IEC.

In some reversible calculi (such as RCCS) independence of coinitial transi-
tions is defined purely by reference to the labels. If this is the case it is a simple
matter to verify the axioms CPI and CIRE.

Proposition 5.4. Let L = (Proc, Lab,→, ι) be a coinitial combined LTSI. Sup-
pose that I is a binary relation on Lab such that for any coinitial transitions
t : P

α→ Q and u : P
β→ R we have t ι u iff I(a, b), where a and b are the

underlying labels a = und(α), b = und(β). Then L satisfies CPI and CIRE.

456 I. Lanese, I. Phillips and I. Ulidowski



Proof. Straightforward, noting that labels on opposite sides of a diamond of
transitions must be equal. 	


Note that I must be irreflexive, since ι is irreflexive.
If we have a coinitial pre-reversible LTSI satisfying CIRE then CS< and CL<

hold (using Proposition 4.42 and Proposition 4.39). Applying mapping g we get
a general pre-reversible LTSI satisfying IRE and IEC by Proposition 5.3. This
will satisfy CS and CL as a result of applying Theorem 4.13 and Theorem 4.14
respectively. It will also satisfy CS< and CL<. Conversely, if we have a general
pre-reversible LTSI satisfying IRE then CS and CL hold by Theorem 4.13 and
Theorem 4.14 respectively. Applying mapping c we get a coinitial pre-reversible
LTSI satisfying CIRE. This will satisfy CS< and CL< .

6 Case Studies

We look at whether our axioms hold in various reversible formalisms. Remark-
ably, all the works below provide proofs of the Loop Lemma.

RCCS We consider here the semantics of RCCS in [6], and restrict the attention

to coherent processes [6, Definition 2]. In RCCS, transitions P
μ:ζ→ Q and P

μ′:ζ′
→

Q′ are concurrent if μ∩μ′ = ∅ [6, Definition 7]. This allows us to define coinitial
independence as t ι u iff t and u are concurrent. We now argue that the resulting
coinitial LTSI is pre-reversible and also satisfies CIRE. SP was shown in [6,
Lemma 8]. BTI was shown in the proof of [6, Lemma 10]. WF is straightforward,
noting that backward transitions decrease memory size. Hence, we obtain a very
much simplified proof of CC. For CPI and CIRE we note that independence
is defined on the underlying labels and thus Proposition 5.4 applies. Therefore
CS< and CL< hold. Using Proposition 5.3, we can get an LTSI with general
independence satisfying IRE and IEC, and therefore CS and CL. This is the
first time these causal properties have been proved for RCCS.

HOπ We consider here the uncontrolled reversible semantics for HOπ [18]. We
restrict our attention to reachable processes, called there consistent. The seman-
tics is a reduction semantics; hence there are no labels (or, equivalently, all the
labels coincide). To have more informative labels we can consider the transitions
defined in [18, Section 3.1], where labels are composed of memory information
and a flag denoting whether the transition is forward or backward. The notion
of independence would be given by the concurrency relation on coinitial tran-
sitions [18, Definition 9]. All pre-reversible LTSI axioms hold, as well as CIRE
which is needed for causal safety and liveness. Specifically, SP is proved in [18,
Lemma 9]. BTI holds since distinct memories have disjoint sets of keys [18, Def-
inition 3 and Lemma 3] and by the definition of concurrency [18, Definition 9].
WF holds as each backward step consumes a memory, which is finite to start
with. Finally, CPI and CIRE are valid since the notion of concurrency is defined
on the annotated labels and using our Proposition 5.4.

An Axiomatic Approach to Reversible Computation 457



As a result we obtain a very much simplified proof of CC. Moreover, using
CPI and CIRE, we get the CS< and CL< safety and liveness properties and, ap-
plying mapping g from Section 5, we get a general pre-reversible LTSI satisfying
IRE and IEC, hence CS and CL are satisfied. This is the first time that causal
properties have been shown for HOπ.

Rπ We consider the (uncontrolled) reversible semantics for π-calculus defined
in [5]. We restrict the attention to reachable processes. The semantics is an LTS
semantics. Independence is given as concurrency which is defined for consecutive
transitions [5, Definition 4.1]. CC holds [5, Theorem 4.5].

Our results are not directly applicable to Rπ, since SP holds up to label
equivalence of transitions on opposite sides of the diamond, rather than equality
of labels as in our approach. We would need to extend axiom SP and the defi-
nition of causal equivalence to allow for label equivalence in order to handle Rπ
using our axiomatic method.

Erlang We consider the uncontrolled reversible (reduction) semantics for Er-
lang in [20]. We restrict our attention to reachable processes. In order to have
more informative labels we can consider the annotations defined in [20, Sec-
tion 4.1]. We then can define coinitial transitions to be independent if they are
concurrent [20, Definition 12].

We next discuss the validity of our axioms in reversible Erlang. SP is proved
in [20, Lemma 13] and BTI is trivial from the definition of concurrency [20,
Definition 12]. WF holds since the pairs of integers (total number of elements in
memories, total number of messages queued) ordered under lexicographic order
are always positive and decrease at each backward step. Intuitively, each step but
the ones derived using the rule for reverse sched (see [20, Figure 11]) consumes
an item of memory, and each step derived using rule reverse sched removes a
message from a process queue. Finally, CPI and CIRE hold since the notion of
concurrency is defined on the annotated labels, and by Proposition 5.4.

Since this the setting is very similar to the one of HOπ (both calculi have a
reduction semantics and a coinitial notion of independence defined on enriched
labels), we get the same results as for HOπ, including CC, and CS and CL.

Reversible occurrence nets Reversible occurrence nets [25,24] are traditional
occurrence nets (safe and with no backward conflicts) extended with a reverse
transition for each forward transition. They give rise to an LTS where states are
pairis (N,m) with N a net and m a marking. A computation that represents
firing a transition t in (N,m) and resulting in (N,m′) is given by a firing relation

(N,m)
t→ (N,m′). The notion of independence is the concurrency relation [25,

Section 3] which is defined between arbitrary firings (transitions). Hence, we
get a general LTSI. The CC property is shown by following the traditional ap-
proach in [6]. SP and PL are shown as well. PL and CC require several pages of
proofs [24]. The causal safety and causal liveness properties are not considered
in [25,24].

We can obtain CC, and additionally CS and CL, as follows. SP and BTI
are proved for reversible occurrence nets in [24] as Lemma 4.3 and Lemma 3.3

458 I. Lanese, I. Phillips and I. Ulidowski



respectively. WF holds because there are no forward cycles of firings in occur-
rence nets, hence no infinite reverse paths. In order to have CS and CL, we need
to show CPI and IRE. Lemma 3.4 in [24] gives CPI. Events can be defined on
firings as in our Definition 4.5, and then IRE holds as the concurrency relation
preserves such events.

7 Conclusion, Related and Future Work

The literature on causal-consistent reversibility (see, for example the early sur-
vey [19]) has a number of proofs of results such as the parabolic lemma (PL) and
the causal consistency property (CC), all of which are instantiated to a specific
calculus, language or formalism. We have taken here a complementary approach,
analysing the properties of interest in an abstract and language-independent
setting. In particular, we have shown how to prove the most relevant of these
properties from a small number of axioms.

Our approach builds upon [28], where a set of axioms for reverse LTSs was
given and several interesting properties were shown. While the idea is similar,
the development is rather different since we consider more basic axioms (we
only share WF, while many of the axioms in [28], such as UT, follow from
ours), and since the two papers focus on different properties. We focus on CC
and various forms of CS and CL, while [28] considers correspondence with prime
event structures and reversible bisimulations. Moreover, LTSs in [28] do not have
a notion of independence.

In other related work, we may particularly mention [8], which like ours takes
an abstract view, though based on category theory. However, its results concern
irreversible actions, and do not provide insights in our setting, where all actions
are reversible. The only other work which takes a general perspective is [3], which
concentrates on how to derive a reversible extension of a given formalism. How-
ever, proofs concern a limited number of properties (essentially our CC), and
hold only for extensions built using the technique proposed there. Also [27,29]
are general, since they propose how to reverse a calculus that can be defined in
a general format of SOS rules. However, the format has its syntactic constraints
while our approach abstracts from them. Finally, [9] presents a number of prop-
erties such as, for example, backward confluence, which arise in the context of
reversing of steps of executed transitions in Place/Transition nets.

The approach proposed in this paper opens a number of new possibilities.
Firstly, when devising a new reversible formalism, our results provide a rich tool-
box to prove (or disprove) relevant properties in a simple way. This is particularly
relevant since causal-consistent reversibility is getting applied to more and more
complex languages, such as Erlang [20], where direct proofs become cumbersome
and error-prone. Secondly, our abstract proofs are relatively easy to formalise
in a proof-assistant, which is even more relevant given that this will certify the
correctness of the results for many possible instances. Another possible extension
of our work concerns integrating into our framework irreversible actions [7]. In
order to do that we could take inspiration from the above-mentioned [8].

An Axiomatic Approach to Reversible Computation 459



References

reversibility in Petri nets. Science of Computer Programming 151, 48–60 (2018)

2. Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and

Development 17(6), 525–532 (1973)

3. Bernadet, A., Lanese, I.: A modular formalization of reversibility for concurrent

models and languages. In: Bartoletti, M., Henrio, L., Knight, S., Vieira, H.T. (eds.)

ICE. EPTCS, vol. 223, pp. 98–112 (2016)

4. Carothers, C.D., Perumalla, K.S., Fujimoto, R.: Efficient optimistic parallel simu-

lations using reverse computation. ACM Transactions on Modeling and Computer

Simulation 9(3), 224–253 (1999)

5. Cristescu, I., Krivine, J., Varacca, D.: A compositional semantics for the reversible

pi-calculus. In: LICS. pp. 388–397. IEEE Computer Society (2013)

6. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P.,

Yoshida, N. (eds.) CONCUR. LNCS, vol. 3170, pp. 292–307. Springer (2004)

7. Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L. (eds.)

CONCUR. LNCS, vol. 3653, pp. 398–412. Springer (2005)

8. Danos, V., Krivine, J., Sobociński, P.: General reversibility. In: Amadio, R.M.,

Phillips, I. (eds.) EXPRESS. ENTCS, vol. 175(3), pp. 75–86. Elsevier (2006)

Donelli, S., Haar, S. (eds.) Petri Nets. LNCS, vol. 11522. Springer (2019)

10. Giachino, E., Lanese, I., Mezzina, C.A.: Causal-consistent reversible debugging. In:

Gnesi, S., Rensink, A. (eds.) FASE. LNCS, vol. 8411, pp. 370–384. Springer (2014)

11. Giachino, E., Lanese, I., Mezzina, C.A., Tiezzi, F.: Causal-consistent rollback in a

tuple-based language. Journal of Logical and Algebraic Methods in Programming

88, 99–120 (2017)

12. van Glabbeek, R., Vaandrager, F.: The difference between splitting in n and n+1.

Information and Computation 136(2), 109–142 (1997)

13. Kari, J.: Reversible cellular automata: From fundamental classical results to recent

developments. New Generation Computing 36(3), 145–172 (2018)

14. Kuhn, S., Ulidowski, I.: Local reversibility in a Calculus of Covalent Bonding.

Science of Computer Programming 151, 18–47 (2018)

15. Landauer, R.: Irreversibility and heat generated in the computing process. IBM

Journal of Research and Development 5, 183 –191 (1961)

16. Lanese, I., Phillips, I., Ulidowski, I.: An axiomatic approach to reversible compu-

tation (TR) (2020), http://www.cs.unibo.it/∼lanese/work/axrev-TR.pdf

17. Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.: Controlling reversibility in

higher-order pi. In: Katoen, J., König, B. (eds.) CONCUR. LNCS, vol. 6901, pp.

297–311. Springer (2011)

18. Lanese, I., Mezzina, C.A., Stefani, J.: Reversibility in the higher-order π-calculus.

Theoretical Computer Science 625, 25–84 (2016)

19. Lanese, I., Mezzina, C.A., Tiezzi, F.: Causal-consistent reversibility. Bulletin of the

EATCS 114 (2014)

20. Lanese, I., Nishida, N., Palacios, A., Vidal, G.: A theory of reversibility for Erlang.

Journal of Logical and Algebraic Methods in Programming 100, 71–97 (2018)

21. Laursen, J.S., Schultz, U.P., Ellekilde, L.: Automatic error recovery in robot as-

sembly operations using reverse execution. In: IROS. pp. 1785–1792. IEEE (2015)

22. Lienhardt, M., Lanese, I., Mezzina, C.A., Stefani, J.: A reversible abstract machine

and its space overhead. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE. LNCS,

vol. 7273, pp. 1–17. Springer (2012)

460 I. Lanese, I. Phillips and I. Ulidowski

1. Barylska, K., Koutny, M., Mikulski, �L., Pia̧tkowski, M.: Reversible computation vs.

9. de Frutos Escrig, D., Koutny, M., Mikulski, �L.: Reversing steps in Petri nets. In:

http://www.cs.unibo.it/~lanese/work/axrev-TR.pdf


23. McNellis, J., Mola, J., Sykes, K.: Time travel debugging:

Root causing bugs in commercial scale software. CppCon talk,

https://www.youtube.com/watch?v=l1YJTg A914 (2017)

24. Melgratti, H.C., Mezzina, C.A., Ulidowski, I.: Reversing Place Transition nets.

arXiv 1910.04266 (2019)

25. Melgratti, H.C., Mezzina, C.A., Ulidowski, I.: Reversing P/T nets. In: Nielson,

H.R., Tuosto, E. (eds.) COORDINATION. LNCS, vol. 11533, pp. 19–36. Springer

(2019)

26. Mezzina, C.A.: On reversibility and broadcast. In: Kari, J., Ulidowski, I. (eds.) RC

2018. LNCS, vol. 11106, pp. 67–83. Springer (2018)

27. Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. In: Aceto, L.,

Ingólfsdóttir, A. (eds.) FoSSaCS. LNCS, vol. 3921, pp. 246–260. Springer (2006)

28. Phillips, I., Ulidowski, I.: Reversibility and models for concurrency. In: Hennessy,

M., van Glabbeek, R. (eds.) SOS. ENTCS, vol. 192(1), pp. 93–108. Elsevier (2007)

29. Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. Journal of Logic and

Algebraic Programming 73(1-2), 70–96 (2007)

30. Phillips, I., Ulidowski, I.: Reversibility and asymmetric conflict in event structures.

Journal of Logical and Algebraic Methods in Programming 84, 781–805 (2015)

31. Phillips, I., Ulidowski, I., Yuen, S.: A reversible process calculus and the modelling

of the ERK signalling pathway. In: Glück, R., Yokoyama, T. (eds.) RC. LNCS,

vol. 7581, pp. 218–232. Springer (2012)

32. Pin, J.: On the language accepted by finite reversible automata. In: Ottmann, T.

(ed.) ICALP. LNCS, vol. 267, pp. 237–249. Springer (1987)

33. Sassone, V., Nielsen, M., Winskel, G.: Models of concurrency: Towards a classifi-

cation. Theoretical Computer Science 170(1-2), 297–348 (1996)

34. Ulidowski, I., Phillips, I., Yuen, S.: Reversing event structures. New Generation

Computing 36(3), 281–306 (2018)

35. Yokoyama, T., Glück, R.: A reversible programming language and its invertible

self-interpreter. In: Ramalingam, G., Visser, E. (eds.) ACM SIGPLAN PEMP. pp.

144–153. ACM (2007)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

An Axiomatic Approach to Reversible Computation 461

https://www.youtube.com/watch?v=l1YJTg_A914
http://creativecommons.org/licenses/by/4.0/


An Auxiliary Logic on Trees: on the Tower-hardness of
logics featuring reachability and submodel reasoning

Alessio Mansutti(�)

LSV, CNRS, ENS Paris-Saclay, Université Paris-Saclay, mansutti@lsv.fr

Abstract. We describe a set of simple features that are sufficient in order to make

the satisfiability problem of logics interpreted on trees TOWER-hard. We exhibit

these features through an Auxiliary Logic on Trees (ALT), a modal logic that essen-

tially deals with reachability of a fixed node inside a forest and features modalities

from sabotage modal logic to reason on submodels. After showing that ALT ad-

mits a TOWER-complete satisfiability problem, we prove that this logic is captured

by four other logics that were independently found to be TOWER-complete: two-

variables separation logic, quantified computation tree logic, modal logic of heaps

and modal separation logic. As a by-product of establishing these connections, we

discover strict fragments of these logics that are still non-elementary.

1 Introduction

In mathematical logic there is a well-known trade-off between expressive power and

complexity, where weaker languages cannot capture interesting properties of complex

systems, whereas finding solutions of a given problem is infeasible for richer languages.

For instance, many verification tasks, such as reachability and homomorphisms queries,

happen to be expressible in monadic second-order logic (MSO) [15]. This logic is however

not usable in practice, as its satisfiability problem SAT(MSO) is undecidable in general

and was famously proved by Rabin [36] to be decidable but non-elementary when the

logic is interpreted on trees or on one unary function. A more recent analysis that uses the

hierarchy of non-elementary ranking functions [38] classifies SAT(MSO) on these two

structures as TOWER-complete, i.e. complete for the class of problems of time complexity

bounded by a tower of exponentials, whose height is an elementary function of the input.

In order to bypass these problems, a general approach is to design restrictions of MSO
that can solve complex reasoning tasks while being more appealing complexity-wise. An

example of this is given by the framework of temporal logics, formalisms that describe

the evolution of reactive systems [24]. Among the various temporal logics, from the

classical linear temporal logic (LTL) [39] and computation tree logic (CTL) [13], as well

as their fragments [2,33], to the more recently developed interval temporal logics [7,8],

the main common feature of this framework is perhaps the ability to check whether the

system can evolve to a certain configuration, i.e. a reachability query. In this context,

we recall the landmark result on the satisfiability of CTL, shown EXPTIME-complete

by Fisher and Ladner [23]. Another possibility to deal with the complexity of MSO
is to restrict the second-order quantifications to specific submodels. This is the idea

behind ambient logic [16], separation logic [37] and more generally bunched logics [35]

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 462–481, 2020.
https://doi.org/10.1007/978-3-030-45231-5_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_24&domain=pdf


and graphs logics [1]. These logics provide primitives for reasoning about resource

composition, mainly by adding a spatial conjunction 𝜑 ∗ 𝜓 which requires to split

a model into two disjoint pieces, one satisfying 𝜑 and the other satisfying 𝜓 . Similar

ideas are developed in sabotage modal logics, where the formula ⧫𝜑, headed by the

sabotage modality ⧫, states that 𝜑 must hold in a graph obtained by removing one

edge from the current model [4,21]. Within these logics, we highlight the quantifier-free

fragment of separation logic restricted to the ∗ operator, denoted here with 𝖲𝖫(∗) and

whose satisfiability problem is proved to be PSPACE-complete in [12].

Once a framework provides a solid foundation for reasoning tasks, a natural step is to

extend its expressiveness while keeping its complexity in check. Sometimes the additional

capabilities do not change the complexity of the logic, as for example 𝖲𝖫(∗) extended

with reachability predicates, whose satisfiability problem is still PSPACE-complete [20].

However, it often happens that the new features make the problem jump to higher

complexity classes and, sometimes, reach MSO. We pinpoint two instances of this:

– 𝖲𝖫(∗) enriched with first-order quantifiers, albeit less expressive than MSO inter-

preted on one unary function, has a TOWER-complete satisfiability problem [9].

– CTL enriched with propositional quantifiers has an undecidable satisfiability problem

on general models. On trees (i.e. 𝖰𝖢𝖳𝖫T), the problem is TOWER-complete [28].

Consequently, it is natural to ask ourselves why the additional features made the problem

harder. Answering this question requires to study the interplays between the various

operators of the logic, searching for a sufficient set of conditions explaining its complexity.

Our motivation. Second-order features often lead to logics with TOWER-hard satisfia-

bility problems, as illustrated above for first-order 𝖲𝖫(∗) and 𝖰𝖢𝖳𝖫T. A good amount of

research has been done independently on these logics [5,9,17,28], culminating with the

TOWER-hardness of 𝖲𝖫(∗) with two quantified variables [17] and the TOWER-hardness of

𝖰𝖢𝖳𝖫T with just one temporal operator between exists-finally 𝖤𝖥 and exists-next 𝖤𝖷 [5]

(see Section 4 for the definitions). Connections between these two formalisms have not

been explicitly developed so far, perhaps because of the quite different logics: 𝖰𝖢𝖳𝖫T

is built on top of propositional calculus and it is interpreted on infinite trees, whereas

𝖲𝖫(∗) does not feature propositional symbols and it is essentially interpreted on finite

structures. Nevertheless, we argue that these and other logics are related not only as they

are fragments of MSO, but also as they share a form of reachability and an ability of

reasoning on submodels which is sufficient to obtain TOWER-hard logics.

Our contribution. We explicit these common features that lead to TOWER-hard logics

by relying on an Auxiliary Logic on Trees (ALT), introduced in Section 2. ALT reasons

about reachability of a fixed target node inside a finite forest and features modalities from

sabotage logics to reason on submodels. Here, reachability should be understood as the

ability to reach the target node in at least one step, starting from a “current” node which

can be updated thanks to the existential modality somewhere ⟨U⟩ [26]. In Section 3, we

take a look at the expressive power of ALT and show that SAT(ALT) is TOWER-hard. In

Section 4, we then display how ALT is captured by first-order 𝖲𝖫(∗) and 𝖰𝖢𝖳𝖫T, as well

as modal logic of heaps (MLH) and modal separation logics (MSL), two other logics

introduced in [17] and [18], respectively. In this context, beside exposing that all these

logics are TOWER-hard because of the way they reason about reachability and submodels,

we discover interesting sublogics that are still TOWER-complete:

An Auxiliary Logic on Trees 463



– 𝖰𝖢𝖳𝖫T restricted to 𝖤(𝜑 𝖴 𝜓) modalities, where 𝜑,𝜓 are Boolean combinations of

atomic propositions, or to the 𝖤𝖥 modality, which can be nested at most once.

– the common fragment of MLH and MSL having Boolean connectives and the modal-

ities ◊, ⟨U⟩ and ∗. Notice that this logic does not have propositional symbols.

2 The definition of an Auxiliary Logic on Trees

We introduce an Auxiliary Logic on Trees (ALT). Its formulae are from the grammar:

𝜑 ∶= ⊤ ∣ 𝜑 ∧ 𝜑 ∣ ¬𝜑 ∣ 𝚃 ∣ 𝙶 ∣ ⟨U⟩ 𝜑 ∣ ⧫𝜑 ∣ ⧫∗𝜑
As we will soon clarify, the symbol ⟨U⟩ is borrowed from Goranko and Passy paper

on modal logic with universal modality [26]. Similarly, readers who are familiar with

sabotage modal logics will recognise in ⧫ the sabotage modality [4], and in ⧫∗ its Kleene

closure (i.e. ⧫ applied an arbitrary number of times). These two operators modify the

model during the evaluation of a formula, making ALT a relation-changing modal logic

(following the terminology used in [3]). However, contrary to most modal logics, ALT
does not feature classical propositional symbols. Instead, this logic only features two

interpreted atomic propositions 𝚃 and 𝙶. Roughly speaking, 𝚃 stands for “the target node is

reachable” whereas 𝙶 stands for “the target node is not reachable”. The formal definitions

will be given soon in order to clarify these two sentences.

Let  be countably infinite set of nodes. A (finite) forest ∶→𝚏𝚒𝚗 is a partial

function (encoding the standard parent relation) that

– has a finite domain of definition, i.e. dom( ) 𝖽𝖾𝖿= {𝗇 ∈  ∣  (𝗇) is defined} is finite;

– is acyclic, i.e. for every 𝗇 ∈ dom( ) and 𝛿 ≥ 1, 𝛿(𝗇) ≠ 𝗇.

Here, 𝛿 denotes 𝛿 ≥ 0 functional composition(s) of  . Albeit non-standard, our defini-

tion of finite forests over an infinite set of nodes simplifies the forthcoming definitions.

Besides, in Section 3.2 we show how restricting  to a finite set does not change the

expressive power nor the complexity of ALT.

We denote the image of  as ran( ) 𝖽𝖾𝖿={𝗇′ ∣  (𝗇) = 𝗇′ for some 𝗇 ∈ dom( )}. Given

a finite set 𝑋, we denote with |𝑋| its cardinality. Let 𝗇, 𝗇′ be two nodes. As usual, 𝗇
is a -descendant of 𝗇′ (alternatively, 𝗇′ is an -ancestor of 𝗇) whenever 𝛿(𝗇) = 𝗇′
for some 𝛿 ≥ 1. In this case, if 𝛿 = 1 then 𝗇 is a -child of 𝗇′ (alternatively, 𝗇′ is the

-parent of 𝗇). We drop the prefix - from these terms when it is clear from the context.

Given two forests  , ′, we say that  ′ is a subforest of  , written  ′ ⊑  , whenever

 (𝗇) =  ′(𝗇) for every 𝗇 ∈ dom( ′). Figure 1 intuitively represents two forests (every

“ ” represents a node), the one on the left being a subforest of the one on the right.

ALT is interpreted on pointed forests (, 𝗍, 𝗇), where  is a forest and 𝗍, 𝗇 ∈  are

respectively called the target node and the current evaluation node. The satisfaction

relation ⊧ is defined (throughout the paper, we omit standard clauses for ⊤,∧,¬) as:

( , 𝗍, 𝗇) ⊧ 𝚃 𝖽𝖾𝖿
⇔ 𝗇 is a  -descendant of 𝗍.

( , 𝗍, 𝗇) ⊧ 𝙶 𝖽𝖾𝖿
⇔ 𝗇 ∈ dom( ) and ( , 𝗍, 𝗇) ̸⊧ 𝚃.

( , 𝗍, 𝗇) ⊧ ⟨U⟩𝜑 𝖽𝖾𝖿
⇔ there is 𝗇′ ∈  s.t. ( , 𝗍, 𝗇′) ⊧ 𝜑.

( , 𝗍, 𝗇) ⊧ ⧫𝜑 𝖽𝖾𝖿
⇔ there is  ′ s.t.  ′ ⊑  , |dom( ′)|+1 = |dom( )|, ( ′, 𝗍, 𝗇) ⊧ 𝜑.

( , 𝗍, 𝗇) ⊧ ⧫∗𝜑 𝖽𝖾𝖿
⇔ there is  ′ s.t.  ′ ⊑  and ( ′, 𝗍, 𝗇) ⊧ 𝜑.

464 A. Mansutti



𝗍

⊑

𝗍

Fig. 1. Subforest relation

We denote with ⟂ the contradiction ¬⊤. The standard connectives ∨ and⇒ are defined

as usual. The semantics of 𝚃 and 𝙶 is pretty straightforward. As a visual aid, the nodes in

Figure 1 satisfying 𝚃 are the ones in the dark grey area, whereas the ones in the light grey

area satisfy 𝙶. As stated before, the semantics given to ⟨U⟩𝜑 is the one of the existential

modality somewhere [26], stating that there is a way to change the current evaluation

node so that 𝜑 becomes true. Its dual operator [U]𝜑 𝖽𝖾𝖿=¬ ⟨U⟩¬𝜑 is the universal modality

everywhere. The semantics given to ⧫𝜑 is the one of the sabotage modality from [4],

which requires to find one edge of the forest that, when removed, makes the model satisfy

𝜑. Lastly, the ⧫∗modality, here called repeated sabotage operator, can be seen as the

operator obtained by applying ⧫ an arbitrary number of times. Indeed, by inductively

defining ⧫𝑘
𝜑 (𝑘 ∈ ℕ) as the formula 𝜑 for 𝑘 = 0 and otherwise (𝑘 ≥ 1) as ⧫⧫𝑘−1

𝜑, it

is easy to see that ( , 𝗍, 𝗇) ⊧ ⧫∗𝜑 is equivalent to ∃𝑘 ∈ ℕ. ( , 𝗍, 𝗇) ⊧ ⧫𝑘
𝜑.

Given a pointed forest ( , 𝗍, 𝗇), we denote with  (𝙶)𝗍 the set of its garbage nodes:

the set of elements in dom( ) that are not descendants of 𝗍, i.e.  (𝙶)𝗍
𝖽𝖾𝖿= {𝗇 ∈ dom( ) ∣

∀𝛿 ≥ 1, 𝛿(𝗇) ≠ 𝗍}. Then,  (𝙶)𝗍 is equivalent to {𝗇 ∈  ∣ ( , 𝗍, 𝗇) ⊧ 𝙶}. We omit

the subscript 𝗍 from  (𝙶)𝗍 when it is clear from the context. We augment the standard

precedence rules of propositional logic so that the modalities ⟨U⟩, ⧫ and ⧫∗have the

same precedence as ¬. For instance, the formula ⟨U⟩ 𝚃 ∧ 𝙶 should be read as (⟨U⟩ 𝚃) ∧ 𝙶.

Satisfiability problem. As usual, given a logic 𝔏 and one of its interpretations ⊧ on

a class of structures ℭ, the satisfiability problem of 𝔏, denoted with SAT(𝔏) when the

interpretation is clear from the context, takes as input a formula 𝜑 of 𝔏 and asks whether

there is a structure 𝔐 ∈ ℭ such that 𝔐 ⊧ 𝜑. If the answer is positive, then 𝜑 is satisfiable.

Where does ALT come from? A preliminary definition of ALT was introduced in [31]

to reason on the complexity of separation logic. As such, in [31] ALT features the separat-

ing conjunction 𝜑 ∗𝜓 from separation logic, stating that the forest can be partitioned into

two disjoint subforests, one satisfying 𝜑 and one satisfying 𝜓 . This binary operator gener-

alises both ⧫ and ⧫∗operators (we show how in Section 4). Hence, the TOWER-hardness

of the satisfiability problem for the logic defined here cannot be inherited from [31]

and must be proved (Section 3). Unfortunately, the proof does not give any indication

on whether or not the two versions of ALT have the same expressive power. What is

clear is that the two logics analyse the model in a different way: the ∗ operator is able to

reason on the model in a “concurrent” way, whereas ⧫ and ⧫∗do it in a “sequential” one.

Let us draw an example of this. Let ( , 𝗍, 𝗇) be a pointed forest. We aim at defining a

formula #𝚌𝚑𝚝𝚛𝚐 ≥2 stating that the target node 𝗍 has at least two children. First, we define

#𝚌𝚑𝚝𝚛𝚐 ≥1 (the formula for just one child) as ⟨U⟩(𝚃 ∧ ¬⧫ 𝙶). Intuitively, #𝚌𝚑𝚝𝚛𝚐 ≥ 2

An Auxiliary Logic on Trees 465



can then be defined with the ∗ operator simply as the formula #𝚌𝚑𝚝𝚛𝚐 ≥1 ∗ #𝚌𝚑𝚝𝚛𝚐 ≥1,

stating that it is possible to partition the forest into two subforests having both at least

one child of 𝗍. With the ⧫ operator, this property is instead defined as

#𝚌𝚑𝚝𝚛𝚐 ≥2
𝖽𝖾𝖿= ⟨U⟩

(

𝚃∧¬⧫ 𝙶 ∧⧫(¬ 𝚒𝚗𝙳𝚘𝚖∧#𝚌𝚑𝚝𝚛𝚐 ≥1)
)

.

where 𝚒𝚗𝙳𝚘𝚖
𝖽𝖾𝖿=𝚃∨ 𝙶 states that the current evaluation node is in the domain of the for-

est. This definition of #𝚌𝚑𝚝𝚛𝚐 ≥2 requires to find one child of 𝗍 (as encoded by the

“⟨U⟩(𝚃∧¬⧫ 𝙶 ∧· · ·” part of the formula) and remove it from the model (as expressed

by the “⧫(¬ 𝚒𝚗𝙳𝚘𝚖∧· · ·” part). Only afterwards we check for the existence of a second

child of 𝗍. This form of “sequential reasoning” (that can be often avoided when using

the ∗ operator), is used in almost all the formulae of the next sections: we first find a

node satisfying a certain property, we remove it from the structure, and only afterwards

we check if the model satisfy a second property. This principle only works well for

monotonic properties: with respect to the definition of #𝚌𝚑𝚝𝚛𝚐 ≥2, the set of children of 𝗍
monotonically decreases when considering subforests. Thus, finding a child of 𝗍 in the

subforest, implies finding a child of 𝗍 in the original forest.

3 On the complexity and expressive power of ALT

In this section, we show that SAT(ALT) is TOWER-hard by reduction from the satisfiability

problem of Propositional Interval Temporal Logic on finite words (Section 3.3). The

proof adapts the arguments used in [31] for the version of ALT featuring the separating

conjunction ∗. The reduction is somewhat non-intuitive and in [31] it is given without

explaining why more direct ways fail. Here, we clarify this issue which is related to

the fact that ALT cannot deduce any property of the portion of a pointed forest ( , 𝗍, 𝗇)
corresponding to the nodes in  (𝙶), except for the size of  (𝙶) and the query 𝗇 ∈  (𝙶).
This is done in Section 3.2, by relying on a notion of Ehrenfeucht-Fras̈sé games for ALT.

3.1 Towards the TOWER-hardness of SAT(ALT): how to encode finite words.

As a first step, we define a correspondence between finite words and specific pointed

forests. As usual, we define the set of finite words on a finite alphabet  as the closure

under Kleene star ∗. To ease our modelling, we suppose  𝖽𝖾𝖿= [1, 𝑛] to be the alphabet

of natural numbers between 1 and 𝑛. Let 𝔴 = 𝚊1· · ·𝚊𝑘 be a 𝑘-symbols word in ∗ and

𝖬 = {𝗇1,· · ·, 𝗇𝑘} be a set of 𝑘 nodes. Let 𝖭𝑖 (𝑖 ∈ [1, 𝑘]) be a set of 𝚊𝑖 + 1 nodes different

from 𝗇1,· · ·, 𝗇𝑘 and so that for each distinct 𝑖, 𝑗 ∈ [1, 𝑘],𝖭𝑖∩𝖭𝑗 = ∅. Lastly, let 𝗍 be a node

not in𝖬 ∪
⋃

𝑖∈[1,𝑘] 𝖭𝑖. A pointed forest ( , 𝗍, 𝗇) encodes 𝔴 w.r.t. the sets𝖬,𝖭1,· · ·,𝖭𝑘
iff (I)  (𝗇𝑘) = 𝗍, (II) for all 𝑖∈[1, 𝑘 − 1]  (𝗇𝑖) = 𝗇𝑖+1, (III) for all 𝑖∈[1, 𝑘] and 𝗇′ ∈𝖭𝑖,
 (𝗇′) = 𝗇𝑖 and (IV) every  -descendant of 𝗍 belongs to a set among𝖬,𝖭1,· · ·,𝖭𝑘.

We call the path from 𝗇1 to 𝗇𝑘, the main path of  . The nodes of this path are the

ones in 𝖬, and can be characterised as being the only descendants of 𝗍 with at least

one child. Moreover, 𝗇1 is the only node of the main path having the same number of

descendants and children. We say that a node 𝗇 ∈ dom( ) encodes the symbol 𝚊 ∈  if

it is a descendant of 𝗍 and it has exactly 𝚊 + 1 children that are not in𝖬. Then, the nodes

in 𝖬 are the only ones encoding symbols, where 𝗇𝑖 encodes 𝚊𝑖 for any 𝑖 ∈ [1, 𝑘]. For

instance, Figure 2 shows an encoding of the word 1121.

466 A. Mansutti



𝗇1 𝗇2 𝗇3 𝗇4 𝗍

1 1 2 1

Fig. 2. Encoding of 1121.

Formula Intended meaning

𝚜𝚒𝚣𝚎(𝙶) ≥ 𝛽 | (𝙶)𝗍| ≥ 𝛽.

#𝚍𝚎𝚜𝚌 ≥ 𝛽 ( , 𝗍, 𝗇) ⊧ 𝚃 and 𝗇 has at least 𝛽 descendants.

#𝚌𝚑𝚒𝚕𝚍 ≥ 𝛽 ( , 𝗍, 𝗇) ⊧ 𝚃 and 𝗇 has at least 𝛽 children.

Table 1. Formulae and their meaning on ( , 𝗍, 𝗇).

In order to characterise the class of pointed forests encoding finite words, we adapt

the formulae of [31] shown in Table 1 (where their semantics is described). Let ( , 𝗍, 𝗇)
be a pointed forest and let 𝛽 ∈ ℕ. The formula 𝚜𝚒𝚣𝚎(𝙶) ≥ 𝛽 is inductively defined as:

𝚜𝚒𝚣𝚎(𝙶) ≥ 0 𝖽𝖾𝖿= ⊤, 𝚜𝚒𝚣𝚎(𝙶) ≥ 𝛽+1 𝖽𝖾𝖿= ⟨U⟩
(

𝙶 ∧⧫(¬ 𝚒𝚗𝙳𝚘𝚖∧ 𝚜𝚒𝚣𝚎(𝙶) ≥ 𝛽)
)

.

Notice how, in the definition of 𝚜𝚒𝚣𝚎(𝙶) ≥ 𝛽+1, we use the same principle used to encode

#𝚌𝚑𝚝𝚛𝚐 ≥2 at the end of Section 2: we first find a node in  (𝙶), remove it from the model,

and then find other 𝛽 elements of  (𝙶). The formulae #𝚍𝚎𝚜𝚌 ≥ 𝛽 and #𝚌𝚑𝚒𝚕𝚍 ≥ 𝛽 (again,

we refer to Table 1 for their semantics) are instead defined as:

#𝚍𝚎𝚜𝚌 ≥ 𝛽 𝖽𝖾𝖿= ⧫∗
(

[U] ¬𝙶
⏟⏟⏟

 (𝙶) is empty.

∧𝚃 ∧⧫(¬ 𝚒𝚗𝙳𝚘𝚖∧ 𝚜𝚒𝚣𝚎(𝙶) ≥ 𝛽)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Removing 𝗇 lead to a set of garbage nodes of size at least 𝛽.

)

#𝚌𝚑𝚒𝚕𝚍 ≥ 0 𝖽𝖾𝖿= 𝚃, #𝚌𝚑𝚒𝚕𝚍 ≥ 𝛽+1 𝖽𝖾𝖿= #𝚍𝚎𝚜𝚌 ≥ 𝛽+1 ∧ ¬⧫𝛽(𝚃 ∧ ¬ #𝚍𝚎𝚜𝚌 ≥ 1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Whenever 𝛽 nodes of dom( ) are removed, if 𝗇 still reaches 𝗍 then it has at least one descendant.

.

Given 𝚜 ∈ {𝚜𝚒𝚣𝚎(𝙶), #𝚌𝚑𝚝𝚛𝚐, #𝚍𝚎𝚜𝚌, #𝚌𝚑𝚒𝚕𝚍}, we write 𝚜 = 𝛽 for 𝚜 ≥ 𝛽 ∧ ¬𝚜 ≥ 𝛽+1.

For instance, #𝚌𝚑𝚒𝚕𝚍 = 𝛽 is the formula that checks whether 𝗇 has exactly 𝛽 children

and it is a descendant of 𝗍. We can now conclude the encoding of finite words.

Let ( , 𝗍, 𝗇) be a pointed forest encoding 𝔴 ∈ ∗ and let𝖬 be the set of nodes in its

main path. Let us recall two properties of our encoding: (I) a node 𝗇′ encodes a symbol

of 𝔴 iff 𝗇′ ∈ 𝖬, and (II) the node encoding the first symbol of 𝔴 is the only node in𝖬
with the same number of descendants and children. To reflect (I) we denote with 𝚜𝚢𝚖𝚋

the formula #𝚍𝚎𝚜𝚌 ≥ 1. For (II), given 𝖲 ⊆ , we introduce the formula 𝟷𝚜𝚝𝖲 that checks

if the current evaluation node corresponds to the first node of the main path and encodes

a symbol in 𝖲. It is defined as
⋁

𝛽∈𝖲(#𝚍𝚎𝚜𝚌 = 𝛽 + 1 ∧ #𝚌𝚑𝚒𝚕𝚍 = 𝛽 + 1). The following

statement formalises the connection between this formula and property (II) stated above.

Lemma 1. Let 𝔴 ∈ +. Let ( , 𝗍, 𝗇) be a pointed forest encoding 𝔴. Let 𝗇1 be the first
node in the main path of  . For every 𝖲 ⊆ , ( , 𝗍, 𝗇) ⊧ ⟨U⟩ 𝟷𝚜𝚝𝖲 iff ( , 𝗍, 𝗇1) ⊧ 𝟷𝚜𝚝𝖲.

We are finally ready to define the formula 𝚠𝚘𝚛𝚍, characterising the class of forests that

encodes words in ∗. It is proved correct by Lemma 2, and it is defined as follows

𝚠𝚘𝚛𝚍
𝖽𝖾𝖿=

The target node has no descendants, or has a descendant that encodes a symbol.
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

( ⟨U⟩ 𝚃 ⇒ ⟨U⟩ 𝚜𝚢𝚖𝚋) ∧¬ #𝚌𝚑𝚝𝚛𝚐 ≥ 2∧
[U](𝚜𝚢𝚖𝚋 ⇒ 𝟷𝚜𝚝 ∨ (¬ 𝟷𝚜𝚝{𝑛+1} ∧⧫ 𝟷𝚜𝚝)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
The current node encodes a symbol in [1, 𝑛] and exactly one of its children encodes a symbol.

).

Lemma 2. A pointed forest ( , 𝗍, 𝗇) is an encoding of a word in ∗ iff ( , 𝗍, 𝗇) ⊧ 𝚠𝚘𝚛𝚍.

An Auxiliary Logic on Trees 467



game played on ((1, 𝗍1, 𝗇1), (2, 𝗍2, 𝗇2), (𝗆, 𝗌, 𝗄))
if there is 𝑝 ∈ {𝙶, 𝚃} s.t. not ((1, 𝗍1, 𝗇1) ⊧ 𝑝 iff (2, 𝗍2, 𝗇2) ⊧ 𝑝) then the spoiler wins, otherwise
the spoiler chooses 𝑖∈{1, 2} and plays on (𝑖, 𝗍𝑖, 𝗇𝑖). The duplicator replies on (𝑗 , 𝗍𝑗 , 𝗇𝑗) where

𝑗 ∈ {1, 2}⧵{𝑖}. The spoiler must choose one of the following moves (else the duplicator wins).

⟨U⟩ move: if𝗆 ≥ 1 then the spoiler can choose to play a ⟨U⟩ move. It selects a node 𝗇′
𝑖
∈  .

– Then, the duplicator must reply with some node 𝗇′
𝑗
∈  (otherwise the spoiler wins).

– The game continues on ((1, 𝗍1, 𝗇
′
1), (2, 𝗍2, 𝗇

′
2), (𝗆−1, 𝗌, 𝗄)).

⧫ move: if 𝗌 ≥ 1 and dom(𝑖) ≠ ∅ then the spoiler can choose to play a ⧫ move. It selects

a finite forest  ′
𝑖

such that  ′
𝑖
⊑ 𝑖 and |dom( ′

𝑖
)| = |dom(𝑖)| − 1.

– The duplicator must reply with some  ′
𝑗
⊑ 𝑗 s.t. |dom( ′

𝑗
)| = |dom(𝑗)| − 1.

– The game continues on (( ′
1, 𝗍1, 𝗇1), (

′
2, 𝗍2, 𝗇2), (𝗆, 𝗌−1, 𝗄)).

⧫∗ move: if 𝗄 ≥ 1 then the spoiler can choose to play a ⧫∗move. It selects a forest  ′
𝑖
⊑ 𝑖.

– The duplicator must reply with some  ′
𝑗

s.t.  ′
𝑗
⊑ 𝑗 .

– The game continues on (( ′
1, 𝗍1, 𝗇1), (

′
2, 𝗍2, 𝗇2), (𝗆, 𝗌, 𝗄−1)).

Fig. 3. Ehrenfeucht-Fraïssé games for ALT

3.2 Inexpressibility results via the Ehrenfeucht-Fraïssé games for ALT

Now that we are more familiar with the logic, before completing the TOWER-hardness

proof of SAT(ALT) we show some properties that ALT cannot express. Notably, these

properties explain why the TOWER-hardness proof of the next section cannot be easily

simplified. Moreover, inexpressibility results effectively reduce the set of forests that

must be considered in order to solve SAT(ALT). This in turn makes reductions from

SAT(ALT) to other logics more immediate, as we show throughout Section 4.

A standard way of proving inexpressibility results for logics interpreted on finite

models is by adaptation of the Ehrenfeucht-Fraïssé games [29], as done for other relation-

changing logics such as context logic for trees [10] and ambient logic [16].

We define the rank of a formula 𝜑 as the triple (𝗆, 𝗌, 𝗄) ∈ ℕ3 where the modal rank
𝗆 is the greatest nesting depth of the modal operator ⟨U⟩ in 𝜑, whereas the sabotage
rank 𝗌 (resp. repeated sabotage rank 𝗄) is the greatest nesting depth of the ⧫ (resp. ⧫∗)
operator in 𝜑. We denote with ALT(𝗋𝗄) the set of formulae with rank 𝗋𝗄 ∈ ℕ3.

The Ehrenfeucht-Fraïssé games (EF-games) for ALT are formally defined in Fig-

ure 3. A game is played by two players: the spoiler and the duplicator. A game state

((1, 𝗍1, 𝗇1), (2, 𝗍2, 𝗇2), 𝗋𝗄) is a triple made of a rank 𝗋𝗄 and two pointed forests (1, 𝗍1, 𝗇1)
and (2, 𝗍2, 𝗇2). The goal of the spoiler is to show that the two structures are different.

The goal of the duplicator is to counter the spoiler and show that the two structures are

similar. Let us make clear what we mean by two models being different: both players

can only play following the rules of the logical formalism (in our case, ALT). Then, two

models are different if and only if there is a formula 𝜑 ∈ ALT(𝗋𝗄) that it is satisfied by

only one of the two models. This correspondence between the game and the logic is

expressed by an adequacy result, formalised below in Lemma 3.

A player has a winning strategy if it can play in a way that guarantees it the victory,

regardless what the other player does. We write (1, 𝗍1, 𝗇1) ≈𝗋𝗄 (2, 𝗍2, 𝗇2) whenever the

duplicator has a winning strategy for the game ((1, 𝗍1, 𝗇1), (2, 𝗍2, 𝗇2), 𝗋𝗄). By Martin’s

Theorem [32] our games are determined: if the duplicator does not have a winning

468 A. Mansutti



strategy then spoiler has one, and vice-versa. Hence, (1, 𝗍1, 𝗇1) ̸≈𝗋𝗄 (2, 𝗍2, 𝗇2) refers to

the fact that the spoiler has a winning strategy.

Lemma 3. (1, 𝗍1, 𝗇1) ̸≈𝗋𝗄(2, 𝗍2, 𝗇2) iff ∃𝜑∈ALT(𝗋𝗄), (1, 𝗍1, 𝗇1)⊧𝜑 and (2, 𝗍2, 𝗇2)̸⊧𝜑.
The left-to-right direction is proved by induction on the rank and by cases on the first

move that the spoiler makes in his winning strategy. The other direction is proved by

structural induction on 𝜑. We start to use the EF-games to derive three easy results.

Lemma 4. Let 𝜑 be a formula.
1. 𝜑 is satisfiable iff it is satisfiable by a pointed forest ( , 𝗍, 𝗇) where 𝗍 ∉ dom( ).
2. Given a forest  and nodes 𝗍 ∈  and 𝗇, 𝗇′ ∉ dom( ), ( , 𝗍, 𝗇) ⊧ 𝜑 iff ( , 𝗍, 𝗇′) ⊧ 𝜑.
3. If duplicator has a winning strategy for a game ((1, 𝗍1, 𝗇1), (2, 𝗍2, 𝗇2), 𝗋𝗄) then it

has a winning strategy where it always replies to ⟨U⟩ moves by selecting nodes in
dom(𝑖) ∪ ran(𝑖), for some 𝑖 ∈ {1, 2}.

Proof (sketch). We sketch the proof of (1) to show how EF-games are used. Let us

consider a pointed forest ( , 𝗍, 𝗇) such that ( , 𝗍, 𝗇) ⊧ 𝜑. We take a node 𝗍′ ∉ dom( ) ∪
ran( ) and define the forest  ′(𝗇′) 𝖽𝖾𝖿= if  (𝗇′) = 𝗍 then 𝗍′ else  (𝗇′). Notice that 𝗍′ ∉
dom( ′). We then prove ∀𝗋𝗄 ∈ ℕ3 ( , 𝗍, 𝗇) ≈𝗋𝗄 ( ′, 𝗍′, 𝗇) by induction on 𝗋𝗄, leading to

(1) directly by Lemma 3. The proof of (3) essentially follows from (2). ⊓⊔

Interestingly enough, the third statement of Lemma 4 fundamentally implies that enforc-

ing  to be finite, instead of infinite as we do throughout this work, does not change the

expressive power nor the complexity of ALT.

Let ( , 𝗍, 𝗇) be a pointed forest. We now show that ALT has a very limited expres-

sive power with respect to the garbage nodes. In particular, it can only check for the

membership of 𝗇 in  (𝙶) (with the formula 𝙶) and for the size of  (𝙶) (with the formula

𝚜𝚒𝚣𝚎(𝙶)≥𝛽). We formalise this inexpressibility result as follows.

Lemma 5. Let 𝗋𝗄 = (𝗆, 𝗌, 𝗄). Let  ,1 and 2 be three forests and let 𝗇, 𝗍 ∈  , such
that for every 𝑖 ∈ {1, 2},  ⊑ 𝑖 and 𝑖(𝙶)𝗍 = dom(𝑖) ⧵ dom( ). If we have
𝗇 ∈ 1(𝙶)𝗍 iff 𝗇 ∈ 2(𝙶)𝗍 and min(|1(𝙶)𝗍|,𝗆 + 𝗌 + 𝗄) = min(|2(𝙶)𝗍|,𝗆 + 𝗌 + 𝗄)

then (1, 𝗍, 𝗇) ≈𝗋𝗄 (2, 𝗍, 𝗇).
Let us informally explain Lemma 5, whose proof is by induction on 𝗋𝗄 and by cases on

the moves of the spoiler. Let (1, 𝗍, 𝗇) be a pointed forest and suppose (ad absurdum)

that it satisfies a formula 𝜑 of rank 𝗋𝗄 that express a property of the garbage nodes that

is different form the ones cited above. For example, let us assume that 𝜑 characterise

the set of pointed forests having a garbage node with at least two children. Consider

the subforest  ⊑ 1 whose domain corresponds to the set of 1-descendants of 𝗍. In

particular, 1(𝙶)𝗍 = dom(1) ⧵ dom( ). We extend  to a forest 2 by (re)defining

it on the nodes in 1(𝙶)𝗍 so that 2(𝙶)𝗍 = 1(𝙶)𝗍 and none of these nodes has more

than one 2-child (this construction can always be done). This last equality implies that

𝗇 ∈ 1(𝙶)𝗍 ⇔ 𝗇 ∈ 2(𝙶)𝗍 and min(|1(𝙶)𝗍|,𝗆 + 𝗌 + 𝗄) = min(|2(𝙶)𝗍|,𝗆 + 𝗌 + 𝗄). By

Lemma 5 (1, 𝗍, 𝗇) ≈𝗋𝗄 (2, 𝗍, 𝗇), which implies (2, 𝗍, 𝗇) ⊧ 𝜑 by Lemma 3. However,

(2, 𝗍, 𝗇) is defined so that every node in 2(𝙶)𝗍 has at most one child. Thus, 𝜑 cannot

characterise the set of models having a garbage node with at least two children.

As shown in the next section, the inexpressibility result in Lemma 5 plays a central

role in the development of the reduction that leads to the TOWER-hardness of SAT(ALT).

An Auxiliary Logic on Trees 469



3.3 PITL on marked words and the TOWER-hardness of SAT(ALT)

We are now ready to show the non-elementarity of SAT(ALT). The proof is by reduction

from the satisfiability problem of Propositional Interval Temporal Logic (PITL) under

locality principle [34,25], which in turn is shown TOWER-hard by reduction from the non-

emptiness problem of star-free regular languages (see [38] for the TOWER characterisation

of this problem). PITL is a well-known logic that was introduced by Moszkowski in [34]

for the verification of hardware components. It is interpreted on non-empty finite words

over a finite alphabet of unary symbols . Its formulae are from the grammar:

𝜑 ∶= 𝜑 ∧ 𝜑 ∣ ¬𝜑 ∣ 𝚊 ∣ 𝟷 ∣ 𝜑 𝜑

where 𝚊 ∈ . Under the locality principle interpretation, a word 𝔴 = 𝚊1· · ·𝚊𝑘 ∈ +
satisfies 𝚊 whenever 𝚊1 = 𝚊. Moreover, 𝔴 satisfies 𝟷 if it is a word of length one (i.e.

𝔴 ∈ ). The main feature of this logic is its chop operator “ ”. Intuitively,𝜑 𝜓 is satisfied

by words that can be “chopped” into a prefix and a suffix sharing one symbol, so that the

prefix satisfies 𝜑 and the suffix satisfies 𝜓 . Formally,

𝚊1· · ·𝚊𝑘 ⊧ 𝜑 𝜓
𝖽𝖾𝖿
⇔ there is 𝑖 ∈ [1, 𝑘] such that 𝚊1· · ·𝚊𝑖 ⊧ 𝜑 and 𝚊𝑖· · ·𝚊𝑘 ⊧ 𝜓 .

Translating in ALT is not easy. Indeed, given the encoding of words proposed in Sec-

tion 3.1, chopping 𝔴 in two pieces means splitting in some way the main path 𝗇1,· · ·, 𝗇𝑘
of a forest ( , 𝗍, 𝗇) encoding 𝔴 to then check that the word encoded by 𝗇1,· · ·, 𝗇𝑖 satisfies

𝜑 and the one encoded by 𝗇𝑖,· · ·, 𝗇𝑘 satisfies 𝜓 . However, by doing this the elements

𝗇1,· · ·, 𝗇𝑖 become garbage nodes. Thus, as a consequence of Lemma 5, ALT cannot check

in any way what is the word encoded by these nodes. Easy translations from PITL to

ALT seem therefore impossible and, as done in [31], we are required to go through an

alternative interpretation of PITL based on marking symbols instead of chopping words.

A marking of an alphabet  is a bijection (.) ∶  → , relating a symbol 𝚊 ∈  to its

marked variant 𝚊 ∈ . We denote with
⅀

the extended alphabet ⊎. A word is marked
if it has some symbols from . We introduce the satisfaction relation ⊧∙ on a marked

word 𝔴 ∈ ⅀+. It is defined as usual for Boolean connectives. Moreover,

𝔴 ⊧∙ 𝚊
𝖽𝖾𝖿
⇔ 𝔴 is headed by 𝚊 or 𝚊; 𝔴 ⊧∙ 𝟷

𝖽𝖾𝖿
⇔ 𝔴 is headed by a marked symbol.

The definition of 𝜑 𝜓 is more involved. Let 𝔴′ ∈ ∗, 𝚊 ∈  and 𝔴′′ ∈ ⅀∗ be such that

𝔴 = 𝔴′𝚊𝔴′′, so that 𝚊 is the first marked symbol occurring in 𝔴 (this decomposition is

uniquely defined). Then, 𝔴′𝚊𝔴′′ ⊧∙ 𝜑 𝜓 holds if and only if there is there is 𝚋 ∈  s.t.

(a) 𝔴′ is the empty word, 𝚋 = 𝚊 and 𝚊𝔴′′ ⊧∙ 𝜑 ∧ 𝜓 , or

(b) there is 𝔴2 ∈ ∗ s.t. 𝔴′ = 𝚋𝔴2, 𝚋𝔴2𝚊𝔴′′ ⊧ 𝜑 and 𝚋𝔴2𝚊𝔴′′ ⊧ 𝜓 , or

(c) 𝔴′ is not the empty word, 𝚋 = 𝚊, 𝔴′𝚊𝔴′′ ⊧ 𝜑 and 𝚊𝔴′′ ⊧ 𝜓 , or

(d) ∃𝔴1 ∈ +, ∃𝔴2 ∈ ∗ s.t. 𝔴′ = 𝔴1𝚋𝔴2, 𝔴1𝚋𝔴2𝚊𝔴′′ ⊧ 𝜑 and 𝚋𝔴2𝚊𝔴′′ ⊧ 𝜓 .

On this semantics, the satisfaction of a formula only depends on the prefix 𝚊1· · ·𝚊𝑖−1𝚊𝑖
of 𝔴 that ends with the first marked symbol. To check whether 𝔴 ⊧∙ 𝜑 𝜓 we search for

a position 𝑗 ∈ [1, 𝑖] inside this prefix so that 𝜑 is satisfied by the word obtained from 𝔴
by marking the 𝑗-th symbol, whereas 𝜓 is satisfied by the suffix of 𝔴 starting in 𝑗. In

the definition above, this idea is split into four cases (a)–(d), depending on truthiness

of 𝑗 = 1 and 𝑗 = 𝑖. This is done as it better reflects the encoding of PITL in ALT. The

semantics on marked words is related to the standard semantics of PITL as follows.

470 A. Mansutti



Proposition 1 (from [31]). Let 𝔴 ∈ ∗, 𝚊 ∈  and 𝔴′ ∈ ⅀∗. Let 𝜑 be a formula in
PITL. 𝔴𝚊 satisfies 𝜑 under the standard interpretation of PITL if and only if 𝔴𝚊𝔴′ ⊧∙ 𝜑.

The alternative interpretation of PITL allows us to reduce SAT(PITL) to SAT(ALT)
in a neat way. Let  = [1, 𝑛], ⅀ = ∪ and let 𝔣 ∶ ⅀

→ [1, 2𝑛] be the bijection 𝔣(𝚊) 𝖽𝖾𝖿= 2𝚊
for 𝚊 ∈  and 𝔣(𝚊) 𝖽𝖾𝖿= 2𝚊 − 1 for 𝚊 ∈ . 𝔣(𝚊1· · ·𝚊𝑘) denotes the word 𝔣(𝚊1)· · ·𝔣(𝚊𝑘). 𝔣 maps
⅀

into the alphabet [1, 2𝑛], whose words can be encoded into trees (as in Section 3.1).

In these trees each symbol 𝚊 ∈  (resp. 𝚊 ∈ ) corresponds to a node in the main path

having 2𝚊 + 1 (resp. 2𝚊) children not in this path. Therefore, given a node 𝗇 encoding a

symbol in , removing exactly one children of 𝗇 that is not in the main path is equivalent

to marking the symbol 𝗇 encodes. Based on this description, we can check if the current

evaluation node encodes a marked symbol from  with the following formula:

𝚖𝚊𝚛𝚔
𝖽𝖾𝖿=
⋁

𝚊∈
(

(#𝚌𝚑𝚒𝚕𝚍 = 2𝚊 ∧ 𝟷𝚜𝚝[1,2𝑛]) ∨ (#𝚌𝚑𝚒𝚕𝚍 = 2𝚊 + 1 ∧ ¬ 𝟷𝚜𝚝[1,2𝑛])
)

As already stated, 𝔴 ⊧∙ 𝜑 examines the prefix of 𝔴 that ends with the first marked

symbol. In pointed forests ( , 𝗍, 𝗇) encoding 𝔴, this prefix corresponds to the subtree

whose root encodes a marked symbol and is a  -descendant of every other node encoding

marked symbols. Therefore, to characterise this tree we need to track the number of nodes

encoding marked symbols. We first define a formula 𝚖𝚊𝚛𝚔𝚜 ≥ 𝛽 stating that the forest has

at least 𝛽 ∈ ℕ nodes encoding marked symbols. It is defined as⊤ for 𝛽 = 0, and otherwise

(𝛽 ≥ 1) as ⟨U⟩
(

𝚖𝚊𝚛𝚔 ∧⧫(¬ 𝚒𝚗𝙳𝚘𝚖∧ 𝚖𝚊𝚛𝚔𝚜 ≥ 𝛽−1)
)

. Again, this formula uses the

same principle introduced in Section 2 for #𝚌𝚑𝚝𝚛𝚐 ≥2: we search for a node encoding

a marked symbol, remove it from the structure and then search for 𝛽−1 other such

nodes. Similarly, we introduce #𝚖𝚊𝚛𝚔𝙰𝚗𝚌 ≥ 𝛽 𝖽𝖾𝖿= 𝚜𝚢𝚖𝚋∧⧫(¬ 𝚒𝚗𝙳𝚘𝚖∧ 𝚖𝚊𝚛𝚔𝚜 ≥ 𝛽),
the formula stating that the current evaluation node encodes a symbol and has at least 𝛽
ancestors that encode marked symbols.

At last, for a formula𝜑 in PITL having symbols from = [1, 𝑛], we introduce its trans-

lation∇𝛽(𝜑) in ALT, where 𝛽 ≥ 1 tracks the number of nodes encoding marked symbols. It

is homomorphic for Boolean connectives:∇𝛽(¬𝜑)
𝖽𝖾𝖿=¬∇𝛽(𝜑) and∇𝛽(𝜑∧𝜓)

𝖽𝖾𝖿=∇𝛽(𝜑)∧∇𝛽(𝜓).
For 𝚊 ∈  and 𝟷, it faithfully represent the ⊧∙ relation: ∇𝛽(𝚊)

𝖽𝖾𝖿= ⟨U⟩ 𝟷𝚜𝚝[2𝚊−1,2𝚊] and

∇𝛽(𝟷)
𝖽𝖾𝖿= ⟨U⟩(𝟷𝚜𝚝[1,2𝑛] ∧ 𝚖𝚊𝚛𝚔). Lastly, the formula ∇𝛽(𝜑 𝜓) is defined as

⟨U⟩
(

𝚜𝚢𝚖𝚋∧
(

(𝟷𝚜𝚝[1,2𝑛] ∧ 𝚖𝚊𝚛𝚔 ∧∇𝛽(𝜑) ∧ ∇𝛽(𝜓))∨
(𝟷𝚜𝚝[1,2𝑛] ∧¬ 𝚖𝚊𝚛𝚔 ∧⧫(𝚖𝚊𝚛𝚔 ∧∇𝛽+1(𝜑)) ∧ ∇𝛽(𝜓))∨
(¬ 𝟷𝚜𝚝[1,2𝑛] ∧ 𝚖𝚊𝚛𝚔 ∧#𝚖𝚊𝚛𝚔𝙰𝚗𝚌 ≥ 𝛽 − 1 ∧ ∇𝛽(𝜑) ∧⧫(𝟷𝚜𝚝[1,2𝑛] ∧∇𝛽(𝜓)))∨
(¬ 𝟷𝚜𝚝[1,2𝑛] ∧¬ 𝚖𝚊𝚛𝚔 ∧#𝚖𝚊𝚛𝚔𝙰𝚗𝚌 ≥ 𝛽 ∧⧫(𝚖𝚊𝚛𝚔 ∧∇𝛽+1(𝜑)) ∧⧫(𝟷𝚜𝚝[1,2𝑛] ∧∇𝛽(𝜓)))

))

.

Notice how ∇𝛽(𝜑 𝜓) follows closely the ⊧∙ relation: it is split into four disjuncts, one for

each case in the definition of 𝜑 𝜓 . For example, the second disjunct of ∇𝛽(𝜑 𝜓) encodes

the case (b) in the definition of 𝔴′𝚊𝔴′′ ⊧∙ 𝜑 𝜓 , as schematised below:

PITL ∃𝚋∈... ∃𝔴2 ∈∗ s.t. 𝔴′ = 𝚋𝔴2 and 𝚋𝔴2𝚊𝔴′′ ⊧ 𝜑 and 𝚋𝔴2𝚊𝔴′′⊧𝜓

ALT ⟨U⟩(𝚜𝚢𝚖𝚋... 𝟷𝚜𝚝[1,2𝑛] ∧¬ 𝚖𝚊𝚛𝚔 ∧⧫(𝚖𝚊𝚛𝚔 ∧∇𝛽+1(𝜑)) ∧∇𝛽(𝜓)

The translation is proved correct (by induction on the structure of 𝜑) in the next lemma.

Lemma 6. Let  = [1, 𝑛] and ⅀ =  ∪ . Let 𝔴 ∈ ⅀+ with 𝛽 ≥ 1 marked symbols. Let
( , 𝗍, 𝗇) be an encoding of 𝔣(𝔴). For every 𝜑 in PITL, 𝔴 ⊧∙ 𝜑 iff ( , 𝗍, 𝗇) ⊧ ∇𝛽(𝜑).

An Auxiliary Logic on Trees 471



Then, the reduction from SAT(PITL) on standard semantics follows as we are able to

characterise the set of pointed forests encoding words in ∗ (first three conjuncts in the

formula of Lemma 7). To conclude, we simply apply Lemma 6 and Proposition 1.

Lemma 7. Every 𝜑 in PITL written with symbols from  = [1, 𝑛] is satisfiable under the
standard interpretation of PITL if and only if the following formula in ALT is satisfiable

𝚠𝚘𝚛𝚍[1,2𝑛] ∧ ⟨U⟩𝚃 ∧ [U](𝚖𝚊𝚛𝚔 ⇔ 𝚃 ∧ ¬⧫(𝙶))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

The forest encodes a non-empty word. The only node encoding a marked symbol is the child of the target node.

∧∇1(𝜑).

Because of the case distinction in the formula ∇𝛽(𝜑 𝜓), the formula obtained via ∇𝛽 is

exponential (hence elementary) in the number of symbols used to write 𝜑. Therefore,

from the TOWER-hardness of SAT(PITL) we conclude that SAT(ALT) is TOWER-hard.

4 Revisiting TOWER-hard logics with ALT

We now display the usefulness of ALT as a tool for proving the TOWER-hardness of

logics interpreted on tree-like structures. In particular, we provide semantically faithful

reductions from SAT(ALT) to the satisfiability problem of four logics that were indepen-

dently found to be TOWER-complete: first-order separation logic [9], quantified CTL on

trees [28], modal logic of heaps [17] and modal separation logic [18]. Our reduction only

use strict fragments of these formalisms, allowing us to draw some new results on these

logics. Most notably, this section shows that all these logics are TOWER-hard because

they fundamentally provide the reachability and submodel reasoning given by ALT.

4.1 From ALT to First-Order Separation Logic

Separation logic (𝖲𝖫) [37] is an assertion logic used in state-of-the-art tools [6,11] for

Hoare-style verification of heap-manipulating programs. As already stated, a preliminary

definition of ALT was defined in [31] to reason on the complexity of separation logic.

Hence, here we briefly revisit the relation between ALT and 𝖲𝖫.

Let 𝖵𝖠𝖱 and 𝖫𝖮𝖢 be two countably infinite sets of program variables and locations,

respectively. Separation logic is interpreted on memory states: pairs (𝑠, ℎ) consisting

of a function (the store) 𝑠∶𝖵𝖠𝖱→𝖫𝖮𝖢 and a partial function with finite domain (the

heap) ℎ∶𝖫𝖮𝖢→𝚏𝚒𝚗𝖫𝖮𝖢. Since  and 𝖫𝖮𝖢 are both countably infinite sets, w.l.o.g. we

assume 𝖫𝖮𝖢 =  . We extend the notation of domain, image and function composition

to stores and heaps. Two heaps ℎ1 and ℎ2 are said to be disjoint, written ℎ1⊥ℎ2, whenever

dom(ℎ1) ∩ dom(ℎ2) = ∅, and when this holds the union ℎ1 + ℎ2 of ℎ1 and ℎ2 is defined

as the standard sum of functions (ℎ1 + ℎ2)(𝓁)
𝖽𝖾𝖿= if 𝓁∈dom(ℎ1) then ℎ1(𝓁) else ℎ2(𝓁).

Let 𝚞 ∈ 𝖵𝖠𝖱 be a fixed variable that is reserved for quantification (quantification over

other variables is not possible). We consider the separation logic 𝟣𝖲𝖫(∗, 𝚊𝚕𝚕𝚘𝚌,↪+),
whose formulae are built from the following grammar (as in [31]):

𝜑 ∶= ⊤ ∣ 𝜑 ∧ 𝜑 ∣ ¬𝜑 ∣ 𝚎𝚖𝚙 ∣ 𝚡 = 𝚢 ∣ 𝚡 ↪ 𝚢 ∣ 𝚊𝚕𝚕𝚘𝚌(𝚡) ∣ 𝚡↪+ 𝚢 ∣ 𝜑 ∗ 𝜑 ∣ ∃𝚞𝜑
where 𝚡, 𝚢 ∈ 𝖵𝖠𝖱. As shown below, the reachability predicate↪+ can be seen as the

transitive closure of the standard points-to predicate↪ of separation logic. For a memory

472 A. Mansutti



state (𝑠, ℎ), the satisfaction relation ⊧ is defined as follows:

(𝑠, ℎ) ⊧ 𝚎𝚖𝚙 𝖽𝖾𝖿
⇔ dom(ℎ) = ∅. (𝑠, ℎ) ⊧ 𝚡 ↪ 𝚢

𝖽𝖾𝖿
⇔ ℎ(𝑠(𝚡)) = 𝑠(𝚢).

(𝑠, ℎ) ⊧ 𝚡 = 𝚢
𝖽𝖾𝖿
⇔ 𝑠(𝚡) = 𝑠(𝚢). (𝑠, ℎ) ⊧ 𝚊𝚕𝚕𝚘𝚌(𝚡) 𝖽𝖾𝖿

⇔ 𝑠(𝚡) ∈ dom(ℎ).
(𝑠, ℎ) ⊧ 𝚡↪+ 𝚢

𝖽𝖾𝖿
⇔ there is ∃𝛿 ≥ 1 such that ℎ𝛿(𝑠(𝚡)) = 𝑠(𝚢).

(𝑠, ℎ) ⊧ 𝜑 ∗ 𝜓 𝖽𝖾𝖿
⇔ ∃ℎ1, ℎ2 s.t. ℎ1⊥ℎ2, ℎ1 + ℎ2 = ℎ, (𝑠, ℎ1) ⊧ 𝜑 and (𝑠, ℎ2) ⊧ 𝜓 .

(𝑠, ℎ) ⊧ ∃𝚞 𝜑 𝖽𝖾𝖿
⇔ there is a location 𝓁′ ∈𝖫𝖮𝖢 such that (𝑠[𝚞←𝓁′], ℎ) ⊧ 𝜑,

where 𝑠[𝚞←𝓁′] is the store updated from 𝑠 by only changing the evaluation of 𝚞 from 𝑠(𝚞)
to 𝓁′, i.e. for every 𝚡 ∈ 𝖵𝖠𝖱, 𝑠[𝚞←𝓁′](𝚡) 𝖽𝖾𝖿= if 𝚡 = 𝚞 (syntactically) then 𝓁′ else 𝑠(𝚡).
The main ingredient of separation logic is the separating conjunction 𝜑 ∗ 𝜓 , that

is satisfied whether ℎ can be partitioned into ℎ1 and ℎ2 so that (𝑠, ℎ1) ⊧ 𝜑 whereas

(𝑠, ℎ2) ⊧ 𝜓 . The ∗ operator captures the ⧫ and ⧫∗ operators as follows. Consider the

formula 𝚜𝚒𝚣𝚎 = 1 𝖽𝖾𝖿=¬𝚎𝚖𝚙∧¬(¬𝚎𝚖𝚙 ∗ ¬𝚎𝚖𝚙), which is satisfied whenever |dom(ℎ)| = 1.

We define ⧫
SL
𝜑 𝖽𝖾𝖿= (𝚜𝚒𝚣𝚎 = 1) ∗ 𝜑 and ⧫∗

SL
𝜑 𝖽𝖾𝖿= ⊤ ∗ 𝜑. The semantics of these formulae

is related to the analogous operators of ALT as follows:

(𝑠, ℎ) ⊧ ⧫
SL
𝜑 ⟺ ∃ℎ1, ℎ2 s.t. ℎ1⊥ℎ2, ℎ1 + ℎ2 = ℎ, |dom(ℎ1)| = 1 and (𝑠, ℎ2) ⊧ 𝜑.

(𝑠, ℎ) ⊧ ⧫∗
SL
𝜑 ⟺ ∃ℎ1, ℎ2 s.t. ℎ1⊥ℎ2, ℎ1 + ℎ2 = ℎ and (𝑠, ℎ2) ⊧ 𝜑.

In order to perform the reduction from SAT(ALT) to SAT(𝟣𝖲𝖫(∗, 𝚊𝚕𝚕𝚘𝚌,↪+)), we

fix a variable 𝚡 ∈ 𝖵𝖠𝖱 that is syntactically different from 𝚞 and that plays the role of the

target node. Then, the translation 𝜏𝚡(𝜑) of a formula 𝜑 in ALT is straightforward:

𝜏𝚡(𝚃)
𝖽𝖾𝖿= 𝚞↪+ 𝚡. 𝜏𝚡(⧫𝜑)

𝖽𝖾𝖿= ⧫
SL
𝜏𝚡(𝜑). 𝜏𝚡(⊤)

𝖽𝖾𝖿= ⊤.

𝜏𝚡(𝙶)
𝖽𝖾𝖿= 𝚊𝚕𝚕𝚘𝚌(𝚞)∧¬ 𝜏𝚡(𝚃). 𝜏𝚡(⧫∗𝜑)

𝖽𝖾𝖿= ⧫∗
SL
𝜏𝚡(𝜑). 𝜏𝚡(¬𝜑)

𝖽𝖾𝖿= ¬ 𝜏𝚡(𝜑).
𝜏𝚡(⟨U⟩𝜑)

𝖽𝖾𝖿= ∃𝚞 𝜏𝚡(𝜑). 𝜏𝚡(𝜑 ∧ 𝜓) 𝖽𝖾𝖿= 𝜏𝚡(𝜑) ∧ 𝜏𝚡(𝜓).
Given a pointed forest ( , 𝗍, 𝗇) and a store 𝑠 such that 𝑠(𝚡) = 𝗍 and 𝑠(𝚞) = 𝗇, by structural

induction on 𝜑 we can easily show that ( , 𝗍, 𝗇) ⊧ 𝜑 ⇔ (𝑠, ) ⊧ 𝜏𝚡(𝜑). This, together

with the fact that ∀𝚞 ¬(𝚞↪+ 𝚞) characterises the class of acyclic heaps (which correspond

to the forests of ALT), directly implies the following result.

Lemma 8. Let 𝚡∈𝖵𝖠𝖱⧵{𝚞}. 𝜑 in ALT and 𝜏𝚡(𝜑) ∧ ∀𝚞 ¬(𝚞↪+ 𝚞) are equisatisfiable.

This lemma reproves that both 𝟣𝖲𝖫(∗, 𝚊𝚕𝚕𝚘𝚌,↪+) and first order separation logic with

two quantified variables (denoted as 𝟤𝖲𝖫(∗)) admit a TOWER-hard satisfiability problem.

𝟤𝖲𝖫(∗), as introduced in [17], can be defined from 𝟣𝖲𝖫(∗, 𝚊𝚕𝚕𝚘𝚌,↪+) by removing

𝚊𝚕𝚕𝚘𝚌 and↪+ from the syntax and allowing a second variable, different from 𝚞, to be

quantified. However, in [17] the authors show that both 𝚊𝚕𝚕𝚘𝚌 and↪+ are expressible in

𝟤𝖲𝖫(∗), and with some very minor modification to their formulae we can show that both

predicates are definable using ⧫ and ⧫∗ instead of ∗ and 𝚎𝚖𝚙. Moreover, these logics are

in TOWER by Rabin’s Theorem [36], leading to the TOWER-completeness of SAT(ALT).

Theorem 1. SAT(𝟤𝖲𝖫(∗)) and SAT(𝟣𝖲𝖫(∗, 𝚊𝚕𝚕𝚘𝚌,↪+)) are TOWER-complete even when
𝚎𝚖𝚙 and ∗ are replaced with ⧫

SL
and ⧫∗

SL
. SAT(ALT) is TOWER-complete.

4.2 From ALT to Quantified Computation Tree Logic

We now consider Computation Tree Logic (CTL), a well-known logic for branching

time model checking [14,13]. Among its extensions, in [5,22,28] the addition of propo-

An Auxiliary Logic on Trees 473



sitional quantification is considered. The satisfiability problem of the resulting logic is

undecidable on Kripke structures, and TOWER-complete on trees [28]. In [5], the authors

show that the problem is TOWER-hard even when considering just one operator among

exists-next 𝖤𝖷 or exists-finally 𝖤𝖥 (the definitions are below). Here, we reprove the result

for 𝖤𝖥 by first tackling the TOWER-hardness of the logic with the exists-until 𝖤(𝜑 𝖴 𝜓),
and then show that this operator can be defined using 𝖤𝖥 . Differently from [5] and thanks

to the properties of ALT, our reduction does not imbricate until operators, showing that

this extension of CTL remains TOWER-hard even when 𝖤(𝜑 𝖴 𝜓) is restricted so that 𝜑
and 𝜓 are Boolean combinations of propositional symbols.

Let us first recall the standard definition of Kripke structure [27]. Let 𝖠𝖯 𝖽𝖾𝖿= {𝑝, 𝑞,· · ·}
be a countable set of propositional symbols. A Kripke structure is a triple ( ,,)
where  is a countable set of worlds,  ⊆ × is a left-total accessibility relation
(left-total means that for each world 𝗐 ∈  there is 𝗐′ ∈  s.t. (𝗐,𝗐′) ∈ ) and

 ∶ 𝖠𝖯 → 2 is a labelling function. We define (𝗐) 𝖽𝖾𝖿={𝗐′ ∈  ∣ (𝗐,𝗐′) ∈ } as the

set of worlds accessible from 𝗐 ∈  . Let  ⊆ × be an arbitrary relation on worlds

(not necessarily left-total). A path 𝜋 starting in 𝗐 is a sequence of worlds (𝗐0,𝗐1,· · ·)
such that 𝗐0 = 𝗐 and (𝗐𝑖,𝗐𝑖+1) ∈  for every two successive elements 𝗐𝑖,𝗐𝑖+1 of the

sequence. The path 𝜋 is said to be maximal whenever it is not a strict prefix of any other

path. We denote with Π(𝗐) the set of maximal paths starting in 𝗐. If  is left-total

then Π(𝗐) is the set of all infinite paths starting in 𝗐. Lastly, ∗(𝗐) denotes the set of

worlds reachable from 𝗐, i.e. those worlds belonging to a path in Π(𝗐).
We consider Quantified Computational Tree Logic interpreted under tree semantics

(𝖰𝖢𝖳𝖫T) and refer the reader to [28] for a complete description of the logic. The formulae

of 𝖰𝖢𝖳𝖫T are built from the following grammar:

𝜑 ∶= ⊤ ∣ 𝜑 ∧ 𝜑 ∣ ¬𝜑 ∣ 𝑝 ∣ 𝖤𝖷𝜑 ∣ 𝖤(𝜑 𝖴 𝜑) ∣ 𝖠(𝜑 𝖴 𝜑) ∣ ∃𝑝 𝜑
where 𝑝 ∈ 𝖠𝖯. All temporal modalities of 𝖰𝖢𝖳𝖫T are from CTL: 𝖤𝖷 is the exists-next
modality, 𝖤(𝜑 𝖴 𝜓) is the exists-until modality and 𝖠(𝜑 𝖴 𝜓) is the all-until modality.

𝖰𝖢𝖳𝖫T is interpreted on Kripke trees. Formally, a Kripke structure ( ,,) is a

(finitely-branching) Kripke tree if (I) −1 is functional and acyclic, (II) for every world

𝗐 ∈  , (𝗐) is finite and (III) it has a root, i.e. ∗(𝗋) =  for some 𝗋 ∈  . Given

𝗐 ∈  , the worlds in ∗(𝗐)⧵{𝗐} are said to be descendants of 𝗐. As Kripke structures

are left-total, Kripke trees can be seen as finitely-branching infinite trees. This leads to

SAT(𝖰𝖢𝖳𝖫T) being in TOWER by reduction to MSO on trees [28]. Let  = ( ,,)
be a Kripke tree and 𝗐 ∈  . The satisfaction relation ⊧ of 𝖰𝖢𝖳𝖫T is defined as:

(,𝗐) ⊧ 𝑝 𝖽𝖾𝖿
⇔ 𝗐 ∈ (𝑝).

(,𝗐) ⊧ 𝖤𝖷𝜑 𝖽𝖾𝖿
⇔ ∃𝗐′ ∈ (𝗐) s.t. (,𝗐′) ⊧ 𝜑.

(,𝗐) ⊧ 𝖤(𝜑 𝖴 𝜓) 𝖽𝖾𝖿
⇔ there are (𝗐0,𝗐1,· · ·) ∈ Π(𝗐) and 𝑗 ∈ ℕ such that

(,𝗐𝑗) ⊧ 𝜓 and for every 𝑖 < 𝑗, (,𝗐𝑖) ⊧ 𝜑.

(,𝗐) ⊧ 𝖠(𝜑 𝖴 𝜓) 𝖽𝖾𝖿
⇔ for all (𝗐0,𝗐1,· · ·) ∈ Π(𝗐), ∃𝑗 ∈ ℕ such that

(,𝗐𝑗) ⊧ 𝜓 and for every 𝑖 < 𝑗, (,𝗐𝑖) ⊧ 𝜑.

(,𝗐) ⊧ ∃𝑝 𝜑 𝖽𝖾𝖿
⇔ there is  ′ ⊆ such that ( ,,[𝑝← ′]) ⊧ 𝜑,

where, similarly to the store update 𝑠[𝚞←𝓁′] of the previous section, [𝑝← ′] stands

for the function obtained from  by updating the evaluation of 𝑝 from (𝑝) to  ′.

474 A. Mansutti



The formula ∃𝑝 𝜑 requires to update the satisfaction of 𝑝 in a way such that 𝜑 is

satisfied. This should already give a good clue on how to reduce ALT to 𝖰𝖢𝖳𝖫T: we

represent the nodes of a forest as the set of worlds satisfying a propositional symbol D .

Then, for instance, the repeated sabotage operator ⧫∗ is encoded by using an existential

∃E that changes the evaluation of a propositional symbol E so that it only holds in worlds

where D holds. In this way, the set of worlds satisfying E represents a subforest of the

original one. The universal quantification ∀ and the connectives⇒ and ∨ are defined as

usual. So are the classical temporal operators from [14], exists-finally 𝖤𝖥𝜑 𝖽𝖾𝖿= 𝖤(⊤ 𝖴 𝜑),
all-generally 𝖠𝖦𝜑 𝖽𝖾𝖿= ¬𝖤𝖥¬𝜑, all-finally 𝖠𝖥𝜑 𝖽𝖾𝖿= 𝖠(⊤ 𝖴 𝜑), exists-generally 𝖤𝖦𝜑 𝖽𝖾𝖿=
¬𝖠𝖥¬𝜑, and exists-strong-release 𝖤(𝜑𝖬 𝜓) 𝖽𝖾𝖿= 𝖤(𝜑 𝖴 𝜑 ∧ 𝜓).

We now work towards a formal encoding of a pointed forest ( , 𝗍, 𝗇) into a pointed
model (,𝗐), where  = ( ,,) is a Kripke tree and𝗐 is one of its worlds. We use𝗐
to play the role of the target node 𝗍. To encode the forest  and the current evaluation node

𝗇 we use the worlds appearing in ∗(𝗐) and three propositional symbols: D , end and

n . The intended use of D is to state which elements of ∗(𝗐) encode nodes in dom( ).
We need to be careful here, as ∗(𝗐) is an infinite set whereas dom( ) is finite. We

use the propositional symbol end to solve this inconsistency: we constraint  to satisfy

the formula 𝖠𝖥 (end ) stating that every maximal path (𝗐0,𝗐1,· · ·) ∈ Π(𝗐) has a finite

prefix (𝗐0,· · ·,𝗐𝑗−1) (𝑗 ∈ ℕ) of worlds not satisfying end , whereas 𝗐𝑗 ∈ (end ). Then,

a world in  encodes an element in dom( ) whenever it satisfies D and it belongs to one

of these prefixes. We use the propositional symbol n to encode the current evaluation

node. During the translation we require n to be satisfied by exactly one descendant of 𝗐,

so that the modality ⟨U⟩ roughly becomes a quantification over n . From [28], checking

whether a formula 𝜑 holds in exactly one descendant of 𝗐 can be done with the formula

𝚞𝚗𝚒𝚚(𝜑) 𝖽𝖾𝖿= 𝖤𝖥 (𝜑) ∧ ∀𝑝 (𝖤𝖥 (𝜑 ∧ 𝑝) ⇒ 𝖠𝖦 (𝜑 ⇒ 𝑝)) where 𝑝 ∈ 𝖠𝖯 does not appear

in 𝜑. For technical reasons, we treat in a similar way the world 𝗐, which encodes the

target node, and require it to be the only world (among the ones in ∗(𝗐)) satisfying the

auxiliary propositional symbol t . Lastly, we use an additional propositional symbol E
in order to encode subforests and deal with the encoding of ⧫ and ⧫∗ (as stated above).

We now formalise the encoding. For the remaining of this section, we fix a tuple

𝑋 𝖽𝖾𝖿= (end , n , t ) of three different propositional symbols. Let D be an additional symbol

not in𝑋, and let ( , 𝗍, 𝗇) be a pointed forest s.t. 𝗍 ∉ dom( ) (by Lemma 4(1) it is sufficient

to consider this class of structures in order to decide satisfiability of a formula in ALT). A

pointed model ( = ( ,,),𝗐), is an (𝑋, D )-encoding of ( , 𝗍, 𝗇), or simply encoding
when (𝑋, D ) is clear from the context, if there is an injection 𝔣∶→∗(𝗐) s.t.

1. 𝔣(𝗍) 𝖽𝖾𝖿=𝗐 is the only world in ran(𝔣)∩(t ), and 𝔣(𝗇) is the only world in ran(𝔣)∩(n );
2. for every 𝗇′ ∈ dom( ) it holds that (𝔣( (𝗇′)), 𝔣(𝗇′)) ∈ ;

3. for every infinite path (𝗐0,𝗐1· · ·) ∈ Π(𝗐) there is 𝑖 ≥ 0 s.t. 𝗐𝑖 ∈ (end ) and

– ∀𝑗 ∈ [0, 𝑖 − 1], 𝗐𝑗 ∉ (end ) and (𝗐𝑗 ∈ (D )⇔ ∃𝗇′ ∈ dom( ) 𝔣(𝗇′) = 𝗐𝑗);
– for every 𝑗 ≥ 𝑖 and every node 𝗇′ ∈ dom( ), 𝔣(𝗇′) ≠ 𝗐𝑗 .

It is easy to show that such an encoding always exists. Informally, the first property states

that 𝗐 encodes 𝗍 and is the only world in ∗(𝗐) satisfying t . Similarly, the world 𝔣(𝗇)
encoding 𝗇 is the only world in ∗(𝗐) that satisfies n . The second property states that

the forest must be correctly encoded in the Kripke structure. In particular, notice that the

parent relation of the finite forest is inverted so that it becomes the child relation in the

An Auxiliary Logic on Trees 475



𝗍

𝗇

𝗐

n

t

end

𝔣

Fig. 4. A pointed forest (left) and one of its encoding as a finitely-branching Kripke tree (right).

Kripke structure (as shown in Figure 4). As 𝔣 is an injection, the encoding does not merge

together trees that are disconnected in the forest. Lastly, the third property of 𝔣 states that

the elements in dom( ) must be encoded by nodes in ∗(𝗐) that precede every world

satisfying end . Moreover, among all the descendants of 𝗐 preceding end , the worlds

encoding dom( ) are the only ones satisfying D . This implies that 𝗐 does not satisfy D
(as 𝗍 ∉ dom( )). Figure 4 shows a pointed forest and one of its possible encodings.

We now formalise the translation. Fix two different symbols D , E not in 𝑋. In order

to alternate between D and E , we define D 𝖽𝖾𝖿= E and E 𝖽𝖾𝖿= D . The translation 𝜏u(𝜑) of a

formula 𝜑 in ALT, implicitly parametrised by 𝑋 and where u ∈ {D , E }, is homomorphic

for ⊤ and Boolean connectives (as in 𝜏𝚡, see Section 4.1), and otherwise it is defined as

𝜏u(𝚃)
𝖽𝖾𝖿= 𝖤(((u ∨ t ) ∧ ¬end )𝖬 (u ∧ n )). 𝜏u(⟨U⟩𝜑)

𝖽𝖾𝖿= ∃n (𝚞𝚗𝚒𝚚(n ) ∧ 𝜏u(𝜑)).
𝜏u(𝙶)

𝖽𝖾𝖿= 𝖤(¬end 𝖬 (u ∧ n )) ∧ ¬ 𝜏u(𝚃). 𝜏u(⧫∗𝜑)
𝖽𝖾𝖿= ∃u (𝖠𝖦 (u ⇒ u) ∧ 𝜏u(𝜑)).

𝜏u(⧫𝜑)
𝖽𝖾𝖿= ∃u (𝖠𝖦 (u ⇒ u) ∧ 𝚞𝚗𝚒𝚚(u ∧ ¬u) ∧ 𝖤(¬end 𝖬 (u ∧ ¬u)) ∧ 𝜏u(𝜑)).

Let ( , 𝗍, 𝗇) be a pointed forest s.t. 𝗍 ∉ dom( ) and let (( ,,),𝗐) be one of its

(𝑋, u)-encodings w.r.t. the injection 𝔣. For instance, 𝜏u(𝚃) requires that there is a path

(𝗐,𝗐1,· · ·,𝗐𝑗) starting in 𝔣(𝗍) = 𝗐 and whose worlds do not satisfy end and must satisfy u
or t . Moreover, the last world𝗐𝑗 must satisfy u and n . From property (1) of the definition

of 𝔣, the only element satisfying t is 𝗐, which does not satisfy u (as 𝗍 ∉ dom( )). Then,

this path of worlds encodes a path in the pointed forest, from the current evaluation node

𝗇 (which is encoded by the only world satisfying n ) to the target node 𝗍. The translation is

shown correct (by structural induction on 𝜑) for pointed forests that admit an encoding.

Lemma 9. Let ( , 𝗍, 𝗇) be a pointed forest s.t. 𝗍 ∉ dom( ), and let (,𝗐) be a (𝑋, u)-
encoding of ( , 𝗍, 𝗇). Given a formula𝜑 in ALT, ( , 𝗍, 𝗇) ⊧ 𝜑 if and only if (,𝗐) ⊧ 𝜏u(𝜑).

Then, to conclude the reduction we just need to characterise the set of models encoding a

pointed forest. The formula 𝚎𝚗𝚌
𝖽𝖾𝖿=¬D∧t∧ 𝚞𝚗𝚒𝚚(t ) ∧ 𝚞𝚗𝚒𝚚(n ) ∧𝖠𝖥(end ) does the job.

Lemma 10. 𝜑 in ALT and 𝚎𝚗𝚌∧ 𝜏D(𝜑) in 𝖰𝖢𝖳𝖫T are equisatisfiable.

We now take a closer look to the translation. Given a temporal modality  and

𝑘 ∈ ℕ∪{𝜔},𝖰𝖢𝖳𝖫T( 𝑘) denotes the fragment of𝖰𝖢𝖳𝖫T restricted to formulae where the

only temporal modality allowed is  , which can be nested at most 𝑘 times (𝜔 stands for an

arbitrary number of imbrications). For instance,𝖰𝖢𝖳𝖫T(𝖤𝖥 𝑘) denotes the set of formulae

restricted to the operator𝖤𝖥 , which can be nested at most 𝑘 times. This fragment of𝖰𝖢𝖳𝖫T

is shown to be 𝑘-NEXPTIME-hard in [5], which directly leads to the TOWER-hardness

of 𝖰𝖢𝖳𝖫T(𝖤𝖥 𝜔) and 𝖰𝖢𝖳𝖫T(𝖤𝖴𝜔). By analysing our translation it is easy to show that

476 A. Mansutti



𝖰𝖢𝖳𝖫T(𝖤𝖴0), i.e. 𝖰𝖢𝖳𝖫T restricted to the only modality 𝖤(𝜑 𝖴 𝜓) where 𝜑 and 𝜓 are

Boolean combination of propositional symbols, and 𝖰𝖢𝖳𝖫T(𝖤𝖥1) are already TOWER-

hard. First of all, the formula 𝖤(𝜑 𝖴 𝜓) in 𝖰𝖢𝖳𝖫T(𝖤𝖴0) is equivalent to the following

formula in𝖰𝖢𝖳𝖫T(𝖤𝖥1): ∃𝑝
(

𝖠𝖦 (¬𝜑∧¬𝜓 ⇒ 𝑝)∧𝖠𝖦 (𝑝 ⇒ 𝖠𝖦 𝑝)∧𝖤𝖥 (𝜓 ∧¬𝑝)
)

, where

𝑝 does not appear in 𝜑 or 𝜓 . Then, we just need to prove the result for 𝖰𝖢𝖳𝖫T(𝖤𝖴0).
Clearly, the translation 𝜏u is defined so that the resulting formula is in 𝖰𝖢𝖳𝖫T(𝖤𝖴0).

However, we need to deal with the occurrence of 𝖠𝖥 (end ) used inside the formula 𝚎𝚗𝚌.

Let us first consider the formula 𝖠𝖦 (𝜑 ⇒ 𝖠𝖦𝜓) which is satisfied by models where

once 𝜑 is found to hold in a certain world 𝗐, then 𝜓 is satisfied in every world of ∗(𝗐).
Despite not being in 𝖰𝖢𝖳𝖫T(𝖤𝖴0), the formula 𝖠𝖦 (𝜑 ⇒ 𝖠𝖦𝜓) is equivalent to the

following formula: ∀𝑝∀𝑞
(

𝚞𝚗𝚒𝚚(𝑝) ∧𝚞𝚗𝚒𝚚(𝑞) ∧𝖤𝖥 (𝑝∧𝜑) ∧𝖤𝖥 (𝑞 ∧¬𝜓) ⇒ 𝖤(¬𝑝𝖬 𝑞)
)

,

where 𝑝 and 𝑞 do not appear in 𝜑 or 𝜓 . We then define a formula 𝜒𝖤𝖦 (𝜑) that only uses

𝖤𝖥 modalities and is equivalent to 𝖤𝖦𝜑, so that then ¬𝜒𝖤𝖦 (¬𝜑) is equivalent to 𝖠𝖥𝜑:

𝜒𝖤𝖦 (𝜑)
𝖽𝖾𝖿= ∃𝑝

(

¬𝑝 ∧ 𝖠𝖦 (¬𝜑 ⇒ 𝑝) ∧ 𝖠𝖦 (𝑝 ⇒ 𝖠𝖦 𝑝) ∧
∀𝑞

(

𝚞𝚗𝚒𝚚(𝑞) ∧ 𝖤𝖥 (𝑞 ∧ ¬𝑝) ⇒ 𝖤𝖥 (𝑞 ∧ 𝖤𝖥 (¬𝑞 ∧ ¬𝑝))
))

where 𝑝 does not appear in 𝜑. This formula is expressible in 𝖰𝖢𝖳𝖫T(𝖤𝖴0), as every

subformula that is not in this fragment is an instance of 𝖠𝖦 (𝜑 ⇒ 𝖠𝖦𝜓). Then, we

conclude that 𝖠𝖥 (end ) is expressible in 𝖰𝖢𝖳𝖫T(𝖤𝖴0), leading to the following result.

Theorem 2. The satisfiability problems of 𝖰𝖢𝖳𝖫T(𝖤𝖴0) and 𝖰𝖢𝖳𝖫T(𝖤𝖥1) are TOWER-c.

4.3 From ALT to Modal Logic of Heaps and Modal Separation Logic

In [17] and later in [18] two families of logics are presented, respectively called modal
logic of heaps (MLH) and modal separation logic (MSL). At their core, both logics can be

seen as modal logics extended with separating connectives, hence mixing separation logic

(Section 4.1) with temporal aspects as in quantified CTL (Section 4.2). As we already

shown how ALT is captured by these two latter logics, it is natural to ask ourselves if

the same holds for MLH and MSL. In this section, we show that this is indeed the case

and, as for the previous two sections, ALT allows us to refine the analysis on these logics.

Both MLH and MSL are interpreted on finite Kripke functions. A finite Kripke function
is a Kripke structure ( ,,) (see Section 4.2 for its definition) where  is infinite

and , instead of being left-total, is finite and weakly functional, i.e. || ∈ ℕ and for

every 𝗐,𝗐′,𝗐′′ ∈  , if (𝗐,𝗐′) ∈  and (𝗐,𝗐′′) ∈  then 𝗐′ = 𝗐′′. As  and  are

both countably infinite sets, without loss of generality we assume  =  . Two Kripke

structures 1 = ( ,1,) and 2 = ( ,2,) are disjoint if 1 ∩2 = ∅. When

this holds, 1 +2 denotes the model ( ,1 ∪2,). To shorten the presentation,

in the following diagram we introduce a language having the operators from MSL and

MLH, and summarise known and new results on these logics (where 𝑝 ∈ 𝖠𝖯):

𝜑 ∶= 𝑝 ∣ ⟨≠⟩𝜑 ∣ ⊤ ∣ 𝜑 ∧ 𝜑 ∣ ¬𝜑 ∣ ◊𝜑 ∣ 𝜑 ∗ 𝜓 ∣ ⟨U⟩𝜑 ∣ ◊−1𝜑

MSL: TOWER-complete from [18]. MLH: TOWER-complete from [17].

TOWER-hard by reduction from SAT(ALT), shown here.

An Auxiliary Logic on Trees 477



As defined below, ◊ is the standard alethic modality from modal logic, ◊−1 is its converse

modality, and ⟨≠⟩ is the elsewhere modality that generalises the somewhere modality

⟨U⟩ as ⟨U⟩𝜑 = 𝜑 ∨ ⟨≠⟩𝜑. For a pointed model (,𝗐), where  = ( ,,) is a finite

Kripke function and 𝗐 ∈  , the satisfaction relation ⊧ is defined as follows:

(,𝗐) ⊧ 𝑝 𝖽𝖾𝖿
⇔ 𝗐 ∈ (𝑝).

(,𝗐) ⊧ ◊𝜑 𝖽𝖾𝖿
⇔ there is 𝗐′ ∈ (𝗐) such that (,𝗐) ⊧ 𝜑.

(,𝗐) ⊧ ◊−1𝜑
𝖽𝖾𝖿
⇔ there is 𝗐′ ∈  such that 𝗐 ∈ (𝗐′) and (,𝗐′) ⊧ 𝜑.

(,𝗐) ⊧ ⟨≠⟩𝜑 𝖽𝖾𝖿
⇔ there is 𝗐′ ∈  such that 𝗐′ ≠ 𝗐 and (,𝗐′) ⊧ 𝜑.

(,𝗐) ⊧ 𝜑 ∗ 𝜓 𝖽𝖾𝖿
⇔ (1,𝗐) ⊧ 𝜑 and (2,𝗐) ⊧ 𝜓 for some 1, 2 s.t. 1 +2 = .

By looking at the diagram above, compared to the work in [18], ALT allows us to show

that propositional symbols and the elsewhere modality can be removed from MSL without

changing the complexity status of its satisfiability problem. Similarly, ALT allows us to

refine the analysis on the complexity of SAT(MLH) by showing that the ◊−1 modality is

not needed in order to achieve non-elementary complexities.

Let ( , 𝗍, 𝗇) be a pointed forest and let (,𝗐) be a pointed model where  =
( ,,). For the reduction, we use 𝗐 to encode the current node 𝗇. Encoding 𝗍
is not so immediate, as MLH does not have propositional symbols. A possible so-

lution is to encode it as a self-loop, so that the formula 𝚃 is translated to a query

stating that 𝗐 reaches the self-loop. As done in Section 4.1 we define the formula

𝚜𝚒𝚣𝚎=1 𝖽𝖾𝖿= ⟨U⟩◊⊤ ∧ ¬(⟨U⟩◊⊤ ∗ ⟨U⟩◊⊤), that is satisfied whenever ||=1. We also

define the modalities ⧫ and ⧫∗ in MLH: ⧫
ML
𝜑 𝖽𝖾𝖿= (𝚜𝚒𝚣𝚎=1) ∗ 𝜑 and ⧫∗

ML
𝜑 𝖽𝖾𝖿=⊤ ∗ 𝜑. Lastly,

we introduce the formula 𝚜𝚎𝚕𝚏𝚕𝚘𝚘𝚙
𝖽𝖾𝖿=⧫∗

ML
(◊◊⊤ ∧ ¬⧫

ML
⧫

ML
⊤) that is satisfied by (,𝗐)

if (𝗐,𝗐) ∈ . Suppose for a moment that we are able to use this formula to characterise

the class of of every finite Kripke function ( ,,) where there is exactly one cycle,

and this cycle is a self-loop on a world 𝗐𝗍. Then, we use 𝗐𝗍 to encode the target node

𝗍 of a finite forest ( , 𝗍, 𝗇) while being careful that the ⧫ and ⧫∗operators of ALT are

translated in such a way that the self-loop on 𝗐𝗍 is preserved. Because of the specific

treatment of 𝗐𝗍, it is convenient to assume that the current evaluation node 𝗇 is encoded

by a world different from 𝗐𝗍, which reflects on the translation of ⟨U⟩. The admissibility

of this assumption follows by Lemma 4.

We encode pointed forests as finite Kripke functions. Let ( , 𝗍, 𝗇) be a pointed forest

s.t. 𝗍 ∉ dom( ) and 𝗇 ≠ 𝗍. A finite Kripke function (( ,,), 𝗇) (recall,  =  ) is

an encoding of ( , 𝗍, 𝗇) iff for every 𝗇′, 𝗇′′ ∈  we have (𝗇′, 𝗇′′) ∈ ⇔ ( (𝗇′) = 𝗇′′ or

𝗇′ = 𝗇′′ = 𝗍). Notice how  is essentially defined from  by adding the self-loop (𝗍, 𝗍).
The translation 𝜏(𝜑) in MLH of a formula 𝜑 in ALT is homomorphic for ⊤ and Boolean

connectives (as is the case for 𝜏𝚡 in Section 4.1), and otherwise it is defined as

𝜏(𝚃) 𝖽𝖾𝖿= ⧫∗
ML

(

◊⊤ ∧ [U](◊⊤ ⇒ ◊◊⊤)
)

. 𝜏(⧫𝜑) 𝖽𝖾𝖿= ⧫
ML
(𝜏(𝜑) ∧ ⟨U⟩ 𝚜𝚎𝚕𝚏𝚕𝚘𝚘𝚙).

𝜏(𝙶) 𝖽𝖾𝖿= ◊⊤ ∧ ¬ 𝜏(𝚃). 𝜏(⧫∗𝜑) 𝖽𝖾𝖿= ⧫∗
ML
(𝜏(𝜑) ∧ ⟨U⟩ 𝚜𝚎𝚕𝚏𝚕𝚘𝚘𝚙).

𝜏(⟨U⟩𝜑) 𝖽𝖾𝖿= ⟨U⟩(¬𝚜𝚎𝚕𝚏𝚕𝚘𝚘𝚙 ∧ 𝜏(𝜑)).

We highlight two points of this translation. First, 𝜏(𝚃) essentially asks to find a submodel

where every path reaches the self-loop and the current evaluation node is in one of these

paths. Second, notice how the translation of ⧫ and ⧫∗ checks that the model is updated

so that the self-loop is not lost, as required by our encoding. It should be noted that

478 A. Mansutti



this requirement cannot be met if we were translating the definition of ALT from [31],

featuring the ∗ operator. Indeed, by partitioning the model into two pieces, this operator

removes the self-loop from one of the two parts, breaking our encoding. The following

lemma (proved by structural induction on 𝜑) shows the correctness of our translation.

Lemma 11. Let ( , 𝗍, 𝗇) be a pointed model s.t. 𝗇 ≠ 𝗍 and 𝗍 ∉ dom( ). Let (, 𝗇) be an
encoding of ( , 𝗍, 𝗇). Given a formula 𝜑 in ALT, ( , 𝗍, 𝗇) ⊧ 𝜑 iff (, 𝗇) ⊧ 𝜏(𝜑).
To conclude the reduction we show that we can characterise the class of models encoding

pointed forests, i.e. the finite Kripke functions with exactly one cycle, which is a self-loop.

We first define the formula 𝚑𝚊𝚜𝚌𝚢𝚌𝚕
𝖽𝖾𝖿=⧫∗

ML

(

⟨U⟩◊⊤ ∧ [U](◊⊤ ⇒ ◊◊⊤)
)

that checks if

a finite Kripke function has at least one cycle. Then, the desired property can be simply

defined by stating that there is a self-loop which, whenever removed, leads to an acyclic

submodel: 𝟷𝚜𝚎𝚕𝚏𝚕𝚘𝚘𝚙
𝖽𝖾𝖿= ⟨U⟩

(

𝚜𝚎𝚕𝚏𝚕𝚘𝚘𝚙 ∧ ¬⧫
ML
(□⟂ ∧ 𝚑𝚊𝚜𝚌𝚢𝚌𝚕)

)

.

Lemma 12. Every formula 𝜑 in ALT is equisatisfiable with 𝜏(𝜑) ∧ 𝟷𝚜𝚎𝚕𝚏𝚕𝚘𝚘𝚙.

For the proof of Lemma 12, both Lemma 4(1) and (2) are used in order to restrict ourselves

to pointed forest ( , 𝗍, 𝗇) s.t. 𝗇 ≠ 𝗍 and 𝗍 ∉ dom( ). Then, we apply Lemma 11.

Theorem 3. The fragment of MLH and MSL with Boolean operators, ◊ and ⟨U⟩ modal-
ities, and ∗ (alternatively, ⧫

ML
and ⧫∗

ML
) has a TOWER-complete satisfiability problem.

5 Conclusions

We studied an Auxiliary Logic on Trees (ALT), a quite simple formalism that admits a

TOWER-complete satisfiability problem. ALT is shown to be easily captured by various

non-elementary logics: first-order separation logic, quantified CTL, modal logic of heaps

and modal separation logic. Through ALT, we were not only able to connect these logics,

but also to refine their analysis and find strict fragments that are still TOWER-hard. Most

importantly, with ALT we hope to have shown a set of simple and concrete properties,

centred around reachability and submodel reasoning, that when put together lead to logics

having a non-elementary satisfiability problem.

This work leaves a few questions open. First, the fragments of ALT where ⧫ or ⧫∗are

removed from the logic have not being studied yet. The logic without ⧫∗ is of particular

interests, as it is connected with the sabotage logics from [4]. Second, the analysis done

on first-order separation logic and on modal logic of heaps (Sections 4.1 and 4.3) reveals

that the complexity of these logics does not change when the ∗ operator and the 𝚎𝚖𝚙

predicate are replaced with the less general operators ⧫ and ⧫∗. We find this point

interesting, as from an overview of the literature, it seems that this result also holds

for the separation logics considered in [9,17,19,30,31]. Moreover, for the logics whose

expressiveness is known, i.e. the ones in [19,30], it seems that also the expressive power

remains unchanged. However, we struggle to see how to uniformly express the operator ∗
with ⧫ and ⧫∗, as the resulting logics reason on the model in a different way (as as shown

in Section 2). Lastly, this work illustrates the potential of ALT as a tool for proving the

TOWER-hardness of logics interpreted on tree-like structures. As the operators of our

logic are simple, we hope ALT to be useful to study logics with unknown complexities.

Acknowlegements. I would like to thank S. Demri and E. Lozes for their feedback.

An Auxiliary Logic on Trees 479



References

1. T. Antonopoulos and A. Dawar. Separating graph logic from MSO. In Foundations of Software
Science and Computational Structures, volume 5504 of LNCS, pages 63–77. Springer, 2009.

2. A. Artale, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev. The complexity of clausal

fragments of LTL. In Logic for Programming, Artificial Intelligence, and Reasoning, volume

8312 of LNCS, pages 35–52. Springer, 2013.

3. G. Aucher, P. Balbiani, L. Fariñas del Cerro, and A. Herzig. Global and local graph modifiers.

Electronic Notes in Theoretical Computer Science, 231:293–307, 2009.

4. G. Aucher, J. van Benthem, and D. Grossi. Sabotage modal logic: Some model and proof

theoretic aspects. In Logic, Rationality, and Interaction, volume 9394 of LNCS, pages 1–13.

Springer, 2015.

5. B. Bednarczyk and S. Demri. Why propositional quantification makes modal logics on trees

robustly hard? In Logic in Computer Science, pages 1–13. IEEE, 2019.

6. J. Berdine, B. Cook, and S. Ishtiaq. Slayer: Memory safety for systems-level code. In

Computer-Aided Verification, volume 6806 of LNCS, pages 178–183. Springer, 2011.

7. L. Bozzelli, A. Molinari, A. Montanari, and A. Peron. On the complexity of model checking

for syntactically maximal fragments of the interval temporal logic HS with regular expressions.

In Games, Automata, Logics, and Formal Verification, volume 256 of EPTCS, pages 31–45,

2017.

8. L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala. Interval vs. point temporal logic

model checking: an expressiveness comparison. In Foundations of Software Technology and
Theoretical Computer Science, volume 65 of LIPIcs, pages 26:1–26:14. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik, 2016.

9. R. Brochenin, S. Demri, and E. Lozes. On the almighty wand. Information and Computation,

211:106–137, 2012.

10. C. Calcagno, T. Dinsdale-Young, and P. Gardner. Adjunct elimination in context logic for

trees. Information and Computation, 208:474–499, 2010.

11. C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca, P. W. O’Hearn,

I. Papakonstantinou, J. Purbrick, and D. Rodriguez. Moving fast with software verification.

In Nasa Formal Methods, volume 9058 of LNCS, pages 3–11. Springer, 2015.

12. C. Calcagno, H. Yang, and P. W. O’Hearn. Computability and complexity results for a spatial

assertion language for data structures. In Foundations of Software Technology and Theoretical
Computer Science, volume 2245 of LNCS, pages 108–119. Springer, 2001.

13. E. M. Clarke. The Birth of Model Checking, pages 1–26. Springer, 2008.

14. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using

branching time temporal logic. In Logics of Programs, volume 131 of LNCS, pages 52–71.

Springer, 1982.

15. B. Courcelle. Graph structure and monadic second-order logic: Language theoretical aspects.

In Automata, Languages and Programming, volume 5125 of LNCS, pages 1–13. Springer,

2008.

16. A. Dawar, P. Gardner, and G. Ghelli. Adjunct elimination through games in static ambient

logic. In Foundations of Software Technology and Theoretical Computer Science, volume

3328 of LNCS, pages 211–223. Springer, 2004.

17. S. Demri and M. Deters. Two-variable separation logic and its inner circle. Transactions on
Computational Logic, 16:15:1–15:36, 2015.

18. S. Demri and R. Fervari. On the complexity of modal separation logics. In Advances in Modal
Logic, pages 179–198. College Publications, 2018.

19. S. Demri, D. Galmiche, D. Larchey-Wendling, and D. Méry. Separation logic with one

quantified variable. Theoretical Computer Science, 61:371–461, 2017.

480 A. Mansutti



20. S. Demri, E. Lozes, and A. Mansutti. The effects of adding reachability predicates in proposi-

tional separation logic. In Foundations of Software Science and Computational Structures,

volume 10803 of LNCS, pages 476–493. Springer, 2018.

21. R. Fervari. Relation-Changing Modal Logics. PhD thesis, 2014.

22. K. Fine. Propositional quantifiers in modal logic. Theoria, 36:336–346, 1970.

23. M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs. Journal of
Computer and System Sciences, 18:194 – 211, 1979.

24. V. Goranko. Temporal logics of computations. Lecture Notes from ESSLLI’00, 2000.

25. V. Goranko, A. Montanari, and G. Sciavicco. A road map of interval temporal logics and

duration calculi. Journal of Applied Non-Classical Logics, 14:9–54, 2004.

26. V. Goranko and S. Passy. Using the universal modality: Gains and questions. Journal of Logic
and Computation, 2:5–30, 1992.

27. S. A. Kripke. Semantical considerations on modal logic. Acta Philosophica Fennica, 16:83–94,

1963.

28. F. Laroussinie and N. Markey. Quantified CTL: expressiveness and complexity. Logical
Methods in Computer Science, 10, 2014.

29. L. Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An

EATCS Series. Springer, 2004.

30. E. Lozes. Adjuncts elimination in the static ambient logic. Electronic Notes in Theoretical
Computer Science, 96:51–72, 2004.

31. A. Mansutti. Extending propositional separation logic for robustness properties. In Founda-
tions of Software Technology and Theoretical Computer Science, pages 42:1–42:23. Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018.

32. D. A. Martin. Borel determinacy. Annals of Mathematics, 102:363–371, 1975.

33. A. Meier, M. Mundhenk, M. Thomas, and H. Vollmer. The complexity of satisfiability for

fragments of CTL and CTL∗. Electronic Notes in Theoretical Computer Science, 223:201–213,

2008.

34. B. C. Moszkowski. Reasoning About Digital Circuits. PhD thesis, 1983.

35. P. W. O’Hearn and D. J. Pym. The logic of bunched implications. Bulletin of Symbolic Logic,

5:215–244, 1999.

36. M. O. Rabin. Decidability of second-order theories and automata on infinite trees. Transactions
of the American Mathematical Society, 41:1–35, 1969.

37. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In Logic in
Computer Science, pages 55–74. IEEE, 2002.

38. S. Schmitz. Complexity hierarchies beyond elementary. ransactions on Computation Theory,

8:3:1–3:36, 2016.

39. A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics. Journal
of the Association for Computing Machinery, 32:733–749, 1985.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits

use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you

give appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

An Auxiliary Logic on Trees 481

http://creativecommons.org/licenses/by/4.0/


The Inconsistent Labelling Problem of
Stutter-Preserving Partial-Order Reduction

Thomas Neele1(�), Antti Valmari2, and Tim A.C. Willemse1

1 Eindhoven University of Technology, Eindhoven, The Netherlands
{t.s.neele, t.a.c.willemse}@tue.nl

2 University of Jyväskylä, Jyväskylä, Finland
antti.valmari@jyu.fi

Abstract. In model checking, partial-order reduction (POR) is an ef-
fective technique to reduce the size of the state space. Stubborn sets are
an established variant of POR and have seen many applications over the
past 31 years. One of the early works on stubborn sets shows that a com-
bination of several conditions on the reduction is sufficient to preserve
stutter-trace equivalence, making stubborn sets suitable for model check-
ing of linear-time properties. In this paper, we identify a flaw in the rea-
soning and show with a counter-example that stutter-trace equivalence
is not necessarily preserved. We propose a solution together with an up-
dated correctness proof. Furthermore, we analyse in which formalisms
this problem may occur. The impact on practical implementations is
limited, since they all compute a correct approximation of the theory.

1 Introduction

In formal methods, model checking is a technique to automatically decide the
correctness of a system’s design. The many interleavings of concurrent processes
can cause the state space to grow exponentially with the number of components,
known as the state-space explosion problem. Partial-order reduction (POR) is
one technique that can alleviate this problem. Several variants of POR exist,
such as ample sets [11], persistent set [7] and stubborn sets [16,21]. For each of
those variants, sufficient conditions for preservation of stutter-trace equivalence
have been identified. Since LTL without the next operator (LTL−X) is invariant
under finite stuttering, this allows one to check most LTL properties under POR.

However, the correctness proofs for these methods are intricate and not re-
produced often. For stubborn sets, LTL−X -preserving conditions and an accom-
panying correctness result were first presented in [15], and discussed in more
detail in [17]. While trying to reproduce the proof for [17, Theorem 2] (see also
Theorem 1 in the current work), we ran into an issue while trying to prove a
certain property of the construction used in the original proof [17, Construction
1]. This led us to discover that stutter-trace equivalence is not necessarily pre-
served. We will refer to this as the inconsistent labelling problem. The essence
of the problem is that POR in general, and the proofs in [17] in particular,
reason mostly about actions, which label the transitions. The only relevance of

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 482–501, 2020.
https://doi.org/10.1007/978-3-030-45231-5_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_25&domain=pdf


the state labelling is that it determines which actions are visible. On the other
hand, stutter-trace equivalence and the LTL semantics are purely based on state
labels. The correctness proof in [17] does not deal properly with this disparity.
Further investigation shows that the same problem also occurs in two works of
Beneš et al. [2,3], who apply ample sets to state/event LTL model checking.

Consequently, any application of stubborn sets in LTL−X model checking
is possibly unsound, both for safety and liveness properties. In literature, the
correctness of several theories [9,10,18] relies on the incorrect theorem.

Our contributions are as follows:

– We prove the existence of the inconsistent labelling problem with a counter-
example. This counter-example is valid for weak stubborn sets and, with a
small modification, in a non-deterministic setting for strong stubborn sets.

– We propose to strengthen one of the stubborn set conditions and show that
this modification resolves the issue (Theorem 2).

– We analyse in which circumstances the inconsistent labelling problem occurs
and, based on the conclusions, discuss its impact on existing literature. This
includes a thorough analysis of Petri nets and several different notions of
invisible transitions and atomic propositions.

Our investigation shows that probably all practical implementations of stubborn
sets compute an approximation which resolves the inconsistent labelling problem.
Furthermore, POR methods based on the standard independence relation, such
as ample sets and persistent sets, are not affected.

The rest of the paper is structured as follows. In Section 2, we introduce
the basic concepts of stubborn sets and stutter-trace equivalence, which is not
preserved in the counter-example of Section 3. A solution to the inconsistent
labelling problem is discussed in Section 4, together with an updated correct-
ness proof. Sections 5 and 6 discuss several settings in which correctness is not
affected. Finally, Section 7 presents related work and Section 8 presents a con-
clusion.

2 Preliminaries

Since LTL relies on state labels and POR relies on edge labels, we assume the
existence of some fixed set of atomic propositions AP to label the states and
a fixed set of edge labels Act , which we will call actions. Actions are typically
denoted with the letter a.

Definition 1. A labelled state transition system, short LSTS, is a directed
graph TS = (S,→, ŝ, L), where:

– S is the state space;
– →⊆ S × Act × S is the transition relation;
– ŝ ∈ S is the initial state; and
– L : S → 2AP is a function that labels states with atomic propositions.

The Inconsistent Labelling Problem 483



We write s a−→ t whenever (s, a, t) ∈→. A path is a (finite or infinite) alter-
nating sequence of states and actions: s0

a1−→ s1
a2−→ s2 . . . . We sometimes omit

the intermediate and/or final states if they are clear from the context or not rel-
evant, and write s a1...an−−−−→ t or s a1...an−−−−→ for finite paths and s a1a2...−−−−→ for infinite
paths. Paths that start in the initial state ŝ are called initial paths. Given a path
π = s0

a1−→ s1
a2−→ s2 . . . , the trace of π is the sequence of state labels observed

along π, viz. L(s0)L(s1)L(s2) . . . . An action a is enabled in a state s, notation
s a−→, if and only if there is a transition s a−→ t for some t. In a given LSTS TS ,
enabledTS (s) is the set of all enabled actions in a state s. A set I of invisible
actions is chosen such that if (but not necessarily only if) a ∈ I, then for all
states s and t, s a−→ t implies L(s) = L(t). Note that this definition allows the set
I to be under-approximated. An action that is not invisible is called visible. We
say TS is deterministic if and only if s a−→ t and s a−→ t′ imply t = t′, for all states
s, t and t′ and actions a. To indicate that TS is not necessarily deterministic,
we say TS is non-deterministic.

2.1 Stubborn sets

In POR, reduction functions play a central role. A reduction function r : S →
2Act indicates which transitions to explore in each state. When starting at the
initial state ŝ, a reduction function induces a reduced LSTS as follows.

Definition 2. Let TS = (S,→, ŝ, L) be an LSTS and r : S → 2Act a reduction
function. Then the reduced LSTS induced by r is defined as TS r = (Sr,→r

, ŝ, Lr), where Lr is the restriction of L on Sr, and Sr and →r are the smallest
sets such that the following holds:

– ŝ ∈ Sr; and
– If s ∈ Sr, s

a−→ t and a ∈ r(s), then t ∈ Sr and s a−→r t.

Note that we have →r ⊆→. In the remainder of this paper, we will assume
the reduced LSTS is finite. This is essential for the correctness of the approach
detailed below. In general, a reduction function is not guaranteed to preserve
almost any property of an LSTS. Below, we list a number of conditions that have
been proposed in literature; they aim to preserve LTL−X . Here, we call an action
a a key action in s iff for all paths s a1...an−−−−→ s′ such that a1 /∈ r(s), . . . , an /∈ r(s),
it holds that s′ a−→. We typically denote key actions by akey.

D0 If enabled(s) �= ∅, then r(s) ∩ enabled(s) �= ∅.
D1 For all a ∈ r(s) and a1 /∈ r(s), . . . , an /∈ r(s), if s a1−→ · · · an−−→ sn

a−→ s′n, then
there are states s′, s′1, . . . , s

′
n−1 such that s a−→ s′ a1−→ s′1

a2−→ · · · an−−→ s′n.
D2 Every enabled action in r(s) is a key action in s.
D2w If enabled(s) �= ∅, then r(s) contains a key action in s.
V If r(s) contains an enabled visible action, then it contains all visible ac-

tions.
I If an invisible action is enabled, then r(s) contains an invisible key action.
L For every visible action a, every cycle in the reduced LSTS contains a

state s such that a ∈ r(s).

484 T. Neele et al.



s s1 . . . sn−1 sn

s′n

a1 an

a ⇒

s s1 . . . sn−1 sn

s′ s′1 . . . s′n−1 s′n

a1 an

a

a1 an

a

Fig. 1: Visual representation of condition D1.

These conditions are used to define strong and weak stubborn sets in the
following way.

Definition 3. A reduction function r : S → 2Act is a strong stubborn set iff
for all states s ∈ S, the conditions D0, D1, D2, V, I, L all hold.

Definition 4. A reduction function r : S → 2Act is a weak stubborn set iff for
all states s ∈ S, the conditions D1, D2w, V, I, L all hold.

Below, we also use ‘weak/strong stubborn set’ to refer to the set of actions
r(s) in some state s. First, note that key actions are always enabled, by setting
n = 0. Furthermore, a stubborn set can never introduce new deadlocks, either by
D0 orD2w. ConditionD1 enforces that a key action akey ∈ r(s) does not disable
other paths that are not selected for the stubborn set. A visual representation
of condition D1 can be found in Figure 1. When combined, D1 and D2w are
sufficient conditions for preservation of deadlocks. Condition V enforces that the
paths s a1...ana−−−−−→ s′n and s aa1...an−−−−−→ s′n in D1 contain the same sequence of visible
actions. The purpose of condition I is to preserve the possibility to perform
an invisible action, if one is enabled. Finally, we have condition L to deal with
the action-ignoring problem, which occurs when an action is never selected for
the stubborn set and always ignored. Since we assume that the reduced LSTS
is finite, it suffices to reason in L about every cycle instead of every infinite
path. The combination of I and L helps to preserve divergences (infinite paths
containing only invisible actions).

Conditions D0 and D2 together imply D2w, and thus every strong stubborn
set is also a weak stubborn set. Since the reverse does not necessarily hold, weak
stubborn sets might offer more reduction.

2.2 Weak and Stutter Equivalence

To reason about the similarity of an LSTS TS and its reduced LSTS TS r, we
introduce the notions of weak equivalence, which operates on actions, and stutter
equivalence, which operates on states. The definitions are generic, so that they
can also be used in Section 6.

Definition 5. Two paths π and π′ are weakly equivalent with respect to a set of
actions A, notation π ∼A π′, if and only if they are both finite or both infinite
and their respective projections on Act \A are equal.

The Inconsistent Labelling Problem 485



Definition 6. The no-stutter trace under labelling L of a path s0
a1−→ s1

a2−→ . . .
is the sequence of those L(si) such that i = 0 or L(si) �= L(si−1). Paths π and
π′ are stutter equivalent under L, notation π �L π′, iff they are both finite or
both infinite, and they yield the same no-stutter trace under L.

We typically consider weak equivalence with respect to the set of invisible
actions I. In that case, we write π ∼ π′. We also omit the subscript for stutter
equivalence when reasoning about the standard labelling function and write
π � π′. Remark that stutter equivalence is invariant under finite repetitions of
state labels, hence its name. We lift both equivalences to LSTSs, and say that
TS and TS ′ are weak-trace equivalent iff for every initial path π in TS , there is
a weakly equivalent initial path π′ in TS ′ and vice versa. Likewise, TS and TS ′

are stutter-trace equivalent iff for every initial path π in TS , there is a stutter
equivalent initial path π′ in TS ′ and vice versa.

In general, weak equivalence and stutter equivalence are incomparable, even
for initial paths. However, for some LSTSs, these notions can be related in a
certain way. We formalise this in the following definition.

Definition 7. Let TS be an LSTS and π and π′ two paths in TS that both start
in some state s. Then, TS is labelled consistently iff π ∼ π′ implies π � π′.

Note that if an LSTS is labelled consistently, then in particular all weakly
equivalent initial paths are also stutter equivalent. Hence, if an LSTS TS is
labelled consistently and weak-trace equivalent to a subgraph TS ′, then TS and
TS ′ are also stutter-trace equivalent.

Stubborn sets as defined in the previous section aim to preserve stutter-trace
equivalence between the original and the reduced LSTS. The motivation be-
hind this is that two stutter-trace equivalent LSTSs satisfy exactly the same
formulae [1] in LTL−X . The following theorem, which is frequently cited in lit-
erature [9,10,18], aims to show that stubborn sets indeed preserve stutter-trace
equivalence. Its original formulation reasons about the validity of an arbitrary
LTL−X formula. Here, we give the alternative formulation based on stutter-trace
equivalence.

Theorem 1. [17, Theorem 2] Given an LSTS TS and a weak/strong stubborn
set r, then the reduced LSTS TS r is stutter-trace equivalent to TS.

The original proof correctly concludes that the stubborn set method preserves
the order of visible actions in the reduced LSTS, i.e., TS ∼ TS r. However, this
only implies preservation of stutter-trace equivalence (TS � TS r) if the full
LSTS is labelled consistently, so Theorem 1 is invalid in the general case. In the
next section, we will see a counter-example which exploits this fact.

3 Counter-Example

Consider the LSTS in Figure 2, which we will refer to as TSC . There is only
one atomic proposition q, which holds in the grey states and is false in the

486 T. Neele et al.



other states. The initial state ŝ is marked with an incoming arrow. First, note
that this LSTS is deterministic. The actions a1, a2 and a3 are visible and a
and akey are invisible. By setting r(ŝ) = {a, akey}, which is a weak stubborn

set, we obtain a reduced LSTS TSC
r that does not contain the dashed states

and transitions. The original LSTS contains the trace ∅{q}∅∅{q}ω, obtained by
following the path with actions a1a2aa

ω
3 . However, the reduced LSTS does not

contain a stutter equivalent trace. This is also witnessed by the LTL−X formula
�(q ⇒ �(q ∨�¬q)), which holds for TSC

r , but not for TS
C .

ŝ

a

a1 a2

akey

a1 a2
a3

a3
a3

a1 a2

a

akeyakey

Fig. 2: Counter-example showing that stubborn sets do not preserve stutter-
trace equivalence. Grey states are labelled with {q}. The dashed transitions and
states are not present in the reduced LSTS.

A very similar example can be used to show that strong stubborn sets suffer
from the same problem. Consider again the LSTS in Figure 2, but assume that
a = akey, making the LSTS non-deterministic. Now, r(ŝ) = {a} is a strong
stubborn set and again the trace ∅{q}∅∅{q}ω is not preserved in the reduced
LSTS. In Section 4.3, we will see why the inconsistent labelling problem does
not occur for deterministic systems under strong stubborn sets.

The core of the problem lies in the fact that condition D1, even when com-
bined with V, does not enforce that the two paths it considers are stutter equiv-
alent. Consider the paths s a−→ and s a1a2a−−−−→ and assume that a ∈ r(s) and
a1 /∈ r(s), a2 /∈ r(s). Condition V ensures that at least one of the following two
holds: (i) a is invisible, or (ii) a1 and a2 are invisible. Half of the possible sce-
narios are depicted in Figure 3; the other half are symmetric. Again, the grey
states (and only those states) are labelled with {q}.

The two cases delimited with a solid line are problematic. In both LSTSs,
the paths s a1a2a−−−−→ s′ and s aa1a2−−−−→ s′ are weakly equivalent, since a is invis-
ible. However, they are not stutter equivalent, and therefore these LSTSs are
not labelled consistently. The topmost of these two LSTSs forms the core of
the counter-example TSC , with the rest of TSC serving to satisfy condition
D2/D2w.

The Inconsistent Labelling Problem 487



s

s′

a
a1 a2

a1 a2

a

s

s′

a
a1 a2

a1 a2

a

s

s′

a
a1 a2

a1 a2

a

s

s′

a
a1 a2

a1 a2

a

s

s′

a
a1 a2

a1 a2

a

s

s′

a
a1 a2

a1 a2

a

s

s′

a
a1 a2

a1 a2

a

s

s′

a
a1 a2

a1 a2

a

s

s′

a
a1 a2

a1 a2

a

a1 and a2 invisible

a invisible

inconsistent labelling

Fig. 3: Nine possible scenarios when a ∈ r(s) and a1 /∈ r(s), a2 /∈ r(s), according
to conditions D1 and V. The dotted and dashed lines indicate when a or a1, a2
are invisible, respectively.

4 Strengthening Condition D1

To fix the issue with inconsistent labelling, we propose to strengthen condition
D1 as follows.

D1’ For all a ∈ r(s) and a1 /∈ r(s), . . . , an /∈ r(s), if s a1−→ s1
a2−→ · · · an−−→ sn

a−→
s′n, then there are states s′, s′1, . . . , s

′
n−1 such that s a−→ s′ a1−→ s′1

a2−→ · · · an−−→
s′n. Furthermore, if a is invisible, then si

a−→ s′i for every 1 ≤ i < n.

This new condition D1’ provides a form of local consistent labelling when one
of a1, . . . , an is visible. In this case,V implies that a is invisible and, consequently,
the presence of transitions si

a−→ s′i implies L(si) = L(s′i). Hence, the problematic
cases of Figure 3 are resolved; a correctness proof is given below.

Condition D1’ is very similar to condition C1 [5], which is common in the
context of ample sets. However, C1 requires that action a is globally indepen-
dent of each of the actions a1, . . . , an, while D1’ merely requires a kind of local
independence. Persistent sets [7] also rely on a condition similar to D1’, and
require local independence.

4.1 Implementation

In practice, most, if not all, implementations of stubborn sets approximate D1
based on a binary relation �s on actions. This relation may (partly) depend on

488 T. Neele et al.



the current state s and it is defined such that D1 can be satisfied by ensuring
that if a ∈ r(s) and a �s a′, then also a′ ∈ r(s). A set satisfying D0, D1, D2,
D2w, V and/or I can be found by searching for a suitable strongly connected
component in the graph (Act ,�s). Condition L is dealt with by other techniques.

Practical implementations construct �s by analysing how any two actions
a and a′ interact. If a is enabled, the simplest (but not necessarily the best
possible) strategy is to make a �s a′ if and only if a and a′ access at least
one variable in common. This can be relaxed, for instance, by not considering
commutative accesses, such as writing to and reading from a FIFO buffer. As a
result, �s can only detect reduction opportunities in (sub)graphs of the shape

s s1 . . . sn−1 sn

s′ s′1 . . . s′n−1 s′n

a1 an

a

a1 an

a a a

where a ∈ r(s) and a1 /∈ r(s), . . . , an /∈ r(s). The presence of the vertical a tran-
sitions in s1, . . . , sn−1 implies that D1’ is also satisfied by such implementations.

4.2 Correctness

To show that D1’ indeed resolves the inconsistent labelling problem, we repro-
duce the construction in the original proof [17, Construction 1] in two lemmata
and show that it preserves stutter equivalence. Below, recall that →r indicates
which transitions occur in the reduced state space.

Lemma 1. Let r be a weak stubborn set, where condition D1 is replaced by D1’,
and π = s0

a1−→ · · · an−−→ sn
a−→ s′n a path such that a1 /∈ r(s0), . . . , an /∈ r(s0) and

a ∈ r(s0). Then, there is a path π′ = s0
a−→r s′0

a1−→ · · · an−−→ s′n such that π � π′.

Proof. The existence of π′ follows directly from condition D1’. Due to condition
V and our assumption that a1 /∈ r(s0), . . . , an /∈ r(s0), it cannot be the case that
a is visible and at least one of a1, . . . , an is visible. If a is invisible, then the traces
of s0

a1−→ · · · an−−→ sn and s′0
a1−→ · · · an−−→ s′n are equivalent, since D1’ implies that

si
a−→ s′i for every 0 ≤ i ≤ n, so L(s′i) = L(si). Otherwise, if all of a1, . . . , an are

invisible, then the sequences of labels observed along π and π′ have the shape
L(s0)

n+1L(s′0) and L(s0)L(s
′
0)

n+1, respectively. We conclude that π � π′. �
Lemma 2. Let r be a weak stubborn set, where condition D1 is replaced by D1’,
and π = s0

a1−→ s1
a2−→ . . . a path such that ai /∈ r(s0) for any ai that occurs in

π. Then, the following holds:

– If π is of finite length n > 0, there exist an action akey, a state s′n such that
sn

akey−−→ s′n and a path π′ = s0
akey−−→r s′0

a1−→ · · · an−−→ s′n.
– If π is infinite, there exists a path π′ = s0

akey−−→r s′0
a1−→ s′1

a2−→ . . . for some
action akey.

In either case, π � π′.

The Inconsistent Labelling Problem 489



Proof. Let K be the set of key actions in s. If a1 is invisible, K contains at least
one invisible action, due to I. Otherwise, if a1 is visible, we reason that K is not
empty (condition D2w) and all actions in r(s0), and thus also all actions in K,
are invisible, due to V. In the remainder, let akey be an invisible key action.

In case π has finite length n, the existence of sn
akey−−→ s′n and s0

akey−−→r s′0
a1−→

· · · an−−→ s′n follows from the definition of key actions and D1’, respectively.
If π is infinite, we can apply the definition of key actions and D1’ successively

to obtain a path πi = s0
akey−−→ s′0

a1−→ · · · ai−→ s′i for every i ≥ 0, with sj
akey−−→ s′j for

every 1 ≤ j < i. Since the reduced state space is finite, infinitely many of these
paths must use the same state as s′0. At most one of them ends at s′0 (the one
with i = 0), so infinitely many continue from s′0. Of them, infinitely many must
use the same s′1, again because the reduced state space is finite. Again, at most
one of them is lost because of ending at s′1. This reasoning can continue without
limit, proving the existence of π′ = s0

akey−−→r s′0
a1−→ s′1

a2−→ . . . , with sj
akey−−→ s′j

for every j ≥ 0.
Since akey is invisible, we have L(sj) = L(s′j) for every j ≥ 0. This implies

π � π′. �
Lemmata 1 and 2 coincide with branches 1 and 2 of [17, Construction 1],

respectively, but contain the stronger result that π � π′. Thus, when applied
in the proof of [17, Theorem 2] (see also Theorem 1), this yields the result that
stubborn sets with condition D1’ preserve stutter-trace equivalence.

Theorem 2. Given an LSTS TS and weak/strong stubborn set r, where condi-
tion D1 is replaced by D1’, then the reduced LSTS TS r is stutter-trace equivalent
to TS.

We do not reproduce the complete proof, but provide insight into the appli-
cation of the lemmata with the following example.

Example 1. Consider the path obtained by following a1a2a3 in Figure 4. Lem-
mata 1 and 2 show that a1a2a3 can always be mimicked in the reduced LSTS,
while preserving stutter equivalence. In this case, the path is mimicked by the
path corresponding to akeya2a1a

′
keya3, drawn with dashes. The new path reorders

the actions a1, a2 and a3 according to the construction of Lemma 1 and intro-
duces the key actions akey and a′key according to Lemma 2. �

We remark that Lemma 2 also holds if the reduced LSTS is infinite, but
finitely branching.

4.3 Deterministic LSTSs

As already noted in Section 3, strong stubborn sets for deterministic systems do
not suffer from the inconsistent labelling problem. The following lemma, which
also appeared as [20, Lemma 4.2], shows why.

Lemma 3. For deterministic LSTSs, conditions D1 and D2 together imply
D1’.

490 T. Neele et al.



a1

a2

a3

akey

a′
key

Fig. 4: Example of how the trace a1, a2, a3 can be mimicked by introducing
additional actions and moving a2 to the front (dashed trace). Transitions that
are drawn in parallel have the same label.

5 Safe Logics

In this section, we will identify two logics, viz. reachability and CTL−X , which
are not affected by the inconsistent labelling problem. This is either due to their
limited expressivity or the extra POR conditions that are required.

5.1 Reachability properties

Although the counter-example of Section 3 shows that stutter-trace equivalence
is in general not preserved by stubborn sets, some fragments of LTL−X are
preserved. One such class of properties is reachability properties, which are of
the shape �f or �f , where f is a formula not containing temporal operators.

Theorem 3. Let TS be an LSTS, r a reduction function that satisfies either
D0, D1, D2, V and L or D1, D2w, V and L and TS r the reduced LSTS. For
all possible labellings l ⊆ AP, TS contains a path to a state s such that L(s) = l
iff TS r contains a path to a state s′ such that L(s′) = l.

Proof. The ‘if’ case is trivial, since TS r is a subgraph of TS . For the ‘only if’ case,
we reason as follows. Let TS = (S,→, ŝ, L) be an LSTS and π = s0

a1−→ · · · an−−→ sn
a path such that s0 = ŝ. We mimic this path by repeatedly taking some enabled
action a that is in the stubborn set, according to the following schema. Below, we
assume the path to be mimicked contains at least one visible action. Otherwise,
its first state would have the same labelling as sn.

1. If there is an i such that ai ∈ r(s0), we consider the smallest such i, i.e.,
a1 /∈ r(s0), . . . , ai−1 /∈ r(s0). Then, we can shift ai forward by D1, move
towards sn along s0

ai−→ s′0 and continue by mimicking s′0
a1−→ · · · ai−1−−−→

si
ai+1−−−→ · · · an−−→ sn.

2. If all of a1 /∈ r(s0), . . . , an /∈ r(s0), then, by D0 and D2 or by D2w, there
is a key action akey in s0. By the definition of key actions and D1, akey leads
to a state s′0 from which we can continue mimicking the path s′0

a1−→ s′1
a2−→

· · · an−−→ s′n. Note that L(sn) = L(s′n), since akey is invisible by condition V.

The Inconsistent Labelling Problem 491



The second case cannot be repeated infinitely often, due to condition L. Hence,
after a finite number of steps, we reach a state s′n with L(s′n) = L(sn). �

We remark that more efficient mechanisms for reachability checking under
POR have been proposed, such as condition S [21], which can replace L, or
conditions based on up-sets [13]. Another observation is that model checking
of LTL−X properties can be reduced to reachability checking by computing the
cross-product of a Büchi automaton and an LSTS [1], in the process resolving
the inconsistent labelling problem. Peled [12] shows how this approach can be
combined with POR, but please see [14].

5.2 Deterministic LSTSs and CTL−X Model Checking

In this section, we will consider the inconsistent labelling problem in the set-
ting of CTL−X model checking. When applying stubborn sets in that context,
stronger conditions are required to preserve the branching structure that CTL−X

reasons about. Namely, the original LSTS must be deterministic and one more
condition needs to be added [5]:

C4 Either r(s) = Act or r(s) ∩ enabled(s) = {a} for some a ∈ Act .

We slightly changed its original formulation to match the setting of stubborn
sets. A weaker condition, called Ä8, which does not require determinism of
the whole LSTS is proposed in [19]. With C4, strong and weak stubborn sets
collapse, as shown by the following lemma.

Lemma 4. Conditions D2w and C4 together imply D0 and D2.

Proof. Let TS be an LSTS, s a state and r a reduction function that satisfies
D2w andC4. ConditionD0 is trivially implied by C4. Using C4, we distinguish
two cases: either r(s) contains precisely one enabled action a, or r(s) = Act . In
the former case, this single action a must be a key action, according to D2w.
Hence, D2, which requires that all enabled actions in r(s) are key actions, is
satisfied. Otherwise, if r(s) = Act , we consider an arbitrary action a that sat-
isfies D2’s precondition that s a−→. Given a path s a1...an−−−−→, the condition that
a1 /∈ r(s), . . . , an /∈ r(s) only holds if n = 0. We conclude that D2’s condition
s a1...ana−−−−−→ is satisfied by the assumption s a−→. �

It follows from Lemmata 3 and 4 and Theorem 2 that CTL−X model checking
of deterministic systems with stubborn sets does not suffer from the inconsistent
labelling problem. The same holds for condition Ä8, as already shown in [19].

6 Petri Nets

Petri nets are a widely-known formalism for modelling concurrent processes and
have seen frequent use in the application of stubborn-set theory [4,10,21,22].
A Petri net contains a set of places P and a set of structural transitions T .

492 T. Neele et al.



Arcs between places and structural transitions are weighted according to a total
functionW : (P×T )∪(T×P ) → N. The state space of the underlying LSTS is the
setM of all markings ; a marking m is a function P → N, which assigns a number
of tokens to each place. The LSTS contains a transition m t−→ m′ iff m(p) ≥
W (p, t) and m′(p) = m(p)−W (p, t)+W (t, p) for all places p ∈ P . As before, we
assume the LSTS contains some labelling function L : M → 2AP . More details
on the labels are given below. Note that markings and structural transitions take
over the role of states and actions respectively. The set of markings reachable
under → from some initial marking m̂ is denoted Mreach .

Example 2. Consider the Petri net with initial marking m̂ below on the left.
Here, all arcs are weighted 1, except for the arc from p5 to t2, which is weighted
2. Its LSTS is infinite, but the reachable substructure is depicted on the right.
The number of tokens in each of the places p1, . . . , p6 is inscribed in the nodes,
the state labels (if any) are written beside the nodes.

p1

p2

p3p4

p5

p6

t1 t2

t

t3

tkey

2

101100

m̂
010100

{qp}
001110

101010 010010

{ql}
001020

101001 010001

{qp}
001011

001000

{q}

t

t1 t2

t1 t2

t

tkey

t1 t2

tkeytkey

t3

The LSTS practically coincides with the counter-example of Section 3. Only the
self-loops are missing and the state labelling, with atomic propositions q, qp and
ql, differs slightly; the latter will be explained later. For now, note that t and tkey
are invisible and that the trace ∅{qp}∅∅{q}, which occurs when firing transitions
t1t2tt3 from m̂, can be lost when reducing with weak stubborn sets. �

In the remainder of this section, we fix a Petri net (P, T,W, m̂) and its LSTS
(M,→, m̂, L). Below, we consider three different types of atomic propositions.
Firstly, polynomial propositions [4] are of the shape f(p1, . . . , pn) �� k where f is
a polynomial over p1, . . . , pn, ��∈ {<,≤, >,≥,=, �=} and k ∈ Z. Such a proposi-
tion holds in a marking m iff f(m(p1), . . . ,m(pn)) �� k. A linear proposition [10]
is similar, but the function f over places must be linear and f(0, . . . , 0) = 0, i.e.,
linear propositions are of the shape k1p1+· · ·+knpn �� k, where k1, . . . , kn, k ∈ Z.
Finally, we have arbitrary propositions [22], whose shape is not restricted and
which can hold in any given set of markings.

Several other types of atomic propositions can be encoded as polynomial
propositions. For example, fireable(t) [4,10], which holds in a marking m iff t is

enabled in m, can be encoded as
∏

p∈P

∏W (p,t)−1
i=0 (p − i) ≥ 1. The proposition

deadlock , which holds in markings where no structural transition is enabled, does

The Inconsistent Labelling Problem 493



not require special treatment in the context of POR, since it is already preserved
by D1 and D2w. The sets containing all linear and polynomial propositions
are henceforward called AP l and APp, respectively. The corresponding labelling
functions are defined as Ll(m) = L(m) ∩ AP l and Lp(m) = L(m) ∩ APp for all
markings m. Below, the two stutter equivalences �Ll

and �Lp
that follow from

the new labelling functions are abbreviated �l and �p, respectively. Note that
AP ⊇ APp ⊇ AP l and �⊆�p ⊆�l.

For the purpose of introducing several variants of invisibility, we reformulate
and generalise the definition of invisibility from Section 2. Given an atomic
proposition q ∈ AP , a relation R ⊆ M × M is q-invisible if and only if
(m,m′) ∈ R implies q ∈ L(m) ⇔ q ∈ L(m′). We consider a structural transi-
tion t q-invisible iff its corresponding relation {(m,m′) | m t−→ m′} is q-invisible.
Invisibility is also lifted to sets of atomic propositions: given a set AP ′ ⊆ AP ,
relation R is AP ′-invisible iff it is q-invisible for all q ∈ AP ′. If R is AP -invisible,
we plainly say that R is invisible. AP ′-invisibility and invisibility carry over to
structural transitions. We sometimes refer to invisibility as ordinary invisibility
for emphasis. Note that the set of invisible structural transitions I is no longer
an under-approximation, but contains exactly those structural transitions t for
which m t−→ m′ implies L(m) = L(m′) (cf. Section 2).

We are now ready to introduce three orthogonal variations on invisibil-
ity. Firstly, relation R ⊆ M × M is reach q-invisible [21] iff R ∩ (Mreach ×
Mreach) is q-invisible, i.e., all the pairs of reachable markings (m,m′) ∈ R

Is Iv

IIr
s Ir

v

Ir

Ir
sv

Isv

Fig. 5: Lattice of sets of
invisible actions. Arrows
represent a subset rela-
tion.

agree on the labelling of q. Secondly, R is value q-
invisible if (i) q is polynomial and for all (m,m′) ∈ R,
f(m(p1), . . . ,m(pn)) = f(m′(p1), . . . ,m′(pn)); or if
(ii) q is not polynomial and R is q-invisible. Intu-
itively, this means that the value of polynomial f
never changes between two markings (m,m′) ∈ R.
Reach and value invisibility are lifted to structural
transitions and sets of atomic propositions as before,
i.e., by taking R = {(m,m′) | m t−→ m′} when con-
sidering invisibility of t. Finally, we introduce an-
other way to lift invisibility to structural transitions:
t is strongly q-invisible iff the set {(m,m′) | ∀p ∈
P : m′(p) = m(p) +W (t, p) −W (p, t)} is q-invisible.
Strong invisibility does not take the presence of a
transition m t−→ m′ into account, and purely reasons
about the effects of t. Value invisibility and strong in-
visibility are new in the current work, although strong invisibility was inspired
by the notion of invisibility that is proposed by Varpaaniemi in [22].

We indicate the sets of all value, reach and strongly invisible structural tran-
sitions with Iv, Ir and Is respectively. Since Iv ⊆ I, Is ⊆ I and I ⊆ Ir, the
set of all their possible combinations forms the lattice shown in Figure 5. In
the remainder, the weak equivalence relations that follow from each of the eight
invisibility notions are abbreviated, e.g., ∼Ir

sv
becomes ∼r

sv.

494 T. Neele et al.



∼s ∼v

∼∼r
s ∼r

v

∼r

∼r
sv

∼sv �

�p

�l

Theorem 6

Theorem 5

Theorem 4

Fig. 6: Two lattices containing variations of weak equivalence and stutter equiv-
alence, respectively. Solid arrows indicate a subset relation inside the lattice;
dotted arrows follow from the indicated theorems and show when the LSTS of
a Petri net is labelled consistently.

Example 3. Consider again the Petri net and LSTS from Example 2. We can
define ql and qp as linear and polynomial propositions, respectively:

– ql := p3 + p4 + p6 = 0 is a linear proposition, which holds when neither
p3, p4 nor p6 contains a token. Structural transition t is ql-invisible, because
m t−→ m′ implies that m(p3) = m′(p3) ≥ 1, and thus neither m nor m
is labelled with ql. On the other hand, t is not value ql-invisible (by the
transition 101100 t−→ 101010) or strongly reach ql-invisible (by 010100 and
010010). However, tkey is strongly value ql-invisible: it moves a token from
p4 to p6 and hence never changes the value of p3 + p4 + p6.

– qp := (1 − p3)(1 − p5) = 1 is a polynomial proposition, which holds in all
reachable markings m where m(p3) = 0 and m(p5) = 0. Structural transition
t is reach value qp-invisible, but not qp-invisible (by 002120 t−→ 002030) or
strongly reach qp invisible. Strong value qp-invisibility of tkey follows imme-
diately from the fact that the adjacent places of tkey, viz. p4 and p6, do not
occur in the definition of qp.

This yields the state labelling which is shown in Example 2. �

Given a weak equivalence relation R∼ and a stutter equivalence relation R�,
we write R∼ � R� to indicate that R∼ and R� yield consistent labelling. We
spend the rest of this section investigating under which notions of invisibility and
propositions from the literature, the LSTS of a Petri net is labelled consistently.
More formally, we check for each weak equivalence relation R∼ and each stutter
equivalence relation R� whether R∼ � R�. This tells us when existing stubborn
set theory can be applied without problems. The two lattices containing all weak
and stuttering equivalence relations are depicted in Figure 6; each dotted arrow
represents a consistent labelling result. Before we continue, we first introduce an
auxiliary lemma.

Lemma 5. Let I be a set of invisible structural transitions and L some labelling
function. If for all t ∈ I and paths π = m0

t1−→ m1
t2−→ . . . and π′ = m0

t−→ m′
0

t1−→
m′

1
t2−→ . . . , it holds that π �L π′, then ∼I ��L.

The Inconsistent Labelling Problem 495



Proof. We assume that the following holds for all paths and t ∈ I:

m0
t1−→ m1

t2−→ · · · �L m0
t−→ m′

0
t1−→ m′

1
t2−→ . . . (†)

We consider two initial paths π and π′ such that π ∼I π′ and prove that π �L π′.
The proof proceeds by induction on the combined number of invisible structural
transitions (taken from I) in π and π′. In the base case, π and π′ contain only
visible structural transitions, and π ∼I π’ implies π = π′ since Petri nets are
deterministic. Hence, π �L π′.

For the induction step, we take as hypothesis that, for all initial paths π
and π′ that together contain at most k invisible structural transitions, π ∼I π′

implies π �L π′. Let π and π′ be two arbitrary initial paths such that π ∼I π′

and the total number of invisible structural transitions contained in π and π′ is
k. We consider the case where an invisible structural transition is introduced in
π′, the other case is symmetric. Let π′ = σ1σ2 for some σ1 and σ2. Let t ∈ I be
some invisible structural transition and π′′ = σ1tσ

′
2 such that σ2 and σ′

2 contain
the same sequence of structural transitions. Clearly, we have π′ ∼I π′′. Here, we
can apply our original assumption (†), to conclude that σ2 � tσ′

2, i.e., the extra
stuttering step t thus does not affect the labelling of the remainder of π′′. Hence,
we have π′ �L π′′ and, with the induction hypothesis, π �L π′′. Note that π and
π′′ together contain k + 1 invisible structural transitions.

In case π and π′ together contain an infinite number of invisible structural
transitions, π ∼I π′ implies π �L π′ follows from the fact that the same holds
for all finite prefixes of π and π′ that are related by ∼I . �

The following theorems each focus on a class of atomic propositions and
show which notion of invisibility is required for the LSTS of a Petri net to be
labelled consistently. In the proofs, we use a function dt, defined as dt(p) =
W (t, p) − W (p, t) for all places p, which indicates how structural transition t
changes the state. Furthermore, we also consider functions of type P → N as
vectors of type N|P |. This allows us to compute the pairwise addition of a marking
m with dt (m+dt) and to indicate that t does not change the marking (dt = 0).

Theorem 4. Under reach value invisibility, the LSTS underlying a Petri net is
labelled consistently for linear propositions, i.e., ∼r

v ��l.

Proof. Let t ∈ Ir
v be a reach value invisible structural transition such that there

exist reachable markings m and m′ with m t−→ m′. If such a t does not exist,
then ∼r

v is the reflexive relation and ∼r
v ��l is trivially satisfied. Otherwise, let

q := f(p1, . . . , pn) �� k be a linear proposition. Since t is reach value invisible
and f is linear, we have f(m) = f(m′) = f(m + dt) = f(m) + f(dt) and
thus f(dt) = 0. It follows that, given two paths π = m0

t1−→ m1
t2−→ . . . and

π′ = m0
t−→ m′

0
t1−→ m′

1
t2−→ . . . , the addition of t does not influence f , since

f(mi) = f(mi) + f(dt) = f(mi + dt) = f(m′
i) for all i. As a consequence, t also

does not influence q. With Lemma 5, we deduce that ∼r
v ��l. �

Whereas in the linear case one can easily conclude that π and π′ are stutter
equivalent under f , in the polynomial case, we need to show that f is constant

496 T. Neele et al.



under all value invisible structural transitions t, even in markings where t is not
enabled. This follows from the following proposition.

Proposition 1. Let f : Nn → Z be a polynomial function, a, b ∈ Nn two con-
stant vectors and c = a − b the difference between a and b. Assume that for all
x ∈ Nn such that x ≥ b, where ≥ denotes pointwise comparison, it holds that
f(x) = f(x+ c). Then, f is constant in the vector c, i.e., f(x) = f(x+ c) for all
x ∈ Nn.

Proof. Let f , a, b and c be as above and let 1 ∈ Nn be the vector containing
only ones. Given some arbitrary x ∈ Nn, consider the function gx(t) = f(x+ t ·
1 + c) − f(x + t · 1). For sufficiently large t, it holds that x + t · 1 ≥ b, and it
follows that gx(t) = 0 for all sufficiently large t. This can only be the case if gx
is the zero polynomial, i.e., gx(t) = 0 for all t. As a special case, we conclude
that gx(0) = f(x+ c)− f(x) = 0. �

The intuition behind this is that f(x+ c)− f(x) behaves like the directional
derivative of f with respect to c. If the derivative is equal to zero in infinitely
many x, f must be constant in the direction of c. We will apply this result in
the following theorem.

Theorem 5. Under value invisibility, the LSTS underlying a Petri net is la-
belled consistently for polynomial propositions, i.e., ∼v ��p.

Proof. Let t ∈ Iv be a value invisible structural transition, m and m′ two mark-
ings with m t−→ m′, and q := f(p1, . . . , pn) �� k a polynomial proposition. Note
that infinitely many such (not necessarily reachable) markings exist in M, so we
can apply Proposition 1 to obtain f(m) = f(m+dt) for all markingsm. It follows
that, given two paths π = m0

t1−→ m1
t2−→ . . . and π′ = m0

t−→ m′
0

t1−→ m′
1

t2−→ . . . ,
the addition of t does not alter the value of f , since f(mi) = f(mi+dt) = f(m′

i)
for all i. As a consequence, t also does not change the labelling of q. Application
of Lemma 5 yields ∼v ��p. �

Varpaaniemi shows that the LSTS of a Petri net is labelled consistently
for arbitrary propositions under his notion of invisibility [22, Lemma 9]. Our
notion of strong visibility, and especially strong reach invisibility, is weaker than
Varpaaniemi’s invisibility, so we generalise the result to ∼r

s ��.

Theorem 6. Under strong reach visibility, the LSTS underlying a Petri net is
labelled consistently for arbitrary propositions, i.e., ∼r

s ��.

Proof. Let t ∈ Ir
s be a strongly reach invisible structural transition and π =

m0
t1−→ m1

t2−→ . . . and π′ = m0
t−→ m′

0
t1−→ m′

1
t2−→ . . . two paths. Since, m′

i =
mi + dt for all i, it holds that either (i) dt = 0 and mi = m′

i for all i; or (ii) each
pair (mi,m

′
i) is contained in {(m,m′) | ∀p ∈ P : m′(p) = m(p) + W (t, p) −

W (p, t)}, which is the set that underlies strong reach invisibility of t. In both
cases, L(mi) = L(m′

i) for all i. It follows from Lemma 5 that ∼r
s ��. �

The Inconsistent Labelling Problem 497



To show that the results of the above theorems cannot be strengthened, we
provide two negative results.

Theorem 7. Under ordinary invisibility, the LSTS underlying a Petri net is
not necessarily labelled consistently for arbitrary propositions, i.e., ∼ ���.

Proof. Consider the Petri net from Example 2 with the arbitrary proposition
ql. Disregard qp for the moment. Structural transition t is ql-invisible, hence the
paths corresponding to t1t2tt3 and tt1t2t3 are weakly equivalent under ordinary
invisibility. However, they are not stutter equivalent. �
Theorem 8. Under reach value invisibility, the LSTS underlying a Petri net is
not necessarily labelled consistently for polynomial propositions, i.e., ∼r

v ���p.

Proof. Consider the Petri net from Example 2 with the polynomial proposition
qp := (1−p3)(1−p5) = 1 from Example 3. Disregard ql in this reasoning. Struc-
tural transition t is reach value qp-invisible, hence the paths corresponding to
t1t2tt3 and tt1t2t3 are weakly equivalent under reach value invisibility. However,
they are not stutter equivalent for polynomial propositions. �

It follows from Theorems 7 and 8 and transitivity of ⊆ that Theorems 4, 5
and 6 cannot be strengthened further. In terms of Figure 6, this means that the
dotted arrows cannot be moved downward in the lattice of weak equivalences and
cannot be moved upward in the lattice of stutter equivalences. The implications
of these findings on related work will be discussed in the next section.

7 Related Work

There are many works in literature that apply stubborn sets. We will consider
several works that aim to preserve LTL−X and discuss whether they are correct
when it comes to the problem presented in the current work.

Liebke and Wolf [10] present an approach for efficient CTL model check-
ing on Petri nets. For some formulas, they can reduce CTL model checking to
LTL model checking, which allows greater reductions under POR. They rely
on the incorrect LTL preservation theorem, and since they apply the tech-
niques on Petri nets with ordinary invisibility, their theory is incorrect (The-
orem 7). Similarly, the overview of stubborn set theory presented by Valmari
and Hansen in [21] applies reach invisibility and does not necessarily preserve
LTL−X . Varpaaniemi [22] also applies stubborn sets to Petri nets, but relies on
a visibility notion that is stronger than strong invisibility. The correctness of
these results is thus not affected (Theorem 6). The approach of Bønneland et
al. [4] operates on two-player Petri nets, but only aims to preserve reachability
and consequently does not suffer from the inconsistent labelling problem.

A generic implementation of weak stubborn sets is proposed by Laarman
et al. [9]. They use abstract concepts such as guards and transition groups to
implement POR in a way that is agnostic of the input language. The theory
they present includes condition D1, which is too weak, but the accompanying

498 T. Neele et al.



implementation follows the framework of Section 4.1, and thus it is correct by
Theorem 2 The implementations proposed in [21,23] are similar, albeit specific
for Petri nets.

Others [6,8] perform action-based model checking and thus strive to preserve
weak trace equivalence or inclusion. As such, they do not suffer from the problems
discussed here, which applies only to state labels.

Although Beneš et al. [2,3] rely on ample sets, and not on stubborn sets,
they also discuss weak trace equivalence and stutter-trace equivalence. In fact,
they present an equivalence relation for traces that is a combination of weak

{q}
τ

a

a

and stutter equivalence. The paper includes a theorem
that weak equivalence implies their new state/event
equivalence [2, Theorem 6.5]. However, the counter-
example on the right shows that this consistent la-
belling theorem does not hold. Here, the action τ is in-
visible, and the two paths in this transition system are
thus weakly equivalent. However, they are not stutter
equivalent, which is a special case of state/event equiv-
alence. Although the main POR correctness result [2,
Corollary 6.6] builds on the incorrect consistent labelling theorem, its correctness
does not appear to be affected. An alternative proof can be constructed based
on Lemmas 1 and 2.

The current work is not the first to point out mistakes in POR theory. In [14],
Siegel presents a flaw in an algorithm that combines POR and on-the-fly model
checking [12]. In that setting, POR is applied on the product of an LSTS and a
Büchi automaton. Let q be a state of the LSTS and s a state of the Büchi au-
tomaton. While investigating a transition (q, s) a−→ (q′, s′), conditionC3, which—
like condition L—aims to solve the action ignoring problem, incorrectly sets
r(q, s′) = enabled(q) instead of r(q, s) = enabled(q).

8 Conclusion

We discussed the inconsistent labelling problem for preservation of stutter-trace
equivalence with stubborn sets. The issue is relatively easy to repair by strength-
ening condition D1. For Petri nets, altering the definition of invisibility can also
resolve inconsistent labelling depending on the type of atomic propositions. The
impact on applications presented in related works seems to be limited: the prob-
lem is typically mitigated in the implementation, since it is very hard to compute
D1 exactly. This is also a possible explanation for why the inconsistent labelling
problem has not been noticed for so many years.

Since this is not the first error found in POR theory [14], a more rigorous
approach to proving its correctness, e.g. using proof assistants, would provide
more confidence.

References

1. Baier, C., Katoen, J.P.: Principles of model checking. MIT Press (2008)

The Inconsistent Labelling Problem 499



2. Beneš, N., Brim, L., Buhnova, B., Ern, I., Sochor, J., Vařeková, P.: Par-
tial order reduction for state/event LTL with application to component-
interaction automata. Science of Computer Programming 76(10), 877–890 (2011).
https://doi.org/10.1016/j.scico.2010.02.008

3. Beneš, N., Brim, L., Černá, I., Sochor, J., Vařeková, P., Zimmerova, B.: Partial
Order Reduction for State/Event LTL. In: IFM 2009. LNCS, vol. 5423, pp. 307–
321 (2009). https://doi.org/10.1007/978-3-642-00255-7 21

4. Bønneland, F.M., Jensen, P.G., Larsen, K.G., Muñiz, M.: Partial Order Reduc-
tion for Reachability Games. In: CONCUR 2019. vol. 140, pp. 23:1–23:15 (2019).
https://doi.org/10.4230/LIPIcs.CONCUR.2019.23

5. Gerth, R., Kuiper, R., Peled, D., Penczek, W.: A Partial Order Approach to
Branching Time Logic Model Checking. Information and Computation 150(2),
132–152 (1999). https://doi.org/10.1006/inco.1998.2778

6. Gibson-Robinson, T., Hansen, H., Roscoe, A.W., Wang, X.: Practical Partial Or-
der Reduction for CSP. In: NFM 2015. LNCS, vol. 9058, pp. 188–203 (2015).
https://doi.org/10.1007/978-3-319-17524-9 14

7. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems,
LNCS, vol. 1032. Springer (1996). https://doi.org/10.1007/3-540-60761-7

8. Hansen, H., Lin, S., Liu, Y., Nguyen, T.K., Sun, J.: Diamonds Are a Girl’s Best
Friend: Partial Order Reduction for Timed Automata with Abstractions. In: CAV
2014. LNCS, vol. 8559, pp. 391–406 (2014). https://doi.org/10.1007/978-3-319-
08867-9 26

9. Laarman, A., Pater, E., van de Pol, J., Hansen, H.: Guard-based partial-order
reduction. STTT 18(4), 427–448 (2016). https://doi.org/10.1007/s10009-014-0363-
9

10. Liebke, T., Wolf, K.: Taking Some Burden Off an Explicit CTL Model
Checker. In: Petri Nets 2019. LNCS, vol. 11522, pp. 321–341 (2019).
https://doi.org/10.1007/978-3-030-21571-2 18

11. Peled, D.: All from One, One for All: on Model Checking Using Representatives.
In: CAV 1993. LNCS, vol. 697, pp. 409–423 (1993). https://doi.org/10.1007/3-540-
56922-7 34

12. Peled, D.: Combining partial order reductions with on-the-fly model-checking.
FMSD 8(1), 39–64 (1996). https://doi.org/10.1007/BF00121262

13. Schmidt, K.: Stubborn sets for model checking the EF/AG fragment of CTL.
Fundamenta Informaticae 43(1-4), 331–341 (2000)

14. Siegel, S.F.: What’s Wrong with On-the-Fly Partial Order Reduction. In: CAV
2019. LNCS, vol. 11562, pp. 478–495 (2019). https://doi.org/10.1007/978-3-030-
25543-5 27

15. Valmari, A.: A Stubborn Attack on State Explosion. In: CAV 1990. LNCS, vol. 531,
pp. 156–165 (1991). https://doi.org/10.1007/BFb0023729

16. Valmari, A.: Stubborn sets for reduced state space generation. In: Advances in Petri
Nets. vol. 483, pp. 491–515 (1991). https://doi.org/10.1007/3-540-53863-1 36

17. Valmari, A.: A Stubborn Attack on State Explosion. Formal Methods in System
Design 1(4), 297–322 (1992). https://doi.org/10.1007/BF00709154

18. Valmari, A.: The state explosion problem. In: ACPN 1996. LNCS, vol. 1491, pp.
429–528 (1996). https://doi.org/10.1007/3-540-65306-6 21

19. Valmari, A.: Stubborn Set Methods for Process Algebras. In: POMIV 1996. DI-
MACS, vol. 29, pp. 213–231 (1997). https://doi.org/10.1090/dimacs/029/12

20. Valmari, A.: Stop It, and Be Stubborn! TECS 16(2), 46:1–46:26 (2017).
https://doi.org/10.1145/3012279

500 T. Neele et al.

https://doi.org/10.1016/j.scico.2010.02.008
https://doi.org/10.1007/978-3-642-00255-7_21
https://doi.org/10.4230/LIPIcs.CONCUR.2019.23
https://doi.org/10.1006/inco.1998.2778
https://doi.org/10.1007/978-3-319-17524-9_14
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/978-3-319-08867-9_26
https://doi.org/10.1007/978-3-319-08867-9_26
https://doi.org/10.1007/s10009-014-0363-9
https://doi.org/10.1007/s10009-014-0363-9
https://doi.org/10.1007/978-3-030-21571-2_18
https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.1007/BF00121262
https://doi.org/10.1007/978-3-030-25543-5_27
https://doi.org/10.1007/978-3-030-25543-5_27
https://doi.org/10.1007/BFb0023729
https://doi.org/10.1007/3-540-53863-1_36
https://doi.org/10.1007/BF00709154
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1090/dimacs/029/12
https://doi.org/10.1145/3012279


21. Valmari, A., Hansen, H.: Stubborn Set Intuition Explained. In: ToPNoC XII.
LNCS, vol. 10470, pp. 140–165 (2017). https://doi.org/10.1007/978-3-662-55862-
1 7

22. Varpaaniemi, K.: On Stubborn Sets in the Verification of Linear Time Temporal
Properties. FMSD 26(1), 45–67 (2005). https://doi.org/10.1007/s10703-005-4594-
y

23. Wolf, K.: Petri Net Model Checking with LoLA 2. In: Petri Nets 2018. LNCS, vol.
10877, pp. 351–362 (2018). https://doi.org/10.1007/978-3-319-91268-4 18

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/

4.0/), which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

The Inconsistent Labelling Problem 501

https://doi.org/10.1007/978-3-662-55862-1_7
https://doi.org/10.1007/978-3-662-55862-1_7
https://doi.org/10.1007/s10703-005-4594-y
https://doi.org/10.1007/s10703-005-4594-y
https://doi.org/10.1007/978-3-319-91268-4_18
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Semantical Analysis of Contextual Types

Brigitte Pientka1 and Ulrich Schöpp2(�)

1 McGill University, Montreal, Canada, bpientka@cs.mcgill.ca
2 fortiss GmbH, Munich, Germany, schoepp@fortiss.org

Abstract. We describe a category-theoretic semantics for a simply typed
variant of Cocon, a contextual modal type theory where the box modal-
ity mediates between the weak function space that is used to represent
higher-order abstract syntax (HOAS) trees and the strong function space
that describes (recursive) computations about them. What makes Co-
con different from standard type theories is the presence of first-class
contexts and contextual objects to describe syntax trees that are closed
with respect to a given context of assumptions. Following M. Hofmann’s
work, we use a presheaf model to characterise HOAS trees. Surprisingly,
this model already provides the necessary structure to also model Cocon.
In particular, we can capture the contextual objects of Cocon using a
comonad � that restricts presheaves to their closed elements. This gives
a simple semantic characterisation of the invariants of contextual types
(e.g. substitution invariance) and identifies Cocon as a type-theoretic syn-
tax of presheaf models. We express our category-theoretic constructions
by using a modal internal type theory that is implemented in Agda-Flat.

1 Introduction

A fundamental question when defining, implementing, and working with languages
and logics is: How do we represent and analyse syntactic structures? Higher-order
abstract syntax [19] (or lambda-tree syntax [17]) provides a deceptively simple
answer to this question. The basic idea to represent syntactic structures is to
map uniformly binding structures in our object language (OL) to the function
space in a meta-language thereby inheriting α-renaming and capture-avoiding
substitution. In the logical framework LF [10], for example, we can define a small
functional programming language consisting of functions, function application,
and let-expressions using a type tm as follows:

lam : (tm → tm) → tm. letv: tm → (tm → tm) → tm.

app : tm → tm → tm.

The object-language term (lam x. lam y. let w = x y in w y) is then encoded as
lam λx.lam λy.letv (app x y) λw.app w y using the LF abstractions to model
binding. Object-level substitution is modelled through LF application; for instance,
the fact that ((lam x.M)N) reduces to [N/x]M in our object language is expressed
as (app (lam M) N) reducing to (M N).

This approach is elegant and can offer substantial benefits: we can treat objects
equivalent modulo renaming and do not need to define object-level substitution.

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 502–521, 2020.
https://doi.org/10.1007/978-3-030-45231-5_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_26&domain=pdf


However, we not only want to just construct HOAS trees, but also to analyse
them and to select sub-trees. This is challenging, as sub-trees are context sensitive.
For example, the term letv (app x y) λw.app w y only makes sense in a context
x:tm,y:tm. Moreover, one cannot simply extend LF to allow syntax analysis. If
one simply added a recursion combinator to LF, then it could be used to define
many functions M: tm → tm for which lam M would not represent an object-level
syntax term [12].

Contextual types [18,20] offer a type-theoretic solution to these problems by
reifying the typing judgement, i.e. that letv (app x y) λw.app w y has type tm in
the context x:tm,y:tm, as a contextual type �x:tm, y:tm � tm�. The contextual type
�x:tm, y:tm � tm� describes a set of terms of type tm that may contain variables
x and y. In particular, the contextual object �x, y � letv (app x y) λw.app w y�
has the given contextual type. By abstracting over contexts and treating contexts
as first-class, we can now recursively analyse HOAS trees [20,25,21]. Recently,
[23] further generalised these ideas and presented a contextual modal type
theory, Cocon, where we can mix HOAS trees and computations, i.e. we can use
(recursive) computations to analyse and traverse (contextual) HOAS trees and we
can embed computations within HOAS trees. This line of work provides a syntactic
perspective to the question of how to represent and analyse syntactic structures
with binders, as it focuses on decidability of type checking and normalisation.
However, its semantics remains not well-understood. What is the semantic
meaning of a contextual type? Can we semantically justify the given induction
principles? What is the semantics of a first-class context?

While a number of closely related categorical models of abstract syntax with
bindings [12,8,9] were proposed around 2000, the relationship of these models
to concrete type-theoretic languages for computing with HOAS structures was
teneous. In this paper, we give a category-theoretic semantics for Cocon (for
simply-typed HOAS). This provides semantic perspective of contextual types
and first-class contexts. Maybe surprisingly, the presheaf model introduced by
Hofmann [12] already provides the necessary structure to also model contextual
modal type theory. Besides the standard structure of this model, we only need two
additional concepts: a �-modality and a cartesian closed universe of representables.
For simplicity and lack of space, we focus on the special case of Cocon where
the HOAS trees are simply-typed. Concentrating on the simply-typed setting
allows us to introduce the main idea without the additional complexity that type
dependencies bring with them. We outline the dependently-typed case in Sec. 6.

Our work provides a semantic foundation to Cocon and can serve as a starting
point to investigate connections to similar work. First, our work connects Cocon
to other work on internal languages for presheaf categories with a �-modality,
such as spatial type theory [27] or crisp type theory [16]. Second, it may help
to understand the relations of Cocon to type theories that use a modality for
metaprogramming and intensional recursion, such as [15]. While Cocon is built
on the same general ideas, a main difference seems to be that Cocon distinguishes
between HOAS trees and computations, even though it allows mixed use of them.
We hope to clarify the relation by providing a semantical perspective.

Semantical Analysis of Contextual Types 503



2 Presheaves for Higher-Order Abstract Syntax

Our work begins with the presheaf models for HOAS of [12,8]. The key idea of
those approaches is to integrate substitution-invariance in the computational
universe in a controlled way. For the representation of abstract syntax, one wants
to allow only substitution-invariant constructions. For example, lam M represents
an object-level abstraction if and only if M is a function that uses its argument in
a substitution-invariant way. For computation with abstract syntax, on the other
hand, one wants to allow non-substitution-invariant constructions too. Presheaf
categories allow one to choose the desired amount of substitution-invariance.

Let D be a small category. The presheaf category D̂ is defined to be the
category SetD

op

. Its objects are functors F : Dop → Set, which are also called
presheaves. Such a functor F is given by a set F (Ψ) for each object Ψ of D
together with a function F (σ) : F (Φ) → F (Ψ) for any object Φ and σ : Ψ → Φ in
D, subject to the functor laws. The intuition is that F defines sets of elements in
various D-contexts, together with a D-substitution action. A morphism f : F → G
is a natural transformation, which is a family of functions fΨ : F (Ψ) → G(Ψ) for
any Ψ . This family of functions must be natural, i.e. commute with substitution
fΨ ◦ F (σ) = F (σ) ◦ fΦ.

For the purposes of modelling higher-order abstract syntax, D will typically
be the term model of some domain-level lambda-calculus. By domain-level, we
mean the calculus that serves as the meta-level for object-language encodings. It
is the calculus that contains constants like lam and app from the Introduction. We
call it domain-level to avoid possible confusion between different meta-levels later.
For simplicity, let us for now use a simply-typed lambda-calculus with functions
and products as the domain language. It is sufficient to encode the example from
the Introduction and allows us to explain the main idea underlying our approach.

The term model of the simply-typed domain-level lambda-calculus forms a
cartesian closed category D. The objects of D are contexts x1:A1, . . . , xn:An

of simple types. We use Φ and Ψ to range over such contexts. A morphism
from x1:A1, . . . , xn:An to x1:B1, . . . , xm:Bm is a tuple (t1, . . . , tm) of terms
x1:A1, . . . , xn:An � ti : Bi for i = 1, . . . ,m. A morphism of type Ψ → Φ in D
thus amounts to a (domain-level) substitution that provides a (domain-level)
term in context Ψ for each of the variables in Φ. Terms are identified up to
αβη-equality. One may achieve this by using a de Bruijn encoding, for example,
but the specific encoding is not important for this paper. The terminal object is
the empty context, which we denote by 1, and the product Φ× Ψ is defined by
context concatenation. It is not hard to see that any object x1:A1, . . . , xn:An

is isomorphic to an object that is given by a context with a single variable,
namely x1: (A1 × · · · ×An). This is to say that contexts can be identified with
product types. In view of this isomorphism, we shall allow ourselves to consider
the objects of D also as types and vice versa. The category D is cartesian closed,
the exponential of Φ and Ψ being given by the function type Φ → Ψ (where the
objects are considered as types).

The presheaf category D̂ is a computational universe that both embeds the
term model D and that can represent computations about it. Note that we cannot

504 B. Pientka and U. Schöpp



just enrich D with terms for computations if we want to use HOAS. In a simply-
typed lambda-calculus with just the constant terms app: tm → tm → tm and
lam: (tm → tm) → tm, each term of type tm represents an object-level term. This
would not be the true anymore, if we were to allow computations in the domain
language, since one could define M to be something like (λx. if x represents

an object-level application then M1 else M2) for distinct M1 and M2. In this
case, lam M would not represent an object-level term anymore. If we want to
preserve a bijection between the object-level terms and their representations
in the domain-language, we cannot allow case-distinction over whether a term
represents an object-level an application.

The category D̂ unites syntax with computations by allowing one to enforce
various degrees of substitution-invariance. By choosing objects with different sub-
stitution actions, one can control the required amount of substitution-invariance.

In one extreme, a set S can be represented by the constant presheaf ΔS with
ΔS(Ψ) = S and ΔS(σ) = id for all Ψ and σ. The substitution action is trivial.
As a consequence, a morphism ΔS → ΔT amounts to a function from set S to
set T , since the trivial choice of the substitution action makes the naturality
condition vacuous.

The Yoneda embedding represents the other extreme. For any object Φ of D,
the presheaf y(Φ) : Dop → Set is defined by y(Φ)(Ψ) = D(Ψ, Φ), which is the set of
morphisms from Ψ to Φ in D. The functor action is pre-composition. The presheaf
y(Φ) should be understood as the type of all domain-level substitutions with
codomain Φ. An important example is Tm := y(tm). In this case, Tm(Ψ) is the set
of all morphisms of type Ψ → tm in D. By the definition of D, these correspond
to domain-level terms of type tm in context Ψ . In this way, the presheaf Tm
represents the domain-level terms of type tm.

The Yoneda embedding does in fact embed D into D̂ fully and faithfully. The
Yoneda embedding becomes a functor y : D → D̂ if one defines the morphism
action to be post-composition. This means that y maps a morphism σ : Ψ → Φ
in D to the natural transformation y(σ) : y(Ψ) → y(Φ) that is defined by post-

composing with σ. This definition makes y into a functor y : D → D̂ that is
moreover full and faithful: its action on morphisms is a bijection from D(Ψ, Φ)
to D̂(y(Ψ), y(Φ)) for any Ψ and Φ. This is because a natural transformation
f : y(Ψ) → y(Φ) is, by naturality, uniquely determined by fΨ (id), where id ∈
D(Ψ, Ψ) = y(Ψ)(Ψ), and fΨ (id) is an element of y(Φ)(Ψ) = D(Ψ, Φ).

Since D embeds into D̂ fully and faithfully, the term model of the domain
language is available in D̂. Consider for example Tm = y(tm). Since y is full and

faithful, the morphisms from Tm to Tm in D̂ are in one-to-one correspondence with
the morphisms from tm to tm in D. These, in turn, are defined to be substitutions
and correspond to simply-typed (domain-level) lambda terms with one free
variable. This shows that substitution invariance cuts down the morphisms from
Tm to Tm in D̂ just as much as one would like for HOAS encodings.

But D̂ contains not just a term model of the domain language. It can also
represent computations about the domain-level syntax and computations that
are not substitution-invariant. For example, arbitrary functions on terms can

Semantical Analysis of Contextual Types 505



be represented as morphisms from the constant presheaf Δ(Tm(1)) to Tm. Recall
that 1 is the empty context, so that Tm(1) is the set D(1, tm), by definition, which
is isomorphic to the set of closed domain-level terms of type tm. The morphisms
from Δ(Tm(1)) to Tm in D̂ correspond to arbitrary functions from closed terms to
closed terms, without any restriction of substitution invariance.

The restriction to the constant presheaf of closed terms can be generalised to
arbitrary presheaves. Define a functor � : D̂ → D̂ by letting �F be the constant
presheaf Δ(F (1)), i.e. �F (Ψ) = F (1) and �F (σ) = id. Thus, � restricts any
presheaf to the set of its closed elements. The functor � defines a comonad
where the counit εF : �F → F is the obvious inclusion and the comultiplication
νF : �F → ��F is the identity. The latter means that the comonad � is idempotent.

3 Internal Language

To explain how D̂ models higher-order abstract syntax and contextual types, we
need to expose more of its structure. Most of this structure is standard. Defining
it directly in terms of functors and natural transformations is somewhat laborious
and the technical details may obscure the basic idea of our approach.

We therefore use the internal type theory of D̂ as a meta-language for working
with its structure. The structure of D̂ furnishes a model of a dependent type theory
that supports dependent products, dependent sums and extensional identity types,
among others, in a standard way [11]. We use Agda notation for the types and
terms of this internal type theory. We write (x:S) → T for a dependent function
type and write �x:S.m and m n for the associated lambda-abstractions and
applications. As usual, we will sometimes also write S → T for (x:S) → T if x
does not appear in T . However, to make it easier to distinguish the function
spaces at various levels, we will write (x:S) → T by default even when x does
not appear in T . We use let x = m in n as an abbreviation for (�x:T.n) m,
as usual. For two terms m:T and n:T , we write m =T n or just m = n for the
associated identity type. Our notation is similar to Agda’s, since the internal type
theory can be seen as a fragment of Agda’s type theory. Agda has been useful as
a tool for type-checking our constructions in the internal type theory [1].

In the spirit of Martin-Löf type theory, we will define basic types and terms
successively as they are needed. In the Agda development this corresponds to
postulating constants that are justified by the interpretation in D̂. In the following
sections, we will expose the structure of D̂ step by step until we have enough to
interpret contextual types.

While much of the structure of D̂ can be captured by adding rules and con-
stants to standard Martin-Löf type theory, for the comonad � such a formulation
would not be very satisfactory. The issues are discussed by Shulman [27, p.7], for
example. To obtain a more satisfactory syntax for the comonad, we refine the
internal type theory into a modal type theory in which � appears as a necessity
modality. This approach goes back to [3,4,6] and is also used by recent work of
Shulman [27], Licata et al. [16] and others on working with the �-modality in
type theory. Agda has recently gained support for such a �-modality [29].

506 B. Pientka and U. Schöpp



We summarise here the typing rules for the �-modality which we will rely on.
To control the modality, one uses two kinds of variables. In addition to standard
variables x:T , one has a second kind of so-called crisp variables x::T . Typing
judgements have the form Δ | Θ � m:T , where Δ collects the crisp variables
and Θ collects the ordinary variables. In essence, a crisp variable x::T represents
an assumption of the form x: �T . The syntactic distinction is useful, since it leads
to a type theory that is well-behaved with respect to substitution, see [6,27].

The typing rules are closely related to those in modal type systems [6,18],
where Δ is the typing context for modal (global) assumptions and Θ for (local)
assumptions, and type systems for linear logic [4], where Δ is the typing context
for non-linear assumptions and Θ for linear assumptions.

Δ,u::T,Δ′ | Θ � u:T Δ | Θ, x:T,Θ′ � x:T

Δ | · � m : T

Δ | Θ � box m : �T

Δ | Θ � m : �T Δ, x::T | Θ � n : S

Δ | Θ � let box x = m in n : S

Given any term m : T which only depends on modal variable context Δ, we can
form the term box m : �T . We have a let-term let box x = m in n that takes
a term m : �T and binds it to a variable x::T . The rules maintain the invariant
that the free variables in a type �T or a term box m are all crisp variables from
the crisp context Δ.

The other typing rules do not modify the crisp context. For examples, the
rules for dependent products are:

Δ | Θ, x:T � m:S

Δ | Θ � �x:T.m : (x:T ) → S

Δ | Θ � m: (y:T ) → S Δ | Θ � n:T

Δ | Θ � m n: [n/y]S

When Δ is empty, we shall write just Θ � m:T for Δ | Θ � m:T .

4 From Presheaves to Contextual Types

Armed with the internal type theory, we can now explore the structure of D̂.

4.1 A Universe of Representables

For our purposes, the main feature of D̂ is that it embeds D fully and faithfully via
the Yoneda embedding. In the type theory for D̂, we may capture this embedding
by means of a Tarski-style universe. Such a universe is defined by a type of codes
for types together with a decoding function that maps codes to actual types.

The type of codes Obj represents the set of objects of D in the internal type

theory of D̂. We have seen above that any set can be represented as a presheaf
with trivial substitution action, and Obj is one such example. Particular objects
of D then appear as terms of type Obj. The cartesian closed structure of D gives
us terms unit, times, arrow for the terminal object 1, finite products × and the
exponential (function type). We also have a term for the domain-level type tm.

� Obj type � tm : Obj � times : (a: Obj) → (b: Obj) → Obj

� unit : Obj � arrow : (a: Obj) → (b: Obj) → Obj

Semantical Analysis of Contextual Types 507



Subsequently, we sometimes talk about objects of D when we intend to describe
terms of type Obj (and vice versa).

The morphisms of D could similarly be encoded as a constant presheaf with
many term constants, but this is in fact not necessary. Instead, we can use the
Yoneda embedding as a function that decodes elements of Obj into actual types.

x: Obj � Elx type

The function El is almost direct syntax for the Yoneda embedding. The interpre-
tation in D̂ is such that, for any object A of D, the type ElA is interpreted by
the presheaf y(A). Such a presheaf is called representable. One can think of ElA
as the type of all morphisms of type Ψ → A in D for arbitrary Ψ . Recall from
above that a morphism of type Ψ → A in D amounts to a domain-level term of
type A that may refer to variables in Ψ . In this sense, one should think of ElA
as a type of domain-level terms of type A, both closed and open ones.

We get all morphisms of D, and no more, in this way, since the Yoneda
embedding is full and faithful, recall Sec. 2. In our case, this means that the type
(x: ElA) → ElB represents the morphisms of type A → B in D. Any closed term
of type (x : ElA) → ElB corresponds to such a morphism and vice versa. This

is because the naturality requirements in D̂ enforce substitution-invariance, as
outlined in Sec. 2. The type (x : ElA) → ElB thus does not represent arbitrary
functions from terms of type A to terms of type B, but only substitution-invariant
ones. If a function of this type maps a domain-level variable x:A (encoded as an
element of ElA) to some term M :B (encoded as an element of ElB), then it
must map any other N :A to [N/x]M .

We note that the type dependency in El is easy to work with. A term of
type (a: Obj) → (b: Obj) → (x: El a) → El b corresponds to a family of terms
(x: ElA) → ElB indexed by objects A and B in D. This is because Obj is just a

set, so that the naturality constraints of D̂ are vacuous for functions out of Obj.

To summarise, we get access to D in the internal type theory of D̂ simply by
considering the Yoneda embedding as the decoding function El of a universe á la
Tarski. Since is consists of the representable presheaves, we call it the universe of
representables. The following lemmas state that the embedding preserves terminal
object, binary products and the exponential.

Lemma 1. The internal type theory of D̂ has a term � terminal : El unit, such
that x = terminal holds for any x : El unit.

Lemma 2. The internal type theory of D̂ justifies the terms below, such that
fst (pair x y) = x, snd (pair x y) = y, z = pair (fst z) (snd z) for all x, y, z.

c: Obj, d: Obj � fst : (z : El (times c d)) → El c
c: Obj, d: Obj � snd : (z : El (times c d)) → El d
c: Obj, d: Obj � pair : (x : El c) → (y : El d) → El (times c d)

Lemma 3. The internal type theory of D̂ justifies the terms below such that
arrow-i (arrow-e f) = f and arrow-e (arrow-i g) = g for all f, g.

c: Obj, d: Obj � arrow-e : (x: El (arrow c d)) → (y: El c) → El d
c: Obj, d: Obj � arrow-i : (y: (El c → El d)) → El (arrow c d)

508 B. Pientka and U. Schöpp



4.2 Higher-Order Abstract Syntax

The last lemma in the previous section states that ElA → ElB is isomorphic
to El (arrow A B). This is particularly useful to lift HOAS-encodings from D
to D̂. For instance, the domain-level term constant lam: (tm → tm) → tm gives
rise to an element of El (arrow (arrow tm tm) tm). But this type is isomorphic
to (El tm → El tm) → El tm, by the lemma.

This means that the higher-order abstract syntax constants lift to D̂:

app : (m: El tm) → (n: El tm) → El tm lam : (m: (El tm → El tm)) → El tm

Once one recognises ElA as y(A), the adequacy of this higher-order abstract

syntax encoding lifts from D to D̂ as in [12]. For example, an argument M to
lam has type El tm → El tm, which is isomorphic to El (arrow tm tm). But this
type represents (open) domain-level terms t : tm → tm. The term lam M : El tm
then represents the domain-level term lam t : tm, so it just lifts the domain-level.

4.3 Closed Objects

One should think of �T as the type of ‘closed’ elements of T . In particular,
�(ElA) represents morphisms of type 1 → A in D, recall the definition of � from
Sec. 2 and that ElA corresponds to yA. In the term model D, the morphisms
1 → A correspond to closed domain-language terms of type A. Thus, while ElA
represents both open and closed domain-level terms, �(ElA) represents only the
closed ones.

This applies also to the type ElA → ElB. We have seen above that ElA →
ElB is isomorphic to El (arrow A B) and may therefore be thought of as
containing the terms of type B with a distinguished variable of type A. But, these
terms may contain other free domain language variables. The type �(ElA → ElB),
on the other hand, contains only terms of type B that may contain (at most)
one variable of type A.

Restricting to closed object with the modality is useful because it disables
substitution-invariance. For example, the internal type theory for D̂ justifies
a function is-lam : (x:�(El tm)) → bool that returns true if and only if the
argument represents a domain language lambda abstraction. We shall define it
in the next section. Such a function cannot be defined with type El tm → bool,
since it would not be invariant under substitution. Its argument ranges over
terms that may be open; which particularly includes domain-level variables. The
function would have to return false for them, since a domain-level variable is
not a lambda-abstraction. But after substituting a lambda-abstraction for the
variable, it would have to return true, so it could not be substitution-invariant.

We note that the type Obj consists only of closed elements and that Obj

and �Obj happen to be definitionally equal types (an isomorphism would suffice,
but equality is more convenient).

Semantical Analysis of Contextual Types 509



4.4 Contextual Objects

Using function types and the modality, it is now possible to work with contextual
objects that represent domain level terms in a certain context, much like in [20,21].
A contextual type �Ψ � A� is a boxed function type of the form �(ElΨ → ElA). It
represents domain-level terms of type A with variables from Ψ . Here, we consider
the domain-level context Ψ as a term that encodes it. The interpretation will
make this precise.

For example, domain-level terms with up to two free variables now appear
as terms of type �(El ((times (times unit tm) tm) → El tm), as the following
example illustrates.

box (�u: El ((times (times unit tm) tm). let x1 = snd (fst u) in
let x2 = snd u in

app (lam (�x: El tm. app x1 x)) x2 )

The context variables x1 and x2 are bound at the meta level.
This representation integrates substitution as usual. For example, given crisp

variables m::El (times c tm) → tm and n::El c → tm for contextual terms, the
term box (�u: El c.m (pair u (n u))) represents substitution of n for the last
variable in the context of m.

For working with contextual objects, it is convenient to lift the constants app
and lam to contextual types.

c: Obj � app′ : �(El c → El tm) → �(El c → El tm) → �(El c → tm)
c:Obj � lam′ : �(El (times c tm) → El tm) → �(El c → El tm)

These terms are defined by:

app′ := �m,n. let box m′ = m in let box n′ = n in

box (�u: El c. app (m′ u) (n′ u))
lam′ := �m. let box m′ = m in box (�u: El c. lam (�x: El tm. m′ (pair u x)))

A contextual type for domain-level variables (as opposed to arbitrary terms)
can be defined by restricting the function space in �(ElΨ → ElA) to consist
only of projections. Projections are functions of the form snd ◦ fstk, where
we write fstk for the k-fold iteration fst ◦ · · · ◦ fst. Let us write S →v T
for the subtype of S → T consisting only of projections. The contextual type
�(ElΨ →v ElA) is then a subtype of �(ElΨ → ElA).

With these definitions, we can express a primitive recursion scheme for
contextual types. We write it in its general form where the result type A can
possibly depend on x. This is only relevant for the dependently typed case; in
the simply typed case, the only dependency is on c.

Lemma 4. Let c: Obj, x: �(El c → El tm) � A c x type and define:

Xvar := (c: Obj) → (x: �(El c →v El tm)) → A c x
Xapp := (c: Obj) → (x, y: �(El c → El tm)) → A c x → A c y → A c (app′ x y)
Xlam := (c: Obj) → (x: �(El (times c tm) → El tm)) → A (times c tm) x → A c (lam′ x)

510 B. Pientka and U. Schöpp



Then, D̂ justifies a term

� rec : Xvar → Xapp → Xlam → (c: Obj) → (x: �(El c → El tm)) → A c x

such that the following equations are valid.

rec tvar tapp tlam c x = tvar c x if x: �(El c →v El tm)
rec tvar tapp tlam c (app′ s t) = tapp c s t
rec tvar tapp tlam c (lam′ s) = tlam c s

Proof (outline). To outline the proof idea, note first that a function of type

(c: Obj) → (x: �(El c → El tm)) → A c x in D̂, corresponds to an inhabitant of
A Φ t for each concrete object Φ of D and each inhabitant t : �(ElΦ → El tm). This
is because naturality constraints for boxed types are vacuous (and Obj = �Obj).
Next, note that inhabitants of �(ElΦ → El tm) correspond to domain-level terms
of type tm in context Φ up to αβη-equality. We can perform a case-distinction on
whether it is a variable, abstraction or application and depending on the result
use tvar, tapp or tlam to define the required inhabitant of A Φ t.

As a simple example for rec, we can define the function is-lam discussed
above by rec (�c, x. false) (�c, x, y, rx, ry. false) (�c, x, rx. true).

5 Simple Contextual Modal Type Theory

We have outlined informally how the internal dependent type theory of D̂ can
model contextual types. In this section, we make this precise by giving the
interpretation of Cocon [23], a contextual modal type theory where we can work

with contextual HOAS trees and computations about them, into D̂. We will
focus here on a simply-typed version of Cocon where we use a simply-typed
domain-language with constants app and lam and also only allow computations
about HOAS trees, but do not consider, for example, universes. Concentrating
on a stripped down, simply-typed version of Cocon allows us to focus on the
essential aspects, namely how to interpret domain-level contexts and domain-level
contextual objects and types semantically. The generalisation to a dependently
typed domain-level such as LF in Sec. 6 will be conceptually straightforward,
although more technical. Handling universes is an orthogonal issue (see also [16]).

We first define our simply-typed domain-level with the type tm the term
constants lam and app (see Fig. 1). Following Cocon, we allow computations to
be embedded into domain-level terms via unboxing. The intuition is that if a
program t promises to compute a value of type �x:tm, y:tm � tm�, then we can
embed t directly into a domain-level object writing lam λx.lam λy.app �t	 x,
unboxing t. Domain-level objects (resp. types) can be packaged together with
their domain-level context to form a contextual object (resp. type). Domain-level
contexts are formed as usual, but may contain context variables to describe a
yet unknown prefix. Last, we include domain-level substitutions that allow us to
move between domain-level contexts. The compound substitution σ,M extends
the substitution σ with domain Ψ̂ to a substitution with domain Ψ̂ , x, where
M replaces x. Following [18,23], we do not store the domain (like Ψ̂) in the

Semantical Analysis of Contextual Types 511



Domain-level types A,B ::= tm | A → B
Domain-level terms M,N ::= λx.M | M N | x | lam | app | �t�σ
Domain-level contexts Ψ,Φ ::= · | ψ | Ψ, x:A
Domain-level context (erased) ̂Ψ, ̂Φ ::= · | ψ | ̂Ψ, x
Domain-level substitutions σ ::= · | wk

̂Ψ | σ,M
Contextual types T ::= Ψ � A | Ψ �v A

Contextual objects C ::= ̂Ψ � M

Domain of discourse τ̆ ::= τ | ctx
Types and Terms τ, I ::= �T � | (y : τ̆1) ⇒ τ2

t, s ::= y | �C� | recI B Ψ t | fn y ⇒ t | t1 t2
Branches B ::= Γ 	→ t
Contexts Γ ::= · | Γ, y : τ̆

Fig. 1. Syntax of Cocon with a fixed simply-typed domain tm

substitution, it can always be recovered before applying the substitution. We
also include weakening substitution, written as wk

̂Ψ , to describe the weakening of

the domain Ψ to Ψ,
−−→
x:A. Weakening substitutions are necessary, as they allow

us to express the weakening of a context variable ψ. Identity is a special form
of the wk

̂Ψ substitution, which follows immediately from the typing rule of wk
̂Ψ .

Composition is admissible.

We summarise the typing rules for domain-level terms and types in Fig. 2.
We also include typing rules for domain-level contexts. Note that since we restrict
ourselves to a simply-typed domain-level, we simply check that A is a well-formed
type. We defer the reduction and expansion rules to the appendix and only
remark here that equality for domain-level terms and substitution is modulo βη.
In particular, ��Φ̂ � N�	σ reduces to [σ]N .

In our grammar, we distinguish between the contextual type Ψ � A and
the more restricted contextual type Φ �v A which characterises only variables
of type A from the domain-level context Φ. We give here two sample typing
rules for Φ �v A which are the ones used most in practice to illustrate the
main idea. We embed contextual objects into computations via the modality.
Computation-level types include boxed contextual types, �Φ � A�, and function
types, written as (y : τ̆1) ⇒ τ2. We overload the function space and allow as
domain of discourse both computation-level types and the schema ctx of domain-
level context, although only in the latter case y can occur in τ2. We use fn y ⇒ t
to introduce functions of both kinds. We also overload function application t s
to eliminate function types (y : τ1) ⇒ τ2 and (y : ctx) ⇒ τ2, although in the
latter case s stands for a domain-level context. We separate domain-level contexts
from contextual objects, as we do not allow functions that return a domain-level
context.

The recursor is written as recI B Ψ t. Here, t describes a term of type �Ψ � tm�
that we recurse over and B describes the different branches that we can take

512 B. Pientka and U. Schöpp



Γ ;Ψ � M : A Term M has type A in domain-level context Ψ and context Γ

Γ � Ψ : ctx x:A ∈ Ψ
Γ ;Ψ � x : A

Γ � Ψ : ctx
Γ ;Ψ � lam : (tm → tm) → tm

Γ � Ψ : ctx
Γ ;Ψ � app : tm → tm → tm

Γ ;Ψ � M : A → B Γ ;Ψ � N : A

Γ ;Ψ � M N : B

Γ ;Ψ, x:A � M : B

Γ ;Ψ � λx.M : A → B

Γ � t : �Φ � A� Γ ;Ψ � σ : Φ

Γ ;Ψ � �t�σ : A

Γ ;Φ � σ : Ψ Substitution σ provides a mapping from the (domain) context Ψ to Φ

Γ � Ψ,
−−→
x:A : ctx

Γ ;Ψ,
−−→
x:A � wk

̂Ψ : Ψ
Γ � Φ : ctx
Γ ;Φ � · : ·

Γ ;Φ � σ : Ψ Γ ;Φ � M : A

Γ ;Φ � σ,M : Ψ, x:A

Γ � Ψ : ctx Domain-level context Ψ is a well-formed

Γ � · : ctx
Γ (y) = ctx

Γ � y : ctx
Γ � Ψ : ctx

Γ � Ψ, x:A : ctx

Fig. 2. Typing Rules for Domain-level Terms, Substitutions, Contexts

depending on the value computed by t. As is common when we have dependencies,
we annotate the recursor with the typing invariant I. Here, we consider only
the recursor over domain-level terms of type tm. Hence, we annotate it with
I = (ψ : ctx) ⇒ (y : �ψ � tm�) ⇒ τ . To check that the recursor recI B Ψ t has
type [Ψ/ψ]τ , we check that each of the three branches has the specified type I.
In the base case, we may assume in addition to ψ : ctx that we have a variable
p : �ψ �v tm� and check that the body has the appropriate type. If we encounter
a contextual object built with the domain-level constant app, then we choose
the branch bapp. We assume ψ: ctx, m: �ψ � tm�, n: �ψ � tm�, as well as fn and
fm which stand for the recursive calls on m and n respectively. We then check
that the body tapp is well-typed. If we encounter a domain object built with the
domain-level constant lam, then we choose the branch blam. We assume ψ: ctx
and m: �ψ, x:tm � tm� together with the recursive call fm on m in the extended
LF context ψ, x:tm. We then check that the body tlam is well-typed. The typing
rules for computations are given in Fig. 3. We omit the reduction rules here and
refer the interested reader to the appendix.

5.1 Interpretation

We now give an interpretation of simply-typed Cocon in a presheaf model with
a cartesian closed universe of representables. Let us first extend the internal
dependent type theory with the constant tm for modelling the domain-level
type constant tm and with the constants app : El tm → El tm → El tm and

Semantical Analysis of Contextual Types 513



Γ � C : T Contextual object C has contextual type T

Γ ;Ψ � M : A

Γ � (̂Ψ � M) : (Ψ � A)

Γ � Ψ : ctx x:A ∈ Ψ

Γ � (̂Ψ � x) : (Ψ �v A)

x:�Φ �v A� ∈ Γ Γ ;Ψ � wk
̂Ψ : Φ

Γ � (̂Ψ � �x�wk
̂Ψ
) : (Ψ �v A)

Γ � t : τ Term t has computation type τ
y : τ̆ ∈ Γ

Γ � y : τ̆
Γ � C : T

Γ � �C� : �T �
Γ � t : (y : τ̆1) ⇒ τ2 Γ � s : τ̆1

Γ � t s : [s/y]τ2

Γ, y : τ̆1 � t : τ2 Γ � (y : τ̆1) ⇒ τ2 : type

Γ � fn y ⇒ t : (y : τ̆1) ⇒ τ2

Recursor over domain-level terms I = (ψ : ctx) ⇒ (y : �ψ � tm�) ⇒ τ

Γ � t : �Ψ � tm� Γ � I : u Γ � bv : I Γ � bapp : I Γ � blam : I
Γ � recI(bv | bapp | blam) Ψ t : [Ψ/ψ]τ

Branch for Variable
Γ, ψ : ctx, p : �ψ �v tm� � tv : τ

Γ � (ψ, p 	→ tv) : I

Branch for Application app
Γ, ψ : ctx,m:�ψ � tm�, n:�ψ � tm�, fm:τ, fn:τ � tapp : τ

Γ � (ψ,m, n, fn, fm 	→ tapp) : I

Branch for Function lam
Γ, φ : ctx,m:�φ, x:tm � tm�, fm:[(φ, x:tm)/ψ]τ � tlam : [φ/ψ]τ

Γ � ψ,m, fm 	→ tlam : I

Fig. 3. Typing Rules for Contextual Objects and Computations

lam : (El tm → El tm) → El tm to model the corresponding domain-level constants
app and lam.

We can now translate domain-level and computation-level types of Cocon into
the internal dependent type theory for D̂. We do so by interpreting the domain-
level terms, types, substitutions, and contexts (see Fig. 4). All translations are on
well-typed terms and types. Domain-level types are interpreted as the terms of
type Obj in the internal dependent type theory that represent them. Domain-level
contexts are also interpreted as terms of type Obj by �Γ � Ψ : ctx�. For example,
a domain-level context x:tm, y:tm is interpreted as times (times unit tm) tm :
Obj. A domain-level substitution with domain Ψ and codomain Φ becomes
a term of type El e′ that is parameterised by an element u: El e, where e =
�Γ � Φ : ctx� and e′ = �Γ � Ψ : ctx�. As e′ is some product, for example
times (times unit tm) tm, the domain-level substitution is translated into an
n-ary tuple. A weakening substitution Γ ;Ψ, x:tm � wkΨ : Ψ is interpreted as
fst u where u: El (times e tm) and e = �Γ � Ψ : ctx�. More generally, when we

weaken a context Ψ by n declarations, i.e.
−−→
x:A, we interpret wkΨ as fstn u.

A well-typed domain-level term, Γ ;Ψ � M : A, is mapped to an object of
type El �A� that depends on u:El �Γ � Ψ : ctx�.

Hence the translation of a well-typed domain-level term is indexed by u that
stands for the term-level interpretation of a domain-level context Φ. Initially, u

514 B. Pientka and U. Schöpp



Interpretation of domain-level types

�tm� = tm

�A → B� = arrow �A� �B�

Interpretation of domain-level contexts

�Γ � ψ : ctx� = ψ

�Γ � · : ctx� = unit

�Γ � (Ψ, x:A) : ctx� = times e �A� where �Γ � Ψ : ctx� = e

Interpretation of domain-level terms where u: El e and �Γ � Ψ : ctx� = e

�Γ ;Ψ � x : A�u = snd (fstk u) where Ψ = Ψ0, x:A, yk:Ak, . . . , y1:A1

�Γ ;Ψ � λx.M : A → B�u = arrow-i (�x:El �A�. e)
where �Γ ;Ψ, x:A � M : B�(pair u x) = e

�Γ ;Ψ � M N : B�u = arrow-e e1 e2 where �Γ ;Ψ � M : A → B�u = e1
and �Γ ;Ψ � N : A�u = e2

�Γ ;Ψ � �t�σ : A�u = let box x = e1 in x e2 where �Γ � t : �Φ � A�� = e1
and �Γ ;Ψ � σ : Φ�u = e2

�Γ ;Ψ � app : tm → tm → tm�u = arrow-i(�x:El tm. arrow-i (�y:El tm. app x y))

�Γ ;Ψ � lam : (tm → tm) → tm�u = arrow-i(�f :El (arrow tm tm).
lam (�x:El tm. arrow-e f x))

Interpretation of domain-level substitutions where u: El e and �Γ � Φ : ctx� = e

�Γ ;Ψ � · : ·�u = terminal

�Γ ;Ψ � (σ,M) : Φ, x:A�u = pair e1 e2 where �Γ ;Ψ � σ : Φ�u = e1
and �Γ ;Ψ � M : A�u = e2

�Γ ;Ψ,
−−→
x:A � wk

̂Φ : Φ�u = fstn u where n = |−−→x:A|

Fig. 4. Interpretation of Domain-level Types and Terms

is simply a variable. However, when we translate Γ ;Φ � λx.M : A → B given
u: El e where �Γ � Ψ : ctx� = e, we need to recursively translate M in the
extended domain-level context Ψ, x:A and hence we also need to build a term
pair u x that inhabits El (times e �A�). The translation of Γ ;Φ, x:A � M : A
will return a term e that may contain x. However, note that x will eventually
be bound in arrow-i (�x:El �A�. e) When we translate a variable x where Φ =
Φ0, x:A, yk:Ak, . . . , y1:A1, we return fstk (snd u). We translate Γ ;Φ � �t	σ : A
directly using let box-construct where the domain-level substitution σ is simply
translated into a pair. As the computation t has the contextual type �Ψ � tm�
its translation will be of type �(El e → El tm) where e = �Γ � Ψ : ctx�. Hence
we simply can extract a function x:(El e → El tm) using let box construct and
pass to it the interpretation of σ. The translation of domain-level applications
and domain-level constants app and lam is straightforward.

The interpretation of a contextual types �Ψ � A� makes explicit the fact that
they correspond to functions El e → El �A� where e = �Γ � Ψ : ctx� (see Fig. 5).

Consequently, the corresponding contextual object (Φ̂ � M) is interpreted as a

Semantical Analysis of Contextual Types 515



Interpretation of contextual objects (C)

�Γ � (̂Φ � M) : (Φ � A)� = �u: El e. e′ where �Γ � Φ : ctx� = e
and �Γ ;Φ � M : A�u = e′

�Γ � (̂Φ � M) : (Φ �v A)� = �u: El e. e′ where �Γ � Φ : ctx� = e
and �Γ ;Φ � M : A�u = e′

Interpretation of contextual types (T )

�Γ � (Φ � A)� = (u:El e) → El �A� where �Γ � Φ : ctx� = e

�Γ � (Φ �v A)� = (u:El e) →v El �A� where �Γ � Φ : ctx� = e

Fig. 5. Interpretation of Contextual Objects and Types

Interpretation of computation-level types (τ̆)

��T �� = ��T �
�(x:τ̆1) ⇒ τ2� = (x:�τ̆1�) → �τ2�
�ctx� = Obj

Computation-level typing contexts (Γ )

�·� = ·
�Γ, x: τ̆� = �Γ �, x: �τ̆�

Interpretation of computations (Γ � t : τ ; without recursor)

�Γ � �C� : �T �� = box e where �Γ � C : T � = e

�Γ � t1 t2 : τ� = e1 e2 where �Γ � t1 : (x:τ̆2) ⇒ τ� = e1
and �Γ � t2 : τ̆2� = e2

�Γ � fn x ⇒ t : (x:τ̆1) ⇒ τ2� = �x: �τ̆1�. e where �Γ, x:τ̆1 � t : τ2� = e

�Γ � x : τ� = x

Fig. 6. Interpretation of Computation-level Types and Terms – without recursor

function. Similarly, �Ψ �v A� is mapped to the restricted function space denoted
by →v, which describes functions with bodies that only contain projections.

Last, we give the interpretation of computation-level types, contexts and
terms (see Fig. 6). It is mostly straightforward, as we simply map �T � to ��T �
and �C� is simply interpreted as boxed term.

The interpretation of the recursor is also straightforward now (see Fig. 7). In
Lemma 4, we expressed a primitive recursion scheme in our internal type theory
and defined a term rec together with its type. We now interpret every branch of
our recursor in the computation-level as a function of the required type in our
internal type theory. While this is somewhat tedious, it is straightforward.

We can now show that all well-typed domain-level and computation-level
objects are translated into well-typed constructions in our internal type theory.
As a consequence, we can show that equality in Cocon is equivalent to the
corresponding equivalence in our internal type theoretic interpretation.

516 B. Pientka and U. Schöpp



Interpretation of recursor for I = (ψ : ctx) ⇒ (y : �ψ � tm�) ⇒ τ :

�Γ � recI(bv | bapp | blam) Ψ t : [Ψ/ψ, t/y]τ� = rec ev eapp elam ec e
where �Γ � bv : I� = ev, �Γ � bapp : I� = eapp, �Γ � blam : I� = elam,

�Γ � Ψ : ctx� = ec and �Γ � t : �Ψ � tm�� = e

Interpretation of Variable Branch

�Γ � (ψ, x 	→ tv) : I� = �ψ: Obj. � x: �(Elψ →v El tm). e
where �Γ, ψ : ctx, x : �ψ �v tm� � tv : [x/y]τ� = e

Interpretation of Application Branch

�Γ � (ψ,m, n, fn, fm 	→ tapp) : I� = �ψ: Obj. �m,n: �(Elψ → El tm).
�fm: �[m/y]τ�. � fn: �[n/y]τ�. e

where �Γ, ψ:ctx,m:�ψ � tm�, n:�ψ � tm� � tapp : [�ψ � app �m� �n��/y]τ� = e

Interpretation of Lambda-Abstraction Branch

�Γ � (ψ,m, fm 	→ tlam) : I� = �ψ: Obj.�m: �(El (times ψ tm) → El tm).
�fm:τm.e

where �[(ψ, x:tm)/ψ, m/y]τ� = τm,
�Γ, ψ:ctx,m:�ψ, x:tm � tm� � tapp : [�ψ � lam λx.�m��/y]τ� = e

Fig. 7. Interpretation of Recursor

Lemma 5. The interpretation maintains the following typing invariants:

– If Γ � Ψ : ctx then �Γ � Ψ : ctx� : Obj.
– If Γ ; Ψ � M : A then �Γ �, u: El �Γ � Ψ : ctx� � �Γ ;Ψ � M : A�u : El �A�.
– If Γ ; Ψ � σ : Ψ then �Γ �, u: El �Γ � Ψ : ctx� � �Γ ;Ψ � σ : Ψ�u : El �Ψ�.
– If Γ � C : T then �Γ � � �Γ � C : T � : �T �.
– If Γ � t : τ then �Γ � � �Γ � t : τ� : �τ�.

The proof goes by induction on derivations.

Proposition 1 (Soundness). The following are true.

– If Γ ; Ψ � M ≡ N : A then
�Γ �, u: El �Ψ� � �Γ ; Ψ � M : A�u = �Γ ; Ψ � N : A�u : El �A�.

– If Γ ;Ψ � σ ≡ σ′ : Φ then
�Γ �, u: El �Ψ� � �Γ ;Ψ � σ : Φ�u = �Γ ;Ψ � σ′ : Φ�u : El �Φ�.

– If Γ � t1 ≡ t2 : τ then �Γ � � �Γ � t1 : τ� = �Γ � t2 : τ� : �τ�.

6 Presheaves on a Small Category with Attributes

To explain the core of our approach as simply as possible, we have concentrated
on a simply-typed domain language. In the remaining space, we outline how our
approach generalises to dependent domain languages like LF.

We follow the same approach as above. We start from a term model D of the
domain language and then interpret contextual types in the presheaf category D̂.
In the simply-typed case above, D was a small cartesian closed category. In the

Semantical Analysis of Contextual Types 517



dependent case, D is a small Category with Attributes. Categories with attributes
(CwAs) [11] are a general notion of model for dependent type theories that is
suitable for modelling dependent domain languages like LF.

With this change, we follow essentially the same approach as above. The
main difference is that the universe of representables now makes available the
CwA-structure of D instead of the cartesian closed structure. The following
section outlines this in analogy to Sec. 4.1.

6.1 Yoneda CwA

In a Yoneda CwA we again have a type for the objects of D, which we now denote
Ctx. In the term model for LF, these would be the LF contexts. The type Ty c
represents (possibly dependent) LF types in context c. Contexts can be built
with the constants nil and cons.

� Ctx type � nil : Ctx
c: Ctx � Ty c type � cons : (c: Ctx) → (a: Ty c) → Ctx

Both Ctx and Ty c are constant presheaves, i.e. �Ctx = Ctx and �(Ty c) = Ty c.
As in Sec. 4.1, we consider the contexts as codes of a universe.

c: Ctx � El c type

The type El c has the same interpretation as before and is essentially just the
Yoneda embedding. The morphisms c → d of the CwA D thus appear as functions
of type El c → El d.

The axioms of a CwA can be stated using terms and equations in the inter-
nal language of D̂. For example, substitution on types and context projection
morphisms are given by the following constants.

c, d: Ctx � sub : (a: Ty d) → (f : El c → El d) → Ty c
c: Ctx, a: Ty c � p : El (cons c a) → El c

The other components of a CwA are added similarly and the CwA-axioms [11]
are expressed in terms of equations for these constants.

The inhabitants of a type can then be captured by the dependent type

c: Ctx, a: Ty c, u: El c � I a u type

defined by I a u := Σv: El (cons c a). (p v) = u. This type contains all values in
El (cons c a) whose first projection is u. If one considers u: El c as a dependent
tuple of LF terms (one term for each variable in the context represented by c),
then I a u represents all the terms that can be appended to this tuple to make
it into one of type El (cons c a). Indeed, one can define a pairing operation by
pair := λu. λ〈v, p〉. v.

c: Ctx, a: (Ty c) � pair : (u: El c) → I a u → El (cons c a)

518 B. Pientka and U. Schöpp



With these definitions, we can represent dependent contextual types much like
the simply-typed ones. Recall that we had interpreted Φ � A by El �Φ� → El �A�
where both �Φ� and �A� were terms of type Obj. In the dependent case, A may
depend on Φ. The interpretation of Φ is a term �Φ� : Ctx, much as before. The
interpretation of A takes the dependency into account: u: El �Φ� � �A�u : Ty u.
The interpretation of the contextual type Φ � A will then be:

(u: El �Φ�) → I �A�u u

It may be interesting to note that (u: El c) → I a u is isomorphic to the type of
sections of p : El (cons c a) → El c.

Object-level term constants in LF can be lifted using I. Consider, for example,
an encoding of the simply-typed lambda-calculus in LF. It represents only well-
typed terms by means of the constants app : Πa, b: ty. tm (arr a b) → tm a → tm b
and lam : Πa, b: ty. (tm a → tm b) → tm (arr a b). Therein, the type tm of object-
level terms is dependent on an object-level type ty, which may be built using a
constant o : ty for a base type and a constant arr : ty → ty → ty for function
types. This encoding lifts to the Yoneda CwA as in simply-typed case:

c: Ctx � ty : Ty c Γ � o : I ty u
c: Ctx � tm : Ty (cons c ty) Γ � arr : I ty u → I ty u → I ty u

Δ � app : I tm (pair u (arr a b)) → I tm (pair u a) → I tm (pair u b)
� lam : (I tm (pair u a) → I tm (pair u b)) → I tm (pair u (arr a b))

Here, Γ abbreviates c: Ctx, u: (El c) and Δ abbreviates Γ, a, b: (I ty u). Notice
how lam uses higher-order abstract syntax at the meta level.

With these definitions, the interpretation of Cocon is essentially just as before.
For working with the dependencies in a Yoneda CwA, we found it very useful to
type-check our definitions in Agda, see our sources [1].

7 Conclusion

We have given a rational reconstruction of contextual type theory in presheaf
models of higher-order abstract syntax. This provides a semantical way of un-
derstanding the invariants of contextual types independently of the algorithmic
details of type checking. At the same time, we identify the contextual modal
type theory, Cocon, which is known to be normalising, as a syntax for presheaf
models of HOAS. By accounting for the Yoneda embedding with a universe á
la Tarski, we obtain a manageable way of constructing contextual types in the
model, especially in the dependent case. While various forms of universes are
being studied in the context of functor categories, e.g. [2,16], we are not aware of
previous uses of presheaves over CwAs or similar.

In future work, one may consider using the model as a way of compiling
contextual types, by implementing the semantics. In another direction, it may be
interesting to apply the syntax of contextual types to other presheaf categories.
We also hope that the model will help to guide the further development of Cocon.

Acknowledgements. We thank the anonymous reviewers for helpful feedback.

Semantical Analysis of Contextual Types 519



References

1. The Agda sources for this paper are available from: http://github.com/uelis/
contextual.

2. Guillaume Allais, Robert Atkey, James Chapman, Conor McBride, and James
McKinna. A type and scope safe universe of syntaxes with binding: Their semantics
and proofs. Proc. ACM Program. Lang., 2(ICFP):90:1–90:30, July 2018.

3. Benton, P.N., Bierman, G.M., de Paiva, V., Hyland, M.: A term calculus for intu-
itionistic linear logic. In: Bezem, M., Groote, J.F. (eds.) Typed Lambda Calculi and
Applications, International Conference on Typed Lambda Calculi and Applications,
TLCA ’93, Utrecht, The Netherlands, March 16-18, 1993, Proceedings. vol. 664, pp.
75–90. Springer (1993)

4. Andrew Barber and Gordon Plotkin. Dual intuitionistic linear logic. Technical
Report, LFCS, University of Edinburgh, 1997.

5. John Cartmell. Generalised algebraic theories and contextual categories. Annals of
Pure and Applied Logic, 32:209 – 243, 1986.

6. Rowan Davies and Frank Pfenning. A modal analysis of staged computation.
Journal of the ACM, 48(3):555–604, 2001.

7. Peter Dybjer. Internal type theory. In Types for Proofs and Programs (TYPES’95),
pages 120–134, 1995.

8. M. Fiore, G. D. Plotkin, and D. Turi. Abstract syntax and variable binding. In
Logic in Computer Science (LICS’99), pages 193–202. IEEE Press, 1999.

9. Murdoch Gabbay and Andrew Pitts. A new approach to abstract syntax involving
binders. In Logic in Computer Science (LICS’99), pages 214–224. IEEE Press,
1999.

10. Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
Journal of the ACM, 40(1):143–184, January 1993.

11. Martin Hofmann. Syntax and Semantics of Dependent Types, page 79–130. Publi-
cations of the Newton Institute. Cambridge University Press, 1997.

12. Martin Hofmann. Semantical analysis of higher-order abstract syntax. In Logic in
Computer Science (LICS’99), pages 204–213. IEEE Press, 1999.

13. Furio Honsell, Marino Miculan, and Ivan Scagnetto. An axiomatic approach to
metareasoning on nominal algebras in HOAS. In International Colloquium on
Automata, Languages and Programming (ICALP’01), LNCS 2076, pages 963–978.
Springer, 2001.

14. Bart Jacobs. Comprehension categories and the semantics of type dependency.
Theor. Comput. Sci., 107(2):169–207, 1993.

15. Kavvos, G.A.: Intensionality, intensional recursion, and the Gödel-Löb axiom. CoRR
abs/1703.01288 (2017), http://arxiv.org/abs/1703.01288

16. Daniel R. Licata, Ian Orton, Andrew M. Pitts, and Bas Spitters. Internal universes
in models of homotopy type theory. In Formal Structures for Computation and
Deduction (FSCD’18), pages 22:1–22:17, 2018.

17. Dale Miller and Catuscia Palamidessi. Foundational aspects of syntax. ACM
Comput. Surv., 31(3es), 1999.

18. Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal
type theory. ACM Transactions on Computational Logic, 9(3):1–49, 2008.

19. Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Symposium on
Language Design and Implementation (PLDI’88), pages 199–208, June 1988.

20. Brigitte Pientka. A type-theoretic foundation for programming with higher-order ab-
stract syntax and first-class substitutions. In Principles of Programming Languages
(POPL’08), pages 371–382. ACM Press, 2008.

520 B. Pientka and U. Schöpp

http://github.com/uelis/contextual
http://github.com/uelis/contextual
http://arxiv.org/abs/1703.01288


21. Brigitte Pientka and Andreas Abel. Well-founded recursion over contextual objects.
In Typed Lambda Calculi and Applications (TLCA’15), pages 273–287, 2015.

22. Brigitte Pientka, Andreas Abel, Francisco Ferreira, David Thibodeau, and Rébecca
Zucchini. Cocon: Computation in contextual type theory. CoRR, abs/1901.03378,
2019.

23. Brigitte Pientka, Andreas Abel, Francisco Ferreira, David Thibodeau, and Rebecca
Zucchini. A type theory for defining logics and proofs. In 34th IEEE/ ACM
Symposium on Logic in Computer Science (LICS’19), pages 1–13, IEEE Computer
Society, 2019.

24. Brigitte Pientka and Andrew Cave. Inductive Beluga: Programming Proofs (System
Description). In Conference on Automated Deduction (CADE-25), LNCS 9195,
pages 272–281. Springer, 2015.

25. Brigitte Pientka and Joshua Dunfield. Programming with proofs and explicit
contexts. In Principles and Practice of Declarative Programming (PPDP’08), pages
163–173, 2008.

26. Brigitte Pientka and Joshua Dunfield. Beluga: a framework for programming and
reasoning with deductive systems (System Description). In International Joint
Conference on Automated Reasoning (IJCAR’10), LNAI 6173, pages 15–21. Springer,
2010.

27. Shulman, M.: Brouwer’s fixed-point theorem in real-cohesive homotopy type theory.
Mathematical Structures in Computer Science 28(6), 856–941 (2018)

28. Thomas Streicher. Semantics of Type Theory. Birkhäuser, 1991.
29. Andrea Vezzosi. Agda with a flat modality. Available from https://github.com/

agda/agda/tree/flat, 2018.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Semantical Analysis of Contextual Types 521

https://github.com/agda/agda/tree/flat
https://github.com/agda/agda/tree/flat
http://creativecommons.org/licenses/by/4.0/


Ambiguity, Weakness, and Regularity
in Probabilistic Büchi Automata

Christof Löding and Anton Pirogov(�) �

RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
{loeding,pirogov}@cs.rwth-aachen.de

Abstract. Probabilistic Büchi automata are a natural generalization
of PFA to infinite words, but have been studied in-depth only rather
recently and many interesting questions are still open. PBA are known
to accept, in general, a class of languages that goes beyond the regular
languages. In this work we extend the known classes of restricted PBA
which are still regular, strongly relying on notions concerning ambiguity
in classical ω-automata. Furthermore, we investigate the expressivity of
the not yet considered but natural class of weak PBA, and we also show
that the regularity problem for weak PBA is undecidable.

Keywords: probabilistic · Büchi · automata · ambiguity · weak

1 Introduction

Probabilistic finite automata (PFA) are defined similarly to nondeterministic
finite automata (NFA) with the difference that each transition is equipped with
a probability (a value between 0 and 1), such that for each pair of state and
letter, the probabilities of the corresponding outgoing transitions sum up to 1.
PFA have been investigated already in the 1960ies in the seminal paper of Rabin
[18]. But while the development of the theory of automata on infinite words also
started around the same time [7], the model of probabilistic automata on infinite
words has first been studied systematically in [3]. The central model in this
theory is the one of probabilistic Büchi automata (PBA), which are syntactically
the same as PFA. The acceptance condition for runs is defined as for standard
nondeterministic Büchi automata (NBA): a run on an infinite word is accepting
if it visits an accepting state infinitely often (see [23,24] for an introduction to
the theory of automata on infinite words). In general, for probabilistic automata
one distinguishes different criteria of when a word is accepted. In the positive
semantics, it is required that the probability of the set of accepting runs is greater
than 0, in the almost-sure semantics it has to be 1, and in the threshold semantics
it has to be greater than a given value λ between 0 and 1. It is easy to see that
PFA with positive or almost-sure semantics can only accept regular languages,
because these conditions correspond to the fact that there is an accepting run or
� This work is supported by the German research council (DFG) Research Training

Group 2236 UnRAVeL

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 522–541, 2020.
https://doi.org/10.1007/978-3-030-45231-5_27

http://orcid.org/0000-0002-5077-7497
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_27&domain=pdf


that all runs are accepting. For infinite words the situation is different, because
single runs on infinite words can have probability 0. Therefore, the existence of
an accepting run is not the same as the set of accepting runs having probability
greater than 0 (similarly, almost-sure semantics is not equivalent to all runs
being accepting). And in fact, it turns out that PBA with positive (or almost-
sure) semantics can accept non-regular languages [3]. This naturally raises the
question under which conditions a PBA accepts a regular language.

In [3] a subclass of PBA that accept only regular languages (under positive
semantics) is introduced, called uniform PBA. The definition uses a semantic
condition on the acceptance probabilities in end components of the PBA. A
syntactic class of PBA that accepts only regular languages (under positive and
almost-sure semantics) are the hierarchical PBA (HPBA) introduced in [8]. The
state space of HPBA is partitioned into a sequence of layers such that for each
pair of state and letter there is at most one transition that does not increase the
layer. Decidability and expressiveness questions for HPBA have been studied in
more detail in [11,10]. While HPBA accept only regular languages for positive
and almost-sure semantics, it is not very hard to come up with HPBA that
accept non-regular languages under the threshold semantics [8,11] (see also the
example in Figure 2(a) on page 10). Restricting HPBA further such that there
are only two layers and all accepting states are on the first layer leads to a class
of PBA (called simple PBA, SPBA) that accept only regular languages even
under threshold semantics [9].

In this paper, we are also interested in the question under which condi-
tions PBA accept only regular languages. We identify syntactical patterns in
the transition structure of PBA whose absence guarantees regularity of the ac-
cepted language. These patterns have been used before for the classification of
the degree of ambiguity of NFA and NBA [25,19,16]. The degree of ambiguity of
a nondeterministic automaton corresponds to the maximal number of accepting
runs that a single input word can have. For NBA, the ambiguity can (roughly)
be uncountable, countable, or finite. For positive semantics, we show that PBA
whose transition structure corresponds to at most countably ambiguous NBA,
accept only regular languages. For almost-sure semantics, we need a slightly
stronger condition for ensuring regularity. But both classes that we identify are
easily seen to strictly subsume the class of HPBA. For the emptiness and uni-
versality problems for these classes we obtain the same complexities as the ones
for HPBA. In the case of threshold semantics, we show that finite ambiguity
is a sufficient condition for regularity of the accepted language, generalizing a
corresponding result for PFA from [12]. The class of finitely ambiguous PBA
strictly subsumes the class of SPBA.

Besides the relation between regularity and ambiguity in PBA, we also inves-
tigate the class of weak PBA (abbreviated PWA). In weak Büchi automata, the
set of accepting states is a union of strongly connected components of the au-
tomaton. We show that PWA with almost-sure semantics define the same class
of languages as PBA with almost-sure semantics (which implies that with posi-
tive semantics PWA define the same class as probabilistic co-Büchi automata).

Ambiguity, Weakness, and Regularity in Probabilistic Büchi Automata 523



This is in correspondence to results for non-probabilistic automata: weak au-
tomata with universal semantics (a word is accepted if all runs are accepting)
define the same class as Büchi automata with universal semantics, and nonde-
terministic weak automata correspond to nondeterministic co-Büchi automata
(see, e.g., [17], where weak automata are called weak parity automata). Further-
more, it is known that universal Büchi automata, respectively nondeterministic
co-Büchi automata, can be transformed into equivalent deterministic automata
(with the same acceptance condition). An analogue of deterministic automata
in the probabilistic setting are the so-called 0/1 automata, in which each word
is either accepted with probability 0 or with probability 1. It is known that
almost-sure PBA can be transformed into equivalent 0/1 PBA (see the proof of
Theorem 4.13 in [4]). Concerning weak automata, a language can be accepted
by a deterministic weak automaton (DWA) if, and only if, it can be accepted by
a deterministic Büchi and by a deterministic co-Büchi automaton (this follows
from results in [14], see [6] for a more direct construction). We show an analogous
result in the probabilistic setting: The class of languages defined by 0/1 PWA
corresponds to the intersection of the two classes defined by PWA with almost-
sure semantics and with positive semantics, respectively. It turns out that this
class contains only regular languages, that is, 0/1 PWA define the same class as
DWA.

We also show that the regularity problem for PBA is undecidable (the prob-
lem of deciding for a given PBA whether its language is regular). For PBA
with positive semantics this is not surprising, as for those already the emptiness
problem is undecidable [4]. However, for PBA with almost-sure semantics the
emptiness and universality problems are decidable [1,2,8]. We show that regular-
ity is undecidable already for PWA with almost-sure or with positive semantics.
The proof also yields that it is undecidable for a fixed regular language whether
a given PWA accepts this language.

This work is organized as follows. After introducing basic notations in Sec-
tion 2 we first characterize various regular subclasses of PBA that we derive
from ambiguity patterns in Section 3 and then we derive some related complex-
ity results in Section 4. In Section 5 we present our results concerning weak
probabilistic automata and in Section 6 we conclude.

2 Preliminaries

First we briefly review some basic definitions.
If Σ is a finite alphabet, then Σ∗ is the set of all finite and Σω is the set of

all infinite words w = w0w1 . . . with wi ∈ Σ. For a word w we denote by w(i)
the i-th symbol wi.

Classical automata used in this work have usually the shape (Q,Σ,Δ,Q0, F ),
where Q is a finite set of states, Σ a finite alphabet, Δ ⊆ Q×Σ×Q is the tran-
sition relation and Q0, F ⊆ Q are the sets of initial and final states, respectively.

We write Δ(p, a) := {q ∈ Q | (p, a, q) ∈ Δ} to denote the set of successors
of p ∈ Q on symbol a ∈ Σ, and Δ(P,w) for P ⊆ Q,w ∈ Σ∗ with the usual
meaning, i.e., states reachable on word w from any state in P .

524 C. Löding and A. Pirogov



A run of an automaton on a word w ∈ Σω is an infinite sequence of states
q0, q1, . . . starting in some q0 ∈ Q0 such that (qi, w(i), qi+1) ∈ Δ for all i ≥ 0.
We say that a set of runs is separated (at time i) when the prefixes of length i
of those runs are pairwise different.

As usual, an automaton is deterministic if |Q0| = 1 and |Δ(p, a)| ≤ 1 for all
p ∈ Q, a ∈ Σ, and nondeterministic otherwise. For deterministic automata we
may use a transition function δ : Q×Σ → Q instead of a relation.

Probabilistic automata we consider have the shape (Q,Σ, δ, μ0, F ), i.e., the
transition relation is replaced by a function δ : Q × Σ × Q → [0, 1] which for
each state and symbol assigns a probability distribution on successor states (i.e.∑

q∈Q δ(p, a, q) = 1 for all p ∈ Q, a ∈ Σ), and μ0 : Q → [0, 1] with
∑

q∈Q μ0(q) =
1 is the initial probability distribution on states. The support of a distribution
μ is the set supp(μ) := {x | μ(x) > 0}. Similarly as above, we may write δ(μ,w)
and mean the resulting probability distribution after reading w ∈ Σ∗, when
starting with probability distribution μ.

For a probabilistic automaton A the underlying automaton A� is given by
recovering the transition relation Δ := {(p, x, q) | δ(p, x, q) > 0} of positively
reachable states and the initial state set Q0 := supp(μ0).

As usual, a run of an automaton for finite words is accepting if it ends in
a final state. For automata on infinite words, run acceptance is determined by
the Büchi (run visits infinitely many final states) or Co-Büchi (run visits finitely
many final states) conditions.

We write p
x→ q if there exists a path from p to q labelled by x ∈ Σ+ and

p → q if there exists some x such that p x→ q. The strongly connected component
(SCC) of p ∈ Q is scc(p) := {q ∈ Q | p = q or p → q and q → p}. The set
SCCs(A) := {scc(q) | q ∈ Q} is the set of all SCCs and partitions Q. An SCC
is accepting (rejecting) if all (no) runs that stay there forever are accepting.
An SCC is useless if no accepting run can continue from there. An automaton
is weak, if the set of final states is a union of its SCCs. In this case, Büchi
and Co-Büchi acceptance are equivalent and we treat weak automata as Büchi
automata.

A classical automaton is trim if it has no useless SCCs, whereas a probabilistic
automaton is trim if it has at most one useless SCC, which is a rejecting sink
that we canonically call qrej . We assume w.l.o.g. that all considered automata
are trim, which also means that in an underlying automaton the sink qrej is
removed.

We call transitions of probabilistic automata that have probability 1 deter-
ministic and otherwise branching. If there are transitions p a→ q and p

a→ q′ with
q �= q′, we call this pattern a fork. Every branching transition clearly has at least
one fork. We call a (p, q, q′) fork intra-SCC, if p, q, q′ are all in the same SCC,
otherwise it is an inter-SCC fork. A run of an automaton is deterministic if it
never goes through forks, and limit-deterministic if it goes only through finitely
many forks. We say that two deterministic runs merge when they reach the same
state simultaneously. For a finite run prefix ρ, we call all valid runs with this
prefix continuations of ρ.

Ambiguity, Weakness, and Regularity in Probabilistic Büchi Automata 525



A classical automaton A accepts w ∈ Σω if there exists an accepting run on
w, and the language L(A) recognized by A is the set of all accepted words. If
P is a set of states of an automaton, we write L(P ) for the language accepted
by this automaton with initial state set P . For sets consisting of one state q, we
write L(q) instead of L({q}).

For a probabilistic automaton A and an input word w (finite or infinite),
the transition structure of A induces a probability space on the set of runs of
A on w in the usual way. We do not provide the details here but rather refer
the reader not familiar with these concepts to [4]. In general, we write Pr(E) for
the probability of a measurable event E in a probability space. For probabilistic
automata, we consider positive, almost-sure and threshold semantics, i.e., an
automaton accepts w if the probability of the set of accepting runs on w is > 0,
=1 or >λ (for some fixed λ ∈]0, 1[), respectively. For an automaton A these
languages are denoted by L>0(A), L=1(A) and L>λ(A), respectively, whereas
L(A) := L(A�) is the language of the underlying automaton. A probabilistic
automaton is 0/1 if all words are accepted with either probability 0 or 1 (in this
case the languages with the different probabilistic semantics coincide).

To denote the type of an automaton, we use abbreviations of the form XYA(γ)

where the type of transition structure is denoted by X ∈ { D (det.), N (nondet.),
P (prob.) }, the acceptance condition is specified by Y ∈ { F (finite word),
B (Büchi), C (Co-Büchi), W (Weak) }, and for probabilistic transitions the
semantics for acceptance is given by γ ∈ {>0,=1,>λ, 0/1}.

By L(γ)(XYA) we denote the whole class of languages accepted by the cor-
responding type of automaton. If L is a set of languages, then L denotes the
set of all complement languages (similarly, for a language L, we denote by L its
complement), and BCl(L) the set of all finite boolean combinations of languages
in L. We use the notion of regular language for finite words and for infinite words
(the type of words is always clear from the context).

3 Ambiguity of PBA

Ambiguity of automata refers to the number of different accepting runs on a
word or on all words. An automaton is finitely ambiguous (on w) if there are
at most k different accepting runs (on w) for some fixed k ∈ N, and in case of
at most one accepting run it is called unambiguous. If on each word there are
only finitely many accepting runs, but no constant upper bound over all words,
then it is polynomially ambiguous if the number of different run prefixes that
are possible for any word prefix of length n can be bounded by a polynomial in
n, and otherwise exponentially ambiguous. Finally, if if there exist words that
have infinitely many runs, but no word on which there are uncountably many
accepting runs, then it is countably ambiguous, and otherwise it is uncountably
ambiguous.

In [16] (see also [19]), a syntactic characterization of those classes is presented
for NBA by simple patterns of states and transitions. We define those patterns
here and refer to [16] for further details. An automaton A has an IDA pattern

526 C. Löding and A. Pirogov



if there exist two states p �= q and a word v ∈ Σ∗ such that p
v→ p, p

v→ q
and q

v→ q. If additionally q ∈ F , then this is also an IDAF pattern. Finally,
A has an EDA pattern if there exists a state p and v ∈ Σ∗ such that there
are two different paths p

v→ p, and if additionally p ∈ F , this is also an EDAF

pattern. If a PBA has no EDA pattern, we call it flat, reflecting the naming
of a similar concept in other kinds of transition systems (e.g. [15]). The names
IDA and EDA abbreviate “infinite/exponential degree of ambiguity”, which they
indicated in the original NFA setting, and we keep those names for consistency.

By k-NBA, nk-NBA, 2n-NBA, ℵ0-NBA we denote the subsets of at most
finitely, polynomially, exponentially and countably ambiguous NBA (and sim-
ilarly for other types of automata). When speaking about ambiguity of some
PBA A, we mean the ambiguity of the trimmed underlying NBA A�.

In [8], hierarchical PBA (HPBA) were identified as a syntactic restriction
on PBA which ensures regularity under positive and almost-sure semantics. A
PBA with a unique initial state is hierarchical, if it admits a ranking on the
states such that at most one successor on a symbol has the same rank, and no
successor has a smaller rank. A HPBA has k levels if it can be ranked with only
k different values. Simple PBA (SPBA) were introduced in [9] and are restricted
HPBA with two levels such that all accepting states are on level 0.

SPBA

unamb.

¬IDA
fin. amb.

¬EDA,¬IDAF

poly. amb.
¬IDAF

exp. amb.
¬EDA

flat

¬EDAF

countably amb.

HPBA

L>0(ℵ0-PBA)
regular

L=1(flat PBA ∪ 2k-PBA)
regular

L>λ(k-PBA)
regular

Fig. 1: Illustration of the automata classes with restricted ambiguity as presented
for NBA in [16], which are characterized by the absence of the state patterns
IDA, IDAF ,EDA, and EDAF and their relation to the restricted classes called
“Hierarchical PBA” (HPBA) [8] and “Simple PBA” (SPBA) [9]. We identify classes
in this hierarchy which can be seen as extensions “in spirit” of respectively SPBA
and HPBA, subsuming them while also preserving their good properties, as e.g.
definition by syntactic means, regularity under different semantics and several
complexity results.

Ambiguity, Weakness, and Regularity in Probabilistic Büchi Automata 527



First, we show how HPBA relate to the ambiguity hierarchy, which can eas-
ily be derived by inspection of the definitions. A visual illustration is given in
Figure 1.

Proposition 1 (Relation of HPBA and the ambiguity hierarchy).

1. HPBA ⊂ flat PBA ⊂ ℵ0-PBA.
2. k-PBA �⊆ HPBA and HPBA �⊆ k-PBA.
3. SPBA ⊂ unambiguous PBA ⊂ k-PBA.

Starting from these observations, this work was motivated by the question
whether the ambiguity restrictions, which were only implicit in HPBA and
SPBA, can be used explicitly to get larger classes with good properties. In the
following we will positively answer this question.

3.1 From classical to probabilistic automata

First, we observe that probabilistic automata can recognize regular languages
even under severe ambiguity restrictions.

Proposition 2. Let A be a DBA. Then there exists an unambiguous PBA B
such that L>0(B) = L=1(B) = L(A).

Proof. As A is a (w.l.o.g. complete) DBA, there exists exactly one run on each
word and all transitions when seen as PBA must have probability 1. Clearly this
unique natural 0/1 PBA obtained from A accepts the same language under both
probable and almost-sure semantics and it is trivially unambiguous. 
�

Limit-deterministic NBA (LDBA) are NBA which are deterministic in all
non-rejecting SCCs. The natural mapping of LDBA into PBA [4, Lemma 4.2]
already trivially yields countably ambiguous automata (because the determinis-
tic part of the LDBA cannot contain an EDAF pattern, which implies uncount-
able ambiguity [16]). The following result shows that already unambiguous PBA
under positive semantics suffice for all regular languages.

Theorem 1. Let L ⊆ Σω be a regular language.
Then there exists an unambiguous PBA B such that L>0(B) = L.

Proof (sketch). Let A = (Q,Σ, δ, q0, c) be a deterministic parity automaton
accepting L, i.e., a finite automaton with priority function c : Q → {1, . . . ,m}
such that w ∈ L(A) iff the smallest priority assigned to a state on the unique
run of A on w which is seen infinitely often is even.

We construct an unambiguous LDBA for L, which then easily yields a PBA>0

by assigning arbitrary probabilities ([4, Lemma 4.2]) without influencing the
ambiguity. If the parity automaton A has m priorities, the LDBA B can be
obtained by taking m+1 copies, where m of them are responsible for one priority
each, and one is modified to guess which priority i on the input word is the most
important one appearing infinitely often along the run of A, and correspondingly
switch into the correct copy. This switching is done unambiguously for the first
position after which no priority more important than i appears. 
�

528 C. Löding and A. Pirogov



3.2 From probabilistic to classical automata

First we establish a result for flat PBA, i.e. PBA that have no EDA pattern.
In automata without EDA pattern there are no states which are part of two
different cycles labeled by the same finite word. Even though we defined flat
PBA by using an ambiguity pattern, the set of flat PBA does not correspond to
an ambiguity class, but it is useful for our purposes due to the following property:

Lemma 1. If A is a flat PBA and w ∈ Σω, then the probability of a run of A
on w to be limit-deterministic is 1.

Proof. Let Runs(A, w) denote the set of all runs of A on w and nldRuns(A, w)
denote the subset containing all such runs that are not limit-deterministic. As
A is flat, it has no EDA and thus also no EDAF pattern, hence A is at most
countably ambiguous (by [16]). Moreover, there are not only at most countably
many accepting runs on any word, but also countably many rejecting runs (which
can be seen by a simple generalization of [16, Lemma 4]). But as all runs are
disjoint events, each run ρ that uses infinitely many forks has probability 0, and
the total number of runs is countable, we can see that

Pr(Runs(A, w) \ nldRuns(A, w)) =
∑

ρ∈Runs(A,w)

Pr(ρ) −
∑

ρ∈nldRuns(A,w)

Pr(ρ) = 1− 0 = 1. 
�

The following lemma characterizes acceptance of PBA under extremal se-
mantics with restricted ambiguity and is crucial for the constructions in the
following sections:

Lemma 2 (Characterizations for extremal semantics).
Let A be a PBA.

1. If A is at most countably ambiguous, then
w ∈ L>0(A) ⇔ there exists an accepting run on w that is limit-deterministic.

2. If there are finitely many accepting runs of A on w, then
w ∈ L=1(A) ⇔ all runs on w are accepting and limit-deterministic.

3. If A is flat, then
w ∈ L=1(A) ⇔ there is no limit-deterministic rejecting run on w.

Proof. (1.) : For contradiction, assume that every accepting run on w goes
through forks infinitely often. But then the probability of every individual ac-
cepting run on w is 0. Each run is a measurable event (it is a countable intersec-
tion of finite prefixes) and clearly disjoint from other runs, as two different runs
must eventually differ after a finite prefix. But as the number of accepting runs
is countable by assumption, by σ-additivity it follows that the probability of all
accepting runs is also 0, contradicting the fact that w ∈ L>0(A).

For the other direction, pick a limit-deterministic accepting run ρ of A on w
and let uv = w and q ∈ Q such that the state of ρ after reading u is q and there
are no forks visited on v. Clearly, the probability to be in q after u in a run of A
is positive (because u is finite), and the probability that A continues like ρ from
q on v is 1. Hence, the probability of ρ is positive.

Ambiguity, Weakness, and Regularity in Probabilistic Büchi Automata 529



(2.) : The (⇐) direction is obvious. We now proceed to show (⇒). Take
some time t after which all accepting runs on w separated. Assume that some
accepting run ρ is not limit-deterministic. But then ρ goes through infinitely
many forks after t which with positive probability lead to a successor from which
the probability to accept is 0, and the probability of following ρ is also 0. As
the probability to follow ρ until time t is positive, but after that the probability
to accept is 0, this implies that there is a positive probability that A rejects
w. Therefore, all accepting runs on w must be limit-deterministic. Now assume
that some run ρ on w is rejecting. Following this run until the time at which ρ is
separated from all accepting runs has positive probability and all continuations
must be also rejecting, so A must reject w.

(3.) : Clearly (⇒) holds, because a limit-deterministic rejecting run has pos-
itive probability, i.e., if such a run exists on w, then A cannot accept almost
surely. For (⇐), observe that because A is flat, we know by Lemma 1 that
with probability 1 runs are limit-deterministic. Hence, if there exists no limit-
deterministic rejecting run on w (which would have positive probability), then
with probability 1 runs are limit-deterministic and accepting. 
�

Using these characterizations, we can provide simple constructions from prob-
abilistic to classical automata.

Theorem 2. Let A be a PBA that is at most countably ambiguous.
Then L>0(A) is a regular language.

Proof (sketch). An NBA construction taking two copies of the PBA, where in
the first copy no state is accepting and the second copy has no forks, with the
purpose of guessing a limit-deterministic accepting run. 
�
Corollary 1. If L>0(A) is not regular, then it contains an EDAF pattern.

Theorem 3. Let A be a PBA that is at most exponentially ambiguous or flat.
Then L=1(A) is regular and recognizable by DBA.

Proof (sketch). Both cases (exp. ambiguous or flat) shown using a deterministic
breakpoint construction resulting in a DBA. In one case it checks whether all
runs are accepting, in the other it checks that there are no limit-deterministic
rejecting runs. 
�
Corollary 2. If L=1(A) is not regular,
then A contains both an EDA and an IDAF pattern.

The corollaries above follow directly from the theorems and the syntactic
characterization of ambiguity classes [16]. The following proposition states that
these characterizations of regularity in terms of the ambiguity patterns are tight.

530 C. Löding and A. Pirogov



(a)

qa1
2

qb1
2

q+

q$

b : 1, a : 1
2

a : 1
2

a, b

a : 1, b : 1
2

$
$

$

(b) q0 q1

a : 1-λ
a : λ

b

a

(c)

q0 q1

q2 qf

a : λ

b

a : (1-λ)

a

a : (1-λ)

a : λ

b Σ

Fig. 2: (a) Some PWA which accepts the non-regular language { w = (a+b)∗$ω |
#a(w) > #b(w) } with a threshold of 1

2 , where #x(w) denotes the number of
occurrences of x ∈ Σ in w ∈ Σω. (b) A family of PBA Pλ from [4] such that
L>0(Pλ) is not regular for any λ ∈ R. (c) A family of PWA P̃λ (closely related
to [4, Fig. 6]) such that L=1(P̃λ) is not regular for any λ ∈ R.

Proposition 3. There exist PBA...

1. ...with EDAF pattern (i.e. uncountably ambiguous) that accept
non-regular languages under positive semantics.

2. ...with no EDAF pattern (i.e. countably ambiguous) that accept
non-regular languages under almost-sure semantics.

Proof. (1.) Note that this statement just means that there are PBA accepting
non-regular languages, which is well known. For example, the automata family
from [4, Fig. 3], depicted in Figure 2(b), accepts non-regular languages under
positive semantics and clearly contains an EDAF pattern, e.g. there are two
different paths from p0 to p0 on the word aab.

(2.) The automata family depicted in Figure 2(c) is a simple modification
of the PBA family depicted in [4, Fig. 6] and recognizes the same non-regular
languages under almost-sure semantics. It does not contain an EDAF pattern,
because the accepting state is a sink, but it does contain an IDAF and an EDA
pattern (both e.g. on aab), so it is countably ambiguous and not flat. 
�

This completes our classification of regular subclasses of PBA under extremal
semantics that are defined by ambiguity patterns, showing that going beyond the
restricted classes presented above (by allowing more patterns) in general leads
to a loss of regularity.

Notice that the presented constructions do not track exact probabilities, just
whether transitions have a probability > 0 or = 1. This is a noteworthy obser-
vation, as in general, the probabilities do matter for PBA, as shown in [4, Thm.
4.7, Thm. 4.11].

Proposition 4. Let A be a PBA. The exact probabilities in A do not influ-
ence L>0(A) if A is at most countably ambiguous, and L=1(A) if A is at most
exponentially ambiguous or flat.

Ambiguity, Weakness, and Regularity in Probabilistic Büchi Automata 531



3.3 Threshold Semantics

In this section we consider PBA under threshold semantics and we will see that
in this setting, we lose regularity much earlier than in the case of extremal
semantics, but there is still the large and natural subclass of finitely ambiguous
PBA that retains regularity. Before we can show this, we need to derive a suitable
characterization of such languages.

We derive it from the following simple observation, which was also used
more implicitly in the proof that Simple HPBA with threshold semantics are
equivalent to DBA in [9].

Lemma 3. Let A be a PBA. Then for every threshold λ ∈]0, 1], there exists a
finite set of probability values V≥λ ⊂ [λ, 1] such that for every finite run prefix
with probability v in A we have v ≥ λ ⇒ v ∈ V≥λ.

Proof. Observe that given a finite set of real numbers R ⊂ [0, 1], the set R≥λ :=
{r | r =

∏
i ri ≥ λ, ri ∈ R} must be finite, as in any sequence p1p2 . . . of pi ∈ R,

only at most m = �logλ(maxR)� values can be < 1 and such that the product of
the sequence remains ≥ λ. In our case, let R be the set of distinct probabilities
assigned to edges (including the initial edges) in A. As every finite run prefix
by definition has the probability given by the product of the edge probabilities,
this implies the statement. 
�

If there is just one accepting run (i.e., the automaton is unambiguous), one
can easily construct a nondeterministic automaton that guesses an accepting run
and tracks it along with its probability value, of which there are only finitely
many above the threshold. In the case that there are multiple accepting runs, for
acceptance only the sum of their probabilities matters. As individual runs can
in principle have arbitrarily small probability values, it is not obvious that the
same approach (tracking a set of runs) can work. Determining a suitable cut-off
point is not as simple, because it is not apparent when a single run becomes
so improbable that it does not matter among the others. However, we will now
show that such a cut-off point must exist:

Lemma 4. Let A be a PBA, λ ∈]0, 1] a threshold and k ∈ N. There exists
εk ∈ ]0, λ] such that for all sets Rt = {ρti}ji=1 of at most j ≤ k different run
prefixes in A of the same length t ∈ N, Pr(Rt) =

∑j
i=1 Pr(ρ

t
i) < λ implies that

Pr(Rt) < λ− εk.

Proof. We prove this by induction on the number of runs k. For k = 1, i.e. a
single run prefix, let V≥λ be the finite (by Lemma 3) set of different probability
values ≥ λ and let E be the set of distinct probabilities in the automaton A.
Then clearly vmax,<λ := max{a · b | a · b < λ, a ∈ V≥λ, b ∈ E} is the largest
probability value < λ that can correspond to a finite run prefix in A. Hence, we
can just pick an ε1 < λ − vmax,<λ and immediately get that for any run prefix
with probability v < λ, we have that v ≤ vmax,<λ < λ− ε1.

Now assume the statement holds for all sets with at most k run prefixes.
Let Rt be a set of k + 1 of different run prefixes of the same length such that

532 C. Löding and A. Pirogov



Pr(Rt) < λ and let ε := εk. Then we know that for every subset S of at most k
runs of Rt we have Pr(S) < λ− ε. Also, every single run prefix can by Lemma 3
have one of only finitely many probability values in V≥ε that are ≥ ε and there
exists a value vmax,<ε denoting the largest possible probability value < ε that a
single run prefix can have.

If there exists a run prefix ρ ∈ Rt with probability value v < ε, then we
know that Pr(Rt) = Pr(Rt \ {ρ}) + v < (λ − ε) + vmax,<ε < λ. If every run in
Rt has a probability value ≥ ε, then every run prefix in Rt has as probability
one of the values in V≥ε. Consider all sums of k values from V≥ε, which are
finitely many, and pick the largest sum s which is < λ. Choose εk+1 such that
εk+1 < min(ε− vmax,<ε, λ− s) to account for both cases. 
�

From this we can derive the following characterization of languages accepted
by finitely ambiguous PBA under threshold semantics:

Lemma 5. Let A be a k-ambiguous PBA and λ ∈]0, 1] a threshold. There exists
an ε ∈ ]0, λ] such that for all w ∈ Σω: w ∈ L>λ(A) iff there exists a set R of
limit-deterministic accepting runs of A on w with Pr(R) > λ, Pr(S) ≤ λ for all
S ⊂ R and at most one run ρ ∈ R with Pr(ρ) < ε.

Proof. Clearly (⇐) holds, as then w is accepted with probability ≥ Pr(R) > λ.
We now show (⇒). In a finitely ambiguous PBA there are only finitely many
different accepting runs on each word. Furthermore, as after finite time all ac-
cepting runs have separated and each accepting run that visits forks infinitely
often has probability 0, accepting runs that visit forks infinitely often do not con-
tribute positively to the acceptance probability and thus can be ignored. Hence,
if w ∈ L>λ(A), there is a number of accepting runs that eventually all become
deterministic and each such run has a positive probability, which must in total
be > λ.

Let R be a set of different limit-deterministic accepting runs of A on w such
that Pr(R) > λ and Pr(S) ≤ λ for all S ⊂ R. As there are only finitely many
accepting runs, such a set R must exist. Furthermore, notice that each limit-
deterministic run has a finite prefix which has the same probability as the whole
run, so there exists a time t such that the probability of the set of all different
prefixes of runs in R of length t is exactly Pr(R), so that Lemma 4 applies.

Now pick an ε := εk given by Lemma 4. We claim that at most one run
ρ ∈ R can have a probability less than ε. If there is no such run in R, we are
done. Otherwise let ρ be a run with Pr(ρ) =: p < ε and notice that by choice
of R, we have that Pr(R \ {ρ}) =: s ≤ λ. It cannot be the case that s < λ, as
then by Lemma 4 we have s < λ − ε, which implies that Pr(R) = s + p < λ,
which is a contradiction. Hence, now assume that s = λ. But then, if there is
any ρ′ �= ρ ∈ R such that Pr(ρ′) =: p′ < ε, by the same argument we get the
contradiction that s− p′ < λ− ε and hence s < λ. Therefore, no other run in R
can have a probability < ε. 
�

Now we can perform the intended automaton construction to show:

Theorem 4. L>λ(A) is regular for each k-ambiguous PBA A and λ ∈]0, 1[.

Ambiguity, Weakness, and Regularity in Probabilistic Büchi Automata 533



Proof (sketch). We use the characterization of Lemma 5 to construct a gener-
alized Büchi automaton accepting L>λ(A). Intuitively, the new automaton just
guesses at most k different runs of A and verifies that the guessed runs are limit-
deterministic and accepting. The automaton additionally tracks the probability
of the runs over time, to determine whether the individual runs and their sum
have enough “weight”. The automaton rejects when the total probability of the
guessed runs is ≤ λ, one of the runs goes into the rejecting sink qrej or a run
does not see accepting states infinitely often.

By Lemma 5 we only need to consider sets of runs with at most one run that
has a probability < ε, where ε := εk is given by Lemma 4. For this single run
we also do not need to track the exact probability value, as its only purpose is
to witness that the acceptance probability is strictly greater than λ, whereas all
other runs must have one of the finitely many different probabilities which are
≥ ε and must sum to λ. 
�

This generalizes the corresponding result for PFA [12, Theorem 3]. The proof
in [12] uses similar concepts, though a rather different presentation. In the setting
of infinite words we additionally have to deal with a single run that has arbitrarily
low probability, and we have to ensure that this probability remains positive.

After seeing that finitely ambiguous PBA retain regularity, we show that this
is the best we can do under threshold semantics:

Corollary 3. There are polynomially ambiguous PBA A, that is, with an IDA
pattern and no EDA, IDAF patterns, such that L>λ(A) is not regular even for
rational thresholds λ ∈]0, 1[.

Proof. Follows from the fact that the PWA A from Figure 2(a), which recognizes
a non-regular language (and is used to show Proposition 6), has just an IDA
pattern in the underlying NBA, but no EDA or IDAF patterns. 
�

This completes our characterization of languages which are recognized by
PBA that are restricted by forbidden ambiguity patterns, so that we can state
our main result of this section (see Figure 1 for a visualization):

Theorem 5. The following results hold about PBA with restricted ambiguity:

– L>0(k-PBA) = L>0(ℵ0-PBA) = L(NBA)
– L=1(k-PBA) = L=1(2k-PBA) = L=1(flat PBA) = L(DBA) ⊂ L=1(ℵ0-PBA)
– L>λ(k-PBA) = L(NBA) ⊂ L>λ(nk-PBA)

Proof. The statements follow from the following inclusion chains:

L(NBA)
(1.)

⊆ L>0(k-PBA)
def.

⊆ L>0(ℵ0-PBA)
(2.)

⊆ L(NBA)

L(DBA)
(3.)

⊆ L=1(k-PBA)
def.

⊆ L=1(2k-PBA ∪ flat PBA)
(4.)

⊆ L(DBA)
(5.)⊂ L=1(ℵ0-PBA)

L(NBA)
(1.)

⊆ L>0(k-PBA)
(6.)

⊆ L>λ(k-PBA)
(7.)

⊆ L(NBA)
(8.)⊂ L>λ(nk-PBA)

534 C. Löding and A. Pirogov



Where the marked relationships hold due to: (1.) Theorem 1, (2.) Theorem 2,
(3.) Proposition 2, (4.) Theorem 3, (5.) Proposition 3, (6.) Simple transformation
by adding a new accepting sink qacc and modifying the initial distribution μ0 [4,
Lemma 4.16], (7.) Theorem 4, (8.) Corollary 3, and (def.) by definition of the
ambiguity-restricted automata classes. 
�

4 Complexity results

In this section, we state some upper and lower bounds on the complexity for
deciding emptiness and universality for PBA with restricted ambiguity, derived
from the characterizations and constructions presented above.

Theorem 6.
1. the emptiness problem for ℵ0-PBA>0 is in NL
2. the universality problem for ℵ0-PBA>0 is in PSPACE
3. the universality problem for at most exp. ambiguous or flat PBA=1 is in NL

Proof. (1. + 2.) : By Theorem 2 the languages of ℵ0-PBA>0 are regular. The
construction of an NBA just uses two copies of the given PBA. For emptiness,
it thus suffices to guess an accepted ultimately periodic word and verify that it
is accepted by the NBA, which can be done in NL. Since universality for NBA
in in PSPACE [21], we also obtain (2.).

(3.): If the automaton is at most exponentially ambiguous, there are only
finitely many accepting runs on each word and as we know by Lemma 2 that
w ∈ L=1(A) iff all runs are accepting, it suffices to guess a rejecting run in
A�, which implies that the ultimately periodic word w labelling that run can
not be in L=1(A). If the automaton is flat, then we know that for each rejected
word there must exist a limit-deterministic rejecting run in the underlying NBA,
which we also can guess. 
�

Type regular? Emptiness Universality
> 0 = 1 > λ > 0 = 1 > 0 = 1

k-PBA

�

∈ NL ∈ PSPACE ∈ PSPACE ∈ NLnk-PBA
�2n-PBA

flat PBA ∈ NL c. ∈ PSPACE c. ∈ PSPACE c. ∈ NL c.
ℵ0-PBA ∈ PSPACE

Table 1: Summary of main results from Theorems 5 and 6 concerning PBA with
ambiguity restrictions. The completeness results follow from the hardness results
for HPBA (which are subsumed by flat PBA) from [8, Section 5], the PSPACE
inclusion of universality for almost-sure ℵ0-PBA follows from [8, Theorem 4.4].

Observe that ℵ0-PBA>0 subsume HPBA>0 and the union of flat PBA=1 and
exp. ambiguous PBA=1 subsumes HPBA=1, while preserving the same complex-
ity of the emptiness and universality problems. A summary of the main results
from Theorem 5 and Theorem 6 is presented in Table 1.

Ambiguity, Weakness, and Regularity in Probabilistic Büchi Automata 535



We conclude with an observation relevant to the question about feasibility
of PBA with restricted ambiguity for the purpose of application in e.g. model-
checking or synthesis.

Proposition 5 (Relationship to classical formalisms).

– There is a doubly-exponential lower bound for translation from LTL formula
to countably ambiguous PBA with positive semantics.

– There is an exponential lower bound for conversion from NBA to countably
ambiguous PBA with positive semantics.

Proof. It is known [20, Theorem 2] that there is a doubly-exponential lower
bound from LTL to LDBA. It is also known that LTL to NBA has an exponential
lower bound (e.g. [5, Theorem 5.42]), which implies an exponential lower bound
from NBA to LDBA.

By Theorem 2 there is a polynomial transformation from countably ambigu-
ous PBA with positive semantics into LDBA, which together with the aforemen-
tioned bounds implies the claimed lower bounds. 
�

5 Weakness in Probabilistic Büchi Automata

In this section we investigate the class of probabilistic weak automata (PWA),
establishing the relation between different classes defined by PWA as shown in
Figure 3 (see also the description of our contribution in the introduction).

As a first remark, notice that PWA can be “complemented” by inverting
accepting and rejecting states and switching between dual semantics, e.g., for a
PWA A we have L>0(A) = L=1(A), where A is just A with inverted accepting
state set F ′ = Q \ F .

Since the overarching theme of this paper is trying to find regular subclasses
of PBA, we will next establish the following result, showing that there is no hope
to find a complete syntactical characterization of regularity in PBA:

Theorem 7. The regularity of PWA (and therefore of PBA) under positive,
almost-sure and threshold semantics is an undecidable problem.

Proof (sketch). Since L>λ(PWA) ⊇ L>0(PWA) (see Theorem 10), L>0(PWA) =
L=1(PWA), and the class of regular ω-languages is closed under complement, it
suffices to show the statement for PWA=1. We do this by reduction from the
value 1 problem for PFA, which is the question whether for each ε > 0 there ex-
ists a word accepted by the PFA with probability > 1−ε. This problem is known
to be undecidable [13]. We consider a slightly modified version of the problem
by assuming that no word is accepted with probability 1 by the given PFA. The
problem remains undecidable under this assumption, because one can check if a
PFA accepts a finite word with probability 1 by a simple subset construction.

Given some PFA A, we construct a PWA=1 B by taking a copy of A and
extending it with a new symbol # such that from accepting states of A the
automaton is “restarted” on #, while from non-accepting states # leads into a

536 C. Löding and A. Pirogov



L>λ(PBA)

L>λ(PWA)

L=
1
(P

B
A
)

L=
1
(P

W
A
) L

=
1(P

B
A
)

L
>

0
(P

W
A
)

PWA0/1

L=1(PBA) ∩ L=1(PBA)

L>0(PBA)ω−Reg
L
(D

B
A
)L(

D
B
A
)

L(DBA) ∩ L(DBA)
L(DWA)

Fig. 3: Illustration of relationships between the class of languages accepted
by weak probabilistic automata under various semantics with other already
known classes. The overlapping patterns indicate intersection of classes, where
dots mark L>0(PBA), and different diagonal lines respectively L=1(PBA) and
L=1(PBA). The dashed line indicates intersections with different subclasses of
regular languages. The class L>λ(PBA) contains all the other depicted classes,
L>λ(PWA) contains the area inside the thick line. The depicted fact that
L>0(PWA) = L>λ(PWA) ∩ L>0(PBA) is a conjecture, one direction is shown
in Theorem 10.

new part which ensures that infinitely many # are seen and contains the only
accepting state of B. We show that L=1(B) = (Σ∗#)ω \ R, where R = ∅ if A
does not have value 1, and R is non-empty but does not contain an ultimately
periodic word, otherwise. This implies that L=1(B) is regular iff A does not have
value 1. 
�

We will now show that PWA with almost-sure semantics are as expressive as
PBA, and with positive semantics as expressive as PCA.

Theorem 8. L>0(PWA) = L>0(PCA) and L=1(PWA) = L=1(PBA).

Proof (sketch). It suffices to show the first statement. The second then fol-
lows by duality, i.e., we can interpret a PBA=1 A recognizing L as a PCA>0

recognizing L and just apply the construction to get a PWA>0 B for L, such
that B (with inverted accepting and rejecting states) is a PWA=1 for L. In
the first statement the ⊆ inclusion is trivial, hence we only need to show that
L>0(PCA) ⊆ L>0(PWA).

We construct a PWA>0 consisting of two copies of the original PCA>0, a
guess copy and a verify copy. In the first copy, the automaton can guess that
no final states will be visited anymore and switch to the verify copy, which is
accepting, but where all transitions into final states are redirected to a rejecting
sink. 
�

Next, we show that languages that can be accepted by both, a PWA with
almost-sure semantics, and by a PWA with positive semantics, are regular and

Ambiguity, Weakness, and Regularity in Probabilistic Büchi Automata 537



can be accepted by a DWA. For the proof, we rely on a characterization of
DWA languages in terms of the Myhill-Nerode equivalence relation from [22]. So
we first define this equivalence, and show that languages defined by PBA with
positive semantics have only finitely many equivalence classes. Then we come
back to the result for PWA.

For L ⊆ Σω, define the Myhill-Nerode equivalence relation ∼L⊆ Σ∗×Σ∗ by
u ∼L v iff uw ∈ L ⇔ vw ∈ L for all w ∈ Σω. Then the following holds:

Lemma 6 (Finitely many Myhill-Nerode classes).
Languages in L>0(PBA) have finitely many Myhill-Nerode equivalence classes.

Proof. Let A = (Q,Σ, δ, μ0, F ) be some PBA>0 and u ∈ Σ∗ some word and let
μu := δ∗(μ0, u) be the probability distribution on states of A after reading u.
Pick any w ∈ Σω and notice that uw ∈ L = L>0(A) iff there exists some state
q such that μu(q) > 0 and the probability to accept w from q is also > 0, as the
product of two positive numbers clearly still is positive. But then, for any two
u, v ∈ Σ∗ we have that whenever μu(q) > 0 ⇔ μv(q) > 0 for all q, then we have
uw ∈ L ⇔ vw ∈ L for all w ∈ Σω by the reasoning above, as the exact value
does not matter for acceptance, and therefore u ∼L v. But as there are only at
most 2|Q| different possibilities how values in a distribution μ over Q are either
equal to or greater than 0, this is an upper bound on the number of different
equivalence classes. 
�
Theorem 9. L>0(PWA) ∩ L=1(PWA) = L(DWA) = L(PWA0/1)

Proof. The inclusions L(DWA) ⊆ L(PWA0/1) ⊆ L>0(PWA) ∩ L=1(PWA) are
trivial, hence it remains to show L>0(PWA) ∩ L=1(PWA) ⊆ L(DWA).

So let L be a language from L>0(PWA) ∩ L=1(PWA). We want to show that
L can be accepted by a DWA. We use the following characterization of DWA
languages [22, Theorem 21]: The DWA languages are precisely the languages with
finitely many Myhill-Nerode classes in the class Gδ ∩ Fσ in the Borel hierarchy.
The classes Gδ and Fσ of the Borel hierarchy are often also referred to as Π2

and Σ2. We do not introduce the details of this hierarchy here, but rather refer
the reader not familiar with these concepts to [22] and [8].

We already know that L has finitely many Myhill-Nerode classes by Lemma 6
(as PWA are special cases of PBA). It remains to show that L is in the class
Gδ ∩ Fσ. It is known that PBA with almost-sure semantics define languages
in Gδ [8, Lemma 3.2]. Hence L is in Gδ. Since L is accepted by a PWA with
positive semantics, the complement of L is accepted by a PWA with almost-
sure semantics (as noted at the beginning of this section). We obtain that the
complement of L is also in Gδ again by [8, Lemma 3.2]. This means that L is in
Fσ, which by definition consists of the complements of languages from Gδ. 
�

Concluding this section, we show a result about weak automata with thresh-
old semantics, which (not surprisingly) turn out to be even more expressive. A
careful analysis of the PWA A in Fig. 2(a) shows the following result:

Proposition 6. For all thresholds λ ∈]0, 1[ there exists a PWA A such that
L>λ(A) is not regular and not PBA>0 recognizable.

538 C. Löding and A. Pirogov



Putting things together, we can say the following about threshold PWA,
establishing the relation of L>λ(PWA) to the other classes in Figure 3:

Theorem 10 (Expressive power of threshold PWA).

1. L>0(PWA) ⊆ L>λ(PWA) ∩ L>0(PBA).
2. L>λ(PWA) and L>0(PBA) are incomparable (wrt. set inclusion).
3. L>0(PWA) ⊂ L>λ(PWA) ⊂ L>λ(PBA).

Proof. (1.) L>0(PWA) ⊆ L>0(PBA) by definition and L>0(PWA) ⊆ L>λ(PWA),
as any PWA>0 can be modified to a PWA>λ recognizing the same language by
just adding an additional accepting sink and modifying the initial distribution,
just as described in [4, Lemma 4.16] for general PBA.

(2.) By Proposition 6, there are languages recognized by PWA>λ that cannot
be recognized with PBA>0. To show that there are languages accepted by PBA>0

that cannot be accepted by PWA>λ we can give a topological characterization
of languages accepted by PWA by a simple adaptation of [8, Lemma 3.2] and
combine it with other results shown in [8] to show that there are PBA>0 that
accept languages that cannot be accepted by PWA>λ.

(3.) The first inclusion was discussed in (1.), the strictness follows from
Proposition 6 and the fact that L>0(PWA) = L=1(PBA) ⊂ BCl(L=1(PBA)) =
L>0(PBA), where the first equality is Theorem 8 and the second is shown in [8].
The second inclusion of the statement follows from (2.) and the fact from [4]
that L>0(PBA) ⊂ L>λ(PBA). 
�

For the dual class L≥λ(PWA) one can show symmetric results that correspond
to statements (1.) and (2.) above, for statement (3.) however there is no proof
yet for the strictness of the inclusions (especially the second one), whereas the
statement L=1(PWA) ⊆ L≥λ(PWA) ⊆ L≥λ(PBA) is obvious. We leave this issue
as an open question. Another interesting question is whether > λ is equivalent
to < λ (or dually for ≥ / ≤).

6 Conclusion

By using notions from ambiguity in classical Büchi automata, we were able to
extend the set of easily (syntactically) checkable PBA which are regular under
some or all of the usual semantics. As a consequence, ambiguity appears to
be an even more interesting notion in the probabilistic setting, as here it in
fact has consequences for the expressive power of automata, whereas in the
classical setting there is no such effect. Our results also indicate that to get
non-regularity, one requires the use of certain structural patterns which at least
imply the existence of the ambiguity patterns that we used. It is an open question
whether it is possible to identify more fine-grained syntactic characterizations,
patterns or easily checkable properties which are just over-approximated by the
ambiguity patterns and are required for non-regularity.

Ambiguity, Weakness, and Regularity in Probabilistic Büchi Automata 539



References

1. Baier, C., Bertrand, N., Größer, M.: On decision problems for probabilistic
büchi automata. In: Foundations of Software Science and Computational Struc-
tures, 11th International Conference, FOSSACS 2008. Lecture Notes in Com-
puter Science, vol. 4962, pp. 287–301. Springer (2008), https://doi.org/10.1007/
978-3-540-78499-9

2. Baier, C., Bertrand, N., Größer, M.: Probabilistic automata over infinite words:
Expressiveness, efficiency, and decidability. In: Proceedings Eleventh International
Workshop on Descriptional Complexity of Formal Systems, DCFS 2009. EPTCS,
vol. 3, pp. 3–16 (2009), https://doi.org/10.4204/EPTCS.3

3. Baier, C., Größer, M.: Recognizing omega-regular languages with probabilistic au-
tomata. In: 20th IEEE Symposium on Logic in Computer Science (LICS 2005),
26-29 June 2005, Chicago, IL, USA, Proceedings. pp. 137–146 (2005)

4. Baier, C., Größer, M., Bertrand, N.: Probabilistic ω-automata. Journal of the ACM
(JACM) 59(1), 1 (2012)

5. Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)
6. Boigelot, B., Jodogne, S., Wolper, P.: An effective decision procedure for linear

arithmetic over the integers and reals. ACM Trans. Comput. Log. 6(3), 614–633
(2005), https://doi.org/10.1145/1071596.1071601

7. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Studies
in Logic and the Foundations of Mathematics, vol. 44, pp. 1–11. Elsevier (1966)

8. Chadha, R., Sistla, A.P., Viswanathan, M.: Power of randomization in automata
on infinite strings. Logical Methods in Computer Science 7 (2011)

9. Chadha, R., Sistla, A.P., Viswanathan, M.: Probabilistic Büchi automata with
non-extremal acceptance thresholds. In: International Workshop on Verification,
Model Checking, and Abstract Interpretation. pp. 103–117. Springer (2011)

10. Chadha, R., Sistla, A.P., Viswanathan, M.: Emptiness under isolation and the
value problem for hierarchical probabilistic automata. In: FOSSACS 2017. LNCS,
vol. 10203, pp. 231–247 (2017), https://doi.org/10.1007/978-3-662-54458-7

11. Chadha, R., Sistla, A.P., Viswanathan, M., Ben, Y.: Decidable and expressive
classes of probabilistic automata. In: FoSSaCS 2015. LNCS, vol. 9034, pp. 200–
214. Springer (2015), https://doi.org/10.1007/978-3-662-46678-0

12. Fijalkow, N., Riveros, C., Worrell, J.: Probabilistic automata of bounded ambigu-
ity. In: 28th International Conference on Concurrency Theory (CONCUR 2017).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

13. Gimbert, H., Oualhadj, Y.: Probabilistic automata on finite words: Decidable and
undecidable problems. In: International Colloquium on Automata, Languages, and
Programming. pp. 527–538. Springer (2010)

14. Landweber, L.H.: Decision problems for ω-automata. Mathematical Systems The-
ory 3, 376–384 (1969)

15. Leroux, J., Sutre, G.: On flatness for 2-dimensional vector addition systems with
states. In: International Conference on Concurrency Theory. pp. 402–416. Springer
(2004)

16. Löding, C., Pirogov, A.: On finitely ambiguous Büchi automata. In: Developments
in Language Theory - 22nd International Conference, DLT 2018, Tokyo, Japan,
September 10-14, 2018, Proceedings. pp. 503–515 (2018)

17. Löding, C., Thomas, W.: Alternating automata and logics over infinite words.
In: Proceedings of the IFIP International Conference on Theoretical Computer
Science, IFIP TCS2000. LNCS, vol. 1872, pp. 521–535. Springer (2000)

540 C. Löding and A. Pirogov

https://doi.org/10.1007/978-3-540-78499-9
https://doi.org/10.1007/978-3-540-78499-9
https://doi.org/10.4204/EPTCS.3
https://doi.org/10.1145/1071596.1071601
https://doi.org/10.1007/978-3-662-54458-7
https://doi.org/10.1007/978-3-662-46678-0


18. Rabin, M.O.: Probabilistic automata. Information and control 6(3), 230–245 (1963)
19. Rabinovich, A.: Complementation of finitely ambiguous Büchi automata. In: Devel-

opments in Language Theory - 22nd International Conference, DLT 2018, Tokyo,
Japan, September 10-14, 2018, Proceedings. pp. 541–552 (2018)

20. Sickert, S., Esparza, J., Jaax, S., Křetínský, J.: Limit-deterministic Büchi automata
for linear temporal logic. In: Chaudhuri, S., Farzan, A. (eds.) Computer Aided
Verification. pp. 312–332. Springer International Publishing, Cham (2016)

21. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi
automata with applications to temporal logic (extended abstract). In: ICALP
1985. LNCS, vol. 194, pp. 465–474. Springer (1985), https://doi.org/10.1007/
BFb0015725

22. Staiger, L.: Finite-state ω-languages. Journal of Computer and System Sciences
27(3), 434–448 (1983)

23. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Com-
puter Science, vol. B: Formal Models and Semantics, pp. 133–192. Elsevier Science
Publishers, Amsterdam (1990)

24. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Language Theory, vol. III, pp. 389–455. Springer (1997)

25. Weber, A., Seidl, H.: On the degree of ambiguity of finite automata. Theoretical
Computer Science 88(2), 325–349 (1991)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

Ambiguity, Weakness, and Regularity in Probabilistic Büchi Automata 541

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

https://doi.org/10.1007/BFb0015725
https://doi.org/10.1007/BFb0015725
http://creativecommons.org/licenses/by/4.0/


Local Local Reasoning:
A BI-Hyperdoctrine for Full Ground Store‹

Miriam Polzer and Sergey Goncharov(�)

FAU Erlangen-Nürnberg, Erlangen, Germany
{miriam.polzer,sergey.goncharov}@fau.de

Abstract. Modelling and reasoning about dynamic memory allocation
is one of the well-established strands of theoretical computer science,
which is particularly well-known as a source of notorious challenges in
semantics, reasoning, and proof theory. We capitalize on recent progress
on categorical semantics of full ground store, in terms of a full ground
store monad, to build a corresponding semantics of a higher order logic
over the corresponding programs. Our main result is a construction of an
(intuitionistic) BI-hyperdoctrine, which is arguably the semantic core of
higher order logic over local store. Although we have made an extensive use
of the existing generic tools, certain principled changes had to be made to
enable the desired construction: while the original monad works over total
heaps (to disable dangling pointers), our version involves partial heaps
(heaplets) to enable compositional reasoning using separating conjunction.
Another remarkable feature of our construction is that, in contrast to the
existing generic approaches, our BI-algebra does not directly stem from
an internal categorical partial commutative monoid.

1 Introduction

Modelling and reasoning about dynamic memory allocation is a sophisticated
subject in denotational semantics with a long history (e.g. [19,15,14,16]). De-
notational models for dynamic references vary over a large spectrum, and in
fact, in two dimensions: depending on the expressivity of the features being
modelled (ground store – full ground store – higher order store) and depending
on the amount of intensional information included in the model (intensional –
extensional), using the terminology of Abramsky [1].

Recently, Kammar et al [9] constructed an extensional monad-based denota-
tional model of the full ground store, i.e. permitting not only memory allocation
for discrete values, but also storing mutually linked data. The key idea of the lat-
ter work is an explicit delineation between the target presheaf category rW,Sets
on which the full ground store monad acts, and an auxiliary presheaf category
rE,Sets of initializations, naturally hosting a heap functor H . The latter category
also hosts a hiding monad P , which can be loosely understood as a semantic

‹ Sergey Goncharov acknowledges support by German Research Foundation (DFG)
under project GO 2161/1-2.

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 542–561, 2020.
https://doi.org/10.1007/978-3-030-45231-5_28

http://orcid.org/0000-0001-6924-8766
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_28&domain=pdf


rW,Sets rE,Sets rE,Sets
u‹

K
u‹

p´qˆH

K P

p´qH

Fig. 1: Construction of the full ground store monad.

mechanism for idealized garbage collection. The full ground store monad is then
assembled according to the scheme given in Fig. 1. As a slogan: the local store
monad is a global store monad transform of the hiding monad sandwiched within
a geometric morphism.

The fundamental reason, why extensional models of local store involve intricate
constructions, such as presheaf categories is that the desirable program equalities
include

let � :� new v; �1 :� neww in p “ let �1 :� neww; � :� new v in p p� ı �1q
let � :� new v in ret ‹ “ ret ‹
let � :� new v in pif � “ �1 then true else falseq “ false p� ı �1q

and these jointly do not have set-based models over countably infinite sets of
locations [23, Proposition 6]. The first equation expresses irrelevance of the
memory allocation order, the second expresses the fact that an unused cell is
always garbage collected and the third guarantees that allocation of a fresh
cell does indeed produce a cell different from any other. The aforementioned
construction validates these equations and enjoys further pleasant properties, e.g.
soundness and adequacy of a higher order language with user defined storable
data structures.

The goal of our present work is to complement the semantics of programs over
local store with a corresponding principled semantics of higher order logic. In order
to be able to specify and reason modularly about local store, more specifically,
we seek a model of higher order separation logic [21]. It has been convincingly
argued in previous work on categorical models of separation logic [2,3] that a core
abstraction device unifying such models is a notion of BI-hyperdoctrine, extending
Lawvere’s hyperdoctrines [10], which provide a corresponding abstraction for the
first order logic. BI-hyperdoctrines are standardly built on BI-algebras, which
are also standardly constructed from partial commutative monoids (pcm), or
more generally from resource algebras as in the Iris state of the art advanced
framework for higher order separation logic [8]. One subtlety our construction
reveals is that it does not seem to be possible to obtain a BI-algebra following
general recipes from a pcm (or a resource algebra), due to the inherent local
nature of the storage model, which does not allow one to canonically map store
contents into a global address space. Another subtlety is that the devised logic
is necessarily non-classical, which is intuitively explained by the fact that the
semantics of programs must be suitably irrelevant to garbage collection, and in

Local Local Reasoning: A BI-Hyperdoctrine for Full Ground Store 543



our case this follows from entirely formal considerations (Yoneda lemma). It is
also worth mentioning that for this reason the logical theory that we obtain is
incompatible with the standard (classical or intuitionistic) predicate logic. E.g.
the formula D�. � ↪Ñ 5 is always valid in our setup, which expresses the fact that
a heap potentially contains a cell equal to 5 (which need not be reachable) – this
is in accord with the second equation above – and correspondingly, the formula
@�.�p� ↪Ñ 5q is unsatisfiable. This and other similar phenomena are explained
by the fact that our semantics essentially behaves as a Kripke semantics along
two orthogonal axes: (proof relevant) cell allocation and (proof irrelevant) cell
accessibility. While the latter captures a programming view of locality, the latter
captures a reasoning view of locality, and as we argue (e.g. Example 26), they
are generally mutually irreducible.

Related previous work As we already pointed out, we take inspiration
from the recent categorical approaches to modelling program semantics for
dynamic references [9], as well as from higher order separation logic semantic
frameworks [2]. Conceptually, the problem of combining separation logic with
garbage collection mechanisms goes back to Reynolds [20], who indicated that
standard semantics of separation logic in not compatible with garbage collection,
which we also reinforce with our construction. Calcagno et al [4] addressed this
issue by providing two models. The first model is based on total heaps, featuring
the aforementioned effect of “potential” allocations. To cope with heap separation
the authors introduced another model based on partial heaps, in which this effect
again disappears, and has to be compensated by syntactic restrictions on the
assertion language.

Plan of the paper After preliminaries (Section 2), we give a modified presen-
tation of a call-by-value language with full ground references and the full ground
store monad (Sections 3 and 4) following the lines of [9]. In Section 5 we provide
some general results for constructing semantics of higher order separation logics.
The main development starts in Section 6 where we provide a construction of a
BI-hyperdoctrine. We show some example illustrating our semantics in Section 7
and draw conclusions in Section 8.

2 Preliminaries

We assume basic familiarity with the elementary concepts of category theory [12,6],
all the way up to monads, toposes, (co)ends and Kan extensions. We denote by
|C| the class of objects of a category C; we often suppress subscripts of natural
transformation components if no confusion arises.

In this paper, we work with special kinds of covariant presheaf toposes,
i.e. functor categories of the form rC,Sets, where C is small and satisfies the
following amalgamation condition: for any f : a Ñ b and g : a Ñ c there exist
g1 : b Ñ d and f 1 : c Ñ d such that f 1 ˝ g “ g1 ˝ f . Such toposes are particularly
well-behaved, and fall into the more general class of De Morgan toposes [7]. As
presheaf toposes, De Morgan toposes are precisely characterized by the condition

544 M. Polzer and S. Goncharov



(put)
Γ $v � : RefS Γ $v v : CTypepSq

Γ $c � :� v : 1
(get)

Γ $v � : RefS
Γ $c ! � : CTypepSq

(new)

Γ, �1 : RefS1 , . . . , �n : RefSn$v v1 : CTypepS1q
...

Γ, �1 : RefS1 , . . . , �n : RefSn$v vn : CTypepSnq
Γ, �1 : RefS1 , . . . , �n : RefSn$c p : A

Γ $c letref �1 :� v1, . . . , �n :� vn in p : A

Fig. 2: Term formation rules for memory management constructs.

that 2 “ 1 ` 1 is a retract of the subobject classifier Ω. More specifically, our C
support further useful structure, in particular, a strict monoidal tensor ‘ with
jointly epic injections in1, in2, forming an independent coproduct structure, as
recently identified by Simpson [22]. Moreover, if the coslices c

Ñ

C support
independent products, we obtain local independent coproducts in C, which are
essentially cospans c1 Ñ c1 ‘c c2 Ð c2 in c

Ñ

C. Given ρ1 : c Ñ c1 and ρ2 : c Ñ c2,
we thus always have ρ1 ‚ ρ2 : c1 Ñ c1 ‘c c2 and ρ2 ‚ ρ1 : S2 Ñ c1 ‘c c2, such that
pρ1 ‚ ρ2q ˝ ρ1 “ pρ2 ‚ ρ1q ˝ ρ2, and as a consequence, rC,Sets is a De Morgan
topos. Intuitively, the category C represents worlds in the sense of possible world
semantics [15,19]. A morphism ρ : a Ñ b witnesses the fact that b is a future
world w.r.t. a. Existence of local independent products intuitively ensures that
diverse futures of a given world can eventually be unified in a canonical way.

Every functor f : C Ñ D induces a functor f‹ : rD,Sets Ñ rC,Sets by
precomposition with f. By general considerations, there is a right adjoint
f‹ : rC,Sets Ñ rD,Sets, computed as Ranf, the right Kan extension along f.
This renders the adjunction f‹ % f‹, as a geometric morphism, in particular, f‹
preserves all finite limits.

3 A Call-by-Value Language with Local References

To set the context, we consider the following higher order language of programs
with local references by slightly adapting the language of Kammar et al [9] to
match with the fine-grain call-by-value perspective [11]. This allows us to formally
distinguish pure and effectful judgements. First, we postulate a collection of cell
sorts S and then introduce further types with the grammar:

A,B . . . ::“ 0 | 1 | A ˆ B | A ` B | A Ñ B | RefS pS P Sq (1)

A type is first order if it does not involve the function type constructors A Ñ B.
We then fix a map CType, assigning a first order type to every given sort from S.
We show three term formation rules over these data in Fig. 2 specific to local store.

Local Local Reasoning: A BI-Hyperdoctrine for Full Ground Store 545



Here the v-indices at the turnstiles indicate values and the c-indices indicate
computations. In (put) the cell referenced by � is updated with a value v, (get)
returns a value under the reference � and (new) simultaneously allocates new
cells filled with the values v1, . . . , vn and makes them accessible in p under
the corresponding references �1, . . . , �n. A fine-grain call-by-value language is
interpreted standardly in a category with a monad, which in our case must
additionally provide a semantics to the rules (put), (get) and (new). We
present this monad in detail in the next section.

Example 1 (Doubly Linked Lists). Let S “ {DLList} and let
CTypepDLListq “ 2ˆ pRefDLList `1q ˆ pRefDLList `1q, which indicates that a list
element is a Boolean (i.e. an element of 2 “ 1 ` 1) and two pointers (forwards
and backwards) to list elements, each of which may be missing. Note that we
thus avoid empty lists and null-pointers: every list contains at least one element,
and the elements added by `1 cannot be dereferenced. This example provides a
suitable illustration for the letref construct. E.g. the program

letref �1 :� p0, inr ‹, inl �2q; �2 :� p1, inl �1, inr ‹q in ret �1
simultaneously creates two list elements pointing to each other and returns a
reference to the first one.

4 Full Ground Store in the Abstract

We proceed to present the full ground store monad by slightly tweaking the
original construction [9] towards higher generality. The main distinction is that we
do not recur to any specific program syntax and proceed in a completely axiomatic
manner in terms of functors and natural transformations. This mainly serves the
purpose of developing our logic in Section 6, which will require a coherent upgrade
of the present model. Besides this, in this section we demonstrate flexibility of
our formulation by showing that it also instantiates to the model previously
developed by Plotkin and Power [16] (Theorem 8).

Our present formalization is parametric in three aspects: the set of sorts S,
the set of locations L and a map range, introduced below for interpreting S. We
assume that L is canonically isomorphic to the set of natural numbers N under
# : L – N. Using this isomorphism, we commonly use the “shift of � P L by
n P N”, defined as follows: � ` n “ #-1p#� ` nq.
Heap layouts and abstract heap(let)s LetW be a category of (heap) layouts
and injections defined as follows: an object w P |W| is a finitely supported partial
function w : L áfin S and a morphism ρ : w Ñ w1 is a type preserving injection
ρ : domw Ñ domw1, i.e. for all l P imgw, wp�q “ w1pρp�qq. We will equivalently
view w as a left-unique subset of L ˆ S and hence use the notation p� : Sq P w
as an equivalent of wp�q “ S. Injections ρ : w Ñ w1 with the property that
wp� : Sq “ � : S for all p� : Sq P w we also call inclusions and write w Ď w1 instead
of ρ : w Ñ w1, for obviously there is at most one inclusion from w to w1. If w Ď w1

546 M. Polzer and S. Goncharov



then we call w a sublayout of w1. We next postulate

range : S Ñ rW,Sets.
The idea is, given a sort S P S and a heap layout w P |W|, rangepSqpwq yields
the set of possible values for cells of type S over w.

Example 2. Assuming the grammar (1) and a corresponding map CType, a
generic type A is interpreted as a presheaf A : W Ñ Set, by obvious structural
induction, e.g. A ˆ B “ AˆB, except for the clause for Ref, for which pRefSqw “
w-1pSq. This yields the following definition for range: rangepSq “ CTypepSq [9].

Example 3 (Simple Store). By taking S “ {‹}, L “ N (natural numbers)
and rangep‹qpwq “ V where V is a fixed set of values, we essentially obtain the
model previously explored by Plotkin and Power [16]. We reserve the term simple
store for this instance. Simple store is a ground store (since range is a constant
functor), moreover this store is untyped (since S “ {‹}) and the locations L are
precisely the natural numbers.

A heap over a layout w assigns to each p� : Sq P w an element from rangepSqpwq.
More generally, a heaplet over w assigns an element from rangepSqpwq to some,
possibly not all, p� : Sq P w. We thus define the following heaplet bi-functor
H : Wop ˆ W Ñ Set:

Hpw´, w`q “
∏

p� : SqPw´ rangepSqpw`q

and identify the elements ofHpw´, w`q with heaplets and the elements of Hpw,wq
with heaps. Of course, we intend to use Hpw´, w`q for such w´ and w` that
the former is a sublayout of the latter. The contravariant action of H is given by
projection and the covariant action is induced by functoriality of rangepSq.

prp� : SqpHpw´, ρ1 : w`
1 Ñ w`

2 qpη P Hpw´, w`
1 qqq “ rangepSqpρ1qpprp� : Sq ηq

prp� : SqpHpρ2 : w´
2 Ñ w´

1 , w
`qpη P Hpw´

1 , w
`qqq “ prρ2p� : Sq η

The heaplet functor preserves independent coproduct, we overload the ‘ operation
with the isomorphism ‘ : Hpw1, wq ˆ Hpw2, wq – Hpw1 ‘ w2, wq.
Example 4. For illustration, consider the following simplistic example. Let
S “ {Int , RefInt , RefRefInt , . . . } where Int is meant to capture the ground type
of integers and recursively, RefA is the type of pointers to A. Then, we put

rangepIntqpwq “ Z, rangepRefSqpwq “ w-1pSq “ {� P domw | wp�q “ S}.
For a heaplet example, consider w´ “ {�1 : Int , �2 : RefInt} and w` “
{�1 : Int , �2 : RefInt , �3 : Int}. Hence, w´ is a sublayout of w`. By viewing the
elements of Hpw´, w`q as lists of assignments on w´, we can define s1, s2 P
Hpw´, w`q as follows: s1 “ r�1 : Int ÞÑ 5, �2 : Refint ÞÑ �1s, s2 “ r�1 : Int ÞÑ 3,
�2 : Refint ÞÑ �3s. The heaplets s1 and s2 can be graphically presented as follows:

Local Local Reasoning: A BI-Hyperdoctrine for Full Ground Store 547



w1
ρ1

w
ρ2

w2 w1
ρ1 ‚ ρ2

ρ1 ‘w ρ2
ρ2 ‚ ρ1

w2

Fig. 3: Local independent coproduct

5
‚

w´ w`
3
‚

w´ w`

The category W supports (local) independent coproducts described in Section 2.
These are constructed as follows. For w,w1 P |C|, w ‘ w1 “ w Y {� ` n ` 1: S |
p�, cq P w1} with n being the largest index for which w is defined on #-1pnq.
This yields a strict monoidal structure ‘ : W ˆ W Ñ W. Intuitively, w1 ‘ w2

is a canonical disjoint sum of w1 and w2, but note that ‘ is not a coproduct
in W (e.g. there is no ∇ : 1 ‘ 1 Ñ 1, for W only contains injections). For every
ρ : w1 Ñ w2, there is a canonical complement ρA : w2 a ρ Ñ w2 whose domain
w2 a ρ “ w2 � img ρ consists of all such cells p� : Sq P w2 that ρ misses. Given
two morphisms ρ1 : w Ñ w1 and ρ2 : w Ñ w2, we define the local independent
coproduct w1 ‘w w2 as the layout consisting of the locations from w, and the
ones from w1 and w2 which are neither in the image of ρ1 nor in the image of ρ2:

ρ1 ‘w ρ2 “ w ‘ pw1 a ρ1q ‘ pw2 a ρ2q.

There are morphisms w1
ρ1 ‚ ρ2 ρ1 ‘w ρ2 and w2

ρ2 ‚ ρ1 ρ1 ‘w ρ2 such that

w w2

w1 ρ1 ‘w ρ2

ρ2

ρ1 ρ2‚ρ1

ρ1‚ρ2

Fig. 3 illustrates this definition with a concrete example.

Initialization and hiding Note that in the simple store model (Definition 3),H
is equivalently a contravariant functor H : Wop Ñ Set with Hw “ Vw, hence H
can be placed e.g. in rWop,Sets. In general, H is mix-variant, which calls for
a more ingenious category where H could be placed. Designing such category
is indeed the key insight of [9]. Closely following this work, we introduce a
category E, whose objects are the same as those of W, and the morphisms
ε P Epw,w1q, called initializations, consist of an injection ρ : w Ñ w1 and a

548 M. Polzer and S. Goncharov



heaplet η P Hpw1 a ρ, w1q:
Epw,w1q “

∑
ρ : wÑw1 Hpw1 a ρ, w1q.

Recall that the morphism ρ : w Ñ w1 represents a move from a world with w
allocated memory cells a world with w1 allocated memory cells. A morphism of
E is a morphism of W augmented with a heaplet part η, which provides the
information how the newly allocated cells in w1 a ρ are filled. The heap functor
now can be viewed as a representable presheaf H : E Ñ Set essentially because by
definition, Hw “ Hpw,wq – Ep∅, wq. Let us agree to use the notation ε : w � w1
for morphisms in E to avoid confusion with the morphisms in W.

Like W, E supports local independent coproducts, but remarkably E does
not have vanilla independent coproducts, due to the fact that E does not have
an initial object. That is, in turn, because defining an inital morphism would
amount to defining canonical fresh values for newly allocated cells, but those need
not exist. The local independent coproducts of W and E agree in the sense that
we can promote an initialization pρ2, ηq : w � w2 along an injection ρ1 : w Ñ w1

to obtain an initialization ρ1 ‚ pρ2, ηq : w1 � ρ1 ‘w1
ρ2. This is accomplished by

mapping the heaplet structure η forward along ρ2 ‚ ρ1 : w2 Ñ ρ1 ‘w ρ2.

Hiding monad Recall that the local store is supposed to be insensitive to
garbage collection. This is captured by identifying the stores that agree on their
observable parts using the hiding monad P defined on rE,Sets as follows:

pPXqw “
∫ ρ : wÑw1Pw Ñ

u

Xw1. (2)

Here, u : E Ñ W is the obvious heaplet discarding functor upρ, ηq “ ρ. Intuitively,
in (2), we view the locations of w as public and the ones of w1 a ρ as private. The
integral sign denotes a coend, which in this case is just an ordinary colimit on
Set and is computed as a quotient of

∑
ρ : wÑw1Pw Ñ

u Xw1 under the equivalence

relation „ obtained as a symmetric-transitive closure of the relation

pρ : w Ñ w1, x P Xw1q � puε ˝ ρ : w Ñ w2, pXεqpxq P Xw2q pε : w1 � w2q
Note that � is a preorder. Moreover, it enjoys the following diamond property.

Proposition 5. If pρ, xq � pρ1, x1q and pρ, xq � pρ2, x2q then pρ1, x1q � pρ1, x1q
and pρ2, x2q � pρ1, x1q for a suitable pρ1, x1q.

Hence pρ1, x1q „ pρ2, x2q iff pρ1, x1q � pρ, xq, pρ2, x2q � pρ, xq for some pρ, xq.
Example 6. To illustrate the equivalence relation „ behind P , we revisit the
setting of Example 4. Consider the following situations:

5

‚
6

„ 5 5

‚
6

�„ 3

‚
6

Local Local Reasoning: A BI-Hyperdoctrine for Full Ground Store 549



Here, the solid lines indicate public locations and the dotted lines indicate
private locations. The left equivalence holds because the private locations are
not reachable from the public ones by references (depicted as arrows). On the
right, although the public parts are equal, the reachable cells of the private parts
reveal the distinction, preventing the equivalence under „. Intuitively, hiding
identifies those heaps that agree both on their public and reachable private part.

The covariant action of PX (on E) is defined via promotion of initializations:

pPXqpε : w1 � w2qpρ : w1 Ñ w1
1, x P Xw1

1q„
“ puε ‚ ρ : w2 Ñ ρ ‘w1 uε,Xpρ ‚ εqpxqq„.

Furthermore, there is a contravariant hiding operation (on W) given by the
canonical action of the coend: for ρ : w Ñ w1, we define hideρ : PXw1 Ñ PXw:

hideρpρ1 : w1 Ñ w2, x P Xw2q„ “ pρ1 ˝ ρ, xq„ (3)

This allows us to regard P both as a functor rE,Sets Ñ rE,Sets and as a functor
rE,Sets Ñ rWop,Sets.
Full ground store monad We now have all the necessary ingredients to
obtain the full ground store monad T on rW,Sets. This monad is assembled
by composing the functors in Fig. 1 in the following way. First, observe that
pP p--ˆHqqH is a standard (global) store monad transform of P on rE,Sets.
This monad is sandwiched between the adjunction u‹ $ u‹ induced by u (see
Section 2). Since any monad itself resolves into an adjunction, sandwiching in it
between an adjunction again yields a monad. In summary,

T “
(

rW,Sets u‹ rE,Sets P p´ ˆ HqH rE,Sets u‹ rW,Sets
)
. (4)

Theorem 7. The monad T , defined by (4) is strong.

Proof. The proof is a straightforward generalization of the proof in [9]. [\
We can recover the monad previously developed by Plotkin and Power [16] by
resorting to the simple store (Example 3).

Theorem 8. Under the simple store model T is isomorphic to the local store
monad from [16]:

pTXqw –
(∫ ρ : wÑw1Pw Ñ

W

Xw1 ˆ Vw1
)Vw

.

Using (4), one obtains the requisite semantics to the language in Fig. 2 using
the standard clauses of fine-grain call-by-value [11], except for the special clauses
for (put), (get) and (new), which require special operations of the monad:

get : u‹RefS ˆ H Ñ u‹CTypepSqˆH

put : pu‹RefS ˆ u‹CTypepSqq ˆ H Ñ 1 ˆ H

new : u‹pCTypepSqRefS q ˆ H Ñ P pu‹RefS ˆ Hq

550 M. Polzer and S. Goncharov



5 Intermezzo: BI-Hyperdoctrines and BI-Algebras

To be able to give a categorical notion of higher order logic over local store,
following Biering et al [2], we aim to construct a BI-hyperdoctrine.

Note that algebraic structures, such as monoids and Heyting algebras can be
straightforwardly internalized in any category with finite products, which gives
rise to internal monoids, internal Heyting algebras, etc. The situation changes
when considering non-algebraic properties. In particular, recall that a Heyting
algebra A is complete iff it has arbitrary joins, which are preserved by binary
meets. The corresponding categorical notion is essentially obtained from spelling
out generic definitions from internal category theory [6, B2] and is as follows.

Definition 9 (Internally Complete Heyting Algebras). An internal Heyt-
ing (Boolean) algebra A in a finitely complete category C is internally complete
if for every f P CpI, Jq, there exist indexed joins

∨
f : CpI, Aq Ñ CpJ,Aq, left

order-adjoint to p--q ˝ f : CpJ,Aq Ñ CpI, Aq such that for any pullback square
on the left, the corresponding diagram on the right commutes (Beck-Chevalley
condition):

I J

I 1 J 1

A

g

f

h

f 1

CpJ,Aq CpI, Aq

CpJ 1, Aq CpI 1, Aq

∨
h

p--q˝f

∨
g

p--q˝f 1

It follows generally that existence of indexed joins
∨

implies existence of indexed
meets

∧
, which then satisfy dual conditions ([6, Corollary 2.4.8]).

Remark 10 (Binary Joins/Meets). The adjointness condition for indexed
joins means precisely that

∨
f φ ď ψ iff φ ď ψ ˝ f for every φ : I Ñ A and every

ψ : J Ñ A. If C has binary coproducts, by taking f “ ∇ : X `X Ñ X we obtain
that

∨
∇ φ ď ψ iff φ ď rψ,ψs iff φ ˝ inl ď ψ and φ ˝ inr ď ψ. This characterizes∨

∇rφ1, φ2s : X Ñ A as the binary join of φ1, φ2 : X Ñ A. Binary meets are
characterized analogously.

Definition 11 ((First Order) (BI-)Hyperdoctrine). Let C be a category
with finite products. A first order hyperdoctrine over C is a functor S : Cop Ñ
Poset with the following properties:

1. given X P |C|, SX is a Heyting algebra;
2. given f P CpX,Y q, Sf : SY Ñ SX is a Heyting algebra morphism;
3. for any product projection fst : X ˆ Y Ñ X, there are pDY qX : SpX ˆ Y q Ñ

SX and p@Y qX : SpX ˆ Y q Ñ SX, which are respective left and right order-
adjoints of S fst : SpX ˆ Y q Ñ SX, naturally in X;

4. for every X P |C|, there is “X P SpX ˆ Xq such that for all φ P SpX ˆ Xq,
J ď pS〈idX , idX〉qpφq iff “X ď φ.

If additionally

Local Local Reasoning: A BI-Hyperdoctrine for Full Ground Store 551



Γ $v v : A Γ $ φ : PA

Γ $ φpvq : prop
Γ, x : A $ φ : prop

Γ $ x. φ : PA

Γ $v � : RefS Γ $v v : CTypepSq
Γ $ � ↪Ñ v : prop

Γ $ φ : PA

Γ $ Qφ : prop
pQ P {@, D}q Γ $v v : A Γ $v w : A

Γ $ v “ w : prop

Γ $ c : prop
pc P {J,K}q Γ $ φ : prop Γ $ ψ : prop

Γ $ φ $ψ : prop
p$ P {^,_,ñ, ‹, ‹́}q

Fig. 4: Term formation rules for the higher order separation logic.

5. given X P |C|, SX is a BI-algebra, i.e. a commutative monoid equipped with
a right order-adjoint to multiplication;

6. given f P CpX,Y q, Sf : SY Ñ SX is a BI-algebra morphism,

then S is called a first order BI-hyperdoctrine.
In a (higher order) hyperdoctrine, C is additionally required to be Cartesian

closed and every SX is required to be poset-isomorphic to CpX,Aq for a suitable
internal Heyting algebra A P |C| naturally in X. Such a hyperdoctrine is a
BI-hyperdoctrine if moreover A is an internal BI-algebra.

Proposition 12. Every internally complete Heyting algebra A in a Cartesian
closed category C with finite limits gives rise to a canonical hyperdoctrine Cp--, Aq:
for every X, CpX,Aq is a poset under f ď g iff f ^ g “ f .

Proof. Clearly, every CpX,Aq is a Heyting algebra and every Cpf,Aq is a Heyting
algebra morphism. The quantifies are defined mutually dually as follows:

pDY qXpφ : X ˆ Y Ñ Aq “
∨

fst : XˆY ÑX
φ,

p@Y qXpφ : X ˆ Y Ñ Aq “
∧

fst : XˆY ÑX
φ.

Naturality in X follows from the corresponding Beck-Chevalley conditions.
Finally, internal equality “X : X ˆ X Ñ A is defined as

∨
〈idX ,idX〉 J. [\

A standard way to obtain an (internally) complete BI-algebra is to resort to
ordered partial commutative monoids [18].

Definition 13 (Ordered PCM [18]). An ordered partial commutative monoid
(pcm) is a tuple pM, E , ¨ ,ďq where M is a set, E Ď M is a set of units, multipli-
cation ¨ is a partial binary operation on M, and ď is a preorder on M, satisfying
an number of axioms (see [18] for details).

We note that using general recipes [3], for every internal ordered pcm M in a
topos C with subobject classifier Ω, Cp--ˆM,Ωq forms a BI-hyperdoctrine, on
particular, if C “ Set then Setp--ˆM, 2q is a BI-hyperdoctrine.

552 M. Polzer and S. Goncharov



6 A Higher Order Logic for Full Ground Store

We proceed to develop a local version of separation logic using semantic principles
explored in the previous sections. That is, we seek an interpretation for the
language in Fig. 4 in the category rW,Sets over the type system (1), extended
with predicate types PA. The judgements Γ $ φ : prop type formulas depending
on a variable context Γ . Additionally, we have judgements of the form Γ $ φ : PA
for predicates in context. Both kinds of judgements are mutually convertible using
the standard application-abstraction routine. Note that expressions for quantifiers
Dx. φ are thus obtained in two steps: by forming a predicate x. φ, and subsequently
applying D. Apart from the standard logical connectives, we postulate separating
conjunction ‹ and separating implication ‹́.

Our goal is to build a BI-hyperdoctrine, using the recipes, summarized in
the previous section. That is, we construct a certain internal BI-algebra Θ in
rW,Sets, and subsequently conclude that r--, Θs is a BI-hyperdoctrine in question.
In what follows, most of the effort is invested into constructing an internally
complete Boolean algebra P̌ ˝ pP̂ Ĥq (hence r--, P̌ ˝ pP̂ Ĥqs is a hyperdoctrine),
from which Θ is carved out as a subfunctor, identified by an upward closure
condition. Here, P̌ is a contravariant powerset functor, and P̂ and Ĥ are certain
modifications of the hiding and the heap functors from Section 4. As we shall
see, the move from P̌ ˝ pP̂ Ĥq to Θ remedies the problem of the former that the
natural separation conjunction operator ‹ on it does not have unit (Remark 19).

In order to model resource separation, we must identify a domain of logical
assertions over partial heaps, i.e. heaplets, instead of total heaps. We thus need
to derive a unary (covariant) heaplet functor from the binary, mix-variant one H
used before. We must still cope not only with heaplets, but with partially hidden
heaplets, to model information hiding. A seemingly natural candidate functor for
hidden heaplets is the composition

P
(
E

∑
wĎ-- Hpw, --q

Set
)
: Wop Ñ Set.

One problem of this definition is that the equivalence relation „ underlying the∑
w1Ďw Hpw1, wq. Then pid : w Ñ w, ewq j pinl : w Ñ w ‘ {‹ : 1}, ew‘{‹ : 1}q,

i.e. two hidden heaplets would not be equivalent if one extends the other by
an inaccessible hidden cell. In order to arrive at a more reasonable model of
logical assertions, we modify the previous model by replacing the category of
initializations E is a category Ê of partial initializations. This will induce a hiding
monad P̂ over rÊ,Sets using exactly the same formula (2) as for P .

A partial initialization is a pair pρ, ηq with ρ P Wpw´
1 , w

`
2 q and η P∑

w´Ďw`
2 aρ Hpw´, w`

2 q. Let Ê be the category of heap layouts and partial ini-

tializations. Analogously to u, there is an obvious partial-heap-forgetting functor
û : Ê Ñ W. Let Ĥ : Ê Ñ Set be the following heaplet functor :

Ĥw “
∑

w1Ďw
Hpw1, wq.

Local Local Reasoning: A BI-Hyperdoctrine for Full Ground Store 553

construction of P (2) is too fine. Consider, for example, ew “ p∅ Ď w, ‹q P



Given a partial initialization ε “ pρ : w Ñ w1, pw2 Ď w1 aρ, η P Hpw2, w1qqq : w �
w1, Ĥε : Ĥw Ñ Ĥw1 extends a given heaplet over w to a heaplet over w1 via η:

pĤεqpw1 Ď w, η1 P Hpw1, wqq “ pρrw1s Y w2 Ď w1, η2q
where η2 P Hpρrw1s Y w2 Ď w1, w1q is as follows

prρp� : Sq η2 “ rangepSqpρqpprp� : Sq η1q pp� : Sq P w1q
prp� : Sq η2 “ prp� : Sq η pp� : Sq P w2q

With Ê and Ĥ as above instead of E and H , the framework described in Section 4
transforms coherently.

Remark 14. Let us fix a fresh symbol �, and note that

Ĥw “
∑

w1Ďw

∏
p� : SqPw1 rangepSqpwq –

∏
p� : SqPwprangepSqpwq Z {�}q,

meaning that the passage from E, H and P to Ê, Ĥ and P̂ is equivalent to
extending the range function with designated values � for inaccessible locations.
We prefer to think of � this way and not as a content of dangling pointers, to
emphasize that we deal with a reasoning phenomenon and not with a programming
phenomenon, for our programs neither create nor process dangling pointers.

For the next proposition we need the following concrete description of the set
û‹p2Xqw as the end

∫
ρ : wÑw1Pw Ñ

û
SetpXw1, 2q: this set is a space of dependent

functions φ sending every injection ρ : w Ñ w1 to a corresponding subset of Xw1,
and satisfying the constraint: x P φpρq iff pX εqpxq P φpû ε ˝ρq for every ε : w1 � w2.

Proposition 15. The following diagram commutes up to isomorphism:

rÊ,Sets rÊ,Setsop

rW,Setopsop rW,Setsop

2p--q

P̂ û‹
P̌˝ p--q

(using the fact that rW,Setopsop – rWop,Sets) where P̌ is the contravariant

powerset functor P̌ : Setop Ñ Set and for every X : Ê Ñ Set the relevant
isomorphism Φw : û‹p2Xqw – P̌pP̂Xwq is as follows:

pρ : w Ñ w1, x P Xw1q„ P Φwpφ P û‹p2Xqwq ðñ x P φpρq. (5)

Let us clarify the significance of Proposition 15. The exponential 2Ĥ in rÊ,Sets
can be thought of as a carrier of Boolean predicates over Ĥ, and as we see next
those form an internally complete Boolean algebra, which is carried from rÊ,Sets
to rW,Sets by û‹. The alternative route via P̂ and P̌ induces a Boolean algebra
of predicates over hidden heaplets P̂ Ĥ directly in rW,Sets. The equivalence
established in Proposition 15 witnesses agreement of these two structures.

554 M. Polzer and S. Goncharov



Theorem 16. For every X : Ê Ñ Set, P̌ ˝ pP̂Xq is an internally complete
Boolean algebra in rW,Sets under(∨

f
φ : I Ñ P̌ ˝ pP̂Xq

)
w

pj P Jwq
“ {pρ : w Ñ w1, x P Xw1q„ | D ε : w1 � w2, Di P Iw2.

fw2 piq “ Jpû ε ˝ρqpjq ^ pidw2 , pX εqpxqq„ P φw2 piq},(∧
f
φ : I Ñ P̌ ˝ pP̂Xq

)
w

pj P Jwq
“ {pρ : w Ñ w1, x P Xw1q„ | @ ε : w1 � w2,@i P Iw2.

fw2 piq “ Jpû ε ˝ρqpjq ñ pidw2 , pX εqpxqq„ P φw2 piq}.
for every f : I Ñ J , and the corresponding Boolean algebra operations are com-
puted as set-theoretic unions, intersections and complements.

By Theorem 16, we obtain a hyperdoctrine r--, P̌ ˝ pP̂ Ĥqs, which provides us with
a model of (classical) higher order logic in rW,Sets. In particular, this allows
us to interpret the language from Fig. 4 over rW,Sets excluding the separation
logic constructs, in such a way that

�Γ $ φ : prop� : Γ Ñ P̌ ˝ pP̂ Ĥq, �Γ $ φ : PA� : Γ ˆ A Ñ P̌ ˝ pP̂ Ĥq
where Γ “ A1 ˆ . . .ˆAn for Γ “ px1 : A1, . . . , xn : Anq where, additionally to the

standard clauses, PA “ P̌ ˝ P̂ pu‹A ˆ Ĥq. The latter interpretation of predicate
types PA is justified by the natural isomorphism:

pP̌ ˝ pP̂ ĤqqX – pû‹p2ĤqqX – û‹pp2Ĥqû‹Xq – P̌ ˝ pP̂ pû‹X ˆ Ĥqq.
Here, the first and the last transitions are by Φ from Proposition 15 and the
middle one is due to the fact that clearly both pû‹p--qqX $ û‹pX ˆ p--qq and
û‹pp--qû‹Xq $ û‹pX ˆ p--qq.

Since every set Ĥw models a heaplet in the standard sense [18], we can
equip Ĥw with a standard pointer model structure.

Proposition 17. For every w P |W|, pĤw, {p∅ Ď w, ‹q}, ¨ ,ďq is an ordered pcm
where for every w P |W|, Ĥw is partially ordered as follows:

pw1 Ď w,Hpw1 Ď w2, wqη P Hpw1, wqq ď pw2 Ď w, η P Hpw2, wqq pw1 Ď w2q
and for w1 Ď w, w2 Ď w and η1 P Hpw1, wq, η2 P Hpw2, wq, pw1 Ď w, η1q ¨ pw2 Ď
w, η2q equals pw1 Y w2, η1 Y η2q if w1 X w2 “ ∅, and otherwise undefined.

As indicated in Section 5, we automatically obtain a BI-algebra structure over
the set of all subsets of Ĥw. The same strategy does not apply to P̂ Ĥw, roughly
because we cannot predict mutual arrangement of hidden partitions of two
heaplets wrt to each other, for we do not have a global reference space for

Local Local Reasoning: A BI-Hyperdoctrine for Full Ground Store 555



pointers as contrasted to the standard separation logic setting. We thus define a
separating conjunction operator directly on every P̌pP̂ Ĥwq as follows:

φ ‹w ψ “ {pρ : w Ñ w1, pw1 Z w2 Ď w1, η P Hpw1 Z w2, w
1qqq„ |

pρ, pw1 Ď w1,Hpw1 Ď w1 Z w2, w
1qηqq„ P φ,

pρ, pw2 Ď w1,Hpw2 Ď w1 Z w2, w
1qηqq„ P ψ}.

Lemma 18. The operator ‹w on P̌pP̂ Ĥwq satisfies the following properties.

1. ‹w is natural in w.
2. ‹w is associative and commutative.
3. pρ : w Ñ w1, pw2 Ď w1, η P Hpw2, w1qqq„ P φ ‹w ψ if and only if there exist

w1, w2 such that w1 Z w2 “ w2, pρ, pw1 Ď w1,Hpw1 Ď w2, w1qηqq„ P φ and
pρ, pw2 Ď w1,Hpw2 Ď w2, w1qηqq„ P ψ.

Property (3) specifically tells us that any representative of an equivalence class
contained in a separating conjunction can be split in such a way that the respective
pieces belong to the arguments of the separating conjunction.

Remark 19. The only candidate for the unit of the separating conjunction ‹w
would be the emptiness predicate emptyw : 1 Ñ P̌pP̂ Ĥwq, identifying precisely
the empty heaplets. However, emptyw is not natural in w. In fact, it follows by
Yoneda lemma that there are exactly two natural transformations 1 Ñ P̌ ˝ pP̂ Ĥq,
which are the total truth and the total false, none of which is a unit for ‹w.

Remark 19 provides a formal argument why we cannot interpret classical sepa-
ration logic over P̌ ˝ pP̂ Ĥq. We thus proceed to identify for every w a subset of
P̌pP̂ Ĥwq, for which the total truth predicate becomes the unit of the separating
conjunction. Concretely, let Θ be the subfunctor of P̌ ˝ pP̂ Ĥq identified by the
following upward closure condition: φ P Θw if

pρ, ηq„ P φ, η ď η1 imply pρ, η1q„ P φ.

Lemma 20. Θ is an internal complete sublattice of P̌ ˝ pP̂ Ĥq, i.e. the inclusion
ι : Θ ↪Ñ P̌ ˝ pP̂ Ĥq preserves all meets and all joins. This canonically equips Θ
with an internally complete Heyting algebra structure.

Proof (Sketch). The key idea is to establish a retraction pι, clq with cl ˝ι “ id.
The requisite structure is then transferred from P̌ ˝ pP̂ Ĥq to Θ along it. The
Heyting implication for Θ is obtained using the standard formula pφ ñ ψq “∨{ξ | φ ^ ξ ď ψ} interpreted in the internal language. [\
Lemma 21. Separating conjunction preserves upward closure: for φ, ψ P Θw,
φ ‹w ψ “ clwpφ ‹w ψq.
Lemma 22. Θ is a BI-algebra: ‹w is obtained by restriction from P̌pP̂ Ĥwq by
Lemma 21, P̂ Ĥw is the unit for it and

φ ‹́w ψ “ {pρ, ηq„ P Θw | @ρ1 : w Ñ w1, η1, η2 P Ĥw1, η1 ¨ η2 defined ^
pρ, ηq „ pρ1, η1q ^ pρ1, η2q„ P φ ñ pρ1, η1 ¨ η2q„ P ψ}.

556 M. Polzer and S. Goncharov



– s, ρ, η |ù J
– s, ρ, η |ù φ ^ ψ if s, ρ, η |ù φ and s, ρ, η |ù ψ

– s, ρ, η |ù φ _ ψ if s, ρ, η |ù φ or s, ρ, η |ù ψ

– s, ρ, η |ù φ ñ ψ if for all pρ, ηq „ pρ1, η1q and η1 ď η2,

s, ρ1, η2 |ù φ implies s, ρ1, η2 |ù ψ

– s, ρ, η |ù φpvq if s, ρ, pp�Γ $v v : A�w1 ˝ Γρqs, ηq |ù φ

– s, ρ, pa, ηq |ù x. φ if a “ pXρqb and ps, bq, ρ, η |ù φ

– s, ρ, η |ù � ↪Ñ v if η “ pw2 Ď w1, δ P Hpw2, w1qq and

δpr : Sq “ p�Γ $v v : CTypepSq�w1 ˝ Γρqs
where p�Γ $v � : RefS�w1 ˝ Γρqs “ pr : Sq P w2

– s, ρ, η |ù v “ u if p�Γ $v v : A�w2 ˝Γρ1 ˝Γρqpsq “ p�Γ $v u : A�w2 ˝Γρ1 ˝Γρqpsq
for some ρ1 : w1 Ñ w2

– s, ρ, η |ù φ ‹ ψ if for suitable w1, w2, η P Hpw1 Z w2, w
1q,

s, ρ, pw1 Ď w1,Hpw1 Ď w1 Z w2, w
1qηq |ù φ and

s, ρ, pw2 Ď w1,Hpw2 Ď w1 Z w2, w
1qηq |ù ψ

– s, ρ, η |ù φ ‹́ ψ if for all pρ1, η1q „ pρ, ηq and for all η2 such that η1 ¨η2 is defined,

s, ρ1, η2 |ù φ implies s, ρ1, η1 ¨ η2 |ù ψ

– s, ρ, η |ù Dφ if Γ pûε ˝ ρqs, idw2 , pa, Ĥε ˝ ηq |ù φ for some ε : w1 � w2, a P Aw2

– s, ρ, η |ù @φ if Γ pûε ˝ ρqs, idw2 , pa, Ĥε ˝ ηq |ù φ for all ε : w1 � w2, a P Aw2

Fig. 5: Semantics of the logic.

Proof. In view of Lemma 20, we are left to show that the given operations are
natural and that Θ is an internal BI-algebra w.r.t. them. Since BI-algebras form
a variety [5], it suffices to show that each Θw is a BI-algebra. By Lemma 18 (ii),
it suffices to show that every p--q ‹w φ preserves arbitrary joins, for then we can
use the standard formula to calculate φ ‹́w ψ, which happens to be natural in w:

φ ‹́w ψ “
⋃

{ξ | φ ‹w ξ ď ψ}.

By unfolding the right-hand side, we obtain the expression for ‹́w figuring in
the statement of the lemma. [\

Theorem 23. Θ is an internally complete Heyting BI-algebra, hence r--, Θs is a
BI-hyperdoctrine.

Proof. Follows from Lemmas 20 and 22. [\
This now provides us with a complete semantics of the language in Fig. 4 with
�Γ $ φ : prop� : Γ Ñ Θ and �Γ $ φ : PA� : Γ Ñ PA where PA is the upward
closed subfunctor of P̌ ˝ pP̂ pûA ˆ Ĥqq, with upward closure only on the Ĥ-part,

Local Local Reasoning: A BI-Hyperdoctrine for Full Ground Store 557



which is isomorphic to ΘA. The resulting semantics is defined in Fig. 5 where
we write s, ρ, η |ù φ for pρ, ηq„ P �Γ $ φ : prop�psq and s, ρ, pa, ηq |ù φ for
pρ, pa, ηqq„ P �Γ $ φ : PA�psq. The following properties [4] are then automatic.

Proposition 24. – (Monotonicity) If s, ρ, η |ù φ and η ď η1 then s, ρ, η1 |ù φ.
– (Shrinkage) If s, ρ, η |ù φ, η1 ď η and η1 contains all cells reachable from s
and w then s, ρ, η1 |ù φ.

7 Examples

Let us illustrate subtle features of our semantics by some examples.

Example 25. Consider the formula D� : Ref Int . � ↪Ñ 5 from the introduction in
the empty context --. Then --, ρ, η |ù D�. � ↪Ñ 5 iff for some ε : w1 � w2, and
some x P Ref Intw

2, x, idw2 , pĤεqη |ù �1 ↪Ñ 5. The latter is true iff prxppĤεqηq “ 5.
Note that w1 may not contain � and it is always possible to choose ε so that w2
contains � and prxppĤεqηq “ 5. Hence, the original formula is always valid.

Example 26. The clauses in Fig. 5 are very similar to the standard Kripke
semantics of intuitionistic logic. Note however, that the clause for implication
strikingly differs from the expected one

– s, ρ, η |ù φ ñ ψ if for all η ď η1, s, ρ, η1 |ù φ implies s, ρ, η1 |ù ψ,

though. The latter is indeed not validated by our semantics, as witnessed by the
following example. Consider the following formulas φ and ψ respectively:

� : RefRefInt $ D�1. Dx. � ↪Ñ �1 ^ �1 ↪Ñ x : prop (6)

� : RefRefInt $ D�1. � ↪Ñ �1 ^ �1 ↪Ñ 6: prop (7)

The first formula is valid over heaplets, in which � refers to a reference to some
integer, while the second one is only valid over heaplets, in which � refers to a
reference to 6. Any η1 ě η “ pidw, p{�2} Ď {�, �2}, r�2 ÞÑ 6sqq satisfies both (6)
and (7) or none of them. However, the implication φ ñ ψ still is not valid over η
in our semantics, for

η „ pw ↪Ñ w ‘ p�1 : Intq, p{�1, �2} Ď {�, �1, �2}, r�1 ÞÑ 5, �2 ÞÑ 6sqq
ď pw ↪Ñ w ‘ p�1 : Intq, p{�, �1, �2} Ď {�, �1, �2}, r� ÞÑ �1, �1 ÞÑ 5, �2 ÞÑ 6sqq

and the latter heaplet validates φ but not ψ.

Example 27. Least μ and greatest ν fixpoints can be encoded in higher order
logic [2]. As an example, consider

isList “ μγ. �. � ↪Ñ null _ D�1, x. � ↪Ñ px, �1q ‹ γp�1q,
which specifies the fact that � is a pointer to a head of a list (eliding coproduct
injections in inl null and inrpx, �1q). By definition, isList satisfies the following
recursive equation:

isListp�q “ � ↪Ñ null _ D�1, x. � ↪Ñ px, �1q ‹ isListp�1q

558 M. Polzer and S. Goncharov



Let us expand the semantics of the right hand side. We have

�� : Ref list, isList : PpRef listq $ l ↪Ñ null _ D�1, x. � ↪Ñ px, �1q ‹ isListp�1q�wpisListq
“ {pρ : w Ñ w1, pRef listρqp�q, δ P Ĥw1q„ | prρp�qpδq “ null}Y

�� : Ref list, isList : PpRef listq $ D�1, x. � ↪Ñ px, �1q ‹ isListp�1q�wpisListq
“ {pρ : w Ñ w1, pRef listρqp�q, δ P Ĥw1q„ |

prρp�qpδq “ null _ D�1, x. prρp�q δ “ px, �1q ^ pρ, �1, δ � ρp�qq„ P isList}

where δ � ρp�q denotes the δ with the cell ρp�q removed. In summary, pρ : w Ñ
w1, pRef listρqp�q, δ P Ĥw1q„ is in �� : Ref list, isList : PpRef listq $ isListp�q�wpisListq
if and only if either prρp�q δ “ null or there exists an l1 P w1 such that prρp�q δ “
px, �1q and pρ, �1, δ � ρp�qq„ P isList .

8 Conclusions and Further Work

Compositionality is an uncontroversial desirable property in semantics and rea-
soning, which admits strikingly different, but equally valid interpretations, as
becomes particularly instructive when modelling dynamic memory allocation.
From the programming perspective it is desirable to provide compositional means
for keeping track of integrity of the underlying data, in particular, for preventing
dangling pointers. Reasoning however inherently requires introduction of partially
defined data, such as heaplets, which due to the compositionality principle must
be regarded as first class semantic units.

Here we have made a step towards reconciling recent extensional monad-
based denotational semantic for full-ground store [9] with higher order categorical
reasoning frameworks [2] by constructing a suitable intuitionistic BI-hyperdoctrine.
Much remains to be done. A highly desirable ingredient, which is currently missing
in our logic in Fig. 4 is a construct relating programs and logical assertions, such
as the following dynamic logic style modality

Γ $c p : A Γ $ φ : PA

Γ $ rpsφ : prop
which would allow us e.g. in a standard way to encode Hoare triples {φ}p{ψ} as
implications φ ñ rpsψ. This is difficult due to the outlined discrepancy in the
semantics for construction and reasoning. The categories of initializations for p
and φ and the corresponding hiding monads are technically incompatible. In
future work we aim to deeply analyse this phenomenon and develop a semantics
for such modalities in a principled fashion.

Orthogonally to these plans we are interested in further study of the full ground
store monad and its variants. One interesting research direction is developing
algebraic presentations of these monads in terms of operations and equations [17].
Certain generic methods [13] were proposed for the simple store case (Example 3),
and it remains to be seen if these can be generalized to the full ground store case.

Local Local Reasoning: A BI-Hyperdoctrine for Full Ground Store 559



References

1. Samson Abramsky. Intensionality, definability and computation. In Alexandru
Baltag and Sonja Smets, editors, Johan van Benthem on Logic and Information
Dynamics, pages 121–142. Springer, 2014.

2. Bodil Biering, Lars Birkedal, and Noah Torp-Smith. BI-hyperdoctrines, higher-order
separation logic, and abstraction. ACM Trans. Program. Lang. Syst., 29(5), 2007.

3. Ales Bizjak and Lars Birkedal. On models of higher-order separation logic. Electr.
Notes Theor. Comput. Sci., 336:57–78, 2018.

4. Cristiano Calcagno, Peter O’Hearn, and Richard Bornat. Program logic and equiva-
lence in the presence of garbage collection. Theoretical Computer Science, 298(3):557
– 581, 2003. Foundations of Software Science and Computation Structures.

5. Nikolaos Galatos, Peter Jipsen, Tomasz Kowalski, and Hiroakira Ono. Residuated
Lattices: An Algebraic Glimpse at Substructural Logics, Volume 151. Elsevier
Science, San Diego, CA, USA, 1st edition, 2007.

6. Peter Johnstone. Sketches of an elephant: A topos theory compendium. Oxford
logic guides. Oxford Univ. Press, New York, 2002.

7. Peter T Johnstone. Conditions related to De Morgan’s law. In Applications of
sheaves, pages 479–491. Springer, 1979.

8. Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal,
and Derek Dreyer. Iris from the ground up: A modular foundation for higher-order
concurrent separation logic. Journal of Functional Programming, 28:e20, 2018.

9. Ohad Kammar, Paul Blain Levy, Sean K. Moss, and Sam Staton. A monad for
full ground reference cells. In 32nd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2017, pages 1–12, 2017.

10. William Lawvere. Adjointness in foundations. Dialectica, 23(3-4):281–296, 1969.
11. Paul Blain Levy, John Power, and Hayo Thielecke. Modelling environments in

call-by-value programming languages. Inf. & Comp, 185:2003, 2002.
12. Saunders Mac Lane. Categories for the Working Mathematician. Springer, 1971.
13. Kenji Maillard and Paul-André Melliès. A fibrational account of local states. In

30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015,
pages 402–413. IEEE Computer Society, 2015.

14. Peter O’Hearn and Robert D. Tennent. Semantics of local variables. Applications
of categories in computer science, 177:217–238, 1992.

15. Frank Joseph Oles. A Category-theoretic Approach to the Semantics of Programming
Languages. PhD thesis, Syracuse University, Syracuse, NY, USA, 1982.

16. Gordon Plotkin and John Power. Notions of computation determine monads. In
FoSSaCS’02, volume 2303 of LNCS, pages 342–356. Springer, 2002.

17. Gordon Plotkin and John Power. Algebraic operations and generic effects. Appl.
Cat. Struct., 11(1):69–94, 2003.

18. David J. Pym, Peter W. O’Hearn, and Hongseok Yang. Possible worlds and
resources: the semantics of BI. Theor. Comput. Sci., 315:257–305, May 2004.

19. John Reynolds. The essence of ALGOL. In Peter W. O’Hearn and Robert D.
Tennent, editors, ALGOL-like Languages, Volume 1, pages 67–88. Birkhauser Boston
Inc., Cambridge, MA, USA, 1997.

20. John Reynolds. Intuitionistic reasoning about shared mutable data structure. In
Millennial Perspectives in Computer Science, pages 303–321. Palgrave, 2000.

21. John Reynolds. Separation logic: A logic for shared mutable data structures. In
17th Annual IEEE Symposium on Logic in Computer Science, LICS 2002, pages
55–74. IEEE Computer Society, 2002.

560 M. Polzer and S. Goncharov



22. Alex Simpson. Category-theoretic structure for independence and conditional
independence. Electr. Notes Theor. Comput. Sci., 336:281–297, 2018.

23. Sam Staton. Instances of computational effects: An algebraic perspective. In
Proc. 28th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS
2013), pages 519–519, June 2013.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Local Local Reasoning: A BI-Hyperdoctrine for Full Ground Store 561

http://creativecommons.org/licenses/by/4.0/


Quantum Programming with Inductive
Datatypes: Causality and Affine Type Theory

Romain Péchoux1, Simon Perdrix1, Mathys Rennela2, and
Vladimir Zamdzhiev1(�)

1 Université de Lorraine, CNRS, Inria, LORIA, F 54000 Nancy, France
{romain.pechoux|simon.perdrix|vladimir.zamdzhiev}@loria.fr

2 Leiden University, Leiden, The Netherlands
m.p.a.rennela@liacs.leidenuniv.nl

Abstract. Inductive datatypes in programming languages allow users
to define useful data structures such as natural numbers, lists, trees, and
others. In this paper we show how inductive datatypes may be added to
the quantum programming language QPL. We construct a sound cate-
gorical model for the language and by doing so we provide the first de-
tailed semantic treatment of user-defined inductive datatypes in quantum
programming. We also show our denotational interpretation is invariant
with respect to big-step reduction, thereby establishing another novel
result for quantum programming. Compared to classical programming,
this property is considerably more difficult to prove and we demonstrate
its usefulness by showing how it immediately implies computational ade-
quacy at all types. To further cement our results, our semantics is entirely
based on a physically natural model of von Neumann algebras, which are
mathematical structures used by physicists to study quantum mechanics.

Keywords: Quantum programming · Inductive types · Adequacy

1 Introduction

Quantum computing is a computational paradigm which takes advantage of
quantum mechanical phenomena to perform computation. A quantum computer
can solve problems which are out of reach for classical computers (e.g. factori-
sation of large numbers [24], solving large linear systems [8]). The recent de-
velopments of quantum technologies points out the necessity of filling the gap
between theoretical quantum algorithms and the actual (prototypes of) quan-
tum computers. As a consequence, quantum software and in particular quantum
programming languages play a key role in the future development of quantum
computing. The present paper makes several theoretical contributions towards
the design and denotational semantics of quantum programming languages.

Our development is based around the quantum programming language QPL
[23] which we extend with inductive datatypes. Our paper is the first to construct
a denotational semantics for user-defined inductive datatypes in quantum pro-
gramming. In the spirit of the original QPL, our type system is affine (discarding

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 562–581, 2020.
https://doi.org/10.1007/978-3-030-45231-5_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_29&domain=pdf


of arbitrary variables is allowed, but copying is restricted). We also extend QPL
with a copy operation for classical data, because this is an admissible operation
in quantum mechanics which improves programming convenience. The addition
of inductive datatypes requires a departure from the original denotational se-
mantics of QPL, which are based on finite-dimensional quantum structures, and
we consider instead (possibly infinite-dimensional) quantum structures based on
W*-algebras (also known as von Neumann algebras), which have been used by
physicists in the study of quantum foundations [25]. As such, our semantic treat-
ment is physically natural and our model is more accessible to physicists and
experts in quantum computing compared to most other denotational models.

QPL is a first-order programming language which has procedures, but it does
not have lambda abstractions. Thus, there is no use for a !-modality and we
show how to model the copy operation by describing the canonical comonoid
structure of all classical types (including the inductive ones).

An important notion in quantum mechanics is the idea of causality which
has been formulated in a variety of different ways. In this paper, we consider a
simple operational interpretation of causality: if the output of a physical process
is discarded, then it does not matter which process occurred [10]. In a symmetric
monoidal category C with tensor unit I, this can be understood as requiring that
for any morphism (process) f : A1 → A2, it must be the case that �A2 ◦f = �A1 ,
where �Ai : Ai → I is the discarding map (process) at the given objects. This
notion ties in very nicely with our affine language, because we have to show that
the interpretation of values is causal, i.e., values are always discardable.

A major contribution of this paper is that we prove the denotational seman-
tics is invariant with respect to both small-step reduction and big-step reduction.
The latter is more difficult in quantum programming and our paper is the first
to demonstrate such a result. As a corollary, we obtain computational adequacy.

2 Syntax of QPL

The syntax of QPL (including our extensions) is summarised in Figure 1. A well-
formed type context, denoted � Θ, is simply a list of distinct type variables. A
type A is well-formed in type context Θ, denoted Θ � A, if the judgement can be
derived according to the following rules (see [1,6] for a more detailed exposition):

� Θ
Θ � Θi

� Θ
Θ � I

� Θ
Θ � qbit

Θ � A Θ � B � ∈ {+,⊗}
Θ � A � B

Θ,X � A

Θ � μX.A

A type A is closed if · � A. Note that nested type induction is allowed. Hence-
forth, we implicitly assume that all types we are dealing with are well-formed.

Example 1. The type of natural numbers is defined as Nat ≡ μX.I +X. Lists
of a closed type · � A are defined as List(A) ≡ μY.I +A⊗ Y.

Notice that our type system is not equipped with a !-modality. Indeed, in the
absence of function types, there is no reason to introduce it. Instead, we specify

Quantum Programming with Inductive Datatypes 563



Types A,B ::= X | I | qbit | A+B | A⊗B | μX.A
Classical Types P,R ::= X | I | P +R | P ⊗R | μX.P
Terms M,N ::= new unit u | discard x | y = copy x | new qbit q |

b = measure q | q1, . . . , qn ∗= S | M ;N | skip |
while b do M | x = leftA,BM | x = rightA,BM |
case y of {left x1 → M | right x2 → N} |
x = (x1, x2) | (x1, x2) = x | y = fold x | y = unfold x |
proc f :: x : A → y : B {M} | y = f(x)

Variable contexts Γ,Σ ::= x1 : A1, . . . , xn : An

Procedure contexts Π ::= f1 : A1 → B1, . . . , fn : An → Bn

Π � 〈Γ 〉 new unit u 〈Γ, u : I〉 Π � 〈Γ, x : A〉 discard x 〈Γ 〉

P is a classical type
Π � 〈Γ, x : P 〉 y = copy x 〈Γ, x : P, y : P 〉 Π � 〈Γ 〉 skip 〈Γ 〉

Π � 〈Γ 〉 M 〈Γ ′〉 Π � 〈Γ ′〉 N 〈Σ〉
Π � 〈Γ 〉 M ;N 〈Σ〉

Π � 〈Γ, b : bit〉 M 〈Γ, b : bit〉
Π � 〈Γ, b : bit〉 while b do M 〈Γ, b : bit〉

Π � 〈Γ 〉 new qbit q 〈Γ, q : qbit〉 Π � 〈Γ, q : qbit〉 b = measure q 〈Γ, b : bit〉
S is a unitary of arity n

Π � 〈Γ, q1 : qbit, . . . , qn : qbit〉 q1, . . . , qn ∗= S 〈Γ, q1 : qbit, . . . , qn : qbit〉

Π � 〈Γ, x : A〉 y = leftA,B x 〈Γ, y : A+B〉

Π � 〈Γ, x : B〉 y = rightA,B x 〈Γ, y : A+B〉
Π � 〈Γ, x1 : A〉 M1 〈Σ〉 Π � 〈Γ, x2 : B〉 M2 〈Σ〉

Π � 〈Γ, y : A+B〉 case y of {leftA,B x1 → M1 | rightA,B x2 → M2 } 〈Σ〉

Π � 〈Γ, x1 : A, x2 : B〉 x = (x1, x2) 〈Γ, x : A⊗B〉

Π � 〈Γ, x : A⊗B〉 (x1, x2) = x 〈Γ, x1 : A, x2 : B〉

Π � 〈Γ, x : A[μX.A/X]〉 y = foldμX.A x 〈Γ, y : μX.A〉

Π � 〈Γ, x : μX.A〉 y = unfold x 〈Γ, y : A[μX.A/X]〉
Π, f : A → B � 〈x : A〉 M 〈y : B〉

Π � 〈Γ 〉 proc f :: x : A → y : B {M} 〈Γ 〉

Π, f : A → B � 〈Γ, x : A〉 y = f(x) 〈Γ, y : B〉

Fig. 1: Syntax and formation rules for QPL terms.

564 R. Péchoux et al.



the subset of types where copying is an admissible operation. The classical types
are a subset of our types defined in Figure 1. They are characterised by the
property that variables of classical types may be copied, whereas variables of
non-classical types may not be copied (see the rule for copying in Figure 1).

We use small Latin letters (e.g. x, y, u, q, b) to range over term variables. More
specifically, q ranges over variables of type qbit, u over variables of unit type I, b
over variables of type bit := I+I and x, y range over variables of arbitrary type.
We use Γ and Σ to range over variable contexts. A variable context is a function
from term variables to closed types, which we write as Γ = x1 : A1, . . . , xn : An.

We use f, g to range over procedure names. Every procedure name f has an
input type A and an output type B, denoted f : A → B, where A and B are
closed types. We use Π to range over procedure contexts. A procedure context
is a function from procedure names to pairs of procedure input-output types,
denoted Π = f1 : A1 → B1, . . . , fn : An → Bn.

Remark 2. Unlike lambda abstractions, procedures cannot be passed to other
procedures as input arguments, nor can they be returned as output.

A term judgement has the form Π � 〈Γ 〉 M 〈Σ〉 (see Figure 1) and indicates
that term M is well-formed in procedure context Π with input variable context
Γ and output variable context Σ. All types occurring within it are closed.

The intended interpretation of the quantum rules are as follows. The term
new qbit q prepares a new qubit q in state |0〉〈0|. The term q1, . . . , qn ∗= S
applies a unitary operator S to a sequence of qubits in the standard way. The
term b = measure q performs a quantum measurement on qubit q and stores the
measurement outcome in bit b. The measured qubit is destroyed in the process.

The no-cloning theorem of quantum mechanics [28] shows that arbitrary
qubits cannot be copied. Because of this, copying is restricted only to classical
types, as indicated in Figure 1, and this allows us to avoid runtime errors. Like
the original QPL [23], our type system is also affine and so any variable can be
discarded (see the formation rule for the term discard x in Figure 1).

3 Operational Semantics of QPL

In this section we describe the operational semantics of QPL. The central notion
is that of a program configuration which provides a complete description of the
current state of program execution. It consists of four components that must
satisfy some coherence properties: (1) the term which remains to be executed;
(2) a value assignment, which is a function that assigns formal expressions to
variables as a result of execution; (3) a procedure store which keeps track of what
procedures have been defined so far and (4) the quantum state computed so far.

Value Assignments. A value is an expression defined by the following grammar:

v, w ::= ∗ | n | leftA,Bv | rightA,Bv | (v, w) | foldμX.Av

Quantum Programming with Inductive Datatypes 565



where n ranges over the natural numbers. Think of ∗ as representing the unique
value of unit type I and of n as representing a pointer to the n-th qubit of a
quantum state ρ. Specific values of interest are ff := leftI,I∗ and tt := rightI,I∗
which correspond to false and true respectively.

A qubit pointer context is a set Q of natural numbers. A value v of type A is
well-formed in qubit pointer context Q, denoted Q � v : A, if the judgement is
derivable from the following rules:

· � ∗ : I {n} � n : qbit
Q � v : A

Q � leftA,Bv : A+B

Q � v : B

Q � rightA,Bv : A+B

Q1 � v : A Q2 � w : B Q1 ∩Q2 = ∅
Q1, Q2 � (v, w) : A⊗B

Q � v : A[μX.A/X]

Q � foldμX.Av : μX.A

If v is well-formed, then its type and qubit pointer context are uniquely deter-
mined. If Q � v : P with P classical, then we say v is a classical value.

Lemma 3. If Q � v : P is a well-formed classical value, then Q = ·.

A value assignment is a function from term variables to values, which we
write as V = {x1 = v1, . . . , xn = vn}, where xi are variables and vi are values. A
value assignment is well-formed in qubit pointer context Q and variable context
Γ , denoted Q;Γ � V, if V has exactly the same variables as Γ , so that Γ = {x1 :
A1, . . . , xn : An}, and Q = Q1, . . . , Qn, s.t. Qi � vi : Ai. Such a splitting of Q is
necessarily unique, if it exists, and some of the Qi may be empty.

Procedure Stores. A procedure store is a set of procedure definitions, written as:

Ω = {f1 :: x1 : A1 → y1 : B1 {M1}, . . . , fn :: xn : An → yn : Bn {Mn}} .

A procedure store is well-formed in procedure context Π, written Π � Ω, if the
judgement is derivable via the following rules:

· � ·
Π � Ω Π, f : A → B � 〈x : A〉 M 〈y : B〉
Π, f : A → B � Ω, f :: x : A → y : B {M}

Program Configurations. A program configuration is a quadruple (M | V | Ω | ρ),
where M is a term, V is a value assignment, Ω is a procedure store and ρ ∈
C2n×2n is a finite-dimensional density matrix with 0 ≤ tr(ρ) ≤ 1. The density
matrix ρ represents a (mixed) quantum state and its trace may be smaller than
one because we also use it to encode probability information (see Remark 4).
We write dim(ρ) = n to indicate that the dimension of ρ is n.

A well-formed program configuration is a configuration (M | V | Ω | ρ),
where there exist (necessarily unique) Π,Γ,Σ,Q, such that: (1) Π � 〈Γ 〉 M 〈Σ〉
is a well-formed term; (2) Q;Γ � V is a well-formed value assignment; (3)
Π � Ω is a well-formed procedure store; and (4) Q = {1, 2, . . . , dim(ρ)}. We
write Π;Γ ;Σ;Q � (M | V | Ω | ρ) to indicate this situation. The formation
rules enforce that the qubits of ρ and the qubit pointers from V are in a 1-1
correspondence.

566 R. Péchoux et al.



(new unit u | V | Ω | ρ) � (skip | V, u = ∗ | Ω | ρ)

(discard x | V, x = v | Ω | ρ) � (skip | rv(V ) | Ω | trv(ρ))

(y = copy x | V, x = v | Ω | ρ) � (skip | V, x = v, y = v | Ω | ρ)

(new qbit q | V | Ω | ρ) � (skip | V, q = dim(ρ) + 1 | Ω | ρ⊗ |0〉〈0|)

( #„q ∗= S | V, #„q = #„m | Ω | ρ) � (skip| V, #„q = #„m | Ω | S #„m(ρ))

(b = measure q | V, q = m | Ω | ρ) � (skip | rm(V ), b = ff | Ω | m〈0|ρ|0〉m)

(b = measure q | V, q = m | Ω | ρ) � (skip | rm(V ), b = tt | Ω | m〈1|ρ|1〉m)

(skip;P | V | Ω | ρ) � (P | V | Ω | ρ)
(P | V | Ω | ρ) � (P ′ | V ′ | Ω′ | ρ′)

(P ;Q | V | Ω | ρ) � (P ′;Q | V ′ | Ω′ | ρ′)

(while b do M | V, b = ff | Ω | ρ) � (skip | V, b = ff | Ω | ρ)

(while b do M | V, b = tt | Ω | ρ) � (M ;while b do M | V, b = tt | Ω | ρ)

(y = left x | V, x = v | Ω | ρ) � (skip | V, y = left v | Ω | ρ)

(y = right x | V, x = v | Ω | ρ) � (skip | V, y = right v | Ω | ρ)

(case y of {left x1 → M1 | right x2 → M2 } | V, y = left v | Ω | ρ) � (M1 | V, x1 = v | Ω | ρ)

(case y of {left x1 → M1 | right x2 → M2 } | V, y = right v | Ω | ρ) � (M2 | V, x2 = v | Ω | ρ)

(x = (x1, x2) | V, x1 = v1, x2 = v2 | Ω | ρ) � (skip | V, x = (v1, v2) | Ω | ρ)

((x1, x2) = x | V, x = (v1, v2) | Ω | ρ) � (skip | V, x1 = v1, x2 = v2 | Ω | ρ)

(y = fold x | V, x = v | Ω | ρ) � (skip | V, y = fold v | Ω | ρ)

(y = unfold x | V, x = fold v | Ω | ρ) � (skip | V, y = v | Ω | ρ)

(proc f :: x : A → y : B {M} | V | Ω | ρ) � (skip | V | Ω, f :: x : A → y : B {M} | ρ)

(y1 = f(x1) | V, x1 = v | Ω, f :: x2 : A → y2 : B {M} | ρ) �
(Mα | V, x1 = v | Ω, f :: x2 : A → y2 : B {M} | ρ)

Fig. 2: Small Step Operational semantics of QPL.

Quantum Programming with Inductive Datatypes 567



The small step semantics is defined for configurations (M | V | Ω | ρ) by
induction on M in Figure 2 and we now explain the notations used therein.

In the rule for discarding, we use two functions that depend on a value v.
They are trv, which modifies the quantum state ρ by tracing out all of its qubits
which are used in v, and rv which simply reindexes the value assignment, so that
the pointers within rv(V ) correctly point to the corresponding qubits of trv(ρ),
which is potentially of smaller dimension than ρ. Formally, for a well-formed
value v, let Q and A be the unique qubit pointer context and type, such that
Q � v : A. Then trv(ρ) is the quantum state obtained from ρ by tracing out all
qubits specified by Q. Given a value assignment V = {x1 = v1, . . . xn = vn},
then rv(V ) = {x1 = r′v(v1), . . . , xn = r′v(vn)}, where:

r′v(w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∗, if w = ∗
k − |{i ∈ Q | i < k}|, if w = k ∈ N
left r′v(w

′), if w = left w′

right r′v(w
′), if w = right w′

(r′v(w1), r
′
v(w2)) if w = (w1, w2)

fold r′v(w
′), if w = fold w′

In the rule for unitaries, the superoperator S #„m applies the unitary S to the
vector of qubits specified by #„m. In the rules for measurement, the m-th qubit of
ρ is measured in the computational basis, the measured qubit is destroyed in the
process and the measurement outcome is stored in the bit b. More specifically,
|i〉m = I2m−1 ⊗ |i〉 ⊗ I2n−m and m〈i| is its adjoint, for i ∈ {0, 1}, and where In is
the identity matrix in Cn×n.

Remark 4. Because of the way we decided to handle measurements, reduction
(− � −) is a nondeterministic operation, where we encode the probabilities
of reduction within the trace of our density matrices in a similar way to [9].
Equivalently, we may see the reduction relation as probabilistic provided that we
normalise all density matrices and decorate the reductions with the appropriate
probability information as specified by the Born rule of quantum mechanics.
The nondeterministic view leads to a more concise and clear presentation and
because of this we have chosen it over the probabilistic view.

The introduction rule for procedures simply defines a procedure which is
added to the procedure store. In the rule for calling procedures, the term Mα

is α-equivalent to M and is obtained from it by renaming the input x2 to x1,
renaming the output y2 to y1 and renaming all other variables within M to some
fresh names, so as to avoid conflicts with the input, output and the rest of the
variables within V .

Theorem 5 (Subject reduction). If Π;Γ ;Σ;Q � (M | V | Ω | ρ) and
(M | V | Ω | ρ) � (M ′ | V ′ | Ω′ | ρ′), then Π ′;Γ ′;Σ;Q′ � (M ′ | V ′ | Ω′ | ρ′),
for some (necessarily unique) contexts Π ′, Γ ′, Q′ and where Σ is invariant.

Assumption 6. From now on we assume all configurations are well-formed.

568 R. Péchoux et al.



while b do {
new qbit q;
q *= H;
discard b;
b = measure q

}

(a) A term M

(M | b = tt | · | 1)

(M | b = tt | · | 0.5)

(M | b = tt | · | 0.25)

�
∗ �

∗

(skip | b = ff | · | 0.5)
�

∗

(skip | b = ff | · | 0.25)

�
∗

(skip | b = ff | · | 0.125)

�
∗···

�
∗

(b) A reduction graph involving M

Fig. 3: Example of a term and of a reduction graph.

A configuration (M | V | Ω | ρ) is said to be terminal if M = skip. Program
execution finishes at terminal configurations, which are characterised by the
property that they do not reduce any further. We will use calligraphic letters
(C,D, . . .) to range over configurations and we will use T to range over terminal
configurations. For a configuration C = (M | V | Ω | ρ), we write for brevity
tr(C) := tr(ρ) and we shall say C is normalised whenever tr(C) = 1. We say that
a configuration C is impossible if tr(C) = 0 and we say it is possible otherwise.

Theorem 7 (Progress). If C is a configuration, then either C is terminal or
there exists a configuration D, such that C � D. Moreover, if C is not terminal,
then tr(C) =

∑
C�D tr(D) and there are at most two such configurations D.

In the situation of the above theorem, the probability of reduction is given
by Pr(C � D) := tr(D)/tr(C), for any possible C (see Remark 4) and Theorem 7
shows the total probability of all single-step reductions is 1. If C is impossible,
then C occurs with probability 0 and subsequent reductions are also impossible.

Probability of Termination. Given configurations C and D let Seqn(C,D) :=
{C0 � · · · � Cn| C0 = C and Cn = D}, and let Seq≤n(C,D) =

⋃n
i=0 Seqn(C,D).

Finally, let TerSeq≤n(C) :=
⋃

T terminal Seq≤n(C, T ). In other words, TerSeq≤n(C)
is the set of all reduction sequences from C which terminate in at most n
steps (including 0 if C is terminal). For every terminating reduction sequence
r = (C � · · · � T ), let End(r) := T , i.e. End(r) is simply the (terminal) end-
point of the sequence.

For any configuration C, the sequence
(∑

r∈TerSeq≤n(C) tr(End(r))
)
n∈N

is in-

creasing with upper bound tr(C) (follows from Theorem 7). For any possible C,
we define:

Halt(C) :=
∞∨

n=0

∑
r∈TerSeq≤n(C)

tr(End(r))/tr(C)

which is exactly the probability of termination of C. This is justified, because
Halt(T ) = 1, for any terminal (and possible) configuration T and Halt(C) =∑

C�D
D possible

Pr(C � D)Halt(D). We write �∗ for the transitive closure of �.

Quantum Programming with Inductive Datatypes 569



proc GHZnext :: l : ListQ -> l : ListQ {
new qbit q;
case l of

nil -> q*=H;
l = q :: nil

| q’ :: l’ -> q’,q *= CNOT;
l = q :: q’ :: l’

}

proc GHZ :: n : Nat -> l : ListQ {
case n of

zero -> l = nil
| s(n’) -> l = GHZnext(GHZ(n’))

}

(a) Procedures for generating
GHZn.

(l = GHZnext(l) | l = 2 :: 1 :: nil | Ω | γ2)

�

(new qbit q; · · · | l = 2 :: 1 :: nil | Ω | γ2)

�

(case l of · · · | l = 2 :: 1 :: nil, q = 3 | Ω | γ2 ⊗ |0〉〈0|)

�
∗

(q’,q *=CNOT; · · · | l’ = 1 :: nil, q = 3, q’ = 2 | Ω | γ2 ⊗ |0〉〈0|)
�

(l = q :: q’ :: l’ | l’ = 1 :: nil, q = 3, q’ = 2 | Ω | γ3)�
∗

(skip | l = 3 :: 2 :: 1 :: nil | Ω | γ3)

(l = GHZ(n) | n = s(s(s(zero))) | Ω | 1)

�
∗

(b) A reduction sequence producing GHZ3.

Fig. 4: Example with lists of qubits and a recursive procedure.

Example 8. Consider the term M in Figure 3. The body of the while loop (3a)
has the effect of performing a fair coin toss (realised through quantum measure-
ment in the standard way) and storing the outcome in variable b. Therefore,
starting from configuration C = (M | b = tt | · | 1), as in Subfigure 3b, the pro-
gram has the effect of tossing a fair coin until ff shows up. The set of terminal
configurations reachable from C is {(skip | b = ff | · | 2−i) | i ∈ N≥1} and the
last component of each configuration is a 1×1 density matrix which is exactly the
probability of reducing to the configuration. Therefore Halt(C) =

∑∞
i=1 2

−i = 1.

Example 9. The GHZn state is defined as γn := (|0〉⊗n
+|1〉⊗n

)(〈0|⊗n
+〈1|⊗n

)/2.
In Figure 4, we define a procedure GHZ, which given a natural number n, gen-
erates the state γn, which is represented as a list of qubits of length n. The
procedure (4a) uses an auxiliary procedure GHZnext, which given a list of qubits
representing the state γn, returns the state γn+1 again represented as a list of
qubits. The two procedures make use of some (hopefully obvious) syntactic sugar.
In 4b, we also present the last few steps of a reduction sequence which produces
γ3 starting from configuration (l = GHZ(n) | n = s(s(s(zero))) | Ω | 1), where
Ω contains the above mentioned procedures. In the reduction sequence we only
show the term in evaluating position and we omit some intermediate steps. The
type ListQ is a shorthand for List(qbit) from Example 1.

4 W*-algebras

In this section we describe our denotational model. It is based on W*-algebras,
which are algebras of observables (i.e. physical entities), with interesting domain-
theoretic properties. We recall some background on W*-algebras and their cat-

570 R. Péchoux et al.



egorical structure. We refer the reader to [25] for an encyclopaedic account on
W*-algebras.

Domain-theoretic Preliminaries. Recall that a directed subset of a poset P is
a non-empty subset X ⊆ P in which every pair of elements of X has an upper
bound in X. A poset P is a directed-complete partial order (dcpo) if each directed
subset has a supremum. A poset P is pointed if it has a least element, usually
denoted by ⊥. A monotone map f : P → Q between posets is Scott-continuous if
it preserves suprema of directed subsets. If P and Q are pointed and f preserves
the least element, then we say f is strict. We write DCPO (DCPO⊥!) for the
category of (pointed) dcpo’s and (strict) Scott-continuous maps between them.

Definition of W*-algebras. A complex algebra is a complex vector space V
equipped with a bilinear multiplication (− · −) : V × V → V , which we write
as juxtaposition. A Banach algebra A is a complex algebra A equipped with a
submultiplicative norm ‖ − ‖ : A → R≥0, i.e. ∀x, y ∈ A : ‖xy‖ ≤ ‖x‖‖y‖. A
∗-algebra A is a complex algebra A with an involution (−)∗ : A → A such that
(x∗)∗ = x, (x + y)∗ = (x∗ + y∗), (xy)∗ = y∗x∗ and (λx)∗ = λx∗, for x, y ∈ A
and λ ∈ C. A C*-algebra is a Banach ∗-algebra A which satisfies the C*-identity,
i.e. ‖x∗x‖ = ‖x‖2 for all x ∈ A. A C*-algebra A is unital if it has an element
1 ∈ A, such that for every x ∈ A : x1 = 1x = x. All C*-algebras in this paper
are unital and for brevity we regard unitality as part of their definition.

Example 10. The algebra Mn(C) of n × n complex matrices is a C*-algebra.
In particular, the set of complex numbers C has a C*-algebra structure since
M1(C) ∼= C. More generally, the n × n matrices valued in a C*-algebra A also
form a C*-algebra Mn(A). The C*-algebra of qubits is qbit := M2(C).

An element x ∈ A of a C*-algebra A is called positive if ∃y ∈ A : x = y∗y.
The poset of positive elements of A is denoted A+ and its order is given by
x ≤ y iff (y − x) ∈ A+. The unit interval of A is the subposet [0, 1]A ⊆ A+ of
all positive elements x such that 0 ≤ x ≤ 1.

Let f : A → B be a linear map between C*-algebras A and B. We say
that f is positive if it preserves positive elements. We say that f is completely
positive if it is n-positive for every n ∈ N, i.e. the map Mn(f) : Mn(A) →
Mn(B) defined for every matrix [xi,j ]1≤i,j≤n ∈ Mn(A) by Mn(f)([xi,j ]1≤i,j≤n) =
[f(xi,j)]1≤i,j≤n is positive. The map f is called multiplicative, involutive, unital
if it preserves multiplication, involution, and the unit, respectively. The map f
is called subunital whenever the inequalities 0 ≤ f(1) ≤ 1 hold. A state on a
C*-algebra A is a completely positive unital map s : A → C.

Although W*-algebras are commonly defined in topological terms (as C*-
algebras closed under several operator topologies) or equivalently in algebraic
terms (as C*-algebras which are their own bicommutant), one can also equiva-
lently define them in domain-theoretic terms [19], as we do next.

A completely positive map between C*-algebras is normal if its restriction
to the unit interval is Scott-continuous [19, Proposition A.3]. A W*-algebra is a

Quantum Programming with Inductive Datatypes 571



C*-algebra A such that the unit interval [0, 1]A is a dcpo, and A has a separating
set of normal states: for every x ∈ A+, if x �= 0, then there is a normal state
s : A → C such that s(x) �= 0 [25, Theorem III.3.16].

A linear map f : A → B between W*-algebras A and B is called an NCPSU-
map if f is normal, completely positive and subunital. The map f is called an
NMIU-map if f is normal, multiplicative, involutive and unital. We note that
every NMIU-map is necessarily an NCPSU-map and that W*-algebras are closed
under formation of matrix algebras as in Example 10.

Categorical Structure. Let W∗
NCPSU be the category of W*-algebras and NCPSU-

maps and let W∗
NMIU be its full-on-objects subcategory of NMIU-maps. Through-

out the rest of the paper let C := (W∗
NCPSU)

op and let V := (W∗
NMIU)

op. QPL
types are interpreted as functors �Θ � A� : V|Θ| → V and closed QPL types as
objects �A� ∈ Ob(V) = Ob(C). One should think of V as the category of val-
ues, because the interpretation of our values from §3 are indeed V-morphisms.
General QPL terms are interpreted as morphisms of C, so one should think of
C as the category of computations. We now describe the categorical structure of
V and C and later we justify our choice for working in the opposite categories.

Both C and V have a symmetric monoidal structure when equipped with
the spatial tensor product, denoted here by (−⊗−), and tensor unit I := C [11,
Section 10]. Moreover, V is symmetric monoidal closed and also complete and
cocomplete [11]. C and V have finite coproducts, given by direct sums of W*-
algebras [2, Proposition 4.7.3]. The coproduct of objects A and B is denoted
by A + B and the coproduct injections are denoted leftA,B : A → A + B and
rightA,B : B → A + B. Given morphisms f : A → C and g : B → C, we write
[f, g] : A + B → C for the unique cocone morphism induced by the coproduct.
Moreover, coproducts distribute over tensor products [2, §4.6]. More specifically,
there exists a natural isomorphism dA,B,C : A⊗ (B + C) → (A⊗B) + (A⊗ C)
which satisfies the usual coherence conditions. The initial object in C is moreover
a zero object and is denoted 0. The W*-algebra of bits is bit := I + I = C⊕C.

The categories V,C and Set are related by symmetric monoidal adjunctions:

Set V
F

� C
J

�

G R
[26, pp. 11]

and the subcategory inclusion J preserves coproducts and tensors up to equality.
Interpreting QPL within C and V is not an ad hoc trick. In physical terms,

this corresponds to adopting the Heisenberg picture of quantum mechanics and
this is usually done when working with infinite-dimensional W*-algebras (like
we do). Semantically, this is necessary, because (1) our type system has condi-
tional branching and we need to interpret QPL terms within a category with
finite coproducts; (2) we have to be able to compute parameterised initial al-
gebras to interpret inductive datatypes. The category W∗

NCPSU has finite prod-
ucts, but it does not have coproducts, so by interpreting QPL terms within
C = (W∗

NCPSU)
op we solve problem (1). For (2), the monoidal closure of V =

(W∗
NMIU)

op is crucial, because it implies the tensor product preserves ω-colimits.

572 R. Péchoux et al.



tr : Mn(C) → C newρ : C → M2n(C) meas : M2(C) → C⊕ C unitaryS : M2n(C) → M2n(C)

tr :: A �→ ∑
i Ai,i newρ :: a �→ aρ meas ::

(
a b
c d

)
�→ (

a d
)

unitaryS :: A �→ SAS†

tr† : C → Mn(C) new†
ρ : M2n(C) → C meas† : C⊕ C → M2(C) unitary†

S : M2n(C) → M2n(C)

tr† :: a �→ aIn new†
ρ :: A �→ tr(Aρ) meas† ::

(
a d

) �→
(
a 0
0 d

)
unitary†

S :: A �→ S†AS

Fig. 5: A selection of maps in the Schrödinger picture (f : A → B) and their
Hermitian adjoints (f† : B → A) used in the Heisenberg picture.

Convex Sums. In both C and W∗
NCPSU, morphisms are closed under convex

sums, which are defined pointwise, as usual. More specifically, given NCPSU-
maps f1, . . . , fn : A → B and real numbers pi ∈ [0, 1] with

∑
i pi ≤ 1, then the

map
∑

i pifi : A → B is also an NCPSU-map.

Order-enrichment. For W*-algebras A and B, we define a partial order on
C(A,B) by : f ≤ g iff g − f is a completely positive map. Equipped with
this order, our category C is DCPO⊥!-enriched [3, Theorem 4.3]. The least el-
ement in C(A,B) is also a zero morphism and is given by the map 0 : A → B,
defined by 0(x) = 0. Also, the coproduct structure and the symmetric monoidal
structure are both DCPO⊥!-enriched [2, Corollary 4.9.15] [3, Theorem 4.5].

Quantum Operations. For convenience, our operational semantics adopts the
Schrödinger picture of quantum mechanics, which is the picture most experts in
quantum computing are familiar with. However, as we have just explained, our
denotational semantics has to adopt the Heisenberg picture. The two pictures are
equivalent in finite dimensions and we will now show how to translate from one
to the other. By doing so, we provide an explicit description (in both pictures)
of the required quantum maps that we need to interpret QPL.

Consider the maps in Figure 5. The map tr is used to trace out (or discard)
parts of quantum states. Density matrices ρ are in 1-1 correspondence with the
maps newρ, which we use in our semantics to describe (mixed) quantum states.
The meas map simply measures a qubit in the computational basis and returns
a bit as measurement outcome. The unitaryS map is used for application of a
unitary S. These maps work as described in the Schrödinger picture of quantum
mechanics, i.e., the category W∗

NCPSU. For every map f : A → B among those
mentioned, f† : B → A indicates its Hermitian adjoint 3. In the Heisenberg
picture, composition of maps is done in the opposite way, so we simply write
f‡ := (f†)op ∈ C(A,B) for the Hermitian adjoint of f when seen as a morphism
in (W∗

NCPSU)
op = C. Thus, the mapping (−)‡ translates the above operations

from the Schrödinger picture (the category W∗
NCPSU) to the Heisenberg picture

(the category C) of quantum mechanics.

3 This adjoint exists, because A and B are finite-dimensional W*-algebras which there-
fore have the structure of a Hilbert space when equipped with the Hilbert-Schmidt
inner product [27, pp. 145].

Quantum Programming with Inductive Datatypes 573



Parameterised Initial Algebras. In order to interpret inductive datatypes, we
need to be able to compute parameterised initial algebras for the functors in-
duced by our type expressions. V is ideal for this, because it is cocomplete and
monoidal closed and so all type expressions induce functors on V which preserve
ω-colimits.

Definition 11 (cf. [6, §6.1]). Given a category A and a functor T : An → A,
with n ≥ 1, a parameterised initial algebra for T is a pair (T �, φT ), such that:

– T � : An−1 → A is a functor;
– φT : T ◦ 〈Id, T �〉 ⇒ T � : An−1 → A is a natural isomorphism;
– For every A ∈ Ob(An−1), the pair (T �A, φT

A) is an initial T (A,−)-algebra.

Proposition 12. Every ω-cocontinuous functor T : Vn → V has a parame-
terised initial algebra (T �, φT ) with T � : Vn−1 → V being ω-cocontinuous.

Proof. V is cocomplete, so this follows from [13, §4.3]. ��

5 Denotational Semantics of QPL

In this section we describe the denotational semantics of QPL.

5.1 Interpretation of Types

The interpretation of a type Θ � A is a functor �Θ � A� : V|Θ| → V, defined
by induction on the derivation of Θ � A in Figure 6. As usual, one has to prove
this assignment is well-defined by showing the required initial algebras exist.

Proposition 13. The assignment in Figure 6 is well-defined.

Proof. By induction, every �Θ � A� is an ω-cocontinuous functor and thus it has
a parameterised initial algebra by Proposition 12. ��
Lemma 14 (Type Substitution). Given types Θ,X � A and Θ � B, then:

�Θ � A[B/X]� = �Θ,X � A� ◦ 〈Id, �Θ � B�〉.

Proof. Straightforward induction. ��
For simplicity, the interpretation of terms is only defined on closed types and so
we introduce more concise notation for them. For any closed type · � A we write
for convenience �A� := �· � A�(∗) ∈ Ob(V), where ∗ is the unique object of the
terminal category 1. Notice also that �A� ∈ Ob(C) = Ob(V).

Definition 15. Given a closed type · � μX.A, we define an isomorphism (in
V):

foldμX.A : �A[μX.A/X]� = �X � A��μX.A� ∼= �μX.A� : unfoldμX.A

where the equality is Lemma 14 and the iso is the initial algebra structure.

Example 16. The interpretation of the types from Example 1 are �Nat� =⊕ω
i=0 C and �List(A)� =

⊕ω
i=0 �A�⊗i. Specifically, �List(qbit)� =

⊕ω
i=0 C2i×2i .

574 R. Péchoux et al.



�Θ � A� : V|Θ| → V

�Θ � Θi� = Πi

�Θ � I� = KI

�Θ � qbit� = Kqbit

�Θ � A+B� = + ◦ 〈�Θ � A�, �Θ � B�〉
�Θ � A⊗B� = ⊗ ◦ 〈�Θ � A�, �Θ � B�〉
�Θ � μX.A� = �Θ,X � A��

Fig. 6: Interpretations of types. KA is the constant-A-functor.

�· � ∗ : I� := idI

�{n} � n : qbit� := idqbit

�Q � leftA,Bv : A+B� := left ◦ �v�
�Q � rightA,Bv : A+B� := right ◦ �v�

�Q1, Q2 � (v, w) : A⊗B� := �v� ⊗ �w�
�Q � foldμX.Av : μX.A� := fold ◦ �v�

Fig. 7: Interpretation of values.

�Π � 〈Γ 〉 new unit u 〈Γ, u : I〉� := π �→ r−1

�Π � 〈Γ, x : A〉 discard x 〈Γ 〉� := π �→ (r ◦ (id ⊗ ))
�Π � 〈Γ, x : P 〉 y = copy x 〈Γ, x : P, y : P 〉� := π �→ (id ⊗�)

�Π � 〈Γ 〉 new qbit q 〈Γ, q : qbit〉� := π �→
(
(id ⊗ new‡

|0〉〈0|) ◦ r−1
)

�Π � 〈Γ, q : qbit〉 b = measure q 〈Γ, b : bit〉� := π �→ (
id ⊗meas‡

)
�Π � 〈Γ, #„q :

#       „
qbit〉 #„q ∗= S 〈Γ, #„q :

#       „
qbit〉� := π �→

(
id ⊗ unitary‡

S

)
�Π � 〈Γ 〉 M ;N 〈Σ〉� := π �→ (�N�(π) ◦ �M�(π))
�Π � 〈Γ 〉 skip 〈Γ 〉� := π �→ id
�Π � 〈Γ, b : bit〉 while b do M 〈Γ, b : bit〉� := π �→ lfp(W�M�(π))
�Π � 〈Γ, x : A〉 y = leftA,B x 〈Γ, y : A+B〉� := π �→ (id ⊗ leftA,B)
�Π � 〈Γ, x : B〉 y = rightA,B x 〈Γ, y : A+B〉� := π �→ (

id ⊗ rightA,B

)
�Π � 〈Γ, y : A+B〉 case y of {left x1 → M1 | right x2 → M2} 〈Σ〉� :=

π �→ ([�M1�(π), �M2�(π)] ◦ d)
�Π � 〈Γ, x1 : A, x2 : B〉 x = (x1, x2) 〈Γ, x : A⊗B〉� := π �→ id
�Π � 〈Γ, x : A⊗B〉 (x1, x2) = x 〈Γ, x1 : A, x2 : B〉� := π �→ id
�Π � 〈Γ, x : A[μX.A/X]〉 y = fold x 〈Γ, y : μX.A〉� := π �→ (id ⊗ fold)
�Π � 〈Γ, x : μX.A〉 y = unfold x 〈Γ, y : A[μX.A/X]〉� := π �→ (id ⊗ unfold)
�Π � 〈Γ 〉 proc f :: x : A → y : B {M} 〈Γ 〉� := π �→ id
�Π, f : A → B � 〈Γ, x : A〉 y = f(x) 〈Γ, y : B〉� := (π, f) �→ (id ⊗ f) ,
where r is the right monoidal unit. For simplicity, we omit the monoidal associator.

Fig. 8: Interpretation of QPL terms.

Quantum Programming with Inductive Datatypes 575



5.2 Copying and Discarding

Our type system is affine, so we have to construct discarding maps at all types.
The tensor unit I is a terminal object in V (but not in C) which leads us to the
next definition.

Definition 17 (Discarding map). For any W*-algebra A, let �A : A → I be
the unique morphism of V with the indicated domain and codomain.

We will see that all values admit an interpretation as V-morphisms and are
therefore discardable. In physical terms, this means values are causal (in the sense
mentioned in the introduction). Of course, this is not true for the interpretation
of general terms (which correspond to C-morphisms).

Our language is equipped with a copy operation on classical data, so we have
to explain how to copy classical values. We do this by constructing a copy map
defined at all classical types using results from [13,14].

Proposition 18. Using the categorical data of Set V
F

�

G
, one can

define a copy map ��P � : �P � → �P � ⊗ �P � for every classical type · � P , such
that the triple

(
�P �,��P �, ��P �

)
forms a cocommutative comonoid in V.

We shall later see that the interpretations of our classical values are comonoid
homomorphisms (w.r.t. Proposition 18) and therefore they may be copied.

5.3 Interpretation of Terms

Given a variable context Γ = x1 : A1, . . . , xn : An, we interpet it as the object
�Γ � := �A1� ⊗ · · · ⊗ �An� ∈ Ob(C). The interpretation of a procedure context
Π = f1 : A1 → B1, . . . , fn : An → Bn is defined to be the pointed dcpo
�Π� := C(A1, B1)× · · · ×C(An, Bn). A term Π � 〈Γ 〉 M 〈Σ〉 is interpreted as
a Scott-continuous function �Π � 〈Γ 〉 M 〈Σ〉� : �Π� → C(�Γ �, �Σ�) defined by
induction on the derivation of Π � 〈Γ 〉 M 〈Σ〉 in Figure 8. For brevity, we often
write �M� := �Π � 〈Γ 〉 M 〈Σ〉�, when the contexts are clear or unimportant.

We now explain some of the notation used in Figure 8. The rules for ma-
nipulating qubits use the morphisms new‡

|0〉〈0|,meas‡ and unitary‡S which are
defined in §4. For the interpretation of while loops, given an arbitrary mor-
phism f : A⊗ bit → A⊗ bit of C, we define a Scott-continuous endofunction

Wf : C (A⊗ bit, A⊗ bit) → C(A⊗ bit, A⊗ bit)

Wf (g) =
[
id ⊗ leftI,I , g ◦ f ◦ (id ⊗ rightI,I)

]
◦ dA,I,I ,

where the isomorphism dA,I,I : A ⊗ (I + I) → (A ⊗ I) + (A ⊗ I) is explained
in §4. For any pointed dcpo D and Scott-continuous function h : D → D, its
least fixpoint is lfp(h) :=

∨∞
i=0 h

i(⊥), where ⊥ is the least element of D.

Remark 19. The term semantics for defining and calling procedures does not
involve any fixpoint computations. The required fixpoint computations are done
when interpreting procedure stores, as we shall see next.

576 R. Péchoux et al.



5.4 Interpretation of Configurations

Before we may interpret program configurations, we first have to describe how
to interpret values and procedure stores.

Interpretation of Values. A qubit pointer context Q is interpreted as the ob-
ject �Q� = qbit⊗|Q|. A value Q � v : A is interpreted as a morphism in V
�Q � v : A� : �Q� −→ �A�, which we abbreviate as �v� if Q and A are clear from
context. It is defined by induction on the derivation of Q � v : A in Figure 7.

For the next theorem, recall that if Q � v : A is a classical value, then Q = ·.

Theorem 20. Let Q � v : A be a value. Then:

1. �v� is discardable (i.e. causal). More specifically, ��A� ◦ �v� = ��Q� = tr‡.
2. If A is classical, then �v� is copyable, i.e., ��A� ◦ �v� = (�v� ⊗ �v�) ◦ �I .

We see that, as promised, interpretations of values may always be discarded
and interpretations of classical values may also be copied. Next, we explain how
to interpret value contexts. For a value context Q;Γ � V , its interpretation is
the morphism:

�Q;Γ � V � =
(

�Q�
∼=−→ �Q1� ⊗ · · · ⊗ �Qn�

�v1�⊗···⊗�vn�−−−−−−−−−→ �Γ �
)
,

where Qi � vi : Ai is the splitting of Q (see §3) and �Γ � = �A1� ⊗ · · · ⊗ �An�.
Some of the Qi can be empty and this is the reason why the definition depends
on a coherent natural isomorphism. We write �V � as a shorthand for �Q;Γ � V �.
Obviously, �V � is also causal thanks to Theorem 20.

Interpretation of Procedure Stores. The interpretation of a well-formed proce-
dure store Π � Ω is an element of �Π�, i.e. a |Π|-tuple of morphisms from C. It
is defined by induction on Π � Ω :

�· � ·� = ()

�Π, f : A → B � Ω, f :: x : A → y : B {M}� = (�Ω�, lfp(�M�(�Ω�,−))).

Interpretation of Configurations. Density matrices ρ ∈ M2n(C) are in 1-1 corre-
spondence with W∗

NCPSU-morphisms newρ : C → M2n(C) which are in turn in
1-1 correspondence with C-morphisms new‡

ρ : I → qbit⊗n. Using this observa-
tion, we can now define the interpretation of a configuration C = (M | V | Ω | ρ)
with Π;Γ ;Σ;Q � (M | V | Ω | ρ) to be the morphism

�Π;Γ ;Σ;Q � (M | V | Ω | ρ)� :=(
I

new‡
ρ−−−→ qbit⊗ dim(ρ) �Q;ΓV �−−−−−−→ �Γ �

�Π〈Γ 〉 M 〈Σ〉�(�ΠΩ�)−−−−−−−−−−−−−−−−→ �Σ�
)
.

For brevity, we simply write �(M | V | Ω | ρ)� or even just �C� to refer to the
above morphism.

Quantum Programming with Inductive Datatypes 577



5.5 Soundness, Adequacy and Big-step Invariance

Since our operational semantics allows for branching, soundness is showing that
the interpretation of configurations is equal to the sum of small-step reducts.

Theorem 21 (Soundness). For any non-terminal configuration C :

�C� =
∑
C�D

�D�.

Proof. By induction on the shape of the term component of C. ��

Remark 22. The above sum and all sums that follow are well-defined convex
sums of NCPSU-maps where the probability weights pi have been encoded in
the density matrices.

A natural question to ask is whether �C� is also equal to the (potentially
infinite) sum of all terminal configurations that C reduces to. In other words,
is the interpretation of configurations also invariant with respect to big-step
reduction. This is indeed the case and proving this requires considerable effort.

Theorem 23 (Big-step Invariance). For any configuration C, we have:

�C� =
∞∨

n=0

∑
r∈TerSeq≤n(C)

�End(r)�

The above theorem is the main result of our paper. This is a powerful result,
because with big-step invariance in place, computational adequacy4 at all types is
now a simple consequence of the causal properties of our interpretation. Observe
that for any configuration C, we have a subunital map � ◦ �C� : C → C and
evaluating it at 1 yields a real number (� ◦ �C�) (1) ∈ [0, 1].

Theorem 24 (Adequacy). For any normalised C : (� ◦ �C�) (1) = Halt(C).

If C is not normalised, then adequacy can be recovered simply by normalis-
ing: (� ◦ �C�) (1) = tr(C)Halt(C), for any possible configuration C. The adequacy
formulation of [17] and [5] is now a special case of our more general formulation.

Corollary 25. Let M be a closed program of unit type, i.e. · � 〈·〉 M 〈·〉. Then:

�(M | · | · | 1)� (1) = Halt(M | · | · | 1).

Proof. By Theorem 24 and because �I = id. ��
4 Recall that a computational adequacy result has to establish an equivalent purely

denotational characterisation of the operational notion of non-termination.

578 R. Péchoux et al.



6 Conclusion and Related Work

There are many quantum programming languages described in the literature.
For a survey see [7] and [16, pp. 129]. Some circuit programming languages (e.g.
Proto-Quipper [21,22,15]), generate quantum circuits, but do not necessarily
support executing quantum measurements. Here we focus on quantum languages
which support measurement and which have either inductive datatypes or some
computational adequacy result.

Our work is the first to present a detailed semantic treatment of user-defined
inductive datatypes for quantum programming. In [17] and [5], the authors show
how to interpret a quantum lambda calculus extended with a datatype for lists,
but their syntax does not support any other inductive datatypes. These lan-
guages are equipped with lambda abstractions, whereas our language has only
support for procedures. Lambda abstractions are modelled using constructions
from quantitative semantics of linear logic in [17] and techniques from game se-
mantics in [5]. We believe our model is simpler and certainly more physically
natural, because we work only with mathematical structures used by physicists
in their study of quantum mechanics. Both [17] and [5] prove an adequacy re-
sult for programs of unit type. In [20], the authors discuss potential categorical
models for inductive datatypes in quantum programming, but there is no de-
tailed semantic treatment provided and there is no adequacy result, because the
language lacks recursion.

Other quantum programming languages without inductive datatypes, but
which prove computational adequacy results include [9,12]. A model based on
W*-algebras for a quantum lambda calculus without recursion or inductive
datatypes was described in a recent manuscript [4]. In that model, it appears
that currying is not a Scott-continuous operation, and if so, the addition of re-
cursion renders the model neither sound, nor adequate. For this reason, we use
procedures and not lambda abstractions in our language.

To conclude, we presented two novel results in quantum programming: (1) we
provided a denotational semantics for a quantum programming language with
inductive datatypes; (2) we proved that our denotational semantics is invariant
with respect to big-step reduction. We also showed that the latter result is quite
powerful by demonstrating how it immediately implies computational adequacy.

Our denotational model is based on W*-algebras, which are used by physicists
to study quantum foundations. We hope this would make it useful for developing
static analysis methods (based on abstract interpretation) that can be used for
entanglement detection [18] and we plan on investigating this in future work.

Acknowledgements. We thank Andre Kornell, Bert Lindenhovius and Michael
Mislove for discussions regarding this paper. We also thank the anonymous ref-
erees for their feedback. MR acknowledges financial support from the Quan-
tum Software Consortium, under the Gravitation programme of the Dutch Re-
search Council NWO. The remaining authors were supported by the French
projects ANR-17-CE25-0009 SoftQPro, ANR-17-CE24-0035 VanQuTe and PIA-
GDN/Quantex.

Quantum Programming with Inductive Datatypes 579



References

1. Abadi, M., Fiore, M.P.: Syntactic Considerations on Recursive Types. In: Pro-
ceedings, 11th Annual IEEE Symposium on Logic in Computer Science, New
Brunswick, New Jersey, USA, July 27-30, 1996. pp. 242–252. IEEE Computer So-
ciety (1996). https://doi.org/10.1109/LICS.1996.561324

2. Cho, K.: Semantics for a Quantum Programming Language by Operator Algebras
(2014), Master Thesis, University of Tokyo.

3. Cho, K.: Semantics for a Quantum Programming Language by Operator Algebras.
New Generation Comput. 34(1-2), 25–68 (2016). https://doi.org/10.1007/s00354-
016-0204-3

4. Cho, K., Westerbaan, A.: Von Neumann Algebras form a Model for the Quantum
Lambda Calculus (2016), http://arxiv.org/abs/1603.02133, manuscript.

5. Clairambault, P., de Visme, M., Winskel, G.: Game semantics
for quantum programming. PACMPL 3(POPL), 32:1–32:29 (2019).
https://doi.org/10.1145/3290345

6. Fiore, M.P.: Axiomatic Domain Theory in Categories of Partial Maps. Ph.D. thesis,
University of Edinburgh, UK (1994)

7. Gay, S.J.: Quantum programming languages: survey and bibliography.
Mathematical Structures in Computer Science 16(4), 581–600 (2006).
https://doi.org/10.1017/S0960129506005378

8. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum Algorithm for Lin-
ear Systems of Equations. Phys. Rev. Lett. 103, 150502 (Oct 2009).
https://doi.org/10.1103/PhysRevLett.103.150502

9. Hasuo, I., Hoshino, N.: Semantics of higher-order quantum computation via
geometry of interaction. Ann. Pure Appl. Logic 168(2), 404–469 (2017).
https://doi.org/10.1016/j.apal.2016.10.010

10. Kissinger, A., Uijlen, S.: A categorical semantics for causal structure. In: 32nd
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017,
Reykjavik, Iceland, June 20-23, 2017. pp. 1–12. IEEE Computer Society (2017).
https://doi.org/10.1109/LICS.2017.8005095

11. Kornell, A.: Quantum collections. International Journal of Mathematics 28(12),
1750085 (2017). https://doi.org/10.1142/S0129167X17500859

12. Lago, U.D., Faggian, C., Valiron, B., Yoshimizu, A.: The geometry of parallelism:
classical, probabilistic, and quantum effects. In: Castagna, G., Gordon, A.D. (eds.)
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, Paris, France, January 18-20, 2017. pp. 833–845. ACM
(2017), http://dl.acm.org/citation.cfm?id=3009859

13. Lindenhovius, B., Mislove, M., Zamdzhiev, V.: LNL-FPC: The Linear/Non-linear
Fixpoint Calculus https://arxiv.org/abs/1906.09503, submitted.

14. Lindenhovius, B., Mislove, M., Zamdzhiev, V.: Mixed linear and non-linear re-
cursive types. Proc. ACM Program. Lang. 3(ICFP), 111:1–111:29 (Jul 2019).
https://doi.org/10.1145/3341715

15. Lindenhovius, B., Mislove, M.W., Zamdzhiev, V.: Enriching a Linear/Non-linear
Lambda Calculus: A Programming Language for String Diagrams. In: Dawar, A.,
Grädel, E. (eds.) Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018. pp. 659–668. ACM
(2018). https://doi.org/10.1145/3209108.3209196

16. Mosca, M., Roetteler, M., Selinger, P.: Quantum Programming Lan-
guages (Dagstuhl Seminar 18381). Dagstuhl Reports 8(9), 112–132 (2019).
https://doi.org/10.4230/DagRep.8.9.112

580 R. Péchoux et al.

https://doi.org/10.1109/LICS.1996.561324
https://doi.org/10.1007/s00354-016-0204-3
https://doi.org/10.1007/s00354-016-0204-3
http://arxiv.org/abs/1603.02133
https://doi.org/10.1145/3290345
https://doi.org/10.1017/S0960129506005378
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1016/j.apal.2016.10.010
https://doi.org/10.1109/LICS.2017.8005095
https://doi.org/10.1142/S0129167X17500859
http://dl.acm.org/citation.cfm?id=3009859
https://arxiv.org/abs/1906.09503
https://doi.org/10.1145/3341715
https://doi.org/10.1145/3209108.3209196
https://doi.org/10.4230/DagRep.8.9.112


17. Pagani, M., Selinger, P., Valiron, B.: Applying quantitative semantics to higher-
order quantum computing. In: Jagannathan, S., Sewell, P. (eds.) The 41st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’14, San Diego, CA, USA, January 20-21, 2014. pp. 647–658. ACM (2014).
https://doi.org/10.1145/2535838.2535879

18. Perdrix, S.: Quantum Entanglement Analysis Based on Abstract Interpretation. In:
Alpuente, M., Vidal, G. (eds.) Static Analysis, 15th International Symposium, SAS
2008, Valencia, Spain, July 16-18, 2008. Proceedings. Lecture Notes in Computer
Science, vol. 5079, pp. 270–282. Springer (2008). https://doi.org/10.1007/978-3-
540-69166-2_18

19. Rennela, M.: Operator Algebras in Quantum Computation (2013), Master Thesis,
Université Paris 7 Denis Diderot.

20. Rennela, M., Staton, S.: Classical Control and Quantum Circuits in Enriched
Category Theory. Electr. Notes Theor. Comput. Sci. 336, 257–279 (2018).
https://doi.org/10.1016/j.entcs.2018.03.027

21. Rios, F., Selinger, P.: A Categorical Model for a Quantum Circuit Description
Language. In: QPL (2017). https://doi.org/10.4204/EPTCS.266.11

22. Ross, N.J.: Algebraic and Logical Methods in Quantum Computation (2015), Ph.D.
thesis, Dalhousie University.

23. Selinger, P.: Towards a quantum programming language. Math-
ematical Structures in Computer Science 14(4), 527–586 (2004).
https://doi.org/10.1017/S0960129504004256

24. Shor, P.W.: Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM Review 41(2), 303–332 (1999).
https://doi.org/10.1137/S0036144598347011

25. Takesaki, M.: Theory of Operator Algebras. Vol. I, II and III. Springer-Verlag,
Berlin (2002)

26. Westerbaan, A.: Quantum Programs as Kleisli Maps. In: Duncan, R., Heunen, C.
(eds.) Proceedings 13th International Conference on Quantum Physics and Logic,
QPL 2016, Glasgow, Scotland, 6-10 June 2016. EPTCS, vol. 236, pp. 215–228
(2016). https://doi.org/10.4204/EPTCS.236.14

27. Westerbaan, B.: Dagger and Dilation in the Category of Von Neumann algebras.
Ph.D. thesis, Radboud University (2018), http://arxiv.org/abs/1803.01911

28. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature
299(5886), 802–803 (1982)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

Quantum Programming with Inductive Datatypes 581

https://doi.org/10.1145/2535838.2535879
https://doi.org/10.1007/978-3-540-69166-2_18
https://doi.org/10.1007/978-3-540-69166-2_18
https://doi.org/10.1016/j.entcs.2018.03.027
https://doi.org/10.4204/EPTCS.266.11
https://doi.org/10.1017/S0960129504004256
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.4204/EPTCS.236.14
http://arxiv.org/abs/1803.01911
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Spinal Atomic Lambda-Calculus

David Sherratt1 (�), Willem Heijltjes2, Tom Gundersen3, and Michel Parigot4

1 Friedrich-Schiller-Universität Jena, Germany.
david.rhys.sherratt@uni-jena.de

2 University of Bath, United Kingdom.
w.b.heijltjes@bath.ac.uk

3 Red Hat, Inc. Norway.
teg@jklm.no

4 Institut de Recherche en Informatique Fondamentale, CNRS, Université de Paris.
France.

parigot@irif.fr

Abstract. We present the spinal atomic λ-calculus, a typed λ-calculus
with explicit sharing and atomic duplication that achieves spinal full
laziness: duplicating only the direct paths between a binder and bound
variables is enough for beta reduction to proceed. We show this calculus
is the result of a Curry–Howard style interpretation of a deep-inference
proof system, and prove that it has natural properties with respect to
the λ-calculus: confluence and preservation of strong normalisation.

Keywords: Lambda-Calculus · Full laziness · Deep inference · Curry–
Howard

1 Introduction

In the λ-calculus, a main source of efficiency is sharing : multiple use of a single
subterm, commonly expressed through graph reduction [27] or explicit substi-
tution [1]. This work, and the atomic λ-calculus [16] on which it builds, is an
investigation into sharing as it occurs naturally in intuitionistic deep-inference
proof theory [26]. The atomic λ-calculus arose as a Curry–Howard interpreta-
tion of a deep-inference proof system, in particular of the distribution rule given
below left, a variant of the characteristic medial rule [10, 26]. In the term cal-
culus, the corresponding distributor enables duplication to proceed atomically,
on individual constructors, in the style of sharing graphs [21]. As a consequence,
the natural reduction strategy in the atomic λ-calculus is fully lazy [27, 4]: it
duplicates only the minimal part of a term, the skeleton, that can be obtained
by lifting out subterms as explicit substitutions. (While duplication is atomic
locally, a duplicated abstraction does not form a redex until also its bound vari-
ables have been duplicated; hence duplication becomes fully lazy globally.)

This work was supported by EPSRC Project EP/R029121/1 Typed Lambda-Calculi
with Sharing and Unsharing and ANR project 15-CE25-0014 The Fine Structure of
Formal Proof Systems and their Computational Interpretations (FISP)

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 582–601, 2020.
https://doi.org/10.1007/978-3-030-45231-5_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_30&domain=pdf


Distribution:
A→ (B ∧C)

d
(A→ B) ∧ (A→ C)

Switch:
(A→ B) ∧C

s
A→ (B ∧C)

We investigate the computational interpretation of another characteristic
deep-inference proof rule: the switch rule above right [26].5 Our result is the
spinal atomic λ-calculus, a λ-calculus with a refined form of full laziness, spine
duplication. In the terminology of [4], this strategy duplicates only the spine of
an abstraction: the paths to its bound variables in the syntax tree of the term.6

We illustrate these notions in Figure 1, for the example λx.λy.((λz.z)y)x.
The scope of the abstraction λx is the entire subterm, λy.((λz.z)y)x (which may
or may not be taken to include λx itself). Note that with explicit substitution,
the scope may grow or shrink by lifting explicit substitutions in or out. The
skeleton is the term λx.λy.(wy)x where the subterm λz.z is lifted out as an (ex-
plicit) substitution [λz.z/w]. The spine of a term, indicated in the second image,
cannot naturally be expressed with explicit substitution, though one can get an
impression with capturing substitutions: it would be λx.λy.wx, with the sub-
term (λz.z)y extracted by a capturing substitution [(λz.z)y/w]. Observe that
the skeleton can be described as the iterated spine: it is the smallest subgraph
of the syntax tree closed under taking the spine of each abstraction, i.e. that
contains the spine of every abstraction it contains.

These notions give rise to four natural duplication regimes. For a shared ab-
straction to become available as the function in a β-redex: laziness duplicates
its scope [22]; Full laziness duplicates its skeleton [27]; Spinal full laziness du-
plicates its spine [8]; optimal reduction duplicates only the abstraction λx and
its bound variables x [21, 3].7

While each of these duplication strategies has been expressed in graphs and
labelled calculi, the atomic λ-calculus is the first term calculus with Curry–
Howard corresponding proof system to naturally describe full laziness. Likewise,
the spinal atomic λ-calculus presented here is the first term calculus with Curry–
Howard corresponding proof system to naturally describe spinal full laziness.

Switch and Spine. One way to describe the skeleton or the spine of an abstraction
within a λ-term is through explicit end-of-scope markers, as explored by Berkling
and Fehr [7], and more recently by Hendriks and Van Oostrom [18]. We use
their adbmal ( λ) to illustrate the idea: the constructor λx.N indicates that the
subterm N does not contain occurrences of x (or that any that do occur are

5 The switch rule is an intuitionistic variant of weak or linear distributivity [12] for
multiplicative linear logic.

6 There is a clash of (existing) terminology: the spine of an abstraction, as we use
here, is a different notion from the spine of a λ-term, which is the path from the
root to the leftmost variable, as used e.g. in head reduction and abstract machines.

7 Interestingly, Balabonski [5] shows that for weak reduction (where one does not
reduce under an abstraction) full laziness and spinal full laziness are both optimal
(in the number of beta-steps required to reach a normal form).

Spinal Atomic Lambda-Calculus 583



⊺
λ

BA
→ BA

λ

A→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(BA
→ BA) ∧A

λ

BA
→

(BA
→ BA) ∧A ∧ BA

(BA
→ BA) ∧ BA

@
BA

∧A

@
B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

λx

λy

@

@

λz

z

y

x

⊺
a

A→A
∧

⊺
a

BA
→

BA

⊺
a

BA
→ BA

∧ BA

@
BA

s

A→

⎛
⎜⎜⎜⎜⎜
⎝

A ∧ (BA
→ BA)

(BA
→ BA) ∧A

s

BA
→

BA ∧A
@

B

⎞
⎟⎟⎟⎟⎟
⎠

λx

λy

@

@

λz

z

y

x

Fig. 1: Balanced and unbalanced typing derivations for λx.λy.((λz.z)y)x, with
corresponding graphical representations of the term. The variable x has type A
and y, z type A→B, shortened to BA. The left derivation isolates the skeleton
of λx, and the right derivation its spine, both by the subderivations in braces.

not available to a binder λx outside λx.N). The scope of an abstraction thus
becomes explicitly indicated in the term. This opens up a distinction between
balanced and unbalanced scopes: whether scopes must be properly nested, or
not; for example, in λx.λy.N , a subterm λy. λx.M is balanced, but λx. λy.M is
not. With balanced scope, one can indicate the skeleton of an abstraction; with
unbalanced scope (which Hendriks and Van Oostrom dismiss) one can indicate
the spine. We do so for our example term λx.λy.((λz.z)y)x below.

Balanced scope/skeleton: λx.λy.( λy.( λx.λz.z)y)( λy.x)

Unbalanced scope/spine: λx.λy.( λx.( λy.λz.z)y)( λy.x)

A closely related approach is director strings, introduced by Kennaway and
Sleep [19] for combinator reduction and generalized to any reduction strategy by
Fernández, Mackie, and Sinot in [13]. The idea is to use nameless abstractions
identified by their nesting (as with De Bruijn indices), and make the paths to
bound variables explicit by annotating each constructor with a string of directors,
that outline the paths. The primary aim of these approaches is to eliminate α-
conversion and to streamline substitution. Consequently, while they can identify
the spine, they do not readily isolate it for duplication.

The present work starts from our observation that the switch rule of open
deduction functions as a proof-theoretic end-of-scope construction (see [25] for
details). However, it does so in a structural way: it forces a deconstruction of
a proof into readily duplicable parts, which together may form the spine of
an abstraction. The derivations in Figure 1 demonstrate this, as we will now
explain—see the next section for how they are formally constructed.

The abstraction λx corresponds in the proof system to the implication A→,
explicitly scoping over its right-hand side. On the left, with the abstraction rule
(λ), scopes must be balanced, and the proof system may identify the skeleton;
here, that of λx as the largest blue box. Decomposing the abstraction (λ) into
axiom (a) and switch (s), on the right the proof system may express unbalanced

584 D. Sherratt et al.



scope. It does so by separating the scope of an abstraction into multiple parts;
here, that of λx is captured as the two top-level red boxes. Each box is ready to
be duplicated; in this way, one may duplicate the spine of an abstraction only.

These two derivations correspond to terms in our calculus. The subterms
not part of the skeleton (i.e. λz.z) remain shared and we are able to duplicate
the skeleton alone. This is also possible in [16]. In our calculus we are also able
to duplicate just the spine by using a distributor. We require this construct as
otherwise we break the binding of the y-abstraction. The distributor manages
and maintains these bindings. The y-abstraction in the spine (y⟨a⟩) is a phantom-
abstraction, because it is not real and we cannot perform β-reduction on it.
However, it may become real during reduction. It can be seen as a placeholder
for the abstraction. The variables in the cover (a) represent subterms that both
remain shared and are found in the distributor.

Skeleton: λx.λy.(ay)x [a← λz.z]

Spine: λx.y⟨a⟩.(a)x [y⟨a⟩ ∣λy. [a← (λz.z)y]]

Our investigation is then focused on the interaction of switch and distribution
(later observed in the rewrite rule l5). The use of the distribution rule allows us
to perform duplication atomically, and thus provides a natural strategy for spinal
full laziness. In Figure 1 on the right, this means duplicating the two top-level
red boxes can be done independently from duplicating the yellow box.

2 Typing a λ-calculus in open deduction

We work in open deduction [15], a formalism of deep-inference proof theory, using
the following proof system for (conjunction–implication) intuitionistic logic. A
derivation from a premise formula X to a conclusion formula Z is constructed
inductively as in Figure 2a, with from left to right: a propositional atom a,
where X = Z = a; horizontal composition with a connective →, where X =

Y → X2 and Z = Y → Z2; horizontal composition with a connective ∧, where
X = X1 ∧ X2 and Z = Z1 ∧ Z2; and rule composition, where r is an inference
rule (Figure 2b) from Y1 to Y2. The boxes serve as parentheses (since derivations
extend in two dimensions) and may be omitted. Derivations are considered up to
associativity of rule composition. One may consider formulas as derivations that
omit rule composition. We work modulo associativity, symmetry, and unitality
of conjunction, justifying the n-ary contraction, and may omit ⊺ from the axiom
rule. A 0-ary contraction, with conclusion ⊺, is a weakening. Figure 2b: the
abstraction rule (λ) is derived from axiom and switch. Vertical composition of
a derivation from X to Y and one from Y to Z, depicted by a dashed line, is a
defined operation, given in Figure 2c, where ∗ ∈ {∧,→}.

2.1 The Sharing Calculus

Our starting point is the sharing calculus (ΛS), a calculus with an explicit sharing
construct, similar to explicit substitution.

Spinal Atomic Lambda-Calculus 585



X

Z

∶∶= a ∣ Y →
X2

Z2

∣
X1

Z1

∧

X2

Z2

∣

X

Y1
r

Y2

Z

(a) Derivations

⊺
a

X →X

(X → Y ) ∧X
@

Y

X
△

X ∧ ⋅ ⋅ ⋅ ∧X

(X → Y ) ∧Z
s

X → (Y ∧Z)
X

λ

Y → (X ∧ Y ) ∶=

⊺
a

Y → Y
∧X

s

Y → (X ∧ Y )

(b) Inference rules: axiom (a), application (@),
contraction (△), switch (s), abstraction (λ)

X

Y

Y

Z

:=

X

X

Z

=

X

Z

Z

=

X

Z

X1

X2
r

Y

Z1

Z1

Z2

=

X1

X2
r

Y

Z1

Z1

Z2

X1

X2

X2

Y
r

Z1

Z2

=

X1

X2

X2

Y
r

Z1

Z2

X1

Y1

∗

X2

Y2

Y1

Z1

∗

Y2

Z2

=

X1

Y1

Y1

Z1

∗

X2

Y2

Y2

Z2

(c) Vertical composition

Fig. 2: Intuitionistic proof system in open deduction

Definition 1. The pre-terms r, s, t, u and sharings [Γ ] of the ΛS are defined
by:

s, t ∶∶= x ∣ λx.t ∣ s t ∣ t[Γ ] [Γ ] ∶∶= [x1, . . . , xn ← s]

with from left to right: a variable; an abstraction, where x occurs free in t and
becomes bound; an application, where s and t use distinct variable names; and
a closure; in t[x⃗← s] the variables in the vector x⃗ = x1, . . . , xn all occur in t and
become bound, and s and t use distinct variable names. Terms are pre-terms
modulo permutation equivalence (∼):

t[x⃗← s][y⃗ ← r] ∼ t[y⃗ ← r][x⃗← s] ({y⃗} ∩ (s)fv = {})

A term is in sharing normal form if all sharings occur as [x⃗ ← x] either at
the top level or directly under a binding abstraction, as λx.t[x⃗← x].

Note that variables are linear : variables occur at most once, and bound variables
must occur. A vector x⃗ has length ∣ x⃗ ∣ and consist of the variables x1, . . . , x∣ x⃗ ∣.

An environment is a sequence of sharings [Γ ] = [Γ1] . . . [Γn]. Substitution is
written {t/x}, and {t1/x1} . . . {tn/xn} may be abbreviated to {ti/xi}i∈[n].

Definition 2. The interpretation �− � ∶ Λ→ ΛS is defined below.

�x � = x �λx.t � = λx.� t � � s t � = � s � � t � � t[x⃗← s] � = � t �{� s �/xi}i∈[n]

The translation �N � of a λ-term N is the unique sharing-normal term t
such that N = � t �. A term t will be typed by a derivation with restricted types,

586 D. Sherratt et al.



Basic Types: A,B,C ∶= a ∣ A→ B Context Types: Γ,Δ,Ω ∶= A ∣ ⊺ ∣ Γ ∧Δ

x ∶ Ax t s ∶

Γ
t

A→ B

∧

Δ
s

A
@

B

λx.t ∶

Γ
λ

A→

Γ ∧Ax

t

B

t[x⃗← s] ∶

Γ ∧

Δ
s

A
△

A ∧ ⋅ ⋅ ⋅ ∧A

Γ ∧ (A ∧ ⋅ ⋅ ⋅ ∧A)x⃗
t

B

Fig. 3: Typing system for ΛS

as shown below, where the context type Γ = A1∧⋅ ⋅ ⋅∧An will have an Ai for each
free variable xi of t. We connect free variables to their premises by writing Ax

and Γ x⃗. The ΛS is then typed as in Figure 3.

3 The Spinal Atomic λ-Calculus

We now formally introduce the syntax of the spinal atomic λ-calculus (ΛS
a ), by

extending the definition of the sharing calculus in Definition 1 with a distributor
construct that allows for atomic duplication of terms.

Definition 3 (Pre-Terms). The pre-terms r, s, t, closures [Γ ], and envi-

ronments [Γ ] of the ΛS
a are defined by:

t ∶∶= x ∣ s t ∣ x⟨ y⃗ ⟩.t ∣ t[Γ ] [Γ ] ∶∶= [Γ ] ∣ [Γ ][Γ ]

[Γ ] ∶∶= [x⃗← t] ∣ [x⃗ ∣y⟨ z⃗ ⟩ [Γ ]]

Our generalized abstraction x⟨ y⃗ ⟩.t is a phantom-abstraction, where x a
phantom-variable and the cover y⃗ will be a subset of the free variables of
t. It can be thought of as a “delayed” abstraction: x is a binder, but possibly
not in t itself, and instead in the terms substituted for the variables y⃗; in other
words, x is a capturing binder for substitution into y⃗. We define standard λ-
abstraction as the special case λx.t ≡ x⟨x ⟩.t, and generally, when we refer to
x⟨ y⃗ ⟩ as a phantom-abstraction (rather than an abstraction) we assume y⃗ ≠ x.

The distributor u[x⃗ ∣y⟨ z⃗ ⟩ [Γ ]] binds the phantom-variables x⃗ in u, while its

environment [Γ ] will bind the variables in their covers; intuitively, it represents a
set of explicit substitutions in which the variables x⃗ are expected to be captured.

The distributor is introduced when we wish to duplicate an abstraction, as
depicted in Figure 4a. The sharing node (○) duplicates the abstraction node,
creating a distributor (depiced as the sharing and unsharing node (●), together
with the bindings of the phantom-variables (depicted with a dashed line). The
variables captured by the environment are the variables connected to sharing
nodes linked with a dotted line. Notice one sharing node can be linked with mul-
tiple unsharing nodes, and vice versa. Duplication of applications also duplicates

Spinal Atomic Lambda-Calculus 587



○

λx

λy

λx1 λx1

○ ●

λy

λx1 λx2

λy1 λy2 ●

●○

(a) Distributor introduction

○

@

● @ @

○ ○

●

(b) Application duplication

○ ●

t

○ ●

t

(c) Lifting out of a distributor

λx1 λx2

t1 t2

○

●

λx1 λx2

t1 t2

(d) Eliminating the distributor

○

λx

λy

@

→

λx1 λx2

λy1 λy2 ●

●○

@

→

λx1 λx2

λy1 λy2 ●

●

○ ○

@ @ →

λx1 λx2

λy1 λy2 ●

●

○ ○

@ @ →

λx1 λx2

λy1 λy2

●○

@ @

(e) Duplicating the spine

Fig. 4: Graphical illustration of the distributor

the dotted line (Figure 4b), but these can be removed later if the term does not
contain the variable bound to the unsharing (Figure 4c). These subterms are
those which are not part of the spine. Eventually, we will reach a state where
the only sharing node connected to the unsharing node is the one that shared
the variable bound to the unsharing, allowing us to eliminate the distributor
(Figure 4d). The purpose of the dotted line is similar to the brackets of optimal
reduction graphs [21, 24], to supervise which sharing and unsharing match.

Terms are then pre-terms with sensible and correct bindings. To define terms,
we first define free and bound variables and phantom variables; variables are
bound by abstractions (not phantoms) and by sharings, while phantom-variables
are bound by distributors.

Definition 4 (Free and Bound Variables). The free variables (−)fv and
bound variables (−)bv of a pre-term t are defined as follows

(x)fv = {x} (x)bv = {}

(s t)fv = (s)fv ∪ (t)fv (s t)bv = (s)bv ∪ (t)bv

(x⟨x ⟩.t)fv = (t)fv − {x} (x⟨x ⟩.t)bv = (t)bv ∪ {x}

(x⟨ y⃗ ⟩.t)fv = (t)fv (x⟨ y⃗ ⟩.t)bv = (t)bv

(u[x⃗← t])fv = (u)fv ∪ (t)fv − {x⃗} (u[x⃗← t])bv = (u)bv ∪ (t)bv ∪ {x⃗}

(u[x⃗ ∣ y⟨y ⟩ [Γ ]])fv = (u[Γ ])fv − {y} (u[x⃗ ∣y⟨y ⟩ [Γ ]])bv = (u[Γ ])bv ∪ {y}

588 D. Sherratt et al.



(u[x⃗ ∣ y⟨ z⃗ ⟩ [Γ ]])fv = (u[Γ ])fv ∪ {y} (u[x⃗ ∣y⟨ z⃗ ⟩ [Γ ]])bv = (u[Γ ])bv

Definition 5 (Free and Bound Phantom-Variables). The free phantom-
variables (−)fp and bound phantom-variables (−)bp of the pre-term t are
defined as follows

(x)fp = {} (x)bp = {}

(s t)fp = (s)fp ∪ (t)fp (s t)bp = (s)bp ∪ (t)bp

(x⟨x ⟩.t)fp = (t)fp

(c⟨ x⃗ ⟩.t)fp = (t)fp ∪ {c} (c⟨ x⃗ ⟩.t)bp = (t)bp

(u[x⃗← t])fp = (u)fp ∪ (t)fp (u[x⃗← t])bp = (u)bp ∪ (t)bp

(u[x⃗ ∣ c⟨ c ⟩ [Γ ]])fp = (u[Γ ])fp − {x⃗}

(u[x⃗ ∣ c⟨ y⃗ ⟩ [Γ ]])fp = (u[Γ ])fp ∪ {c} − {x⃗} (u[x⃗ ∣ c⟨ y⃗ ⟩ [Γ ]])bp = (u[Γ ])bp ∪ {x⃗}

The free covers (u)fc and bound covers (u)bc are the covers associated with
the free phantom-variables (u)fp respectively the bound phantom-variables (u)bp
of u; that is, if x occurs as x⟨ a⃗ ⟩ in u and x ∈ (u)fp then ⟨a⃗⟩ ∈ (u)fc. When
bound, x and the variables in a⃗ may be alpha-converted independently. When
a distributor u[x⃗ ∣ y⟨ z⃗ ⟩ [Γ ]] binds the phantom-variables x⃗ = x1, . . . , xn where
each xi occurs as xi⟨ a⃗i ⟩ in u, then for technical convenience we may make the
covers explicit in the distributor itself, and write

u[x1⟨ a⃗1 ⟩ . . . xn⟨ a⃗n ⟩ ∣ y⟨ z⃗ ⟩ [Γ ]] .

The environment [Γ ] is expected to bind exactly the variables in the covers ⟨a⃗i⟩.
We apply this and other restrictions to define the terms of the calculus.

Definition 6. Terms t ∈ ΛS
a are pre-terms with the following constraints

1. Each variable may occur at most once.
2. In a phantom-abstraction x⟨ y⃗ ⟩.t, {y⃗} ⊆ (t)fv.
3. In a sharing u[x⃗← t], {x⃗} ⊆ (u)fv.

4. In a distributor u[x1⟨ a⃗1 ⟩ . . . xn⟨ a⃗n ⟩ ∣ y⟨ z⃗ ⟩ [Γ ]]
(a) {x1, . . . , xn} ⊆ (u)fp;

(b) the variables in ⋃i≤n{a⃗i} are free in u and bound by [Γ ].
(c) the variables in {z⃗} occur freely in the environment [Γ ].

Example 1. Here we show some pre-terms that are not terms.

– c⟨x ⟩.y (violates condition 2)
– xy[x, z ← w] (violates condition 3)
– e2⟨w2 ⟩.w2 ((e1⟨w1 ⟩.w1) z)[e1⟨w1 ⟩, e2⟨w2 ⟩ ∣ c⟨ z ⟩ [w1,w2 ← x⟨x ⟩.x y]]

(violates condition 4a)

We also work modulo permutation with respect to the variables in the cover
of phantom-abstractions. Let x⃗ be a list of variables and let x⃗P be a permutation
of that list, then the following terms are considered equal.

Spinal Atomic Lambda-Calculus 589



c⟨ x⃗ ⟩.t ∶

(A→ Γ ) ∧Δ
s

Ac
→

Γ x⃗
∧Δ
t

C

u[x⃗ ∣ c⟨ z⃗ ⟩ [Γ ]] ∶

(C → Γ ) ∧Δ
s

Cc
→

Γ z⃗
∧Δ
[Γ ]

Σ1 ∧ ⋅ ⋅ ⋅ ∧Σn
d

(Ce1
→ Σx⃗1

1 ) ∧ ⋅ ⋅ ⋅ ∧ (Cen
→ Σx⃗n

n )

∧Ω

(C → Σ1) ∧ ⋅ ⋅ ⋅ ∧ (C → Σn) ∧Ω
u

E

Fig. 5: Typing derivations for phantom-abstractions and distributors

u[x⃗← t] ∼ u[x⃗P ← t] y⟨ x⃗ ⟩.t ∼ y⟨ x⃗P ⟩.t

Terms are typed with the typing system for ΛS extended with the distribution
inference rule. This rule is the result of computationally interpreting the medial
rule as done in [16]. We obtain this variant of the medial rule due to the restric-
tion for implications and to avoid introducing disjunction to the typing system.
The terms of ΛS

a are then typed as in both Figure 3 and Figure 5. Note environ-
ments are typed by the derivations of all its closures composed horizontally with
the conjunction connective. Also note that in the case for phantom-abstraction is
similar for that of an abstraction, where we replace one occurrence of the simple
type A by the conjunction Γ .

3.1 Compilation and Readback.

We now define the translations between ΛS
a and the original λ-calculus. First

we define the interpretation Λ → ΛS
a (compilation). Intuitively, it replaces each

abstraction λx.− with the term x⟨x ⟩.−[x1, . . . , xn ← x] where x1, . . . , xn replace
the occurrences of x. Actual substitutions are denoted as {t/x}. Let ∣M ∣x denote
the number of occurrences of x in M , and if ∣M ∣x = n let M n

x
denote M with

the occurrences of x replaced by fresh, distinct variables x1, . . . , xn. First, the
translation of a closed term M is �M �′, defined below

Definition 7 (Compilation). The interpretation of λ terms, �Λ �′ ∶ Λ → ΛS
a ,

is defined as

�M
n1

x1
. . .

nk

xk
�′[x1

1, . . . , x
n1

1 ← x1] . . . [x
1
k, . . . , x

nk

k ← xk]

where x1, . . . , xk are the free variables of M such that ∣M ∣xi = ni > 1 and
�− �′ is defined on terms as (where n ≠ 1 in the abstraction case):

�x �′ = x
�M N �′ = �M �′ �N �′

�λx.M �′ =
⎧⎪⎪
⎨
⎪⎪⎩

x⟨x ⟩.�M �′ if ∣M ∣x = 1

x⟨x ⟩.�M n
x

�′[x1, . . . , xn ← x] if ∣M ∣x = n

The readback into the λ-calculus is slightly more complicated, specifically
due to the bindings induced by the distributor. Interpreting a distributor con-
struct as a λ-term requires (1) converting the phantom-abstractions it binds in

590 D. Sherratt et al.



u into abstractions (2) collapsing the environment (3) maintaining the bindings
between the converted abstractions and the intended variables located in the
environment.

Definition 8. Given a total function σ with domain D and codomain C, we
overwrite the function with case x↦ v where x ∈D and v ∈ C such that

σ[x↦ v](z) ∶= if (x = z) then v else σ(z)

We use the map σ as part of the translation, the intuition is that for all
bound variables x in the term we are translating, it should be that σ(x) = x.
The purpose of the map γ is to keep track of the binding of phantom-variables.

Definition 9. The interpretation �− ∣ − ∣− � ∶ ΛS
a × (V → Λ) × (V → V ) → Λ is

defined as
�x ∣σ ∣γ � = σ(x) � s t ∣σ ∣γ � = � s ∣σ ∣γ � � t ∣σ ∣γ �

� c⟨ c ⟩.t ∣σ ∣γ � = λc.� t ∣σ[c↦ c] ∣γ �

� c⟨x1, . . . , xn ⟩.t ∣σ ∣γ � = λc.� t ∣σ[xi ↦ σ(xi){c/γ(c)}]i∈[n] ∣γ �

�u[x1, . . . , xn ← t] ∣σ ∣γ � = �u ∣σ[xi ↦ � t ∣σ ∣γ �]i∈[n] ∣γ �

�u[e1⟨ w⃗1 ⟩, . . . , en⟨ w⃗n ⟩ ∣ c⟨ c ⟩ [Γ ]] ∣σ ∣γ � = �u[Γ ] ∣σ ∣γ[ei ↦ c]i∈[n] �

�u[e1⟨ w⃗1 ⟩, . . . , en⟨ w⃗n ⟩ ∣ c⟨x1, . . . , xm ⟩ [Γ ]] ∣σ ∣γ � = �u[Γ ] ∣σ′ ∣γ[ei ↦ c]i∈[n] �

where σ′ = σ[xi ↦ σ(xi){c/γ(c)}]i∈[n]

The following Proposition justifies working modulo permutation equivalence.

Proposition 1. For s, t ∈ ΛS
a , if s ∼ t then � s � = � t �.

3.2 Rewrite Rules.

Both the spinal atomic λ-calculus and the atomic λ-calculus of [16] follow atomic
reduction steps, i.e. they apply on individual constructors. The biggest differ-
ence is that our calculus is capable of duplicating not only the skeleton but also
the spine. The rewrite rules in our calculus make use of 3 operations, substitu-
tion, book-keeping, and exorcism. The operation substitution t{s/x} propagates
through the term t, and replaces the free occurences of the variable x with the
term s. Moreover, if x occurs in the cover of a phantom-variable e⟨ y⃗ ⋅ x ⟩, then
substitution replaces the x in the cover with (s)fv, resulting in e⟨ y⃗ ⋅ (s)fv ⟩. Al-
though substitution performs some book-keeping on phantom-abstractions, we
define an explicit notion of book-keeping {y⃗/e}b that updates the variables
stored in a free cover i.e. for a term t, e⟨ x⃗ ⟩ ∈ (t)fc then e⟨ y⃗ ⟩ ∈ (t{y⃗/e}b)fc. The
last operation we introduce is called exorcism {c⟨ x⃗ ⟩}e. We perform exorcisms
on phantom-abstractions to convert them to abstractions. Intuitively, this will
be performed on phantom-abstractions with phantom-variables bound to a dis-
tributor when said distributor is eliminated. It converts phantom-abstractions
to abstractions by introducing a sharing of the phantom-variable that captures
the variables in the cover, i.e. (c⟨ x⃗ ⟩.t){c⟨ x⃗ ⟩}e = c⟨ c ⟩.t[x⃗← c].

Spinal Atomic Lambda-Calculus 591



Proposition 2. The translation �u ∣σ ∣γ � commutes with substitutions, book-
keepings1, and exorcisms2 in the following way

�u{t/x} ∣σ ∣γ � = �u ∣σ[x↦ � t ∣σ ∣γ �] ∣γ �

�u{x⃗/c}b ∣σ ∣γ � = �u ∣σ ∣γ �

�u{c⟨x1, . . . , xn ⟩}e ∣σ ∣γ � = �u ∣σ[xi ↦ c]i∈[n] ∣γ �

(1) Given c⟨ y⃗ ⟩ ∈ (u)fc where x⃗ ⊆ y⃗ and for z ∈ y⃗/x⃗, γ(c) /∈ (σ(z))fv
(2) Given c⟨ x⃗ ⟩ ∈ (u)fc or {x⃗} ∩ (u)fv = {}

Proof. See [25], proof of Proposition 18, 19, 20, 21.

Using these operations, we define the rewrite rules that allow for spinal du-
plication. Firstly we have beta reduction (↝β), which strictly requires an ab-
straction (not a phantom).

(x⟨x ⟩.t) s↝β t{s/x}

Γ
λ

A→
Ax
∧ Γ
t

B

∧

Δ
s

A

@
B

↝β

Δ
s

A

∧ Γ

A ∧ Γ
t

B

(β)

Here β-reduction is a linear operation, since the bound variable x occurs exactly
once in the body t. Any duplication of the term t in the atomic λ-calculus
proceeds via the sharing reductions.

The first set of sharing reduction rules move closures towards the outside of
a term. Most of these rewrite rules only change the typing derivations in the way
that subderivations are composed, with the exception of moving a closure out
of scope of a distributor.

s[Γ ] t↝L (s t)[Γ ] (l1)

s t[Γ ]↝L (s t)[Γ ] (l2)

d⟨ x⃗ ⟩.t[Γ ]↝L (d⟨ x⃗ ⟩.t)[Γ ] if {x⃗} ∩ (t)fv = {x⃗} (l3)

u[x⃗← t[Γ ]]↝L u[x⃗← t][Γ ] (l4)

For the case of lifting a closure outside a distributor, we use a notation ∥ [Γ ] ∥
to identify the variables captured by a closure, i.e.∥ [x⃗← t] ∥= {x⃗} and

∥ [e1⟨ x⃗1 ⟩, . . . , en⟨ x⃗x ⟩ ∣ c⟨ c ⟩ [Γ ]] ∥= {x⃗1, . . . , x⃗n}. Then let {z⃗} =∥ [Γ ] ∥ in the
following rewrite rule, where we remove z⃗ from the covers, that can only occur
if {x⃗} ∩ ([Γ ])fv = {}.

u[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ ][Γ ]]

↝L u{(w⃗i ∖ z⃗)/ei}bi∈[n][e1⟨ w⃗1 ∖ z⃗ ⟩ . . . en⟨ w⃗n ∖ z⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ ]][Γ ]
(l5)

592 D. Sherratt et al.



The graphical version of this rule is shown in Figure 4c, where we remove
the edge only if there is no edge between t and the unsharing node. The proof
rewrite rule corresponding with the rewrite rule l5 can be broken down into two
parts. The first part is readjusting how the derivations compose as shown below.

(C → Γ ) ∧Δ ∧Ω
s

C →

Γ ∧Δ ∧
Ω

A ∧ ⋅ ⋅ ⋅ ∧A

Σ1 . . .Σn
d

(C → Σ1) ∧ ⋅ ⋅ ⋅ ∧ (C → Σn)

↝L

(C → Γ ) ∧Δ ∧
Ω

A ∧ ⋅ ⋅ ⋅ ∧A
s

C →

Γ ∧Δ ∧A. . .A

Σ1 . . .Σn
d

(C → Σ1) ∧ ⋅ ⋅ ⋅ ∧ (C → Σn)

The second part of the rewrite rule justifies the need for the book-keeping op-
eration. In the rewrite below, let A be the type of a variable z where z ∈ z⃗.
After lifting, we want to remove the variable from the cover as to ensure cor-
rectness since the variables in the cover denote the variables captured by the
environment. Book-keeping allows us to remove these variables simultaneously.

(C → Γ ) ∧Δ ∧A
s

C →

Γ ∧Δ

Σ1 ∧ ⋅ ⋅ ⋅ ∧Σn

∧A

Σ1 ∧ ⋅ ⋅ ⋅ ∧Σi ∧A ∧ ⋅ ⋅ ⋅ ∧Σn
d

⋅ ⋅ ⋅ ∧ (C → Σi ∧A) ∧ . . .

↝

(C → Γ ) ∧Δ
s

C →

Γ ∧Δ

Σ1 ∧ ⋅ ⋅ ⋅ ∧Σn

Σ1 ∧ ⋅ ⋅ ⋅ ∧Σi ∧ ⋅ ⋅ ⋅ ∧Σn
d

⋅ ⋅ ⋅ ∧ (C → Σi) ∧ . . .

∧A

⋅ ⋅ ⋅ ∧
(C → Σi) ∧A

s
C → Σi ∧A

∧ . . .

The lifting rules (li) are justified by the need to lift closures out of the distrib-
utor, as opposed to duplicating them. The second set of rewrite rules, consecutive
sharings are compounded and unary sharings are applied as substitutions. For
simplicity, in the equivalent proof rewrite step we only show the binary case.

u[w⃗ ← y][y ⋅ y⃗ ← t]↝C u[w⃗ ⋅ y⃗ ← t] (c1)

u[x← t]↝C u{t/x} (c2)

A
△

A ∧
A

△

A ∧A

↝C
A

△

A ∧A ∧A
A
△

A
↝C A

The atomic steps for duplicating are given in the third and final set of rewrite
rules. The first being the atomic duplication step of an application, which is the
same rule used in [16]. The binary case proof rewrite steps for each rule are also
provided. There are also shown graphically in (respectively) Figure 4b (where
we maintain links between sharings and unsharings), Figure 4a, and Figure 4d
(where the unsharing node is linked to exactly one connecting sharing node).

u[x1 . . . xn ← s t]↝D u{z1 y1/x1} . . . {zn yn/xn}[z1 . . . zn ← s][y1 . . . yn ← t]
(d1)

Spinal Atomic Lambda-Calculus 593



(A→ B) ∧A
@

B
△

B ∧B

↝D

(A→ B)
△

(A→ B) ∧ (A→ B) ∧
B

△

B ∧B

(A→ B) ∧A
@

B
∧
(A→ B) ∧A

@
B

u[x1, . . . , xn ← c⟨ y⃗ ⟩.t]↝D

u{ei⟨wi ⟩.wi/xi}i∈[n][e1⟨w1 ⟩ . . . en⟨wn ⟩ ∣ c⟨ y⃗ ⟩ [w1, . . . ,wn ← t]]
(d2)

(A→ B) ∧ Γ
s

A→

B ∧ Γ

C
△

(A→ C) ∧ (A→ C)

↝D

(A→ B) ∧ Γ
s

A→

B ∧ Γ

C
△

C ∧C
d

(A→ C) ∧ (A→ C)

u[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ c ⟩ [w⃗1, . . . , w⃗n ← c]]↝D u{e1⟨ w⃗1 ⟩}e . . . {en⟨ w⃗n ⟩}e
(d3)

a

A→
A

△

A ∧A
d

(A→ A) ∧ (A→ A)
↝D

a
A→ A ∧

a
A→ A

Example 2. The following example, illustrated in Figure 4e, is a reduction in the
term calculus where we duplicate the spine of the term [a1, a2←λx.λy.((λz.z)y)x].

↝D {x1⟨b1⟩.b1/a1}{x2⟨b2⟩.b2/a2}[x1⟨b1⟩, x2⟨b2⟩ ∣ x⟨x⟩[b1, b2←λy.((λz.z)y)x]]

↝D {x1⟨c1⟩.y1⟨c1⟩c1/a1}{x2⟨c2⟩.y2⟨c2⟩.c2/a2}

[x1⟨c1⟩, x2⟨c2⟩ ∣ x⟨x⟩[y1⟨c1⟩, y2⟨c2⟩ ∣ y⟨y⟩[c1, c2←((λz.z)y)x]]]

↝D {x1⟨d1, e1⟩.y1⟨d1, e1⟩d1e1/a1}{x2⟨d2, e2⟩.y2⟨d2, e2⟩.d2e2/a2}

[x1⟨d1, e1⟩, x2⟨d2, e2⟩ ∣ x⟨x⟩[y1⟨d1, e1⟩, y2⟨d2, e2⟩ ∣ y⟨y⟩[d1, d2←(λz.z)y][e1, e2←x]]]

↝L {x1⟨d1, e1⟩.y1⟨d1⟩d1e1/a1}{x2⟨d2, e2⟩.y2⟨d2⟩.d2e2/a2}

[x1⟨d1, e1⟩, x2⟨d2, e2⟩ ∣ x⟨x⟩[y1⟨d1⟩, y2⟨d1⟩ ∣ y⟨y⟩[d1, d2←(λz.z)y]] [e1, e2←x]]

↝L {x1⟨e1⟩.y1⟨d1⟩d1e1/a1}{x2⟨e2⟩.y2⟨d2⟩.d2e2/a2}

[x1⟨e1⟩, x2⟨e2⟩ ∣ x⟨x⟩[e1, e2←x]] [y1⟨d1⟩, y2⟨d2⟩ ∣ y⟨y⟩[d1, d2(λz.z)y]]

↝D {λx1.y1⟨d1⟩d1x1/a1}{λx2.y2⟨d2⟩.d2x2/a2} [y1⟨d1⟩, y2⟨d2⟩ ∣ y⟨y⟩[d1, d2←(λz.z)y]]

Reduction (↝(L,C,D,β)) preserves the conclusion of the derivation, and thus the
following proposition is easy to observe.

Proposition 3. If s↝(L,C,D,β) t and s ∶ A, then t ∶ A.

Definition 10. For a term t ∈ ΛS
a , if there does not exists a term s ∈ ΛS

a such
that t↝(L,C,D) s then it is said that t is in sharing normal form.

The following Lemma not only proves we have good translations in Section 3.1,
and shows duplication preserves denotation.

594 D. Sherratt et al.



Lemma 1. For a t ∈ ΛS
a in sharing normal form and a N ∈ Λ.

� �N � � = N � � t � � = t ∃M∈Λ.t = �M �

Otherwise if s↝(L,D,C) t then � s ∣σ ∣γ � = � t ∣σ ∣γ �.

Proof. See [25, Lemma 24, Lemma 25].

Lemma 2. Given a term t ∈ ΛS
a , then � � t � � is t in sharing normal form.

Proof. We can prove this by induction on the longest sharing reduction path
from t. Our base case is already covered by Lemma 1. We are then interested in
the inductive case, where t is not in sharing normal form. By Lemma 1, � t � = � t′ �
where t ↝(D,L,C) t

′. By induction hypothesis, � � t′ � � is in sharing normal form.
Hence � � t � � is in sharing normal form. ◻

4 Strong Normalisation of Sharing Reductions

In order to show our calculus is strongly normalising, we first show that the
sharing reduction rules are strongly normalising. We indite a measure on terms
and show that this measure strictly decreases as sharing reduction progresses.
Similar ideas and results can be found elsewhere: with memory in [20], the λ-
I calculus in [6], the λ-void calculus [2], and the weakening λμ-calculus [17].
Our measure will consist of three components. First, the height of a term is a
multiset of integers, that measures the number of constructors from each sharing
node to the root of the term in its graphical notation. The height is defined on
terms as Hi(−), where i is an integer. We say H(t) for H1(t). We use ⊍ to
denote the disjoint union of two multisets. We denote Hi([Γ1]) ⊍ ⋅ ⋅ ⋅ ⊍H

i([Γn])

as Hi([Γ ]) for the environment [Γ ] = [Γ1], . . . , [Γn].

Definition 11 (Sharing Height). The sharing height Hi(t) of a term t is

given below, where n is the number of closures in [Γ ]:

H
i(x) = {} H

i(s t) =Hi+1(s) ⊍Hi+1(t)

H
i(c⟨ x⃗ ⟩.t) =Hi+1(t) H

i(t[Γ ]) =Hi(t) ⊍Hi([Γ ]) ⊍ {i1}

H
i([x1, . . . , xn ← t]) =Hi+1(t) Hi([ ⃗⃗w ∣ c⟨ x⃗ ⟩ [Γ ]]) =Hi+1([Γ ]) ⊍ {(i + 1)n}

This measure then strictly decreases for the rewrite rules l1, l2, l3, l4 and l5, i.e.
if t↝L u then Hi(t) >Hi(u). The second measure we consider is the weight of a
term. Intuitively this quantifies the remaining duplications, which are performed
with ↝D reductions. If a term would be deleted, we assign it with a weight ‘1’
to express that it is not duplicated. Calculating the weight requires an auxiliary
function that assigns integer weights to the variables of a term. This function is
defined on terms Vi(−), where i is an integer. To measure variables independently
of binders is vital. It allows to measure distributors, which duplicate λ’s but not
the bound variable. Also, only bound variables for abstractions are measured
since variables bound by sharings are substituted in the interpretation.

Spinal Atomic Lambda-Calculus 595



Definition 12 (Variable Weights). The function Vi(t) returns a function
that assigns integer weights to the free variables of t. It is defined by the below,
where f = Vi(t) and g = f(x1) + ⋅ ⋅ ⋅ + f(xn) for each xi ∈ x⃗.

V
i(x) = {x↦ i} V

i(s t) = Vi(s) ⊍ Vi(t)

V
i(c⟨ c ⟩.t) = Vi(t)/{c} V

i(c⟨ x⃗ ⟩.t) = Vi(t) ⊍ {c↦ i}

V
i(t[x⃗← s]) = Vi(t)/{x⃗} ⊍ Vg(s) V

i(t[← s]) = Vi(t) ⊍ V1(s)

V
i(t[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ c ⟩ [Γ ]]) = V

i(t[Γ ])/{c, e1, . . . , en}

V
i(t[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ ]]) = V

i(t[Γ ])/{e1, . . . , en} ⊍ {c↦ i}

The weight of a term can then be defined via the use of this auxiliary function.
The auxiliary function is used when calculating the weight of a sharing, where
the sharing weight of the variables bound by the sharing play a significant role
in calculating the weight of the shared term. In the case of a weakening [← t],
we assign an initial weight of 1. Again we say W (t) =W1(t).

Definition 13 (Sharing Weight). The sharing weight Wi(t) of a term t is a
multiset of integers computed by the function defined below, where f = Vi(t) and
g = f(x1) + ⋅ ⋅ ⋅ + f(xn) for each xi ∈ x⃗.

W
i(x) = {} W

i(s t) =Wi(s) ⊍Wi(t) ⊍ {i}

W
i(c⟨ c ⟩.t) =Wi(t) ⊍ {i} ⊍ {Vi(t)(c)} W

i(c⟨ x⃗ ⟩.t) =Wi(t) ⊍ {i}

W
i(t[x⃗← s]) =Wi(t) ⊍Wg(s) W

i(t[← s]) =Wi(t) ⊍W1(s)

W
i(t[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ c ⟩ [Γ ]]) =W

i(t[Γ ]) ⊍ {Vi(t[Γ ])(c)}

W
i(t[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ ]]) =W

i(t[Γ ])

This measure then strictly decreases on the rewrite rules d1, d2, d3 and is unaf-
fected by all the other sharing reduction rules, i.e. if t↝D u thenWi(t) >Wi(u).
If t ↝(L,C) u then Wi(t) = Wi(u). The third and last measure we consider is
the number of closures in the term, where it can be easily observed that the
rewrite rules c1 and c2 strictly decrease this measure, and that the ↝L rules do
not alter the number of closures. We then use this along with height and weight
to define a sharing measure on terms.

Definition 14. The sharing measure of a ΛS
a -term t is a triple (W (t), C,

H(t)), where C is the number of closures in the term t. We compare sharing
measures by using the lexicographical preferences according to W > C > H.

Theorem 1. Sharing reduction ↝(D,L,C) is strongly normalising.

Now that we have proven the sharing reductions are strongly normalising, we
can prove that they are confluent for closed terms.

Theorem 2. The sharing reduction relation ↝(D,L,C) is confluent.

596 D. Sherratt et al.



Proof. Lemma 1 tells us that the preservation is preserved under reduction i.e. for
s ↝(D,L,C) t, � s � = � t �. Therefore given t ↝∗(D,L,C) s1 and t ↝∗(D,L,C) s2, � t � =
� s1 � = � s2 �. Since we know that sharing reductions are strongly normalising, we
know there exists terms u1 and u2 in sharing normal form such that s1 ↝

∗

(D,L,C)

u1 and s2 ↝
∗

(D,L,C) u2. Lemma 1 tells us that terms in sharing normal form are in

correspondence with their denotations i.e. � � t � � = t. Since by Lemma 1 we know
�u1 � = � s1 � = � s2 � = �u2 �, and by Lemma 1 � �u1 � � = u1 and � �u2 � � = u2, we
can conclude u1 = u2. Hence, we prove confluence. ◻

5 Preservation of Strong Normalisation and Confluence

A β-step in our calculus may occur within a weakening, and therefore is simulated
by zero β-steps in the λ-calculus. Therefore if there is an infinite reduction path
located inside a weakening in ΛS

a , then the reduction path is not preserved in the
corresponding λ-term as there are no weakenings. To deal with this, just as done
in [2, 16, 17], we make use of the weakening calculus. A β-step is non-deleting
precisely because of the weakening construct. If a β-step would be deleting, then
the weakening calculus would instead keep the deleted term around as ‘garbage’,
which can continue to reduce unless explicitly ‘garbage-collected’ by extra (non-
β) reduction steps. PSN has already be shown for the weakening calculus through
the use of a perpetual strategy in [16]. A part of proving PSN is then using the
weakening calculus to prove that if t ∈ ΛS

a has a infinite reduction path, then its
translation into the weakening calculus also has an infinite reduction path.

Definition 15. The W-terms of the weakening calculus (ΛW) are

T,U,V ∶∶= x ∣ λx.T ∗ ∣ U V ∣ T [← U] ∣ ● (*) where x ∈ (T )fv

The terms are variable, abstraction, application, weakening, and a bullet.
In the weakening T [← U], the subterm U is weakened. The interpretation of
atomic terms to weakening terms �− ∣ − ∣− �W can be seen as an extension of the
translation into the λ-calculus (Definition 9).

Definition 16. The interpretation �− ∣− ∣− �W ∶ ΛS
a×(V → ΛW)×(V → V )→ ΛW

with maps σ ∶ V → ΛW and γ ∶ V → V is defined as an extension of the translation
in (Definition 9) with the following additional special cases.

�u[← t] ∣σ ∣γ �W = �u ∣σ ∣γ �W[← � t ∣σ ∣γ �W]

�u[ ∣ c⟨ c ⟩ [Γ ]] ∣σ ∣γ �W = �u[Γ ] ∣σ[c↦ ●] ∣γ �W
�u[ ∣ c⟨x1, . . . , xn ⟩ [Γ ]] ∣σ ∣γ �W = �u[Γ ] ∣σ′ ∣γ �W

where σ′(z) ∶= if z ∈ {x1, . . . , xn} then σ(z){●/γ(c)} else σ(z)

We say � t �W = � t ∣ I ∣ I �W where I is the identity function. We also have trans-
lations of the weakening calculus to and from the λ-calculus. Both of these
translations were provided in [16]. The interpretation ⌊− ⌋ from weakening terms
to λ-terms discards all weakenings.

Spinal Atomic Lambda-Calculus 597



Definition 17. The interpretation M ∈ Λ, �− �W ∶ Λ→ ΛW is defined below.

�x �W = x �M N �W = �M �W �N �W �λx.N �W =
⎧⎪⎪
⎨
⎪⎪⎩

λx.�N �W if x ∈ (N)fv
λx.�N �W[← x] otherwise

The following equalities can be observed, where σΛ(z) = ⌊σW(z) ⌋.

Proposition 4. For N ∈ Λ and t ∈ ΛS
a the following properties hold

⌊ � t ∣σW ∣γ �W ⌋ = � t ∣σΛ ∣γ � � �N � �W = �N �W ⌊ �N �W ⌋ = N

where for each {x↦M} ∈ σW , {x↦ ⌊M ⌋} ∈ σΛ.

Definition 18. In the weakening calculus, β-reduction is defined as follows,
where [Γ ] are weakening constructs. ((λx.T )[Γ ])U →β T{U/x}[Γ ]

Proposition 5. If N ∈ Λ is strongly normalising, then so is �N �W .

When translating from ΛS
a to ΛW , weakenings are maintained whilst shar-

ings are interpreted via substitution. Thus the reduction rules in the weakening
calculus cover the spinal reductions for nullary distributors and weakenings.

Definition 19. Weakening reduction (→W) proceeds as follows.

U[← T ]V →W (U V )[← T ] U V [← T ]→W (U V )[← T ]

T [← U[← V ]]→W T [← U][← V ] T [← λx.U]→W T [← U{●/x}]

T [← U V ]→W T [← U][← V ] T [← ●]→W T

T [← U]→W T (1) λx.T [← U]→W (λx.T )[← U](2)

(1) if U is a subterm of T and (2) if x /∈ (U)fv

It is easy to see that these rules correspond to special cases of the sharing
reduction rules for ΛS

a . This resemblance is confirmed by the following Lemma,
proven in [25, pp. 82-86]. We use this to show how ΛS

a enjoys PSN.

Lemma 3. If t ↝β u then � t �W →+β �u �W . If t ↝(C,D,L) u and for any x ∈
(t)bv ∪ (t)fp such that for all z, x /∈ (σ(z))fv.

� t ∣σ ∣γ �W →∗W �u ∣σ ∣γ �W

Lemma 4. For t ∈ ΛS
a has an infinite reduction path, then � t �W also has an

infinite reduction path.

Proof. Due to Theorem 2, we know that the infinite reduction path contains
infinite β-steps. This means in the reduction sequence, between each β-step,
there are finite many ↝(D,L,C) reduction steps. Lemma 3 says each ↝(D,L,C)

step in ΛS
a corresponds to zero or more weakening reductions (↝∗

W
). Lemma

3 says that each beta step in ΛS
a corresponds to one or more β-steps in ΛW .

Therefore, it must be that � t �W also has an infinite reduction path. ◻

598 D. Sherratt et al.



Theorem 3. If N ∈ Λ is strongly normalising, then so is �N �.

Proof. For a given N ∈ Λ that is strongly normalising, we know by Lemma 5
that �N �W is strongly normalising. Then � �N � �W is strongly normalising, since
Proposition 4 states that �N �W = � �N � �W . Then by Lemma 4, which states that
if � t �W is strongly normalising, then t is strongly normalising, proves that �N �
is strongly normalising. ◻

We also prove confluence, which is already known for the λ-calculus [11]. We
first observe that a β-step in the λ-calculus is simulated in ΛS

a by one β-step
followed by zero or more sharing reductions.

Lemma 5. Given N,M ∈ Λ. If N ↝β M , then �N �↝β ↝
∗

(D,L,C) �M �.

Proof. This is proven by Sherratt in [25, Lemma 67].

Theorem 4. Given t, s1, s2 ∈ Λ
S
a . If t ↝

∗

(β,D,L,C) s1 and t ↝∗(β,D,L,C) s2, there

exists a u ∈ ΛS
a such that s1 ↝

∗

(β,D,L,C) u and s2 ↝
∗

(β,D,L,C) u.

Proof. Suppose t ↝∗(β,D,L,C) s1 and t ↝∗(β,D,L,C) s2. Then we have � t � ↝∗β � s1 �
and � t �↝∗β � s2 �. By the Church-Rosser theorem, there exists a M ∈ Λ such that
� s1 � ↝∗β M and � s2 � ↝∗β M . Due to Lemma 2, � � s1 � � = s′1 and � � s2 � � = s′2
where s′1, s

′

2 ∈ Λ
S
a in sharing normal form. Then thanks to Lemma 5 we know

s′1 ↝
∗

(β,D,L,C) �M � and s′2 ↝
∗

(β,D,L,C) �M �. Combined, we get confluence. ◻

6 Conclusion, related work, and future directions

We have studied the interaction between the switch and the medial rule, the
two characteristic inference rules of deep inference. We built a Curry–Howard
interpretation based on this interaction, whose resulting calculus not only has
the ability to duplicate terms atomically but can also duplicate solely the spine
of an abstraction such that beta reduction can proceed on the duplicates. We
show that this calculus has natural properties with respect to the λ-calculus.

This work, which started as an investigation into the Curry-Howard corre-
spondence of the switch rule [25], fits into a broader effort to give a computational
interpretation to intuitionistic deep-inference proof theory. Brünnler and McKin-
ley [9] give a natural reduction mechanism without medial (or switch), and ob-
serve that preservation of strong normalization fails. Guenot and Straßburger [14]
investigate a different switch rule, corresponding to the implication-left rule of
sequent calculus. He [17] extends the atomic λ-calculus to the λμ-calculus.

Our future goal is to develop the intuitionistic open deduction formalism to-
wards optimal reduction [23, 21, 3], via the remaining medial and switch rules [26].

Acknowledgements We thank the anonymous reviewers for their comments.

Spinal Atomic Lambda-Calculus 599



References

1. Abadi, M., Cardelli, L., Curien, P.L., Lévy, J.J.: Explicit substitutions. Journal of
Functional Programming 1(4), 375–416 (1991)

2. Accattoli, B., Kesner, D.: Preservation of strong normalisation modulo permuta-
tions for the structural lambda-calculus. Logical Methods in Computer Science
8(1) (2012)

3. Asperti, A., Guerrini, S.: The Optimal Implementation of Functional Programming
Languages. Cambridge University Press (1998)

4. Balabonski, T.: A unified approach to fully lazy sharing. ACM SIGPLAN Notices
47(1), 469–480 (2012)

5. Balabonski, T.: Weak Optimality, and the Meaning of Sharing. In: International
Conference on Functional Programming (ICFP). pp. 263–274. Boston, United
States (Sep 2013). https://doi.org/10.1145/2500365.2500606, https://hal.archives-
ouvertes.fr/hal-00907056

6. Barendregt, H.P.: The Lambda Calculus – Its Syntax and Semantics, Studies in
Logic and the Foundations of Mathematics, vol. 103. North-Holland (1984)

7. Berkling, K.J., Fehr, E.: A consistent extension of the lambda-calculus as a base
for functional programming languages. Information and Control 55, 89–101 (1982)

8. Blanc, T., Lévy, J.J., Maranget, L.: Sharing in the weak lambda-calculus. Pro-
cesses, Terms and Cycles: Steps on the Road to Infinity: Essays Dedicated to Jan
Willem Klop on the Occasion of His 60th Birthday 3838, 70 (2005)

9. Brünnler, K., McKinley, R.: An algorithmic interpretation of a deep inference sys-
tem. In: International Conference on Logic for Programming Artificial Intelligence
and Reasoning (LPAR). pp. 482–496 (2008)

10. Brünnler, K., Tiu, A.: A local system for classical logic. In: 8th International Con-
ference on Logic for Programming Artificial Intelligence and Reasoning (LPAR).
LNCS, vol. 2250, pp. 347–361 (2001)

11. Church, A., Rosser, J.B.: Some properties of conversion. Transac-
tions of the American Mathematical Society 39(3), 472–482 (1936),
http://www.jstor.org/stable/1989762

12. Cockett, R., Seely, R.: Weakly distributive categories. Journal of Pure and Applied
Algebra 114(2), 133–173 (1997)

13. Fernández, M., Mackie, I., Sinot, F.R.: Lambda-calculus with director strings. Ap-
plicable Algebra in Engineering, Communication and Computing 15(6), 393–437
(2005)

14. Guenot, N., Straßburger, L.: Symmetric normalisation for intuitionistic logic. In:
Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Sci-
ence Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS) (2014)

15. Guglielmi, A., Gundersen, T., Parigot, M.: A proof calculus which reduces syntac-
tic bureaucracy. In: 21st International Conference on Rewriting Techniques and
Applications (RTA). pp. 135–150 (2010)

16. Gundersen, T., Heijltjes, W., Parigot, M.: Atomic lambda-calculus: a typed
lambda-calculus with explicit sharing. In: 28th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS). pp. 311–320 (2013)

17. He, F.: The Atomic Lambda-Mu Calculus. Ph.D. thesis, University of Bath (2018)

18. Hendriks, D., van Oostrom, V.: Adbmal. In: 19th International Conference on
Automated Deduction (CADE). LNCS, vol. 2741, pp. 136–150 (2003)

600 D. Sherratt et al.



19. Kennaway, R., Sleep, R.: Director strings as combinators. ACM Transactions on
Programming Languages and Systems (1988)

20. Klop, J.W.: Combinatory Reduction Systems. Ph.D. thesis, Utrecht University
(1980)

21. Lamping, J.: An algorithm for optimal lambda calculus reduction. In: Proceedings
of the 17th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. pp. 16–30 (1990)

22. Launchbury, J.: A natural semantics for lazy evaluation. In: 20th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages (POPL). pp. 144–154
(1993)

23. Lévy, J.J.: Optimal reductions in the lambda-calculus. In: To H.B. Curry: Essays
in Combinatory Logic, Lambda Calculus and Formalism. Academic Press (1980)

24. van Oostrom, V., van de Looij, K.J., Zwitserlood, M.: Lambdascope: another op-
timal implementation of the lambda-calculus. In: Workshop on Algebra and Logic
on Programming Systems (ALPS) (2004)

25. Sherratt, D.R.: A lambda-calculus that achieves full laziness with spine duplication.
Ph.D. thesis, University of Bath (2019)

26. Tiu, A.: A local system for intuitionistic logic. In: International Conference on
Logic for Programming Artificial Intelligence and Reasoning (LPAR). pp. 242–256
(2006)

27. Wadsworth, C.P.: Semantics and Pragmatics of the Lambda-Calculus. Ph.D. thesis,
University of Oxford (1971)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Spinal Atomic Lambda-Calculus 601



Learning Weighted Automata
over Principal Ideal Domains�

Gerco van Heerdt1, Clemens Kupke2(�), Jurriaan Rot1,3, and Alexandra Silva1

1 University College London, United Kingdom
{gerco.heerdt,alexandra.silva}@ucl.ac.uk
2 University of Strathclyde, United Kingdom

clemens.kupke@strath.ac.uk
3 Radboud University, The Netherlands

jrot@cs.ru.nl

Abstract. In this paper, we study active learning algorithms for weighted
automata over a semiring. We show that a variant of Angluin’s seminal
L� algorithm works when the semiring is a principal ideal domain, but
not for general semirings such as the natural numbers.

1 Introduction

Angluin’s seminal L� algorithm [4] for active learning of deterministic automata
(DFAs) has been successfully used in many verification tasks, including in au-
tomatically building formal models of chips in bank cards or finding bugs in
network protocols (see [27,14] for a broad overview of successful applications
of active learning). While DFAs are expressive enough to capture interesting
properties, certain verification tasks require more expressive models. This moti-
vated several researchers to extend L� to other types of automata, notably Mealy
machines [28,24], register automata [15,22,1], and nominal automata [20].

Weighted finite automata (WFAs) are an important model made popular due
to their applicability in image processing and speech recognition tasks [11,21].
The model is prevalent in other areas, including bioinformatics [2] and formal
verification [3]. Passive learning algorithms and associated complexity results
have appeared in the literature (see e.g. [5] for an overview), whereas active
learning has been less studied [6,7]. Furthermore, the existing learning algo-
rithms, both passive and active, have been developed assuming the weights in
the automaton are drawn from a field, such as the real numbers.4 To the best

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 602–621, 2020.
https://doi.org/10.1007/978-3-030-45231-5_31

� The research leading to this work was partially funded by the European Union

Horizon 2020 research and innovation programme under the ERC Starting Grant

ProFoundNet (grant code 679127) and the Marie Sk�lodowska-Curie Grant Agree-

ment No. 795119, by the EPSRC Standard Grant CLeVer (EP/S028641/1) and by

GCHQ via the VeTSS grant ”Automated black-box verification of networking sys-

tems” (4207703/RFA 15845).
4 Balle and Mohri [6] define WFAs generically over a semiring but then restrict to fields

from Section 3 onwards as they present an overview of existing learning algorithms.

of our knowledge, no learning algorithms, whether passive or active, have been
developed for WFAs in which the weights are drawn from a general semiring.

’s

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_31&domain=pdf


Learning Weighted Automata over PIDs 603

In this paper, we explore active learning for WFAs over a general semiring.
The main contributions of the paper are as follows:

1. We introduce a weighted variant of L� parametric on an arbitrary semiring,
together with sufficient conditions for termination (Section 4).

2. We show that for general semirings our algorithm might not terminate. In
particular, if the semiring is the natural numbers, one of the steps of the
algorithm might not converge (Section 5).

3. We prove that the algorithm terminates if the semiring is a principal ideal
domain, covering the known case of fields, but also the integers. This yields
the first active learning algorithm for WFAs over the integers (Section 6).

We start in Section 2 by explaining the learning algorithm for WFAs over
the reals and pointing out the challenges in extending it to arbitrary semirings.

2 Overview of the Approach

In this section, we give an overview of the work developed in the paper through
examples. We start by informally explaining the general algorithm for learning
weighted automata that we introduce in Section 4, for the case where the semir-
ing is a field. More specifically, for simplicity we consider the field of real numbers
throughout this section. Later in the section, we illustrate why this algorithm
does not work for an arbitrary semiring.

Angluin’s L� algorithm provides a procedure to learn the minimal DFA ac-
cepting a certain (unknown) regular language. In the weighted variant we will
introduce in Section 4, for the specific case of the field of real numbers, the al-
gorithm produces the minimal WFA accepting a weighted rational language (or
formal power series) L : A∗ → R.

A WFA over R consists of a set of states, a linear combination of initial
states, a transition function that for each state and input symbol produces a
linear combination of successor states, and an output value in R for each state
(Definition 5). As an example, consider the WFA over A = {a} below.

q0/2 q1/3
a, 1

a, 1 a, 2

Here q0 is the only initial state, with weight 1, as indicated by the arrow into
it that has no origin. When reading a, q0 transitions with weight 1 to itself and
also with weight 1 to q1; q1 transitions with weight 2 just to itself. The output
of q0 is 2 and the output of q1 is 3.

The language of a WFA is determined by letting it read a given word and
determining the final output according to the weights and outputs assigned to
individual states. More precisely, suppose we want to read the word aaa in the
example WFA above. Initially, q0 is assigned weight 1 and q1 weight 0. Processing
the first a then leads to q0 retaining weight 1, as it has a self-loop with weight 1,



and q1 obtaining weight 1 as well. With the next a, the weight of q0 still remains
1, but the weight of q1 doubles due to its self-loop of weight 1 and is added to
the weight 1 coming from q0, leading to a total of 3. Similarly, after the last a
the weights are 1 for q0 and 7 for q1. Since q0 has output 2 and q1 output 3, the
final result is 2 · 1 + 3 · 7 = 23.

The learning algorithm assumes access to a teacher (sometimes also called
oracle), who answers two types of queries:

– membership queries, consisting of a single word w ∈ A∗, to which the teacher
replies with a weight L(w) ∈ R;

– equivalence queries, consisting of a hypothesis WFA A, to which the teacher
replies yes if its language LA equals the target language L and no otherwise,
providing a counterexample w ∈ A∗ such that L(w) �= LA(w).

In practice, membership queries are often easily implemented by interacting with
the system one wants to model the behaviour of. However, equivalence queries
are more complicated—as the perfect teacher does not exist and the target au-
tomaton is not known they are commonly approximated by testing. Such testing
can however be done exhaustively if a bound on the number of states of the tar-
get automaton is known. Equivalence queries can also be implemented exactly
when learning algorithms are being compared experimentally on generated au-
tomata whose languages form the targets. In this case, standard methods for
language equivalence, such as the ones based on bisimulations [9], can be used.

The learning algorithm incrementally builds an observation table, which at
each stage contains partial information about the language L determined by two
finite sets S,E ⊆ A∗. The algorithm fills the table through membership queries.
As an example, and to set notation, consider the following table (over A = {a}).

E

ε a aa

S

[
ε 0 1 3

S ·A
[

a 1 3 7

aa 3 7 15

row : S → RE

row(u)(v) = L(uv)
srow : S ·A → RE

srow(ua)(v) = L(uav)

This table indicates that L assigns 0 to ε, 1 to a, 3 to aa, 7 to aaa, and
15 to aaaa. For instance, we see that row(a)(aa) = srow(aa)(a) = 7. Since row
and srow are fully determined by the language L, we will refer to an observation
table as a pair (S,E), leaving the language L implicit.

If the observation table (S,E) satisfies certain properties described below,
then it represents a WFA (S, δ, i, o), called the hypothesis, as follows:

– δ : S → (RS)A is a linear map defined by choosing for δ(s)(a) a linear com-
bination over S of which the rows evaluate to srow(sa);

– i : S → R is the initial weight map defined as i(ε) = 1 and i(s) = 0 for s �= ε;
– o : S → R is the output weight map defined as o(s) = row(s)(ε).

604 G. van Heerdt et al.



For this to be well-defined, we need to have ε ∈ S (for the initial weights) and
ε ∈ E (for the output weights), and for the transition function there is a crucial
property of the table that needs to hold: closedness. In the weighted setting, a
table is closed if for all t ∈ S ·A, there exist rs ∈ R for all s ∈ S such that

srow(t) =
∑
s∈S

rs · row(s).

If this is not the case for a given t ∈ S ·A, the algorithm adds t to S. The table
is repeatedly extended in this manner until it is closed. The algorithm then
constructs a hypothesis, using the closedness witnesses to determine transitions,
and poses an equivalence query to the teacher. It terminates when the answer is
yes; otherwise it extends the table with the counterexample provided by adding
all its suffixes to E, and the procedure continues by closing again the resulting
table. In the next subsection we describe the algorithm through an example.

Remark 1. The original L� algorithm requires a second property to construct
a hypothesis, called consistency. Consistency is difficult to check in extended
settings, so the present paper is based on a variant of the algorithm inspired by
Maler and Pnueli [19] where only closedness is checked and counterexamples are
handled differently. See [13] for an overview of consistency in different settings.

2.1 Example: Learning a Weighted Language over the Reals

Throughout this section we consider the following weighted language:

L : {a}∗ → R L(aj) = 2j − 1.

The minimal WFA recognising it has 2 states. We will illustrate how the weighted
variant of Angluin’s algorithm recovers this WFA.

We start from S = E = {ε}, and fill the entries of the table on the left below
by asking membership queries for ε and a. The table is not closed and hence we
build the table on its right, adding the membership result for aa. The resulting
table is closed, as srow(aa) = 3 · row(a), so we construct the hypothesis A1.

ε
ε 0
a 1

ε
ε 0
a 1

aa 3

A1 = q0/0 q1/1
a, 1

a, 3

q0 = ε

q1 = a

The teacher replies no and gives the counterexample aaa, which is assigned 9 by
the hypothesis automaton A1 but 7 in the language. Therefore, we extend E ←
E ∪ {a, aa, aaa}. The table becomes the one below. It is closed, as srow(aa) =
3 · row(a)− 2 · row(ε), so we construct a new hypothesis A2.

Learning Weighted Automata over PIDs 605



ε a aa aaa
ε 0 1 3 7
a 1 3 7 15

aa 3 7 15 31

A2 = q0/0 q1/1 a, 3

a, 1

a,−2

The teacher replies yes because A2 accepts the intended language assigning 2j−
1 ∈ R to the word aj , and the algorithm terminates with the correct automaton.

2.2 Learning Weighted Languages over Arbitrary Semirings

Consider now the same language as above, but represented as a map over the
semiring of natural numbers L : {a}∗ → N instead of a map L : {a}∗ → R over
the reals. Accordingly, we consider a variant of the learning algorithm over the
semiring N rather than the algorithm over R described above. For the first part,
the run of the algorithm for N is the same as above, but after receiving the
counterexample we can no longer observe that srow(aa) = 3 · row(a)− 2 · row(ε),
since −2 �∈ N. In fact, there are no m,n ∈ N such that srow(aa) = m · row(ε) +
n · row(a). To see this, consider the first two columns in the table and note that
3
7 is bigger than 0

1 = 0 and 1
3 , so it cannot be obtained as a linear combination

of the latter two using natural numbers. We thus have a closedness defect and
update S ← S ∪ {aa}, leading to the table below.

ε a aa aaa
ε 0 1 3 7
a 1 3 7 15

aa 3 7 15 31
aaa 7 15 31 63

Again, the table is not closed, since 7
15 > 3

7 . In fact, these closedness defects
continue appearing indefinitely, leading to non-termination of the algorithm.
This is shown formally in Section 5.

Note, however, that there does exist a WFA over N accepting this language:

q0/0 q1/1
a, 1

a, 1 a, 2

(1)

The reason that the algorithm cannot find the correct automaton is closely
related to the algebraic structure induced by the semiring. In the case of the reals,
the algebras are vector spaces and the closedness checks induce increases in the
dimension of the hypothesis WFA, which in turn cannot exceed the dimension
of the minimal one for the language. In the case of commutative monoids, the
algebras for the natural numbers, the notion of dimension does not exist and
unfortunately the algorithm does not terminate. In Section 6 we show that one
can get around this problem for a class of semirings which includes the integers.

606 G. van Heerdt et al.



We mentioned earlier that during experimental evaluation the target WFA
is known, and equivalence queries may be implemented via standard language
equivalence methods. A further issue with arbitrary semirings is that language
equivalence can be undecidable; that is the case, e.g., for the tropical semiring.

In Section 3 we recall basic definitions used throughout the paper, after which
Section 4 introduces our general algorithm with its (parameterised) termination
proof of Theorem 14. We then proceed to prove non-termination of the example
discussed above over the natural numbers in Section 5 before instantiating our
algorithm to PIDs in Section 6 and showing that it terminates in Theorem 28.
We conclude with a discussion of related and future work in Section 7.

3 Preliminaries

Throughout this paper we fix a semiring5 S and a finite alphabet A. We start
with basic definitions related to semimodules and weighted languages.

Definition 2 (Semimodule). A (left) semimodule M over S consists of a
monoid structure on M , written using + as the operation and 0 as the unit,
together with a scalar multiplication map · : S×M → M such that:

s · 0M = 0M 0S ·m = 0M 1 ·m = m

s · (m+ n) = s ·m+ s · n (s+ r) ·m = s ·m+ r ·m (sr) ·m = s · (r ·m).

When the semiring is in fact a ring, we speak of a module rather than a semi-
module. In the case of a field, the concept instantiates to a vector space.

As an example, commutative monoids are the semimodules over the semiring
of natural numbers. Any semiring forms a semimodule over itself by instantiating
the scalar multiplication map to the internal multiplication. If X is any set andM
is a semimodule, then MX with pointwise operations also forms a semimodule.
A similar semimodule is the free semimodule over X, which differs from MX

in that it fixes M to be S and requires its elements to have finite support. This
enables an important operation called linearisation.

Definition 3 (Free semimodule). The free semimodule over a set X is given
by the set

V (X) = {f : X → S | supp(f) is finite}
with pointwise operations. Here supp(f) = {x ∈ X | f(x) �= 0}. We some-
times identify the elements of V (X) with formal sums over X. Any semimodule
isomorphic to V (X) for some set X is called free.

If X is a finite set, then V (X) = SX . We now define linearisation of a function
into a semimodule, which uniquely extends it to a semimodule homomorphism,
witnessing the fact that V (X) is free.

5 Rings and semirings considered in this paper are taken to be unital.

Learning Weighted Automata over PIDs 607



Definition 4 (Linearisation). Given a set X, a semimodule M , and a func-
tion f : X → M , we define the linearisation of f as the semimodule homomor-
phism f � : V (X) → M given by

f �(α) =
∑
x∈X

α(x) · f(x).

The (−)� operation has an inverse that maps a semimodule homomorphism
g : V (X) → M to the function g† : X → M given by

g†(x) = g(∂x), ∂x(y) =

{
1 if y = x

0 if y �= x.

We proceed with the definition of WFAs and their languages.

Definition 5 (WFA). A weighted finite automaton (WFA) over S is a tuple
(Q, δ, i, o), where Q is a finite set, δ : Q → (SQ)A, and i, o : Q → S.

A weighted language (or just language) over S is a function A∗ → S. To define
the language accepted by a WFA A = (Q, δ, i, o), we first introduce the notions
of observability map obsA : V (Q) → SA∗

and reachability map reachA : V (A∗) →
V (Q) as the semimodule homomorphisms given by

reach†A(ε) = i obsA(m)(ε) = o�(m)

reach†A(ua) = δ�(reach†A(u))(a) obsA(m)(au) = obsA(δ�(m)(a))(u).

The language accepted by a WFA A = (Q, δ, i, o) is the function LA : A∗ → S
given by LA = obsA(i). Equivalently, one can define this as LA = o� ◦ reach†A.

4 General Algorithm for WFAs

In this section we define the general algorithm for WFAs over S, as described
informally in Section 2. Our algorithm assumes the existence of a closedness
strategy (Definition 8), which allows one to check whether a table is closed, and
in case it is, provide relevant witnesses. We then introduce sufficient conditions
on S and on the language L to be learned under which the algorithm terminates.

Definition 6 (Observation table). An observation table (or just table) (S,E)
consists of two sets S,E ⊆ A∗. We write Tablefin = Pf (A

∗) × Pf (A
∗) for

the set of finite tables (where Pf (X) denotes the collection of finite subsets
of a set X). Given a language L : A∗ → S, an observation table (S,E) de-
termines the row function row(S,E,L) : S → SE and the successor row function
srow(S,E,L) : S ·A → SE as follows:

row(S,E,L)(w)(v) = L(wv) srow(S,E,L)(wa)(v) = L(wav).
We often write rowL and srowL, or even row and srow, when the parameters are
clear from the context.

608 G. van Heerdt et al.



A table is closed if the successor rows are linear combinations of the existing
rows in S. To make this precise, we use the linearisation row� (Definition 4),
which extends row to linear combinations of words in S.

Definition 7 (Closedness). Given a language L, a table (S,E) is closed if for
all w ∈ S and a ∈ A there exists α ∈ V (S) such that srow(wa) = row�(α).

This corresponds to the notion of closedness described in Section 2.
A further important ingredient of the algorithm is a method for checking

whether a table is closed. This is captured by the notion of closedness strategy.

Definition 8 (Closedness strategy). Given a language L, a closedness strat-
egy for L is a family of computable functions(

cs(S,E) : S ·A → {⊥} ∪ V (S)
)
(S,E)∈Tablefin

satisfying the following two properties:

– if cs(S,E)(t) = ⊥, then there is no α ∈ V (S) s.t. row�(α) = srow(t), and

– if cs(S,E)(t) �= ⊥, then row�(cs(S,E)(t)) = srow(t).

Thus, given a closedness strategy as above, a table (S,E) is closed iff cs(S,E)(t) �=
⊥ for all t ∈ S ·A. More specifically, for each t ∈ S ·A we have that cs(S,E)(t) �= ⊥
iff the (successor) row corresponding to t already forms a linear combination of
rows labelled by S. In that case, this linear combination is returned by cs(S,E)(t).
This is used to close tables in our learning algorithm, introduced below.

Examples of semirings and (classes of) languages that admit a closedness
strategy are described at the end of this section. Important for our algorithm
will be that closedness strategies are computable. This problem is equivalent to
solving systems of equations Ax = b, where A is the matrix whose columns are
row(s) for s ∈ S, x is a vector of length |S|, and b is the vector consisting of
the row entries in srow(t) for some t ∈ S · A. These observations motivate the
following definition.

Definition 9 (Solvability). A semiring S is solvable if a solution to any finite
system of linear equations of the form Ax = b is computable.

We have the following correspondence.

Proposition 10. For any language accepted by a WFA over any semiring there
exists a closedness strategy if and only if the semiring is solvable.

Proof. If the semiring is solvable, we obtain a closedness strategy by the remarks
prior to Definition 9. Conversely, we can construct a language that is non-zero
on finitely many words and encode in a table (S,E) a given linear equation. To
be able to freely choose the value in each table cell, we can consider a sufficiently
large alphabet to make sure S and E contain only single-letter words. This avoids
dependencies within the table. 
�

Learning Weighted Automata over PIDs 609



Algorithm 1 Abstract learning algorithm for WFA over S
1: S,E ← {ε}
2: while true do
3: while cs(S,E)(t) = ⊥ for some t ∈ S ·A do
4: S ← S ∪ {t}
5: for s ∈ S do
6: o(s) ← rowL(s)(ε)
7: for a ∈ A do
8: δ(s)(a) ← cs(S,E)(sa)

9: if EQ(S, δ, ε, o) = w ∈ A∗ then
10: E ← E ∪ suffixes(w)
11: else
12: return (S, δ, ε, o)

We now have all the ingredients to formulate the algorithm to learn weighted
languages over a general semiring. The pseudocode is displayed in Algorithm 1.

The algorithm keeps a table (S,E), and starts by initialising both S and E to
contain just the empty word. The inner while loop (lines 3–4) uses the closedness
strategy to repeatedly check whether the current table is closed and add new
rows in case it is not. Once the table is closed, a hypothesis is constructed,
again using the closedness strategy (lines 5–8). This hypothesis (S, δ, ε, o) is
then given to the teacher for an equivalence check. The equivalence check is
modelled by EQ (line 9) as follows: if the hypothesis is incorrect, the teacher
non-deterministically returns a counterexample w ∈ A∗, the condition evaluates
to true, and the suffixes of w are added to E; otherwise, if the hypothesis is
correct, the condition on line 9 evaluates to false, and the algorithm returns
the correct hypothesis on line 12.

4.1 Termination of the General Algorithm

The main question remaining is: under which conditions does this algorithm
terminate and hence learns the unknown weighted language? We proceed to give
abstract conditions under which it terminates. There are two main assumptions:

1. A way of measuring progress the algorithm makes with the observation table
when it distinguishes linear combinations of rows that were previously equal,
together with a bound on this progress (Definition 11).

2. An assumption on the Hankel matrix of the input language (Definition 12),
which makes sure we encounter finitely many closedness defects through-
out any run of the algorithm. More specifically, we assume that the Hankel
matrix satisfies a finite approximation property (Definition 13).

The first assumption is captured by the definition of progress measure:

Definition 11 (Progress measure). A progress measure for a language L is
a function size : Tablefin → N such that

610 G. van Heerdt et al.



(a) there exists n ∈ N such for all (S,E) ∈ Tablefin we have size(S,E) ≤ n;
(b) given (S,E), (S,E′) ∈ Tablefin and s1, s2 ∈ V (S) such that E ⊆ E′ and

row�
(S,E,L)(s1) = row�

(S,E,L)(s2) but row�
(S,E′,L)(s1) �= row�

(S,E′,L)(s2), we

have size(S,E′) > size(S,E).

A progress measure assigns a ‘size’ to each table, in such a way that (a) there is a
global bound on the size of tables, and (b) if we extend a table with some proper
tests in E, i.e., such that some combinations of rows in row� that were equal
before get distinguished by a newly added test, then the size of the extended
table is properly above the size of the original table. This is used to ensure that,
when adding certain counterexamples supplied by the teacher, the size of the
table, measured according to the above size function, properly increases.

The second assumption that we use for termination is phrased in terms of
the Hankel matrix associated to the input language L, which represents L as the
(semimodule generated by the) infinite table where both the rows and columns
contain all words. The Hankel matrix is defined as follows.

Definition 12 (Hankel matrix). Given a language L : A∗ → S, the semi-
module generated by a table (S,E) is given by the image of row�. We refer to
the semimodule generated by the table (A∗, A∗) as the Hankel matrix of L.
The Hankel matrix is approximated by the tables that occur during the execution
of the algorithm. For termination, we will therefore assume that this matrix
satisfies the following finite approximation condition.

Definition 13 (Ascending chain condition). We say that a semimodule M
satisfies the ascending chain condition if for all inclusion chains of subsemimod-
ules of M ,

S1 ⊆ S2 ⊆ S3 ⊆ · · · ,
there exists n ∈ N such that for all m ≥ n we have Sm = Sn.

Given the notions of progress measure, Hankel matrix and ascending chain
condition, we can formulate the general theorem for termination of Algorithm 1.

Theorem 14 (Termination of the abstract learning algorithm). In the
presence of a progress measure, Algorithm 1 terminates whenever the Hankel ma-
trix of the target language satisfies the ascending chain condition (Definition 13).

Proof. Suppose the algorithm does not terminate. Then there is a sequence
{(Sn, En)}n∈N of tables where (S0, E0) is the initial table and (Sn+1, En+1) is
formed from (Sn, En) after resolving a closedness defect or adding columns due
to a counterexample.

We write Hn for the semimodule generated by the table (Sn, A
∗). We have

Sn ⊆ Sn+1 and thus Hn ⊆ Hn+1. Note that a closedness defect for (Sn, En) is
also a closedness defect for (Sn, A

∗), so if we resolve the defect in the next step,
the inclusion Hn ⊆ Hn+1 is strict. Since these are all included in the Hankel
matrix, which satisfies the ascending chain condition, there must be an n such
that for all k ≥ n we have that (Sk, Ek) is closed.

Learning Weighted Automata over PIDs 611



In [13, Section 6] it is shown that in a general table used for learning automata
with side-effects given by a monad there exists a suffix of each counterexample
for the corresponding hypothesis that when added as a column label leads to
either a closedness defect or to distinguishing two combinations of rows in the
table. Since WFAs are automata with side-effects given by the free semimodule
monad6 and we add all suffixes of the counterexample to the set of column
labels, this also happens in our algorithm. Thus, for all k ≥ n where we process a
counterexample, there must be two linear combinations of rows distinguished, as
closedness is already guaranteed. Then the semimodule generated by (Sk, Ek) is
a strict quotient of the semimodule generated by (Sk+1, Ek+1). By the progress
measure we then find size(Sk, Ek) < size(Sk+1, Ek+1), which cannot happen
infinitely often. We conclude that the algorithm must terminate. 
�

To illustrate the hypotheses needed for Algorithm 1 and its termination (The-
orem 14), we consider two classes of semirings for which learning algorithms are
already known in the literature [7,13].

Example 15 (Weighted languages over fields). Consider any field for which the
basic operations are computable. Solvability is then satisfied via a procedure such
as Gaussian elimination, so by Proposition 10 there exists a closedness strategy.
Hence, we can instantiate Algorithm 1 with S being such a field.

For termination, we show that the hypotheses of Theorem 14 are satisfied
whenever the input language is accepted by a WFA. First, a progress measure
is given by the dimension of the vector space generated by the table. To see
this, note that if we distinguish two linear combinations of rows, we can assume
without loss of generality that one of these linear combinations in the extended
table uses only basis elements. This in turn can be rewritten to distinguishing
a single row from a linear combination of rows using field operations, with the
property that the extended version of the single row is a basis element. Hence, the
row was not a basis element in the original table, and therefore the dimension of
the vector space generated by the table has increased. Adding rows and columns
cannot decrease this dimension, so it is bounded by the dimension of the Hankel
matrix. Since the language we want to learn is accepted by a WFA, the associated
Hankel matrix has a finite dimension [10,12] (see also, e.g., [5]), providing a
bound for our progress measure.

Finally, for any ascending chain of subspaces of the Hankel matrix, these
subspaces are of finite dimension bounded by the dimension of the Hankel matrix.
The dimension increases along a strict subspace relation, so the chain converges.

Example 16 (Weighted languages over finite semirings). Consider any finite semir-
ing. Finiteness allows us to apply a brute force approach to solving systems of
equations. This means the semiring is solvable, and hence a closedness strategy
exists by Proposition 10.

For termination, we can define a progress measure by assigning to each table
the size of the image of row�. Distinguishing two linear combinations of rows

6 We note that [13] assumes the monad to preserve finite sets. However, the relevant
arguments do not depend on this.

612 G. van Heerdt et al.



increases this measure. If the language we want to learn is accepted by a WFA,
then the Hankel matrix contains a subset of the linear combinations of the lan-
guages of its states. Since there are only finitely many such linear combinations,
the Hankel matrix is finite, which bounds our measure. A finite semimodule such
as the Hankel matrix in this case does not admit infinite chains of subspaces.
We conclude by Theorem 14 that Algorithm 1 terminates for the instance that
the semiring S is a finite, if the input language is accepted by a WFA over S.

For the Boolean semiring, an instance of the above finite semiring example,
WFAs are non-deterministic finite automata. The algorithm we recover by in-
stantiating Algorithm 1 to this case is close to the algorithm first described by
Bollig et al. [8]. The main differences are that in their case the hypothesis has
a state space given by a minimally generating subset of the distinct rows in the
table rather than all elements of S, and they do apply a notion of consistency.

In Section 6 we will show that Algorithm 1 can learn WFAs over principal
ideal domains—notably including the integers—thus providing a strict general-
isation of existing techniques.

5 Issues with Arbitrary Semirings

We concluded the previous section with examples of semirings for which Algo-
rithm 1 terminates if the target language is accepted by a WFA. In this section,
we prove a negative result for the algorithm over the semiring N: we show that
it does not terminate on a certain language over N accepted by a WFA over N,
as anticipated in Section 2.2. This means that Algorithm 1 does not work well
for arbitrary semirings. The problem is that the Hankel matrix of a language
recognised by WFA does not necessarily satisfy the ascending chain condition
that is used to prove Theorem 14. In the example given in the proof below, the
Hankel matrix is not even finitely generated.

Theorem 17. There exists a WFA AN over N such that Algorithm 1 does not
terminate when given LAN as input, regardless of the closedness strategy used.

Proof. LetAN be the automaton over the alphabet {a} given in (1) in Section 2.2.
Formally, AN = (Q, δ, i, o), where

Q = {q0, q1} i = q0 o(q0) = 0

δ(q0)(a) = q0 + q1 δ(q1)(a) = 2q1 o(q1) = 1.

As mentioned in Section 2.2, the language L : {a}∗ → N accepted by AN is
given by L(aj) = 2j − 1. This can be shown more precisely as follows. First one
shows by induction on j that obsAN(q1)(a

j) = 2j for all j ∈ N—we leave the
straightforward argument to the reader. Second, we show, again by induction on
j, that obsAN(q0)(a

j) = 2j − 1. This implies the claim, as L = obsAN(q0). For
j = 0 we have obsAN(q0)(a

j) = o(q0) = 0 = 20 − 1 as required. For the inductive

Learning Weighted Automata over PIDs 613



step, let j = k + 1 and assume obsAN(q0)(a
k) = 2k − 1. We calculate

obsAN(q0)(a
k+1) = obsAN(q0 + q1)(a

k)

= obsAN(q0)(a
k) + obsAN(q1)(a

k)

= (2k − 1) + 2k

= 2k+1 − 1.

Note that in particular the language L is injective.
Towards a contradiction, suppose the algorithm does terminate with table

(S,E). Let J = {j ∈ N | aj ∈ S} and define n = max(J). Since the algorithm
terminates with table (S,E), the latter must be closed. In particular, there exist
kj ∈ N for all j ∈ J such that

∑
j∈J kj · rowL(aj) = srowL(ana). We consider

two cases. First assume E = {ε} and let A = (Q′, δ′, i′, o′) be the hypothesis.

For all l ∈ N we have row�
L(reach

†
A(a

l))(ε) = 2l − 1 because A must be correct.

Thus, if al ∈ S ·A, then row�
L(reach

†
A(a

l)) = srowL(al). In particular,

row�
L(reach

†
A(a

na)) = srowL(ana) =
∑
j∈J

kj · rowL(aj).

Note that we can choose the kj such that reach†A(a
na) =

∑
j∈J kj · aj . Since

row�
L

⎛⎝δ′�

⎛⎝∑
j∈J

kj · aj
⎞⎠ (a)

⎞⎠ = row�
L

⎛⎝∑
j∈J

kj · δ′(aj)(a)
⎞⎠

=
∑
j∈J

kj · rowL(δ′(aj)(a))

=
∑
j∈J

kj · srowL(aja),

we have row�
L(reach

†
A(a

naa)) =
∑

j∈J kj · srowL(aja) and therefore∑
j∈J

kj · srowL(aja)(ε) = row�
L(reach

†
A(a

naa))(ε) = 2n+2 − 1.

Then

2n+2 − 1 =
∑
j∈J

kj · srowL(aja)(ε) =
∑
j∈J

kj(2
j+1 − 1)

= 2

⎛⎝∑
j∈J

kj(2
j − 1)

⎞⎠+
∑
j∈J

kj = 2(2n+1 − 1) +
∑
j∈J

kj ,

so
∑

j∈J kj = 1. This is only possible if there is j1 ∈ J s.t. kj1 = 1 and kj = 0

for all j ∈ J \ {j1}. However, this implies that rowL(aj1) = srowL(ana), which
contradicts injectivity of L as n ≥ j1. Thus, the algorithm did not terminate.

614 G. van Heerdt et al.



For the other case, assume there is am ∈ E such that m ≥ 1. We have

2n+1 − 1 = srowL(ana)(ε) =
∑
j∈J

kj · rowL(aj)(ε) =
∑
j∈J

kj(2
j − 1),

so ∑
j∈J

kj(2
j+m − 1) =

∑
j∈J

kj · rowL(aj)(am)

= srowL(ana)(am)

= 2n+m+1 − 1

= 2m(2n+1 − 1) + 2m − 1

= 2m

⎛⎝∑
j∈J

kj(2
j − 1)

⎞⎠+ 2m − 1

=

⎛⎝∑
j∈J

kj(2
j+m − 2m)

⎞⎠+ 2m − 1

=

⎛⎝∑
j∈J

kj(2
j+m − 1)

⎞⎠+

⎛⎝∑
j∈J

kj(1− 2m)

⎞⎠+ 2m − 1.

Then ⎛⎝∑
j∈J

kj(1− 2m)

⎞⎠+ 2m − 1 = 0.

Since m ≥ 1 this is only possible if there is j1 ∈ J s.t. kj1 = 1 and kj = 0
for all j ∈ J \ {j1}. However, this implies rowL(aj1) = srowL(ana), which again
contradicts injectivity of L as n ≥ j1. Thus, the algorithm did not terminate. 
�
Remark 18. Our proof shows non-termination for a bigger class of algorithms
than Algorithm 1; it uses only the definition of the hypothesis, that closedness
is satisfied before constructing the hypothesis, that S and E contain the empty
word, and that termination implies correctness. For instance, adding the prefixes
of a counterexample to S instead of its suffixes to E will not fix the issue.

We have thus shown that our algorithm does not instantiate to a terminating
one for an arbitrary semiring. To contrast this negative result, in the next section
we identify a class of semirings not previously explored in the learning literature
where we can guarantee a terminating instantiation.

6 Learning WFAs over PIDs

We show that for a subclass of semirings, namely principal ideal domains (PIDs),
the abstract learning algorithm of Section 4 terminates. This subclass includes

Learning Weighted Automata over PIDs 615



the integers, Gaussian integers, and rings of polynomials in one variable with
coefficients in a field. We will prove that the Hankel matrix of a language over
a PID accepted by a WFA has analogous properties to those of vector spaces—
finite rank, a notion of progress measure, and the ascending chain condition. We
also give a sufficient condition for PIDs to be solvable, which by Proposition 10
guarantees the existence of a closedness strategy for the learning algorithm.

To define PIDs, we first need to introduce ideals. Given a ring S, a (left) ideal
I of S is an additive subgroup of S s.t. for all s ∈ S and i ∈ I we have si ∈ I.
The ideal I is (left) principal if it is of the form I = Ss for some s ∈ S.

Definition 19 (PID). A principal ideal domain P is a non-zero commutative
ring in which every ideal is principal and where for all p1, p2 ∈ P such that
p1p2 = 0 we have p1 = 0 or p2 = 0.

A module M over a PID P is called torsion free if for all p ∈ P and any
m ∈ M such that p ·m = 0 we have p = 0 or m = 0. It is a standard result that
a module over a PID is torsion free if and only if it is free [17, Theorem 3.10].

The next definition of rank is analogous to that of the dimension of a vector
space and will form the basis for the progress measure.

Definition 20 (Rank). We define the rank of a finitely generated free module
V (X) over a PID as rank(V (X)) = |X|.

This definition extends to any finitely generated free module over a PID, as
V (X) ∼= V (Y ) for finite sets X and Y implies |X| = |Y | [17, Theorem 3.4].

Now that we have a candidate for a progress measure function, we need to
prove it has the required properties. The following lemmas will help with this.

Lemma 21. Given finitely generated free modules M,N over a PID s.t. rank(M) ≥
rank(N), any surjective module homomorphism f : N → M is injective.

Proof. Since rank(M) ≥ rank(N), there exists a surjective module homomor-
phism g : M → N . Therefore g ◦ f : N → N is surjective and by [23] an iso. In
particular, f is injective. 
�
Lemma 22. If M and N are finitely generated free modules over a PID such
that there exists a surjective module homomorphism f : N → M , then rank(M) ≤
rank(N). If f is not injective, then rank(M) < rank(N).

Proof. Let f : N → M be a surjective module homomorphism. Suppose towards
a contradiction that rank(M) > rank(N). By Lemma 21 f is injective, so M is
isomorphic to a submodule of N and rank(M) ≤ rank(N) [17]; contradiction.

For the second part, suppose f is not injective and assume towards a contra-
diction that rank(M) ≥ rank(N). Again by Lemma 21 f is injective, which is a
contradiction with our assumption. Thus, in this case rank(M) < rank(N). 
�

The lemma below states that the Hankel matrix of a weighted language over
a PID has finite rank which bounds the rank of any module generated by an
observation table. This will be used to define a progress measure, used to prove
termination of the learning algorithm for weighted languages over PIDs.

616 G. van Heerdt et al.



Lemma 23 (Hankel matrix rank for PIDs). When targeting a language
accepted by a WFA over a PID, any module generated by an observation table
is free. Moreover, the Hankel matrix has finite rank that bounds the rank of any
module generated by an observation table.

Proof. Given a WFA A = (Q, δ, i, o), let M be the free module generated by
Q. Note that the Hankel matrix is the image of the composition obsA ◦ reachA.
Consider the image of the module homomorphism reachA : V (A∗) → M , which
we write as R. Since R is a submodule of M , we know from [17] that R is free
and finitely generated with rank(R) ≤ rank(M). The Hankel matrix can now be
obtained as the image of the restriction of obsA : M → SA∗

to the domain R.
Let H be this image, which we know is finitely generated because R is. Since
H is a submodule of the torsion free module SA∗

, it is also torsion free and
therefore free. We also have a surjective module homomorphism s : R → H, so
by Lemma 22 we find rank(H) ≤ rank(R).

Let N be the module generated by an observation table (S,E). We have that
N is a quotient of the module generated by (S,A∗), which in turn is a submodule
of H. Using again [17] and Lemma 22 we conclude that N is free and finitely
generated with rank(N) ≤ rank(H). 
�
The second part of Lemma 23 would follow from a PID variant of Fliess’ theo-
rem [12]. We are not aware of such a result, and leave this for future work.

Proposition 24 (Progress measure for PIDs). There exists a progress
measure for any language accepted by a WFA over a PID.

Proof. Define size(S,E) = rank(M), where M is the module generated by the
table (S,E). By Lemma 23 this is bounded by the rank of the Hankel matrix. If
M and N are modules generated by two tables such that N is a strict quotient
of M , then by Lemma 22 we have rank(M) > rank(N). 
�

Recall that, for termination of the algorithm, Theorem 14 requires a progress
measure, which we defined above, and it requires the Hankel matrix of the lan-
guage to satisfy the ascending chain condition (Definition 13). Proposition 25
shows that the latter is always the case for languages over PIDs.

Proposition 25 (Ascending chain condition PIDs). The Hankel matrix of
a language accepted by a WFA over a PID satisfies the ascending chain condition.

Proof. Let H be the Hankel matrix, which has finite rank by Lemma 23. If

M1 ⊆ M2 ⊆ M3 ⊆ · · ·
is any chain of submodules of H, then M =

⋃
i∈N Mi is a submodule of H and

therefore also of finite rank [17]. Let B be a finite basis of M . There exists n ∈ N
such that B ⊆ Mn, so Mn = M . 
�

The last ingredient for the abstract algorithm is solvability of the semiring:
the following fact provides a sufficient condition for a PID to be solvable.

Learning Weighted Automata over PIDs 617



Proposition 26 (PID solvability). A PID P is solvable if all of its ring
operations are computable and if each element of P can be effectively factorised
into irreducible elements.

Proof. It is well-known that a system of equations of the form Ax = b with
integer coefficients can be efficiently solved via computing the Smith normal
form [25] of A. The algorithm generalises to principal ideal domains, if we assume
that the factorisation of any given element of the principal ideal domain7 into
irreducible elements is computable, cf. the algorithm in [16, p. 79-84]. To see
that all steps in this algorithm can be computed, one has to keep in mind that
the factorisation can be used to determine the greatest common divisor of any
two elements of the principal ideal domain. 
�
Remark 27. In the case that we are dealing with an Euclidean domain P, a
sufficient condition for P to be solvable is that Euclidean division is computable
(again this can be deduced from inspecting the algorithm in [16, p. 79-84]). Such
a PID behaves essentially like the ring of integers.

Putting everything together, we obtain the main result of this section.

Theorem 28 (Termination for PIDs). Algorithm 1 can be instantiated and
terminates for any language accepted by a WFA over a PID of which all ring
operations are computable and of which each element can be effectively factorised
into irreducible elements.

Proof. To instantiate the algorithm, we need a closedness strategy. According
to Proposition 10 it is sufficient for the PID to be solvable, which is shown by
Proposition 26. Proposition 24 provides a progress measure, and we know from
Proposition 25 that the Hankel matrix satisfies the ascending chain condition,
so by Theorem 14 the algorithm terminates. 
�

The example run given in Section 2.1 is the same when performed over the
integers. We note that if the teacher holds an automaton model of the correct
language, equivalence queries are decidable by lifting the embedding of the PID
into its quotient field to the level of WFAs and checking equivalence there.

7 Discussion

We have introduced a general algorithm for learning WFAs over arbitrary semir-
ings, together with sufficient conditions for termination. We have shown an inher-
ent termination issue over the natural numbers and proved termination for PIDs.
Our work extends the results by Bergadano and Varricchio [7], who showed that
WFAs over fields could be learned from a teacher. Although we note that a PID
can be embedded into its corresponding field of fractions, the WFAs produced
when learning over the field potentially have weights outside the PID.

7 Note that factorisations exist as each principal ideal domain is also a unique factori-
sation domain, cf. e.g. [17, Thm. 2.23].

618 G. van Heerdt et al.



Algorithmic issues with WFAs over arbitrary semirings have been identified
before. For instance, Krob [18] showed that language equivalence is undecidable
for WFAs over the tropical semiring.

On the technical level, a variation on WFAs is given by probabilistic au-
tomata, where transitions point to convex rather than linear combinations of
states. One easily adapts the example from Section 5 to show that learning
probabilistic automata has a similar termination issue. On the positive side,
Tappler et al. [26] have shown that deterministic MDPs can be learned using an
L� based algorithm. The deterministic MDPs in loc.cit. are very different from
the automata in our paper, as their states generate observable output that allows
to identify the current state based on the generated input-output sequence.

One drawback of the ascending chain condition on the Hankel matrix is
that this does not give any indication of the number of steps the algorithm
requires. Indeed, the submodule chains traversed, although converging, may be
arbitrarily long. We would like to measure and bound the progress made when
fixing closedness defects, but this turns out to be challenging for PIDs. The rank
of the module generated by the table may not increase. We leave an investigation
of alternative measures to future work.

We would also like to adapt the algorithm so that for PIDs it always pro-
duces minimal automata. At the moment this is already the case for fields,8

since adding a row due to a closedness defect preserves linear independence of
the image of row. For PIDs things are more complicated—adding rows towards
closedness may break linear independence and thus a basis needs to be found in
row�. This complicates the construction of the hypothesis.

Our results show that, on the one hand, WFAs can be learned over finite
semirings and arbitrary PIDs (assuming computability of the relevant opera-
tions) and, on the other hand, that there exists an infinite commutative semiring
for which they cannot be learned. However, there are many classes of semirings
in between commutative semirings and PIDs, of which we would like to know
whether their WFAs can be learned by our general algorithm.

Finally, we would like to generalise our results to extend the framework in-
troduced in [13], which focusses on learning automata with side-effects over a
monad. WFAs as considered in the present paper are an instance of those, where
the monad is the free semimodule monad V (−). At the moment, the results
in [13] apply to a monad that preserves finite sets, but much of our general
WFA learning algorithm and termination argument can be extended to that set-
ting. It would be interesting to see if crucial properties of PIDs that lead to a
progress measure and to satisfying the ascending chain condition could also be
translated to the monad level.

Acknowledgments. We thank Joshua Moerman for comments and discussions.

8 There is one exception: the language that assigns 0 to every word, which is accepted
by a WFA with no states. The algorithm initialises the set of row labels, which
constitute the state space of the hypothesis, with the empty word.

Learning Weighted Automata over PIDs 619



References

1. Fides Aarts, Paul Fiterau-Brostean, Harco Kuppens, and Frits W. Vaandrager.
Learning register automata with fresh value generation. In Martin Leucker, Camilo
Rueda, and Frank D. Valencia, editors, ICTAC, volume 9399 of LNCS, pages 165–
183. Springer, 2015.

2. Cyril Allauzen, Mehryar Mohri, and Ameet Talwalkar. Sequence kernels for pre-
dicting protein essentiality. In William W. Cohen, Andrew McCallum, and Sam T.
Roweis, editors, ICML, volume 307 of ACM International Conference Proceeding
Series, pages 9–16. ACM, 2008.

3. Benjamin Aminof, Orna Kupferman, and Robby Lampert. Formal analysis of
online algorithms. In Tevfik Bultan and Pao-Ann Hsiung, editors, ATVA, volume
6996 of LNCS, pages 213–227. Springer, 2011.

4. Dana Angluin. Learning regular sets from queries and counterexamples. Informa-
tion and computation, 75(2):87–106, 1987.

5. Borja Balle and Mehryar Mohri. Spectral learning of general weighted automata
via constrained matrix completion. In Peter L. Bartlett, Fernando C. N. Pereira,
Christopher J. C. Burges, Léon Bottou, and Kilian Q. Weinberger, editors, NIPS,
pages 2168–2176, 2012.

6. Borja Balle and Mehryar Mohri. Learning weighted automata. In Andreas Maletti,
editor, CAI, volume 9270 of LNCS, pages 1–21. Springer, 2015.

7. Francesco Bergadano and Stefano Varricchio. Learning behaviors of automata
from multiplicity and equivalence queries. SIAM J. Comput., 25(6):1268–1280,
December 1996.

8. Benedikt Bollig, Peter Habermehl, Carsten Kern, and Martin Leucker. Angluin-
style learning of NFA. In Craig Boutilier, editor, IJCAI, pages 1004–1009, 2009.

9. Michele Boreale. Weighted bisimulation in linear algebraic form. In CONCUR,
volume 5710 of LNCS, pages 163–177. Springer, 2009.

10. Jack W. Carlyle and Azaria Paz. Realizations by stochastic finite automata. J.
Comput. Syst. Sci., 5(1):26–40, 1971.

11. Karel Culik II and Jarkko Kari. Image compression using weighted finite automata.
Computers & Graphics, 17(3):305–313, 1993.

12. Michel Fliess. Matrices de Hankel. J. Math. Pures Appl, 53(9):197–222, 1974.
13. Gerco van Heerdt, Matteo Sammartino, and Alexandra Silva. Optimizing automata

learning via monads. arXiv preprint arXiv:1704.08055, 2017.
14. Falk Howar and Bernhard Steffen. Active automata learning in practice - an

annotated bibliography of the years 2011 to 2016. In Amel Bennaceur, Reiner
Hähnle, and Karl Meinke, editors, Machine Learning for Dynamic Software Anal-
ysis: Potentials and Limits - International Dagstuhl Seminar 16172, volume 11026
of LNCS, pages 123–148. Springer, 2018.

15. Malte Isberner, Falk Howar, and Bernhard Steffen. The open-source learnlib -
A framework for active automata learning. In Daniel Kroening and Corina S.
Pasareanu, editors, CAV, volume 9206 of LNCS, pages 487–495. Springer, 2015.

16. Nathan Jacobson. Lectures in Abstract Algebra, volume 31 of GTM. Springer,
1953.

17. Nathan Jacobson. Basic algebra I. Courier Corporation, 2012.
18. Daniel Krob. The equality problem for rational series with multiplicities in the

tropical semiring is undecidable. International Journal of Algebra and Computa-
tion, 4(3):405–425, 1994.

620 G. van Heerdt et al.



19. Oded Maler and Amir Pnueli. On the learnability of infinitary regular sets. Inform.
and Comput., 118:316–326, 1995.

20. Joshua Moerman, Matteo Sammartino, Alexandra Silva, Bartek Klin, and Michal
Szynwelski. Learning nominal automata. In Giuseppe Castagna and Andrew D.
Gordon, editors, POPL, pages 613–625. ACM, 2017.

21. Mehryar Mohri, Fernando Pereira, and Michael Riley. Weighted automata in text
and speech processing. CoRR, abs/cs/0503077, 2005.

22. Malte Mues, Falk Howar, Kasper Søe Luckow, Temesghen Kahsai, and Zvonimir
Rakamaric. Releasing the PSYCO: using symbolic search in interface generation
for java. ACM SIGSOFT Software Engineering Notes, 41(6):1–5, 2016.

23. Morris Orzech. Onto endomorphisms are isomorphisms. The American Mathemat-
ical Monthly, 78(4):357–362, 1971.

24. Muzammil Shahbaz and Roland Groz. Inferring Mealy machines. In FM, volume
5850 of LNCS, pages 207–222, Berlin, Heidelberg, 2009. Springer-Verlag.

25. Henry J. Stephen Smith. On systems of linear indeterminate equations and con-
gruences. Philosophical Transactions of the Royal Society of London, 151:293–326,
1861.

26. Martin Tappler, Bernhard K. Aichernig, Giovanni Bacci, Maria Eichlseder, and

Kim G. Larsen. L*-Based Learning of Markov Decision Processes. In Maurice H.
ter Beek, Annabelle McIver, and José N. Oliveira, editors, FM, volume 11800 of
LNCS, pages 651–669. Springer, 2019.

27. Frits W. Vaandrager. Model learning. Commun. ACM, 60(2):86–95, 2017.
28. Juan Miguel Vilar. Query learning of subsequential transducers. In ICGI, volume

1147 of LNCS, pages 72–83. Springer, 1996.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/

4.0/), which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Learning Weighted Automata over PIDs 621

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


The Polynomial Complexity of Vector Addition
Systems with States

Florian Zuleger (�)
zuleger@forsyte.tuwien.ac.at

TU Wien

Abstract. Vector addition systems are an important model in theoret-
ical computer science and have been used in a variety of areas. In this
paper, we consider vector addition systems with states over a parame-
terized initial configuration. For these systems, we are interested in the
standard notion of computational time complexity, i.e., we want to un-
derstand the length of the longest trace for a fixed vector addition system
with states depending on the size of the initial configuration. We show
that the asymptotic complexity of a given vector addition system with
states is either Θ(Nk) for some computable integer k, where N is the
size of the initial configuration, or at least exponential. We further show
that k can be computed in polynomial time in the size of the considered
vector addition system. Finally, we show that 1 ≤ k ≤ 2n, where n is the
dimension of the considered vector addition system.

1 Introduction

Vector addition systems (VASs) [13], which are equivalent to Petri nets, are a
popular model for the analysis of parallel processes [7]. Vector addition systems
with states (VASSs) [10] are an extension of VASs with a finite control and are a
popular model for the analysis of concurrent systems, because the finite control
can for example be used to model shared global memory [12]. In this paper, we
consider VASSs over a parameterized initial configuration. For these systems,
we are interested in the standard notion of computational time complexity, i.e.,
we want to understand the length of the longest execution for a fixed VASS
depending on the size of the initial configuration. VASSs over a parameterized
initial configuration naturally arise in two areas: 1) The parameterized verifica-
tion problem. For concurrent systems the number of system processes is often
not known in advance, and thus the system is designed such that a template
process can be instantiated an arbitrary number of times. The problem of ana-
lyzing the concurrent system for all possible system sizes is a common theme in
the literature [9, 8, 1, 11, 4, 2, 3]. 2) Automated complexity analysis of programs.
VASSs (and generalizations) have been used as backend in program analysis
tools for automated complexity analysis [18–20]. The VASS considered by these
tools are naturally parameterized over the initial configuration, modelling the
dependency of the program complexity on the program input. The cited papers
have proposed practical techniques but did not give complete algorithms.

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 622–641, 2020.
https://doi.org/10.1007/978-3-030-45231-5_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_32&domain=pdf


Two recent papers have considered the computational time complexity of
VASSs over a parameterized initial configuration. [15] presents a PTIME pro-
cedure for deciding whether a VASS is polynomial or at least exponential, but
does not give a precise analysis in case of polynomial complexity. [5] establishes
the precise asymptotic complexity for the special case of VASSs whose configura-
tions are linearly bounded in the size of the initial configuration. In this paper,
we generalize both results and fully characterize the asymptotic behaviour of
VASSs with polynomial complexity: We show that the asymptotic complexity of
a given VASS is either Θ(Nk) for some computable integer k, where N is the
size of the initial configuration, or at least exponential. We further show that
k can be computed in PTIME in the size of the considered VASS. Finally, we
show that 1 ≤ k ≤ 2n, where n is the dimension of the considered VASS.

1.1 Overview and Illustration of Results

We discuss our approach on the VASS Vrun , stated in Figure 1, which will serve
as running example. The VASS has dimension 3 (i.e., the vectors annotating the
transitions have dimension 3) and four states s1, s2, s3, s4. In this paper we will
always represent vectors using a set of variables Var , whose cardinality equals
the dimension of the VASS. For Vrun we choose Var = {x, y, z} and use x, y, z
as indices for the first, second and third component of 3-dimensional vectors.
The configurations of a VASS are pairs of states and valuations of the variables
to non-negative integers. A step of a VASS moves along a transition from the
current state to a successor state, and adds the vector labelling the transition
to the current valuation; a step can only be taken if the resulting valuation
is non-negative. For the computational time complexity analysis of VASSs, we
consider traces (sequences of steps) whose initial configurations consist of a val-
uation whose maximal value is bounded by N (the parameter used for bounding
the size of the initial configuration). The computational time complexity is then
the length of the longest trace whose initial configuration is bounded by N . For
ease of exposition, we will in this paper only consider VASSs whose control-flow
graph is connected. (For the general case, we remark that one needs to decom-
pose a VASS into its strongly-connected components (SCCs), which can then be
analyzed in isolation, following the DAG-order of the SCC decomposition; for
this, one slightly needs to generalize the analysis in this paper to initial configu-
rations with values Θ(Nkx) for every variable x ∈ Var , where kx ∈ Z.) For ease
of exposition, we further consider traces over arbitrary initial states (instead of
some fixed initial state); this is justified because for a fixed initial state one can
always restrict the control-flow graph to the reachable states, and then the two
options result in the same notion of computational complexity (up to a constant
offset, which is not relevant for our asymptotic analysis).

In order to analyze the computational time complexity of a considered VASS,
our approach computes variable bounds and transition bounds. A variable bound
is the maximal value of a variable reachable by any trace whose initial configu-
ration is bounded by N . A transition bound is the maximal number of times a
transition appears in any trace whose initial configuration is bounded by N . For

The Polynomial Complexity of VASS 623



Vrun , our approach establishes the linear variable bound Θ(N) for x and y, and
the quadratic bound Θ(N2) for z. We note that because the variable bound of z
is quadratic and not linear, Vrun cannot be analyzed by the procedure of [5]. Our
approach establishes the bound Θ(N) for the transitions s1 → s3 and s4 → s2,
the bound Θ(N2) for transitions s1 → s2, s2 → s1, s3 → s4, s4 → s3, and
the bound Θ(N3) for all self-loops. The computational complexity of Vrun is
then the maximum of all transition bounds, i.e., Θ(N3). In general, our main
algorithm (Algorithm 1 presented in Section 4) either establishes that the VASS
under analysis has at least exponential complexity or computes asymptotically
precise variable and transition bounds Θ(Nk), with k computable in PTIME and
1 ≤ k ≤ 2n, where n is the dimension of the considered VASS. We note that our
upper bound 2n also improves the analysis of [15], which reports an exponential
dependence on the number of transitions (and not only on the dimension).

We further state a family Vn of VASSs, which illustrate that k can indeed
be exponential in the dimension (the example can be skipped on first reading).
Vn uses variables xi,j and consists of states si,j , for 1 ≤ i ≤ n and j = 1, 2. We
note that Vn has dimension 2n. Vn consists of the transitions

– si,1
d−→ si,2, for 1 ≤ i ≤ n, with d(xi,1) = −1 and d(x) = 0 for all x �= xi,1,

– si,2
d−→ si,1, for 1 ≤ i ≤ n, with d(x) = 0 for all x,

– si,1
d−→ si,1, for 1 ≤ i ≤ n, with d(xi,1) = −1, d(xi,2) = 1, d(xi+1,1) =

d(xi+1,2) = 1 in case i < n, and d(x) = 0 for all other x,

– si,2
d−→ si,2, for 1 ≤ i ≤ n, with d(xi,1) = 1, d(xi,2) = −1, and d(x) = 0 for

all other x,

– si,1
d−→ si+1,1, for 1 ≤ i < n, with d(xi,1) = −1 and d(x) = 0 for all x �= xi,1,

– si+1,2
d−→ si,2, for 1 ≤ i < n, with d(x) = 0 for all x.

Vexp in Figure 1 depicts Vn for n = 3, where the vector components are stated in
the order x1,1, x1,2, x2,1, x2,2, x3,1, x3,2. It is not hard to verify for all 1 ≤ i ≤ n

that Θ(N2i−1

) is the precise asymptotic variable bound for xi,1 and xi,2, that
si,1 → si,2, si,2 → si,1 and si,1 → si+1,1, si+1,2 → si,2 in case i < n, and that

Θ(N2i) is the precise asymptotic transition bound for si,1 → si,1, si,2 → si,2
(Algorithm 1 can be used to find these bounds).

1.2 Related Work

A celebrated result on VASs is the EXPSPACE-completeness [16, 17] of the
boundedness problem. Deciding termination for a VAS with a fixed initial con-
figuration can be reduced to the boundedness problem, and is therefore also
EXPSPACE-complete; this also applies to VASSs, whose termination problem
can be reduced to the VAS termination problem. In contrast, deciding the termi-
nation of VASSs for all initial configurations is in PTIME. It is not hard to see
that non-termination over all initial configurations is equivalent to the existence
of non-negative cycles (e.g., using Dickson’s Lemma [6]). Kosaraju and Sullivan
have given a PTIME procedure for the detection of zero-cycles [14], which can be
easily be adapted to non-negative cycles. The existence of zero-cycles is decided

624 F. Zuleger



s1

s2

s3

s4

⎛
⎝ 0

0
−1

⎞
⎠

⎛
⎝ 1
−1
1

⎞
⎠

⎛
⎝ 0

0
−1

⎞
⎠

⎛
⎝−1

1
−1

⎞
⎠

⎛
⎝ 0

0
−1

⎞
⎠

⎛
⎝ 1
−1
−1

⎞
⎠

⎛
⎝ 0

0
−1

⎞
⎠

⎛
⎝−1

1
1

⎞
⎠

⎛
⎝−1

0
0

⎞
⎠

⎛
⎝0
0
0

⎞
⎠

s1,1

s1,2

s2,1

s2,2

s3,1

s3,2

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

1
−1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
1
1
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
−1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
1
−1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
−1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
−1
0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
1
−1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
−1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
−1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

Fig. 1. VASS Vrun (left) and VASS Vexp (right)

by the repeated use of a constraint system in order to remove transitions that
can definitely not be part of a zero-cycle. The algorithm of Kosaraju and Sullivan
forms the basis for both cited papers [15, 5], as well as the present paper.

A line of work [18–20] has used VASSs (and their generalizations) as backends
for the automated complexity analysis of C programs. These algorithms have
been designed for practical applicability, but are not complete and no theoretical
analysis of their precision has been given. We point out, however, that these
papers have inspired the Bound Proof Principle in Section 5.

2 Preliminaries

Basic Notation. For a set X we denote by |X| the number of elements of X.
Let S be either N or Z. We write SI for the set of vectors over S indexed by
some set I. We write SI×J for the set of matrices over S indexed by I and J .
We write 1 for the vector which has entry 1 in every component. Given a ∈ SI ,
we write a(i) ∈ S for the entry at line i ∈ I of a, and ‖a‖ = maxi∈I |a(i)| for the
maximum absolute value of a. Given a ∈ SI and J ⊆ I, we denote by a|J ∈ SJ
the restriction of a to J , i.e., we set a|J(i) = a(i) for all i ∈ J . Given A ∈ SI×J ,

The Polynomial Complexity of VASS 625



we write A(j) for the vector in column j ∈ J of A and A(i, j) ∈ S for the entry
in column i ∈ I and row j ∈ J of A. Given A ∈ SI×J and K ⊆ J , we denote
by A|K ∈ SI×K the restriction of A to K, i.e., we set A|K(i, j) = A(i, j) for all
(i, j) ∈ I × K. We write Id for the square matrix which has entries 1 on the
diagonal and 0 otherwise. Given a, b ∈ SI we write a+b ∈ SI for component-wise
addition, c · a ∈ SI for multiplying every component of a by some c ∈ S and
a ≥ b for component-wise comparison. Given A ∈ SI×J , B ∈ SJ×K and x ∈ SJ ,
we write AB ∈ SI×K for the standard matrix multiplication, Ax ∈ SI for the
standard matrix-vector multiplication, AT ∈ SJ×I for the transposed matrix of
A and xT ∈ S1×J for the transposed vector of x.

Vector Addition System with States (VASS). Let Var be a finite set of variables.
A vector addition system with states (VASS) V = (St(V),Trns(V)) consists
of a finite set of states St(V) and a finite set of transitions Trns(V), where
Trns(V) ⊆ St(V)×ZVar ×St(V); we call n = |Var | the dimension of V. We write

s1
d−→ s2 to denote a transition (s1, d, s2) ∈ Trns(V); we call the vector d the

update of transition s1
d−→ s2. A path π of V is a finite sequence s0

d1−→ s1
d2−→ · · · sk

with si
di+1−−−→ si+1 ∈ Trns(V) for all 0 ≤ i < k. We define the length of π by

length(π) = k and the value of π by val(π) =
∑

i∈[1,k] di. Let instance(π, t) be
the number of times π contains the transition t, i.e., the number of indices i such

that t = si
di−→ si+1. We remark that length(π) =

∑
t∈Trns(V) instance(π, t) for

every path π of V. Given a finite path π1 and a path π2 such that the last state
of π1 equals the first state of π2, we write π = π1π2 for the path obtained by
joining the last state of π1 with the first state of π2; we call π the concatenation
of π1 and π2, and π1π2 a decomposition of π. We say π′ is a sub-path of π, if
there is a decomposition π = π1π

′π2 for some π1, π2. A cycle is a path that has
the same start- and end-state. A multi-cycle is a finite set of cycles. The value
val(M) of a multi-cycle M is the sum of the values of its cycles. V is connected,
if for all s, s′ ∈ St(V) there is a path from s to s′. VASS V ′ is a sub-VASS of V,
if St(V ′) ⊆ St(V) and Trns(V ′) ⊆ Trns(V). Sub-VASSs V1 and V2 are disjoint,
if St(V1)∩ St(V2) = ∅. A strongly-connected component (SCC) of a VASS V is a
maximal sub-VASS S of V such that S is connected and Trns(S) �= ∅.

Let V be a VASS. The set of valuations Val(V) = NVar consists of Var -
vectors over the natural numbers (we assume N includes 0). The set of config-
urations Cfg(V) = St(V) × Val(V) consists of pairs of states and valuations.
A step is a triple ((s1, ν1), d, (s2, ν2)) ∈ Cfg(V) × Zdim(V) × Cfg(V) such that

ν2 = ν1 + d and s1
d−→ s2 ∈ Trns(V). We write (s1, ν1)

d−→ (s2, ν2) to denote a

step ((s1, ν1), d, (s2, ν2)) of V. A trace of V is a finite sequence ζ = (s0, ν0)
d1−→

(s1, ν1)
d2−→ · · · (sk, νk) of steps. We lift the notions of length and instances

from paths to traces in the obvious way: we consider the path π = s0
d1−→

s1
d2−→ · · · sk that consists of the transitions used by ζ, and set length(ζ) :=

length(π) and instance(ζ, t) = instance(π, t), for all t ∈ Trns(V). We denote
by init(ζ) = ‖ν0‖ the maximum absolute value of the starting valuation ν0
of ζ. We say that ζ reaches a valuation ν, if ν = νk. The complexity of V is

626 F. Zuleger



the function compV(N) = suptrace ζ of V,init(ζ)≤N length(ζ), which returns for
every N ≥ 0 the supremum over the lengths of the traces ζ with init(ζ) ≤
N . The variable bound of a variable x ∈ Var is the function vboundx(N) =
suptrace ζ of V,init(ζ)≤N,ζ reaches valuation ν ν(x), which returns for every N ≥ 0
the supremum over the the values of x reachable by traces ζ with init(ζ) ≤ N .
The transition bound of a transition t ∈ Trns(V) is the function tboundt(N) =
suptrace ζ of V,init(ζ)≤N instance(ζ, t), which returns for every N ≥ 0 the supre-
mum over the number of instances of t in traces ζ with init(ζ) ≤ N .

Rooted Tree. A rooted tree is a connected undirected acyclic graph in which one
node has been designated as the root. We will usually denote the root by ι. We
note that for every node η in a rooted tree there is a unique path of η to the root.
The parent of a node η �= ι is the node connected to η on the path to the root.
Node η is a child of a node η′, if η′ is the parent of η. η′ is a descendent of η, if
η lies on the path from η′ to the root; η′ is a strict descendent, if furthermore
η �= η′. η is an ancestor of η′, if η′ a descendent of η; η is a strict ancestor, if
furthermore η �= η′. The distance of a node η to the root, is the number of nodes
�= η on the path from η to the root. We denote by layer(l) the set of all nodes
with the same distance l to the root; we remark that layer(0) = {ι}.

All proofs are presented in the extended version [21] for space reasons.

3 A Dichotomy Result

We will make use of the following matrices associated to a VASS throughout
the paper: Let V be a VASS. We define the update matrix D ∈ ZVar×Trns(V) by
setting D(t) = d for all transitions t = (s, d, s′) ∈ Trns(V). We define the flow
matrix F ∈ ZSt(V)×Trns(V) by setting F (s, t) = −1, F (s′, t) = 1 for transitions
t = (s, d, s′) with s′ �= s, and F (s, t) = F (s′, t) = 0 for transitions t = (s, d, s′)
with s′ = s; in both cases we further set F (s′′, t) = 0 for all states s′′ with s′′ �= s
and s′′ �= s′. We note that every column t of F either contains exactly one −1
and 1 entry (in case the source and target of transition t are different) or only 0
entries (in case the source and target of transition t are the same).

Example 1. We state the update and flow matrix for Vrun from Section 1:

D =

⎛⎝−1 1 −1 1 0 0 0 0 −1 0
1 −1 1 −1 0 0 0 0 0 0
−1 1 1 −1 −1 −1 −1 −1 0 0

⎞⎠, F =

⎛⎜⎜⎝
0 0 0 0 1 −1 0 0 −1 0
0 0 0 0 −1 1 0 0 0 1
0 0 0 0 0 0 1 −1 1 0
0 0 0 0 0 0 −1 1 0 −1

⎞⎟⎟⎠,

with column order s1 → s1, s2 → s2, s3 → s3, s4 → s4, s2 → s1, s1 → s2,
s4 → s3, s3 → s4, s1 → s3, s4 → s2 (from left to right) and row order x, y, z for
D resp. s1, s2, s3, s4 for F (from top to bottom).

We now consider the constraint systems (P ) and (Q), stated below, which
have maximization objectives. The constraint systems will be used by our main
algorithm in Section 4. We observe that both constraint systems are always sat-
isfiable (set all coefficients to zero) and that the solutions of both constraint
systems are closed under addition. Hence, the number of inequalities for which

The Polynomial Complexity of VASS 627



the maximization objective is satisfied is unique for optimal solutions of both
constraint systems. The maximization objectives can be implemented by suit-
able linear objective functions. Hence, both constraint systems can be solved
in PTIME over the integers, because we can use linear programming over the
rationales and then scale rational solutions to the integers by multiplying with
the least common multiple of the denominators.

constraint system (P ):

there exists μ ∈ ZTrns(V) with

Dμ ≥ 0

μ ≥ 0

Fμ = 0

Maximization Objective:
Maximize the number of inequalities
with (Dμ)(x) > 0 and μ(t) > 0

constraint system (Q):

there exist r ∈ ZVar , z ∈ ZSt(V) with

r ≥ 0

z ≥ 0

DT r + FT z ≤ 0

Maximization Objective:
Maximize the number of inequalities
with r(x) > 0 and (DT r + FT z)(t) < 0

The solutions of (P ) and (Q) are characterized by the following two lemmata:

Lemma 2 (Cited from [14]). μ ∈ ZTrns(V) is a solution to constraint sys-
tem (P ) iff there exists a multi-cycle M with val(M) ≥ 0 and μ(t) instances of
transition t for every t ∈ Trns(V).

Lemma 3 (Cited from [5]1). Let r, z be a solution to constraint system (Q).
Let rank(r, z) : Cfg(V) → N be the function defined by rank(r, z)(s, ν) = rT ν +
z(s). Then, rank(r, z) is a quasi-ranking function for V, i.e., we have

1. for all (s, ν) ∈ Cfg(V) that rank(r, z)(s, ν) ≥ 0;

2. for all transitions t = s1
d−→ s2 ∈ Trns(V) and valuations ν1, ν2 ∈ Val(V)

with ν2 = ν1 + d that rank(r, z)(s1, ν1) ≥ rank(r, z)(s2, ν2); moreover, the
inequality is strict for every t with (DT r + FT z)(t) < 0.

We now state a dichotomy between optimal solutions to constraint sys-
tems (P ) and (Q), which is obtained by an application of Farkas’ Lemma. This
dichotomy is the main reason why we are able to compute the precise asymptotic
complexity of VASSs with polynomial bounds.

1 There is no explicit lemma with this statement in [5], however the lemma is implicit
in the exposition of Section 4 in [5]. We further note that [5] does not include the
constraint z ≥ 0. However, this difference is minor and was added in order to ensure
that ranking functions always return non-negative values, which is more standard
than the choice of [5]. A proof of the lemma can be found in the extended version [21].

628 F. Zuleger



Lemma 4. Let r and z be an optimal solution to constraint system (Q) and let μ
be an optimal solution to constraint system (P ). Then, for all variables x ∈ Var
we either have r(x) > 0 or (Dμ)(x) ≥ 1, and for all transitions t ∈ Trns(V) we
either have (DT r + FT z)(t) < 0 or μ(t) ≥ 1.

Example 5. Our main algorithm, Algorithm 1 presented in Section 4, will di-
rectly use constraint systems (P ) and (Q) in its first loop iteration, and adjusted
versions in later loop iterations. Here, we illustrate the first loop iteration. We
consider the running example Vrun , whose update and flow matrices we have
stated in Example 1. An optimal solution to constraint systems (P ) and (Q) is
given by μ = (1441111100)T and r = (220)T , z = (0011)T . The quasi-ranking
function rank(r, z) immediately establishes that tboundt(N) ∈ O(N) for t =
s1 → s3 and t = s4 → s2, because 1) rank(r, z) decreases for these two transitions
and does not increase for other transitions (by Lemma 3), and because 2) the ini-
tial value of rank(r, z) is bounded by O(N), i.e., we have rank(r, z)(s, ν) ∈ O(N)
for every state s ∈ St(Vrun) and every valuation ν with ‖ν‖ ≤ N . By a simi-
lar argument we get vboundx(N) ∈ O(N) and vboundy(N) ∈ O(N). The exact
reasoning for deriving upper bounds is given in Section 5. From μ we can, by
Lemma 2, obtain the cycles C1 = s1 → s2 → s2 → s2 → s2 → s2 → s1 → s1 and
C2 = s3 → s4 → s4 → s4 → s4 → s4 → s4 → s4 with ν(C1) + ν(C2) ≥ (001)T

(*). We will later show that the cycles C1 and C2 give rise to a family of traces
that establish tboundt(N) ∈ Ω(N2) for all transitions t ∈ Trns(Vrun) with
t �= s1 → s3 and t �= s4 → s2. Here we give an intuition on the construction: We
consider a cycle C of Vrun that visits all states at least once. By (*), the updates
along the cycles C1 and C2 cancel each other out. However, the two cycles are
not connected. Hence, we execute the cycle C1 some Ω(N) times, then (a part
of) the cycle C, then execute C2 as often as C1, and finally the remaining part
of C; this we repeat Ω(N) times. This construction also establishes the bound
vboundz(N) ∈ Ω(N2) because, by (*), we increase z with every joint execution
of C1 and C2. The precise lower bound construction is given in Section 6.

4 Main Algorithm

Our main algorithm – Algorithm 1 – computes the complexity as well as variable
and transition bounds of an input VASS V, either detecting that V has at least
exponential complexity or reporting precise asymptotic bounds for the transi-
tions and variables of V (up to a constant factor): Algorithm 1 will compute
values vExp(x) ∈ N such that vboundN (x) ∈ Θ(NvExp(x)) for every x ∈ Var and
values tExp(t) ∈ N such that tboundN (t) ∈ Θ(NtExp(t)) for every t ∈ Trns(V).
Data Structures. The algorithm maintains a rooted tree T . Every node η of T
will always be labelled by a sub-VASSs VASS(η) of V. The nodes in the same
layer of T will always be labelled by disjoint sub-VASS of V. The main loop of
Algorithm 1 will extend T by one layer per loop iteration. The variable l always
contains the next layer that is going to be added to T . For computing variable and
transition bounds, Algorithm 1 maintains the functions vExp : Var → N ∪ {∞}
and tExp : Trns(V) → N ∪ {∞}.

The Polynomial Complexity of VASS 629



Initialization. We assume D to be the update matrix and F to be the flow
matrix associated to V as discussed in Section 3. At initialization, T consists of
the root node ι and we set VASS(ι) = V, i.e., the root is labelled by the input V.
We initialize l = 1 as Algorithm 1 is going to add layer 1 to T in the first loop
iteration. We initialize vExp(x) = ∞ for all variables x ∈ Var and tExp(t) = ∞
for all transitions t ∈ Trns(V).
The constraint systems solved during each loop iteration. In loop iteration l,
Algorithm 1 will set tExp(t) := l for some transitions t and vExp(x) := l for
some variables x. In order to determine those transitions and variables, Algo-
rithm 1 instantiates constraint systems (P ) and (Q) from Section 3 over the set
of transitions U =

⋃
η∈layer(l−1) Trns(VASS(η)), which contains all transitions

associated to nodes in layer l− 1 of T . However, instead of a direct instantiation
using D|U and F |U (i.e., the restriction of D and F to the transitions U), we
need to work with an extended set of variables and an extended update matrix.
We set Varext := {(x, η) | η ∈ layer(l− vExp(x))}, where we set n−∞ = 0 for
all n ∈ N. This means that we use a different copy of variable x for every node
η in layer l− vExp(x). We note that for a variable x with vExp(x) = ∞ there is
only a single copy of x in Varext because ι ∈ layer(0) is the only node in layer
0. We define the extended update matrix Dext ∈ ZVarext×U by setting

Dext((x, η), t) :=

{
D(x, t), if t ∈ Trns(VASS(η)),

0, otherwise.

Constraint systems (I ) and (II ) stated in Figure 2 can be recognized as in-
stantiation of constraint systems (P ) and (Q) with matrices Dext and F |U and
variables Varext , and hence the dichotomy stated in Lemma 4 holds.

We comment on the choice of Varext : Setting Varext = {(x, η) | η ∈ layer(i)}
for any i ≤ l − vExp(x) would result in correct upper bounds (while i > l −
vExp(x) would not). However, choosing i < l− vExp(x) does in general result in
sub-optimal bounds because fewer variables make constraint system (I ) easier
and constraint system (II ) harder to satisfy (in terms of their maximization
objectives). In fact, i = l − vExp(x) is the optimal choice, because this choice
allows us to prove corresponding lower bounds in Section 6. We will further
comment on key properties of constraint systems (I ) and (II ) in Sections 5
and 6, when we outline the proofs of the upper resp. lower bound.

We note that Algorithm 1 does not use the optimal solution μ to constraint
system (I ) for the computation of the vExp(x) and tExp(t), and hence the com-
putation of the optimal solution μ could be removed from the algorithm. The
solution μ is however needed for the extraction of lower bounds in Sections 6
and 8, and this is the reason why it is stated here. The extraction of lower bounds
is not explicitly added to the algorithm in order to not clutter the presentation.

Discovering transition bounds. After an optimal solution r, z to constraint sys-
tem (II ) has been found, Algorithm 1 collects all transitions t with (DT

extr +
F |TUz)(t) < 0 in the set R (note that the optimization criterion in constraint
system (II ) tries to find as many such t as possible). Algorithm 1 then sets
tExp(t) := l for all t ∈ R. The transitions in R will not be part of layer l of T .

630 F. Zuleger



Input: a connected VASS V with update matrix D and flow matrix F
T := single root node ι with VASS(ι) = V;
l := 1;
vExp(x) := ∞ for all variables x ∈ Var ;
tExp(t) := ∞ for all transitions t ∈ Trns(V);
repeat

let U :=
⋃

η∈layer(l−1) Trns(VASS(η));

let Var ext := {(x, η) | η ∈ layer(l− vExp(x))}, where n−∞ = 0 for n ∈ N;
let Dext ∈ ZVarext×U be the matrix defined by

Dext((x, η), t) =

{
D(x, t), if t ∈ Trns(VASS(η))

0, otherwise
;

find optimal solutions μ and r, z to constraint systems (I ) and (II );

let R := {t ∈ U | (DT
extr + F |TUz)(t) < 0};

set tExp(t) := l for all t ∈ R;
foreach η ∈ layer(l − 1) do

let V ′ := VASS(η) be the VASS associated to η;
decompose (St(V ′),Trns(V ′) \R) into SCCs;
foreach SCC S of (St(V ′),Trns(V ′) \R) do

create a child η′ of η with VASS(η′) = S;

foreach x ∈ Var with vExp(x) = ∞ do
if r(x, ι) > 0 then set vExp(x) := l ;

if there are no x ∈ Var, t ∈ Trns(V) with l < vExp(x) + tExp(t) < ∞ then
return “V has at least exponential complexity”

l := l + 1;

until vExp(x) �= ∞ and tExp(t) �= ∞ for all x ∈ Var and t ∈ Trns(V);
Algorithm 1: Computes transition and variable bounds for a VASS V

constraint system (I ):

there exists μ ∈ ZU with

Dextμ ≥ 0

μ ≥ 0

F |Uμ = 0

Maximization Objective:
Maximize the number of inequalities
with (Dextμ)(x) > 0 and μ(t) > 0

constraint system (II ):

there exist r ∈ ZVarext , z ∈ ZSt(V) with

r ≥ 0

z ≥ 0

DT
extr + F |TUz ≤ 0

Maximization Objective:
Maximize the number of inequalities with
r(x, η) > 0 and (DT

extr + F |TUz)(t) < 0

Fig. 2. Constraint Systems (I ) and (II ) used by Algorithm 1

Construction of the next layer in T . For each node η in layer l− 1, Algorithm 1
will create children by removing the transitions in R. This is done as follows:
Given a node η in layer l − 1, Algorithm 1 considers the VASS V ′ = VASS(η)
associated to η. Then, (St(V ′),Trns(V ′)\R) is decomposed into its SCCs. Finally,

The Polynomial Complexity of VASS 631



for each SCC S of (St(V ′),Trns(V ′)\R) a child η′ of η is created with VASS(η′) =
S. Clearly, the new nodes in layer l are labelled by disjoint sub-VASS of V.
The transitions of the next layer. The following lemma states that the new layer
l of T contains all transitions of layer l − 1 except for the transitions R; the
lemma is due to the fact that every transition in U \ R belongs to a cycle and
hence to some SCC that is part of the new layer l.

Lemma 6. We consider the new layer constructed during loop iteration l of
Algorithm 1: we have U \R =

⋃
η∈layer(l) Trns(VASS(η)).

Discovering variable bounds. For each x ∈ Var with vExp(x) = ∞, Algorithm 1
checks whether r(x, ι) > 0 (we point out that the optimization criterion in
constraint systems (II ) tries to find as many such x with r(x, ι) > 0 as possible).
Algorithm 1 then sets vExp(x) := l for all those variables.

The check for exponential complexity. In each loop iteration, Algorithm 1 checks
whether there are x ∈ Var , t ∈ Trns(V) with l < vExp(x) + tExp(t) < ∞. If
this is not the case, then we can conclude that V is at least exponential (see
Theorem 9 below). If the check fails, Algorithm 1 increments l and continues
with the construction of the next layer in the next loop iteration.

Termination criterion. The algorithm proceeds until either exponential complex-
ity has been detected or until vExp(x) �= ∞ and tExp(t) �= ∞ for all x ∈ Var and
t ∈ Trns(V) (i.e., bounds have been computed for all variables and transitions).

Invariants. We now state some simple invariants maintained by Algorithm 1,
which are easy to verify:

– For every node η that is a descendent of some node η′ we have that VASS(η)
is a sub-VASS of VASS(η′).

– The value of vExp and tExp is changed at most once for each input; when
the value is changed, it is changed from ∞ to some value �= ∞.

– For every transition t ∈ Trns(V) and layer l of T , we have that either
tExp(t) ≤ l or there is a node η ∈ layer(l) such that t ∈ Trns(VASS(η)).

– We have tExp(t) = l for t ∈ Trns(V) if and only if there is a η ∈ layer(l−1)
with t ∈ Trns(VASS(η)) and there is no η ∈ layer(l) with t ∈ Trns(VASS(η)).

Example 7. We sketch the execution of Algorithm 1 on Vrun . In iteration l = 1,
we have Varext = {(x, ι), (y, ι), (z, ι)}, and thus matrix Dext is identical to the
matrix D. Hence, constraint systems (I ) and (II ) are identical to constraint sys-
tems (P ) and (Q), whose optimal solutions μ = (1441111100)T and r = (220)T ,
z = (0011)T we have discussed in Example 5. Algorithm 1 then sets tExp(s1 →
s3) = 1 and tExp(s4 → s2) = 1, creates two children ηA and ηB of ι labeled by
VA = ({s1, s2}, {s1 → s1, s1 → s2, s2 → s2, s2 → s1}) and VB = ({s3, s4}, {s3 →
s3, s3 → s4, s4 → s4, s4 → s3}), and sets vExp(x) = 1 and vExp(y) = 1. In
iteration l = 2, we have Varext = {(x, ηA), (y, ηA), (x, ηB), (y, ηB), (z, ι)} and
the matrix Dext stated in Figure 3. Algorithm 1 obtains μ = (11110000)T and
r = (12211)T , z = (0000)T as optimal solutions to (I ) and (II ). Algorithm 1 then

632 F. Zuleger



Dext =

⎛
⎜⎜⎜⎜⎝

−1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 1 −1 0 0 0 0
−1 1 1 −1 −1 −1 −1 −1

⎞
⎟⎟⎟⎟⎠

with column order s1 → s1, s2 → s2,

s3 → s3, s4 → s4, s2 → s1, s1 → s2,
s4 → s3, s3 → s4 (from left to right)
and row order (x, ηA), (y, ηA), (x, ηB),
(y, ηB), (z, ι) (from top to bottom)

Dext =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0
1 0 0 0
0 1 0 0
0 −1 0 0
0 0 −1 0
0 0 1 0
0 0 0 1
0 0 0 −1
−1 1 0 0
0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with column order
s1 → s1, s2 → s2,
s3 → s3, s4 → s4,
(from left to right)
and row order
(x, η1), (y, η1), (x, η2),
(y, η2), (x, η3), (y, η3),
(x, η4), (y, η4), (z, ηA),
(z, ηB) (from top to
bottom)

Fig. 3. The extended update matrices during iteration l = 2 (left) and l = 3 (right) of
Algorithm 1 on the running example Vrun from Section 1.

sets tExp(s1 → s2) = tExp(s2 → s1) = tExp(s3 → s4) = tExp(s4 → s3) = 2,
creates the children η1, η2 resp. η3, η4 of ηA resp. ηB with ηi labelled by Vi =
({si}, {si → si}), and sets vExp(z) = 2. In iteration l = 3, we have Varext =
{(x, η1), (y, η1), (x, η2), (y, η2), (x, η3), (y, η3), (x, η4), (y, η4), (z, ηA), (z, ηB)} and
the matrix Dext stated in Figure 3. Algorithm 1 obtains μ = (0000)T and
r = (1113311111)T , z = (0000)T as optimal solutions to (I ) and (II ). Algo-
rithm 1 then sets tExp(si → si) = 3, for all i, and terminates.

We now state the main properties of Algorithm 1:

Lemma 8. Algorithm 1 always terminates.

Theorem 9. If Algorithm 1 returns “V has at least exponential complexity”,
then compV(N) ∈ 2Ω(N), and we have tboundt(N) ∈ 2Ω(N) for all t ∈ Trns(V)
with tExp(t) = ∞ and vboundt(N) ∈ 2Ω(N) for all x ∈ Var with vExp(x) = ∞.

The proof of Theorem 9 is stated in Section 8. We now assume that Algorithm 1
does not return “V has at least exponential complexity”. Then, Algorithm 1
must terminate with tExp(t) �= ∞ and vExp(x) �= ∞ for all t ∈ Trns(V) and
x ∈ Var . The following result states that tExp and vExp contain the precise
exponents of the asymptotic transition and variable bounds of V:
Theorem 10. vboundN (x) ∈ Θ(NvExp(x)) for all x ∈ Var and tboundN (t) ∈
Θ(NtExp(t)) for all t ∈ Trns(V).

The upper bounds of Theorem 10 will be proved in Section 5 (Theorem 16)
and the lower bounds in Section 6 (Corollary 20).

We will prove in Section 7 that the exponents of the variable and transition
bounds are bounded exponentially in the dimension of V:
Theorem 11. We have vExp(x) ≤ 2|Var | for all x ∈ Var and tExp(t) ≤ 2|Var |

for all t ∈ Trns(V).
Finally, we obtain the following corollary from Theorems 10 and 11:

Corollary 12. Let V be a connected VASS. Then, either compV(N) ∈ 2Ω(N) or
compV(N) ∈ Θ(N i) for some computable 1 ≤ i ≤ 2|Var |.

The Polynomial Complexity of VASS 633



4.1 Complexity of Algorithm 1

In the remainder of this section we will establish the following result:

Theorem 13. Algorithm 1 (with the below stated optimization) can be imple-
mented in polynomial time with regard to the size of the input VASS V.

We will argue that A) every loop iteration of Algorithm 1 only takes poly-
nomial time, and B) that polynomially many loop iterations are sufficient (this
only holds for the optimization of the algorithm discussed below).

Let V be a VASS, let m = |Trns(V)| be the number of transitions of V, and
let n = |Var | be the dimension of V. We note that |layer(l)| ≤ m for every layer
l of T , because the VASSs of the nodes in the same layer are disjoint.

A) Clearly, removing the decreasing transitions and computing the strongly
connected components can be done in polynomial time. It remains to argue
about constraint systems (I ) and (II ). We observe that |Varext | = |{(x, η) |
η ∈ layer(l− vExp(x))}| ≤ n ·m and |U | ≤ m. Hence the size of constraint sys-
tems (I ) and (II ) is polynomial in the size of V. Moreover, constraint systems (I )
and (II ) can be solved in PTIME as noted in Section 3.

B) We do not a-priori have a bound on the number of iterations of the main
loop of Algorithm 1. (Theorem 11 implies that the number of iterations is at
most exponential; however, we do not use this result here). We will shortly state
an improvement of Algorithm 1 that ensures that polynomially many iterations
are sufficient. The underlying insight is that certain layers of the tree do not
need to be constructed explicitly. This insight is stated in the lemma below:

Lemma 14. We consider the point in time when the execution of Algorithm 1
reaches line l := l + 1 during some loop iteration l ≥ 1. Let RelevantLayers =
{tExp(t) + vExp(x) | x ∈ Var , t ∈ Trns(V)} and let l′ = min{l′ | l′ > l, l′ ∈
RelevantLayers}. Then, vExp(x) �= i and tExp(t) �= i for all x ∈ Var, t ∈
Trns(V) and l < i < l′.

We now present the optimization that achieves polynomially many loop itera-
tions. We replace the line l := l+1 by the two lines RelevantLayers := {tExp(t)+
vExp(x) | x ∈ Var , t ∈ Trns(V)} and l := min{l′ | l′ > l, l′ ∈ RelevantLayers}.
The effect of these two lines is that Algorithm 1 directly skips to the next rel-
evant layer. Lemma 14, stated above, justifies this optimization: First, no new
variable or transition bound is discovered in the intermediate layers l < i < l′.
Second, each intermediate layer l < i < l′ has the same number of nodes as layer
l, which are labelled by the same sub-VASSs as the nodes in l (otherwise there
would be a transition with transition bound l < i < l′); hence, whenever needed,
Algorithm 1 can construct a missing layer l < i < l′ on-the-fly from layer l.

We now analyze the number of loop iterations of the optimized algorithm. We
recall that the value of each vExp(x) and tExp(t) is changed at most once from
∞ to some value �= ∞. Hence, Algorithm 1 encounters at most n · m different
values in the set RelevantLayers = {tExp(t) + vExp(x) | x ∈ Var , t ∈ Trns(V)}
during execution. Thus, the number of loop iterations is bounded by n ·m.

634 F. Zuleger



5 Proof of the Upper Bound Theorem

We begin by stating a proof principle for obtaining upper bounds.

Proposition 15 (Bound Proof Principle). Let V be a VASS. Let U ⊆
Trns(V) be a subset of the transitions of V. Let w : Cfg(V) → N and inct :
N → N, for every t ∈ Trns(V) \ U , be functions such that for every trace

ζ = (s0, ν0)
d1−→ (s1, ν1)

d2−→ · · · of V with init(ζ) ≤ N we have for every
i ≥ 0 that

1) si
di−→ si+1 ∈ U implies w(si, νi) ≥ w(si+1, νi+1), and

2) si
di−→ si+1 ∈ Trns(V) \ U implies w(si, νi) + inct(N) ≥ w(si+1, νi+1).

We call such a function w a complexity witness and the associated inct functions
the increase certificates.

Let t ∈ U be a transition on which w decreases, i.e., we have w(s1, ν1) ≥
w(s2, ν2)− 1 for every step (s1, ν1)

d−→ (s2, ν2) of V with t = s1
d−→ s2. Then,

tboundt(N) ≤ max
(s,ν)∈Cfg(V),‖ν‖≤N

w(s, ν) +
∑

t′∈Trns(V)\U
tboundt′(N) · inct′(N).

Further, let x ∈ Var be a variable such that ν(x) ≤ w(s, ν) for all (s, ν) ∈
Cfg(V). Then,
vboundx(N) ≤ max

(s,ν)∈Cfg(V),‖ν‖≤N
w(s, ν) +

∑
t′∈Trns(V)\U

tboundt′(N) · inct′(N).

Proof Outline of the Upper Bound Theorem. Let V be a VASS for which Algo-
rithm 1 does not report exponential complexity. We will prove by induction on
loop iteration l that vboundN (x) ∈ O(N l) for every x ∈ Var with vExp(x) = l
and that tboundN (t) ∈ O(N l) for every t ∈ Trns(V) with tExp(t) = l.

We now consider some loop iteration l ≥ 1. Let U =
⋃

η∈layer(l−1) Trns(VASS(η))

be the transitions, Varext be the set of extended variables and Dext ∈ ZVarext×U

be the update matrix considered by Algorithm 1 during loop iteration l. Let r, z
be some optimal solution to constraint system (II ) computed by Algorithm 1
during loop iteration l. The main idea for the upper bound proof is to use the
quasi-ranking function from Lemma 3 as witness function for the Bound Proof
Principle. In order to apply Lemma 3 we need to consider the VASS associated
to the matrices in constraint system (II ): Let Vext be the VASS over variables
Varext associated to update matrix Dext and flow matrix F |U . From Lemma 3
we get that rank(r, z) : Cfg(Vext) → N is a quasi-ranking function for Vext . We
now need to relate V to the extended VASS Vext in order to be able to use this
quasi-ranking function. We do so by extending valuations over Var to valuations
over Varext . For every state s ∈ St(V) and valuation ν : Var → N, we define the
extended valuation exts(ν) : Varext → N by setting

exts(ν)(x, η) =

{
ν(x), if s ∈ St(VASS(η)),
0, otherwise.

The Polynomial Complexity of VASS 635



As a direct consequence from the definition of extended valuations, we have

that (s, exts(ν)) ∈ Cfg(Vext) for all (s, ν) ∈ Cfg(V), and that (s1, exts1(ν1))
Dext (t)−−−−→

(s2, exts2(ν2)) is a step of Vext for every step (s1, ν1)
d−→ (s2, ν2) of V with

s1
d−→ s2 ∈ U . We now define the witness function w by setting

w(s, ν) = rank(r, z)(s, exts(ν)) for all (s, ν) ∈ Cfg(V).
We immediately get from Lemma 3 that w maps configurations to the non-
negative integers and that condition 1) of the Bound Proof Principle is satisfied.
Indeed, we get from the first item of Lemma 3 that w(s, ν) ≥ 0 for all (s, ν) ∈
Cfg(V), and from the second item that w(s1, ν1) ≥ w(s2, ν2) for every step

(s1, ν1)
d−→ (s2, ν2) of V with t = s1

d−→ s2 ∈ U ; moreover, the inequality is strict if
(DT

extr+F |TUz)(t) < 0, i.e., the witness function w decreases for transitions t with
tExp(t) = l. It remains to establish condition 2) of the Bound Proof Principle. We
will argue that we can find increase certificates inct(N) ∈ O(N l−tExp(t)) for all
t ∈ Trns(V)\U . We note that tExp(t) < l for all t ∈ Trns(V)\U , and hence the
induction assumption can be applied for such t. We can then derive the desired
bounds from the Bound Proof Principle because of

∑
t∈Trns(V)\U tboundt(N) ·

inct(N) =
∑

t∈Trns(V)\U O(NtExp(t)) ·O(N l−tExp(t)) = O(N l).

Theorem 16. vboundN (x) ∈ O(NvExp(x)) for all x ∈ Var and tboundN (t) ∈
O(NtExp(t)) for all t ∈ Trns(V).

6 Proof of the Lower Bound Theorem

The following lemma will allow us to consider traces ζN with init(ζN ) ∈ O(N)
instead of init(ζN ) ≤ N when proving asymptotic lower bounds.

Lemma 17. Let V be a VASS, let t ∈ Trns(V) be a transition and let x ∈ Var be
a variable. If there are traces ζN with init(ζN ) ∈ O(N) and instance(ζN , t) ≥
N i, then tboundN (t) ∈ Ω(N i). If there are traces ζN with init(ζN ) ∈ O(N)
that reach a final valuation ν with ν(x) ≥ N i, then vboundN (x) ∈ Ω(N i).

The lower bound proof uses the notion of a pre-path, which relaxes the notion

of a path: A pre-path σ = t1 · · · tk is a finite sequence of transitions ti = si
di−→ s′i.

Note that we do not require for subsequent transitions that the end state of
one transition is the start state of the next transition, i.e., we do not require
s′i = si+1. We generalize notions from paths to pre-paths in the obvious way,
e.g., we set val(σ) =

∑
i∈[1,k] di and denote by instance(σ, t), for t ∈ Trns(V),

the number of times σ contains the transition t. We say the pre-path σ can be
executed from valuation ν, if there are valuations νi ≥ 0 with νi+1 = νi + di+1

for all 0 ≤ i < k and ν = ν0; we further say that σ reaches valuation ν′, if
ν′ = νk. We will need the following relationship between execution and traces:
in case a pre-path σ is actually a path, σ can be executed from valuation ν, if
and only if there is a trace with initial valuation ν that uses the same sequence

636 F. Zuleger



of transitions as σ. Two pre-paths σ = t1 · · · tk and σ′ = t′1 · · · t′l can be shuffled
into a pre-path σ′′ = t′′1 · · · t′′k+l, if σ

′′ is an order-preserving interleaving of σ
and σ′; formally, there are injective monotone functions f : [1, k] → [1, k + l]
and g : [1, l] → [1, k + l] with f([1, k]) ∩ g([1, l]) = ∅ such that t′′f(i) = ti for all

i ∈ [1, k] and t′′g(i) = t′i for all i ∈ [1, l]. Further, for d ≥ 1 and pre-path σ, we

denote by σd = σσ · · ·σ︸ ︷︷ ︸
d

the pre-path that consists of d subsequent copies of σ.

For the remainder of this section, we fix a VASS V for which Algorithm 1 does
not report exponential complexity and we fix the computed tree T and bounds
vExp, tExp. We further need to use the solutions to constraint system (I ) com-
puted during the run of Algorithm 1: For every layer l ≥ 1 and node η ∈ layer(l),
we fix a cycle C(η) that contains μ(t) instances of every t ∈ Trns(VASS(η)), where
μ is an optimal solution to constraint system (I ) during loop iteration l. The ex-
istence of such cycles is stated in Lemma 18 below. We note that this definition
ensures val(C(η)) =

∑
t∈Trns(VASS(η)) D(t) · μ(t). Further, for the root node ι, we

fix an arbitrary cycle C(ι) that uses all transitions of V at least once.

Lemma 18. Let μ be an optimal solution to constraint system (I ) during loop
iteration l of Algorithm 1. Then there is a cycle C(η) for every η ∈ layer(l)
that contains exactly μ(t) instances of every transition t ∈ Trns(VASS(η)).

Proof Outline of the Lower Bound Theorem.
Step I) We define a pre-path τl, for every l ≥ 1, with the following properties:

1) instance(τl, t) ≥ N l+1 for all transitions t ∈ ⋃
η∈layer(l) Trns(VASS(η)).

2) val(τl) = N l+1
∑

η∈layer(l) val(C(η)).

3) val(τl)(x) ≥ 0 for every x ∈ Var with vExp(x) ≤ l.
4) val(τl)(x) ≥ N l+1 for every x ∈ Var with vExp(x) ≥ l + 1.
5) τl is executable from some valuation ν with

a) ν(x) ∈ O(NvExp(x)) for x ∈ Var with vExp(x) ≤ l, and
b) ν(x) ∈ O(N l) for x ∈ Var with vExp(x) ≥ l + 1.

The difficulty in the construction of the pre-paths τl lies in ensuring Property 5).
The construction of the τl proceeds along the tree T using that the cycles C(η)
have been obtained according to solutions of constraint system (I ).

Step II) It is now a direct consequence of Properties 3)-5) stated above that
we can choose a sufficiently large k > 0 such that for every l ≥ 0 the pre-path
ρl = τk0 τ

k
1 · · · τkl (the concatenation of k copies of each τi, setting τ0 = C(ι)N ),

can be executed from some valuation ν and reaches a valuation ν′ with

1) ‖ν‖ ∈ O(N),
2) ν′(x) ≥ kNvExp(x) for all x ∈ Var with vExp(x) ≤ l, and
3) ν′(x) ≥ kN l+1 for all x ∈ Var with vExp(x) ≥ l + 1.

The above stated properties for the pre-path ρlmax
, where lmax is the maximal

layer of T , would be sufficient to conclude the lower bound proof except that we
need to extend the proof from pre-paths to proper paths.

The Polynomial Complexity of VASS 637



Step III) In order to extend the proof from pre-paths to paths we make
use of the concept of shuffling. For all l ≥ 0, we will define paths γl that can be
obtained by shuffling the pre-paths ρ0, ρ1, . . . , ρl. The path γlmax , where lmax is
the maximal layer of T , then has the desired properties and allows to conclude
the lower bound proof with the following result:

Theorem 19. There are traces ζN with init(ζN ) ∈ O(N) such that ζN ends
in configuration (sN , νN ) with νN (x) ≥ NvExp(x) for all variables x ∈ Var and
we have instance(ζN , t) ≥ NtExp(t) for all transitions t ∈ Trns(V).

With Lemma 17 we get the desired lower bounds from Theorem 19:

Corollary 20. vboundN (x) ∈ Ω(NvExp(x)) for all x ∈ Var and tboundN (t) ∈
Ω(NtExp(t)) for all t ∈ Trns(V).

7 The Size of the Exponents

For the remainder of this section, we fix a VASS V for which Algorithm 1 does
not report exponential complexity and we fix the computed tree T and bounds
vExp, tExp. Additionally, we fix a vector zl ∈ ZSt(V) for every layer l of T and a
vector rη ∈ ZVar for every node η ∈ layer(l) as follows: Let r, z be an optimal
solution to constraint system (II ) in iteration l+ 1 of Algorithm 1. We then set
zl = z. For every η ∈ layer(l) we define rη by setting rη(x) = r(x, η′), where
η′ ∈ layer(l − vExp(x)) is the unique ancestor of η in layer l − vExp(x). The
following properties are immediate from the definition:

Proposition 21. For every layer l of T and node η ∈ layer(l) we have:

1) zl ≥ 0 and rη ≥ 0.

2) rTη d + zl(s2) − zl(s1) ≤ 0 for every transition s1
d−→ s2 ∈ Trns(VASS(η));

moreover, the inequality is strict for all transitions t with tExp(t) = l + 1.
3) Let η′ ∈ layer(i) be a strict ancestor of η. Then, rTη′d+ zi(s2)− zi(s1) = 0

for every transition s1
d−→ s2 ∈ Trns(VASS(η)).

4) For every x ∈ Var with vExp(x) = l+1 we have rη(x) > 0 and rη(x) = rη′(x)
for all η′ ∈ layer(l).

5) For every x ∈ Var with vExp(x) > l + 1 we have rη(x) = 0.
6) For every x ∈ Var with vExp(x) ≤ l there is an ancestor η′ ∈ layer(i) of η

such that rη′(x) > 0 and rη′(x′) = 0 for all x′ with vExp(x′) > vExp(x).

For a vector r ∈ ZVar , we define the potential of r by setting pot(r) =
max{vExp(x) | x ∈ Var , r(x) �= 0}, where we set max ∅ = 0. The motivation for
this definition is that we have rT ν ∈ O(Npot(r)) for every valuation ν reachable
by a trace ζ with init(ζ) ≤ N . We will now define the potential of a set
of vectors Z ⊆ ZVar . Let M be a matrix whose columns are the vectors of Z
and whose rows are ordered according to the variable bounds, i.e., if the row
associated to variable x′ is above the row associated to variable x, then we have

638 F. Zuleger



vExp(x′) ≥ vExp(x). Let L be some lower triangular matrix obtained from M by
elementary column operations. We now define pot(Z) =

∑
column r of L pot(r),

where we set
∑ ∅ = 0. We note that pot(Z) is well-defined, because the value

pot(Z) does not depend on the choice of M and L.
We next state an upper bound on potentials. Let l ≥ 0 and let Bl =

{vExp(x) | x ∈ Var , vExp(x) < l} be the set of variable bounds below l. We
set varsum(l) = 1, for Bl = ∅, and varsum(l) =

∑
Bl, otherwise. The following

statement is a direct consequence of the definitions:

Proposition 22. Let Z ⊆ ZVar be a set of vectors such that r(x) = 0 for all
r ∈ Z and x ∈ Var with vExp(x) > l. Then, we have pot(Z) ≤ varsum(l + 1).

We define pot(η) = pot({rη′ | η′ is a strict ancestor of η}) as the potential
of a node η. We note that pot(η) ≤ varsum(l + 1) for every node η ∈ layer(l)
by Proposition 22. Now, we are able to state the main results of this section:

Lemma 23. Let η be a node in T . Then, every trace ζ with init(ζ) ≤ N enters
VASS(η) at most O(N pot(η)) times, i.e., ζ contains at most O(Npot(η)) transitions

s
d−→ s′ with s �∈ St(VASS(η)) and s′ ∈ St(VASS(η)).

Lemma 24. For every layer l, we have that vExp(x) = l resp. tExp(t) = l
implies vExp(x) ≤ varsum(l) resp. tExp(t) ≤ varsum(l).

The next result follows from Lemma 24 only by arithmetic manipulations
and induction on l:

Lemma 25. Let l be some layer. Let k be the number of variables x ∈ Var with
vExp(x) < l. Then, varsum(l) ≤ 2k.

Theorem 11 is then a direct consequence of Lemma 24 and 25 (using k ≤ |Var |).

8 Exponential Witness

The following lemma from [15] states a condition that is sufficient for a VASS
to have exponential complexity2. We will use this lemma to prove Theorem 9:

Lemma 26 (Lemma 10 of [15]). Let V be a connected VASS, let U,W be a
partitioning of Var and let C1, . . . , Cm be cycles such that a) val(Ci)(x) ≥ 0 for
all x ∈ U and 1 ≤ i ≤ m, and b)

∑
i val(Ci)(x) ≥ 1 for all x ∈ W . Then, there

is a c > 1 and paths πN such that 1) πN can be executed from initial valuation

N · 1, 2) πN reaches a valuation ν with ν(x) ≥ cN for all x ∈ W and 3) (Ci)
cN

is a sub-path of πN for each 1 ≤ i ≤ m.

We now outline the proof of Theorem 9: We assume that Algorithm 1 re-
turned “V has at least exponential complexity” in loop iteration l. According to
Lemma 18, there are cycles C(η), for every node η ∈ layer(l), that contain μ(t)
instances of every transition t ∈ Trns(VASS(η)). One can then show that the cy-
cles C(η) and the sets U = {x ∈ Var | vExp(x) ≤ l}, W = {x ∈ Var | vExp(x) >
l} satisfy the requirements of Lemma 26, which establishes Theorem 9.

2 Our formalization differs from[15], but it is easy to verify that our conditions a) and
b) are equivalent to the conditions on the cycles in the ‘iteration schemes’ of [15].

The Polynomial Complexity of VASS 639



References

1. Parosh Aziz Abdulla, Giorgio Delzanno, and Laurent van Begin. A language-based
comparison of extensions of Petri nets with and without whole-place operations.
In LATA, pages 71–82, 2009.

2. Benjamin Aminof, Sasha Rubin, and Florian Zuleger. On the expressive power
of communication primitives in parameterised systems. In LPAR, pages 313–328,
2015.

3. Benjamin Aminof, Sasha Rubin, Florian Zuleger, and Francesco Spegni. Liveness
of parameterized timed networks. In ICALP, pages 375–387, 2015.

4. Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Hel-
mut Veith, and Josef Widder. Decidability in parameterized verification. SIGACT
News, 47(2):53–64, 2016.

5. Tomás Brázdil, Krishnendu Chatterjee, Antońın Kucera, Petr Novotný, Dominik
Velan, and Florian Zuleger. Efficient algorithms for asymptotic bounds on termi-
nation time in VASS. In LICS, pages 185–194, 2018.

6. Leonard Dickson. Finiteness of the odd perfect and primitive abundant numbers
with n distinct prime factors. Am. J. Math, 35:413—-422, 1913.

7. Javier Esparza and Mogens Nielsen. Decidability issues for Petri nets - a survey.
Elektronische Informationsverarbeitung und Kybernetik, 30(3):143–160, 1994.

8. Alain Finkel, Gilles Geeraerts, Jean-François Raskin, and Laurent van Begin. On
the omega-language expressive power of extended Petri nets. TCS, 356(3):374–386,
2006.

9. Steven M. German and A. Prasad Sistla. Reasoning about systems with many
processes. J. ACM, 39(3):675–735, 1992.

10. John E. Hopcroft and Jean-Jacques Pansiot. On the reachability problem for 5-
dimensional vector addition systems. TCS, 8:135–159, 1979.

11. Annu John, Igor Konnov, Ulrich Schmid, Helmut Veith, and Josef Widder. Param-
eterized model checking of fault-tolerant distributed algorithms by abstraction. In
FMCAD, pages 201–209, 2013.

12. Alexander Kaiser, Daniel Kroening, and Thomas Wahl. A widening approach to
multithreaded program verification. TOPLAS, 36(4):14:1–14:29, 2014.

13. Richard M. Karp and Raymond E. Miller. Parallel program schemata. J. Comput.
Syst. Sci., 3(2):147–195, 1969.

14. S. Rao Kosaraju and Gregory F. Sullivan. Detecting cycles in dynamic graphs in
polynomial time (preliminary version). In STOC, pages 398–406, 1988.

15. Jérôme Leroux. Polynomial vector addition systems with states. In ICALP, pages
134:1–134:13, 2018.

16. Richard J. Lipton. The Reachability Problem Requires Exponential space. Research
report 62. Department of Computer Science, Yale University, 1976.

17. Charles Rackoff. The covering and boundedness problems for vector addition sys-
tems. TCS, 6:223–231, 1978.

18. Moritz Sinn, Florian Zuleger, and Helmut Veith. A simple and scalable static
analysis for bound analysis and amortized complexity analysis. In CAV, pages
745–761, 2014.

19. Moritz Sinn, Florian Zuleger, and Helmut Veith. Difference constraints: An ad-
equate abstraction for complexity analysis of imperative programs. In FMCAD,
pages 144–151, 2015.

20. Moritz Sinn, Florian Zuleger, and Helmut Veith. Complexity and resource bound
analysis of imperative programs using difference constraints. JAR, 59:3–45, 2017.

640 F. Zuleger



21. Florian Zuleger. The polynomial complexity of vector addition systems with states.
CoRR, abs/1907.01076, 2019.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

The Polynomial Complexity of VASS 641



Author Index

Adámek, Jiří 17
Akshay, S. 37
Alvarez-Picallo, Mario 57

Bérard, Béatrice 97
Bollig, Benedikt 97
Bonchi, Filippo 77
Brunet, Paul 381

Colcombet, Thomas 119

Dal Lago, Ugo 136
Di Giusto, Cinzia 157
Diskin, Zinovy 177

Ehrhard, Thomas 198
Exibard, Léo 217

Fijalkow, Nathanaël 119
Filiot, Emmanuel 217
Finkel, Alain 237
Fiore, Marcelo 277
Fiore, Marcelo P. 257

Gehrke, Mai 299
Genest, Blaise 37
Goncharov, Sergey 542
Grosu, Radu 1
Guerrieri, Giulio 136
Gundersen, Tom 582

Haddad, Serge 237
Heijltjes, Willem 136, 582
Hélouët, Loïc 37
Hoffmann, Jan 359
Huot, Mathieu 319

Jakl, Tomáš 299
Johann, Patricia 339

Kahn, David M. 359
Kappé, Tobias 381
Khmelnitsky, Igor 237

Kupke, Clemens 602
Kura, Satoshi 401

Laird, James 422
Lanese, Ivan 442
Laversa, Laetitia 157
Lehaut, Mathieu 97
Lemay, Jean-Simon Pacaud 57
Löding, Christof 522
Lozes, Etienne 157

Mansutti, Alessio 462
Mehmood, Usama 1
Milius, Stefan 17
Mital, Sharvik 37
Moss, Lawrence S. 17

Neele, Thomas 482

Ohlmann, Pierre 119

Parigot, Michel 582
Péchoux, Romain 562
Perdrix, Simon 562
Phillips, Iain 442
Piedeleu, Robin 77
Pientka, Brigitte 502
Pirogov, Anton 522
Pitts, Andrew M. 257
Polonsky, Andrew 339
Polzer, Miriam 542

Reggio, Luca 299
Rennela, Mathys 562
Reynier, Pierre-Alain 217
Rot, Jurriaan 602
Roy, Shouvik 1

Saville, Philip 277
Schöpp, Ulrich 502
Sherratt, David 582
Silva, Alexandra 381, 602
Smolka, Scott A. 1



Sobociński, Paweł 77
Staton, Sam 319
Steenkamp, S. C. 257
Stoller, Scott D. 1
Sznajder, Nathalie 97

Tiwari, Ashish 1

Ulidowski, Irek 442

Vákár, Matthijs 319
Valmari, Antti 482
van Heerdt, Gerco 602

Wagemaker, Jana 381
Willemse, Tim A. C. 482

Zamdzhiev, Vladimir 562
Zanasi, Fabio 77, 381
Zuleger, Florian 622

644 Author Index


	ETAPS Foreword
	Preface
	Organization
	Contents
	1  Neural Flocking: MPC-based SupervisedLearning of Flocking Controllers
	1 Introduction
	2 Background
	2.1 Model-Predictive Control
	2.2 Declarative Flocking
	3 Additional Control Objectives
	4 Neural Flocking
	4.1 Training Distributed Flocking Controllers

	5 Experimental Evaluation
	5.1 Preliminaries
	5.2 Results for Basic Flocking
	5.3 Results for Obstacle and Predator Avoidance
	5.4 DNC Generalization Results
	5.5 Statistical Model Checking Results

	6 Related Work
	7 Conclusions
	References


	2 On Well-Founded and Recursive Coalgebras* 
	1  Introduction
	2�Preliminaries
	2.1 Algebras and Coalgebras.
	2.2 Preservation Properties.
	2.3 Factorizations
	2.4 Chains
	3 Recursive Coalgebras
	4 The Next Time Operator and Well-Founded Coalgebras
	5The General Recursion Theorem and its Converse
	6 Closure Properties of Well-founded Coalgebras
	7 Conclusions
	References

	3 Timed Negotiations* 
	1 Introduction
	2 Negotiations: Definitions and Brexit example
	3 Timed Negotiations
	4 High level view of the main results
	5 Deterministic Negotiations
	6 Sound Negotiations
	7 k-Layered Negotiations
	7.1 Algorithmic properties
	7.2 Minimal Execution Time

	8 Conclusion
	References

	4  Cartesian Difference Categories
	1 Introduction
	2 Cartesian Differential Categories
	2.1 Cartesian Left Additive Categories
	2.2 Cartesian Differential Categories

	3 Change Action Models
	3.1 Change Actions
	3.2 Change Action Models

	4 Cartesian Difference Categories
	4.1 Infinitesimal Extensions in Left Additive Categories
	4.2 Cartesian Difference Categories
	4.3 Another look at Cartesian Differential Categories
	4.4 Cartesian Difference Categories as Change Action Models
	4.5 Linear Maps and ε-Linear Maps

	5 Examples of Cartesian Difference Categories
	5.1 Smooth Functions
	5.2 Calculus of Finite Diffferences
	5.3 Module Morphisms
	5.4 Stream calculus

	6 Tangent Bundles in Cartesian Di erence Categories
	6.1 The Tangent Bundle Monad
	6.2 The Kleisli Category of T

	7 Conclusions and Future Work
	References

	5 Contextual Equivalence for Signal Flow Graphs
	1 Introduction
	2 Background: the A�ne Signal Flow Calculus
	2.1 Syntax
	2.2 String Diagrams
	2.3 Denotational Semantics and Axiomatisation
	2.4 A�ne vs Linear Circuits

	3 Operational Semantics for Affine Circuits
	3.1 Trajectories

	4 Contextual Equivalence and Full Abstraction
	4.1 From Polynomial Fractions to Trajectories
	4.2 Proof of Full Abstraction

	5 Functional Behaviour and Signal Flow Graphs
	6 Realisability
	7 Conclusion and Future Work
	References

	6 Parameterized Synthesis for Fragments of  First-Order Logic over Data Words*
	1 Introduction
	2 Preliminaries
	3 Parameterized Synthesis Problem
	4 FO[∼]  and Parameterized Vector Games
	4.1 Satis�ability and Normal Form for FO[∼]
	4.2 From Synthesis to Parameterized Vector Games

	5 Results for FO[∼] via Parameterized Vector Games
	6 Conclusion
	References

	7 Controlling a random population* 
	1 Introduction
	2 The stochastic control problem
	3 The sequential flow problem
	4 Reduction of the stochastic control problem to thesequential flow problem
	5 Computability of the sequential flow problem
	6 Conclusions
	References

	8 Decomposing Probabilistic Lambda-Calculi
	1 Introduction
	1.1 Related Work

	2 The Probabilistic Event λ-Calculus ΛPE
	3 Properties of Permutative Reduction
	4 Conuence
	4.1 Parallel Reduction and Permutative Reduction
	4.2 Complete Reduction

	5 Strong Normalization for Simply-Typed Terms
	6 Projective Reduction
	7 Call-by-value Interpretation
	8 Conclusions and Future Work
	References

	9 On the k-synchronizability of Systems
	1 Introduction
	2 Preliminaries
	3 k-synchronizable Systems
	4 Decidability of Reachability for k-synchronizable Systems
	5 Decidability of k-synchronizability for Mailbox Systems
	6 k-synchronizability for Peer-to-Peer Systems
	7 Concluding Remarks and Related works
	References

	10 General Supervised Learning as Change Propagation with Delta Lenses
	1 Introduction
	2 Background: Update propagation and delta lenses
	2.1 Why deltas.
	2.2 Consistency restoration via update propagation: An Example
	2.3 Update propagation and update policies
	2.4 Delta lenses

	3 Asymmetric Learning Lenses with Amendments
	3.1 Does Bx need categorical learning?
	3.2 Ala-lenses

	4 Compositionality of ala-lenses
	4.1 Compositionality of update policies: An example
	4.2 Sequential composition of ala-lenses
	4.3 Parallel composition of ala-lenses
	4.4 Symmetric monoidal structure over ala-lenses
	4.5 Functoriality of learning in the delta lens setting

	5 Related work
	6 Conclusion
	References

	11 Non-idempotent intersection types in logical form*
	Introduction
	1 Notations and preliminary definitions
	2 The relational model of the λ-calculus
	3 The simply typed case
	3.1 Why do we need another system?
	3.2 Minimal LJ(I)
	3.3 Basic properties of LJ(I)
	3.4 Relation between intersection types and LJ(I)

	4 The untyped Scott case
	5 Concluding remarks and acknowledgments
	References

	12 On Computability of Data Word Functions Defined by Transducers*
	1 Introduction
	2 Data Words and Register Transducers
	2.1 Register Transducers
	2.2 Technical Properties of Register Automata

	3 Functionality, Equivalence and Composition of NRT
	4 Computability and Continuity
	5 Test-free Register Transducers
	References

	13 Minimal Coverability Tree Construction Made Complete and Efficient *
	1 Introduction
	2 Covering abstractions
	2.1 Petri nets: reachability and covering
	2.2 Abstraction and acceleration

	3 A coverability tree algorithm
	3.1 Specification and illustration
	3.2 Correctness Proof

	4 Tool and benchmarks
	5 Conclusion
	References

	14 Constructing Infinitary Quotient-Inductive Types
	1 Introduction
	2 QW-types
	3 Quotient-inductive types
	3.1 General QIT schemas

	4 Construction of QW-types
	5 Conclusion
	References

	15 Relative full completeness for bicategorical cartesian closed structure
	1 Introduction
	2 Cartesian closed bicategories
	2.1 Bicategories

	3 Bicategorical glueing
	4 Cartesian closed structure on the glueing bicategory
	4.1 Finite products in gl(J)

	5 Relative full completeness
	References

	16 A duality theoretic view on limits of finite structures*
	1 Introduction
	2 Preliminaries
	2.1 Stone-Priestley duality
	2.2 Stone duality and logic: type spaces
	2.3 Duality and logic on words

	3 The space Γ
	3.1 The algebraic structure on Γ
	3.2 The retraction Γ    [0; 1]

	4 Spaces of measures valued in Γ and in [0; 1]
	5 The -valued Stone pairing and limits of �finite structures
	6 The logic of measures
	Conclusion
	References

	17 Correctness of Automatic Differentiation via Diffeologies and Categorical Gluing
	1 Introduction
	2 A simple forward-mode AD translation
	3 Semantics of differentiation
	4 Extending the language: variant and inductive types
	5 Categorical analysis of forward AD and its correctness
	6 A continuation-based AD algorithm
	7 Discussion and future work
	References

	18Deep Induction: Induction Rules for (Truly) Nested Types
	1 Introduction
	2 The Key Idea
	3 Extending to Nested Types
	4 Theoretical Foundations
	4.1 Categorical Preliminaries
	4.2 Syntax and Semantics of ADTs
	4.3 Induction Rules for ADTs
	4.4 Syntax and Semantics of Nested Types
	4.5 Induction Rules for Nested Types

	5 The General Methodology
	6 Related Work and Directions for Further Investigation
	References

	19 Exponential Automatic Amortized Resource Analysis*
	1 Introduction
	2 Language and Cost Semantics
	3 Automatic Amortized Resource Analysis
	4 Exponential Potential
	5 Mixed Potential
	6 Exponentials, Polynomials, and Logarithms
	7 Conclusion and Future Work
	References

	20Concurrent Kleene Algebra with Observations: from Hypotheses to Completeness
	1 Introduction
	2 Preliminaries
	3 Pomset contexts
	4 Concurrent Kleene Algebra with Hypotheses
	4.1 Reification
	4.2 Factoring the exchange law
	4.3 Lifting

	5 Instantiation to CKA with Observations
	6 Discussion
	References

	21 Graded Algebraic Theories
	1 Introduction
	2 Preliminaries
	2.1 Enriched Category Theory
	2.2 Graded Monads
	2.3 Day Convolution
	2.4 Categories Enriched in a Presheaf Category

	3 Graded Algebraic Theories
	3.1 Equational Logic
	3.2 Free Models
	3.3 Examples

	4 Graded Lawvere Theories
	5 Equivalence
	5.1 Graded Algebraic Theories and Graded Lawvere Theories
	5.2 Graded Lawvere theories and Finitary Graded Monads

	6 Combining E�ects
	6.1 Sums
	6.2 Tensor Products

	7 Related Work
	8 Conclusions and Future Work
	References

	22 A Curry-style Semantics of Interaction: From untyped to second-order lazy λµ-calculus
	1 Introduction
	1.1 Program Equivalence and Polymorphism

	2 Typed Labelled Transition Systems
	2.1 Parallel Composition with Hiding

	3 The Lazy λµ-calculus
	3.1 A Typing System
	3.2 A Typed Interaction Structure

	4 A Polymorphic Type System
	4.1 Second-Order Configuration Types
	4.2 A Second-Order Typed Interaction Structure

	5 Conclusions and Further Directions
	References

	23 An Axiomatic Approach toReversible Computation⋆
	1 Introduction
	2 Labelled Transition Systems with Independence
	3 Basic Properties
	4 Causal Safety and Causal Liveness
	4.1 Events
	4.2 CS and CL via Independence of Transitions
	4.3 CS and CL via Ordering of Events
	4.4 CS and CL via Independent Events
	4.5 Polychotomy

	5 Coinitial Independence
	6 Case Studies
	7 Conclusion, Related and Future Work
	References

	24 An Auxiliary Logic on Trees: on the Tower-hardness of logics featuring reachability and submodel reasoning
	1 Introduction
	2 The definition of an Auxiliary Logic on Trees
	3 On the complexity and expressive power of ALT
	3.1 Towards the TOWER-hardness of SAT(ALT): how to encode finite words.
	3.2 Inexpressibility results via the Ehrenfeucht-Fraïssé games for ALT
	3.3 PITL on marked words and the TOWER-hardness of SAT(ALT)

	4 Revisiting TOWER-hard logics with ALT
	4.1 From ALT to First-Order Separation Logic
	4.2 From ALT to Quantified Computation Tree Logic
	4.3 From ALT to Modal Logic of Heaps and Modal Separation Logic

	5 Conclusions
	References

	25 The Inconsistent Labelling Problem of Stutter-Preserving Partial-Order Reduction
	1 Introduction
	2 Preliminaries
	2.1 Stubborn sets
	2.2 Weak and Stutter Equivalence

	3 Counter-Example
	4 Strengthening Condition D1
	4.1 Implementation
	4.2 Correctness
	4.3 Deterministic LSTSs

	5 Safe Logics
	5.1 Reachability properties
	5.2 Deterministic LSTSs and CTL_X Model Checking

	6 Petri Nets
	7 Related Work
	8 Conclusion
	References

	26 Semantical Analysis of Contextual Types
	1 Introduction
	2 Presheaves for Higher-Order Abstract Syntax
	3 Internal Language
	4 From Presheaves to Contextual Types
	4.1 A Universe of Representables
	4.2 Higher-Order Abstract Syntax
	4.3 Closed Objects
	4.4 Contextual Objects

	5 Simple Contextual Modal Type Theory
	5.1 Interpretation

	6 Presheaves on a Small Category with Attributes
	6.1 Yoneda CwA

	7 Conclusion
	References

	27 Ambiguity, Weakness, and Regularity in Probabilistic Büchi Automata
	1 Introduction
	2 Preliminaries
	3 Ambiguity of PBA
	3.1 From classical to probabilistic automata
	3.2 From probabilistic to classical automata
	3.3 Threshold Semantics

	4 Complexity results
	5 Weakness in Probabilistic Büchi Automata
	6 Conclusion
	References

	28 Local Local Reasoning: A BI-Hyperdoctrine for Full Ground Store'
	1 Introduction
	2 Preliminaries
	3 A Call-by-Value Language with Local References
	4 Full Ground Store in the Abstract
	5 Intermezzo: BI-Hyperdoctrines and BI-Algebras
	6 A Higher Order Logic for Full Ground Store
	7 Examples
	8 Conclusions and Further Work
	References

	29 Quantum Programming with Inductive Datatypes: Causality and Affine Type Theory
	1 Introduction
	2 Syntax of QPL
	3 Operational Semantics of QPL
	4 W*-algebras
	5 Denotational Semantics of QPL
	5.1 Interpretation of Types
	5.2 Copying and Discarding
	5.3 Interpretation of Terms
	5.4 Interpretation of Configurations
	5.5 Soundness, Adequacy and Big-step Invariance

	6 Conclusion and Related Work
	References

	30 Spinal Atomic Lambda-Calculus
	1 Introduction
	2 Typing a λ-calculus in open deduction
	2.1 The Sharing Calculus

	3 The Spinal Atomic λ-Calculus
	3.1 Compilation and Readback.
	3.2 Rewrite Rules.

	4 Strong Normalisation of Sharing Reductions
	5 Preservation of Strong Normalisation and Conuence
	6 Conclusion, related work, and future directions
	References

	31 Learning Weighted Automataover Principal Ideal Domains*
	1 Introduction
	2 Overview of the Approach
	2.1 Example: Learning a Weighted Language over the Reals
	2.2 Learning Weighted Languages over Arbitrary Semirings

	3 Preliminaries
	4 General Algorithm for WFAs
	4.1 Termination of the General Algorithm

	5 Issues with Arbitrary Semirings
	6 Learning WFAs over PIDs
	7 Discussion
	References

	32 The Polynomial Complexity of Vector Addition Systems with States
	1 Introduction
	1.1 Overview and Illustration of Results
	1.2 Related Work

	2 Preliminaries
	3 A Dichotomy Result
	4 Main Algorithm
	4.1 Complexity of Algorithm 1

	5 Proof of the Upper Bound Theorem
	6 Proof of the Lower Bound Theorem
	7 The Size of the Exponents
	8 Exponential Witness
	References

	Author Index



