19 research outputs found

    Power Consumption Model of NDN-Based Multicore Software Router Based on Detailed Protocol Analysis

    Get PDF
    Named data networking (NDN) has received considerable attention recently, mainly due to its built-in caching, which is expected to enable widespread and transparent operator-controlled caching. One of the important research challenges is to reduce the amount of power consumed by NDN networks as it has been shown that NDN's name prefix matching and caching are power-hungry. As a first step to achieving power-efficient NDN networks, in this paper, we develop a power consumption model of a multicore software NDN router. By applying this model to analyze how caching reduces power, we report that caching can reduce power consumption of an NDN network if the power consumption of routers is in proportion to their load and the computation of caching is as light as that of forwarding

    Data Structures and Algorithms for Scalable NDN Forwarding

    Get PDF
    Named Data Networking (NDN) is a recently proposed general-purpose network architecture that aims to address the limitations of the Internet Protocol (IP), while maintaining its strengths. NDN takes an information-centric approach, focusing on named data rather than computer addresses. In NDN, the content is identified by its name, and each NDN packet has a name that specifies the content it is fetching or delivering. Since there are no source and destination addresses in an NDN packet, it is forwarded based on a lookup of its name in the forwarding plane, which consists of the Forwarding Information Base (FIB), Pending Interest Table (PIT), and Content Store (CS). In addition, as an in-network caching element, a scalable Repository (Repo) design is needed to provide large-scale long-term content storage in NDN networks. Scalable NDN forwarding is a challenge. Compared to the well-understood approaches to IP forwarding, NDN forwarding performs lookups on packet names, which have variable and unbounded lengths, increasing the lookup complexity. The lookup tables are larger than in IP, requiring more memory space. Moreover, NDN forwarding has a read-write data plane, requiring per-packet updates at line rates. Designing and evaluating a scalable NDN forwarding node architecture is a major effort within the overall NDN research agenda. The goal of this dissertation is to demonstrate that scalable NDN forwarding is feasible with the proposed data structures and algorithms. First, we propose a FIB lookup design based on the binary search of hash tables that provides a reliable longest name prefix lookup performance baseline for future NDN research. We have demonstrated 10 Gbps forwarding throughput with 256-byte packets and one billion synthetic forwarding rules, each containing up to seven name components. Second, we explore data structures and algorithms to optimize the FIB design based on the specific characteristics of real-world forwarding datasets. Third, we propose a fingerprint-only PIT design that reduces the memory requirements in the core routers. Lastly, we discuss the Content Store design issues and demonstrate that the NDN Repo implementation can leverage many of the existing databases and storage systems to improve performance

    Deux défis des Réseaux Logiciels : Relayage par le Nom et Vérification des Tables

    Get PDF
    The Internet changed the lives of network users: not only it affects users' habits, but it is also increasingly being shaped by network users' behavior.Several new services have been introduced during the past decades (i.e. file sharing, video streaming, cloud computing) to meet users' expectation.As a consequence, although the Internet infrastructure provides a good best-effort service to exchange information in a point-to-point fashion, this is not the principal need that todays users request. Current networks necessitate some major architectural changes in order to follow the upcoming requirements, but the experience of the past decades shows that bringing new features to the existing infrastructure may be slow.In this thesis work, we identify two main aspects of the Internet evolution: a “behavioral” aspect, which refers to a change occurred in the way users interact with the network, and a “structural” aspect, related to the evolution problem from an architectural point of view.The behavioral perspective states that there is a mismatch between the usage of the network and the actual functions it provides. While network devices implement the simple primitives of sending and receiving generic packets, users are really interested in different primitives, such as retrieving or consuming content. The structural perspective suggests that the problem of the slow evolution of the Internet infrastructure lies in its architectural design, that has been shown to be hardly upgradeable.On the one hand, to encounter the new network usage, the research community proposed the Named-data networking paradigm (NDN), which brings the content-based functionalities to network devices.On the other hand Software-defined networking (SDN) can be adopted to simplify the architectural evolution and shorten the upgrade-time thanks to its centralized software control plane, at the cost of a higher network complexity that can easily introduce some bugs. SDN verification is a novel research direction aiming to check the consistency and safety of network configurations by providing formal or empirical validation.The talk consists of two parts. In the first part, we focus on the behavioral aspect by presenting the design and evaluation of “Caesar”, a content router that advances the state-of-the-art by implementing content-based functionalities which may coexist with real network environments.In the second part, we target network misconfiguration diagnosis, and we present a framework for the analysis of the network topology and forwarding tables, which can be used to detect the presence of a loop at real-time and in real network environments.Cette thèse aborde des problèmes liés à deux aspects majeurs de l’évolution d’Internet : l’aspect >, qui correspond aux nouvelles interactions entre les utilisateurs et le réseau, et l’aspect >, lié aux changements d’Internet d’un point de vue architectural.Le manuscrit est composé d’un chapitre introductif qui donne les grandes lignes de recherche de ce travail de thèse, suivi d’un chapitre consacré à la description de l’état de l’art sur les deux aspects mentionnés ci-dessus. Parmi les solutions proposées par la communauté scientifique pour s'adapter à l’évolution d’Internet, deux nouveaux paradigmes réseaux sont particulièrement décrits : Information- Centric Networking (ICN) et Software-Defined Networking (SDN).La thèse continue avec la proposition de >, un dispositif réseau, inspiré par ICN, capable de gérer la distribution de contenus à partir de primitives de routage basées sur le nom des données et non les adresses des serveurs. Caesar est présenté dans deux chapitres, qui décrivent l’architecture et deux des principaux modules : le relayage et la gestion de la traçabilité des requêtes.La suite du manuscrit décrit un outil mathématique pour la détection efficace de boucles dans un réseau SDN d’un point de vue théorique. Les améliorations de l’algorithme proposé par rapport à l’état de l’art sont discutées.La thèse se conclue par un résumé des principaux résultats obtenus et une présentation des travaux en cours et futurs

    Conception et évaluation des systèmes logiciels de classifications de paquets haute-performance

    Get PDF
    Packet classification consists of matching packet headers against a set of pre-defined rules, and performing the action(s) associated with the matched rule(s). As a key technology in the data-plane of network devices, packet classification has been widely deployed in many network applications and services, such as firewalling, load balancing, VPNs etc. Packet classification has been extensively studied in the past two decades. Traditional packet classification methods are usually based on specific hardware. With the development of data center networking, software-defined networking, and application-aware networking technology, packet classification methods based on multi/many processor platform are becoming a new research interest. In this dissertation, packet classification has been studied mainly in three aspects: algorithm design framework, rule-set features analysis and algorithm implementation and optimization. In the dissertation, we review multiple proposed algorithms and present a decision tree based algorithm design framework. The framework decomposes various existing packet classification algorithms into a combination of different types of “meta-methods”, revealing the connection between different algorithms. Based on this framework, we combine different “meta-methods” from different algorithms, and propose two new algorithms, HyperSplit-op and HiCuts-op. The experiment results show that HiCuts-op achieves 2~20x less memory size, and 10% less memory accesses than HiCuts, while HyperSplit-op achieves 2~200x less memory size, and 10%~30% less memory accesses than HyperSplit. We also explore the connections between the rule-set features and the performance of various algorithms. We find that the “coverage uniformity” of the rule-set has a significant impact on the classification speed, and the size of “orthogonal structure” rules usually determines the memory size of algorithms. Based on these two observations, we propose a memory consumption model and a quantified method for coverage uniformity. Using the two tools, we propose a new multi-decision tree algorithm, SmartSplit and an algorithm policy framework, AutoPC. Compared to EffiCuts algorithm, SmartSplit achieves around 2.9x speedup and up to 10x memory size reduction. For a given rule-set, AutoPC can automatically recommend a “right” algorithm for the rule-set. Compared to using a single algorithm on all the rulesets, AutoPC achieves in average 3.8 times faster. We also analyze the connection between prefix length and the update overhead for IP lookup algorithms. We observe that long prefixes will always result in more memory accesses using Tree Bitmap algorithm while short prefixes will always result in large update overhead in DIR-24-8. Through combining two algorithms, a hybrid algorithm, SplitLookup, is proposed to reduce the update overhead. Experimental results show that, the hybrid algorithm achieves 2 orders of magnitudes less in memory accesses when performing short prefixes updating, but its lookup speed with DIR-24-8 is close. In the dissertation, we implement and optimize multiple algorithms on the multi/many core platform. For IP lookup, we implement two typical algorithms: DIR-24-8 and Tree Bitmap, and present several optimization tricks for these two algorithms. For multi-dimensional packet classification, we have implemented HyperCuts/HiCuts and the variants of these two algorithms, such as Adaptive Binary Cuttings, EffiCuts, HiCuts-op and HyperSplit-op. The SplitLookup algorithm has achieved up to 40Gbps throughput on TILEPro64 many-core processor. The HiCuts-op and HyperSplit-op have achieved up to 10 to 20Gbps throughput on a single core of Intel processors. In general, our study reveals the connections between the algorithmic tricks and rule-set features. Results in this dissertation provide insight for new algorithm design and the guidelines for efficient algorithm implementation.La classification de paquets consiste à vérifier par rapport à un ensemble de règles prédéfinies le contenu des entêtes de paquets. Cette vérification permet d'appliquer à chaque paquet l'action adaptée en fonction de règles qu'il valide. La classification de paquets étant un élément clé du plan de données des équipements de traitements de paquets, elle est largement utilisée dans de nombreuses applications et services réseaux, comme les pare-feu, l'équilibrage de charge, les réseaux privés virtuels, etc. Au vu de son importance, la classification de paquet a été intensivement étudiée durant les vingt dernières années. La solution classique à ce problème a été l'utilisation de matériel dédiés et conçus pour cet usage. Néanmoins, l'émergence des centres de données, des réseaux définis en logiciel nécessite une flexibilité et un passage à l'échelle que les applications classiques ne nécessitaient pas. Afin de relever ces défis des plateformes de traitement multi-cœurs sont de plus en plus utilisés. Cette thèse étudie la classification de paquets suivant trois dimensions : la conception des algorithmes, les propriétés des règles de classification et la mise en place logicielle, matérielle et son optimisation. La thèse commence, par faire une rétrospective sur les diverses algorithmes fondés sur des arbres de décision développés pour résoudre le problème de classification de paquets. Nous proposons un cadre générique permettant de classifier ces différentes approches et de les décomposer en une séquence de « méta-méthodes ». Ce cadre nous a permis de monter la relation profonde qui existe ces différentes méthodes et en combinant de façon différentes celle-ci de construire deux nouveaux algorithmes de classification : HyperSplit-op et HiCuts-op. Nous montrons que ces deux algorithmes atteignent des gains de 2~200x en terme de taille de mémoire et 10%~30% moins d'accès mémoire que les meilleurs algorithmes existant. Ce cadre générique est obtenu grâce à l'analyse de la structure des ensembles de règles utilisés pour la classification des paquets. Cette analyse a permis de constater qu'une « couverture uniforme » dans l'ensemble de règle avait un impact significatif sur la vitesse de classification ainsi que l'existence de « structures orthogonales » avait un impact important sur la taille de la mémoire. Cette analyse nous a ainsi permis de développer un modèle de consommation mémoire qui permet de découper les ensembles de règles afin d'en construire les arbres de décision. Ce découpage permet jusqu'à un facteur de 2.9 d'augmentation de la vitesse de classification avec une réduction jusqu'à 10x de la mémoire occupé. La classification par ensemble de règle simple n'est pas le seul cas de classification de paquets. La recherche d'adresse IP par préfixe le plus long fourni un autre traitement de paquet stratégique à mettre en œuvre. Une troisième partie de cette thèse c'est donc intéressé à ce problème et plus particulièrement sur l'interaction entre la charge de mise à jour et la vitesse de classification. Nous avons observé que la mise à jour des préfixes longs demande plus d'accès mémoire que celle des préfixes court dans les structures de données d'arbre de champs de bits alors que l'inverse est vrai dans la structure de données DIR-24-8. En combinant ces deux approches, nous avons propose un algorithme hybride SplitLookup, qui nécessite deux ordres de grandeurs moins d'accès mémoire quand il met à jour les préfixes courts tout en gardant des performances de recherche de préfixe proche du DIR-24-8. Tous les algorithmes étudiés, conçus et implémentés dans cette thèse ont été optimisés à partir de nouvelles structures de données pour s'exécuter sur des plateformes multi-cœurs. Ainsi nous obtenons des débits de recherche de préfixe atteignant 40 Gbps sur une plateforme TILEPro64

    Mobility-aware Software-Defined Service-Centric Networking for Service Provisioning in Urban Environments

    Get PDF
    Disruptive applications for mobile devices, such as the Internet of Things, Connected and Autonomous Vehicles, Immersive Media, and others, have requirements that the current Cloud Computing paradigm cannot meet. These unmet requirements bring the necessity to deploy geographically distributed computing architectures, such as Fog and Mobile Edge Computing. However, bringing computing close to users has its costs. One example of cost is the complexity introduced by the management of the mobility of the devices at the edge. This mobility may lead to issues, such as interruption of the communication with service instances hosted at the edge or an increase in communication latency during mobility events, e.g., handover. These issues, caused by the lack of mobility-aware service management solutions, result in degradation in service provisioning. The present thesis proposes a series of protocols and algorithms to handle user and service mobility at the edge of the network. User mobility is characterized when user change access points of wireless networks, while service mobility happens when services have to be provisioned from different hosts. It assembles them in a solution for mobility-aware service orchestration based on Information-Centric Networking (ICN) and runs on top of Software-Defined Networking (SDN). This solution addresses three issues related to handling user mobility at the edge: (i) proactive support for user mobility events, (ii) service instance addressing management, and (iii) distributed application state data management. For (i), we propose a proactive SDN-based handover scheme. For (ii), we propose an ICN addressing strategy to remove the necessity of updating addresses after service mobility events. For (iii), we propose a graph-based framework for state data placement in the network nodes that accounts for user mobility and latency requirements. The protocols and algorithms proposed in this thesis were compared with different approaches from the literature through simulation. Our results show that the proposed solution can reduce service interruption and latency in the presence of user and service mobility events while maintaining reasonable overhead costs regarding control messages sent in the network by the SDN controller

    Advancing SDN from OpenFlow to P4: a survey

    Get PDF
    Software-defined Networking (SDN) marked the beginning of a new era in the field of networking by decoupling the control and forwarding processes through the OpenFlow protocol. The Next Generation SDN is defined by Open Interfaces and full programmability of the data plane. P4 is a domain-specific language that fulfills these requirements and has known wide adoption over recent years from Academia and Industry. This work is an extensive survey of the P4 language covering domains of application, a detailed overview of the language, and future directions

    Toward Distributed At-scale Hybrid Network Test with Emulation and Simulation Symbiosis

    Get PDF
    In the past decade or so, significant advances were made in the field of Future Internet Architecture (FIA) design. Undoubtedly, the size of Future Internet will increase tremendously, and so will the complexity of its users’ behaviors. This advancement means most of future Internet applications and services can only achieve and demonstrate full potential on a large-scale basis. The development of network testbeds that can validate key design decisions and expose operational issues at scale is essential to FIA research. In conjunction with the development and advancement of FIA, cyber-infrastructure testbeds have also achieved remarkable progress. For meaningful network studies, it is indispensable to utilize cyber-infrastructure testbeds appropriately in order to obtain accurate experiment results. That said, existing current network experimentation is intrinsically deficient. The existing testbeds do not offer scalability, flexibility, and realism at the same time. This dissertation aims to construct a hybrid system of conducting at-scale network studies and experiments by exploiting the distributed computing ability of current testbeds. First, this work presents a synchronization of parallel discrete event simulation that offers the simulation with transparent scalability and performance on various high-end computing platforms. The parallel simulator that we implement is configured so that it can self-adapt for the performance while running on supercomputers with disparate architectures. The simulator could be used to handle models of different sizes, varying modeling details, and different complexity levels. Second, this works addresses the issue of researching network design and implementation realistically at scale, through the use of distributed cyber-infrastructure testbeds. An existing symbiotic approach is applied to integrate emulation with simulation so that they can overcome the limitations of physical setup. The symbiotic method is used to improve the capabilities of a specific emulator, Mininet. In this case, Mininet can be used to run applications directly on the virtual machines and software switches, with network connectivity represented by detailed simulation at scale. We also propose a method for using the symbiotic approach to coordinate separate Mininet instances, each representing a different set of the overlapping network flows. This approach provides a significant improvement to the scalability of the network experiments
    corecore