
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

9-28-2016

Toward Distributed At-scale Hybrid Network Test
with Emulation and Simulation Symbiosis
Rong Rong
Florida International University, rrong001@fiu.edu

Follow this and additional works at: http://digitalcommons.fiu.edu/etd

Part of the Digital Communications and Networking Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Rong, Rong, "Toward Distributed At-scale Hybrid Network Test with Emulation and Simulation Symbiosis" (2016). FIU Electronic
Theses and Dissertations. 3058.
http://digitalcommons.fiu.edu/etd/3058

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@Florida International University

https://core.ac.uk/display/81626497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.fiu.edu?utm_source=digitalcommons.fiu.edu%2Fetd%2F3058&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3058&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F3058&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3058&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.fiu.edu%2Fetd%2F3058&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd/3058?utm_source=digitalcommons.fiu.edu%2Fetd%2F3058&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

TOWARD DISTRIBUTED AT-SCALE HYBRID NETWORK TEST WITH

EMULATION AND SIMULATION SYMBIOSIS

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Rong Rong

2016



To: Interim Dean Ranu Jung
College of Engineering and Computing

This dissertation, written by Rong Rong, and entitled Toward Distributed At-Scale Hybrid
Network Test with Emulation and Simulation Symbiosis, having been approved in respect
to style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Deng Pan

Raju Rangaswami

Bogdan Carbunar

Gang Quan

Jason Liu, Major Professor

Date of Defense: September 23, 2016

The dissertation of Rong Rong is approved.

Interim Dean Ranu Jung
College of Engineering and Computing

Andrés G. Gil
Vice President for Research and Economic Development

and Dean of the University Graduate School

Florida International University, 2016

ii



c© Copyright 2016 by Rong Rong

All rights reserved.

iii



ACKNOWLEDGMENTS

I would first like to express my sincere gratitude towards my advisor, Dr. Jason Liu,

for his patience and help over the past seven years. Because of his continuous advice,

encouragement and necessary support, I am able to go through this doctoral journey and

complete my dissertation. I also wish to thank Dr. Deng Pan, Dr. Raju Rangaswami, Dr.

Bodgan Carbunar and Dr. Gang Quan, the members of my Ph.D. committee, for their

time and meaningful suggestions to support my dissertation.

I further wish to thank my collaborators, Cesar Marcondes and Musa Ahmed, for our

illuminating disscussion and their indispensible assistance to my dissertation. I am very

fortunate to work in a harmonious and cheerful group. I would like to thank Ting Li, Hao

jiang and Mohammad Abu Obaida, for the years we experienced together.

My deepest appreciation is for my parents Delun Rong and Xiaochun Wang. Their

endless love and support gave me strength to keep going on this road until today. The last

two person I want to thank are my husband Ming Fan and my daughter Iris. Although my

little girl is only six months old, she has become the spiritual source of my life. Her little

shining face seems to tell me every effort is worthy. As to my husband, I could not express

more affection and gratitude for his accompany and encouragement of these years. He

take the most part of resposibilities for our family in order to provide me the least burden

to finish my dissertation. I owe him everything. Without him, this dissertation would not

have been possible.

iv



ABSTRACT OF THE DISSERTATION

TOWARD DISTRIBUTED AT-SCALE HYBRID NETWORK TEST WITH

EMULATION AND SIMULATION SYMBIOSIS

by

Rong Rong

Florida International University, 2016

Miami, Florida

Professor Jason Liu, Major Professor

In the past decade or so, significant advances were made in the field of Future Internet

Architecture (FIA) design. Undoubtedly, the size of Future Internet will increase tremen-

dously, and so will the complexity of its user behaviors. This advancement means most of

future Internet applications and services can only achieve and demonstrate full potential

on a large-scale basis. The development of network testbeds that can validate key design

decisions and expose operational issues at scale is essential to FIA research. In conjunc-

tion with the development and advancement of FIA, cyber-infrastructure testbeds have

also achieved remarkable progress. For meaningful network studies, it is indispensable to

utilize cyber-infrastructure testbeds appropriately in order to obtain accurate experiment

results. That said, existing current network experimentation is intrinsically deficient. The

existing testbeds do not offer scalability, flexibility, and realism at the same time. This

dissertation aims to construct a hybrid system of conducting at-scale network studies and

experiments by exploiting the distributed computing ability of current testbeds.

First, this work presents a synchronization of parallel discrete event simulation that

offers the simulation with transparent scalability and performance on various high-end

computing platforms. The parallel simulator that we implement is auto-configured so

that it can self-adapt the performance while running on supercomputers with disparate

v



architectures. The simulator could be used to handle models of different sizes, varying

modeling details, and different complexity levels.

Second, this work addresses the issue of researching network design and implemen-

tation realistically at scale, through the use of distributed cyber-infrastructure testbeds.

An existing symbiotic approach is applied to integrate emulation with simulation so that

they can overcome the limitations of physical setup. The symbiotic method is used to

improve the capabilities of a specific emulator, Mininet. In this case, Mininet can be

used to run applications directly on virtual machines and software switches, with network

connectivity represented by detailed simulation at scale. We also propose a method for

using the symbiotic approach to coordinate separate Mininet instances, each representing

a different set of the overlapping network flows. This approach provides a significant

improvement to the scalability of the network experiments.

vi



TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 System Design and Contributions . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Network Testbeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Parallel Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Parallel Discrete Event Simulation (PDES) . . . . . . . . . . . . . . . . . 14
2.2.2 Synchronization in Parallel Simulation . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Parallel Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Symbiotic Testbeds for Networking Experimentation . . . . . . . . . . . . . 25
2.3.1 Real-time Simulation and On-line Simulation . . . . . . . . . . . . . . . . 25
2.3.2 Existing Symbiotic Approaches . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Recent Development of Cyber-infrastructure . . . . . . . . . . . . . . . . . . 29

3. A SELF-ADAPTIVE PARALLEL SYNCHRONIZATION . . . . . . . . . . 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.1 Composite Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Hierarchical Composite Synchronization . . . . . . . . . . . . . . . . . . . . 36
3.4 Performance Model of the Algorithm . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Preliminary Experiments of the Algorithm . . . . . . . . . . . . . . . . . . . 45
3.6 The Simulator Implements the Synchronization—MiniSSF . . . . . . . . . . 48
3.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6.2 MiniSSF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6.3 The Implementation of Hierarchical Composite Synchronization . . . . . . 57
3.6.4 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.7 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.7.1 Queuing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.7.2 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4. DISTRIBUTED AT-SCALE EMULATION WITH SIMULATION SYMBIOSIS 70
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2 The Symbiotic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3 Mininet Symbiosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.2 Regenerate Emulated Flows in Simulation . . . . . . . . . . . . . . . . . . 82

vii



4.3.3 Actuate Network Pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4 Experiments for System Validation . . . . . . . . . . . . . . . . . . . . . . . 86
4.4.1 Reproducing Emulated Traffic . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4.2 Representing Simulated Network Effect . . . . . . . . . . . . . . . . . . . 89
4.4.3 Real Traffic Actuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.4.4 Union System Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.5 Preliminary Experiment of Distributed Emulation with Symbiosis . . . . . . 97
4.6 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

viii



LIST OF TABLES

TABLE PAGE

3.1 Hardware Configurations of Three Supercomputters . . . . . . . . . . . . . 63

4.1 Instantaneous throughput comparison in traffic regulation. . . . . . . . . . . 93

4.2 Average throughput of two real flows in dummbell model. . . . . . . . . . . 96

4.3 Flow duration in ring model experiment. . . . . . . . . . . . . . . . . . . . 99

4.4 Average throughput comparison of six real flows in ring model experiment. . 100

ix



LIST OF FIGURES

FIGURE PAGE

1.1 Overall system design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Decomposition of simulation models for parallel execution. . . . . . . . . . 15

2.2 Example process-oriented simulation. . . . . . . . . . . . . . . . . . . . . . 16

2.3 Example of how logical processes get deadlocked. . . . . . . . . . . . . . . 18

2.4 Event cancellation example. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Cost estimation using linear regression. . . . . . . . . . . . . . . . . . . . . 44

3.2 Cost prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Optimal speedup over pure sync and async methods. . . . . . . . . . . . . . 48

3.4 Event delivery mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 String and jump model results on Kraken. . . . . . . . . . . . . . . . . . . . 64

3.6 Queuing model results on Blacklight. . . . . . . . . . . . . . . . . . . . . . 65

3.7 Queuing model results on Stampede. . . . . . . . . . . . . . . . . . . . . . 65

4.1 A target virtual network with emulated traffic identified. . . . . . . . . . . . 78

4.2 A downscaled network model to run in Mininet. . . . . . . . . . . . . . . . 79

4.3 Mininet symbiosis setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Downscaled models for two Mininet instances. . . . . . . . . . . . . . . . . 82

4.5 Reproducing real traffic in simulation. . . . . . . . . . . . . . . . . . . . . . 87

4.6 Real Traffic from two mininet instances model. . . . . . . . . . . . . . . . . 88

4.7 Reproducing real traffic from two Mininet instances in simulator. . . . . . . 89

4.8 Controlling traffic in Mininet. . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.9 Model for real traffic regulation. . . . . . . . . . . . . . . . . . . . . . . . . 92

4.10 Throughput History in Mininet. . . . . . . . . . . . . . . . . . . . . . . . . 94

4.11 Average throughput of a single application flow in union system test. . . . . 95

4.12 Received data history of real flows in two separate Mininets. . . . . . . . . . 96

x



4.13 Comparing TCP throughput (in Mb/s) of the three flows from distributed
Mininet vs. simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.14 Ring model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.15 Receiving data for all real flows. . . . . . . . . . . . . . . . . . . . . . . . . 99

4.16 The effect of the Shrew attack. . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.17 Sequential vs. distributed Mininet runs. . . . . . . . . . . . . . . . . . . . . 103

xi



CHAPTER 1

INTRODUCTION

In the past decade, significant advances have been made in Future Internet Architec-

ture (FIA) design. Undoubtedly, the size of Future Internet will increase considerably, as

will the complexity of its user behaviors. This growth implicates most of future Internet

applications and services can only achieve their full potential on a large-scale basis. Re-

searchers will not be able to extrapolate macroscopic network effect and behavior simply

from an analytical model, or from experiment results of small-scale networks. Thus the

development of network testbeds that can validate key design decisions and expose opera-

tional issues at scale is essential to the FIA research. Along with the development of FIA,

cyber-infrastructure testbeds have also achieved remarkable progress. For example, the

Global Environment for Network Innovations (GENI) has been a community-based effort

for building a collaborative and exploratory network experimentation platform [GENa].

While network researchers and engineers can validate design and implementation directly

on the cyber-infrastructure testbeds, the inherent deficiencies of solely relying on real-

world implementation and physical deployment in network studies must be avoided. For

meaningful network studies, it is indispensable to obtain accurate experiment results un-

der various network conditions, which can be achieved through the appropriate use cyber-

infrastructure testbeds appropriately.

This dissertation aims to construct a hybrid system of conducting at-scale network

studies and experiments by exploiting the distributed computing ability of current testbeds.

This system effectively combines distributed emulation and simulation, through applying

a symbiotic method [EL13], in order to simultaneously provide two significant proper-

ties. The first property is scalability and flexibility. Although federated platforms offer

researchers additional computing and network resources to perform experiments through

resource slicing, it must be noted that there still exists a physical limit either the network

1



size or the traffic volume. Another shortcoming of federated platforms is their inflexibil-

ity when it comes to changing the existing setup. As previously mentioned, the most of

the future applications can only unveil specific properties under large-scale experiments.

In order to reveal scaling properties and robust issues, parallel simulation must represent

a necessary and significant part of the system. This work starts by examining the syn-

chronization problem in parallel simulation, which is a traditional topic in this area of

research. In most cases, network researchers are unaware of the type of resources allo-

cated for their tests, especially since the availability of these resources and their allocation

may vary with time. Additionally, the nature of these resources (virtual or physical) is un-

known to the researchers. For these concerns, a self-adaptive synchronization algorithm

is designed with the aim of achieving optimal performance for various models on hetero-

geneous computing platforms. This algorithm is implemented in a minimalistic parallel

simulator that can efficiently run on supercomputers up to thousands of cores with power

speedup. The second property is the trade-off between realism and scalability, which is

is a constant theme in networking experimentation. This work applies a symbiotic ap-

proach to organically combine network emulation and network simulation. In particular,

Mininet [LHM10, HHJ+12] is the emulator that was chosen to be improved due to its

potential to validate the design and operational issues of OpenFlow applications. In this

case, Mininet can be used to run real applications directly on virtual machines and soft-

ware switches while embedding in diverse simulated network settings. In addition to

the ability of representing complex networks by parallel simulation at scale, this work

also proposes a method to coordinate several Mininet instances running on distributed

machines. Through the representation of a different set of the overlapping real flows on

each instance, the traffic volume can be significantly increased. Network experiments,

through this approach, can and do achieve a good balance among flexibility, scalability,

and accuracy.

2



1.1 Motivation

As the size of Internet increases, efficiently studying the behavior of the network becomes

increasingly challenging. Some applications only show full potential on large-scale, for

example, scalability is critical for peer-to-peer since it exhibits ”network effect”, which

means that the behavior of one user is positively affected when another user joins and

leaves the network [RFI02]. Another example is worm study, which requires a large-scale

model to show the propagation dynamics of the worm [LYPN02]. Due to the network

complexity, there are no analytical models that can accurately describe the behavior of

network applications under a wide variety of large-scale conditions. This fact makes

large-scale network simulation an indispensable tool for studying immense networks. In

certain cases, only large-scale simulation is able to gain credible evidence. However, it

is challenging to represent the behavior of network applications under a wide variety of

large-scale traffic conditions in a repeatable and controllable fashion. By conducting a

survey of SIGCOMM papers from the year 2007 to 2013 [LL14] we were able to identify

the following: because of the lack of large-scale tools, researchers often use results from

small-scale network simulation to extrapolate large-scale network simulation. Therefore,

for exploring future network design, a simulator capable of accurately reproducing large-

scale and dynamic network behaviors would be highly valuable.

Parallel discrete event simulation (PDES) has been broadly used in network studies

and has demonstrated its capability of simulating large-scale models. However, the syn-

chronization between different computing units has been the critical hurdle for the perfor-

mance of parallel simulation. There are efforts of federated testbeds for network experi-

ments in the recent development of cyber infrastructure. These testbeds like GENI [GENa],

CloudLab [Clo], and Chamelon [Cha] manage and interoperate different types of re-

sources provided by various organizations, so as to support multiple independent users

3



in their experiments by resources slicing. Because of the unknown types of resources

available for users, particularly virtualized ones, the synchronization design is more com-

plicated than before. The quality of parallel synchronization is measured by its ability to

make the simulator run transparently with good performance on various testbeds.

Existing network testbeds offer different capabilities, in terms of realism, scalability

and flexibility. Simulation is the best choice for experiments that emphasize the scale,

complexity and dynamics of network experiments. Network simulation [NS-a] can be

effective at capturing overall design aspects, answering what-if questions, and revealing

complex system characteristics. The scale of network models can increase several mag-

nitudes by using parallel simulation. However, the start point for network experiments is

to validate design and implementation issues; the fidelity cannot be totally ignored in this

context. In this aspect, simulation exposes the deficiency for lack of a certain level of re-

alism; in contrast, physical testbeds fit in. Live experiments running directly on physical

testbeds [PACR02, Pla] provide realistic environments and traffic conditions. In physical

experiments, scalability and flexibility will be sacrificed, because it is hard to overcome

the physical limits or change the hardware configurations. Thus networking researchers

often use simulation as a complementary role for experimenting on physical testbeds. In

most of the cases, they are used in an isolated fashion.

The essential constraint for the scalability of using physical testbeds is—it is unre-

alistic to handle all-to-all traffic in live networking experiments. In networking studies,

the bulk of traffic generated by other applications, usually called background traffic, has

a significant influence on the traffic generated from the target application. Since the gen-

eration of this portion of the traffic in live experiments is unrealistic and unattainable,

correctly reflecting its effect is essential for truthfully evaluating the performance of a

new application or protocol. In this case, network emulation is the best available choice.

Emulation testbeds provide the native operating system of target applications while mim-

4



icking network between application instances. The states of network links, such as delays

and drop probabilities, can be regulated in the emulation. This feature provides more

operational capabilities. Although emulation provides the flexibility of embedding real

applications in various test scenarios, it is still limited in scale and in the traffic handling

capacity. An ideal network experiment would test real target applications directly in a

large background network with diverse scenarios and traffic conditions. It is a nontrivial

task for the testbeds to run large-scale experiments without losing realism.

As mentioned earlier, the development of cyber-testbeds paves the way for network

researchers to validate design and implementation details. To fully utilize the comput-

ing power, the experimental system must be capable of running the tests on any and all

types of machines. Another necessary feature for the system to have is the potential of

evaluating future network design and architecture.

1.2 Problem Definition

To construct a hybrid system of conducting at-scale network studies and experiments by

exploiting the distributed computing ability of current testbeds, we formalize two prob-

lems we intend to address in this dissertation.

• Efficient parallel simulation for large-scale networks. In order to perform large-

scale experiments and offer diverse network scenarios, we need to utilize parallel

simulation. However, the scale and complexity of nowadays systems grow rapidly,

as does the variety of the models, large or small, complicated or simple, in distinc-

tive areas. Meanwhile, the development of diversified high-end computing plat-

forms also moves at a similar fast pace. Therefore, the objective is to conduct

efficient parallel simulation for different models and ensure that they run transpar-

5



ently on multiple supercomputers by harnessing their parallel capabilities to cope

with large-scale models.

• Realistic at-scale network experiments with federated testbeds. As previously

mentioned, experiments must be carried out realistically in order to fulfill the pur-

pose of validation. The realistic property can be achieved by harnessing the capa-

bility of distributed physical platforms. For accommodating flexibility, scalability

and compatibility, network researchers have to overcome the hardware limitations

of physical testbeds. Representing intensive background traffic in real experiments

is also challenging. Therefore, the goal is to build a hybrid system that can analyze

target applications in-situ with needed operational realism and with live network

traffic conditions, by embedding them seamlessly in dynamic, large-scale networks

with cross-traffic from other applications. The execution compatibility on hetero-

geneous platforms, and the future extendibility will also be the necessary feature

for our system.

The overarching goal of our work is to provide a hybrid system so that we can

perform large-scale network experiments and studies under diverse scenarios. This

system must execute on any distributed platforms.

1.3 System Design and Contributions

In this section, we describe the overall design of our hybrid experimentation system. We

also provide a description of the system’s subcomponents, each tackling a stated problem,

to achieve the ultimate goal. Below, the major contributions of this work are listed.

Fig. 1.1 represents the design of our hybrid system. The system is composed of dis-

tributed simulation and distributed emulation, a combination that simultaneously offers

realism, scalability and flexibility for network experiments.

6



 

A Virtual Network running in Parallel Simulation
 

 

 

 

 

 
 

  

 

background traffic
background traffic

background traffic

Computing Clusters

execution mapping

H0

H1

h1

h0

application traffic

h2

h3

h4

h5

H2
H3application traffic

H4
H5application traffic

Target Application running on distributed real machines

symbiotic mapping

symbiotic mapping

Figure 1.1: Overall system design.

1. First of all, we need a self-adaptive synchronization so as to make parallel simula-

tion scale up ideally, regardless of the types of platforms.

• We propose a synchronization algorithm for parallel discrete-event simula-

tion, called hierarchical composite synchronization. The approach is extended

from composite synchronization [NL02] to avoid performance pitfalls of two

traditional synchronization methods in parallel simulation. In particular, our

hierarchical method addresses the discrepancy in the communication and syn-

chronization cost for shared-memory multiprocessor multicore machines and

distributed-memory machines.

• We implement the algorithm in a parallel simulator, called MiniSSF. It is a

simplified and yet more streamlined implementation of a Scalable Simula-

7



tion Framework (SSF) [CNO99], which had been widely adopted for parallel

simulation in many areas. MiniSSF removes some redundant complex compo-

nents, and also introduces several new features for improving the operational

capability and performance of the simulator. We conduct extensive experi-

ments that can demonstrate the simulator ability to achieve scalability by run-

ning on thousand of cores. From the experiments, we believe that MiniSSF is

able to run large-scale models and self-adjust the synchronization configura-

tion for achieving better performance on various platforms.

2. Second, we need to organically integrate emulation with simulation, and map it

onto distributed cyber-infrastructure testbeds. 1

• We apply a symbiotic approach [EL13] to combine simulation and emulation

on a specific network emulator, Mininet. This approach makes simulation

and emulation form a symbiotic relationship allowing them to benefit from

each other. Mininet is a container-based emulator combined with software-

switches that can emulate small networks on a laptop. With the hybrid system

mininet-symbiosis, one can use Mininet to directly run applications on virtual

machines and software switches, with network connectivity represented by

detailed simulation at scale.

• We also present a method for using the symbiotic approach to coordinate sepa-

rate Mininet instances to run (with different virtual machines and switches) on

distributed machines. Thus the system can be mapped to any cyber-infrastructure

platforms. In this case, the scalability of the network experiment can be sig-

nificantly improved. One can conduct hybrid at-scale tests for validating dif-

ferent design parameters easily on various platforms by using this approach.

1The system should also be considered to execute on virtualized computing resources.

8



This dissertation work is drawn from the following papers:

• Hierarchical Composite Synchronization, J. Liu and R. Rong, PADS 2012

• Performance Study of Minimalistic Simulator on XSEDE Massively Parallel Sys-

tems, R. Rong, J. Hao and J. Liu, XSEDE 2014

• Symbiotic Network Simulation and Emulation, M. Erazo, R. Rong and J. Liu,

Transactions on Modeling and Computer Simulation, TOMACS 2015

• Toward Scalable Emulation of Future Internet Applications with Simulation Sym-

biosis, J.Liu, C. Marcondes, M. Ahmed and R. Rong, DS-RT 2015

1.4 Outline

The rest of this dissertation is organized as follows. In Chapter 2, we introduce the exist-

ing networking experimental testbeds. We review different experimenting methods and

discuss the trade-off between flexibility, scalability, and fidelity of the current testbeds.

We also review the related work of parallel discrete event simulation (PDES), and describe

synchronization methods in PDES especially. Additionaly, we describe the existing sym-

biotic network studies. At last, we present the development of recent cyber-infrastructure

testbeds.

In Chapter 3 we propose a hierarchical composite synchronization algorithm for par-

allel discrete-event simulation. The algorithm is designed to address the discrepancy in

the communication and synchronization cost for shared-memory multiprocessor multi-

core machines and distributed-memory machines. This approach allows the simulator to

fully exploit parallelism for various models, and to self-adjust the performance for diverse

computing platforms. We also present our work of implementing the new synchronization

in a minimalistic parallel simulator in this chapter. In particular, the simulator incorpo-

rates several new approaches in order to improve the scalability of models, the ease to

9



use and the compatibility with different platforms. We conduct extensive experiments

to show that our simulator can achieve scalability and good performance on a variety of

heterogeneous parallel computing platforms.

In Chapter 4 we present our hybrid system of applying a symbiotic approach to com-

bine network simulation and emulation on a specific emulator, Mininet. We start by

reviewing the idea of the symbiotic method. We highlight how it can overcome the intrin-

sic deficiencies of existing experimentation approaches. We then describe, in detail, how

to our system mininet-symbiosis is implemented from several important aspects. Finally,

we propose a method for using the symbiotic approach to coordinate separate Mininet

instances, each representing a set of different yet possibly overlapping network flows. We

provide a prototype implementation of the distributed hybrid system and present valida-

tion studies to show it can achieve accurate results. We also present a case study that

successfully replicates the behavior of a denial-of-service (DoS) attack protocol.

Finally, in Chapter 5 we present the conclusions of our research and discuss future

research directions.

10



CHAPTER 2

BACKGROUND

In this chapter, we describe the most relevant literature to provide the state of art.

We first review existing experiment network testbeds in section 2.1. In particular, we

review several parallel simulators, as well as the widely used synchronization techniques

in parallel simulators in section 2.2. Second, we review examples of symbiotic systems

used for network experimentation 2.3. Finally, we briefly review recent development of

cyber-infrastructure in 2.4.

2.1 Network Testbeds

There are three basic types of network experiment testbeds: physical, simulation, and

emulation. The choice of using network testbeds largely depends on the goal of the study.

On the one hand, physical and emulation testbeds can execute real applications, operate

with real systems, accept real input, produce real output, and respond to real network

conditions. They provide the operational realism and fidelity usually unattainable by

modeling and simulation. On the other hand, simulation is expedient for constructing

and testing models to obtain ”the big picture”, which should be highly valuable especially

when a good understanding of the system’s complex behavior is absent. Simulation makes

it easy for prototyping, for exploring the design space, for assessing the performance in

diverse network settings, and for investigating what-if scenarios.

Physical testbeds provide a real networking environment for live experimentation.

Physical testbeds can be further divided into production testbeds and reconfigurable testbeds.

Production testbeds (such as Internet2 [Int] and ESnet [ESn]) support live network experi-

ments; however, they allow only “safe” experiments that do not disrupt normal operations,

and they provide only a small and iconic version of the entire internet. Comparatively, re-

configurable testbeds provide far better flexibility. PlanetLab [PACR02] is a well-known

11



reconfigurable testbed consisted of machines distributed across the internet and shared by

researchers simultaneously conducting multiple experiments. An experiment can run on a

subset of machines creating an overlay network (called a slice). Although reconfigurable,

it is difficult to test applications beyond the existing setup and configuration of the under-

lying physical environment, which is limited in scale and capacity. It would be difficult to

realize experiments with the number of nodes significantly larger than the available nodes

(either physical or virtual machines), and with the capacity of interconnectivity higher

than the available bandwidth.

Emulation testbeds support ”traffic shaping” by introducing artificial packet delays

and packet losses [Riz97]. They can be built on a variety of computing infrastruc-

tures, including dedicated compute clusters (such as ModelNet [VYW+02] and Emu-

lab [WLS+02]), distributed platforms (such as VINI [BFH+06]), and special programmable

devices (such as ONL [DKP+06] and ORBIT [RSO+05]). Mininet [LHM10] is a recent

emulation testbed using Linux containers and traffic control (tc). One should note that

both physical and emulation testbeds can only support experiments of limited scale, due

to resource limitation and heavy resource sharing. For example, we observe that there

exists a stringent limitation in the amount of traffic that can be emulated in real time.

The aggregate traffic on each physical machine cannot go beyond a certain rate, which

depends on the machine type (typically, a few gigabits per second).

Mininet [LHM10, HHJ+12] is a popular container-based emulation environment built

on Linux for testing OpenFlow [MAB+08] applications. Using Mininet, one can create

network experiments using a set of virtual hosts and virtual switches connected as an

arbitrary network. Mininet uses the native Linux namespaces to represent virtual hosts.

It is a lightweight container-based virtualization solution, based on which one can cre-

ate relatively large virtual networks with hundreds and even thousands of virtual ma-

chines on a single physical machine. The containers can be connected to the instances

12



of the Open vSwitch (OVS) [ovs], which is a production-quality software switch aug-

mented with OpenFlow capabilities for experimentation with SDN applications. How-

ever, the traffic between the physical machines has to be limited by the available con-

nection bandwidth. For experiments that induce heavy traffic, Mininet cannot produce

reliable results. As the virtualization technique becomes mature in these years, several

dedicated emulation systems have been tried to scale up by multiplexing virtual nodes

on a single physical machine, and multiplexing virtual links on a physical network link

[HRS+08, ADHK08]. Others original container-based emulation have been extended

to run on a cluster [WDS+14, RBZ+14]. However, all these efforts are designed as a

top-down approach, which starts from partitioning the network on to physical or vir-

tual computing resources. Therefore, resource allocation for resolving contention plays

a decisive role for their performances. One should also realize the configuration and the

administration of these systems may introduce issues. Maxinet [WDS+14] is a success

for the distributed extension of Mininet, whereas has picky requirements for underlying

platforms.

Simulation testbeds (NS2 [NS-a], NS3 [NS-c], OPNET [OPN], OMNeT++ [VH08])

provide better flexibility and controllability as they contain only software modules for

characterizing network operations. Simulation may lack realism, and therefore would typ-

ically require extensive efforts in validation. Developing detailed models is also known to

be labor-intensive. For dealing with these issues, one way is to directly incorporate proto-

col implementations in simulation [LXC04, LYN+05, TUM+13]. This technique is called

direct-execution simulation, which includes compile-time techniques (which involve lit-

tle or only moderate modification to the source code), link-time techniques (such as using

linker wrapper functions to replace functions related to communication and timing), and

run-time techniques (such as binary code modification, preloading dynamic libraries, or

using packet capturing facilities). There are two major issues with this approach. First,

13



reproducing detailed behavior for all network protocols and applications in the simula-

tion would be too costly to realize for full-scale network experiments. Second, in cases

where one may desire high-level models, such as random traffic generation and stochas-

tic failures, implementing detailed network models does not automatically translate to an

accurate representation of high-level behaviors.

2.2 Parallel Simulation

Parallel simulation is a technique of running a single discrete-event simulation program

in parallel [Fuj90]. It can harness the collective power of parallel computers to run com-

plex large-scale models and thus can be successfully applied to increasing the perfor-

mance and scalability of network simulations, e.g., SSFNet [NLLY03], GTNets [Ril03],

ROSSNet [CBP00a], and GloMoSim [BTA+99]. Simulation can be effective at capturing

large-scale system design, and answering what-if questions. With parallel simulation, one

is able to handle very large-scale models.

2.2.1 Parallel Discrete Event Simulation (PDES)

Discrete event simulation models can be executed in parallel using a parallel discrete

event simulator (PDES). Continuous simulation models can also be executed in parallel,

which can significantly improve the performance of simulation. Figure 2.1 depicts the

two basic methods of decomposing a sequential discrete event simulation model into a

parallel discrete event simulation model. To execute the model on p processors we need

to divide the work into p chunks, one for each processor. We can do this division in either

space (i.e. state variables) or time. If we decompose the model in time, each processor

would execute the simulation for a given time period [tp−1, tp), as shown in figure 2.1(a).

The key point with time-parallel decomposition is that we need to be able to predict all of

14



...State
Variable

Simulation Time
0 t1 t2 t3 t4 tp-1 tp

s

b
(a) Time-parallel decomposition.

...

State
Variable

Simulation Time
t0

sp
s p-1

s4
s3

s2
s1

(b) Space-parallel decomposition.

Figure 2.1: Decomposition of simulation models for parallel execution.

the states at the time boundaries ({t1, t2, . . . , tp−1, tp}), and if our predictions are incorrect,

we may have to recompute the state evolutions for the time interval. The advantage of

this approach is that each processor can maintain its own event list without any need to

synchronize with event lists on other processors.

We could also decompose the model in space. In this case, we separate the state

space into p partitions and assign each partition to a processor which will simulate those

states for the entire simulation. At each processor, we have a subsection of the original

simulation model that consumes and produces events and a simulator to execute it. This

approach alleviates the need to predict the values of state variables. However, we now

have the problem of how to coordinate the execution of each subsection of the simulation

model in parallel. In general, we can choose to either maintain a centralized event list, or

a distributed event list. With a centralized event list, we need to schedule the execution

of each simulation instance in order to guarantee that any events that are produced by its

associated model subsection are strictly in the future. Using a centralized event list causes

many scalability concerns and the approach is not commonly used. The other approach

is to distribute the event list across all of the simulation instances. In this case, we need

protocols to synchronize the execution of each subsection of the model to ensure that the

15



1LP

1 4

2LP

5 2
4

7

(a) Logical Processes

1 2 53 4

LP1

Simulation Time

LP2

6 7

(b) Timeline

Figure 2.2: Example process-oriented simulation.

final result is the same as if the model was executed serially. Techniques to synchronize

the execution of PDES have been extensively studied in the literature and are well covered

by Fujimoto in [Fuj01]. Here, we only give a brief overview of techniques related to this

dissertation.

Typically, PDES are realized using logical processes. A logical process is a logical

grouping of processes which share a common event list and are executed using a single

thread. Figure 2.2(a) depicts a simulation model employing the logical process approach.

Each logical process has its own event list, executes independently, and each is able to

schedule events in the other’s event list. The logical processes communicate using stan-

dard facilities such Unix pipes or TCP. In this example, LP1 is executing an event with a

timestamp of 1 and LP2 is executing an event with a timestamp of 2. As a result of LP1

executing its event, it schedules an event in the event list of LP2. This sequence of events

is shown in figure 2.2(b). Recall that within a discrete event simulator, time advances by

the simulator retrieving the next event in its event list with the earliest timestamp. After

LP2 finishes executing its current event, it will retrieve the next event to execute. If LP2 is

slow and LP1 is fast, the new event will be scheduled in time. However, if LP1 is slow and

LP2 is fast, the new event will be not scheduled in time and LP2 will execute its events in

the incorrect order. This situation is the heart of the synchronization problem for PDES

frameworks.

16



2.2.2 Synchronization in Parallel Simulation

Discrete-event simulation needs to execute events in a non-decreasing timestamp order

to ensure causality. The fundamental issue of parallel simulation is therefore how to

synchronize the LPs so as to preserve the timestamp order execution of events at each

LP. Two classes of protocols have been developed for synchronization in parallel simula-

tion. The optimistic approach permits out-of-order event execution: when the simulation

detects a causality error, it will rewind the simulation and roll back the erroneous com-

putations [Jef85]. The conservative approach prohibits out-of-order event execution: an

LP must be blocked from executing its next event unless it is guaranteed not to induce

causality errors. Details of both approaches are below.

Conservative Synchronization

In conservative method, synchronization needs to take place among the LPs to ensure that

no event with a timestamp smaller than that of the next event will arrive at an LP in the

future.

The classic conservative synchronization protocol was developed by Chandy, Misra,

and Bryant in the late 1970s. The algorithm, referred to as CMB [CM79], places channels

between all logical processes that will exchange events. When an event is sent over a

channel, it is stored at the receiver end of the channel until it is processed. All of the

events sent over a channel must have strictly increasing timestamps. The main logic

loop of the logical process scans all of its incoming channels and processes the event

with the lowest timestamp. Figure 2.3(a) shows three logical processes, each of which

has events in all of their receiver queues. When a receiver queue at a channel is empty,

the logical process must wait for an event to arrive before it can choose which event to

process. The only way for a logical process to guarantee that it chooses the event with the

17



3LP2LP

1LP

16

10 15

209

19

15

(a) Logical Processes

3LP2LP

1LP

16

10 15

20

(b) Deadlocked Logical Processes

Figure 2.3: Example of how logical processes get deadlocked.

lowest timestamp is to wait for an event to arrive at all of its queues. It immediately gives

rise to the deadlock problem, as can be seen in figure 2.3(b). In figure 2.3(a), LP1 will

process the event with timestamp 15, LP2 processes the event with timestamp 9, and LP3

processes the event with timestamp 19. The particular arrangement produces the outcome

in figure 2.3(b) where each logical process is waiting for another logical process before it

can proceed, resulting in a deadlock.

The CMB algorithm avoids deadlock using null messages. A null message is sent

over a channel in lieu of a real event as a pledge that no event with an earlier timestamp

will be sent over that channel. After a logical process has processed an event, it may

send zero or more events to other logical processes. Before execution, each LP needs to

determine the lower bound on the timestamp (LBTS) of future events to arrive at the LP

by scanning through its incoming channels. LBTS is the upper bound in simulation time

up to which the LP is able to safely advance its clock. Once the clock has indeed been

updated, the LP sends a null message through each of the outgoing channels, which can

potentially increase LBTS of the successor LPs and unblock them. This approach guaran-

tees that a logical process will not indefinitely wait for a message on any channel, thereby

avoiding deadlock. The one drawback is that a non-trivial number of null messages must

be sent. Since null messages are purely overhead, the efficiency of the simulation can

18



be significantly decreased. There have been many extensions to the classic CMB algo-

rithm to improve its efficiency. For example, on shared-memory multiprocessors, the

null-message protocol can be replaced with an LP scheduling algorithm, such as the Crit-

ical Channel Traversing (CCT) algorithm [XUSC99], which selects the ready LPs to run

on parallel multiprocessors (each with LBTS larger than it local simulation clock). All

such algorithms prevent the deadlock in an asynchronous manner, so they are classified in

asynchronous synchronization. However, for all algorithms in this category, each time an

LP is scheduled for execution, it makes at least one scan through its incoming channels

and one scan through its outgoing channels; thus, the cost is proportional to the node’s

degree in the LP graph.

Synchronous algorithms form another class of conservative synchronization protocols

by making use of collective operations, such as barriers and min-reductions. For exam-

ple, the YAWNS protocol [Nic93] uses global barriers to delineate the synchronization

windows, within which the LPs are safe to process events without introducing causality

errors. The size of the synchronization windows are determined by the worst-case looka-

head among all LPs. Chandy and Sherman’s Conditional Event approach [CS89] also uses

a global min-reduction to determine the lower bound on the timestamp of all LPs to safely

process events, calculated from the timestamp of each LP’s earliest conditional event

plus the lookahead. Likewise, other synchronous approaches, including Lubachevsky’s

Bounded Lag algorithm [Lub88] and Ayani’s Distance Between Objects [Aya89], all de-

pend on collective operations to help find LBTS for all LPs. Although synchronous algo-

rithms are simple and scalable (given the logarithmic cost of the barrier and min-reduction

operations), the cost is proportional to the frequency of performing the global operations.

19



Optimistic Synchronization

The classic optimistic synchronization protocol, called TimeWarp, was proposed by Jef-

ferson in the mid 1980s [Jef85]. In a TimeWarp paradigm, logical processes consume the

event with the earliest timestamp in their event list in the hope that a straggler event —

an event with an earlier timestamp — will not arrive at a later time. The core of Time-

Warp is how to handle straggler events. When a straggler event is encountered, the logical

process has to “un-process” any events that have a timestamp after the straggler’s times-

tamp. This includes “un-processing” any events that may have been sent to other logical

processes while consuming events which need to be “un-processed”. To “un-process” the

incorrectly executed events, the logical process needs to restore the values of every state

variable to the value they held before processing any events that had a timestamp before

that of the straggler. This is the problem of state saving. To “un-process” events sent to

other logical processes, TimeWarp sends out anti-events, which annihilate the events they

are associated with. We elaborate on state saving and anti-events below.

CMB maintains what is conceptually a single list at each logical process for its in-

bound events, and a single copy of each state variable. In TimeWarp, however, each

logical process maintains three lists: one event list for inbound events, one event list

for outbound events, and a list which stores the values of any state variables that were

modified while processing an event. Additionally, once an event or state modification is

added to one of the lists, they are never removed by the logical process — they might

be needed for rollback if a straggler is encountered. For the moment, assume enough

memory is available to maintain the three lists for each logical processing for the entire

simulation. When a straggler is encountered, the logical process knows exactly which

state variables were incorrectly modified, and which events were incorrectly sent to other

logical processes. To rollback, the logical process needs only to copy the correct val-

20



ues to the affected state variables and send an anti-event to annihilate any event that was

incorrectly sent.

When a logical process receives an anti-event there are three possibilities:

1. An event and it’s associated anti-event could both end up in the inbound event list

waiting to be processed. In this case, the logical process can just remove both events

from the inbound queue.

2. The anti-event could conceivably arrive at the inbound event list before its associ-

ated event. In this case, the logical process can simply leave the anti-event in the

inbound event list and wait for the event to show up, at which time both the event

and anti-event can be removed from the inbound list.

3. The event associated with the anti-event may have already been processed by the

logical process. In this case, the logical process needs to rollback the processing of

the event.

It is not strictly necessary to store processed events, sent events, or state variable

updates indefinitely. From a global perspective, there is an event which is unprocessed,

partially processed, or in-flight, whose timestamp is the earliest in the simulation. The

timestamp of that event is called the global virtual time (GVT). It is easy to show that

the GVT never decreases, which means that no logical process can rollback to a time

previous to the GVT. If a logical process knew the GVT, it could release any events from

the inbound or outbound lists and any state variable updates with timestamps earlier than

the GVT. This is commonly known as fossil collection. Efficient mechanisms to compute

the GVT are well studied, but beyond the scope of this dissertation.

Figure 2.4 shows how TimeWarp handles the situation presented in figure 2.2(b).

When LP2 receives the event sent from LP1 with a timestamp of 4, LP2 has already

processed an event with a timestamp of 5 and sent an event with a timestamp of 7 to LP1.

21



1 4

2 5

1 4

2 5

1 4

2 5

4

1 4

2 4

4

5

4 4 44 4
Global Virtual Time

1

1 4

2 4

4

5

7

7

7

7 77

1 4

2 4

4

5

7 7 1 4

2 4

4

5

7

71 4

2 4

4

5

7

71 4

2 4

4

5

7

5 7 --

LP2
IN

OUT

LP1
IN

OUT

Figure 2.4: Event cancellation example.
Example of how TimeWarp cancels events in response to encountering a straggler event.

LP2 needs to rollback its state variables and cancel the event sent to LP1. As is clear

from this example, GVT never decreases, but the progression of GVT may stall for long

periods while rollbacks propagate through the network of logical processes.

Although the optimistic approach can be made fully automatic, it has complications

related to performance and model complexity. For example, state saving introduces mem-

ory overhead, staggering rollbacks can cause cascading effects, and out-of-order event

execution may introduce unexpected faulty conditions [Fuj90, NL97]. There is a large

and rich body of work improving and augmenting TimeWarp and other algorithms in a

similar vein.

2.2.3 Parallel Simulators

There have been numerous parallel simulators built to conduct performance studies. Some

are of general purpose; others are domain-specific. For example, number of parallel sim-

ulators are designed to model computer networks. Here we focus on a few simulators

capable of running large-scale models that have gained widespread used= by the research

community.

22



PDNS

The NS-2 [NS-a] simulator is currently the most popular simulator among network re-

searchers. Its wide acceptance is largely due to its diverse set of different protocols and

services at all protocol layers coupled with the ability to handle both wireless and wired

networks. NS-2 is prevelant because that is easy to use and it has a rich collection of

protocols. However, the magnitude of models can be running on NS-2 can only reach

a thousand nodes [NS-b]. It makes NS-2 can not exploit the capability of nowadays

powerful parallel computing platforms.

Parallel/Distributed NS (PDNS) [FPP+03] extends the venerable NS-2 simulator with

PDES functionality. To do this, PDNS creates many instances of the NS-2 simulator and

treats each one as a logical process. The idea is compelling. As previously stated, NS-2

is widely adopted and supports a rich collection of protocols. However, specifying large

network topologies and actually executing them on a large parallel machine proves to be

an incredibly arduous task. NS-2’s OCTL configuration language was not designed to

support PDES models and assumes that each NS-2 instance has a complete view of the

entire network; however, in PDNS each NS-2 instance has a partial view of the network.

PDNS modified the configuration language to support this partial view. However, the

modifications result in the user having to manually partition the network topology for

execution on parallel computers. Partitioning a large model is a difficult task [Nic98], and

doing this by hand only increases the complexity. However, with enough effort and time

devoted to constructing the model, PDNS has been shown to process over 106 million

packets per second using 1,536 processors [FPP+03].

23



GTNetS

The GTNetS [Ril03] simulator is written in C++, and was designed to allow researchers

to easily create large-scale experiments. The design of GTNetS closely matches the de-

sign of real network protocol stacks and networking hardware. The result is that re-

searchers are able to easily understand how to extend GTNetS and use it to create ex-

periments. In order to support parallel execution of network models, GTNetS uses ghost

nodes [RJFA04]. In the ghost node approach, each simulation instance contains the entire

network topology. Each simulation instance maintains a complete representation of the

nodes it is executing, and a minimalistic representation for nodes that are executed by

other simulation instances (i.e. ghost nodes). GTNetS has been shown to execute over 5

million packets per second using 128 processors [Ril03].

SSFNet

SSFNet [NLLY03, Ren] is a PDES built using the Scalable Simulation Framework (SSF) [Jam].

SSF has both Java and C++ implementations. The Java version of SSF is embedded within

SSFNet itself while the C++ implementation is available as stand alone package called

DaSSF [LN]. DaSSF uses a logical process world view and is specifically designed to

execute large-scale simulation models in both shared and distributed memory parallel

computers. SSFNet extends SSF to create a PDES specifically designed for modeling

computer networks.

The key driver of SSFNet is the scale of the network models it aims to execute. Large

network models will have substantial computational demands, hence DaSSF’s support

for parallel execution on both shared and distributed memory parallel machines. DaSSF

was shown to execute over one million events per second using just fourteen proces-

sors [CNO99].

24



SSFNet also addresses the complexity of configuring a network topology and traf-

fic patterns for large network models [CLL+99] using the Domain Modeling Language

(DML). SSFNet uses DML to separate a network model into a network topology, a traffic

pattern, a network configuration, and model logic. The logic of the protocols and appli-

cations are written in Java or C++ and compiled into the simulator. The topology and

traffic patterns along with their configuration are specified using DML, and loaded by

the simulator when the network model is executed. This separation is critical to support-

ing very large network models. For example, it allows complex tasks such as partition-

ing the model to run on a parallel computer to be outside the simulation environment.

This diverges from other contemporary PDES frameworks such as GTNets [Ril03] or

PDNS [FPP+03].

2.3 Symbiotic Testbeds for Networking Experimentation

2.3.1 Real-time Simulation and On-line Simulation

There are two promising areas that combine network simulation and emulation. On-line

simulation uses simulation as an integrated service for real-time network management

with the goal of improving network performance, via network planning, monitoring, pa-

rameter tuning, and traffic engineering (e.g., [SSS+02, YKH+01]). Real-time simulation

performs simulation in real time so that the target virtual network can interact with real

network entities (e.g., [Fal99, BSU00, ZJTB04, LLN+05, ADHK08, LLV+09, NJZ11]).

Real-time simulation aims to create an accurate, scalable and flexible networking

testbed by combining large-scale network simultaion with emulation. To support real-

time simulation, the simulator is modified to be able to regulate the virtual time advance-

ment; in parallel simulation, the issue becomes an effective scheduling of the logical

processes with respect to real time [Liu13]. Although real-time simulation allows hy-

25



brid network experiments involving both simulated and physical network components,

the scale of the network experiments is constrained by the I/O capacity of the simulator

for exchanging network packets with the physical system [LLV+09]. Real-time simula-

tion could be treated as a significant foundation of our work. We review several real-time

simulators in the reminder of this section.

NSE

NSE [Fal99] is an extension to the NS-2 simulator. NSE modified the event scheduler

in NS-2 so that it can operate in real-time. NSE uses standard TUN/TAP devices to

intercept packets and inject them into the NS-2 simulator. NSE does nothing to address

the scalability of NS-2. As a result, NSE can only operate with small networks.

IP-TNE

IP-TNE [BSU00] extends IP-TN, a PDES, with the ability to process real packets within

the simulation. IP-TNE allows real hosts to route packets through a virtual network.

Instead of using dummynet to create a delay node, IP-TNE allows the delay node to

be a complex network. This reduces the burden on researchers because they no longer

have to abstract the network as a link and estimate parameters for dummynet. Instead,

they can directly describe the network model they wish to evaluate. In addition to acting

as a complex delay node, IP-TNE allows real hosts to interact with simulated hosts using

ICMP and UDP. IP-TNE lacks full-blown TCP implementations which would be required

for simulated hosts to interact with real hosts.

26



DaSSF based Real-time Network Simulators

The Real-time Immersive Network Simulation Environment (RINSE) [LLN+05] extends

DaSSF [LN] with the ability to exchange traffic with real applications. RINSE expects an

instance of the simulator to be run next to each application and uses packet filters [MJ92]

to intercept traffic generated by the application. Traffic is injected back into the operating

system using a raw socket. The operating system will then forward the traffic to the appli-

cation as if it originated from a network interface. RINSE has three notable contributions:

a detailed host model, a real-time scheduler, and multi-resolution traffic modeling. The

detailed host model is used to model application and user behaviors on simulated hosts.

The real-time scheduler ensures that simulated and real packets are correctly processed in

the real-time network simulation. In order to reduce the computational demand of sim-

ulating large numbers of TCP sessions, RINSE integrates a fluid model of TCP into the

simulator. Fluid models of TCP have been shown to operate orders of magnitude faster

than their detailed counterparts.

However, traffic exchanging between simulation and emulation is in real packets for

most real-time simulators. This non-negilgible synchronization overhead becomes per-

formance bottleneck for real-time simulation.

2.3.2 Existing Symbiotic Approaches

In Biology, symbiosis is defined as the mutually beneficial relationship between two or

more different organisms. Symbiotic simulation can be defined as “one that interacts with

the physical system in a mutually beneficial way” [FLPU02]. From the definition of sym-

biosis, it is clear symbiotic simulation systems are different from general discrete-event

simulations. In general simulations, all parameters need to be configured before simu-

lation, and no changes can be made during runtime. Two types of symbiotic systems

27



are defined in [ATCL08], both of which create feedback control loop between simu-

lation and physical system. Closed-loop symbiotic simulation systems perform what-if

experiments based on scenarios retrieving from physical system and provide decisions

to control the behavior of physical systems.Open-loop symbiotic simulation systems only

draw information from physical systems but do not provide feedbacks. These systems are

used to describe current states, predict future behaviors, and detect anomalies of physical

systems.

Symbiotic simulation is also referred as DDDAS (Dynamic Data-Driven Applica-

tion System), in a larger context that has broadly applied in the areas of manufacturing,

business, system engineering, civil engineering, biology, social science, and many other

disciplines. In DDDAS, simulation and the physical system form a symbiotic feedback

control system, whereas a simulation can dynamically incorporate data from the physical

system so that it can improve the measurement process or exercise more precise control

of the physical system [DDD14].

ROSENET

ROSENET [GF09, Gu07] is an early attempt to promote the symbiotic relationship be-

tween simulation and emulation. It combines a high-performance simulator and a low-

fidelity emulator running at separate locations. The simulator continuously updates the

emulator with link statistics, including packet delay, jitter, and loss. The emulator also

continuously updates the simulator with a summary of the real traffic.The ROSENET

approach is interesting in that the emulation system is used more like an abstract model.

This diverges from most other real-time network simulators. Ordinarily, emulation is used

to increase the credibility of a real-time simulation since traffic from real protocols and

applications are directly mixed with their virtual counterparts.

28



ROSENET is based on the findings that the Internet traffic exhibits a constancy in

timescales of minutes [ZD01]. ROSENET aimed to achieve accuracy through the use of

emulators. Allowing users to run arbitrary network topologies and traffic loads is to pro-

vide flexibility and scalability. It also provides accessibility, since real world applications

can run locally while the simulator can run on remote high performance facilities. Al-

though ROSENET achieved initial success, it is shown to be capable of emulating only a

single bottleneck link and also only applications that generate non-responsive traffic (i.e.,

UDP applications).

2.4 Recent Development of Cyber-infrastructure

The Global Environment for Network Innovations (GENI) has been a community-based

effort for building a collaborative and exploratory network experimentation platform for

studying future network applications [GENa]. Follow-up efforts include various cyber-

infrastructure design, development, and build-out projects, such as NSFCloud [Clo, Cha],

for building mid-scale cloud-computing testbeds in the U.S. There are similar attempts

made in European Union, Japan, Brazil, and other nations. We focus on introducing

GENI and NSFCloud in following.

GENI [GENa] is a set of network research infrastructure, which aims to be presented

as a single collaborative and exploratory platform for implementing and testing new net-

work designs and technologies. GENI offers several features: i) deep programmability:

researchers can program not only the end hosts of your experimental network but also the

switches in the core of your network ii) a large-scale experiment infrastructure: GENI

gives researchers access to hundreds of widely distributed resources including compute

resources such as virtual machines and bare-machines, and network resources such as

links, switches and WiMax base stations. iii) controllability: Everyone can get exclusive

access to certain GENI resources including CPU resources and network resources. Each

29



user shall be provided with a slice, i.e., a subset of resources of the GENI infrastruc-

ture, and network experiments shall be conducted independently on reserved resources

within slices. The current GENI design consists of three main types of entities: clearing-

houses, aggregates, and principals. A clearinghouse is a central location for management

of GENI resources for experimenters and administrators. Specifically, it provides registry

services for principals, slices and aggregates, and authentication services for accessing

the resources. An aggregate represents a group of components encapsulating the GENI

sharable resources (including computation, communication, measurement, and storage).

When an experimenter from a research organization (i.e., a principal) decides to conduct a

GENI experiment, she will negotiate with the clearinghouse and the associated aggregate

managers through an elaborate resource discovery and allocation process. In response

to the experimenter’s request, each participating aggregate will provide a set of requested

resources, which are called slivers. Jointly, these slivers form a slice, which is the environ-

ment where the experimenter conducts experiments, with the help of GENI experiment

support services.

Chamelon [Cha] is the first of NSFCloud projects, which aims to provide a large-

scale, reconfigurable experimental environment for cloud research. Researchers are able

to configure slices of Chamelon as custom clouds using pre-defined or custom software

to test the efficiency and usability of different cloud architectures on a range of problems,

from machine learning and adaptive operating systems to climate simulations and flood

prediction. Chamelon benefits users to run experiments on a large-scale, critical for big

data and big compute research. Another aspect of Chamelon is its support for heteroge-

neous computer architectures, which provide the capabilities to researchers to mix-and-

match hardware, software and networking components to conduct performance studies.

The second NSFCloud project CloudLab [Clo], is a large-scale distributed infrastructure

supporting OpenFlow and other software-defined networking technologies.

30



CHAPTER 3

A SELF-ADAPTIVE PARALLEL SYNCHRONIZATION

In this chapter, we present a synchronization algorithm for parallel discrete-event simula-

tion, called hierarchical composite synchronization. Our design idea is to make parallel

synchronization self-adaptive its performance to different models and platforms. The

new algorithm is extended from composite synchronization [NL02] that combines an

asynchronous CMB-style channel scanning method with a synchronous window-based

method to avoid pathological situations where neither synchronization algorithms would

perform optimally. We also provide an analytical model to predict the performance of

hierarchical composite algorithm. Through experiments, a significant performance im-

provement has been observed of the new algorithm over different combinations of the

traditional asynchronous and synchronous approaches used separately for distributed-

memory and shared-memory of distinctive supercomputers.

In the section 3.6 of this chapter, we also present the details of a parallel simula-

tor that implements the new synchronization algorithm. It is a simplified and yet more

streamlined parallel simulator, called MiniSSF [RHL14]. It starts from a widely adopted

parallel simulation API, Scalable Simulation Framework (SSF) for large-scale discrete-

event models. MiniSSF maintains salient features from SSF, makes improvements for

deficiencies, and incorporate new ideas and technics to achieve better performance.

3.1 Introduction

Synchronization is a fundamental issue of parallel discrete-event simulation (PDES). An

important aspect of synchronization is the simulator’s ability to effectively exploit paral-

lelism in large complex models without overly tasking the modelers who are expected to

be knowledgeable in their respective domains and less concerned with parallel computing

31



problems. We have already reviewed two primary parallel synchronization categories in

chapter 2. In this chapter, we simply describe the property of existing synchronization

algorithms, and majorly introduce how does our algorithm make improvements over the

existing ones.

Optimistic synchronization, which allows logical processes (LPs) to advance simula-

tion without the presumptuous articulation of causality, has been considered as the most

promising solution. The problem, however, is that the ability to rewind the simulation

clocks and roll back erroneous computations requires sophisticated mechanisms, such as

state saving [Jef85] and reverse computation [CPF99]—both turn out to be heavy-handed

approaches. State saving needs to capture the execution state of the logical processes in

the forward time direction, which inevitably results in increased memory consumption;

this problem is particularly acute when handling large-scale models. Reverse computa-

tion shifts the cost to the opposite time direction. In addition, for better efficiency, the

modelers may need to supply handcrafted reversing functions that can further add to the

obscurity of the model code.

Conservative synchronization requires explicit specification of causality in the model,

so that logical processes can coordinate with one another to enable local event execution

in strict timestamp ordering. From the appearance, the conservative approach burdens

the modelers with the task of explicitly specifying the inter-dependencies of the logical

processes as the lookahead, defined as the minimum amount of simulation time that one

logical process can potentially alter the state of another process. In reality, such specifica-

tion can be simplified as a model graph, which consists of logical processes connected by

links with weights equal to the lookahead. For example, if the current simulation time at

LPA is tA and there exists a channel from LPA to LPB with lookahead xAB, it means that in

the future all simulation events sent from LPA to LPB are guaranteed to carry a timestamp

32



no smaller than (tA+xAB). More sophisticated forms of lookahead (e.g., [Nic88, HN93])

can also be expressed in a similar fashion.

Albeit simplistic, what’s important is this method offers a clear separation of con-

cerns between the domain modelers and the parallel simulation experts. The graph is

constructed based on the semantics of the specific model. For example, a network model

can be a graph with nodes representing router, and links representing connections between

the routers with weights indicating the minimum transmission delays. Once the graph is

defined, parallel synchronization algorithms can be applied based on the topology of the

graph, insomuch free from the modeling concerns.

3.2 Related Work

It is important that conservative algorithms must identify lookahead in the model: a posi-

tive lookahead suggests that an LP can operate within a certain period of time independent

from other LPs. Lookahead thus implies the inherent asynchrony in the simulation model.

Exploiting lookahead takes on two directions. One direction focuses on extracting looka-

head from the model characteristics. Lookahead comes in different forms [Nic96]. For

example, by pre-sampling job service times and branch destinations when a job is entering

a first-come-first-serve (FCFS) queue, one can predict the earliest time a job will be sent

to the subsequent queues [Nic88]. For another example, one can exploit mathematical

property when simulating continuous-time Markov chains (CTMC) to determine the po-

tential synchronization points between the LPs [HN93]. Obviously, lookahead extraction

is model specific.

The other direction focuses on lookahead extrapolation for general applications. In

particular, the model topology can play an important role in the lookahead computa-

tion. For example, Lubachevsky’s Bounded Lag algorithm [Lub88] takes advantage of

the minimum propagation delay between the LPs and the so-called opaque period during

33



which the state of an LP is not affected by other LPs due to the model’s non-preemptive

behavior. The algorithm introduces a time interval, called the lag, B, using which the

algorithm computes the “sphere of influence” encompassing all LPs that can possibly af-

fect a given LP within B units of simulation time. Ayani’s Distance Between Objects

algorithm [Aya89] is another case in point. The algorithm exploits the distance between

the LPs using shortest-path to determine the LP’s LBTS. The composite synchronization

falls in this category, which assumes that lookahead can be expressed through the model

topology in the form of an LP graph.

3.2.1 Composite Synchronization

The conservative synchronization methods can be classified as either synchronous or

asynchronous approaches. The original composite synchronization algorithm [NL02]

considers the performance problem arising from the mismatch between the model topol-

ogy and the synchronization scheme. The synchronous approaches (e.g., [Nic93, CS89,

Lub88, Aya89]) exploit the computational efficiency of the collective operations, such as

barriers and reductions, and are more suitable for densely connected models, where it is

more likely that any LP may interact with (i.e., affect and be affected by) any other LP

during the course of the simulation. The cost of the synchronous methods is directly re-

lated to the size of the synchronization window, which unfortunately is determined by the

worst-case lookahead between the LPs. In contrast, the performance of the asynchronous

approaches (e.g., [CM79, XUSC99, SS89, CT90]) does not easily get stuck on the worst-

case scenario as they focus on the pair-wise interactions between the LPs. However, since

the cost is closely related to the connection degree at each LP, the asynchronous methods

are at a disadvantage for handling densely connected models.

The composite synchronization algorithm aims to combine the synchronous and asyn-

chronous approaches in order to avoid the potential performance pitfalls from using either

34



method alone. The composite algorithm works as follows. Consider a model topology

represented as a graph, where the nodes are the LPs and the links are the channels between

the LPs. The algorithm partitions the channels between the LPs as either synchronous or

asynchronous channels. The size of the global synchronization window is then set to

be the minimum latency among all synchronous channels. The algorithm runs a barrier

synchronization among all LPs at the start of each synchronization window. Within a

synchronization window, the algorithm uses the CMB algorithm to carry out the syn-

chronization among the LPs in the subgraph that consists of only asynchronous channels.

During the execution, all events that traverse the synchronous channels are temporarily

stored at the sending processor. At the end of the synchronization window, these events

are distributed and delivered to their destinations using a collective operation. Since these

are the only events to be received by the LPs through the synchronous channels during the

next window, the composite algorithm thus only needs to consider asynchronous channels

before the next barrier synchronization.

The performance of the composite synchronization algorithm depends on the channel

assignment. In [NL02], Nicol and Liu formulate the channel assignment problem as an

optimization problem and show that the optimal policy has a threshold structure—one

uses a threshold T to partition the channels: those with latencies greater than or equal to

T are classified as synchronous channels, and the rest are classified as asynchronous. In

practice, the simple threshold structure allows the algorithm to “search” for the optimal

threshold by dynamically changing the threshold to seek the one that produces the best

performance.

Nicol and Liu’s composite algorithm was implemented only on shared-memory multi-

processors. Our approach extends the original algorithm for the distributed-memory mul-

tiprocessor and multicore environments, mostly common in today’s HPC realm. Our ex-

tended algorithm makes a judicious distinction between synchronization over distributed

35



memory and over shared memory. The extended algorithm is a hybrid approach as it

combines two distinct synchronization strategies; it is also a hierarchical approach as it

differentiates global distributed-memory synchronization and local shared-memory syn-

chronization. The same philosophy has been adopted earlier. For example, the Local Time

Warp approach [RAT93] combines a global conservative window-based synchronization

with a local optimistic synchronization. For another example, the DaSSF simulator fea-

tures a two-level synchronization scheme; it uses a barrier window-based algorithm for

synchronizing distributed-memory machines, and an asynchronous method for synchro-

nizing shared-memory multiprocessors [LN01].

3.3 Hierarchical Composite Synchronization

We start with a model graph G = (V,E), where V is the set of LPs and E is the set of

directed channels between the LPs. Let le(x,y) be the latency (i.e., the lookahead) of

the channel e(x,y) ∈ E connecting LP vx ∈ V to LP vy ∈ V. We assume le(x,y) > 0 for

all channels. Suppose that the simulation is run on the target platform that consists of

m distributed-memory machines, each having pi processors or cores1 that communicate

over shared memory, where 0≤ i < m.

We first run a graph partitioning algorithm that assigns each LP to a processor. Let

Vij be the set of LPs assigned to processor (or core) j on machine i, where
⋃
Vij = V

and
⋂
Vij = φ for 0 ≤ i < m and 0 ≤ j < pi. Let EG be the set of channels that span

across different distributed-memory machines. That is, EG = {e(x,y) ∈ E | vx ∈ Vij∧vy ∈

Vkl ∧ i 6= k}. We use Vi to denote the set of LPs on machine i, that is, Vi =
⋃pi−1

j=0 Vij,

and we use Ei to denote the set of channels between LPs on the same machine i, that is,

Ei = {e(x,y) ∈ E | vx ∈ Vi ∧ vy ∈ Vi}. In practice, we use a graph partitioner to divide

1Here, we do not distinguish between processors and cores within the processors, as much as
shared memory is concerned. The algorithm nevertheless can be extended to handle more than
two synchronization levels.

36



the LPs (each regarded as a unit of workload) among the processors and minimize the

total link weights exposed between the partitions. This can be achieved by making link

weights inversely proportional to the link latencies and using a graph partitioner, like

METIS [KK98], to find an optimal partition with minimum cut. Furthermore, if one can

predict the communication intensity between LPs, we can apply Liu and Chien’s three-

stage graph partitioning strategy [LC03], which takes into account both link delay and

communication overhead. The algorithm runs a graph partitioner in the first time with

the goal of finding a partition that maximizes the link latency, and in the second time

for finding a partition that minimizes the communication intensity between the partitions.

Finally, it creates another graph with new edge weights calculated from the results of two

previous partitioning runs, and partitions the graph for the third time to obtain the final

result.

Once we partitioned the model graph, we continue to classify the channels in the graph

as either synchronous or asynchronous. We defer the description of our multi-threshold

method to classify the channels in detail to section 3.4. Regardless of the method we use,

we divide the channels into the set of synchronous and asynchronous channels. We denote

ESG to be the set of synchronous channels and EAG to be the set of asynchronous channels

that span across different distributed-memory machines. Similarly, we denote ESi to be

the set of synchronous channels and EAi to be the set of asynchronous channels between

LPs on machine i, where 0 ≤ i < m. We calculate the size of the global synchronization

window, δG, as the minimum latency among the synchronous channels that span across

the machines, that is, δG = mine(x,y)∈ES
G
{le(x,y)}. Similarly, we calculate the synchroniza-

tion window on each machine, δi, to be the minimum latency among the synchronous

channels on the particular machine, that is, δi = mine(x,y)∈ES
i
{le(x,y)}.

The composite algorithm runs a local barrier synchronization every δi units of simu-

lation time among the processors on each machine i, and a global barrier synchronization

37



every δG units of simulation time among all distributed-memory machines. Between

these barriers, the composite algorithm runs an asynchronous algorithm on the subgraph,

GA = (V,EA), consisting of only asynchronous channels: EA = (
⋃

0≤i<mEAi )
⋃
EAG. For

each LP vx ∈ V, we denote Ix to be the set of asynchronous channels ending at LP vx, and

Ox to be the set of asynchronous channels starting from LP vx. The pseudo code of the

hierarchical composite algorithm is described in Alg. 1; the algorithm is expected to run

on each machine i and at each processor or core j.

Each processor or core maintains a priority queue, Qready, containing all ready LPs

sorted by their local simulation clock. We say an LP vx is ready to run when the local

simulation clock, tx, is smaller than its LBTS, calculated as the minimum time among

of all incoming channels of vx, that is, mine∈Ix{te}. Initially the queue is empty (line 1).

Each processor also defines two sets, EVTG and EVTL, to store the events traversing the

global synchronous channels, EAG, and those traversing the local synchronous channels on

the same machine, EAi , respectively. Initially the two sets are also set to be empty (line

1). We initialize the local simulation clock of all local LPs to zero and set the time of all

incoming channels to the LPs to be the same as the latencies (lines 2-4).

We use t to indicate the start time of the current synchronization window, which starts

from 0 (line 5). We use wG to keep track of the next global synchronization point (among

all distributed-memory machines), which is incremented each time by δG (lines 5 and 35).

We use wL to keep track of the next local synchronization point (among all processors or

cores on the same machine), which is incremented each time by δi (lines 5 and 39). We

use w to denote the end time of the current synchronization window, which is defined as

the the smaller of wG and wL (lines 5 and 42). The algorithm thus iterates through the

synchronization windows until the simulation time t reaches the simulation termination

time Tterm (line 6).

38



At the start of the synchronization window, all LPs are inserted into the ready queue

(line 7). We use the variable done to keep track of the number of LPs that have already

reached the end of the current synchronization window. The while-loop between line 9

and line 32 is used to schedule the LPs asynchronously until all of them reach the end

of the synchronization window. In the while-loop between line 10 and line 27, an LP vx

with the earliest simulation clock is removed from the ready queue (line 11) and gets to

run. The algorithm calculates its LBTS to be the minimum time of all incoming channels

and the end time of the current synchronization window (line 12). It can then safely

process all simulation events earlier than LBTS on LP vx’s event list (line 13). Processing

events may generate more events on the same LP, in which case they are inserted into

the LP’s event list directly. The LP may also send events to other LPs via channels. If

the events are sent through synchronous channels, they are put into EVTG if they traverse

global synchronous channels, and EVTL if they traverse local synchronous channels. If

the events are sent through asynchronous channels, they are delivered asynchronously. We

discuss the implementation details of the event delivery mechanism in the next section.

Once all safe events are processed, the simulation clock tx is updated to be LBTS (line

14). The algorithm makes a scan through all outgoing channels of LP vx and updates the

channel times (lines 15 and 16). If the subsequent LP vy is on the same processor and it is

blocked, we need to reinsert the LP onto the ready queue when the updated channel time

advances its LBTS (lines 17-21). If vy is on a different processor or a different machine,

we send a null message (line 23). When the algorithm exhausts all ready LPs and if there

are still LPs not reaching the end time of the synchronization window, the algorithm will

wait for incoming null messages to update the channel times and LBTS of some LPs, so

that they become ready to run (lines 28-31).

At the end of the synchronization window, if it happens to be a global synchronization

point, all machines enters a global barrier and perform an all-to-all exchange of events

39



stored in EVTG (lines 34 and 36). If the end of the synchronization window is a local

synchronization point, all processors enter a local barrier and perform an all-to-all ex-

change of events stored in EVTL (lines 38 and 40). The exchange of events depends on

the implementation. In the next section, we describe our implementation in the MiniSSF

simulator.

3.4 Performance Model of the Algorithm

The performance of the hierarchical composite synchronization algorithm depends heav-

ily on how the channels are classified. The global synchronization can be either a pure

barrier-based algorithm, if all cross-machine channels are classified as synchronous chan-

nels, or a pure asynchronous CMB-like protocol, if the all channels are all qualified as

asynchronous. Everything in-between is also a possibility. Furthermore, the choice of the

global synchronization can be made independent from that of the local synchronization.

In [NL02], Nicol and Liu found that the optimal channel classification (for one level) can

be obtained using a threshold. In this section, we develop a simple cost model for the

hierarchical composite algorithm, and present a method of applying linear regression to

calculate the necessary parameters for the target parallel platform. We can then use the

parameters to help search for the thresholds for the optimal channel classification.

We suppose that the hierarchical composite synchronization algorithm is running for

the model graph G on the parallel platform that consists of m machines, with pi processors

on machine i (0≤m < m). We use Cglobal to denote the cost at the global synchronization

among the distributed-memory machines, Ci
local to denote the cost at the local synchro-

nization between processors at machine i, and Cij
async to denote the cost of running the

asynchronous algorithm on machine i and processor j. The running time of the hierarchi-

40



cal composite algorithm can be calculated as follows:

Cglobal+ max
0≤i<m

{Ci
local+ max

0≤ j<pi
Cij
async} (3.1)

Here, we use the maximum to account for the possible load imbalance among the shared-

memory processors at a machine, and among the distributed-memory machines.

The cost at the global synchronization consists of the cost of the barriers and the cost

of distributing events sent through the synchronous channels spanning between the dis-

tributed memory machines. The cost of the barriers is inversely proportional to the global

synchronization window size, δG. The cost of distributing the events can be approxi-

mated as proportional to the number of synchronous channels spanning across different

machines, |ESG|. That is,

Cglobal =
c1
δG

+ c2|ESG| (3.2)

where c1 and c2 are the proportional constants. The cost at the local synchronization can

be expressed similarly:

Ci
local =

c3
δi

+σ4|ESi | (3.3)

where c3 and σ4 are also the proportional constants. We use the same constants, c3 and

σ4, for all machines assuming the machines are homogenous.

The cost for running the asynchronous algorithm consists of the cost of processing the

events of all LPs on machine i and processor j, and the cost of asynchronously scheduling

the LPs. The frequency of scheduling an LP can be approximated as inversely propor-

tional to the length of the shortest cycle through the LP in the model graph. The cost

of each time scheduling an LP to run is proportional to the number of incoming asyn-

chronous channels (for computing LBTS and for retrieving events from the channels’

mailboxes), and the number of outgoing asynchronous channels (for sending events and

for updating the channel times).

41



We let πx be the cost for processing all events on LP vx. We use τx to denote the

shortest cycle length through LP vx. We define Ix as the set of incoming asynchronous

channels to vx, OP
x as the set of outgoing asynchronous channels connecting to other

LPs on the same processor, OM
x as the set of outgoing asynchronous channels connecting

to other LPs on different processors and yet on the same machine, and OG
x as the set

of outgoing asynchronous channels spanning across different machines. Here we make

a distinction among the different types of outgoing channels because they incur different

costs. The overall cost of running the asynchronous algorithm on machine i and processor

j can thus be expressed as:

Cij
async = ∑

vx∈Vij

(πx+
σ5|Ix|+σ6|OP

x |+σ7|OM
x |+σ8|OG

x |
τx

)

= AVij
+σ5IVij

+σ6O
P
Vij

+σ7O
M
Vij

+σ8O
G
Vij

(3.4)

where AVij
= ∑vx∈Vij

πx is the cost for processing events for all LPs residing on the

processor (that is, Vij), IVij
= ∑vx∈Vij

|Ix|/τx is the cost of scanning the incoming asyn-

chronous channels of LPs in Vij, and OP
Vij

= ∑vx∈Vij
|OP

x |/τx, OM
Vij

= ∑vx∈Vij
|OM

x |/τx, and

OG
Vij

= ∑vx∈Vij
|OG

x |/τx represent the cost of scanning the outgoing asynchronous channels

on the same processor, across processors within the same machine, and across different

machines, respectively. We use the same proportional constants, σ5 to σ8, for different

processors and machines, assuming the parallel platform is homogenous.

The performance model for the composite algorithm expressed in Equations (3.1) to

(3.4) can be of some theoretical value. However, in practice, in order for us to be able to

estimate the runtime we need to make further simplifications. We add three more assump-

tions. First, we assume that the model is perfectly balanced. That is, the model can evenly

distribute the workload among the LPs. This is normally true for most large-scale sim-

ulation scenarios, which usually consist of a large number of similar entities generating

a large number of simulation events. Second, we assume that the simulation is running

42



with a perfect balance on a set of homogenous machines each with p processors. This

is also true in general if we use a good graph partitioning algorithm and if the simula-

tion workload does not change significantly throughout the simulation. Third, we assume

that the composite synchronization algorithm adopts the same local synchronization win-

dow size, δL, on all distributed-memory machines. This is true if the latencies for the

cross-processor synchronous channels (ESi ) have the same distribution on all machines.

With these assumptions, the cost of the hierarchical composite algorithm can be sim-

plified as a function of δG and δL shown below:

Cglobal+
1
m ∑

0≤i<m

Ci
local+

1
mp ∑

0≤i<m
0≤ j<p

Cij
async

= (
c1
δG

+ c2|ESG|)+(
c3
δL

+
σ4

m ∑
0≤i<m

|ESi |)+

1
mp

(AV+σ5IV+σ6O
P
V +σ7O

M
V +σ8O

G
V )

= c0+
c1
δG

+ c2|ESG|+
c3
δL

+ c4 ∑
0≤i<m

|ESi |+

c5IV+ c6O
P
V + c7O

M
V + c8O

G
V (3.5)

where AV = ∑vx∈V πx is the cost for processing events for all LPs, IV = ∑vx∈V |Ix|/τx is

the cost of scanning the incoming asynchronous channels of all LPs, OP
V =∑vx∈V |O

P
x |/τx,

OM
V = ∑vx∈V |O

M
x |/τx, and OG

V = ∑vx∈V |O
G
x |/τx are the costs of scanning the outgoing

asynchronous channels on the same processor, across processors within the same ma-

chine, and across different machines, for all LPs. We set c0 = AV/mp, c4 = σ4/m, and

c5 = σ5/mp, · · · , c8 = σ8/mp.

In practice, we can use the following algorithm to search for the optimal combination

of δ ∗G and δ ∗L for the best performance on a target platform:

1. We run a graph partitioning algorithm to partition the model graph G for the target

platform with m machines each with p processors. This can be achieved by first

43



 600
 700
 800
 900

 1000
 1100
 1200
 1300
 1400
 1500
 1600

 0  200  400  600  800  1000  1200

Si
m

ul
at

io
n 

Sp
ee

du
p

Global Threshold (seconds)

Local Asynchronous

measurement
linear regression

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 0  200  400  600  800  1000  1200

Si
m

ul
at

io
n 

Sp
ee

du
p

Local Threshold (seconds)

Global Asynchronous

measurement
linear regression

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 0  200  400  600  800  1000  1200

Si
m

ul
at

io
n 

Sp
ee

du
p

Global Threshold (seconds)

Local Synchronous

measurement
linear regression

 600

 650

 700

 750

 800

 850

 900

 950

 0  200  400  600  800  1000  1200

Si
m

ul
at

io
n 

Sp
ee

du
p

Local Threshold (seconds)

Global Synchronous

measurement
linear regression

Figure 3.1: Cost estimation using linear regression.

partitioning the graph among the machines and then individually partitioning the

subgraph at each machine among the processors.

2. We make a few pilot runs of the composite algorithm with different combination of

δG and δL, and measure the runtime. We can then use linear regression to estimate

the constants, c0 to c8. Once we have the constants, we can run the search offline.

Since the global synchronization and local synchronization are independent, we can

separately search for δ ∗G and δ ∗L in the steps to follow.

3. We try out different values of δG using all distinct latencies of channels spanning

across distributed-memory machines, i.e., in ESG. We find the optimal δ ∗G that mini-

mizes:
c1
δG

+ c2|ESG|

4. Similarly, we try out different values of δL using all distinct latencies of channels

spanning across shared-memory processors on the same machine, i.e., in
⋃

0≤i<mESi .

44



We find the optimal δ ∗L that minimizes:

c3
δL

+ c4 ∑
0≤i<m

|ESi |+ c5IV+ c6O
P
V + c7O

M
V + c8O

G
V

In steps 3 and 4, if the channels have a large number of distinct latencies, we may

opt to take only a sample of the distinct latencies to speed up the search. Furthermore, if

we can assume that the behavior of the model is consistent across different model sizes,

it is possible to create a performance model that allows us to run measurements using

a smaller model on a subset of machines, and then project the results for large models

running on the full-size target parallel machine. We leave this option for future work.

3.5 Preliminary Experiments of the Algorithm

To demonstrate the effectiveness of our approach, we conducted an experiment using a

queuing network model. We used BRITE [MLMB01] to generate a network topology of

9,600 nodes randomly connected using a probability model. In our case, we chose the

router-level Barabási-Albert model that generates the topology with a power-law distri-

bution in the frequency of node degrees. BRITE calculates the link delays according to

the placement of the nodes: it first places the nodes in a 2D plane uniformly at random

and then calculates the link delays between the nodes to be proportional to the Euclidean

distances. In our case, we observed the link delays range widely between 8 to 1,350

milliseconds. For the queuing model, we set the service time at each queue to be ex-

ponentially distributed with a mean of one second. After service, the job departs from

the current queue and randomly joins one of the connected queues after experiencing the

link delay between the two queues. At the start, each queue has an average of 100 jobs,

sampled from a Poisson distribution.

We ran the experiment on a cluster of eight machines connected by a gigabit Ethernet

switch. Each machine is equipped with two hex-core 2.4 GHz AMD Opteron CPUs and

45



32 GB of RAM. We used METIS [MET] to partition the model in three rounds: it first

partitioned the entire network among the eight machines, then the nodes that belong to

each machine were partitioned among the twelve cores, and finally the nodes that belong

to each core were partitioned among ten logical processes. In the end, we had a model

with 960 logical processes.

To calculate the parameters of our performance model, we used 100 different global

threshold values sampled from the delays of the links spanning across the machines. We

measured the runtime using these thresholds for global synchronization, while setting the

local synchronization to be either purely synchronous or purely asynchronous. Similarly,

we used another 100 different local threshold values sampled from the delays of the links

spanning across processors on the same machine. We measured the runtime using these

thresholds for local synchronization and setting the global synchronization to be either

purely asynchronous or purely synchronous. Afterwards, we used MATLAB to calculate

the nine parameters (c0 to c8) using linear regression. After getting the performance

model, we estimate the global and local thresholds that can achieve the best performance.

Fig. 3.1 shows the simulation speedup (i.e., the ratio of the parallel execution time over

the simulated time). The top two plots show the results as we vary the global synchro-

nization threshold (δG). The top left plot is from using pure asynchronous null-message-

based approach for synchronizing the LPs located on the same machine, and the top right

is from using pure synchronous window-based synchronization for the LPs located on the

same machine. The bottom two plots show the results as we vary the local synchroniza-

tion threshold (δL), while keeping the global synchronization to be purely asynchronous

and purely synchronous methods, respectively. Overall, our model can track the relative

changes in the performance of the composite synchronization approach as we vary the

thresholds. The model, however, is not indicative to the absolute costs, and as such still

requires further tuning in order to increase the accuracy in the performance estimation.

46



 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0  200  400  600  800  1000  1200

Si
m

ul
at

io
n 

Sp
ee

du
p

Global/Local Thresholds (seconds)

measurement
linear regression

Figure 3.2: Cost prediction.

Fig. 3.2 shows the measured runtime compared to the model predicted performance

through linear regression, as we simultaneously increase the global and local thresholds.

Again, the model is less accurate in predicting the absolute cost of the composite al-

gorithm; but it can nevertheless predict the relative performance in accordance with the

changing thresholds. We suspect some of the inaccuracies come from the perfect load

balancing assumption we made in the model. We are currently investigating the causes.

Fig. 3.3 shows the speedup of the composite algorithm using the best combination of

global and local thresholds (237 and 267 in this case) over pure synchronous and asyn-

chronous approaches used separately for synchronizing the global distributed-memory

machines and for synchronizing the local shared-memory multiprocessor multicore ma-

chines. In particular, the hierarchical composite algorithm achieved a speedup of as much

as 4.8 over the globally asynchronous and local asynchronous approach, which is the tra-

ditional CMB-style algorithm, on the 8-node 96-core cluster. Our algorithm also yielded

47



0.0	  

0.5	  

1.0	  

1.5	  

2.0	  

2.5	  

3.0	  

3.5	  

4.0	  

4.5	  

5.0	  

global	  async	  	  	  	  	  	  	  	  	  	  	  	  
local	  async	  

global	  sync	  	  	  	  	  	  	  	  	  	  	  	  	  	  
local	  async	  

global	  async	  	  	  	  	  	  	  	  	  	  	  
local	  sync	  

global	  sync	  	  	  	  	  	  	  	  	  	  	  	  	  
local	  sync	  

4.8	  

1.8	  
1.6	   1.8	  

Figure 3.3: Optimal speedup over pure sync and async methods.

a performance improvement of 1.8 over the synchronous approach used at both levels,

which is the traditional window-based protocol, like YAWNS. We also observed the hier-

archical composite algorithm obtained a speedup of 1.7 over the two-level synchroniza-

tion scheme that uses the composite synchronization for local synchronization, and uses

the window-based approach for global synchronization, as was the implementation of the

original composite algorithm.

3.6 The Simulator Implements the Synchronization—MiniSSF

We implemented the hierarchical composite synchronization algorithm in the new MiniSSF

simulator, which implements a core subset of the Scalable Simulation Framework (SSF)

API [CNO99], for running large complex models for distributed-memory multiprocessor

multicore platforms.

48



3.6.1 Introduction

The scale and complexity of modern computer systems have grown rapidly. It is thus vi-

tally important to provide an expressive and flexible simulator capable of handling models

of different sizes, at different modeling details, and with different levels of complexity. A

parallel discrete-event simulator is capable for users to easily develop large complex mod-

els, and simultaneously offer transparent scalability and performance when running the

models on high-end computing platforms. There have been many parallel discrete-event

simulators shown to be able to run large-scale models (e.g., [BMT+98, CBP00b, CNO99,

DFP+94, Per]). Recent performance studies on the parallel simulation on supercomputers

have also shown encouraging results (e.g., [BCH09, CP10, FPP+03, Per07]).

Scalable Simulation Framework (SSF) is an application programming interface (API)

designed for developing parallel simulation models [CNO99]. It is based on modular

design through which potential parallelism in the model can be identified and exploited.

Several salient features of SSF have made it quite attractive as a general parallel simu-

lation API. First, a model is described in SSF simply as a connected graph; the detailed

logic of the model is hidden inside the specific entities. This allows building large com-

plex models in a modular fashion. Second, SSF provides a process-oriented simulation

view, where a model can be expressed naturally as a collection of interacting processes.

Finally, an SSF model is largely independent of the synchronization protocol and the par-

allel platform. This independency provides a clean separation of concerns between the

domain modelers and the developers of the parallel simulator.

Deficiencies of SSF

The first C++ implementation of SSF is started in 1998. The simulator has gone through

several rounds of careful performance analysis and tuning [LNPP99], and has demon-

49



strated capable of simulating large-scale infrastructure networks [CLL+99]. Since then,

the simulator and its variants have been used in many other applications, including sim-

ulations of parallel computers, interconnection networks, file systems, cellular networks,

wireless ad hoc networks, sensor networks, power grids, etc. Despite the simulator’s

widespread use, our experience with the development and maintenance of the simulator

has brought on the realization of several deficiencies in the original design.

First, the original SSF API contains many powerful features, such as dynamic entity

creation and deletion, dynamic mapping of communication channels between entities,

entity realignment, as well as the capability pausing and resuming simulation during ex-

ecution. We observe that these features are seldom used in model development; and yet

they add significant complexities both in the implementation and maintenance of the sim-

ulator.

Second, the SSF API does not provide a standard way of creating and initializing mod-

els on distributed-memory machines. Distributed-memory machines are common paral-

lel platforms of today; most supercomputers currently available consist of distributed-

memory machines with shared-memory multiprocessors and multicores. The lack of an

intuitive interface for instantiating models on these platforms is a serious inhibitor for

further expanding its use.

Third, the SSF implementation depends on an efficient user-space multithreading

mechanism to support the process-oriented simulation view. User-space multithreading

requires source-code transformation, which unfortunately has not been fully automated

in the original implementation. As a result, the user is burdened with the task of hav-

ing to properly annotate the source code. This adds significant complexity to the model

development and for debugging.

Fourth, the parallel simulation synchronization algorithm implemented in the SSF

implementation has been developed and optimized only for shared-memory multiproces-

50



sor machines [NL02]. A less optimal barrier-based algorithm is used for synchroniz-

ing the distributed-memory machines [LN01]. The synchronous approach may result in

sub-optimal performance if the barrier synchronization window is too small for certain

models.

3.6.2 MiniSSF

We revisit the SSF design and describe a new implementation of the parallel simulator,

called MiniSSF, which improves upon the previous implementation. The new simulator

takes on the minimalistic approach originated from the SSF design, and we get rid of

some of the superfluous features in SSF that are not commonly used by modelers. This

also removes the unnecessary obscurity of the model code for analysis and transformation.

We include a standard API for creating, initializing, and running the simulation models on

distributed-memory platforms, following the well-known single-program-multiple-data

(SPMD) programming paradigm. Using the same intuitive interface, the simulator is able

to run either sequentially on a single machine, or in parallel on a compute cluster of

machines with multiple processors and cores.

We provide a fully automated source-code analysis and transformation tool for effi-

cient user-space multithreading to support the process-oriented simulation view. Further-

more, we implement a hierarchical composite synchronization protocol that can automat-

ically tune its performance based on the model and the underlying parallel platform. The

new simulator is itself a multi-threaded parallel program, using only pthreads and MPI,

both commonly available on today’s high-end computing platforms. This makes the sim-

ulator extremely portable across different parallel platforms we have so far encountered.

51



Programming Interface of MiniSSF

It is important that a simulator provides the necessary software constructs for the user

to easily build large complex models that can run efficiently on today’s parallel plat-

forms. Our simulator largely follows the original SSF API, however, with some impor-

tant changes to ease model development. In this section, we describe the MiniSSF API

focusing on the specific design issues and extensions. SSF defines five core constructs:

entity, process, in-channel, out-channel, and event.

An entity is a container for state variables collectively representing a component in

the target system. For example, we can use an entity to model a queue in the queuing

network. The entities are connected by mapping the out-channels of the entities with the

in-channels of other entities. The channels are the communication end-points between

the entities with specific delays. Events are messages sent through the channels. An out-

channel can be connected to multiple in-channels, in which case an event written to the

out-channel will be delivered by the simulator to all mapped in-channels with the specific

delays. Similarly, an in-channel can be mapped from multiple out-channels so that it can

receive events from multiple sources. Within each entity, one can create processes to

perform simulation activities. A process can be blocked waiting for events to arrive on

the entity’s in-channels, or for a certain duration of simulation time to pass.

SSF exemplifies the common task/channel model commonly used for developing par-

allel applications [Fos95]. A parallel application is defined as set of independent tasks

which interact by sending and receiving messages via channels. In doing so, it avoids

the use of global shared data and thus can be mapped easily onto a parallel platform. The

computation is divided into separate tasks that can run in parallel, whereas the data depen-

dencies among the tasked can be easily identified through the communication channels.

In SSF, each task is represented as an entity defined with a set of local state variables. An

52



entity can have a set of in-channels and out-channels as I/O ports to communicate with

other entities. An SSF model consists of entities interconnected via the channels (it’s a

graph). Within an entity, one or more processes can be defined to describe the specific

logic of the corresponding task/component of the target system. A process describes the

changes of the entity’s state according to time or in response to the messages sent from

the other entities.

Process-oriented Simulation

SSF offers a process-oriented simulation view for the user to conveniently describe the

model as a set of interacting simulation processes. Each process is an independent flow of

control that specifies the state transition of the logical component represented by its owner

entity. Implementing process-oriented view requires multithreading: a simulation process

must be able to suspend its execution in the middle of a function. Also, the simulation

engine needs to be designed seamlessly with the multithreading support: dispatching pro-

cesses must be a core function of the event processing mechanism. To do multithreading,

one can employ an existing thread package, such as pthreads.

A main drawback of this approach is the overhead. A full-fledged thread implemen-

tation requires each thread maintain its own stack and registers, as well as necessary

bookkeeping information, such as scheduling properties and signaling mechanisms. Fur-

thermore, although the threads are usually implemented as light-weight processes, they

still incur non-trivial overhead during context switches. Both problems would be acute

especially for large-scale models, which typically would consist of a huge number of

simulation processes (which warrants the use of parallel simulation).

To avoid this problem, MiniSSF follows the design of its predecessor, using its own

lightweight threading, via source-to-source translation and dependence on the simulation

modeler using the right pragmas to suspend and resume the thread execution. The ad-

53



vantage of this approach is that the space consumption is now tailored to only what is

explicitly used by each simulation process. The thread scheduling and context switching

can be carefully orchestrated as part of the simulation event processing to reduce context

switch overhead.

To allow a simulation process to suspend and resume execution, each simulation pro-

cess needs to maintain a call chain, which keeps a snapshot of the sequence of the function

calls together with their local variables, so that they can be restored after resuming exe-

cution. Since a simulation process can only be suspended as a result of executing a wait

statement in MiniSSF, it is relatively easy to identify the call chain leading to a process

suspension. We define a procedure as a function that either contains a wait statement

or calls an other procedure. A call chain is a sequence of procedures from the starting

procedure to the one that contains the wait statement that causes the process suspension.

The call chain of each simulation process is represented in MiniSSF as a linked list

allocated from the program heap. Whenever a procedure is called, a procedure record

is created and added to the head of the linked list (i.e., at the top of the stack). Each

procedure record contains a pointer to the corresponding function, a copy of the local

variables defined in the function, and a program counter, an integer indicating the next

instruction to be executed once the function gets to be executed. When the simulation

process resumes execution from the wait statement, the simulator will call the function

indicated by the procedure record at the head of the call chain. A jump table inserted at the

beginning of the function will direct the control to the specific instruction after the wait

statement. When the function returns, the simulator will remove the procedure record

from the head of the linked list and call the function indicated by the next procedure

record (which now becomes the top of the stack), all until the control gets back to the

starting procedure.

54



Automated Source Code Translation

To support hand-crafted multithreading, we need to perform source-code analysis to iden-

tify those functions where we embed necessary instructions to support thread suspension

and resumption. Source-code analysis requires syntactic information, which can be ob-

tained from a compiler. In the absence of a general full-fledged C++ parser that one

could easily perform source-code analysis and transformation, the original implementa-

tion of SSF offers instead a source-to-source translator, written in Perl, to perform simple

text-based code instrumentation. It’s error-prone and significantly adds to the model com-

plexity.

Acutely aware of these problems caused by the manual source-to-source translation,

we introduce a fully automated source-code analysis and transformation mechanism for

MiniSSF. For C++ compilation, we use clang, which is a C language family frontend

for the LLVM compiler [cla]. Clang provides good support for static code analysis and

source-to-source transformation, allowing users to add plug-in code to analyze and ma-

nipulate the abstract syntax tree (AST) obtained from parsing the source code.

We use clang to analyze the source code and identify several program features. First,

we identify all procedures in the program. As mentioned earlier, procedures are functions

that call the wait statements or other procedures. Second, we identify all places inside

each procedure function that perform procedure calls. Third, we identify all places inside

each procedure function where the function may return. Fourth, we identify the definition

of all local variables at each procedure function, which also include function parameters

and variables with different scopes within the function body. Finally, we identify all

references to the local variables within the procedure function.

After that, we use clang to perform source-code transformation. First, for each pro-

cedure, we create a procedure record type, which includes a pointer to the procedure

55



function, a set of variables corresponding to the function’s local variables, and a program

counter, an integer entry code indicating the instruction at which the function should start

once the execution of the function resumes. Second, we replace the references to the local

variables inside the procedure function with those to the corresponding variables defined

in the procedure record. In this way, all local variables will be kept in the call chain

located in the program heap rather than on the stack. As such, they can persist across

the process suspension. Third, at the beginning of each procedure function, we insert a

jump table. We add a label with a unique entry code at the first instruction following

each procedure call or wait statement. The jump table is basically a switch statement,

which directs the control (using goto) to the specific label corresponding to the entry

code specified in the procedure record. Finally, at the place of each procedure call, we

add code, which creates the callee’s procedure record and adds it to the head of the call

chain. Similarly, at each place the procedure returns, we add code, which removes the

procedure record from the call chain and returns the control back to the simulator.

Our implementation consists of three modules. The first module is a clang plug-in,

which is a dynamic library loaded by clang at run time. The first module will be run

for each source file to perform the code analysis. More specifically, the module collects

the information about the class hierarchy defined in the user’s source code, retrieves the

prototype of the methods defined in each class, and identifies all method calls inside the

body of each method definition. After the first module is run on all source files, we run

the second module to gather the information and create a call graph that represents what

method may call what other methods. We can then identify the procedures and procedure

calls by making a depth-first traversal of the call graph from the starting procedures. The

third module is also a clang plug-in and is used again to parse each source file. At this

time, it can perform the needed source-code transformation on the procedures identified

by the first two modules.

56



3.6.3 The Implementation of Hierarchical Composite Synchronization

We implement the hierarchical composite synchronization algorithm [LR12] in MiniSSF.

The algorithm has already been elaborated in section 3.3, so we focus on the implemen-

tation here. In particular, we some arrangements toward the issues related to running the

algorithm on today’s common parallel computing platforms.

Overall Implementation

The user runs the simulation on the target platform with one or more distributed-memory

machines, each with several processors or cores. On each machine, the simulation starts

from the main function, in which the user creates the entities along with the processes

and channels, and connects the entities by mapping the out-channels with the in-channels.

During the initialization, the user can also specify temporal alignment of the entities: co-

aligned entities share the same timeline and advance in simulation time synchronously;

that is, they can access each other’s state variables without having to send and receive

events through the channels. Once the initialization completes, the user basically creates

the model graph consisting of LPs, which represent the co-aligned entities, and channels

between the LPs, aggregated from the mapping from out-channels to in-channels.

The simulator is a multi-threaded MPI program. A thread is created on each processor

and all LPs created for the machine are partitioned among the processors. The simulator

also creates two additional threads—a reader thread and a writer thread—to handle com-

munications with other distributed-memory machines. We use a facility, called mailbox,

for communication between the threads. A mailbox consists of a linked list of events, a

mutex to prevent simultaneous access by multiple threads, and a conditional variable for

signaling between the data producer and the data consumer. We have three types of mail-

boxes in the simulation. The writer thread maintains a “remote mailbox” to store events

57



LP1

LP6LP3

LP2 LP5

LP7

LP8

LP9

LP10

LP11

Reader
Thread

Writer
Thread

send send
recv

recv

processor
mailbox

remote
mailbox

channel
mailbox

LP4

processor 0 processor 1

EVTL

EVTG

EVTL

EVTG

processor
mailbox

Figure 3.4: Event delivery mechanism.

from local processors waiting to be sent to different machines. Each processor also main-

tains a “processor mailbox” to store the events given to it by the reader thread received

from other machines. For each channel connecting LPs belonging to different processors

or different machines, the receiving LP maintains a “channel mailbox” to store the events

delivered to it from the sending LP, before the events are inserted into the receiving LP’s

event list.

Fig. 3.4 illustrates the event delivery mechanism using an example with seven LPs

(LP1 to LP7) divided between two processors; they are also connected with other LPs

instantiated on remote machines (LP8 to LP11). When an entity sends an event to another

entity, if the two entities belong to the same LP or the two LPs are located on the same

processor, the event is inserted into the receiving LP’s event list directly. Otherwise,

if the channel is classified as a synchronous channel, the event is inserted into EVTG

if the channel spans across different machines, or EVTL if the channel is between two

58



processors on the same machine. Otherwise, if the channel is an asynchronous channel,

and if the channel is between two LPs on two different processors (such as the channel

from LP2 to LP5), the event is put in the channel mailbox at the receiving LP.

If the channel is connecting to an LP on a remote machine (such as the case from

LP1 to LP9), the sending LP invokes the send function, which puts the event in the

remote mailbox The writer thread retrieves the event from the mailbox, serializes the

event, and sends it via message passing. To gain better performance, the writer thread may

opportunistically pack several events into one message. The reader thread is performing

a blocking receive on the remote messages. When a message arrives, which, for example,

contains an event from LP11 to LP6, the reader thread deserializes the event and then put

the event into the processor mailbox at processor 1. The receiving processor can call

the recv function to poll the mailbox to see if there are events to be retrieved from the

mailbox every time an LP is scheduled to run (at line 11 in Alg. 1). Also, when the

processor is running out of ready LPs, it also calls the recv function, however, at this

time doing a block receive on the mailbox (line 29). When the event is retrieved from the

processor mailbox, it is given to the channel mailbox at the receiving LP. Eventually the

event is inserted into LP6’s event list.

We use calendar queues [Bro88] for EVTG and EVTL, with a bucket size of δG and

δi, respectively. We only distribute the next bucket of future events in the calendar queue

at each synchronization point. In this case, the future events beyond the next synchro-

nization window don’t need to get sorted and therefore the performance can improve.

The all-to-all exchange of the next bucket of events in EVTL among the processors on

the same machine can be done easily via a local barrier though shared memory (line 40).

The global all-to-all exchange of the next bucket of events in EVTG among the machines

requires a bit more attention (line 36).

59



In our implementation, each processor first sends (and counts) the events using the

same event delivery mechanism for the asynchronous events (using the same send func-

tion and going through the writer thread and then the reader thread). Processor 0 then

collects the total number of events sent to other machines (using a local barrier) and then

performs a global reduce-scatter operation so that each machine ends up knowing exactly

how many events it is expected to receive from other machines. The machine waits until

all events are received and delivered to the corresponding channel mailboxes before the

processors are allowed to continue with the next synchronization window.

3.6.4 Implementation Issues

We consider two implementation issues of the hierarchical composite synchronization

algorithm: one on the selection of the thresholds for classifying the communication chan-

nels, and the other on the multi-threaded support of MPI on parallel platforms.

Choosing thresholds. The performance of the original composite synchronization

algorithm, designed for shared memory, has been modeled analytically; the channel as-

signment can be formulated as an optimization problem of finding a proper threshold for

partitioning the communication channels [NL02]. The hierarchical composite synchro-

nization algorithm extends the original composite approach by introducing an additional

threshold for partitioning the cross-memory communication channels. A performance

model of the hierarchical algorithm is also available based on linear regression [LR12].

Both models, however, require runtime measurements on the target platform.

Manually performing pilot runs is unattainable in practice when dealing with large-

scale models. We notice that the cost structure for local composite synchronization is

largely independent from global synchronization. Consequently, we provide an empirical

solution to automate the selection of the thresholds by performing measurements sepa-

rately for local and for global synchronization at the start of simulation. We first set the

60



global synchronization to be asynchronous and then let each machine try out different

local thresholds (sampled from the delays of communication channels between LPs on

different cores on the same machine). We finally choose the threshold that obtains the

best performance. Note that different machines may choose a different local threshold.

After that, we fix the optimal local thresholds and then apply the same method to try out

different global thresholds (sampled from the delays of communication channels between

remote LPs). We finally choose the one that results in the minimum runtime.

Multi-threaded support of MPI. The parallel simulator is a multi-threaded MPI pro-

gram (using pthreads). MiniSSF adopts the SPMD model: each machine runs an MPI

instance, which subsequently creates as many pthreads as there are processors and cores

on each machine (we call them work threads). The logical processes on the machine are

automatically assigned to the work threads for parallel execution. In our original design,

in addition to the work threads, each MPI instance also creates two additional threads: a

reader thread, which is responsible for receiving messages from other MPI instances and

distributing the received messages to the corresponding logical processes, and a writer

thread, which is responsible for gathering messages sent from logical processes on this

machine to remote logical processes, and sending them to their respective destinations via

message passing.

This scheme would work if the particular MPI implementation on the high-end com-

puting platform has full support for multiple threads. Unfortunately, this is not generally

the case. We observe that, on most supercomputers we have encountered, the MPI im-

plementations have only limited thread-level support. Some MPI implementations allow

only the main thread to call MPI functions, and others, although allowing multiple threads

to make MPI calls, permit only one MPI call at a time (that is, the MPI calls must be se-

rialized using explicit thread synchronization).

61



Requiring full thread-level support would obviously limit the portability of MiniSSF.

To deal with this problem, we make changes to the original design, and replace the reader

and writer threads with one I/O thread to handle all MPI calls. The I/O thread applies

timed wait on a condition variable (pthread cond timedwait), which the work

threads use to notify the I/O thread that they have messages to send. In addition, we

use a facility, called mailbox, to temporarily store the messages sent by the work threads.

Upon receiving the notification, the I/O thread will retrieve the messages from the mail-

box and immediately send them on behalf of the work threads. When a timeout happens,

the I/O thread does a non-blocking check for any messages from other MPI instances

(MPI Iprobe). If such a message is found, the I/O thread will retrieve the message

from MPI using a blocking receive (MPI Recv) and then deliver the message to the cor-

responding work thread, using another conditional variable and mailbox.

3.7 Performance Evaluation

To obtain more experience, we investigate the performance of our simulator using three

queuing network models. We run our experiments on three distinct supercomputers:

Stampede, Kraken, and Blacklight of XSEDE, which is a shared cyberinfrastructure with

a collection of high-end computing resources [xse]. The hardware configurations of Stam-

pede, Kraken and Blacklight are listed in table 3.1.

3.7.1 Queuing Models

We create three models. The first model, the string model, is used to test the baseline

scalability of the simulator. The queues are lined in a circle, each of which is a single-

server queue with infinite capacity and an exponentially distributed service time. Upon

the departure of a completed job, the queue sends the job either to the previous or the next

62



Table 3.1: Hardware Configurations of Three Supercomputters
Hardware Stampede Blacklight Kraken
system type Dell Cray XT5 SGI UV 1000

Linux cluster Shared-memory
computing nodes 6400 9408 256

processor/core number two eight-core plus one two six-core two eight-core
processor type Intel Xeon E5 2.6GHz AMD Opteron Intel Xeon X7560

plus Xeon phi
memory 32GB/node 16GB/node 128GB/node

peak performance 6000 TFlops 1174 TFlops 37.2 TFlops
operating system Linux CentOS 6.2 Cray Linux SuSE Linux OS

location University of Texas Tennessee Lab Pitteburgh
and Oak Ridge National

queue with an equal probability. In the experiment, we fix a delay of 1 ms between the

departure of a job at a queue and its arrival at the next queue. We set the mean service

time to be 0.1 ms. At the start, we populate each queue with an average of 10 initial jobs,

sampled from a Poisson distribution.

The second model, the jump model, has a similar setup. We place an additional link

from each queue to another queue randomly chosen within a radius of 100. We also

reduce the delay between the queues to be 0.1 ms and increase the mean service time to

be 1 ms. We use this model to investigate the performance of our simulator for different

computation-communication ratio and communication pattern.

The third model, the power-law model, uses a topology with a power-law distri-

bution in the frequency of node degrees, which has been frequently observed in com-

plex networks, such as the Internet. We use BRITE for a hierarchical topology genera-

tion [MLMB01]. At the top level, the algorithm generates a random topology consisting

of nodes as autonomous systems (ASes) connects based on the Barabási-Albert model.

Then, for each AS, it generates a router-level Waxman topology. At both levels, the gener-

ator places the nodes randomly in a 2D plane according to a normal distribution and links

them with a delay proportional to their Euclidean distance. To represent a connection in

AS graph, the generator randomly picks a router within each AS and connects them.

63



10
5

10
6

10
7

10
8

10
9

10
10

 12  48  192  768  3072

E
v
e

n
t 

R
a

te

Number of Cores

string model, sync
string model, async
jump model, sync
jump model, async

Figure 3.5: String and jump model results on Kraken.

3.7.2 Experiment Results

We first test with the string and jump models on Kraken. We fix the number of queues

to be 100 per core and then run the model on 12 to 3,072 cores, doubling each time.

For this experiment, we only run MiniSSF with the one-level synchronization, either the

synchronous (window-based) or the asynchronous (CMB) algorithm, for an initial assess-

ment of the simulator’s scaling property. Fig. 3.5 shows the total event processing rate of

the simulator as a function of the core count. Note that both axes are in logarithmic scale.

The results suggest that the simulator can scale almost linearly on this machine for both

models. For the string model, the simulator is able to achieve an event rate of 1.3 bil-

lion events per second with the asynchronous method on 3,072 cores. The asynchronous

method outperforms the synchronous method with a larger number of cores. For the jump

model, the simulator achieves far less event rate due to the model’s higher communication

to computation ratio. We see that the asynchronous method consistently outperforms the

synchronous method, which is due to the model’s localized communication pattern.

64



2M

4M

8M

16M

32M

64M

128M

256M

 16  32  64  128  256

E
v
e

n
t 

R
a

te

Number of Cores

string model

global sync, local async
global async, local async
one level, sync
one level, async

0K

500K

1000K

1500K

2000K

2500K

3000K

3500K

 16  32  64  128  256

E
v
e

n
t 

R
a

te

Number of Cores

jump model

global sync, local async
global async, local async
one level, sync
one level, async

Figure 3.6: Queuing model results on Blacklight.

10
7

10
8

10
9

 16  32  64  128  256  512  1024  2048  4096

E
v
e

n
t 

R
a

te

Number of Cores

string model

one level, sync
one level, async
global sync, local async
global async, local async

10
5

10
6

10
7

10
8

10
9

 16  32  64  128  256  512  1024  2048  4096

E
v
e

n
t 

R
a

te

Number of Cores

jump model

one level, sync
one level, async
global sync, local async
global async, local async

10
7

10
8

10
9

 16  32  64  128  256  512  1024  2048  4096

E
v
e

n
t 

R
a

te

Number of Cores

power-law model

one level, sync
one level, async
global sync, local optimal
global async, local optimal

Figure 3.7: Queuing model results on Stampede.

Next, we run the same models on Blacklight and compare the performance between

the one-level and two-level synchronization methods. For the two-level synchronization,

we configure each machine to run with 16 threads to occupy the available cores. We

switch between the synchronous and asynchronous method for the global synchronization

and use the asynchronous method at the local level as it produces better performance. We

increase the number of cores from 16 to 256. Fig. 3.6 shows the results. The one-level

methods exhibit better performance than the hierarchical approach for the string model

(the left plot), achieving as much as 150 million events per second. But the situation

is reversed from the jump model (the center plot) where the global asynchronous and

local asynchronous method significant outperforms the rest. Speculating from this quite

opposite outcomes, the benefit from the hierarchical synchronization seems to be less

obvious for compute-intensive models.

The left and center plots in Fig. 3.7 show the results from running the string and jump

models on Stampede, respectively, as we simultaneously increase the model size and the

65



number of cores (from 16 to 4,096 cores). Except for the one-level synchronous method,

the performance scales up almost linearly. The maximum event processing rate is 1.7

billion events per second on 4,096 cores.

At last, we run the power-law model on Stampede. For the experiment, we fix the

number of routers within each AS to be 1,000. We set the number of ASes to be the same

as the core count. We set the parameters of the topology generator so that the delays for

the inter- and intra-AS links are both normally distributed with a cutoff range from 0 to

12 ms. We set the mean service time at each queue to be 0.1 ms. The right plot in Fig. 3.7

shows the results of running the simulator both with one level, either synchronously or

asynchronously, and with two levels, where the global level is either synchronous or asyn-

chronous, and the local level uses a threshold empirically determined to obtain the optimal

performance. The performance of the two-level method with global asynchronous and lo-

cal optimal threshold increases faster with the core count and eventually achieves the best

performance on 4,096 cores.

From these experiments with different scenarios setups, we get the basic idea of how

to configure the simulator to achieve the performance as good as possible, for different

models running on various platforms.

3.8 Conclusion

This chapter presents a hierarchical composite synchronization method, which classifies

the channels between the logical processes as either synchronous or asynchronous accord-

ing to the channel latencies. The composite method uses window-based synchronization

to handle the delivery of events across the synchronous channels, and uses null-message-

based synchronization to ensure the delivery of events across the asynchronous channels.

In doing so, the composite approach can potentially avoid the cost of performing frequent

collective operations for the traditional window-based method, where the synchroniza-

66



tion window is determined by a few small channel delays; and it can also reduce the

channel scanning cost for the traditional null-message-based method when dealing with

dense model graphs, where some of the channels with large channel delays can be handled

more efficiently using collective operations. The hierarchical approach ensures that the al-

gorithm makes the important distinction between synchronizing logical processes located

on different distributed-memory machines using expensive message passing mechanisms,

and those located on different processors or cores at the same machine via efficient shared-

memory-based inter-process communication. Consequently, our algorithm provides sep-

arate mechanisms for handling global synchronization for distributed-memory machines

and local synchronization for shared-memory multiprocessors and multicores.

We also present a simple performance model for the hierarchical composite algorithm.

For practical purposes, we describe a method of using linear regression to find the param-

eters of the performance model for a target parallel platform. We make attempts to use the

analytical model to predict the performance of the simulation. Although the prediction

value has a certain difference from the real value, it correctly track the curve of real per-

formance. One can use the model to derive the best configuration of the simulation. The

preliminary experiments also show that our new algortithm under predicted configuration

achieve significantly better performance than the pure synchronous and asynchronous ap-

proaches used separately for global and local synchronization.

At last, we describe the parallel discrete event simulation core that includes hierarchi-

cal composite synchronization. We believe MiniSSF’s simplistic and yet powerful API

will provide a general appeal to the simulation practitioners, who will find it easy to de-

velop models that can be run both on common desktops and on modern supercomputers.

The simulator is open-source and can be freely obtained at http://www.primessf.

net/minissf. To advocate process-oriented simulation for its expressive power, the

simulator has a fully automated compiler-based source-code translation scheme support-

67



ing efficient user-space multi-threading. Equally important is the simulator’s ability to

automatically adapt its synchronization to reflect the model’s computation and communi-

cation demands as well as performance characteristics of the underlying parallel platform.

68



Algorithm 1 The hierarchical composite synchronization algorithm running on machine i and
processor (or core) j
1: Qready← φ ; EVTG← φ ; EVTL← φ

2: for all LP vx ∈ Vij do
3: tx← 0; te(y,x)← le(y,x)∀e(y,x) ∈ Ix
4: t← 0; wG← δG; wL← δi; w←min{wG,wL}
5: while (t< Tterm) do
6: for all vx ∈ Vij do insert LP vx into Qready

7: done← 0
8: while (done< |Vij|) do
9: while (Qready is not empty) do

10: remove LP vx with smallest tx from Qready

11: LBTS= mine∈Ix{te,w}
12: process events in LP vx’s event list until LBTS
13: tx← LBTS
14: for all e(x,y) ∈ Ox do
15: te(x,y)← tx+ le(x,y)
16: if (vy ∈ Vij) then
17: LBTS= mine∈Iy{te,w}
18: if (ty < LBTS and vy /∈ Qready) then
19: insert LP vy into Qready

20: else
21: send null message updating te(x,y)
22: if (tx = w) then done← done+1
23: if (done< |Vij|) then
24: wait for incoming null message updating te(y,x)
25: if (tx < mine∈Ix{te,w}) then insert LP vx into Qready

26: t← w
27: if (w = wG) then
28: wG← wG+δG

29: all-to-all exchange of evts in EVTG among all machines
30: if (w = wL) then
31: wL← wL+δi

32: all-to-all exchange of evts in EVTL among local processors
33: w←min{wG,wL}

69



CHAPTER 4

DISTRIBUTED AT-SCALE EMULATION WITH SIMULATION SYMBIOSIS

In this chapter, we apply the existing symbiotic approach [ERL15] to improve a spe-

cific network emulator—Mininet. With effectively integrating emulation with simulation,

we can improve the scalability of models, validate the design and implementation, and

conduct distributed emulation on any cyberinfrastructure testbeds. We called the hybrid

experimental system mininet-symbiosis. With this system, one can use Mininet to run ap-

plications directly on the virtual machines and software switches, with network connec-

tivity represented by detailed simulation at scale. We also propose a method for using the

symbiotic approach to coordinate separate Mininet instances, each representing a differ-

ent set of the overlapping network flows. In this case, one can more effectively study the

behavior of real implementation of network applications on large-scale networks, since

the interaction between the Mininet instances is only capturing the effect of contentions

among network flows in shared queues, as opposed to having to exchange individual net-

work packets, which can be limited by bandwidth or sensitive to latency. We provide

a prototype implementation of the new approach and present validation studies to show

it can achieve accurate results. Additionally, We present a case study that successfully

replicates the behavior of a denial-of-service (DoS) attack protocol.

4.1 Introduction

During the last ten years, significant advances have been made in Future Internet Ar-

chitecture (FIA) design and cyber-infrastructure development. Large-scale coordinated

efforts (such as [Mob, Nam, eXp, NEB]) with bold ideas, innovative and oftentimes dis-

ruptive designs have been proposed, in order to provide secure, high-performance and

ubiquitous services for applications of the fututre. For example, the Named Data Net-

70



working (NDN) proposed to decouple the trust of data from the trust in hosts and servers

by naming the data instead of their location traditionally. Several radically scalable com-

munication mechanisms such as content caching, multipath routing can be carried out

correspondingly. Therefore, all these ideas express the design principles of the Future

Internet—globalized, flexibility, adaptability, which will transform our lives further.

Essential to the FIA research is the development of network testbeds that can validate

key design decisions and expose operational issues at scale. As introduced in 2, federate

cyber infrastructure such as GENI, NSFCloud [GENb, Clo, Cha] has made signficant

development that are broadly used by researchers to conduct networking experiments.

While all these efforts would pave the way for the network researchers (as well as the

network engineers) to validate design and implementation issues directly on the cyber-

infrastructure testbeds, one needs to understand the deficiencies of solely relying on real-

world implementation and physical deployment in network studies. We illustrate this

important issue through a few hypothetical examples:

• A new robust map-reduce algorithm [DG04] needs to be evaluated for multi-tenant

cloud computing environments. The performance of the algorithm depends on the

job characteristics (such as the distribution on the number of jobs and the individual

job sizes), as well as the configuration and stability of the available resources of the

cloud platform. One would find it extremely time-consuming to explore the entire

algorithmic parameter space on physical testbeds; let alone the highly diverging

cloud configurations.

• An enterprise network traffic engineering solution based on OpenFlow [MAB+08],

which uses opportunistic traffic load balancing and multi-path schemes to increase

the throughput of heavy-hitter flows, has been proposed. Important questions re-

main unanswered—for example, whether this algorithm is robust under various

traffic conditions, whether the algorithm would perform well due to partial deploy-

71



ment with varying proportions of non-cooperative entities, and whether the algo-

rithm could scale out to a larger number of ISPs.

• A data center transport-layer protocol has been proposed (similar to [MBI+14]),

which is expected to both reduce flow completion time and increase data through-

put. The algorithm has been implemented and tested in a small-scale homespun

DCN testbed; one needs to know whether it is ready for deployment in a produc-

tion data center. Before that, however, one would like to investigate the algorithm’s

optimal performance conditions for the large data center with high bisection net-

work capacity and also with various traffic loads with known stochastic properties.

These examples highlight some of the intrinsic limitations of cyber-infrastructure

testbeds. No matter how useful are they, they still have the inherent deficiencies as physi-

cal testbeds. They are limited in scale; it is thus difficult, if at all possible, to reveal scaling

properties and robustness issues. They also lack flexibility: it is cumbersome and time-

consuming to set up experiments to explore the design and configuration space given the

large set of control parameters and system configurations. One would also find it difficult

to test algorithms and applications beyond the existing setup of the physical environment.

This would in turn limit the researcher’s ability to investigate network applications under

alternative conditions and ask what-if questions.

To overcome these problems, network researchers used to conduct evaluative studies

by using simulation and physical testbeds together. Simulation is usually used to validate

the key functions under various network scenairos, or run large-scale models. Physical

testbeds are used for small-scale real-world studies. There are two problems associated

with this complementary approach. First, the researcher typically use simplified models

in simulation, which can not reveal the realistic behavior of the target applications or

protocols at scale. Second, network effect from coexisting applications can definitely not

be reproduced in simulation, which is the necessary context for networking evaluations.

72



For example, an enterprise network traffic engineering solution can be heavily dependent

upon the behaviors of the users and the characteristics of the prevailing applications.

Another popular method is to use emulation. For example, Mininet [LHM10, HHJ+12]

is a popular emulator that can prototype networks on a laptop by using a lightweight

container-based virtualization. We have described in chapter 2 it is relatively easy to

build and execute experiments with Mininet. However, it is well-known that Mininet

only provides a limited capacity for both CPU and network I/O. Consequently, it does not

work well on large scenarios and topologies with large volume of traffic, even if used in

a cluster environment.

The above problems call for a method to organically integrate physical testbeds and

simulation/modeling for network experimentation. Previously we proposed a symbiotic

approach to combine both simulation and emulation [ERL15], which each can benefit

from the other. Both systems evolve in real time. The simulation system benefits from

the emulation system by considering real network traffic generated by the unmodified

software directly executed on real systems. The emulation system benefits from the sim-

ulation system by receiving network updates and using it to calibrate communication

between the real applications. As a result, the symbiotic approach allows us to test and

analyze applications by embedding them seamlessly in diverse virtual network settings.

The symbiotic approach is the foundation of this work, we will present it specifically in

section 4.2.

For this work, we apply the symbiotic approach to combine Mininet with simula-

tion [LMAR15]. By using this hybrid approach, one can use Mininet to run applications

directly using the virtual machines and software switches. These virtual machines can be

a part of a large-scale network simulated by the network simulator for representation of

diverse network scenarios. This would allow us to efficiently and accurately incorporate

complex network models, such as different network topologies, network-wide traffic ma-

73



trices, as well as stochastic models to describe user demands, mobility, and applications

behaviors. The essential aspect of our approach is to migrate redundant traffic from emu-

lation to simulation. Rather than re-creating each network packet generated from applica-

tions, we can capture in real time the aggregate traffic demand of these applications and

simulate the corresponding effect on the network queues (effective bandwidths, packet

loss, and packet delays), that can affect other applications. We also propose a method for

using the symbiotic approach to coordinate separate Mininet instances, each represent-

ing a different set of the overlapping network flows. By effectively distributing network

emulation among separate machines, one can significantly improve the scalability of the

network experiments.

The specific contributions of this work are two aspects. First is the design and imple-

mentation of the symbiotic construct that can effectively integrate the emulation testbed

with a network simulator so that one can test applications and algorithms realistically with

various system configurations and design parameters. Second is the coordination of sep-

arate Mininet instances that represent a different set of real flows so that one can conduct

hybrid at-scale experiments distributedly with any cyber infrastructure. Our system also

has the potential to study innovative SDN/OpenFlow applications in the future.

4.2 The Symbiotic Approach

The approach [ERL15] previously proposed to form a symbiotic relationship between net-

work emulation and simulation, aims to conduct high-fidelity high-performance network

experiments. The methodology enlights this work, so we present its main idea here.

The system prototype consists of two parts: a simulation system and an emulation sys-

tem. We use the simulation system to run the full-scale network model in real time with

detailed network topology and protocols for a close representation of a target network. We

use the emulation system to inspect the detailed behavior of the real applications, where

74



a number of nodes in the target network can be selected as “emulated” nodes to run un-

modified software directly on the virtual machines with specified operating systems, real

network stacks, libraries and software tools. The full-scale network is simulating as “vir-

tual network”; the components except for emulated ones are “simulated hosts, routers,

or traffic”. The emulated hosts and routers will be instantiated on either physical or vir-

tual machines in the emulation system, which will run “target applications” such as web

clients/servers, peer-to-peer applications, routing algorithms and so on. They are still

need to be represented in simulation. Since the traffic of target applications may mix with

the simulated traffic in virtual network, one must be able to accurately capture the effect

of the simulated flows on the emulated flows, and vice versa.

In the symbiotic approach, the simulation and the emulation forms a closed-loop of

communication to represent the true state of the target applications in the virtual network.

The communication includes two aspects: the two systems must accurately exchange their

state; they also need to synchronize efficiently. Otherwise, the realism and the scalability

of the experiments will both be impaired. The work [ERL15] proposed several approaches

regarding to the synchronization between two systems; we succinctly introduce them

here.

• To reduce the complexity of emulation system, the model instantiated in the emu-

lation is a downscale topology. The reduced model only contains the network links

that traversed by emulated flows. Then the set of links traversed by the same emu-

lated flows are compressed into one network segment. One can reduce the network

path between emulated hosts to contain less segments. Finally, the emulated hosts

and routers will be instantiated on individual machines. The network segments will

be represented as “pipes” on a delay node, which has the software constructs to

modulate the pass by traffic.

75



• The primary purpose of this approach is to make the real network traffic between

the emulated hosts and routers probabilistically experiencing the same delays and

losses as if the target applications were directly connected by a real full-scale net-

work. A queuing model was proposed to accurately apply the virtual network states,

including packet drop probability, packet delay into the downscale model. As in the

downscale model, emulated hosts and routers are connected by pipes. The emulated

packets flowing through these pipes can be dropped or added with artificial delays

to reflect the simulated network conditions. The state of the pipes will be updated

constantly in real time by applying the queuing model on statistics collected from

the simulated counterpart. We elaborate this model in next section 4.3.

• To efficiently represent application traffic in simulation, the work [ERL15] pro-

posed to report the traffic demand periodically from emulation to simulation instead

of injecting every packet.

A prototype is built with dummynet [Riz97] and PRIME [Liu08] to realize the sym-

biotic idea. Some tests have been conducted for validation purpose in [ERL15]. The

work [CR10] a dummynet node has the capability to handle the traffic of 2-300Kpps.

Therefore, the prototype designs all the emulated hosts running target applications with

a centralized dummynet node, which will not be able to scale up well of applications for

globalized networks.

4.3 Mininet Symbiosis

In this section, we discuss our design for improving the capability of an emerging emula-

tor, Mininet. We call this new hybrid system as mininet symbiosis.

76



4.3.1 System Overview

Mininet is a popular container-based emulator for testing OpenFlow applications. It uses

lightweight OS-level virtualization to emulate the hosts. Each virtual host corresponds

to a container attached to a separate network namespace (a mechanism introduced since

Linux kernel 2.6.24). Each network namespace can contain a virtual network interface

with a distinct IP address along with independent functions of the TCP/IP stack (such

as the kernel routing/forwarding table). The virtual network interfaces can be connected

via virtual Ethernet links to the software switches (i.e., OVS instances), augmented with

OpenFlow capabilities. An OpenFlow controller can be connected to the OpenFlow-

enabled software switches for a full implementation of the software-defined networking

experiment. A significant portion of the Mininet implementation is a python library to

assist the users to create and maintain the virtual network topology for emulation. Mininet

uses cgroups for scheduling and resource management so that one can limit the CPU

usage for all processes belonging to each container. Mininet also uses tc, the Linux

traffic control, to control the link properties, such as link bandwidth, packet delay, and

packet loss.

A typical procedure for using the symbiotic approach can be shown more easily

through an example. Our goal is to execute the target network applications (iperf for

a simple example) in Mininet containers while creating an illusion that these applications

are running on an arbitrary network. Our approach starts by first having the user to spec-

ify a network model, which includes a simulated network topology (on which the target

real applications are expected to run), as well as network protocols and applications, and

how they are engaged during the experiment. For example, one can incorporate complex

network topologies with stochastic models for network-wide traffic generation. Fig. 4.1

shows a simple virtual network with four routers connecting many hosts.

77



 h1

h2 h3

h4r1 r4
r3r2

   

Figure 4.1: A target virtual network with emulated traffic identified.

Next, the user can identify a subset of hosts to be emulated in Mininet (we call them

emulated hosts). They will be instantiated as containers and therefore capable of directly

running the target network applications. To reduce overhead, we also ask the user to

identify flows that will be generated between the emulated hosts during the experiment

(we call emulated flows). This can significantly reduce the facilities that need to be main-

tained for symbiosis. In the example shown in Fig. 4.1, we specify two emulated flows:

one from h1 to h4, and the other from h2 to h3. Here again, for brevity, we only show

one-directional traffic. Most flows (such as TCP) would be bi-directional, in which case

the user would need to specify the flows for both directions.

Afterwards, we invoke a process, called downscaling, in which the original full-scale

network simulation model together with the identified emulation traffic is processed to

produce an reduced emulation model for Mininet. As have already described the down-

scaling method, we directly jump into the finalized model for our example in emulation.

The downscaled emulation model (only forwarding portion) of the same example is shown

in Fig. 4.2, which consists of the four emulated hosts and two switches, connected by five

network pipes.

In [ERL15], we derived a closed-form solution, by which the traffic conditions such as

packet delays and losses in the full-scale simulated network can be summarized to control

78



H2 H3

H1 H4p(h2,r2) p(r3,h6)

p(r2,r3)

p(h3,r2) p(r3,h4)

  

Figure 4.2: A downscaled network model to run in Mininet.

the real traffic in the downscale emulated network. We capture the main results below and

explain how to apply it in our mininet symbiosis.

In general, let q1,q2, · · · ,qn be the list of network queues in simulation that are sup-

posed to be traversed by the real network traffic. In simulation, we collect three measure-

ments for each queue qi and periodically report them to the emulator:

1. We measure pi, which is the average drop probability due to buffer overflow;

2. We measure λi, which is the arrival rate of the regenerated emulated network flow;

and

3. We measure wi, the average packet queuing delay.

Once these measurements are propagated to the emulator, we can calculate the packet

drop probability for the network pipe:

p = 1−
n

∏
i=1

(1− pi) (4.1)

And we can calculate the service rate (i.e., the bandwidth) of the network pipe:

µ =
λp(∆T +W2−W1)

∆T
(

1+W1λp−
√

1+W 2
1 λ 2

p

) (4.2)

where λp = min1≤i≤n{(1− pi)λi}, which is the minimum effective arrival rate at all

queues; ∆T is the sample interval (say, 100ms), which is also the interval at which the

79



simulator updates the emulator with the measurements; W1 = ∑1≤i≤n wi is the total queu-

ing delay through the n queues measured in simulation; and W2 is the average packet

queuing delay through the corresponding network pipe measured in emulation.

By design, our symbiotic system mininet-symbiosis consists of a simulation system

and an emulation system running side by side. The simulation system is a real-time net-

work simulator (we use PrimoGENI [VEL11] for our prototype implementation), and the

emulation system consists of one or more Mininet instances, potentially running on sep-

arate machines (see Fig. 4.3). Communication between the real-time network simulator

and the Mininet instances is achieved via TCP connections, whereas the simulator func-

tions as the server and each Mininet instance as a client. The real-time network simulator

runs the original full-scale network; as such, it needs to implement necessary network

elements (such as routers, hosts, network interfaces and links) and common network pro-

tocols (such as IP, TCP, UDP, and others). In addition, two components are added to the

simulator to facilitate synchronization with the Mininet instances: a traffic monitor and

a traffic generator. The traffic monitor is used to collect measurements at each queue qi

traversed by the emulated flows, which include the packet drop probability pi, the arrival

rate of emulated flows λi, and the queuing delay wi. These measurements are collected

periodically every ∆T units of time and then sent to the corresponding Mininet instances.

The traffic generator receives information from Mininet about the traffic demand dk from

applications for each emulated flow k in terms of the number of bytes requested to be

sent during the last interval. Upon receiving this information, the simulator generates the

emulated flows by initiating the corresponding TCP or UDP sessions in simulation with

the same demand size accordingly.

In Mininet, the emulated hosts are instantiated as Linux containers with separate net-

work namespaces, and the switches are represented by OVS instances. The virtual Ether-

net (veth) pairs are used to represent the links augmented with the Linux traffic control

80



Traffic Monitor

Traffic Generator

Real-Time Simulator

Traffic Control

Traffic Monitor

Mininet Instance(pi, λi, wi) 
for all qi 

d1, d2, ... dx

Every ∆T in real time

Figure 4.3: Mininet symbiosis setup.

(tc) for managing the link properties. Linux tc is a set of tools (included since kernel

2.2) to allow users to have fine-grained control over the packet transmission. Linux tc

consists of different queuing mechanisms, easily composable for handling more complex

situations (including packet mangling, IP firewalling, and bandwidth metering). We use

tc for setting the link bandwidth, the packet delay, and the random packet loss probabil-

ity. More specifically, we statically set the link delay as the cumulative propagation delay

of the links between the consecutive queues that constitute the network pipe. We mod-

ify the packet loss probability and the link bandwidth dynamically during the experiment

using the measurements from simulation (Equations 4.1 and 4.2).

Note that our symbiotic approach can easily support distributed emulation, where

multiple Mininet instances can operate in parallel, each handling a different set of emu-

lated flows. For the example shown in Fig. 4.1, the flow from h2 to h3 can be emulated

in a separate Mininet instance from the one used for emulating the flow from h1 to h4.

The downscaled models for the two Mininet instances are shown in Fig. 4.4. Note that

the state of the network pipe, p(r2,r3), is mirrored on both instances; that is, they will be

controlled by the simulator with the identical link properties.

In the following sections, we discuss the detailed design and implementation of the

symbiotic constructs.

81



Mirrored

H2 H3

H1 H4p(h2,r2) p(r3,h6)

p(r2,r3)

p(h3,r2) p(r3,h4)
  

p(r2,r3)
  

Mininet #1

Mininet #2

Figure 4.4: Downscaled models for two Mininet instances.

4.3.2 Regenerate Emulated Flows in Simulation

A unique aspect of our symbiotic approach, different from the traditional real-time net-

work simulation method, is that real network packets in the emulated system that need

to be simulated on the full-scale network do not need to be captured individually to re-

produce the same traffic effect (in order to calculate their packet delays and packet losses

accordingly). Instead, the symbiotic approach reproduces the effect of the real traffic

flows in simulation by having the emulation system to capture the interval-based traffic

demand at the traffic source (preferably at the application/transport interface) and then re-

produce the demand traffic using the corresponding simulated TCP or UDP. In this case,

we can minimize the synchronization overhead between the simulator and the physical

system.

There are several ways to collect traffic demand agnostic of specific application be-

haviors. A somewhat complicated method involves creating a wrapper to a socket library

and collect the read/write and send/receive calls from the applications right before they

invoke the kernel functions. Another possibility is to monitor the state of a TCP connec-

tion using the tcpprobe kernel module. One can monitor the SND.NXT pointer, which

represents the sequence number of the first unsent byte of user data and then calculates

82



the difference between consecutive packets to estimate the demand over an interval. The

drawback of this approach, however, is that this demand (taken from consecutive packet

departures) represents a transmission that has already taken place from the perspective of

the transport layer. With zero lookahead for reproducing the traffic, the system would be

sensitive to the latency between the simulator and the Mininet instances.

Our traffic monitor on Mininet uses a simple and lightweight solution to capture the

traffic demand at each Linux container (emulated host). We chose to use a tracing tool

for the Linux system calls, called strace. One can use strace to collect the traffic

demand at the interface between the applications and the transport layer. Network system

calls—such as connect, accept, read and write, and others—invoked by applica-

tions running inside the containers can be captured and parsed continuously to arrive at

the application traffic behavior. The following shows a snippet of the strace output for

running iperf data transfer inside a container. We can see that the connect system

call from process 15742 (which is the iperf process) established a TCP connection with

another container with the IP address 10.0.0.2. The subsequent system calls to write

indicate the request to send 131,072 bytes of data each time via the TCP connection.

[pid 15742] connect(3, {sa_family=AF_INET,

sin_port=htons(5001), sin_addr=

inet_addr ("10.0.0.2")}, 16) = 0

[pid 15742] write(3, ... 131072 <unfinished ...>

[pid 15742] <... write resumed> ) = 131072

[pid 15742] write(3, ... 131072) = 131072

[pid 15742] write(3, ... 131072 <unfinished ’...>

All socket-related system calls can be captured in this way. For certain system calls,

such as write , we need to distinguish the calls handling data transmissions over sockets

from those handling regular file IOs. This can be achieved by checking the state of the

83



file descriptor of a process in the Linux /proc system. For example, the information for

the iperf process can be located at /proc/15742/fd/3. Each container in Mininet

starts with a bash shell. To speed up the process, we can cache the lookups for child

processes spawned from the container’s bash process, so that one can quickly identify the

connections used by the applications running by a child. The use of strace is indeed

lightweight. In our prototype, we found that the overhead is only around 1% CPU per

container.

Once the demands are received, in order to generate the same amount of simulated

traffic, we instantiate a “symbiosis application” at each of the emulated hosts at the start

of the simulation. For each emulated flow, the symbiosis application at the sender host

creates a socket connection (either a TCP or UDP session) with the receiver also at the

start of the simulation. During the experiment, upon receiving an updated traffic demand

from the emulator, the simulator simply issues a send command with the same size for the

corresponding session at the sender host. Note that in order to preserve the same traffic

behavior, the real-time network simulator must support the same set of TCP variants

commonly used in the physical platform. PrimoGENI contains fourteen TCP variants

that can be found commonly in use today, including New Reno, BIC, CUBIC, and others.

These TCP congestion control mechanisms have been previously ported from the Linux

implementation and have been tested extensively [ELL09].

4.3.3 Actuate Network Pipes

As mentioned earlier, the simulator is instrumented to generate the queuing statistics at

the simulated network interfaces that constitute the network pipes, including the packet

loss probability, the packet arrival rate, and the average queuing delay. These measure-

ments are distributed periodically to the corresponding Mininet instances that handle the

network pipes.

84



The network pipes are created with Linux tc using the specific token bucket queuing

disciplines. The delay of a network pipe is fixed at the system configuration; the value

is the total propagation delay of the network links that constitute the network pipe in the

simulation model. The packet drop probability and service rate need to be changed during

the experiment. It is important that, once the simulation measurements reach the Mininet

instances periodically (say every 100ms), it is necessary to change the corresponding tc

link properties immediately so that the real traffic flows can reflect the traffic conditions

in the simulated network. In Mininet, we created a separate thread to receive the periodic

updates from the simulator: (pi, λi and wi), for each simulated queue qi traversed by the

emulated flows.

The packet drop probability can be applied directly using the replace primitive in

tc. Using tc replace is fast and convenient. To verify its effectiveness, we tested by

executing the tc show command immediately after applying replace primitive. We

did not notice any degradation in traffic performance for all experiments we performed

even with update small update intervals.

In order to apply Equation (4.2) to calculate the new service rate, we need to measure

the average packet queuing delay, W2, through the network pipe. Directly measuring

the packet queuing delay by packet can be costly. Instead, we can estimate the average

queuing delay by sampling the instantaneous queue length gathered from the tc statistics.

We created a collector mechanism that obtains the relevant values from the kernel. Since

these values are constantly monitored for the Linux queues in any case, the collector

presents no additional overhead. In particular, we capture instantaneous queue lengths in

bytes at smaller sample intervals (say, one tenth of the update interval used to synchronize

simulation and emulation). We accumulate the samples and average them over the update

period. The resulted average queue size is then divided by the service rate to produce the

85



estimated average queuing delay W2. Finally, we can apply Equation (4.2) to calculate the

new service rate. Again, we use tc replace to update the network pipe.

4.4 Experiments for System Validation

In this section, we first conduct experiments to validate our design using a prototype

implementation. We aim to investigate whether our system is robust and can accurately

capture the interaction between simulated and emulated traffic in the reduced model as in

the full-scale model. For that, we first investigate the correctness for individual interaction

between two subsystems—regenerating the emulated traffic in simulation and reflecting

the network effect in emulation. Then we use a simple model to validate the entire system.

4.4.1 Reproducing Emulated Traffic

We first study the effectiveness of the mechanisms for reproducing the emulated traffic de-

mand in the simulation. In particular, we aim to examine whether the real traffic demand

from the virtual machines can be captured accurately by our traffic monitor in Mininet,

and whether the new traffic generator module in the simulator can faithfully reproduce

the same flows in a timely fashion. We start with experiments of a single pair end hosts

running real applications on one Mininet instance and extend to multiple pairs of source

and destination of several Mininet instances running on different virtual machines.

Single Emulated Traffic

We used a simple dumbbell model, similar to the one shown in Fig. 4.2. We set the

bandwidth of the “bottleneck” link connecting the two routers to be 10 Mbps, and all

other “spoke” links to be 1 Gbps. The bottleneck link has a propagation delay of 15 ms

86



 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 0  5  10  15  20  25

B
y
te

s
 T

ra
n

s
fe

rr
e

d

Time (seconds)

Synchronization Interval = 1 second

simulated traffic
real traffic

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 0  5  10  15  20

B
y
te

s
 T

ra
n

s
fe

rr
e

d

Time (seconds)

Synchronization Interval = 100 ms

simulated traffic
real traffic

Figure 4.5: Reproducing real traffic in simulation.

while the spoke links all have a propagation delay of 1 ms. We ran the real-time simulator

and the Mininet instance on separate machines connected via a gigabit network.

In the first experiment, we manually created two TCP flows using iperf one after

another with only a few seconds in-between. The two flows were generated from the

same emulated host on one side of the dumbbell to a fixed host on the opposite side (thus

traversing the bottleneck link). We ran tcpdump to capture the packets at both the sender

and the receiver, and therefore used the TCP sequence numbers to measure the traffic

situation in Mininet. We compare them against the corresponding traffic regenerated in

simulation.

We started by using one second as the interval for synchronizing the simulator and

the emulator; it’s at least one order of magnitude higher than the network latencies one

would normally observe over the wide-area network. The result is shown in the left plot of

Fig. 4.5. The staircase behavior of the simulated traffic is due to the large synchronization

interval. The traffic demand from Mininet is only reported to the simulator once every

second. As a result, the simulator tried to replay the entire one second worth of traffic

at the beginning of each interval. Despite this artifact, however, the simulated traffic is

shown to be able to track the real traffic quite well.

87



  

Emulated H1 Emulated H2Emulated H3

Emulated H4

Emulated flow_1

Emulated flow_2
Router0 Router1

1Gb, 1ms

10Mb, 15ms

 
Router2

10Mb, 15ms

Figure 4.6: Real Traffic from two mininet instances model.

Next we reduced the synchronization interval from one second to 100 ms and per-

formed the same experiment. The result is shown in the right plot of Fig. 4.5. The

previous staircase behavior of the simulated traffic is no longer apparent. We observe that

the simulated traffic can still match with the real traffic, however with a slight decrease in

its transfer rate. This is due to an issue with the simulator’s traffic generator. In the orig-

inal design, we extended a simple server-client model in the simulator, where a request

message has to be sent from the client to the server, which would cause a slight delay

before the data transfer can be effectuated. There is also additional overhead related to

the choice of using a smaller segment size for TCP. We are redesigning the simulation

traffic generator to remove these problems.

Multiple Emulated Traffic

To minimize side effect between different traffic, we used another model that has non-

overlapping paths for each set of flows in this experiment. The model is shown in Fig. 4.6.

We set the bandwidth of the links connecting the two routers to be 10 Mbps, and all other

links to be 1 Gbps. The links between two routers have a propagation delay of 15ms while

others all have a propagation delay of 1ms. Two set of target application trafficiperf are

going between emulated hosts h1 and h2, h3 and h4. We used two Mininet instances on

different virtual machines (or physical machines) to instantiate separate reduced models

88



 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 0  10  20  30  40  50

B
yt

es
 T

ra
ns

fe
rr

ed

Time (seconds)

Synchronization Interval = 1 second

flow1 simulated
flow1 real

flow2 simulated
flow2 real

Figure 4.7: Reproducing real traffic from two Mininet instances in simulator.

of h1, h2 and h3, h4. We first created two TCP flows start from h1 and destinate to h2,

with a few seconds in between; then two flows from h3 to h4. The two batches of traffic

neither share the same bottleneck, nor have overlapping running time. We wanted to

isolate them, in order to make a simple scenario.

In this case, we are still using TCP sequence number from Mininet side to com-

pare with traffic measurement from simulator side. For achieving better performance, we

choose 100 millisecond as the synchronization interval. The result is shown in Fig. 4.7.

From the results, we can see both sets of traffic can be triggered in the simulation and can

be generated accordingly.

4.4.2 Representing Simulated Network Effect

Second, we studied the capability of reflecting the influence from all other traffic to target

application traffic. Our queuing model is designed to capture this influence expressed

as packet drop probability and service rate. Then emulated Traffic is regulated accord-

ingly. We are conducting experiments to investigate two parts: the effectiveness of our

89



Figure 4.8: Controlling traffic in Mininet.

traffic control in Mininet, the robustness of capturing traffic fluctuation from simulation

to Mininet.

Traffic Control Validation

In this experiment, we started a long-term TCP flow between two virtual machines using

iperf. The two virtual machines were connected directly through a virtual Ethernet pair

(veth). We used the tc commands to regulate the bandwidth of the link in-between by

randomly selecting a bandwidth from a set of values: 1 Mbps, 10 Mbps, 100 Mbps, and

1 Gbps.

We changed the bandwidth every second or every 100 ms and measured the average

TCP throughput at the corresponding time intervals. Fig. 4.8 shows the results from

a randomly chosen time period during the experiment. The left plot shows the results

for changes at one-second interval. The average TCP throughput responds well to the

bandwidth changes, except for a few instances (at time 33 and 36 seconds) when the

bandwidth is drastically reduced from 1 Gbps to 1 Mbps. tc uses token buckets for

regulating the packet transmission over the link; the higher than expected throughput is

probably due to the backlog. The right plot of Fig. 4.8 shows the results for changes at

90



100 ms intervals. The TCP throughput does not seem to track the bandwidth changes as

well as in the previous case. This means that regulating the bandwidth at the 100 ms time

scale may introduce nontrivial inaccuracies.

4.4.3 Real Traffic Actuation

Base on last experiment results, we see tc mechanism can regulate the bandwidth very

well on every 1 second time interval. In this experiment, we want to validate the accuracy

of our queuing model in together with the robustness of traffic control. Our goal is to find

out whether target flow in Mininet will reflect corresponding cross-traffic effect, either

from background traffic in simulation or application traffic in other Mininet instances.

We still used a dumbbell model in this test, which consists of six end hosts connected

by two routers. The communication between either two hosts from each side is sharing a

bottleneck link. The bandwidth and the propagation delay are configured to be the same

as in the previous experiments. We designated two end hosts (at the top on either side)

to be the emulated hosts. Correspondingly, the downscaled topology that consists of two

hosts connected by one three-link network pipe is instantiated in the Mininet instance.

The other four end hosts served as simulated hosts to provide background traffic. The

model is shown in Fig. 4.9.

In the experiment, we directed three TCP flows generated by a client/server applica-

tion. Flow 1 is a long-live emulated flow, which is running from system start until the

very end, around 30 seconds. We artificially set a large number as traffic demand instead

of accepting online-demand from emulator so that we can isolate test the interaction from

simulation to emulation. The other two flows are all simulated flows. Flow 2 contains

five simultaneous TCP sessions each transferring 0.5 MB of data and all starting at 10

seconds. At 20 seconds, Flow 3 starts with another 5 TCP sessions, each transferring 2

MB of data. We intentionally make Flow 1 will share a bottleneck with another flow at

91



  

Emulated H1 Emulated H2

Simulated H3 Simulated H4

Simulated H5 Simulated H6

Emulated flow_1

Simulated flow_2

Simulated flow_3

Router0 Router1

1Gb, 1ms

10Mb, 15ms

Figure 4.9: Model for real traffic regulation.

a different time. We want to see the fluctuation to Flow 1 that is caused by the arrival

and departure of its competent, Flow 2, and Flow 3, can be reflected on the emulation

side at the correct time. In this case, there are two things can be validated through this

setup: one is the correctness of the queuing model; the other is no significant delays of

synchronization and bandwidth precise control.

Left plot of Fig. 4.13 shows the measured throughput for Flow 1 at each second from

Mininet. We also run iperf between the emulated hosts in Mininet so that we have the

bandwidth during the experiment. The plot shows that the throughput of the emulated

flow jumps accordingly both at 10 seconds and 20 seconds, which is the prompt reaction

for the join of Flow 2 and 3. From the plot, we can see Flow 1 almost occupied the

total bandwidth of bottleneck link at around 15 seconds, at which Flow 2 finished its

downloading. Table 4.1 lists the instantaneous transmission rate of Flow 1 both from

Mininet and the simulator in a two-second interval, to further investigate the precision

of bandwidth control. We also record the average throughput from both sides during the

experiment. The throughput from Primex is 7.44 Mbps and from Mininet is 7.62 Mbps,

which means the real traffic in emulation can also reflect the average behavior as it is

in-situ transparently in the simulated network.

92



Table 4.1: Instantaneous throughput comparison in traffic regulation.
Interval (s) Simulation Rate Emulation Rate

0-2 10 9.54
2-4 9.4 8.98
4-6 9.9 9.45
6-8 10 9.55

8-10 10.2 9.73
10-12 5.3 5.08
12-14 5.8 5.56
14-16 9.3 8.88
16-18 9.2 8.79
18-20 9.8 9.36
20-22 5.1 4.89
22-24 5.8 5.56
24-26 5.2 4.98
26-28 6.1 5.85
28-30 5.2 4.98

4.4.4 Union System Test

As have already tested the feasibility of interaction independently from emulation to sim-

ulation and from simulation to emulation, our next move is to conduct preliminary ex-

periments to validate the accuracy of the whole system. We compare the receiving data

sequence history produced by the real applications running in Mininet with those pro-

duced by similar applications running in simulation. We first study mininet-symbiosis

with one emulated flow running on one Mininet instance, while interacting with several

other simulated flows. Then the experiment is extended to coordinate separate Mininet

instances, each representing a different set of application flows that share the overlapping

paths.

93



 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28

tc
p 

ra
te

 (
M

bi
ts

/s
)

time (seconds)

8
.
3
9

1
0
.
5
0

9
.
4
4

9
.
4
4

9
.
4
4

9
.
4
4

9
.
4
4

9
.
4
4

9
.
4
4

9
.
4
4

4
.
1
9
5
.
2
4
6
.
2
9

6
.
2
9

9
.
4
4

7
.
3
4

9
.
4
4

9
.
4
4

9
.
4
4

8
.
3
9

6
.
2
9

3
.
1
5

5
.
2
4

5
.
2
4

4
.
1
9

6
.
2
9

6
.
2
9

5
.
2
4

4
.
1
9

Figure 4.10: Throughput History in Mininet.

Single Mininet Instance

In the first experiment, we reused the model in the previous traffic control experiment 4.9,

and set up the similar traffic pattern. We complement the last experiment with regener-

ating flow in the counterpart simulation application according to the real-time demand

received from Mininet, to close the loop. Although 100ms time interval has better accu-

racy for reproducing traffic, we use 1 second as synchronization interval to balance the

performance for tc traffic control.

Fig. 4.11 plots the sequence number (in bytes) of the received TCP segments by the

emulated host over time. We show the results from both Mininet and simulation. From the

figure, the sequence number history from two systems is very similar. We also measure

the average TCP rate for the emulated flow from both side, which is 7.40 Mbps and 7.68

Mbps. Despite some difference, the outcome from this experiment basically demonstrates

the feasibility of applying our symbiotic approach with Mininet.

94



 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 0  5  10  15  20  25

B
yt

es
 T

ra
ns

fe
rr

ed

Time (seconds)

Synchronization Interval = 1 second

simulated flow
real flow

Figure 4.11: Average throughput of a single application flow in union system test.

Multiple Mininet Instances

Next, we perform the preliminary experiment of validating the entire system that coor-

dinates multiple Mininet instances, each representing a different set of the overlapping

network flows. We try two Mininet instances at the beginning. In this experiment, we

still used the dumbbell model, similar as shown in Fig. 4.2. We used the same value to

configure the bandwidth and the propagation delay, either for bottleneck link, or for spoke

link. However, there are two set of application flows iperf running from the host of one

side to the host of the other side. We instantiated each application on one Mininet run-

ning separately on a machine (or a VM), although their flows are sharing the bottleneck

link. We want to investigate the interaction between different application flows can be

accurately expressed in our system.

In the experiment, two set of TCP flows are instantiated by iperf in both Mininet in-

stances. Emulated flow 1 is traversing between H1 and H3 from 0 seconds to 21 seconds;

emulated flow 2 is between H2 to H4, from 15s second to 30 seconds. In this case, both

target flows are overlapping at bottleneck link of sometime during the system running.

95



 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 0  5  10  15  20  25  30

B
yt

es
 T

ra
ns

fe
rr

ed

Time (seconds)

Synchronization Interval = 1 second

flow1 simulated
flow1 real

flow2 simulated
flow2 real

Figure 4.12: Received data history of real flows in two separate Mininets.

Table 4.2: Average throughput of two real flows in dummbell model.
Simulation Throughput Emulation Throughput

Emulated Flow 1 8.78 8.59
Emulated Flow 2 6.32 6.12

The results are shown in below. Left Fig. 4.12 is the sequence number for both flows

from the receivers during the experiment. Again, we show the results from two Mininet

instances, along with the results from simulation. From the figure, we see the sequence

curves for emulated flow 1 are indistinguishable from each other. The real traffic curve

is catching up with simulated traffic curve for emulated flow 2 while there is a gap at the

beginning of its join. We speculate the reason for that is tc requires a certain time for

sudden changing the bandwidth from a very large value to a very small value. Table 4.2

shows the average throughput over the experiment time between Mininet and simulation

of both flows. The overall behavior of two system matches quite well. The differences

are around 2%-3%.

To further investigate whether mininet-symbiosis can capture the interaction between

different real flows accurately and timely, we conduct another test. The model is like 4.9,

which has the same setting of paramenters. We directed three TCP flows with iperf

(using TCP Reno), one from each host on one side of the dumbbell to a different host

96



 0

 2

 4

 6

 8

 10

 12

 0  5  10  15  20  25  30  35  40

Time (seconds)

Distributed Mininet

flow 1
flow 2
flow 3

 0

 2

 4

 6

 8

 10

 12

 0  5  10  15  20  25  30  35  40

Time (seconds)

Simulation

flow 1
flow 2
flow 3

Figure 4.13: Comparing TCP throughput (in Mb/s) of the three flows from distributed
Mininet vs. simulation.

on the other side. The first flow was a long-lived flow starting from the beginning of the

experiment. The second flow started from 10 seconds and lasted for 8 seconds. The third

flow started from 14 seconds and ended at 35 seconds. In this experiment, for distributed

emulation, we instantiated three Mininet instances, one for each flow. For comparison,

we created the same scenario in simulation. Fig. 4.13 shows that the throughput from

distributed emulation (reported by iperf) match well with the simulation output.

4.5 Preliminary Experiment of Distributed Emulation with Symbiosis

The validation tests basically show the accuracy of mininet-symbiosis, which applies the

symbiotic approach to integrating Mininet and simulation. As tried to coordinate multi-

ple Mininet instances, our system has the capability of doing distributed emulation with

symbiosis. This approach deals with the primary problem of Mininet for its capacity lim-

itation. We conduct a preliminary experiment that consists of a mid-size network loaded

with several target-flows simultaneously, to show the capability of doing distributed em-

ulation with symbiosis. This test gives a good example of using the system to study the

behavior of peer to peer applications, which contains multiple application traffic between

97



  

 

Simulated Network

Mininet 1

H0

H1

h0

h1

simulated flow_7

 

  
h13

h6

h5

h16

h12

h1 h2 h3 h14 h4

h7 h15 h8 h9 h11 Emulated flow_8

real flow_1 

real flow_2 
real flow_3 

real flow_6 

real flow_5 
real flow_4 

iperf 

Figure 4.14: Ring model.

different hosts at the same time. We also want to investigate whether our approach can be

the fundamental way to improve the scalability of physical experiments.

We used the ring model in this experiment, in which case the network contains 16

hosts and 6 routers. Although the size is not very large, the ring model can be expanded

in the future. We set the bandwidth of all links between two routers to be 100 Mbps,

which is ten times of the bandwidth we used in our validation tests. All other links are

still to be 1Gbps. The propagation delays are configured as 5 millisecond and 1 millisec-

ond accordingly. We used iperf to generate short-lived six real TCP flows; the source

and destination of each flow are two random hosts that connected by two neighbored

routers. Each iperf flow is generated from a single Mininet instance running on a sepa-

rate machine. We also set up one simulated flow and one long-lived emulated flow across

two bottlenecks to compete for the bandwidth with short-live emulated flows, to make the

experiment more interesting. Long-lived real traffic is also coming from iperf applica-

tion. Since multiple real flows are flowing through, our approach amortizes the execution

of each on individual machines with coordinating them on the simulator. In this case,

98



 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 0  5  10  15  20  25  30  35  40

B
yt

es
 T

ra
ns

fe
rr

ed

Time (seconds)

Synchronization Interval = 1 second

flow1 simulated
flow1 real

flow2 simulated
flow2 real

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 0  5  10  15  20  25  30  35  40

B
yt

es
 T

ra
ns

fe
rr

ed

Time (seconds)

Synchronization Interval = 1 second

flow3 simulated
flow3 real

flow4 simulated
flow4 real

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 1.8e+08

 0  5  10  15  20  25  30  35  40

B
yt

es
 T

ra
ns

fe
rr

ed

Time (seconds)

Synchronization Interval = 1 second

flow5 simulated
flow5 real

flow6 simulated
flow6 real

flow8 simulated
flow8 real

Figure 4.15: Receiving data for all real flows.

Table 4.3: Flow duration in ring model experiment.
Start Time End Time Simulated or Emulated Application

Flow 1 0 20 emulated iperf
Flow 2 5 25 emulated iperf
Flow 3 0-10 20-30 emulated iperf
Flow 4 0-10 20-30 emulated iperf
Flow 5 5 20 emulated iperf
Flow 6 20 30 emulated iperf
Flow 7 0 10-20 simulated 5 session, each of 20MB
Flow 8 0 25 emulated iperf

the total amount of traffic handled in the experiment can be increased significantly. The

details of the model and the flows are shown in Fig. 4.14.

We named one-hop emulated flows from flow 1 to flow 6, two-hop simulated flow as

flow 7, two-hop emulated flow as flow 8. For the experiments, we designated the dura-

tion time for each flow specifically as table 4.3. From Fig. 4.14, we can see flow 1 and

flow 2 share bottleneck with flow 7, flow 5 and flow 6 share bottleneck with flow 8. We

set up the experiment on seven computing nodes from Apt Cluster of CloudLab [Clo]. We

used the machines at CloudLab [Clo] for all our experiments. Each of these machines is

equipped with two eight-core Intel Xeon E5-2450 2.1 GHz processors and 16 GB mem-

ory; they are connected by 10 Gbps Ethernet. The PRIME simulator and six Mininet

instances are running distributedly on separate machines. We let the emulated flows start

several seconds after the simulation begins because the simulator and the Mininet in-

stances require some to synchronize with each other.

99



Table 4.4: Average throughput comparison of six real flows in ring model experiment.
Simulation Throughput Emulation Throughput Error

Flow 1 56.8 56.8 0.0%
Flow 2 51.2 50.7 1.0%
Flow 3 95.3 92.0 3.6%
Flow 4 94.3 91.6 2.9%
Flow 5 48.5 51.1 5.1%
Flow 6 55.3 55.2 0.2%
Flow 8 51.8 51.7 0.2%

Fig. 4.15 shows the TCP sequence number along time from the receiver of all iperf

flows created in Mininet instances. In the figures, we use the results from the simulation

as comparison. We show the results separately in three groups. From the results, we

can see flow 3 and flow 4 have the best matches. The other four one-hop emulated flows

and the two-hop emulated flow have similar curve shape of their simulation counterparts,

whereas with some differences. We think the difference is mostly caused by the simulator

could not synchronize perfectly with different Mininet instances simultaneously. We also

list the average throughput for all emulated flows during the simulation in Table 4.4. We

observe the accuracy are good for average behaviors of all the flows. The error never

exceeds 5.1%.

4.6 Case Study

Denial of service (DoS) attacks prevents the target computer from responding quickly

to its legitimate users’ traffic, or not at all. Shrew is a specific attack pattern where

the attacher sends bursts of data at a regular interval to an over-committed bottleneck

link [KK03]. When the attack bursts occur at intervals that synchronize with the mini-

mum retransmission timeout (RTO) of legitimate TCP connections sharing the bottleneck

link, they can trigger TCP timeouts and consequently strangle the throughput of those

connections. Since the average traffic rate of a shrew attack is low, it can be difficult to

100



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

Inter-Burst Period (seconds)

TCP Reno (Simulation)
TCP Reno (Emulation)
TCP Vegas (Emulation)
TCP BIC (Emulation)

Figure 4.16: The effect of the Shrew attack.

be detected. In this section, we use our distributed Mininet to study the behavior of the

Shrew attack.

To establish the baseline, we start with the same experiment setup with a simple topol-

ogy as in [KK03]. There is one pair of good sender and receiver (the victim flow) and

another pair of bad sender and receiver (the attack flow); they share the same bottleneck

link. The good pair are separated by two routers, and the bad pair by three routers. The

shared bottleneck link has 10 Mb/s bandwidth and 20 ms delay. All the other links have

100 Mb/s bandwidth and 2 ms delay. We ran one Mininet instance to emulate the good

data transfer (using iperf) and simulate the attack flow using UDP. We set the burst

rate to be 10 Mb/s and the length of each burst to be 100 ms. We ran experiments with

different inter-burst period (the time between consecutive bursts) from 0.9 to 5 seconds.

The results are shown in Fig. 4.16. The y-axis is the normalized throughput, which is

the throughput of the victim flow divided by the bandwidth of the bottleneck link. Our

results, marked as “TCP Reno (Emulation)”, are comparable with “TCP Reno (Simula-

101



tion)”, the results reported in the original paper [KK03]. We also tried other TCP versions

(Vegas and BIC are shown in the plot); we got similar results. As expected, we see that

the Shrew attack can significantly lower the throughput of the victim flow (in this case

when the inter-burst period is at around 1 second).

We conducted another experiment using the dumbbell topology, where we have five

pairs of good senders and receivers and one pair of bad sender and receiver. We set the

bandwidth of the bottleneck link to be 100 Mb/s and the other links to be 1 Gb/s. We set

the victim flows to have different round-trip times (RTTs): 40, 80, 160, 280 and 360 ms.

The attack flow has an RTT of 440 ms. The attack flow has the same burst and length as

in the previous example. We fix the inter-burst period to be 1.0003 seconds.

We use distributed emulation with six Mininet instances, one for each flow. We com-

pare the results obtained from the distributed Mininet with those from running a single

Mininet instance. In Fig. 4.17, one can see that running a single Mininet instance, the

Shrew DoS attack basically has no effect on the throughput of the flows. In fact, it gener-

ates incorrect results: the flow with the smallest RTT got the whole share of the through-

put. Using our distributed Mininet, we observe that not only the aggregate throughput is

reduced by the DoS attack, but also the flows react differently: the throughput degrades

more significantly for flows with higher RTTs.

4.7 Conclusion

Symbiotic simulation provides a promising tradeoff, by combining the emulation testbeds,

which can feature a more realistic environment for running network applications, and sim-

ulation, which can provide more flexible, large, and complex network scenarios. In partic-

ular, we outline a specific design of combining instances of a popular network emulator,

called Mininet, with a real-time simulator, called PrimoGENI. We provide a detailed ac-

count on the use of low-level mechanisms for implementing the symbiotic approach in the

102



 0

 0.2

 0.4

 0.6

 0.8

 1

sequential/normal

sequential/dos

distributed/normal

distributed/dos

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

RTT=40ms
RTT=120ms
RTT=200ms
RTT=280ms
RTT=360ms

Figure 4.17: Sequential vs. distributed Mininet runs.
Linux environment. With this specific mininet-symbiosis, one can use Mininet to directly

run applications on virtual machines and software switches, with network connectivity

represented by detailed simulation at scale.

We also present a distributed emulation method using a symbiotic approach. In our

approach, the simulator acts as a coordinator for the distributed emulation instances by

capturing the effect of contention among the network flows potentially belonging to dif-

ferent distributed instances. Our approach provides a novel method for partitioning the

virtual network among the emulation instances and can be used in accordance with the

tradition spatial decomposition method. Through experiments using a distributed Mininet

implementation, we show that the symbiotic approach can generate accurate results, and

it can be readily used in studies involving high traffic load scenarios.

103



CHAPTER 5

CONCLUSIONS

This chapter presents a brief summary of this dissertation and future directions the

research could be taken.

5.1 Summary

The focus of this dissertation is to design a hybrid system that can conduct distribute at-

scale network studies and experiments on diverse cyber-infrastructure. Specifically, we

addressed the following problems:

1. Problem: make PDES scalable regardless of models and running platforms.

Solution: a self-adaptive synchronization for PDES.

The algorithm we designed is called hierarchical composite synchronization. The

approach is extended from composite synchronization to avoid performance pitfalls

of two traditional synchronization methods in parallel simulation. It is designed to

address the discrepancy in the communication and synchronization cost for shared-

memory multiprocessor multicore machines and distributed-memory machines. The

synchronization can be tailored to exploit the parallelism of computing platforms

that have disparate architectures. We implement the method in a minimalistic par-

allel simulator, called MiniSSF. Without knowing the resources type beforehand,

one can still self-configure the synchronization automatically to achieve optimal

performance while running the simulation. It is an expressive and flexible parallel

simulator for different models and is able to run transparently on multiple super-

computers by harnessing their parallel capabilities to cope with large-scale models.

We investigate the performance of MiniSSF through experiments on several differ-

ent supercomputers.

104



2. Problem: provide a generalized system to validate design and implementation at-

scale without loosing realism.

Solution: distributed emulation with simulation symbiosis.

We apply an existing symbiotic approach that effectively combine network em-

ulation with simulation to a specific emulator–Mininet. One can use Mininet to

directly run applications on virtual machines and software switches, with network

connectivity represented by detailed simulation at scale. We present a distributed

emulation method using a symbiotic approach. In our approach, the simulator acts

as a coordinator for the distributed emulation instances by capturing the effect of

contention among the network flows potentially belonging to different distributed

instances. With distributed mininet-symbiosis, we can conduct hybrid at-scale ex-

periments distributedly with any cyber-testbeds and test applications and algorithms

easily with various system configurations and design parameter.

5.2 Future Directions

The research presented in this dissertation can be extended in a few directions. We em-

phasize the extension of mininet-symbiosis because it has the potential to be an effective

testbed to validate design and implementation issues of future Internet applications and

protocols.

To improve our parallel simulator MiniSSF would be necessary for increasing the

scalability of the hybrid testbed. MiniSSF could be improved in the following ways:

1. As for hierarchical composite synchronization, although we have proposed a per-

formance model to predict its behavior 3, the model is not good enough to spec-

ulate optimal configurations of the algorithm. we would like to continue refining

the performance model for more accurate predictions, and hopefully set it indepen-

105



dent from the direct measurements on the specific target platform. The hierarchical

composite algorithm can also be extended to include more distinct levels to reflect

the difference in the cost of communicating, e.g., between machines at different

cabinets or on the same racks, between processors on different processor boards or

on the same compute card, and between the cores on different processors or within

the same chip. We also plan to extend the hybrid approach for topology-inspired

synchronization schemes.

2. Immediate future work of the simulator itself is to conduct more experiments to

fine-tune the simulator’s performance on various high-performance computing ar-

chitectures.

3. Automatic configuration for the simulator could also be improved to make it adapt

to the runtime environment.

There are several things that we would like to explore with the mininet-symbiosis in

the future work. Possible directions include the following:

1. Our symbiotic approach is currently building on a specific simulator and a specific

emulator. It is designed for validating our symbiotic idea, as well as for targeting a

specialized class of applications and protocols. However, the idea should be applied

to experimental testbeds in general. We will isolate the utility modules as plug-ins

for most commonly used emulators and simulators. It will also be further extended

to include physical testbeds.

2. We would like to apply mininet-symbiosis to studying bandwidth-intensive Open-

Flow applications, which would otherwise be difficult to realize in the traditional

simulation or emulation testbeds.

3. In particular for the distributed Mininet with symbiosis, future works are:

106



• We would like to first integrate our symbiotic approach with the traditional

spatial decomposition. In this case, a robust partitioning algorithm is needed

to be able to handle different scenarios.

• Our current method requires that significant flows be identified during exper-

iment configuration. This can be an unnecessary burden if the system can

dynamically identify these flows and create network pipes on demand.

• Our current design has but one centralized simulation controller. A distributed

approach is needed to avoid the potential bottleneck for a large number of

emulation instances.

• We would like to explore other more efficient simulation abstractions (such as

fluid models) which can further reduce the cost of the controller.

107



BIBLIOGRAPHY

[ADHK08] J. Ahrenholz, C. Danilov, T.R. Henderson, and J.H. Kim. Core: A real-time
network emulator. In Proceedings of the IEEE Military Communications
Conference (MILCOM), pages 1–7, 2008.

[ATCL08] Heiko Aydt, Stephen John Turner, Wentong Cai, and Malcolm Yoke Hean
Low. Symbiotic simulation systems: An extended definition motivated by
symbiosis in biology. In PADS ’08: Proceedings of the 22nd Workshop on
Principles of Advanced and Distributed Simulation, pages 109–116, Wash-
ington, DC, USA, 2008. IEEE Computer Society.

[Aya89] Rassul Ayani. A parallel simulation scheme based on the distance between
objects. Proceedings of the 1989 SCS Multiconference on Distributed Simu-
lation, 21(2):113–118, 1989.

[BCH09] David W. Bauer, Jr, Christopher D. Carothers, and Akintayo Holder. Scal-
able Time Warp on Blue Gene supercomputers. In Proceedings of the 23rd
Workshop on Principles of Advanced and Distributed Simulation (PADS’09),
pages 35–44, 2009.

[BFH+06] Andy Bavier, Nick Feamster, Mark Huang, Larry Peterson, and Jennifer
Rexford. In vini veritas: realistic and controlled network experimentation. In
SIGCOMM ’06: Proceedings of the 2006 conference on Applications, tech-
nologies, architectures, and protocols for computer communications, pages
3–14, New York, NY, USA, 2006. ACM.

[BMT+98] Rajive Bagrodia, Richard Meyer, Mineo Takai, Yu an Chen, Xiang Zeng, Jay
Martin, and Ha Yoon Song. PARSEC: a parallel simulation environment for
complex systems. IEEE Computer, 31(10):77–85, 1998.

[Bro88] R. Brown. Calendar queues: a fast o(1) priority queue implementation for
the simulation event set problem. Communications of the ACM, 31:1220–
1227, 1988.

[BSU00] Russell Bradford, Rob Simmonds, and Brian Unger. A parallel discrete event
ip network emulator. In MASCOTS ’00: Proceedings of the 8th Interna-
tional Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, page 315, Washington, DC, USA, 2000. IEEE
Computer Society.

108



[BTA+99] Lokesh Bajaj, Mineo Takai, Rajat Ahuja, Ken Tang, Rajive Bagrodia, and
Mario Gerla. GloMoSim: a scalable network simulation environment. Tech-
nical Report 990027, Department of Computer Science, UCLA, 1999.

[CBP00a] Christopher D. Carothers, David Bauer, and Shawn Pearce. ROSS: a high-
performance, low memory, modular time warp system. In Proceedings of
the 14th Workshop on Parallel and Distributed Simulation (PADS’00), pages
53–60, May 2000.

[CBP00b] Christopher D. Carothers, David Bauer, and Shawn Pearce. ROSS: a high-
performance, low memory, modular time warp system. In Proceedings of
the 14th Workshop on Parallel and Distributed Simulation (PADS’00), pages
53–60, 2000.

[Cha] Chameleon - A configurable experimental environment for large-scale cloud
research. https://www.chameleoncloud.org/.

[cla] Clang: a C language family frontend for LLVM. http://clang.llvm.
org/.

[CLL+99] James Cowie, Hongbo Liu, Jason Liu, David Nicol, and Andy Ogielski. To-
wards realistic million-node internet simulations. International Conference
on Parallel and Distributed Processing Techniques and Applications, 1999.

[Clo] CloudLab. https://www.cloudlab.us/.

[CM79] K. Mani Chandy and Jayadev Misra. Distributed simulation: A case study
in design and verification of distributed programs. IEEE Transactions on
Software Engineering, SE-5(5):440–452, 1979.

[CNO99] James Cowie, David Nicol, and Andy Ogielski. Modeling the global internet.
Computing in Science and Engineering, 1(1):42–50, 1999.

[CP10] Christopher D. Carothers and Kalyan S. Perumalla. On deciding between
conservative and optimistic approaches on massively parallel platforms. In
Proceedings of the 2010 Winter Simulation Conference (WSC’10), pages
678–687, 2010.

[CPF99] Christopher D. Carothers, Kalyan S. Perumalla, and Richard M. Fujimoto.
Efficient optimistic parallel simulations using reverse computation. ACM
Transactions on Modeling and Computer Simulation, 9(3):224–253, 1999.

109



[CR10] Marta Carbone and Luigi Rizzo. Dummynet revisited. SIGCOMM Comput.
Commun. Rev., 40(2):12–20, April 2010.

[CS89] K. M. Chandy and R. Sherman. The conditional event approach to dis-
tributed simulation. Proceedings of the 1989 SCS Multiconference on Dis-
tributed Simulation, 21(2):93–99, 1989.

[CT90] Wentong Cai and Stephen J. Turner. An algorithm for distributed discrete-
event simulation—the “carrier null message” approach. Proceedings of the
1990 SCS Multiconference on Distributed Simulation, 22(1):3–8, 1990.

[DDD14] DDDAS. Dynamic Data-Driven Application Systems Info Cybernetics,
2014. http://www.dddas.org/. Last access: August 2014.

[DFP+94] Samir Das, Richard Fujimoto, Kiran Panesar, Don Allison, and Maria Hy-
binette. GTW: A Time Warp system for shared memory multiprocessors.
In Proceedings of the 1994 Winter Simulation Conference (WSC’94), pages
1332–1339, 1994.

[DG04] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing
on large clusters. In Proceedings of the 6th Symposium on Operating System
Design and Implementation (OSDI’04), 2004.

[DKP+06] John DeHart, Fred Kuhns, Jyoti Parwatikar, Jonathan Turner, Charlie Wise-
man, and Ken Wong. The open network laboratory. ACM SIGCSE Bulletin,
38(1):107–111, 2006.

[EL13] Miguel A. Erazo and Jason Liu. Leveraging symbiotic relationship between
simulation and emulation for scalable network experimentation. In Proceed-
ings of the 2013 ACM SIGSIM Conference on Principles of Advanced Dis-
crete Simulation (SIGSIM-PADS), pages 79–90, 2013.

[ELL09] Miguel Erazo, Yue Li, and Jason Liu. SVEET! A scalable virtualized eval-
uation environment for TCP. In Proceedings of the 5th International Con-
ference on Testbeds and Research Infrastructures for the Development of
Networks and Communities (TridentCom’09), April 2009.

[ERL15] Miguel A. Erazo, Rong Rong, and Jason Liu. Symbiotic network simulation
and emulation. ACM Trans. Model. Comput. Simul., 26(1):2:1–2:25, June
2015.

110



[ESn] ESnet: Energy Sciences Network. http://www.es.net/.

[eXp] eXpressive Internet Architecture (XIA) Project. http://www.cs.cmu.
edu/˜xia/.

[Fal99] Kevin Fall. Network emulation in the Vint/NS simulator. In Proceedings
of the 4th IEEE Symposium on Computers and Communications (ISCC’99),
pages 244–250, July 1999.

[FLPU02] R. Fujimoto, D. Lunceford, E. Page, and A. M. Uhrmacher. Grand
challenges for modeling and simulation. Technical Report 350, Schloss
Dagstuhl, 2002.

[Fos95] Ian Foster. Designing and Building Parallel Programs: Concepts and Tools
for Parallel Software Engineering. Addison-Wesley, 1995.

[FPP+03] R. M. Fujimoto, K. Perumalla, A. Park, H. Wu, M. H. Ammar, and G. F.
Riley. Large-scale network simulation: How big? how fast? In Proceed-
ings of the 11th IEEE/ACM International Symposium on Modeling, Analysis
and Simulation on Computer and Telecommunication Systems (MASCOTS),
2003.

[Fuj90] Richard M. Fujimoto. Parallel discrete event simulation. Commun. ACM,
33(10):30–53, 1990.

[Fuj01] Richard M. Fujimoto. Parallel simulation: parallel and distributed simula-
tion systems. In WSC ’01: Proceedings of the 33nd conference on Winter
simulation, pages 147–157, Washington, DC, USA, 2001. IEEE Computer
Society.

[GENa] GENI Project Office. The Global Environment for Network Innovations
(GENI). http://www.geni.net.

[GENb] GENI Racks. http://groups.geni.net/geni/wiki/
GENIRacksHome.

[GF09] Yan Gu and Richard Fujimoto. Performance evaluation of the rosenet net-
work emulation system. Simulation, 85(5):319–333, 2009.

[Gu07] Yan Gu. ROSENET: A remote server-based network emulation system. PhD
thesis, Georgia Institute of Technology, 2007.

111



[HHJ+12] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz, and
Nick McKeown. Reproducible network experiments using container-based
emulation. In CoNEXT, pages 253–264, 2012.

[HN93] Philip Heidelberger and David Nicol. Conservative parallel simulation of
continuous time Markov chains using uniformization. IEEE Transactions
on Parallel and Distributed Systems, 4(8):906–921, 1993.

[HRS+08] Mike Hibler, Robert Ricci, Leigh Stoller, Jonathon Duerig, Shashi Gu-
ruprasad, Tim Stack, Kirk Webb, and Jay Lepreau. Large-scale virtualization
in the emulab network testbed. In USENIX 2008 Annual Technical Confer-
ence, ATC’08, pages 113–128, Berkeley, CA, USA, 2008. USENIX Associ-
ation.

[Int] Internet2. http://www.internet2.edu/.

[Jam] James H. Cowie. Scalable Simulation Framework API Reference Manual.
http://www.ssfnet.org/SSFdocs/ssfapiManual.pdf.

[Jef85] David R. Jefferson. Virtual time. ACM Transactions on Programming Lan-
guages and Systems, 7(3):404–425, 1985.

[KK98] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM J. Sci. Comput., 20:359–392, 1998.

[KK03] Aleksandar Kuzmanovic and Edward W. Knightly. Low-rate tcp-targeted
denial of service attacks: The shrew vs. the mice and elephants. In Proceed-
ings of the 2003 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, SIGCOMM ’03, pages 75–
86, New York, NY, USA, 2003. ACM.

[LC03] Xin Liu and Andrew A. Chien. Traffic-based load balance for scalable net-
work emulation. In Proceedings of the 2003 ACM/IEEE Conference on Su-
percomputing (SC’03), 2003.

[LHM10] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop:
rapid prototyping for software-defined networks. In Proceedings of the 9th
ACM Workshop on Hot Topics in Networks, pages 19:1–19:6, 2010.

[Liu08] Jason Liu. A primer for real-time simulation of large-scale networks. In
ANSS-41 ’08: Proceedings of the 41st Annual Simulation Symposium (anss-

112



41 2008), pages 85–94, Washington, DC, USA, 2008. IEEE Computer Soci-
ety.

[Liu13] Jason Liu. Real-time scheduling of logical processes for parallel discrete-
event simulation. In Proceedings of the 2013 Winter Simulation Conference
(WSC’13), pages 2959–2971, 2013.

[LL14] Ting Li and Jason Liu. Cluster-based spatiotemporal background traffic
generation for network simulation. ACM Trans. Model. Comput. Simul.,
25(1):4:1–4:25, 2014.

[LLN+05] Michael Liljenstam, Jason Liu, David M. Nicol, Yougu Yuan, Guanhua Yan,
and Chris Grier. RINSE: the real-time interactive network simulation envi-
ronment for network security exercises. In Proceedings of the 19th Work-
shop on Parallel and Distributed Simulation (PADS’05), pages 119–128,
June 2005.

[LLV+09] Jason Liu, Yue Li, Nathanael Van Vorst, Scott Mann, and Keith Hellman. A
real-time network simulation infrastructure based on OpenVPN. Journal of
Systems and Software, 82(3):473–485, 2009.

[LMAR15] J. Liu, C. Marcondes, M. Ahmed, and R. Rong. Toward scalable emu-
lation of future internet applications with simulation symbiosis. In 2015
IEEE/ACM 19th International Symposium on Distributed Simulation and
Real Time Applications (DS-RT), pages 68–77, Oct 2015.

[LN] Jason Liu and David M. Nicol. Dartmouth Scalable Simulation Frame-
work (DaSSF). http://www.cis.fiu.edu/˜liux/research/
projects/dassf/index.html.

[LN01] Jason Liu and David M. Nicol. Learning not to share. In Proceedings of the
15th Workshop on Parallel and Distributed Simulation (PADS’01), pages
46–55, 2001.

[LNPP99] Jason Liu, David Nicol, Brian Premore, and Anna Poplawski. Performance
prediction of a parallel simulator. In Proceedings of the 13th Workshop on
Parallel and Distributed Simulation (PADS’99), pages 156–164, 1999.

[LR12] Jason Liu and Rong Rong. Hierarchical composite synchronization. In Pro-
ceedings of the 2012 Workshop on Principles of Advanced and Distributed
Simulation (PADS’12), pages 3–12, 2012.

113



[Lub88] Boris D. Lubachevsky. Bounded lag distributed discrete event simulation.
Proceedings of the 1988 SCS Multiconference on Distributed Simulation,
19(3):183–191, 1988.

[LXC04] Xin Liu, Huaxia Xia, and Andrew A. Chien. Validating and scaling the
microgrid: A scientific instrument for grid dynamics. J. Grid Comput.,
2(2):141–161, 2004.

[LYN+05] Jason Liu, Yougu Yuan, David M. Nicol, Robert S. Gray, Calvin C. Newport,
David Kotz, and Luiz Felipe Perrone. Empirical validation of wireless mod-
els in simulations of ad hoc routing protocols. SIMULATION: Transactions
of The Society for Modeling and Simulation International, 81(4):307–323,
April 2005.

[LYPN02] M. Liljenstam, Y. Yuan, BJ Premore, and D. Nicol. A mixed abstraction level
simulation model of large-scale internet worm infestations. In Proceedings
of the 10th Annual International Symposium on Modeling, Analysis and Sim-
ulation on Computer and Telecommunication Systems (MASCOTS), 2002.

[MAB+08] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry
Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow:
Enabling innovation in campus networks. SIGCOMM Comput. Commun.
Rev., 38(2):69–74, 2008.

[MBI+14] Ali Munir, Ghufran Baig, Syed Muhammad Irteza, Ihsan Ayyub Qazi, Alex
Liu, and Fahad Dogar. Friends, not foes - synthesizing existing transport
strategies for data center networks. In Proceedings of the 2014 ACM SIG-
COMM Conference (SIGCOMM), 2014.

[MET] METIS. http://glaros.dtc.umn.edu/gkhome/views/metis.

[MJ92] Steven Mccanne and Van Jacobson. The bsd packet filter: A new architecture
for user-level packet capture. pages 259–269, 1992.

[MLMB01] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. BRITE:
an approach to universal topology generation. In Proceedings of the 9th
Annual International Symposium on Modeling, Analysis and Simulation on
Computer and Telecommunication Systems (MASCOTS’01), 2001.

[Mob] MobilityFirst Future Internet Architecture Project. http:
//mobilityfirst.winlab.rutgers.edu/.

114



[Nam] Named Data Networking (NDN) Project. http://www.named-data.
net/.

[NEB] NEBULA Project. http://nebula.cis.upenn.edu/.

[Nic88] David M. Nicol. Parallel discrete-event simulation of FCFS stochastic
queueing networks. ACM SIGPLAN Notices, 23(9):124–137, 1988.

[Nic93] David M. Nicol. The cost of conservative synchronization in parallel discrete
event simulations. Journal of the ACM, 40(2):304–333, 1993.

[Nic96] David M. Nicol. Principles of conservative parallel simulation. In Proceed-
ings of the 1996 Winter Simulation Conference (WSC’96), pages 128–135,
1996.

[Nic98] David M. Nicol. Scalability, locality, partitioning and synchronization pdes.
In PADS ’98: Proceedings of the twelfth workshop on Parallel and dis-
tributed simulation, pages 5–11, Washington, DC, USA, 1998. IEEE Com-
puter Society.

[NJZ11] David M. Nicol, Dong Jin, and Yuhao Zheng. S3F: the scalable simulation
framework revisited. In Winter Simulation Conference, pages 3288–3299,
2011.

[NL97] David M. Nicol and Jason Liu. The dark side of risk (what your mother
never told you about Time Warp). In Proceedings of the 11th Workshop on
Parallel and Distributed Simulation (PADS’97), pages 188–195, 1997.

[NL02] David M. Nicol and Jason Liu. Composite synchronization in parallel
discrete-event simulation. IEEE Transactions on Parallel and Distributed
Systems, 13(5):433–446, 2002.

[NLLY03] David M. Nicol, Jason Liu, Michael Liljenstam, and Guanhua Yan. Sim-
ulation of large scale networks i: simulation of large-scale networks using
ssf. In WSC ’03: Proceedings of the 35th conference on Winter simulation,
pages 650–657. Winter Simulation Conference, 2003.

[NS-a] NS-2 Project. ns-2. http://nsnam.isi.edu/nsnam/index.php/
Main_Page.

115



[NS-b] NS-2 Project. Tips and Statistical Data for Running Large Simulations in
NS. http://www.isi.edu/nsnam/ns/ns-largesim.html.

[NS-c] NS-3 Project. ns-3. http://www.nsnam.org/index.html.

[OPN] http://www.opnet.org.

[ovs] Open vSwitch. http://openvswitch.org/.

[PACR02] Larry Peterson, Tom Anderson, David Culler, and Timothy Roscoe. A
blueprint for introducing disruptive technology into the Internet. In Proceed-
ings of the 1st Workshop on Hot Topics in Networking (HotNets-I), October
2002.

[Per] Kalyan S. Perumalla. µsik - a micro-kernel for parallel/distributed simu-
lation systems. In Proceedings of the 19th Workshop on Parallel and Dis-
tributed Simulation (PADS’05), pages 59–68.

[Per07] Kalyan S. Perumalla. Scaling time warp-based discrete event execution to
104 processors on a Blue Gene supercomputer. In Proceedings of the 4th
International Conference on Computing Frontiers, pages 69–76, 2007.

[Pla] http://www.planet-lab.org/.

[RAT93] Hassan Rajaei, Rassul Ayani, and Lars-Erik Thorelli. The local Time Warp
approach to parallel simulation. In Proceedings of the 7th Workshop on
Parallel and Distributed Simulation (PADS’03), pages 119–126, 1993.

[RBZ+14] Arup Raton Roy, Md. Faizul Bari, Mohamed Faten Zhani, Reaz Ahmed,
and Raouf Boutaba. Dot: Distributed openflow testbed. In Proceedings of
the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14, pages 367–368,
2014.

[Ren] Renesys. SSF Research Network. http://www.ssfnet.org/.

[RFI02] Matei Ripeanu, Ian Foster, and Adriana Iamnitchi. Mapping the gnutella
network: Properties of large-scale peer-to-peer systems and implications for
system design. IEEE Internet Computing special issue on Peer-to-Peer Net-
working, 6(1):50–57, 2002.

116



[RHL14] Rong Rong, Jiang Hao, and Jason Liu. Performance study of a minimal-
istic simulator on xsede massively parallel systems. In Proceedings of the
2014 Annual Conference on Extreme Science and Engineering Discovery
Environment, XSEDE ’14, pages 15:1–15:8, 2014.

[Ril03] George F. Riley. The georgia tech network simulator. In MoMeTools ’03:
Proceedings of the ACM SIGCOMM workshop on Models, methods and
tools for reproducible network research, pages 5–12, New York, NY, USA,
2003. ACM.

[Riz97] Luigi Rizzo. Dummynet: a simple approach to the evaulation of network
protocols. ACM SIGCOMM Computer Communication Review, 27(1):31–
41, January 1997.

[RJFA04] George F. Riley, Talal M. Jaafar, Richard M. Fujimoto, and Mostafa H. Am-
mar. Space-parallel network simulations using ghosts. Parallel and Dis-
tributed Simulation, Workshop on, 0:170–177, 2004.

[RSO+05] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo,
R. Siracusa, H. Liu, and M. Singh. Overview of the ORBIT radio grid testbed
for evaluation of next-generation wireless network protocols. In Proceedings
of the IEEE Wireless Communications and Networking Conference (WCNC
2005), 2005.

[SS89] Wen-King Su and C. L. Seitz. Variants of the Chandy-Misra-Bryant dis-
tributed discrete-event simulation algorithm. Proceedings of the 1989 SCS
Multiconference on Distributed Simulation, 21(2):38–43, 1989.

[SSS+02] Boleslaw K. Szymanski, Adnan Saifee, Anand Sastry, Yu Liu, and Kiran
Madnani. Genesis: a system for large-scale parallel network simulation. In
Proceedings of the 16th Workshop on Parallel and Distributed Simulation
(PADS 2002), pages 89–96, May 2002.

[TUM+13] Hajime Tazaki, Frédéric Uarbani, Emilio Mancini, Mathieu Lacage, Daniel
Camara, Thierry Turletti, and Walid Dabbous. Direct code execution: Re-
visiting library OS architecture for reproducible network experiments. In
CoNEXT, pages 217–228, 2013.

[VEL11] Nathanael Van Vorst, Miguel Erazo, and Jason Liu. PrimoGENI: Integrating
real-time network simulation and emulation in GENI. In Proceedings of
the 2011 Workshop on Principles of Advanced and Distributed Simulation
(PADS’11), 2011.

117



[VH08] András Varga and Rudolf Hornig. An overview of the omnet++ simulation
environment. In Simutools ’08: Proceedings of the 1st international confer-
ence on Simulation tools and techniques for communications, networks and
systems & workshops, pages 1–10, ICST, Brussels, Belgium, Belgium, 2008.
ICST (Institute for Computer Sciences, Social-Informatics and Telecommu-
nications Engineering).

[VYW+02] Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan, Dejan Kostic,
Jeff Chase, and David Becker. Scalability and accuracy in a large scale net-
work emulator. In Proceedings of the 5th Symposium on Operating Systems
Design and Implementation (OSDI’02), 2002.

[WDS+14] P. Wette, M. Draxler, A. Schwabe, F. Wallaschek, M.H. Zahraee, and
H. Karl. Maxinet: Distributed emulation of software-defined networks. In
Proceedings of the 2014 IFIP Networking Conference, pages 1–9, 2014.

[WLS+02] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad,
Mac Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An inte-
grated experimental environment for distributed systems and networks. In
Proceedings of the 5th Symposium on Operating Systems Design and Imple-
mentation (OSDI’02), pages 255–270, 2002.

[xse] XSEDE: Extreme Science and Engineering Discovery Environment. http:
//www.xsede.org/.

[XUSC99] Z. Xiao, B. Unger, R. Simmonds, and J. Cleary. Scheduling critical channels
in conservative parallel discrete event simulation. In Proceedings of the 13th
Workshop on Parallel and Distributed Simulation (PADS’99), pages 20–28,
1999.

[YKH+01] Tao Ye, Shivkumar Kalyanaraman, David Harrison, Biplab Sikdar, Bin Mo,
Hema Tahilramani, Ken Vastola, and Boleslaw Szymanski. Network man-
agement and control using collaborative on-line simulation. In Proceedings
of the IEEE International Conference on Communications (ICC’01), 2001.

[ZD01] Yin Zhang and Nick Duffield. On the constancy of internet path properties.
In IMW ’01: Proceedings of the 1st ACM SIGCOMM Workshop on Internet
Measurement, pages 197–211, New York, NY, USA, 2001. ACM.

[ZJTB04] Junlan Zhou, Zhengrong Ji, Mineo Takai, and Rajive Bagrodia. MAYA: in-
tegrating hybrid network modeling to the physical world. ACM Transactions
on Modeling and Computer Simulation (TOMACS), 14(2):149–169, 2004.

118



VITA

RONG RONG

December, 1984 Born, Gansu, China

2002-2006 B.E., Software Engineering
BeiHang University
Beijing, China

2015 M.S, Computer Science
Florida International University
Miami, Florida

2009-2016 Doctoral Candidate
Florida International University
Miami, Florida

PUBLICATIONS AND PRESENTATIONS

T. Li, N. Van Vorst, R. Rong, J. Liu. Simulation Studies of OpenFlow-Based In-Network
Caching Strategies. Proceeding of the 15th Communications and Networking Simulation
Symposium (CNS’12), Pages 12:1-12:7, March 2012.

J. Liu, R. Rong. Hierarchical Composite Synchronization. 26th Workshop on Principles
of Advanced and Distributed Simulation (PADS’12), Page 3-12, July 2012.

R. Rong, Hao. J, and J. Liu. Performance Study of a Minimalistic Simulator on XSEDE
Massively Parallel Systems. Proceedings of the 2014 Annual Conference on Extreme Sci-
ence and Engineering Discovery Environment (XSEDE), Page 1-8, July 2014.

M. Erazo, R. Rong, J. Liu. Symbiotic Network Simulation and Emulation. ACM Transac-
tions on Modeling and Computer Simulation (TOMACS), Volume 26, Issue 1, Page 1-25,
December 2015.

J. Liu, C. Marcondes, M. Ahmed, R. Rong. Toward Scalable Emulation of Future Internet
Applications with Simulation Symbiosis. 2015 IEEE/ACM 19th International Symposium
on Distributed Simulation and Real Time Applications (DS-RT), Page 68-77, September
2015.

R. Rong, J. Liu. Distributed Mininet with Symbiosis. Submitted to 2017 IEEE Interna-
tional Conference on Communications(ICC), May 2017.

R. Rong. Hierarchical Composite Synchronization. Paper presented at PADS’12 Confer-
ence, Zhangjiajie, China, July 15-19, 2012.

119



R. Rong. Performance Study of a Minimalistic Simulator on XSEDE Massively Parallel
Systems. Paper presented at XSEDE’14 Conference, Atlanta, GA, July 13-18, 2014.

120


	Florida International University
	FIU Digital Commons
	9-28-2016

	Toward Distributed At-scale Hybrid Network Test with Emulation and Simulation Symbiosis
	Rong Rong
	Recommended Citation


	 Toward Distributed At-scale Hybrid Network Test with Emulation and Simulation Symbiosis

