493 research outputs found

    Design of a CMOS RF Front End Receiver in 0.18μm Technology

    Get PDF
    An RF front end receiver system refers to the analog down conversion stages of the wireless communication system. The Digital base-band signals cannot be transmitted directly through wireless channels due to the properties of electromagnetic waves. The baseband signals need to be converted to analog through a digital-to-analog converter (DAC), up converted to higher frequency using an up conversion mixer and then transmitted through the channel. The received signals are down converted to base band frequency and then converted to digital again using the analog to digital converter (ADC). The processes which the analog signal undergoes at the RF front end include amplification, mixing and filtering. The RF Front End receiver developed in this thesis makes use of a differential low noise amplifier (LNA) with center frequency at 1.75GHz. The incoming RF signal undergoes amplification by the LNA and is down converted by a Gilbert double balanced mixer to a first Intermediate frequency (IF) of 250 MHz A second Gilbert Double Balanced Mixer down converts to a low second IF of 50 MHz The local oscillator signal for the mixer is generated using a voltage controlled ring oscillator (VCO). The entire front end of the receiver was created in Cadence virtuoso schematic editor using CMOS 0.18μm technology. The total power consumed by the RF Front End Receiver is 113.36 mW

    Injection Locked Oscillator for Radiometer

    Get PDF
    The main goal of this project was to design an injection locked oscillator (ILO) with free-running frequency of 70 GHz, and with locking capability to the third and the fifth harmonics of the reference signal upon injection. The circuit was realized using the silicon-germanium (SiGe) bipolar-complementary metal-oxide-semiconductor (BiCMOS) technology and the locking condition were verified after simulating the resistor-capacitor (RC) extracted netlist of the layout. The cadence virtuoso toolkit was used for the design process and the simulation purpose. The locking phenomenon, quasi-lock and fast-beat mode, lock range upon different injection power and phase noise characteristics of the ILO upon subharmonic injection were studied. The ILO was implemented using the direct (parallel) injection topology. The designed ILO circuit consists of two main components; conventional cross-coupled oscillator with oscillation frequency of 71 GHz and harmonic generator that injects the harmonics of the reference signal into the oscillator. The nonlinearity of the transistor was studied under different biasing conditions and the optimal bias point of 0.83 V was chosen that provided the maximum frequency conversion gain. The power consumed by the core oscillator is 2.64 mW and 3.4 mW by the harmonic generator under the supply voltage of 1.2 V, making the total power consumption of 6.04 mW as a whole by the ILO. The ILO achieved the locking range (LR) of 7.9% for the fifth harmonics injection and 1.22% for the third harmonics injection of the reference signal with input injection power of 0 dBm. The oscillator even achieved 0.32% LR for the seventh harmonics injection with the injection power of 0 dBm. The corresponding frequency ranges are 18.9-24.5 GHz, 13.29-14.16 GHz, 9.8-10.03 GHz for the third, fifth and the seventh harmonics respectively

    Polyphase filter with parametric tuning

    Get PDF
    Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201

    Microwave CMOS VCOs and Front-Ends - using integrated passives on-chip and on-carrier

    Get PDF
    The increasing demand for high data rates in wireless communication systems is increasing the requirements on the transceiver front-ends, as they are pushed to utilize more and wider bands at higher frequencies. The work in this thesis is focused on receiver front-ends composed of Low Noise Amplifiers (LNAs), Mixers, and Voltage Controlled Oscillators (VCOs) operating at microwave frequencies. Traditionally, microwave electronics has used exclusive and more expensive semiconductor technologies (III-V materials). However, the rapid development of consumer electronics (e.g. video game consoles) the last decade has pushed the silicon CMOS IC technology towards even smaller feature sizes. This has resulted in high speed transistors (high fT and fmax) with low noise figures. However, as the breakdown voltages have decreased, a lower supply voltage must be used, which has had a negative impact on linearity and dynamic range. Nonetheless, todays downscaled CMOS technology is a feasible alternative for many microwave and even millimeter wave applications. The low quality factor (Q) of passive components on-chip usually limits the high frequency performance. For inductors realized in a standard CMOS process the substrate coupling results in a degraded Q. The quality factor can, however, be improved by moving the passive components off-chip and integrating them on a low loss carrier. This thesis therefore features microwave front-end and VCO designs in CMOS, where some designs have been flip-chip mounted on carriers featuring high Q inductors and low loss baluns. The thesis starts with an introduction to wireless communication, receiver architectures, front-end receiver blocks, and low loss carrier technology, followed by the included papers. The six included papers show the capability of CMOS and carrier technology at microwave frequencies: Papers II, III, and VI demonstrate fully integrated CMOS circuit designs. An LC-VCO using an accumulation mode varactor is presented in Paper II, a QVCO using 4-bit switched tuning is shown in Paper III, and a quadrature receiver front-end (including QVCO) is demonstrated in paper VI. Papers I and IV demonstrate receiver front-ends using low loss baluns on carrier for the LO and RF signals. Paper IV also includes a front-end using single-ended RF input which is converted to differential form in a novel merged LNA and balun. A VCO demonstrating the benefits of a high Q inductor on carrier is presented in Paper V

    Advanced CMOS Integrated Circuit Design and Application

    Get PDF
    The recent development of various application systems and platforms, such as 5G, B5G, 6G, and IoT, is based on the advancement of CMOS integrated circuit (IC) technology that enables them to implement high-performance chipsets. In addition to development in the traditional fields of analog and digital integrated circuits, the development of CMOS IC design and application in high-power and high-frequency operations, which was previously thought to be possible only with compound semiconductor technology, is a core technology that drives rapid industrial development. This book aims to highlight advances in all aspects of CMOS integrated circuit design and applications without discriminating between different operating frequencies, output powers, and the analog/digital domains. Specific topics in the book include: Next-generation CMOS circuit design and application; CMOS RF/microwave/millimeter-wave/terahertz-wave integrated circuits and systems; CMOS integrated circuits specially used for wireless or wired systems and applications such as converters, sensors, interfaces, frequency synthesizers/generators/rectifiers, and so on; Algorithm and signal-processing methods to improve the performance of CMOS circuits and systems

    Superregeneration revisited: from principles to current applications

    Get PDF
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Wireless communications play a central role in our modern connected lives; at the same time, they constitute a very broad and deep area of research. The elements that make wireless communications possible are a transmitter, which sends information through electromagnetic waves; a medium that is able to transport these waves; and, finally, a receiver, which extracts the information from the-usually very small-amount of energy it is able to collect from the medium.Peer ReviewedPostprint (author's final draft

    Integrated radio frequency synthetizers for wireless applications

    Get PDF
    This thesis consists of six publications and an overview of the research topic, which is also a summary of the work. The research described in this thesis concentrates on the design of phase-locked loop radio frequency synthesizers for wireless applications. In particular, the focus is on the implementation of the prescaler, the phase detector, and the chargepump. This work reviews the requirements set for the frequency synthesizer by the wireless standards, and how these requirements are derived from the system specifications. These requirements apply to both integer-N and fractional-N synthesizers. The work also introduces the special considerations related to the design of fractional-N phase-locked loops. Finally, implementation alternatives for the different building blocks of the synthesizer are reviewed. The presented work introduces new topologies for the phase detector and the chargepump, and improved topologies for high speed CMOS prescalers. The experimental results show that the presented topologies can be successfully used in both integer-N and fractional-N synthesizers with state-of-the-art performance. The last part of this work discusses the additional considerations that surface when the synthesizer is integrated into a larger system chip. It is shown experimentally that the synthesizer can be successfully integrated into a complex transceiver IC without sacrificing the performance of the synthesizer or the transceiver.reviewe

    A 1.2 V low noise amplifier with double feedback for high gain and low noise figure

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia Eletrotécnica e de ComputadoresIn this thesis we present a balun low noise amplifier (LNA) in which the gain is boosted using a double feedback structure. The circuit is based in a Balun LNA with noise and distortion cancellation. The LNA is based in two basic stages: common-gate (CG) and common-source (CS). We propose to replace the resistors by active loads, which have two inputs that will be used to provide the feedback (in the CG and CS stages). This proposed methodology will boost the gain and reduce the NF (Noise Figure). Simulation results, with a 130 nm CMOS technology, show that the gain is 19.65 dB and the NF is less than 2.17 dB. The total power dissipation is only 5 mW (since no extra blocks are required), leading to an FOM (Figure of Merit) of 3.13 mW-1 from a nominal 1.2 supply

    Super-regenerative receiver at 433MHz

    Get PDF
    This paper presents a receiver for operation in the 433 MHz ISM band. The selected architecture explores the super regeneration phenomena to achieve a high sensitivity for applying in wireless implantable microsystems. This radio frequency (RF) chip can be supplied with a voltage of only 3 V for demodulating signals with powers in the range [ 100, 40] dB. The codulation (modulation and coding) scheme of the binary data is a variation of the Manchester code combined with OOK (on/off keying) modulation. The AMIS 0.7 µm CMOS process was selected for targeting the requirement to fabricate a low cost receiver, whose prototype was integrated in a die with an area of 55 mm2. Also, this receiver is fully compatibility with commercially transmitters for the same frequency

    Receiver Front-Ends in CMOS with Ultra-Low Power Consumption

    Get PDF
    Historically, research on radio communication has focused on improving range and data rate. In the last decade, however, there has been an increasing demand for low power and low cost radios that can provide connectivity with small devices around us. They should be able to offer basic connectivity with a power consumption low enough to function extended periods of time on a single battery charge, or even energy scavenged from the surroundings. This work is focused on the design of ultra-low power receiver front-ends intended for a receiver operating in the 2.4GHz ISM band, having an active power consumption of 1mW and chip area of 1mm². Low power consumption and small size make it hard to achieve good sensitivity and tolerance to interference. This thesis starts with an introduction to the overall receiver specifications, low power radio and radio standards, front-end and LO generation architectures and building blocks, followed by the four included papers. Paper I demonstrates an inductorless front-end operating at 915MHz, including a frequency divider for quadrature LO generation. An LO generator operating at 2.4GHz is shown in Paper II, enabling a front-end operating above 2GHz. Papers III and IV contain circuits with combined front-end and LO generator operating at or above the full 2.45GHz target frequency. They use VCO and frequency divider topologies that offer efficient operation and low quadrature error. An efficient passive-mixer design with improved suppression of interference, enables an LNA-less design in Paper IV capable of operating without a SAW-filter
    corecore